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1 Introduction

In a classic study, Boardman [3] analyzed the convergence of the spectral
sequence Er =⇒ G arising from an exact couple (A,E) in the sense of
Massey [14]. He identified a condition on the exact couple, called conditional
convergence, which in the case of half-plane spectral sequences with exiting
differentials is sufficient to ensure strong convergence. In the case of half-plane
spectral sequences with entering differentials, conditional convergence and the
vanishing of an obstruction group RE∞ guarantee strong convergence. Finally,
in the case of whole-plane spectral sequences, Boardman identified another ob-
struction group

W = colim
s

Rlim
r

K∞ Imr As ,

such that conditional convergence and the vanishing of both RE∞ andW imply
strong convergence.
It is an insight of the first author that for spectral sequences arising from
Cartan–Eilenberg systems (H, ∂), as defined in [6], there is a natural isomor-
phism

W ∼= Ker(κ) ,
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1856 Gard Olav Helle and John Rognes

where κ is the canonical colim-lim interchange morphism

κ : colim
i

lim
j

H(i, j) −→ lim
j

colim
i

H(i, j) .

We prove this in Theorems 6.7 and 7.5. Furthermore, κ is always a surjection,
cf. Theorem 5.2. We find that this direct relationship to the interchange mor-
phism clarifies the role of Boardman’s whole-plane obstruction group W . For
example, we obtain a straightforward proof of his criterion for the vanishing
of W , see Proposition 5.3.
In order to introduce notations we review spectral sequences, exact couples and
Cartan–Eilenberg systems in Sections 2, 3 and 4, respectively. Our treatment
of convergence is very close to that of [3], but we obtain slightly more general
conclusions in particular cases.
Our novel work begins in Section 5, where we introduce the canonical inter-
change morphism κ and show that it is always surjective for Cartan–Eilenberg
systems. In Sections 6 and 7 we consider right and left Cartan–Eilenberg sys-
tems and their associated exact couples (A′′, E1) and (A′, E1), and identify
the kernel of κ with the respective whole-plane obstruction groups. In Sec-
tion 8 we give some examples of spectral sequences that arise from biinfinite
sequences of spectra, illustrating that the whole-plane obstruction W can be
highly nontrivial, and giving topological interpretations of its meaning.

2 Spectral sequences

Let R be a ring and let A be the graded abelian category of graded R-modules
M = (Mt)t, where t ∈ Z is the internal degree. (Greater abstraction is possible,
but beware the counterexample of Neeman–Deligne [15] to Roos’ theorem [19],
as repaired in [20].)

Definition 2.1 (Leray [11], Koszul [10]). A spectral sequence is a sequence
(Er, dr)r of differential graded objects in A, for r ≥ 1, equipped with iso-
morphisms Er+1 ∼= H(Er, dr). Each term Er = (Er

s )s is a graded object
in A, where s ∈ Z is the filtration degree. We assume that each differential
dr = (drs)s, with drs : E

r
s → Er

s−r , has filtration degree −r and internal de-
gree −1. It satisfies dr ◦ dr = 0, and its homology H(Er, dr) is the graded
object with Hs(E

r, dr) = Ker(drs)/ Im(drs+r) in A.

Lemma 2.2. For any spectral sequence (Er, dr)r there are subobjects

0 = B1
s ⊂ · · · ⊂ Br

s ⊂ · · · ⊂ Zr
s ⊂ · · · ⊂ Z1

s = E1
s

in A, with Er
s
∼= Zr

s/B
r
s for all integers r ≥ 1 and s.

Proof. This is clear for r = 1. By induction on r we may assume that Er
s
∼=

Zr
s/B

r
s for all s ∈ Z. Then Im(drs) ⊂ Ker(drs) ⊂ Er

s correspond to Br+1
s /Br

s ⊂
Zr+1
s /Br

s ⊂ Zr
s/B

r
s for well-defined subobjects Br+1

s and Zr+1
s of Zr

s , with
Br

s ⊂ Br+1
s ⊂ Zr+1

s ⊂ Zr
s . This completes the inductive step.
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Definition 2.3. For each integer s, let

Z∞
s = lim

r
Zr
s

B∞
s = colim

r
Br

s

E∞
s = Z∞

s /B∞
s

denote the infinite cycles, the infinite boundaries, and the E∞-term, respec-
tively. Following Boardman [3, (5.1)] let

RE∞
s = Rlim

r
Zr
s .

Remark 2.4. Fix a filtration degree s. If drs = 0 for all sufficiently large r,
then the descending sequence (Zr

s )r is eventually constant and RE∞
s = 0. This

argument may be applied in one internal degree t at a time.

Definition 2.5. A filtration of an object G in A is a diagram of subobjects

· · · ⊂ Fs−1G ⊂ FsG ⊂ · · · ⊂ G ,

where s ∈ Z. Let F∞G = colims FsG, F−∞G = lims FsG and RF−∞G =
Rlims FsG. The filtration is exhaustive if F∞G → G is an isomorphism, it is
Hausdorff if F−∞G = 0, and complete if RF−∞G = 0.

Lemma 2.6. For an exhaustive complete Hausdorff filtration we can recover G
from the filtration subquotients FjG/FiG for i ≤ j in Z, by either one of the
isomorphisms

colim
j

lim
i
FjG/FiG ∼= G ∼= lim

i
colim

j
FjG/FiG .

Proof. This follows from the isomorphisms FjG ∼= limi FjG/FiG and G/FiG ∼=
colimj FjG/FiG, respectively.

Definition 2.7 ([6, XV.2], [3, 5.2]). A spectral sequence (Er, dr)r converges
weakly to a filtered object G if the filtration is exhaustive and there are iso-
morphisms

E∞
s

∼= FsG/Fs−1G

for each integer s. The spectral sequence converges if it converges weakly and
the filtration is Hausdorff. It converges strongly if it converges and the filtration
is complete.

Remark 2.8. For a strongly convergent spectral sequence we can recover the
targetG from the E∞-term if we are able to resolve the extension problems, i.e.,
to determine the diagram of filtration subquotients FjG/FiG from knowledge of
the minimal subquotients FsG/Fs−1G ∼= E∞

s for i < s ≤ j and other available
information.
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3 Exact couples

Definition 3.1 ([14, §4]). An exact couple (A,E, α, β, γ) in A is a pair
of graded objects A = (As)s and E = (Es)s, and three morphisms α =
(αs : As−1 → As)s, β = (βs : As → Es)s, γ = (γs : Es → As−1)s of filtra-
tion degree +1, 0 and −1, respectively, such that the triangle

As−1 As

Es

αs

βsγs

is exact for each s ∈ Z. We assume that the internal degree of α is 0, and that
the internal degrees of β and γ are either 0 and −1, or −1 and 0, respectively.

Remark 3.2. Equivalently we require that each triangle in the diagram

. . . As−2 As−1 As As+1 . . .

Es−1 Es Es+1

αs−1 αs

βs−1

αs+1

βs βs+1
γs−1 γs γs+1

is exact. This object is called an unrolled, or unraveled, exact couple [3, §0].

Definition 3.3. Let (A,E, α, β, γ) be an exact couple. For integers r ≥ 1
and s let

Zr
s = γ−1 Im(αr−1 : As−r → As−1)

Br
s = βKer(αr−1 : As → As+r−1)

Er
s = Zr

s/B
r
s .

Let drs : E
r
s → Er

s−r be given by drs([x]) = [β(y)] where γ(x) = αr−1(y).

Lemma 3.4. Ker(drs) = Zr+1
s /Br

s and Im(drs+r) = Br+1
s /Br

s , so Hs(E
r, dr) ∼=

Er+1
s and (Er, dr)r is a spectral sequence.

Remark 3.5. The objects Zr
s and Br

s of Definition 3.3 agree with those associ-
ated in Lemma 2.2 to the spectral sequence (Er, dr)r.

Definition 3.6. Given a sequence · · · → As−1
αs−→ As → . . . , consider the

colimit A∞ = colims As, the limit A−∞ = lims As, and the derived limit
RA−∞ = Rlims As. Let ιs : As → A∞ and πs : A−∞ → As be the colimit and
limit structure maps, respectively. The colimit A∞ is filtered, for s ∈ Z, by

FsA∞ = Im(ιs : As → A∞) .

The limit A−∞ is filtered, also for s ∈ Z, by

FsA−∞ = Ker(πs : A−∞ → As) .
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Boardman’s Whole-Plane Obstruction Group 1859

Definition 3.7 ([3, 5.10]). An exact couple (A,E, α, β, γ) converges condi-
tionally to the colimit if A−∞ = 0 and RA−∞ = 0. It converges conditionally
to the limit if A∞ = 0.

Remark 3.8. One often says that a spectral sequence is conditionally conver-
gent, but conditional convergence is, strictly speaking, a property of an exact
couple.

The following two variants of Boardman’s results show that conditional conver-
gence, when combined with the vanishing of RE∞, suffices to give quite good
convergence results. In the first case the target is correct, but we may not
get strong convergence because the filtration (with limit F−∞A∞) might not
be Hausdorff. In the second case we get strong convergence, but the target is
sometimes only a quotient (by RA−∞) of the most desirable target object. In
both cases the error term is given by the whole-plane obstruction object W for
the exact couple, whose definition is reviewed directly after the two theorems.

Theorem 3.9 (cf. [3, 8.10]). Let (A,E, α, β, γ) be an exact couple that converges
conditionally to the colimit, and assume that RE∞ = 0. Then the associated
spectral sequence converges weakly to A∞, and the filtration of A∞ is complete.
Moreover, F−∞A∞

∼= W .

Theorem 3.10 (cf. [3, 8.13]). Let (A,E, α, β, γ) be an exact couple that con-
verges conditionally to the limit, and assume that RE∞ = 0. Then the associ-
ated spectral sequence converges strongly to A−∞. Moreover, RA−∞

∼= W .

Definition 3.11 ([3, §3, §8]). Let (A,E, α, β, γ) be any exact couple. For
integers r ≥ 1 and s let

Imr As = Im(αr : As−r → As)

Qs = lim
r

Imr As

RQs = Rlim
r

Imr As

K∞ Imr As = Ker(ιs : As → A∞) ∩ Imr As

W = colim
s

Rlim
r

K∞ Imr As .

Remark 3.12. Boardman employs transfinite induction to define image sub-
sequences Imσ As for arbitrary ordinals σ, and uses these to prove that the
sufficient conditions he gives for strong convergence are also necessary. We will
only establish the sufficiency of our conditions, and for these results there is no
need to invoke transfinite induction.

Lemma 3.13 (cf. [3, 5.4(b)]). The filtration of A−∞ = lims Im(πs) = lims Qs

is complete and Hausdorff.

Proof. The colimit structure map πs : A−∞ → As factors through Im(πs) ⊂
Imr As ⊂ As for each r, hence also through Im(πs) ⊂ Qs ⊂ As. Therefore the
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identity map of A−∞ factors through lims Im(πs) ⊂ lims Qs ⊂ lims As, which
implies that lims Im(πs) = lims Qs = lims As. The short exact sequences
0 → FsA−∞ → A−∞ → Im(πs) → 0 give an exact sequence

0 → F−∞A−∞ −→ A−∞

∼=
−→ lim

s
Im(πs) −→ RF−∞A−∞ −→ 0

upon passage to limits. Hence F−∞A−∞ = 0 and RF−∞A−∞ = 0.

Lemma 3.14. Consider any two morphisms A C B
f g

in A. There
is an isomorphism

Im(f)/f(Ker(g))
∼=
−→ Im(g)/(g(Ker(f))

given by [a] 7→ [g(c)], where f(c) = a.

Proof. The isomorphism factors through C/(Ker(f) + Ker(g)).

Lemma 3.15 (cf. [3, 5.6]). (a) There is a natural short exact sequence

0 → FsA∞/Fs−1A∞ −→ E∞
s −→ Z∞

s /Ker(γ) → 0 .

(b) There is a natural six term exact sequence

0 → Z∞
s /Ker(γ)

γ
−→ Qs−1

α
−→ Qs → RE∞

s
γ

−→ RQs−1
α

−→ RQs → 0 .

(c) If RE∞ = 0 then lims Qs → Qs is surjective.

Proof. (a) The inclusions B∞
s ⊂ Im(β) = Ker(γ) ⊂ Z∞

s lead to a short exact
sequence

0 → Im(β)/B∞
s → E∞

s → Z∞
s /Ker(γ) → 0 .

By Lemma 3.14 applied to the two morphisms E1
s As A∞

β ιs there

is an isomorphism
Im(β)/B∞

s
∼= FsA∞/Fs−1A∞ .

(b) The short exact sequences

0 → Zr
s/Ker(γ)

γ
−→ Imr−1As−1

α
−→ Imr As → 0

give the stated six term exact sequence upon passage to limits.
(c) If RE∞

s = 0 for all s, then α : Qs−1 → Qs is surjective for each s. This
implies that lims Qs → Qs is surjective for each s.

Proof of Theorem 3.9. We are assuming that A−∞ = 0, RA−∞ = 0 and
RE∞ = 0. The filtration of A∞ is exhaustive because

F∞A∞ = colim
s

Im(As → A∞) ∼= Im(colim
s

As → A∞) = A∞ .
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Boardman’s Whole-Plane Obstruction Group 1861

It is also complete, because the derived limit of the surjections As ։ FsA∞ is
a surjection 0 = RA−∞ ։ RF−∞A∞. By Lemma 3.13, lims Qs = A−∞ = 0.
Lemma 3.15 then implies that Qs = 0 for all s ∈ Z. Furthermore, RQs−1

∼=
RQs, Z

∞
s /Ker(γ) = 0 and FsA∞/Fs−1A∞

∼= E∞
s , for all s ∈ Z.

The short exact sequences

0 → K∞ Imr As → Imr As
ιs|
−→ Fs−rA∞ → 0

give the exact sequence

Qs → F−∞A∞ → Rlim
r

K∞ Imr As → RQs

upon passage to limits over r. The Mittag–Leffler short exact sequence

0 → Rlim
s

Qs −→ RA−∞ −→ lim
s

RQs → 0 (3.1)

of [3, 3.4(b)] simplifies to 0 = RA−∞
∼= lims RQs

∼= RQs. Hence F−∞A∞
∼=

Rlimr K∞ Imr As for all s, and F−∞A∞
∼= W .

Proof of Theorem 3.10. We are assuming that A∞ = 0 and RE∞ = 0. The
filtration of A−∞ is complete and Hausdorff by Lemma 3.13. It is exhaustive
because

F∞A−∞ = colim
s

Ker(A−∞ → As) ∼= Ker(A−∞ → colim
s

As) = A−∞ ,

since colims As = A∞ = 0.
By Lemma 3.15 we have short exact sequences

0 → E∞
s

γ
−→ Qs−1

α
−→ Qs → 0

and isomorphisms α : RQs−1
∼= RQs, for all s ∈ Z. Furthermore, lims Qs → Qs

is surjective. Hence, by Lemma 3.13 the image of πs : A−∞ → As is equal to

Qs. The surjections A−∞ ։ Qs−1
α
։ Qs lead to the short exact sequence

0 → Fs−1A−∞ −→ FsA−∞ −→ Ker(α) → 0 .

Thus FsA−∞/Fs−1A−∞
∼= Ker(α) ∼= E∞

s .
The Mittag–Leffler sequence (3.1) simplifies to an isomorphism RA−∞

∼=
lims RQs

∼= colims RQs. Furthermore, K∞ Imr As = Imr As since A∞ = 0,
so Rlimr K∞ Imr As = RQs and W = colims RQs.

4 Cartan–Eilenberg systems

Definition 4.1. Let I be a linearly ordered set, and let I [1] be its arrow
category, with one object (i, j) for each pair in I with i ≤ j, and a single
morphism from (i, j) to (i′, j′), where i′ ≤ j′, precisely when i ≤ i′ and j ≤ j′.
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Let I [2] be the category with one object (i, j, k) for each triple in I with i ≤
j ≤ k, and a single morphism (i, j, k) → (i′, j′, k′), where i′ ≤ j′ ≤ k′, precisely
when i ≤ i′, j ≤ j′ and k ≤ k′.
Let d0, d1 and d2 : I

[2] → I [1] be the functors mapping (i, j, k) to (j, k), (i, k)
and (i, j), respectively. There are natural transformations ι : d2 → d1 and
π : d1 → d0, with components ι : (i, j) → (i, k) and π : (i, k) → (j, k), respec-
tively.

View the set Z of integers as linearly ordered, with the usual ordering.

Definition 4.2 ([6, XV.7]). An I-system (H, ∂) in A is a functor H : I [1] → A
and a natural transformation ∂ : Hd0 → Hd2 of functors I [2] → A, such that
the triangle

Hd2 Hd1

Hd0

Hι

Hπ
∂

is exact. We assume that the internal degrees of Hι and Hπ are 0, and that ∂
has internal degree −1. A Z-system is called a (homological) Cartan–Eilenberg
system.

Remark 4.3. The functor H assigns an object H(i, j) to each pair (i, j) with
i ≤ j in I, and a morphism

η : H(i, j) −→ H(i′, j′)

to each morphism (i, j) → (i′, j′). By functoriality, η : H(i, j) → H(i, j) is the
identity, and the composite η ◦ η : H(i, j) → H(i′, j′) → H(i′′, j′′) is equal to
η : H(i, j) → H(i′′, j′′). In particular, η = Hπ ◦ Hι : H(i, j) → H(i′, j′) for
ι : (i, j) → (i, j′) and π : (i, j′) → (i′, j′). The natural transformation ∂ has
components

∂(i,j,k) : H(j, k) −→ H(i, j)

for each triple (i, j, k) with i ≤ j ≤ k in I, and

η ◦ ∂(i,j,k) = ∂(i′,j′,k′) ◦ η : H(j, k) → H(i′, j′)

whenever there is a morphism (i, j, k) → (i′, j′, k′). The triangle

H(i, j) H(i, k)

H(j, k)

η

η
∂

(4.1)

is exact, where ∂ = ∂(i,j,k). In particular, H(i, i) = 0 for each i in I.
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Example 4.4. In the language of [12, 1.2.2]: If C is a stable∞-category equipped
with a t-structure, and if X ∈ Gap(I, C) is an I-complex in C, then H = π∗(X)
with H(i, j) = (πtX(i, j))t is an I-system. In particular, if X is a Z-complex
then H = π∗(X) is a Cartan–Eilenberg system.

Definition 4.5. Let (H, ∂) be a Cartan–Eilenberg system. For each integer s
let E1

s = H(s− 1, s), and for each integer r ≥ 1 let

Zr
s = Ker(∂ : E1

s → H(s− r, s− 1))

Br
s = Im(∂ : H(s, s+ r − 1) → E1

s )

Er
s = Zr

s/B
r
s

define the r-cycles, r-boundaries and Er-term, respectively. These form se-
quences

0 = B1
s ⊂ · · · ⊂ Br

s ⊂ · · · ⊂ Zr
s ⊂ · · · ⊂ Z1

s = E1
s ,

so each Er-term is a subquotient of the E1-term.

Remark 4.6. We note that

Zr
s = Im(η : H(s− r, s) → E1

s )

Br
s = Ker(η : E1

s → H(s− 1, s+ r − 1)) ,

by exactness. Furthermore, ∂ : E1
s → H(s− r, s− 1) factors through η : E1

s →
H(s− 1, s+ r − 1) by naturality, so Br

s ⊂ Zr
s by exactness.

H(s− r, s− 1) H(s− r, s)

E1
s H(s− 1, s+ r − 1)

H(s, s+ r − 1)

η

η

η

∂

η
∂

Lemma 4.7. For integers r ≥ 1 and s there is an isomorphism

Zr
s/Z

r+1
s

∼=
−→ Br+1

s−r/B
r
s−r

given by [x] 7→ [∂(x̃)] for η(x̃) = x, where η : H(s − r, s) → E1
s and ∂ : H(s −

r, s) → E1
s−r.

Proof. Apply Lemma 3.14 to the two morphisms

E1
s H(s− r, s) E1

s−r ,
η ∂

noting that Im(η) = Zr
s , η(Ker(∂)) = Zr+1

s , Im(∂) = Br+1
s−r and ∂(Ker(η)) =

Br
s−r.
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Definition 4.8. For integers r ≥ 1 and s let drs : E
r
s −→ Er

s−r be the composite
morphism

Er
s = Zr

s/B
r
s Zr

s/Z
r+1
s Br+1

s−r/B
r
s−r Zr

s−r/B
r
s−r = Er

s−r .
∼=

More explicitly, it is given by [x] 7→ [∂(x̃)], where x ∈ Zr
s ⊂ E1

s and x̃ ∈
H(s− r, s) satisfy η(x̃) = x, and ∂(x̃) ∈ Zr

s−r ⊂ E1
s−r.

Proposition 4.9. For each Cartan–Eilenberg system (H, ∂), the associated
sequence (Er, dr)r≥1 is a spectral sequence. More precisely, Ker(drs) = Zr+1

s /Br
s

contains Im(drs+r) = Br+1
s /Br

s , so drs ◦ d
r
s+r = 0, and there is an isomorphism

Er+1
s

∼= Hs(E
r , dr)

given by [x] 7→ [x̄], where x ∈ Zr+1
s maps to x̄ ∈ Zr+1

s /Br
s .

Proof. The calculation of Ker(drs) and Im(drs−r) is evident from the definition
of drs. The isomorphism in question is the Noether isomorphism Zr+1

s /Br+1
s

∼=
(Zr+1

s /Br
s)/(B

r+1
s /Br

s ).

Remark 4.10. The objects Zr
s and Br

s of Definition 4.5 agree with those asso-
ciated in Lemma 2.2 to the spectral sequence (Er, dr)r.

5 The canonical interchange morphism

Definition 5.1. Given any functor H : Z[1] → A, let κ be the canonical inter-
change morphism

κ : colim
j

lim
i
H(i, j) −→ lim

i
colim

j
H(i, j) ,

as defined in [13, IX.2(3)]. The restriction κιj of κ to limi H(i, j) is the limit
over i of the colimit structure maps ιi,j : H(i, j) → colimj H(i, j). The projec-
tion πiκ of κ to colimj H(i, j) is the colimit over j of the limit structure maps
πi,j : limiH(i, j) → H(i, j).

limi H(i, j) colimj limi H(i, j)

limi colimj H(i, j)

H(i, j) colimj H(i, j)

ιj

πi,j

κ

πi

ιi,j
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Theorem 5.2. Let (H, ∂) be a Cartan–Eilenberg system. There is a natural
exact sequence

0 → colim
j

Rlim
i

H(i, j)
λ

−→ Rlim
i

colim
j

H(i, j)

−→ colim
j

lim
i
H(i, j)

κ
−→ lim

i
colim

j
H(i, j) → 0 ,

where Cok(λ) = colimj Rlimi Cok(ιi,j) ∼= colimj limi Ker(ιi,j) = Ker(κ) and
the middle morphism has internal degree −1. In particular, the interchange
morphism κ is surjective.

Proof. To simplify the notation, let

Di = colim
k

H(i, k)

for each integer i. The colimit over k of (4.1) is the exact triangle

H(i, j) Di

Dj .

ιi,j

η
∂

Let K(i, j) = Ker(ιi,j), I(i, j) = Im(ιi,j) and C(i, j) = Cok(ιi,j). We then have
short exact sequences

0 → K(i, j) −→ H(i, j) −→ I(i, j) → 0 ,

0 → I(i, j) −→ Di −→ C(i, j) → 0 ,

0 → C(i, j) −→ Dj
∂

−→ K(i, j) → 0 ,

for each i ≤ j. Passing to limits over i we obtain the exact sequences

0 → lim
i

K(i, j) −→ lim
i
H(i, j) −→ lim

i
I(i, j)

δ
−→ Rlim

i
K(i, j) −→ Rlim

i
H(i, j) −→ Rlim

i
I(i, j) → 0 ,

0 → lim
i
I(i, j) −→ lim

i
Di −→ lim

i
C(i, j)

δ
−→ Rlim

i
I(i, j) −→ Rlim

i
Di −→ Rlim

i
C(i, j) → 0 ,

0 → lim
i

C(i, j) −→ Dj −→ lim
i

K(i, j)

δ
−→ Rlim

i
C(i, j) −→ 0 −→ Rlim

i
K(i, j) → 0 .

Here limi Dj = Dj and Rlimi Dj = 0, so Rlimi K(i, j) = 0. Passing to colimits
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over j we get the exact sequences

0 → colim
j

lim
i
K(i, j) −→ colim

j
lim
i
H(i, j) −→ colim

j
lim
i

I(i, j) → 0 ,

0 → colim
j

Rlim
i

H(i, j)
∼=
−→ colim

j
Rlim

i
I(i, j) → 0 ,

0 → colim
j

lim
i
I(i, j) −→ lim

i
Di −→ colim

j
lim
i
C(i, j)

δ
−→ colim

j
Rlim

i
I(i, j) −→ Rlim

i
Di −→ colim

j
Rlim

i
C(i, j) → 0 ,

0 → colim
j

lim
i
C(i, j) −→ colim

j
Dj −→ colim

j
lim
i
K(i, j)

δ
−→ colim

j
Rlim

i
C(i, j) → 0 .

Here colimj Dj = 0, since H(j, j) = 0 for each j. This gives us a natural
isomorphism

δ : colim
j

lim
i
K(i, j)

∼=
−→ colim

j
Rlim

i
C(i, j)

of internal degree +1. Furthermore, colimj limi C(i, j) = 0, which implies that
colimj limi I(i, j) ∼= limiDi. We therefore have natural short exact sequences

0 → colim
j

lim
i
K(i, j) −→ colim

j
lim
i
H(i, j)

κ
−→ lim

i
Di → 0 ,

0 → colim
j

Rlim
i

H(i, j)
λ

−→ Rlim
i

Di −→ colim
j

Rlim
i

C(i, j) → 0 .

By using δ−1 to splice these together, we obtain the asserted four-term exact
sequence.

The whole-plane obstruction W and the interchange kernel Ker(κ) depend on
the underlying exact couple and Cartan–Eilenberg system, respectively, not just
the associated spectral sequence. Boardman gave a useful sufficient criterion
for the vanishing of W , which only depends on data internal to the spectral
sequence. The analogous statement for Ker(κ) admits the following direct
proof.

Proposition 5.3 (cf. [3, 8.1]). Let (H, ∂) be a Cartan–Eilenberg system. Sup-
pose that a and b are such that drs : E

r
s → Er

s−r is zero whenever s− r ≤ a and
s > b. Then Ker(κ) = 0.

Proof. Let w ∈ Ker(κ) ⊂ colimj limiH(i, j) be the image of wj = (wi,j)i ∈
limi H(i, j), for a fixed j ≥ a. Then wi,j 7→ 0 under H(i, j) → colimj H(i, j),
for each i ≤ j. Let wi,k denote the image of wi,j under η : H(i, j) → H(i, k),
for each k ≥ j. Choose ℓ ≥ b so large that wa,ℓ = 0. Then wℓ = (wi,ℓ)i ∈
limi H(i, ℓ) maps to w. Consider any i ≤ a. Suppose, for a contradiction, that
wi,ℓ 6= 0. Then there is a minimal s > ℓ such that wi,s = 0. By exactness at
H(i, s−1) we can choose an x ∈ H(s−1, s) = E1

s with ∂(x) = wi,s−1. There is
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also a minimal s− r > i such that ws−r,s−1 = 0. We know that s− r ≤ a, and
by exactness at H(i, s− 1) we can choose a y ∈ H(i, s− r) with η(y) = wi,s−1.
Let z ∈ H(s− r − 1, s− r) = E1

s−r be the image of y.

y wi,j wi,ℓ wi,s−1 0

z

wa,j 0 0

x

∂

By construction there is now a nonzero differential drs([x]) = [z]. This contra-
dicts the hypothesis that these differentials are zero. Hence wi,ℓ = 0 for all
i, so wℓ = 0 and w = 0. Since w ∈ Ker(κ) was arbitrary, this proves that
Ker(κ) = 0.

Remark 5.4. This argument may be applied in one internal degree t at a time:
If there are integers a(t) and b(t) such that drs : (E

r
s )t+1 → (Er

s−r)t is zero
whenever s− r ≤ a(t) and s > b(t), then Ker(κ)t = 0.

6 Right Cartan–Eilenberg systems

Let Z+∞ = Z ∪ {+∞}, Z−∞ = Z ∪ {−∞} and Z±∞ = Z ∪ {±∞}, and extend
the linear ordering on Z to these sets by letting +∞ and −∞ be the greatest
and least elements, respectively. Recall Definition 4.2.

Definition 6.1. A Z+∞-system is called a right Cartan–Eilenberg system, a
Z−∞-system is called a left Cartan–Eilenberg system, and a Z±∞-system is
called an extended Cartan–Eilenberg system. By restriction to Z, each such
system has an underlying Cartan–Eilenberg system.

We discuss right Cartan–Eilenberg systems in this section, and turn to left
Cartan–Eilenberg systems in the next section.

Definition 6.2. Let (H, ∂) be a right Cartan–Eilenberg system. Let A′′
s =

H(s,∞) and E1
s = H(s− 1, s) for each s ∈ Z, and let

A′′
s−1 A′′

s

E1
s

αs

βsγs
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be given by

αs = η : H(s− 1,∞) −→ H(s,∞)

βs = ∂ : H(s,∞) −→ H(s− 1, s)

γs = η : H(s− 1, s) −→ H(s− 1,∞) .

We call (A′′, E1, α, β, γ) the right couple associated to (H, ∂).

Lemma 6.3. The right couple (A′′, E1, α, β, γ) is an exact couple, and the asso-
ciated spectral sequence is equal to the one associated to the underlying Cartan–
Eilenberg system of (H, ∂).

Proof. The exact triangles for (s−1, s,∞) of the right Cartan–Eilenberg system
form the right (exact) couple. Diagram chases show that γ−1 Im(αr−1) = Zr

s =
Ker(∂ : E1

s → H(s−r, s−1)), that βKer(αr−1) = Br
s = Im(∂ : H(s, s+r−1) →

E1
s ), and that the definitions of the dr-differentials agree, for all r ≥ 1 and s.

Proposition 6.4. Let (H, ∂) be a right (resp. extended) Cartan–Eilenberg sys-
tem. The right couple (A′′, E1) is conditionally convergent to the limit if and
only if

η̄ : colim
j

H(i, j) → H(i,∞)

is an isomorphism for some i ∈ Z (resp. i ∈ Z−∞), in which case it is an
isomorphism for every i ∈ Z (resp. i ∈ Z−∞).

Proof. The colimit over j of the exact triangles for (i, j,∞) gives an exact
triangle

colimj H(i, j) H(i,∞)

colimj H(j,∞)

η̄

for each i, so A′′
∞ = colimj H(j,∞) is zero if and only if η̄ : colimj H(i, j) →

H(i,∞) is an isomorphism for some i, and this implies that η̄ is an isomorphism
for each i.

Lemma 6.5. Each underlying (resp. left) Cartan–Eilenberg system (H, ∂) can
be prolonged, in an essentially unique way, to a right (resp. extended) Cartan–
Eilenberg system whose right couple (A′′, E1) is conditionally convergent to its
limit.

Proof. Let H(i,∞) = colimj H(i, j) for each i. The exact triangle

H(i, j) H(i,∞)

H(j,∞)

η

η
∂

is the colimit over k of the exact triangles for (i, j, k).
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Remark 6.6. Cartan and Eilenberg assume in [6, XV.7] that H(i, j) is defined
for all −∞ ≤ i ≤ j ≤ ∞, with colimj H(i, j) ∼= H(i,∞) for all i ∈ Z−∞. In
our terminology this means that they only consider extended Cartan–Eilenberg
systems with right couples that are conditionally convergent to their limits. We
emphasize the underlying Cartan–Eilenberg systems, with H(i, j) defined for
finite i and j, since this structure suffices to define the interchange morphism κ.

Theorem 6.7. Let (H, ∂) be a right Cartan–Eilenberg system. There is a
natural isomorphism

W ′′ ∼=
−→ Ker(κ)

of internal degree −1, where W ′′ = colims Rlimr K∞ Imr A′′
s is Boardman’s

whole-plane obstruction group for the right couple (A′′, E1), and κ is the inter-
change morphism.

Proof. For each i ≤ j ≤ k < ∞ we have a commutative diagram

H(i, j) H(i, j)

H(k,∞) H(i, k) H(i,∞) H(k,∞)

H(k,∞) H(j, k) H(j,∞) H(k,∞)

H(i, j) H(i, j)

∂

∂

∂ ∂

with exact rows and columns. Passing to colimits over k we get the commuta-
tive diagram

H(i, j) H(i, j)

A′′
∞ Di A′′

i A′′
∞

A′′
∞ Dj A′′

j A′′
∞

H(i, j) H(i, j)

ιi,j

∂

αj−i

∂

∂

ιj

∂

with exact rows and columns. Here Di = colimk H(i, k) and A′′
i = H(i,∞),

while A′′
∞ = colimk A

′′
k. The homomorphism Dj → A′′

j maps

Ker(∂ : Dj → H(i, j)) = Im(Di → Dj) ∼= Cok(ιi,j) = C(i, j)
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onto

Im(Dj → A′′
j ) ∩Ker(∂ : A′′

j → H(i, j))

= Ker(ιj : A
′′
j → A′′

∞) ∩ Im(αj−i : A′′
i → A′′

j )

= K∞ Imj−i A′′
j ,

with kernel Im(∂ : A′′
∞ → Dj). Hence there is an exact sequence

A′′
∞

∂
−→ C(i, j) −→ K∞ Imj−i A′′

j → 0 .

By right exactness of Rlimi, we obtain an exact sequence

Rlim
i

A′′
∞

∂
−→ Rlim

i
C(i, j) −→ Rlim

i
K∞ Imj−i A′′

j → 0

where Rlimi A
′′
∞ = 0. Hence the right hand map is an isomorphism. Passing

to colimits over j we obtain the isomorphism

colim
j

Rlim
i

C(i, j) ∼= colim
j

Rlim
i

K∞ Imj−i A′′
j = W ′′ .

By Theorem 5.2, the left hand side is isomorphic to Ker(κ).

7 Left Cartan–Eilenberg systems

Definition 7.1. Let (H, ∂) be a left Cartan–Eilenberg system. Let A′
s =

H(−∞, s) and E1
s = H(s− 1, s) for each s ∈ Z, and let

A′
s−1 A′

s

E1
s

αs

βsγs

be given by

αs = η : H(−∞, s− 1) −→ H(−∞, s)

βs = η : H(−∞, s) −→ H(s− 1, s)

γs = ∂ : H(s− 1, s) −→ H(−∞, s− 1) .

We call (A′, E1, α, β, γ) the left couple associated to (H, ∂).

Lemma 7.2. The left couple (A′, E1, α, β, γ) is an exact couple, and the associ-
ated spectral sequence is equal to the one associated to the underlying Cartan–
Eilenberg system of (H, ∂).

Proof. The exact triangles for (−∞, s−1, s) of the left Cartan–Eilenberg system
form the left (exact) couple. The map of exact couples (A′′, E1) → (A′, E1)
given by ∂ : A′′

s = H(s,∞) → H(−∞, s) = A′
s and id : E1

s → E1
s , for each

s ∈ Z, induces a map of spectral sequences. It is the identity at the E1-term,
hence is also the identity map at all later Er-terms.
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Proposition 7.3. Let (H, ∂) be a left (resp. extended) Cartan–Eilenberg sys-
tem whose left couple (A′, E1) is conditionally convergent to its colimit. Then
for each j ∈ Z (resp. j ∈ Z+∞) there is a short exact sequence

0 → Rlim
i

H(i, j)
∂

−→ H(−∞, j)
η̃

−→ lim
i

H(i, j) → 0 ,

where ∂ has internal degree −1.

Proof. Fix j, and consider the exact triangles

A′
i A′

j

H(i, j)

αj−i

η
∂

for integers i with i ≤ j. (Some notational modifications are appropriate for
j = ∞, but otherwise the argument is the same.) Let

K ′(i, j) = Ker(αj−i : A′
i → A′

j) ,

I ′(i, j) = Im(αj−i : A′
i → A′

j) ,

C′(i, j) = Cok(αj−i : A′
i → A′

j) ,

leading to the short exact sequences

0 → K ′(i, j) −→ A′
i −→ I ′(i, j) → 0 ,

0 → I ′(i, j) −→ A′
j −→ C′(i, j) → 0 ,

0 → C′(i, j) −→ H(i, j)
∂

−→ K ′(i, j) → 0 .

Here I ′(i, j) = Imj−i A′
j , so limi I

′(i, j) = Qj and Rlimi I
′(i, j) = RQj in

Boardman’s notation (Definition 3.11). Passing to limits over i, we obtain the
exact sequences

0 → lim
i
K ′(i, j) → A′

−∞ → Qj → Rlim
i

K ′(i, j) → RA′
−∞ → RQj → 0 ,

0 → Qj → A′
j

η̃
−→ lim

i
C′(i, j) → RQj → 0 → Rlim

i
C′(i, j) → 0 ,

0 → lim
i
C′(i, j) → lim

i
H(i, j)

∂
−→ lim

i
K ′(i, j)

→ Rlim
i

C′(i, j) → Rlim
i

H(i, j)
∂

−→ Rlim
i

K ′(i, j) → 0 .

By the assumption of conditional convergence, A′
−∞ = limj A

′
j = 0 and

RA′
−∞ = Rlimj A

′
j = 0, so limiK

′(i, j) = 0, Qj
∼= RlimiK

′(i, j), RQj =
0, RlimiC

′(i, j) = 0, limi C
′(i, j) ∼= limiH(i, j) and ∂ : Rlimi H(i, j) ∼=
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RlimiK
′(i, j), so the short exact sequence 0 → Qj → A′

j → limi C
′(i, j) → 0

can be rewritten in the form

0 → Rlim
i

H(i, j)
∂

−→ A′
j

η̃
−→ lim

i
H(i, j) → 0 ,

as claimed.

Remark 7.4. There is probably no canonical prolongation of a Cartan–
Eilenberg system (H, ∂) to a left Cartan–Eilenberg system, even if we require
that the left couple (A′, E1, α, β, γ) should be conditionally convergent to its
colimit. The objects H(i, j) for integers i ≤ j determine limiH(i, j) and
RlimiH(i, j), but these only determine A′

j = H(−∞, j) up to an extension.

Theorem 7.5. Let (H, ∂) be a left Cartan–Eilenberg system. There is a natural
isomorphism

W ′ ∼=
−→ Ker(κ)

of internal degree 0, where W ′ = colims Rlimr K∞ Imr A′
s is Boardman’s whole-

plane obstruction group for the left couple (A′, E1), and κ is the interchange
morphism.

Proof. The proof is very similar to that of Theorem 6.7. For each −∞ < i ≤
j ≤ k we have a commutative diagram

H(i, j) H(i, j)

H(−∞, k) H(i, k) H(−∞, i) H(−∞, k)

H(−∞, k) H(j, k) H(−∞, j) H(−∞, k)

H(i, j) H(i, j)

∂

∂

∂

∂

with exact rows and columns. Passing to colimits over k we get the commuta-
tive diagram

H(i, j) H(i, j)

A′
∞ Di A′

i A′
∞

A′
∞ Dj A′

j A′
∞

H(i, j) H(i, j)

ιi,j ∂

∂

αj−i

∂

∂

ιj
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with exact rows and columns. Here Di = colimk H(i, k), A′
i = H(−∞, i) and

A′
∞ = colimk A

′
k. The homomorphism ∂ : Dj → A′

j maps

Ker(∂ : Dj → H(i, j)) = Im(Di → Dj) ∼= Cok(ιi,j) = C(i, j)

onto

Im(∂ : Dj → A′
j) ∩Ker(A′

j → H(i, j))

= Ker(ιj : A
′
j → A′

∞) ∩ Im(αj−i : A′
i → A′

j)

= K∞ Imj−i A′
j ,

with kernel Im(A′
∞ → Dj). Hence there is an exact sequence

A′
∞ −→ C(i, j)

∂
−→ K∞ Imj−i A′

j → 0 .

By right exactness of Rlimi, we obtain an exact sequence

Rlim
i

A′
∞ −→ Rlim

i
C(i, j)

∂
−→ Rlim

i
K∞ Imj−i A′

j → 0 ,

where Rlimi A
′
∞ = 0. Hence the right hand map is an isomorphism. Passing

to colimits over j we obtain the isomorphism

∂ : colim
j

Rlim
i

C(i, j)
∼=
−→ colim

j
Rlim

i
K∞ Imj−i A′

j = W ′ .

By Theorem 5.2, the left hand side is isomorphic to Ker(κ).

Definition 7.6. An extended Cartan–Eilenberg system (H, ∂) is conditionally
convergent if the left couple (A′, E1) is conditionally convergent to the colimit
and the right couple (A′′, E1) is conditionally convergent to the limit.

Remark 7.7. We summarize the discussion. The spectral sequence (Er, dr)r
associated to a extended Cartan–Eilenberg system (H, ∂) has three plausi-
ble target groups, namely A′

∞ = colimj H(−∞, j), H(−∞,∞) and A′′
−∞ =

limi H(i,∞).

A′
i A′

j A′
∞ H(−∞,∞)

limiH(i, j) colimj limiH(i, j)

limi colimj H(i, j) A′′
−∞

H(i, j) colimj H(i, j) A′′
i

A′′
j

αj−i ιj

η̃

η̄

η̃
ιj

πi,j

κ

πi πi

ιi,j η̄

αj−i
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When (H, ∂) is conditionally convergent, Theorems 3.9 and 3.10 apply to the
left couple (A′, E1) and to the right couple (A′′, E1), respectively. Hence there
are isomorphisms colimj H(i, j) ∼= H(i,∞) for all i ∈ Z−∞, and short exact
sequences 0 → Rlimi H(i, j) → H(−∞, j) → limi H(i, j) → 0 for all j ∈ Z+∞.
In particular,

η̄ : A′
∞

∼=
−→ H(−∞,∞)

in an isomorphism and

0 → RA′′
−∞

∂
−→ H(−∞,∞)

η̃
−→ A′′

−∞ → 0

is exact. Under the additional hypothesis RE∞ = 0, we know that (Er, dr)r
converges weakly to a complete filtration of A′

∞, with F−∞A′
∞

∼= W . We also
know that (Er, dr) converges strongly to A′′

−∞, with RA′′
−∞

∼= W . Hence, if
W = 0 then (Er, dr) converges strongly to A′

∞
∼= H(−∞,∞) ∼= A′′

−∞. When
W 6= 0, the spectral sequence is not strongly convergent to A′

∞, because the
filtration {FsA

′
∞}s fails to be Hausdorff, with limit F−∞A′

∞
∼= W . The spectral

sequence is strongly convergent to A′′
−∞, which is the quotient of H(−∞,∞)

by RA′′
−∞

∼= W . Hence H(−∞,∞) plays the role of the ideal target group, and
W ∼= Ker(κ) precisely measures the failure of the spectral sequence to converge
strongly to this target.

8 Sequences of spectra

Cartan–Eilenberg systems naturally arise from filtered objects, and are well
suited for the construction of multiplicative spectral sequences. Consider a
biinfinite sequence of spectra

X−∞ → · · · → Xs−1 → Xs → · · · → X∞ ,

with X−∞ = holims Xs and X∞ = hocolims Xs. We obtain an extended
Cartan–Eilenberg system (H, ∂), with

H(i, j) = π∗(cone(Xi → Xj))

for −∞ ≤ i ≤ j ≤ ∞, and two exact couples (A′, E1) and (A′′, E1), with

A′
s = π∗(cone(X−∞ → Xs))

A′′
s = π∗(cone(Xs → X∞))

for s ∈ Z. The three associated spectral sequences are all equal, and begin with

E1
s = π∗(cone(Xs−1 → Xs)) .

A typical aim is to calculate G = π∗(X∞) under the assumption that X−∞ ≃ ∗.
Under these hypotheses the extended Cartan–Eilenberg system (H, ∂) is con-
ditionally convergent, because of the short exact sequence

0 → Rlim
s

π∗+1(Xs) −→ π∗(X−∞) −→ lim
s

π∗(Xs) → 0
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and the isomorphism

colim
s

π∗(Xs)
∼=
−→ π∗(X∞) .

The first (left) exact couple (A′, E1) is conditionally convergent to the colimit

A′
∞ = colim

s
π∗(cone(X−∞ → Xs)) ∼= G ,

which is the target of interest, cf. Theorem 3.9, which is a variant of [3, 8.10].
When RE∞ = 0, which can often be verified from the differential structure in
the spectral sequence, the spectral sequence is weakly convergent to a complete
filtration {FsA

′
∞}s of G, but the filtration may fail to be Hausdorff. We can

therefore only hope to recover the quotient G/F−∞A′
∞, where F−∞A′

∞ =
lims FsA

′
∞ is the limit of the filtration. In this case there is an isomorphism

W ′ ∼= F−∞A′
∞, where W ′ is Boardman’s group for the exact couple (A′, E1),

and our Theorem 7.5 identifies this error term with Ker(κ).
The second (right) exact couple (A′′, E1) is conditionally convergent to the
limit

A′′
−∞ = lim

s
π∗(cone(Xs → X∞)) ∼= G/RA′′

−∞ ,

where RA′′
−∞ = Rlims π∗+1(cone(Xs → X∞)), cf. Theorem 3.10, which is a

variant of [3, 8.13]. When RE∞ = 0 the spectral sequence is strongly conver-
gent to this limit. Since G is the group we are principally interested in, we also
need to understand the subgroup RA′′

−∞. In this case there is an isomorphism
W ′′ ∼= RA′′

−∞, where W ′′ is Boardman’s group for the exact couple (A′′, E1),
and our Theorem 6.7 identifies this error term with Ker(κ).

Example 8.1. Let Hk be the Eilenberg–MacLane spectrum of a field k, and let

Xs =
∏

i≥|s|

Hk

for s, i ∈ Z. Let Xs−1 → Xs be given by the identity map on the i-th factor,
except when s ≤ 0 and i = |s|, when it is given by ∗ → Hk, and when s > 0
and i = |s| − 1, when it is given by Hk → ∗. Then

X∞ ≃ cone(
∨

i≥0

Hk →
∏

i≥0

Hk)

and X−∞ ≃ ∗. We obtain an exact couple (A′, E1) converging condition-
ally to its colimit, with A′

s =
∏

i≥|s| k, A′
∞ =

∏

i≥0 k/
⊕

i≥0 k, A′
−∞ = 0

and RA′
−∞ = 0. Here E1

s = k for s ≤ 0 and E1
s = Σk for s ≥ 1, with

d2r−1
r : E2r−1

r → E2r−1
1−r an isomorphism for each r ≥ 1. Hence E∞ = 0 and

RE∞ = 0. Also ιs : A
′
s → A′

∞ is surjective for each s, so FsA
′
∞ = A′

∞. Hence

W ′ = F−∞A′
∞ = F∞A′

∞ =
∏

i≥0

k/
⊕

i≥0

k
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and RF−∞A′
∞ = 0. Note that this is not a half-plane spectral sequence with

exiting or entering differentials, in the sense of [3, §6, §7], even if the E1-term is
concentrated in the intersection of the two half-planes t ≥ 0 and t ≤ 1, where t
is the internal degree.

Example 8.2. Let Jp = LK(1)S be the image-of-J spectrum, completed at an
odd prime p. Its homotopy groups are

πn(Jp) ∼=











Zp for n ∈ {−1, 0},

Z/pm+1 for n = (2p− 2)pmq − 1, p ∤ q,

0 otherwise,

and its mod p homotopy groups form the graded ring

π∗(J/p) = Z/p[α, v±1]/(α2) ,

with |α| = 2p−3 and |v| = 2p−2. Let J tS1

p = [ẼS1∧F (ES1
+, Jp)]

S1

denote the
Tate construction [7] for the trivial S1-action on Jp. The biinfinite Greenlees

filtration of ẼS1 leads to a sequence of spectra with associated whole-plane
Tate spectral sequence

Ê2
s,n(S

1, Jp) =⇒s πs+n(J
tS1

p ) .

Any filtration of Zp is complete, so RE∞ = 0. For bidegree reasons the only
nonzero differentials are of the form drs,n with s 6= 0 even and n = 0, so W = 0
by Boardman’s criterion. Hence this spectral sequence is strongly convergent,
to the abutment calculated by Hesselholt and Madsen in [8, 0.2]. On the other
hand, the S1-Tate spectral sequence for J/p is

Ê2
s,n(S

1, J/p) = Z/p[t±1]⊗ Z/p[α, v±1]/(α2)

=⇒s πs+n(J
tS1

/p) .

Bökstedt and Madsen [4] showed that it has nonzero differentials

d2(p
k+1−1)(tp

k−pk+1

)
.
= vp(p

k−1)/(p−1) · tp
k−1α

(up to units in Z/p) for each k ≥ 0, and the classes α and v are infinite cycles.
Hence

Ê∞
∗,∗(S

1, J/p) = Z/p[v±1]{1, t−1α}

and RE∞ = 0. The spectral sequence is thus weakly convergent to G =
Z/p[v±1]{1, t−1α}, for a complete filtration that might not be Hausdorff.
Boardman’s criterion for W = 0 applies for the differentials landing in even
total degrees, but not for the differentials landing in odd total degrees. Indeed,
the surjection π∗(J

tS1

/p) ։ G with kernel W ∼= F−∞A∞ is an isomorphism
in even degrees, but has the large kernel (

∏

i≥0 Z/p)/(
⊕

i≥0 Z/p) in each odd
degree [8, 4.4].
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Example 8.3. Similar patterns are found in the Tate spectral sequences for
T̂ (Z)tS

1

and T̂ (Z)tS
1

/p for odd primes p, where T (Z) = THH(Z) denotes the
topological Hochschild homology spectrum of the integers and ϕp : T (Z) →

T̂ (Z) = T (Z)tCp is its p-cyclotomic structure map, in the sense of [16, II.1.1].
The S1-Tate construction for T (Z) is a refinement of Connes’ periodic cyclic

homology, and is denoted TP (Z) = T (Z)tS
1

in [9]. It is expected to have
deep arithmetic significance, by analogy with the results for THH and TP of
smooth and proper schemes over finite fields in [9], and over perfectoid bases

in [1] and [2]. However, the structure of the Tate spectral sequence for T (Z)tS
1

is not fully known, cf. [17, §3] and [18, §1]. The S1-Tate spectral sequence

Ê2
∗,∗(S

1, T̂ (Z)) =⇒ π∗(T̂ (Z)
tS1

)

is strongly convergent. The mod p spectral sequence

Ê2
∗,∗(S

1, T̂ (Z)/p) = Z/p[t±1]⊗ Z/p[e, f±1]/(e2)

=⇒ π∗(T̂ (Z)
tS1

/p) ,

where |e| = 2p− 1 and |f | = 2p, is only known to be weakly convergent for a
complete filtration. Bökstedt and Madsen [5] showed that the latter spectral
sequence has nonzero differentials

d2p(p
k+1−1)/(p−1)(tp

k−pk+1

)
.
= (tf)p(p

k−1)/(p−1) · tp
k

e

(up to units in Z/p), for each k ≥ 0. Hence

Ê∞
∗,∗(S

1, T̂ (Z)/p) = Z/p[(tf)±1]{1, e} ,

and there is a surjection π∗(T̂ (Z)
tS1

/p) ։ G = Z/p[(tf)±1]{1, e}, with kernel
W ∼= F−∞A∞. By Boardman’s criterion, W is again zero in even total degrees,
but may, very well, be nonzero in odd total degrees.
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