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Abstract— This article presents a novel Comprehensive Learning Bat Algorithm (CLBAT) for the optimal 

coordinated design of Power System Stabilizers (PSSs) and Static Var Compensator (SVC) for damping 

electromechanical oscillations in multimachine power systems considering wide range of operating conditions. 

The CLBAT incorporates a new comprehensive learning strategy (CLS) to improve the micro-bats 

cooperation, location update is also improved to maintain the bats diversity and to prevent premature 

convergence through a novel adaptive search strategy based on the relative travelled distance. In addition, the 

proposed elitist learning strategy (ELS) speeds up the convergence during the optimization process and drives 

the global best solution (gbest) toward promising regions. The superiority of the CLBAT over recent 

algorithms is first demonstrated via several experiments and comparisons through benchmark functions. The 

developed algorithm ensures convergence speed, credibility, computational resources, and optimal tuning of 

PSSs and SVCs of multimachine systems under different operating conditions through eigenanalysis, 

nonlinear simulation, and performance indices. 

Keywords— Power System Stabilizer; Static var compensator; Comprehensive learning; Adaptive search 

strategy; Elitist learning; Optimal control. 



1. Introduction  

Electromechanical oscillations impose great challenges in modern power systems since they limit the 

maximum power transfer capability and deteriorate the system stability (Kundur et al. 1994; Klein et al. 

1991).PSSs are thus widely employed to damp such electromechanical oscillations and restore the operation 

stability. However, under some operating conditions, PSSs fail to provide enough damping especially for 

inter-area oscillation modes. The recent emergence of Flexible AC Transmission Systems (FACTs) provides 

an alternative solution to improve the system damping (Bian et al. 2016; Shahgholian et al. 2016). Among 

the various types of FACTs, the Static Var Compensator (SVC) which is one of the most common devices 

used for this purpose. Although the SVC is basically employed for regulating the bus voltage, several studies 

demonstrated that it can also boost the system stability (Mondal et al. 2012; Abido et al. 2003).  

The simultaneous design of controllers in power systems is based on the optimization of complex 

non-differentiable problem that generally causes serious challenges for the application of the traditional 

compensation strategies.   

Several analytical approaches, based on traditional control theory, have been used to design robust power 

system controllers such as H∞ optimization techniques (T.C.Yang 1997), structured singular value (SSV) 

(Castellanos et al. 2008), and Bilinear matrix inequalities (de Campos et al. 2014). These designs face the 

common problems of the selection of weighting functions, pole-zero cancellation, and their requirements for 

higher order controllers which make them less common in applications. Adaptive control techniques were 

also proposed (Nechadi et al. 2012, Hussein et al. 2010) where the controllers are designed with quickly 

adjustable parameters according to the changes in the system parameters. However, since power systems are 

time-varying, the implementation costs of real-time adaptive controllers are high as the on-line parameter 

identification process is computationally heavy, and particularly if optimal design is considered. 

Alternatively, Artificial Neural Network (ANN) has been adopted in the design of PSSs (Tofighi et al. 2015, 



Mahabuba et al. 2009). ANN-based controllers can significantly improve the system performance however 

at the price of their exploding computation capacity with large amounts of training data and long training 

time. (Khan et al. 2006) employed Fuzzy Logic Control (FLC) for the design of PSSs (Sambariya et al. 

2015, Bouchama et al. 2016) to address the inaccuracies and uncertainties in the system model. However, 

extensive refinement to FLC are required before the application.  

Modern studies employ population-based algorithms to overcome these problems and achieve optimal 

settings for robust performance. Genetic algorithm (Sebaa et al. 2009) was proposed for the optimal tuning 

of PSSs in multimachine system, Teaching–Learning algorithm with chaotic strategy (Farah et al. 2017) is 

adopted in the coordinated design of Thyristor-Controlled Series Capacitor (TCSC) and PSSs. The small 

signal stability of power system is enhanced through the tuning of SVC and TCSC via Particle Swarm 

Optimization (PSO) algorithm (Mondal et al. 2012). The flower pollination algorithm was employed for 

robust design of SVC in power system (Abdelaziz et al. 2015). Gravitational Search Algorithm (GSA) was 

combined with gradient local search method (Peres et al. 2018) and employed for various types of PSSs 

design. The optimal design of PSSs is proposed via cuckoo search algorithm (Elazim et al. 2016). Bacteria 

foraging algorithm is adopted for the coordinated tuning of SVC and PSSs (Abd-Elazim et al. 2012). 

Shuffled frog-leaping algorithm (Darabian et al. 2015) is proposed to improve power system stability 

through the optimal tuning of SVC. Despite the many research items in the field, an optimal solution to this 

optimization problem does not exist in a closed form which always allows for future improvements. 

Recently, BA  algorithm  (Yang et al. 2012) is a new meta-heuristic algorithm inspired from the 

echolocation behaviour of Microbats. The BA employs a varying frequency, with increasing pulse emission 

rates and decreasing loudness of bats to search and locate the global best solution (gbest). The key 

advantage of BA is its higher accuracy finding the optimal solution due to the echolocation capacity of its 

micro-bats which can efficiently find their prey, distinguish it from local candidates, and precisely 



determine its location. However, BA still prone to premature convergence and trapping into local optima, 

this issue in addition to the unsatisfied balance between exploration and exploitation require further 

improvements which will be introduced along with novel developments in this article. 

Accordingly, variants of the BA have been proposed in attempt to enhance its optimization performance. 

(Liu et al. 2018)enhanced the BA local search capability based on chaotic initialization of the population, 

position update via a nonlinear decreasing time factor, and a hybridization with external optimization 

algorithm. (Meng et al. 2015) proposed the compensation for Doppler Effect in echoes and the foraging 

habitat of bats by further mimicking the bats behaviour.  Four strategies were also proposed in (Bahmani-

Firouzi et al. 2014) for updating the bat velocities in which an accumulator for each strategy is computed and 

used to determine the probability of selecting that strategy. (Saad et al. 2018) recently utilized a kriging 

surrogate model to solve Computationally Expensive Black-Box optimization problems. Despite the several 

efforts, the possibilities for enhancement are still on, as there is no algorithm that is ultimately perfect as it is 

indicated by the no free lunch theorem (Ho, Y. C et al. 2002). 

The utilization of the information of individuals from the previous iterations for the improvement of 

metaheuristic algorithms has proved to be an efficient strategy (Wang, et al. 2017). As an example, the 

modified biography biogeography-based optimization, proposed by (Jalili et al. 2016), adopted a strategy in 

which elite individuals are transferred from the previous generation to the current one where they were 

reused in combinations with the new individuals. Bare bones artificial bee Colony (Gao et al. 2015) 

improves the search ability through gaussian search equation that exploits the information of the best 

individual to generate a new candidate at the onlooker phase. In this employed bee phase, a parameter 

adaptation strategy and a fitness-based neighbourhood mechanism exploit the information from the previous 

search and from the best individuals, respectively. The Comprehensive Learning Particle Swarm Optimizer 

(CLPSO) (Liang et al. 2006) incorporates a CLS to improve its efficiency via the cooperative learning based 



on the exchange of information from previous iterations between all the particles in the swarm. Motivated by 

these significant improvements, a novel CLS is developed as an extension to the traditional BA which 

ignores the use of previous information from other individuals except for the best candidate. A CLBAT 

algorithm is introduced to improve and control the search memory during the optimization process in which 

the current location can potentially learn from the previous best locations of all individuals, and not 

restricted with the global best location as in the original BA. In addition, an ELS is proposed to push gbest 

out of regions of local optima. Moreover, a new adaptive search strategy is introduced to control the 

travelled distance of each micro-bat as an indicator of the tendency to either exploit or explore for new 

solutions which plays a positive role in speeding up the optimization process which is a known limitation of 

the original BA. The proposed algorithm is first tested against benchmark functions in which it shows 

superior performance. CLBAT is then employed for the coordinated design of PSSs and SVC controllers for 

a two-area four-machine (TAFM) system under different operating conditions, the performance of the 

obtained controllers is evaluated through eigenvalue analysis, nonlinear simulation, and indices where the 

proposed controllers effectively damp out the electromechanical oscillations and attain robust performance 

for all the considered conditions. 

This article introduces the CLBAT algorithm which is tested against the benchmark test functions 

then employed for the coordinated design of the PSSs and SVC. The obtained results and relevant 

comparisons are discussed and the concluding remarks are drawn with proposals for future works. 

2. Problem formulation 

2.1. Power system modelling 

The power system model is generally described using a set of nonlinear differential equations (Kundur et al. 

1994):  

�̇� = 𝑓(𝑥, 𝑢)			(1) 



Where x is the vector of the system states including the generators, loads, and other controllers such as SVCs 

and PSSs, and u is the vector of the system inputs. A full description of the set of equations governing the 

system operation are available in the literature (Sauer et al.1998). 

For a given operating point, the linearized model is represented in state space approach as: 

�̇� = 𝐴𝑥 + 𝐵𝑢			(2) 

A is the state matrix that determines the system eigenvalues, and is obtained by at a given operating 

point, where B is the input matrix that is equal to . 

The damping ratio ζ that corresponds to a single eigenvalue λ is given by: 

  

This article considers the optimal tuning of PSSs and SVC controllers for such a system to properly allocate 

the oscillation modes in the complex plane and increase the damping ratios of electromechanical modes. 

2.2. PSS modelling:  

The main function of a PSS is to improve the system stability and mitigate the electromechanical oscillations 

through modulating the Automatic Voltage Regulator (AVR) output. The conventional PSS (figure 1) is 

adopted in this work, it is composed of a stabilizer gain Ks, washout block, and lead-lag compensators. Its 

input is the rotor speed deviation (Δω). 

The role of KS is to specify the amount of damping injected to mitigate the system oscillations. The washout 

block is a high pass filter that prevents the DC component of the input signal from affecting the terminal 

voltage, hence Tw is set to 10 s. The two lead-lag blocks characterized by time constants  (in 

seconds) are used to compensate for the phase lag between the input and the output of the PSS. 
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2.3. SVC modelling: 

The SVC (figure 2) is a shunt connected static var generator that consists of a fixed capacitor C in parallel 

with a thyristor-controlled rectifier (TCR). The SVC maintains a fixed bus voltage and boosts the system 

stability. Its contribution in damping such oscillations is significantly improved by adding an auxiliary 

controller, usually a lead-lag compensator to the voltage control loop of the SVC. 

The block diagram of SVC shown in figure 3 presents the thyristor firing control system characterized by 

gain Kr and time constant Tr, and an auxiliary controller characterized by a gain Ksvc and two lead-lag blocks. 

The firing angle of the thyristor adjusts the SVC output which is the equivalent susceptance so as to control 

the bus voltage. 

The state space representation of the SVC controller is therefore given by: 

�̇�/01 =
1
𝑇3
4−�̇�/01 + 𝑘37𝑉39: − 𝑉; + 𝑉/<=		(4) 

3. Bat Algorithm 

3.1. Original Bat Algorithm 

BA is a metaheuristic optimization algorithm that has been applied successfully for solving various 

optimization problems such as power system stabilizers design (Ali et al. 2014), robust design of multiple 

trailing edge flaps for helicopter vibration reduction (Mallick et al. 2015), the redundancy allocation problem 

(Talafuse et al. 2016), Maximum Power Point Tracking in photovoltaic systems (Oshaba et al. 2017), and for 

tuning PI controllers in order to design Load Frequency Controller (LFC) (Abd-Elazim et al. 2016). The 

echolocation behaviour of its bats gives them the ability not only to localize their prey but also to 

discriminate it from other objects. Microbats use a type of sonar, called echolocation, to detect prey, they 

emit a sound pulse with loudness that varies from the loudest when searching for prey to a quieter base when 

approaching the prey. Most bats use short frequency-modulated signals for echolocation.  



It is formulated by idealizing the echolocation behaviour of bats using the following approximate rules: 

(1) All bats use echolocation to sense distance of the prey and obstacles and to discriminate between 

them. 

(2) The bats fly randomly with velocity at position with a fixed frequency , varying wavelength

  and loudness A0 to search for their prey. They adjust the frequency of the emitted pulses, and the 

rate of pulse emission r in the range of [0, 1], depending on the proximity of their target. 

(3) The loudness varies from a large A0 to a minimum value Amin, while the frequency varies within the 

range [fmin, fmax]. 

3.1.1. BA Design procedures  

The basic procedure of BA is shown in figure 4, which can be summarized through the following steps: 

At the initial phase the positions xi and velocities vi of the bats are randomly distributed in the D-dimensional 

search space, and they are updated in each iteration according to the following equations:  

 

 

 

where 𝛽 ∈ [0, 1] is a uniform random vector, xgt is the current gbest, while fmax and fmin are respectively the 

values of the maximum and minimum frequencies. 

For each bat, its pulse rate is less than a uniform random number within [0, 1]. The local search using 

random walk is performed to generate a new solution around the current gbest. 
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Where 𝜀 ∈ [−1, 1] represents a uniform random number, and stands for the mean of the loudness of all 

bats at iteration t. As the number of iterations increases, the bats get closer to their target, and the loudness is 

decreased while the pulse rate emission is increased. Hence the update for those parameters is given as: 

 

  

Where α is a constant selected such that 0 < α < 1, and γ is a positive constant. 

3.2. Comprehensive learning Bat Algorithm 

3.2.1. Comprehensive learning strategy: 

The original BA relies only on its gbest to update the bats velocities at each iteration, and eventually all bats 

are attracted to the region of gbest that is expected to be the global optimum. However, in case gbest is stuck 

in local optimum region, the bats get trapped in that local optima. To overcome this deficiency, the CLBAT 

employs an information sharing strategy known as CLS (Liang et al. 2006) in which the information stored 

about the bats previous best locations serve to improve the performance by increasing the diversity through 

the adopted velocity updating strategy: 

 

Where  is the velocity of the dth dimension of the ith bat at iteration t, similarly  and  are the 

current location and the best location of the dth dimension of the ith bat at iteration t, and  is the frequency 

of that dimension.  

 is a random number uniformly distributed between 1 and 0, and d is an inertia weight. 

W is the inertia weight which is decreased linearly from Wmax to Wmin: 
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W is used to balance between global and local search. It is started with large inertia weight to rapidly direct 

the algorithm toward global search, and decreases as the number of iterations increase to encourage 

exploitation during the convergence toward the global solution. 

To illustrate the advantage of the CLBAT, consider the problem of minimizing a function with 

dimension D, where , and  denote a solution in the search space and the 

global optimum, respectively. An arbitrary solution with poor fitness could discover the ith-

dimension’s solution such that . In order to keep and transfer this beneficial information, the CLBAT 

enables the sharing of information among bats through the CLS that is based on two features. (i) Only the 

sharing of previous best information is allowed. (ii) A learning probability Pci controls the update of velocity 

at a dimension d using the dimension of a randomly selected best location bxTd in the case where Pci is less 

than a randomly generated number, otherwise it is updated using its own best location bxid. This velocity 

update strategy is demonstrated in Figure 5. 

The learning probability is crucial in the determination of CLBAT performance, and it is given as:  

 

The nonlinear Pc is more adequate for proper balance between the exploration and the exploitation states of 

the CLBAT. At the early stage, relatively high values of Pc encourage the micro-bats to learn from their own 

previous information through the use of their best locations because the CLBAT is in the exploration phase 

(High w) since the sharable information is very limited at this stage. In the final stage, however, the 

relatively low Pc encourages information sharing in which a bat will more probably learn from other bats 

best locations because the CLBAT is in the convergence state where more useful information is discovered, 

especially those about the global optimum at some dimensions. Therefore, the controlled information sharing 

among the bats allows useful propagation within the population.   
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3.2.2. New search Method  

The conventional search strategy of the BA is locally limited around gbest based on the mean of the 

loudness. Due to this high dependence however, the loudness control of the search radius is not sufficient to 

speed up the convergence rate of the algorithm. Although the distribution of the bats new locations varies 

dynamically during the optimization process, the new locations are often far from the old locations at the 

exploration state, and very close at the final stage, due to the adopted position update strategy in the CLBAT. 

Hence the difference between the bat new and old location has the same behaviour as the loudness as it is 

large at the beginning and slowly decreases during the optimization process. The new search method is 

suitable to adaptively refine gbest for exploration and convergence states, the new search protocol is defined 

as:  

  

where  represents the bat’s new location,  is the current gbest, and  is a random number drawn 

from a standard normal distribution.  

The new search strategy adaptively controls the search around gbest depending on the last travelled distance 

from the bat’s old location to its new location. Since Nxit is far from xit in the exploration phase, the search 

around gbest is performed with large travelled steps and more potential location may be discovered. In 

contrast, the distance between Nxit and xit is minimal at the final stage and the search only refines gbest. 

3.2.3. Modified Elitist learning strategy: 

A modified ELS (figure 6), is adopted as a jumping out mechanism that updates gbest at randomly selected 

dimensions to move it to better regions and help escape local optima. One dimension of a gbest solution is 

selected randomly to undergo modifications in order to preserve the main structure of gbest, since many 

dimensions of gbest contains the information about the global optimum. The modified ELS is given as: 
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where is a random number from a uniform distribution within [-1, 1]. 

It is worth noting that in the ELS proposed (Zhan et al. 2009), replaces gbest if its fitness is better 

otherwise it replaces the worst fitness particle Xw. Notice that this strategy may slow down the convergence 

if the fitness of  is worse than that of Xw, for that reason  is kept in the modified ELS only if its 

fitness is better than the fitness of gbest or Xw.   

4. Test functions 

The performance of the developed CLBAT algorithm is first tested on a set of benchmark functions with 

various properties in order to assess its ability in exploring the region of search and jumping over regions of 

a local optimum. Table 1 lists the details of each test function with its corresponding name, optimization 

function, range of its search space, and the maximum tolerance value to accept an optimization solution.  

The resulting performance of the CLBAT is also compared with Artificial Bee Colony (ABC) algorithm 

(Karaboga et al. 2007), original BA Algorithm (Yang et al. 2012), and Biogeography-Based Optimization 

(BBO) (Simon, 2008). For a robust and fair comparison of results, the algorithms are tested for 30 

independent runs for a sufficient maximum number of fitness evaluations set to 120.000 and with a 

population size of 40. The mean and standard deviation of the proposed algorithms are presented in table 2. 

CLBAT outperforms other algorithms across all the test functions since it reaches accurately the global 

optimum of functions (f1-f5) for all the runs with zero mean and standard deviation results. For (f6- f11) the 

accuracy is very high and much better compared to the other algorithms as the mean is very close to the 

global fmin. Specifically, the results demonstrate that the CLBAT is able to jump out local solutions through 

the embedded CLS, modified ELS, and adaptive search strategies. 

Table 1. The test numerical functions. 

Name Formula Range Global f min Accept 
Sphere   [-100,100] 0 1e−2 

Zakharov   [-10,10] 0 1e−2 
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Sum square  [-100,100] 0 1e−5 

Rastrigin  [-5.12,5.12] 0 1e−5 

Non-continuous 
Rastrigin  

[-5.12,5.12] 0 1e-5 

Rosenbrock   [-2.048,2.048] 0 5 

Schwefel 2.21  [-100,100] 0 1e−2 

Schwefel 2.22  [-10,10] 0 1e−2 

Levy 

  

[-10,10] 0 1e−5 

Penalized 1 

 

[-50,50] 0 1e-5 

Penalized 2 

 

[-50,50] 0 1e-5 

Table 2. The results of CLBAT compared to the state-of-the art algorithms.  

Name  CLBAT ABC BA BBO 

Sphere Mean 
StdDev 

00e00 4.6103e-16 1.7617e-06 4.5731e-09 
00e00 4.9036e-17 4.6416e-07 5.2354e-09 

Zakharov 
 

Mean 
StdDev 

00e00 5.0351e-16 6.3080e-05  1.2455e-09 
00e00 7.1333e-17 1.6868e-05 4.8086e-09 

Sum square Mean 
StdDev 

00e00 5.1222e-16    5.2112e-05  1.3093e-07 
00e00 4.2745e-17 1.3938e-05 8.6187e-08 

Rastrigin 
 

Mean 
StdDev 

00e-00 4.1685e-14 1.4213e02  2.0187e-06 
00e-00 2.5567e-14 3.2932e01 2.3970e-06 

Non-continuous 
Rastrigin 

Mean 
StdDev 

00e00 00e00 1.7249e02  4.2680e00 
00e00 00e00 4.9104e01 1.3620e00 

Rosenbrock 
 

Mean 
StdDev 

2.658e-01 3.6731e00 8.394e-01   2.1166e01 
1.0114e00 2.5191e00 1.6207e00   4.6231e00 

Schwefel 2.22 Mean 
StdDev 

1.4767e-46 1.2455e-15 2.672e-01 3.9218e03 
6.1958e-46 9.7600e-17 7.690e-01 5.0525e02 

Schwefel 2.21 Mean 
StdDev 

8.5432e-115 2.4731e01 2.1494e01 1.26e-02  
4.1846e-114 3.2802e00 7.1633e00 2.80e-03 

Levy Mean 
StdDev 

1.4998e-32 4.4509e-16 3.4239e01 1.6999e00 
1.1135e-47 6.9267e-17 1.1179e01 1.4384e00 

Penalized 1 Mean 
StdDev 

1.5705e-32 4.5600e-16 1.07599e01  1.8114e-11 
5.5674e-48 7.5544e-17 1.08950e01 4.7946e-11 
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Penalized 2 Mean 
StdDev 

1.3662e-32 4.5336e-16 3.06354e01  1.6208e-10 
9.0016e-34 5.9422e-17 1.65191e01  2.0738e-10 

 

5. Controllers Design using CLBAT algorithm: 

The modes of oscillations in a linear system are related to its eigenvalues. To improve the power system 

stability, a multi-objective function is employed to relocate all the eigenvalues within the D-contour (Abdel-

Magid et al. 2003). The latter is characterized by , as shown in Figure 7. The values of 

, and the weighting factor q are empirically set to -2.0 ,0.25 ,and 10 respectively  based on the system under 

study to ensure sufficient damping to the electromechanical oscillations. The PSSs and SVC  parameters are 

simultaneously tuned using CLBAT to shift all modes within the D-contour over a given range of operating 

conditions to guarantee a well damped response over that specified range.  

The design problem is formulated based on the aforementioned criterion as to minimize the multi-objective 

function J: 

                         

Subjected to the following constraints: 

 

 

 

 

 

Where denotes the number of controllers which is five in this study, np is the number of operating 

conditions considered in the design process, and 𝜎FG and 𝜁FG are respectively the real part and the damping 

ratio of the ith eigenvalue of the jth operating point. 
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6. Results and simulation 

The TAFM system as shown in figure 8, is a well-known benchmark for power system controllers design, 

test, and comparisons of the damping efficiency. The system is composed of two areas linked through a 

weak transmission line that allows a 400 MW active power to flow from area 1 to area 2. The data for the 

system is available in (Kundur et al. 1994). 

In controllers design, four operating conditions (Table 3) are considered (Eslami et al. 2012) to achieve a 

robust performance during frequent disturbances that occur during the system operation. 

Table 3. Operating conditions. 

Operating condition Description 
Case1 Base case (All lines in service) 
Case2 Single line between 7 and 8 out of service 
Case3 Single line between 8 and 9 out of service 
Case4 Single line between 7 and 9 out of service 

6.1. Optimal SVC location selection: 

The optimal location of the SVC is selected using the effect of line outage on the system voltages (Abd-

Elazim et al. 2012). As indicated in Table 4, the voltage at Bus 8 is largely affected by the line outages, 

especially in case4 where the voltage at bus drops significantly from 0.9647 pu to 0.787828 pu. Hence, bus 8 

is the suitable location for installing the SVC, this accords with the results reported in (Martins et al. 1989). 

The line current between buses 9 and 10 is selected as input for SVC since it has high observability to the 

inter-area mode (Kundur et al. 1994). 

Table 4. Effect of line outage on load bus voltages. 

Cases Base case Outage of line 7-8 Outage of line 8-9 Outage of line 7-9 
Bus 5 1.0079 1.0036 1.004 0.99702 
Bus6 0.98156 0.971 0.97199 0.95499 
Bus 7 0.9672 0.94821 0.95 0.91952 
Bus 8 0.9647 0.9242 0.90925 0.78728 
Bus 9 1.0044 0.99217 0.9905 0.96632 
Bus 10 1.0086 1.0017 1.0008 0.98727 
Bus 11 1.0228 1.0201 1.0197 1.0143 



6.2. PSS and SVC tuning using CLBAT algorithm: 

The  CLBAT algorithm is applied to simultaneously tune the 25 parameters of the four PSSs installed in the 

generators and the SVC. All operating conditions are considered in the design stage to guarantee an optimal 

damping during all possible conditions and ensure the robustness of the controlled system during variations. 

The obtained parameters of the controllers are listed in table 5. Besides CLBAT superior accuracy and 

robustness, CLBAT controllers gains are lower than those of BA, which is another practical advantage in the 

realization of the controllers.   

Table 5. Parameters of the proposed controllers for CLBAT and BA algorithms. 

 CLBAT BA 
 Ks T1 T2 T3 T4 Ks T1 T2 T3 T4 
SVC 1.0025     0.0122     0.0227     0.0122 1.4295 2.1800 0.0206     1.9122     0.0275     0.9218 
G1 25.3641     1.4867     1.9919     1.9895     0.0113 96.2402     0.5174     1.6257     1.1438     0.9844 
G2 7.8495  1.9972     1.8867     1.9947     0.0211 34.6806     0.6349 1.1051     1.7734     0.0206 
G3 11.0329 0.0693 0.0328     1.9988     0.0456 98.6927     0.4037     0.1951     1.9751 1.5256 
G4 20.0696 1.9911     1.9914 1.9972     0.0125 40.7534     0.9672     0.7700     1.2238     0.0206 
 

6.2.1. Optimization performance statistics  

 To explore the reliability of each algorithm to minimize the given objective function, the experiment 

was repeated in 10 runs. The best, worst, and average costs at each iteration based on 10 runs are indicated 

in figure 9. The statistics in this section are obtained based on an ordinary computer of 4 CPUs of 3.2 GHZ. 

Optimal design of the controllers’ parameters requires the observation of the system behaviour and it is done 

in an offline stage; hence the optimality of the solution is more important compared to the optimization 

time. The running time for one iteration of the CLBAT algorithm is 39.0262 s versus 19.7331 s for the BA. 

However, it is the call of the Power system analysis toolbox (PSAT) that is computationally heavy, and 

especially for the CLBAT algorithm (39.0248 s) compared to BA (19.7325 s) due to the introduced 

improvements. This time is mainly due to the communication and parameter settings for the PSAT as well 

as the load flow and eigenanalysis operations. Notice that the PSAT is called according to the population for 



BA, and twice that number for CLBAT. The real average computation time of the optimization process per 

iteration is really negligible compared to the PSAT computations, this is 1.4 ms for CLBAT and 0.6 ms for 

BA.  However, the CLBAT algorithm successfully reaches the desired settings for the controllers with 

optimum required solution while the best fitness value of the BA is 1.7917. CLBAT is further more reliable 

in solving the optimization problem, all the 10 runs successfully converge to solution as depicted. 

6.3. Eigen Analysis: 

The eigenvalues of the system without the controllers are listed in table 6 for all the operating conditions. It 

can be clearly seen that the highlighted inter-area mode is unstable since it has negative damping ratio for all 

cases. Moreover, the two local modes are stable but close to the margin of the s-plane with insufficient 

damping ratios around 12% and 8% for all cases. The proposed controllers greatly improve the damping as 

indicated by the resulting eigenvalues as shown in table 7. Moreover, the CLBAT-tuned controllers 

(CLBAT-C) outperform the original BA-tuned controllers (BA-C) for all cases and for all electromechanical 

modes. Particularly, the inter-area mode is successfully stabilized with an acceptable damping ratio greater 

than 58% for all cases. The damping of the local modes is further increased by CLBAT-C above 50% for all 

cases compared to just below 32% achieved by the BA-C. Moreover, the damping of the inter-area mode 

with CLBAT-C is better than the state-of-the-art results in (Eslami et al. 2012) for the same system and 

operating conditions. 

Table 6. The open loop system eigenvalues, damping ratios, and frequencies. 

 Eigenvalues Damping ratio% Frequency (Hz) 

Case1  
 0.0085 ±j 3.2858     
-0.8451 ±j 6.5551     
-0.5353 ±j 6.6360     

  -0.2570     
  12.7870     
  8.0400    

0.5230 
1.0430 
1.0560 

Case2 
 0.1883 ±j 2.4619     
-0.8531 ±j 6.5426     
-0.5394 ±j 6.5892     

  -7.6280     
  12.9300     
  8.1590     

 0.3920 
1.0410 
1.0490 

Case3 
 0.1915 ±j 2.4601     
-0.8541 ±j 6.5399     
-0.5385 ±j 6.5917    

  -7.7610     
  12.9500     
  8.1430     

 0.3920 
1.0410 
1.0490 

Case4 0.3974 ±j 1.3435    -   -28.3650     0.2140 



0.8455 ±j 6.5270     -
0.5434±j 6.5383    

  12.8470     
  8.2820     

1.0390 
1.0410 

 

Table 7. The Eigenvalues, damping ratios, and frequencies of the system with PSSs and SVC tuned by 

CLBAT and BA. 

 
CLBAT BA 

Eigenvalues Damping ratio% Frequency (Hz) Eigenvalues Damping ratio% Frequency (Hz) 

Case1  
-3.2501 ±j 4.0152   
-7.2855 ±j 9.3981     
 -6.5611 ±j 9.9040     

62.9160     
61.2680   
55.2270     

0.6390 
1.4960 
1.5760   

-2.0728±j 2.9066  
-2.0197 ±j 9.9362   
-3.8776 ±j 11.5054    

58.0620 
19.9190    
31.9370    

0.4630 
1.5810     
1.8310  

Case2 
-3.7421 ±j 2.9490     
-7.7259 ±j 9.3368     
-6.3177±j 9.6433   

78.5430    
63.7510  
54.8010     

0.4690 
1.4860 
1.5350   

-2.0079 ±j 3.1667   
-2.7296 ±j 10.0837   
-3.2763 ±j 10.8879   

53.5500 
26.1290 
28.8150    

0.5040 
1.6050    
1.7330    

Case3 
-2.3849 ±j 3.3077     
-6.8595 ±j 9.2610     
-6.3334 ±j 10.098     

58.4840    
59.5200    
53.1320     

0.5260 
1.4740 
1.6070 

-1.4554 ±j 2.7237 
-2.4959 ±j 9.4909   
-3.6723 ±j 11.2435    

47.1270    
25.4330    
31.0470    

0.4330 
1.5110  
1.7890     

Case4 
-2.5775 ±j 2.7228     
-6.0772±j 9.4128     
-7.4849±j 9.5150     

68.7450     
54.2410     
61.8270     

0.4330 
1.4980 
1.5140 

-0.8586 ±j 3.7061    
-1.5742 ±j 7.8216  
-2.5815 ±j 11.1819     

22.5700    
19.7310 
22.4940     

0.5900 
1.2450 
1.7800     

 

6.4. Nonlinear time-domain simulation: 

Nonlinear simulation is performed on the nonlinear system to evaluate the performance of the proposed 

controllers considering a small disturbance of a step increase of 0.1 pu in the reference voltage (Wang et al. 

2018) of generator 1 at 2 s with duration of 100 ms for all the four operating cases, in addition to 3-cycle 

three-phase fault applied at bus 9 for all cases that is considered as a large disturbance. 

Figure 10 illustrates that the CLBAT-Cs outperform the BA-Cs in terms of the oscillations overshoot and the 

settling times for all the operating cases under the considered small disturbance.  

 

Figure 11 depicts the response of  during 3-cycle three-phase faults at bus 9 for all cases. While both BA-

C and CLBAT-C maintain the system stability and restore the destined operation, the CLBAT-Cs improve 

the damping compared to the BA-Cs. Superior damping results are achieved in terms of the smallest 

oscillation amplitude, rapid damping, and short settling time.  

13w



Moreover these results are consistent with the eigenvalue analysis of the system, and further demonstrate the 

capability of CLBAT-Cs to provide high damping to electromechanical oscillations. 

To further validate the performance of the proposed controllers, a different operating condition is considered 

that corresponds to light loading condition in which the transferred power from area 1 to area 2 is decreased 

to 3.5086 pu, then a 3- cycle three phase fault is applied on bus 9 at 𝑡 = 1𝑠. 

Figure 12 confirms the superiority of the CLBAT-Cs since the settling time and maximum overshoot are 

smaller than those of the system response with the BA-Cs. 

6.5. Performance indices 

The robustness of the CLBAT-Cs is measured based on the Integral of the Time-Weighted Absolute Error 

(ITAE), and the integral Square Error (ISE): 

 

 

 

Where, is the simulation time of the system, set as 10 s. The smaller the values of these indices are, the 

better the system response is. 

Table 8. Performance indices for 3-cycle three phase fault for CLBAT-Cs and BA-Cs. 

case ISE ITAE 
CLBAT-Cs BA-Cs CLBAT-Cs BA-Cs 

Case 1  2.4334e-07 3.8104e-07 0.0014 0.0027 
Case 2 4.4770e-07 4.5871e-07 0.0021 0.0027 
Case 3  2.8188e-07 5.1877e-07 0.0013 0.0036 
Case 4 1.4475e-06 3.1808e-06 0.0058 0.0077 
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The values of the two integral performance criteria in Table 8 demonstrate the superiority of the developed 

CLBAT-optimized designs of the controllers over their BA-based counterparts in maintaining an optimal 

response of the power system during the different cases. 

7. Conclusion 

In this article, the coordinated tuning of PSSs and SVC over a wide range of operating conditions for a 

TAFM system using a new developed CLBAT algorithm is proposed. The significant contributions of the 

CLBAT algorithm include a new CLS, a modified ELS, and the utilization of adaptive search mechanism. 

This greatly enhances the exploration and exploitation phases through increasing the diversity of the micro-

bats and improving the local search. The proposed CLBAT algorithm is first tested on a set of benchmark 

functions to verify its accuracy and optimization stability compared to recent algorithms in the literature. 

CLBAT is then deployed for the optimal design of the PSS and SVC controllers for the TAFM system 

through optimal relocation of oscillation modes considering four operating conditions. Simulation results, 

eigenvalue analysis ,and performance indices confirm the effectiveness of the CLBAT-based controllers in 

providing sufficient damping during various system disturbances across many operating cases. The future 

work will focus on the design of wide area controllers of a very large-scale power systems based on global 

signals rather than local signals. 

 Appendix A: 

CLBAT:α =0.98, γ =0.98, A=1.8, r= 0.8, fmax=2, fmin=0, Wmax=0.9, Wmin=0.2, Pcmax=0.8, Pcmin =0.2, G=40. 

BA: α=0.9, γ=0.9, A=1, r=0.8, fmax=1, fmin=0. 

Excitation system: KA= 155, TA= 0.055 s, Kf =0.125, Tf =1.8 s, KE =1, TE =1 s, Tr=0.05 s,

. 

SVC Controller: Tr = 0.02 s, Kr = 10. 

(1.075 )( ) 0.0056 (e  -1) fdE
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Figure 1. Block diagram of PSS and excitation system. 

       
Figure 2. SVC model.    Figure 3. Block diagram of SVC. 

 
Figure 4. BA flow chart. 
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Figure 5. Velocity update for Bat 𝑖 at iteration t.   Figure 6. Modified Elitist learning strategy. 

 
 

  
Figure 7. The D contour. Figure 8. Two Area Four machines power system. 

 

 
Figure 9. Convergence of CLBAT and BA algorithms. 
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                                   Case1                                                                                   Case2   
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Figure 10. Response of  for a 0.1 pu step increase in Vref under all cases. 

                                       
                                          Case1                                                                                   Case2 

                                        
                                       Case3                                                                                             Case4 

Figure 11. Response of  for 3-cycle 3 phase fault at bus 9 under all cases. 
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Figure 12. Response of for 3-cycle 3 phase fault at bus 9 under light loading condition. 
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