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Effect of wing fold angles on the terminal descent velocity of double-winged
autorotating seeds, fruits, and other diaspores
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Wind dispersal of seeds is an essential mechanism for plants to proliferate and to invade new territories. In
this paper we present a methodology used in our recent work [Rabault, Fauli, and Carlson, Phys. Rev. Lett.
122, 024501 (2019)] that combines 3D printing, a minimal theoretical model, and experiments to determine
how the curvature along the length of the wings of autorotating seeds, fruits, and other diaspores provides them
with an optimal wind dispersion potential, i.e., minimal terminal descent velocity. Experiments are performed
on 3D-printed double-winged synthetic fruits for a wide range of wing fold angles (obtained from normalized
curvature along the wing length), base wing angles, and wing loadings to determine how these affect the flight.
Our experimental and theoretical models find an optimal wing fold angle that minimizes the descent velocity,
where the curved wings must be sufficiently long to have horizontal segments, but also sufficiently short to
ensure that their tip segments are primarily aligned along the horizontal direction. The curved shape of the wings
of double winged autorotating diaspores may be an important parameter that improves the fitness of these plants
in an ecological strategy.

DOI: 10.1103/PhysRevE.100.013108

I. INTRODUCTION

Wind dispersion of seeds is a widespread evolutionary
adaptation found in plants, which allows them to multiply in
numbers and to colonize new geographical areas [1–6]. Seeds,
fruits, and other diaspores (dispersal units) are equipped with
appendages that help generate a lift force to counteract gravity
as they are passively transported with the wind. Seeds with
a low terminal descent velocity increase their flight time
and the opportunity to be transported horizontally by the
wind before reaching the ground [7]. Many plant species are
today unfortunately under severe stress and on the verge of
becoming extinct due to climate change, timber extraction,
and agricultural development [8]. The terminal velocity of the
seed is a necessary prerequisite for accurate predictions from
dispersion models [1,9], which can help predict their wind
dispersion and influence policymakers in their conservation
and reforestation plans [8]. Our recent work [10] suggests that
whirling fruits can have evolved wings that indeed minimize
their terminal descent velocity.

Since wind dispersal of seeds occupies a critical position in
plant ecology, their flight organs have been carefully described
along with their flight pattern [11–13]. These flight organs are
often leaflike structures that function as wings, allowing the
seed or diaspore to autorotate [12], tumble, or glide [11] as it is
pulled to Earth by gravity. Other flight solutions are composed
of thin-hairy structures such as the pappus on the dandelion
[14], which effectively serves as a parachute. Common to all
of these is the fact that their dispersion mechanisms rely on
mechanical principles once they are released from the mother
plant, a trait shared across plant species [15–19].
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Single bladed autorotating seeds are often associated with
maple trees and conifers, where the seed is attached to a
single straight wing [13]. The delicate balance between the
weight of the seed and the shape of the wing allows it to
autorotate [20], leading to the production of an unexpectedly
high lift [13]. Measurements of the air flow produced around
autorotating samaras identify a leading edge vortex that is
primarily responsible for the production of a positive lift
force [21,22]. The seemingly simple configuration of having
a single wing that generates a stable rotary descent has been
widely studied [23–25], where recent work has shown that
also the wing elasticity can influence the flight pattern [26]
and may enhance lift [27,28]. Fossils from voltzian conifers
dating back to the late early to middle Permian (ca. 270 Ma)
are found to be double-winged [29]. This wing geometry is
today vastly outnumbered by the autorotating single-winged
morphology in the same plant family, which suggests that in
the context of an ecological strategy the flight performance of
single-winged seeds improves the fitness of their producers
[29,30]. Pollen from the genus Pinus [31] have also been
suggested to have evolved into shapes that improve their
aerodynamic performance.

Autogyrating motion is also widely observed in multi-
winged diaspores and seeds. These are commonly known as
whirling fruits or helicopter fruits, which can be found in plant
families such as Dipterocarpaceae [32–34], Hernandiaceae,
Rubiaceae [35], and Polygonaceae, occurring in Asia, Africa,
and the Americas. These fruits are equipped with a leaflike
structure (persistent and enlarged sepals), which acts as wings
in their rotary descent, illustrated in their Greek name, i.e.,
di = two, pteron = wing, and karpos = fruit. Compared to
the single bladed maple fruits, these have a more complex
wing shape, which curves upwards and outwards [36]. Only
a limited subset of tropical whirling fruits are described in
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FIG. 1. We parametrize the shape of the fruit and its sepals, here
illustrated by a dried fruit and wings from the dipterocarp family
where we extract the sepal length (L) and notice that the sepal has a
curvature K along the length of the wing here illustrated by fitting an
osculating circle along the wing giving its radius of curvature 1/K .
The sepal’s fold angle is defined as KL. The fluid has a density ρ

and a viscosity μ. When the fruit is in free fall, it descends with a
terminal velocity U and autogyrates with an angular frequency � =
2π f , where f is the rotational frequency. Dimensional analysis gives
us in addition to the fold angle KL, two nondimensional numbers that
describe the flight; the Reynolds number (Re) is giving the ratio of
inertia and the viscous force Re = ρUL

μ
and the Strouhal number (St)

is giving the ratio of the rotational speed and the translational speed
St = f L

U . Image courtesy of James Smith.

terms of their terminal descent velocity, as illustrated by the
data from 34 neotropical trees [11], 53 recordings by Ref. [9],
and recently extended by 16 entries of Paleotropic trees [32],
which clearly limits predictions of dispersal distance. These
flight recordings [11,32] suggest that the descent velocity is
proportional to the square-root of the wing-loading, i.e., its
mass divided by the disk defined by the projected wing area
during rotation [6]. Recordings of the rotational frequency of
this class of multi-winged fruits are elusive and essential to
get a complete understanding of their aerodynamics. Besides
our recent work [10], there are no studies, to the best of
our knowledge, that characterize how the wing shapes of
double-winged whirling fruits influence the terminal descent
velocity and their rotational frequency. To understand the rela-
tionship between the wing geometry and the terminal descent
velocity we deploy a methodology that combines 3D printing
of synthetic fruits, experiments and a minimal theoretical
description of their flight based on the blade element theory.

II. METHODOLOGY

A. Scaling analysis

One example of a whirling fruit from the dipterocarp
family is shown in Fig. 1, which will autorotate as it descends.
The angular frequency is � = 2π f , where f is the rotational

FIG. 2. Our experimental methodology and work flow is com-
posed of digitalization of the synthetic fruits by a 3D Computer
Aided Design model (FreeCAD v0.16), which is then 3D printed
and used for flight experiments in a water tank. After varying the
weight mg of each geometry by depositing a known weight of lead
to its hollow fruit, we measure the terminal descent velocity U and
rotational frequency f . After data evaluation we return to the CAD
design with guidelines for the wing design, i.e., most significantly in
this study the fold angle KL.

frequency and U is the terminal descent velocity. The sepals
in Fig. 1 have a length L and a curvature K and the fruit is
pulled to Earth by gravity with an acceleration g. Through
dimensional analysis we define three nondimensional num-
bers; the Reynolds number (Re) is giving the ratio of inertia
and the viscous force Re = ρUL

μ
, the Strouhal number (St) is

giving the ratio of the rotational speed and the translational
speed St = f L

U , and the wings fold angle KL in radians. The
fluid has a density ρ and a viscosity μ. The experiments and
theoretical analysis are based on a flow with Re � 1 and for
steady descent, i.e., U = constant, consistent with previous
experiments on autorotating multi-winged fruits collected in
the wild with Re ∈ 103 − 104 [11,12,37] (see Table I). As
the flow is dominated by inertia, we know then that the lift
force scales as |FL| ∼ CLρU 2Ad and the drag force scales as
|FD| ∼ CDρU 2Ad where CL is the lift coefficient, CD the drag
coefficient and Ad is the area swept by the wing. To understand
how U relates to the weight, we follow [12] by considering the
mass flux through Ad and that the change in momentum must
balance the weight of the fruit, giving the scaling law

U ∝
√

mg/ρAd . (1)

Experiments on wild fruits show that individual groups
[11,32] follow the scaling law Eq. (1), but they lack a descrip-
tion of how U is affected by the wing geometry.

B. Synthetic double-winged fruits

The workflow of our experimental approach is illustrated
in Fig. 2. It consists in producing rapid prototyping synthetic
fruits through 3D printing, then experimenting in a water tank
to extract the terminal descent velocity (U ) and the rotational
frequency ( f ), which is evaluated and then fed-back to the
design of a new wing geometry. A parametric 3D computer
aided design model (CAD) is developed in FreeCAD v0.16
[38], see right part in Fig. 2 and CAD file (see the Appendix).
The wing length from the base of the fruit to its tip is denoted
by L = 6 cm and the wing has a spanwise curvature along
this direction. The fold angle KL, which is a geometric input
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parameter to the CAD model and can be modified while
keeping the total wing mass constant. The wing camber is
set through a radius of curvature in the plane normal to the
wingspan, and can also be adjusted without influencing the
wing mass. We set a value for an effective additional angle of
attack of 2.5◦ [see Eq. (4)] and the wing pitch angle αp = 15◦,
inspired by the geometry of the wings of wild fruits. It is very
challenging to accurately measure the pitch and camber values
from wild fruits, as these are strongly affected by their growth
and the desiccation process. The angle ψ between the base of
the wing and the vertical direction is chosen equal to ψ = 0◦
or ψ = 35◦, which encompasses the typical range of values
observed in nature [10]. Finally, the fruit itself is designed as
a hollow sphere with two holes, allowing us to vary its weight
in experiments while keeping the volume fixed.

The synthetic fruits are produced by using the Form 2 3D
printer from Formlabs [39], relying on the stereolithography
technique with a print time of about 5 h for a batch of three
fruits. This allows for rapid prototyping, and parametrization
of fruit geometry as required for scanning a large phase space
of shapes; see Fig. 2. Once the model is printed, it is cleaned in
isopropanol, cured in UV light and polished to have a smooth
surface before being used for experiments in the water tank.

C. Experimental design

We design our experiments so that both the Reynolds
number (Re) and the Strouhal number (St) are in direct
correspondence to fruit flight in Nature. The values for these
parameters in our laboratory experiments correspond to those
performed on wild fruits and are reported in Table I.

Experiments were performed in a cylindrical water tank of
a height 1.2 m and a diameter 25 cm. A set of experiments
were performed in a large water tank filled with water of depth
0.7 m, 0.5 m wide, and 10 m long, to make sure that wall
effects are within the experimental error bars in the cylindrical
tank. In the experiments, we control the amount of lead added
to the hollow spherical fruit of the 3D-printed model and
the additional volume is filled with water. The fruit is fully
immersed under the water surface before it is released.

A camera is recording the motion of the fruit and wings
from the side of the water tank at a frequency of 30Hz and a
resolution of 864 × 480 pixels. Images are extracted from the
video to track the fruit’s lowest point and the wing tips. In our

FIG. 3. The left part shows the raw data from our automatic
tracking of the motion of a synthetic fruit, where we follow its wing
tips and the vertical motion of the fruit. The lines are intended only as
a guide to the eye to illustrate the motion of each individual wing. In
the right part, we plot the vertical position H of the fruit in one part
of the tank and show that our synthetic fruits reach a steady terminal
descent velocity U .

data analysis, we subtract the background to each image in
the video, which makes the fruit to easily be identified and a
combination of convolution filtering and thresholding is used
to find the characteristic points; see Fig. 3 and the code for
more details (see the Appendix). Calibration resorting to a
third order polynomial is used to convert the position of the
characteristic points in each image into the vertical position.
The fruits rotational frequency is obtained by using a fast
Fourier transform of the position of the wing tips, where the
frequency is identified as the peak in the power-spectrum.
To verify our post-processing analysis, we also performed

TABLE I. Description of the parameters representative for the laboratory experiments and comparison with previously performed
experiments on wild fruits from Ref. [37], where the rotation frequency f is not reported. The typical length of the sepals of wild fruits
is estimated as L = √

Aw/2, where Aw is the wing area reported in Ref. [37]. The value for St is estimated from Ref. [13] in the case of
Buckleya lanceolata (Sieb. and Zucc.) Miq. [syn. B. joan (Sieb.) Makino (Santalaceae)] with a geometry similar to a Dipterocarpus fruit giving
us the St number. The ∗ symbol indicates that the numerical value could not be computed from the data reported in Ref. [37], but obtained
from a species of similar shape [13].

Setup f (Hz) L (m) U (m/s) ν (m2/s) St Re

Laboratory 0.4 to 2.4 0.06 0.04 to 0.2 1.0 × 10−6 0.35 to 0.82 2400 to 14 000
Shorea argentifolia Symington (Dipterocarpaceae) N/A ≈0.035 1.2 1.5 × 10−5 0.40 (∗) 2800
Shorea johorensis Foxw. (Dipterocarpaceae) N/A ≈0.05 1.7 1.5 × 10−5 0.40 (∗) 5700
Shorea mecistopterix Ridl. (Dipterocarpaceae) N/A ≈0.08 2.4 1.5 × 10−5 0.40 (∗) 12 700
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FIG. 4. (a) Sketch of the fruit’s wings that are decomposed into
small elements dl and moving with a frame of reference at the
vertical descent velocity U . � is the rotation rate, dl the length of
the blade element, R the distance of the blade element to the axis of
rotation, φ the wing inclination at the location of the blade element,
UN = U cos(φ) the normal component of the descent velocity, UT =
R� the tangential wind created by the rotation. (b) View of the blade
element described in Fig. 4(a), in the plane perpendicular to the
wingspan. c is the chord of the blade element, αp its pitch angle,
θ the angle of the relative wind, α = θ − αp the angle of attack, UR

the wind speed “felt” by the blade element, L and D the lift and drag
components, respectively, and FF and FN the resulting forward and
vertical forces. The camber profile is illustrated by the curvature of
the blade element.

measurements looking from the top and down into the water
tank, which are found to be in excellent agreement with the
measurements obtained by the side view. Each experiment is
repeated ten times for ψ = 0◦ and three times for ψ = 35◦.
All the reported data points are average values and the error
bars is five times the standard deviation.

D. Blade element model

The blade element model gives a phenomenological de-
scription of the lift and torque generated by rotating wings
[12,13,22] by considering the wing as a succession of small
elements. For each element the relative wind, the local angle
of attack, the lift force and the drag force are computed.
Different from the scaling law in Eq. (1), the model helps

illustrate where the principal components to the lift and drag
force are generated on the wings.

The rotating fruit is parametrized [see Fig. 4(a)], with U
the fruit’s vertical descent speed, and � the rotation rate. For
a given blade element of length dl , the inclination of the wing
relative to the horizontal direction is φ so that the descent
velocity has a projected component UN = U cos(φ) normal to
the blade element. R is the distance between the blade element
and the fruit’s axis of rotation, so that the tangential velocity
becomes UT = R�. In addition, ψ is the angle between the
vertical direction and the wing base. ψ = 0◦, unless stated
otherwise.

A view of the relative wind and the aerodynamic forces
acting on the blade element in the plane perpendicular to the
wingspan is shown in Fig. 4(b). αp is the pitch angle of the
blade element, c its chord, and the camber is visible through
the curvature of the wing profile. The total relative wind at the
blade element has a magnitude UR =

√
U 2

T + U 2
N , and is at an

angle θ = arctan(UN/UT ) relative to the horizontal direction
where the blade element’s angle of attack is α = θ − αp.
The lift force is the component of the aerodynamic force
perpendicular to the direction of the relative wind, while drag
is the force component parallel to the wind direction. The
magnitude of the lift force FL = 1

2ρU 2
R ACL(α) and the drag

force FD = 1
2ρU 2

R ACD(α) on an element are proportional to
the lift and drag coefficients, CL(α) and CD(α) where A =
c × dl is the area of the blade element.

The horizontal (forward) and normal forces, respectively,
FF and FN , can therefore be obtained by projecting the total
aerodynamic force obtained by the sum of lift and drag:

FF = FL sin(θ ) − FD cos(θ ),

FN = FL cos(θ ) + FD sin(θ ). (2)

As shown in Fig. 4(b), the horizontal force can be directed
forward and act as a motor for the rotation of the wings.
This takes place when the angle of the relative wind is large
enough so that the forward projected component of the lift
force exceeds the backward component of the drag force, i.e.,
close to the central axis of the fruit. This forward resultant
force generates autorotation of winged fruits, in a similar way

FIG. 5. (a) Parametrization used for the CL (α) (solid line) and CD(α) (dashed line) coefficients based on [43] using their Eqs. (12) and
(13) but with max(CD )/2. A much smoother stall behavior is modeled compared with high Reynolds number wings, in agreement with studies
performed for rotating wings at moderate Reynolds numbers where a strong leading edge vortex is present. (b) The parametrization results in
a smooth shape for the CL (α)/CD(α) curve.
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FIG. 6. Eleven 3D-printed synthetic double winged fruits with
ψ = 0◦, 
α = 2.5◦ and the same weight mg = 20 mN, but different
fold angle KL are simultaneously released in the water tank. The
image is a stroboscopic view of the path of the fruits and shows
that the minimum terminal descent velocity is around KL ≈ 2.3,
in accordance with predictions of the blade element model [see
Figs. 12(a) and 12(b)].

to what is used on a helicopter in autorotation [40]. As a
consequence, a moment that drives autorotation is produced
close to the axis of rotation of the fruit, while a moment that
opposes rotation is produced close to the wing tips where
the tangential velocity, and therefore drag, is the dominant
horizontal force [12]. These quantities are further illustrated
by the results shown in Fig. 11.

The total vertical force and torque acting on the fruit are
obtained by integrating along the two wingspans and adding

the effect of gravity, i.e., writing F the resulting vertical force,
and M the moment around the rotational axis of the fruit,

F = 2
∫ l=S

l=0
FN cos(φ)dl − mg,

M = 2
∫ l=S

l=0
FF Rdl, (3)

where S is the total curvilinear length along the wingspan of
one wing, R is the distance between the blade element and the
vertical axis of the fruit, m the mass relative to the surrounding
fluid, and g the acceleration of gravity.

Therefore, the predictions of the blade element model
depend on two set of parameters; most importantly, the ge-
ometry of the wing, and also the lift and drag coefficients as a
function of the angle of attack. This second part is arguably
the most challenging to model accurately, as it is difficult
to find tabulated values for the drag and lift coefficients
of rotating wing segments at low to intermediate Reynolds
numbers. This may come from a variety of reasons, including
the small values of the forces acting on wing segments at the
corresponding scales and Reynolds numbers in either air or
water, which makes experimental measurements challenging.
We have used two sets of parametrizations for the lift and drag
coefficients; one from lift experiments on translating wing
at slightly higher Reynolds numbers, and one inspired from
rotating and flapping wings at similar Reynolds numbers as
compared with our study. Both parametrizations qualitatively
capture the trends in our experimental measurements.

For flat plates at high Reynolds number, the lift and drag
coefficients can be obtained from both theoretical consid-
erations (inviscid fluid flow with circulation together with
the Kutta-Joukowski theorem, and boundary layer friction
[41]) and experiments. These show that the lift force is a
function of the angle of attack, i.e., CL(α) = 2π sin(α) [41]
and accurate until stall occurs, which for a flat plate usually
arises at around α = 6◦. In the case of low to intermediate
Reynolds numbers, the behavior of CD(α) and CL(α) needs to
be modified and we follow the results of Ref. [42], by using
a maximum value of typical value max(CL(α)/CD(α)) = 7

FIG. 7. We plot the experimental data for ψ = 0◦, 
α = 2.5◦ for KL = [1.7, 2.3, 3.0] where the wings span an area Ad =
[0.0058, 0.0069, 0.0061]m2, respectively. (a) The terminal descent velocity U is plotted as a function of the wing loading

√
mg/Ad , where

we see that Eq. (1) does not collapse the data onto a single curve with respect to the scaled curvature KL where we want to note that the
similarity of KL = 1.7 and KL = 2.3 is a special case. (b) The fruit’s rotational frequency f is plotted as a function of

√
mg/Ad , where f is

nonmonotonic with respect to the fold angle KL. (c) By rescaling U and f we plot the Strouhal number St, which is constant for each geometry
but the magnitude of St is a function of KL.
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FIG. 8. Five 3D-printed synthetic double winged fruits with ψ =
35◦, 
α = 2.5◦ and with the same weight mg = 20 mN, but with
different fold angle KL are simultaneously released in the water tank.
The image is a stroboscopic of the path of the fruits and shows
that the minimum terminal descent velocity is around KL = 1.2,
in accordance with predictions of the blade element model [see
Figs. 12(c) and 12(d)].

before stall. This parametrization gives results in agreement
with the experimental terminal descent velocity as a function
of fold angle KL, and are also robust to changes in the peak
value of CL/CD (see the Appendix). The Strouhal number
around the optimal fold angle is also in good agreement with
experiments. However, when one goes further away from the
optimal fold angle, we find the stall behavior is likely too
aggressive which explains the deviation from the experimental
values for St; see the Appendix.

Indeed, experiments and simulations at Reynolds numbers
comparable to the ones we experience indicate the existence
of a strong leading edge vortex, that changes the stall pattern
compared with higher Reynolds number [43,44]. Inspired by
this observation we have also used another parametrization
based on data from flapping wings reported by [43] using
their Eqs. (12) and (13) from three-dimensional experiments,
but with max(CD)/2, where no sharp stall is present and the
lift coefficient increases up to a higher angle of attack than
what is observed for flat plates at higher Reynolds numbers.
However, compared to the results of Ref. [43], we reduce
the value of the drag coefficient to max(CD)/2 to obtain
agreement with our experiments. This may stem from the
more complex shape of the wings in this study or the unsteady
wing motion in Ref. [43]. In addition, the results presented
here are for complete wings rather than an individual wing
element, and therefore the relative values of drag obtained in
Ref. [43] and similar works are probably larger than what
is the case on individual wing elements far from the axis
of rotation of our fruits. The parametrization is summarized
in Fig. 5. We will only present results obtained from using
the blade element model with a parametrization according to
Fig. 5 in the main text and the additional simulations are in
the Appendix, where we note that a precise curve for CD(α)
and CL(α) would require a detailed flow measurements or high
resolution computational fluid dynamics simulations, beyond
the scope of this article.

We note that the wing camber also affects the lift gener-
ation by adding an offset to the lift coefficient curve [45],
CL,camber(α) = CL,no camber(α + 
α). While this result applies
primarily for higher Reynolds numbers than what we consider
here, this is used as a first approximation of the behavior
expected also in the present case. By considering a parabolic
camber profile η = η0[1 − (2x/c)2], with η the deviation be-
tween the chord line and the mean camber line and η0 the
maximum deviation at the middle of the wing chord, one
obtains that [45]


α = 4πη0/c. (4)

(a) (b) (c)

FIG. 9. We plot the experimental data for ψ = 35◦, 
α = 2.5◦ for KL = [0.06, 0.6, 1.7], where the wings span an area Ad =
[0.0053, 0.0092, 0.012] m2, respectively. (a) The terminal descent velocity U is plotted as a function of the wing loading

√
mg/Ad , where

we see that Eq. (1) provides a fairly good description of U when the wings are not highly curved. (b) The fruit’s rotational frequency f is
plotted as a function of

√
mg/Ad , where f increases with the fold angle KL. (c) By rescaling U and f we plot the Strouhal number St, which

is constant for each geometry but the magnitude of St is a function of KL.
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(a) (b)

FIG. 10. 2D contour maps for (a) the moment M, and (b) the resultant vertical force F predicted by the blade element model Eq. (3) as
a function of Re and St for the baseline fruit geometry, with a net mass loading of 1.2 g. The data presented in the figures are scaled of an
arbitrary factor for ease of representation. The steady-state descent is obtained at F = M = 0, and it is stable as discussed in the text.

We use a circular camber profile that is equivalent to Eq. (4)
as a first order approximation. In the explored parameter phase
space the added angle of attack due to camber curvature is in
the range of 0◦ to 4◦. The blade element model obtained from
Eqs. (2) and (3) is implemented in Python and solved numer-
ically (see Ref. [46]). For each set of geometric parameters,
vertical velocity U , and rotation rate �, the model computes
the resulting moment M and vertical force F .

III. RESULTS

A. Experimental results

We have performed an extensive experimental parameter
study where we systematically alter the base wing angle ψ ,

the fold angle KL, and the weight of the fruit by combining
3D printing of synthetic fruits and measurements in a water
tank. The experimental phase space span; KL ∈ [0–4] radians,
Re ∈ [2.4–12] × 103, St ≈ 0.1–0.9, and ψ = [0◦, 35◦].

1. Base wing angle ψ = 0◦ and wing camber �α = 2.5◦

We fix the base wing angle to ψ = 0◦ and the wing camber

α = 2.5◦, while we vary the weight mg and the fold angle
KL in the experiments. To illustrate the flight paths of these
synthetic fruits we show the stroboscopic photo in Fig. 6,
where we have simultaneously released 11 3D-printed fruits
at the same height and with the same weight in the water tank
and track their descent distance for a fixed time t = 5.5 s. It is
clear that there is an optimal geometry to maximise the flight

(a) (b)

FIG. 11. (a) The cross section of the wing profile (left axis) corresponding to a synthetic fruit having fold angle KL = 2.3 as a function of
the distance R between the blade element and the fruit’s axis of rotation, and the corresponding angle of attack in the stationary regime (right
axis). The part of the wing where significant lift is created is highlighted in gray, (b) the corresponding distribution of vertical force (left axis)
and driving momentum (right axis).
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(a) (b)

FIG. 12. (a) We solve the blade element model using the parametrization shown in Fig. 5, for the two series of seeds already presented
in Figs. 6 and 8. The experimental data is shown by the markers, which illustrates that the fold-angle KL is the essential parameter to obtain
a minimal terminal descent velocity that would suggest optimal wind dispersion potential, as previously discussed. Good agreement is found
regarding the general shape of the curves, the position of the optimal KL for each base angle ψ , and the relative change of falling velocity
observed between Figs. 6 and 8. (b) We show the Strouhal number St, for the same set of seeds. Here, satisfactory agreement is found when
considering the simplicity of the model. Both the typical magnitude of St in each case, the effect of modifying the base angle ψ , and the general
trend of St with respect to KL are satisfactorily reproduced by the model.

time. We have compared the fold angle of these synthetic
fruits with 27 species that reside in Africa, Asia, and the
Americas where they were collected in the wild, which are
found to have a fold angle mean(KL) = 1.8 ± 0.18, close to the

optimum. This suggests that similar wing shapes have evolved
in Nature and indicates that aerodynamic performance, i.e.,
minimal descent velocity, may improve the fitness of these
plants in an ecological strategy.

FIG. 13. (a) The terminal descent velocity and Strouhal number as a function of sepal camber (
α) and sepal fold angle, as predicted by
the blade element model for � = 0◦. The addition of a camber does not affect the placement of the minimal descent velocity along the KL
axis, but only influences its magnitude. This is due to improved autogyration, as visible through the inset for the Strouhal number. (b) Changes
in the base angle ψ formed between the base of the wing and the vertical axis shift the placement of the minimal descent velocity on the KL
axis, which is moved to smaller KL when ψ increases. Simultaneoulsy, a larger ψ leads to a larger projected wingspan which increases the
relative wind created due to rotation on the outer part of the wings, which in turn reduces the equilibrium Strouhal number.
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InFigs. 7(a)–7(c) the measured terminal descent velocity
U , the rotational frequency f and the St number are plotted as
a function of the wing loading

√
mg/AD for three fold angles.

It is clear from Fig. 7(a) that the scaling law in Eq. (1) does
not fully capture the influence of the fold angle KL as it does
not collapse the data onto a single curve, but illustrates that for
each individual wing geometry the terminal descent velocity
scales as ∼√

mg, consistent with experiments on wild fruits
[11,32]. The rotational frequency f is also a function of KL
and by replotting U and f through St = f L/U we see that
for each geometry St is constant [see Fig. 7(c)]. Thus, our
experiments follow the predictions from the blade element
model and our theoretical analysis [see next section, Eq. (5)].
Note that the error-bar in St is ≈5% and accumulated from
the measurement error in both U and f . As there is a clear
coupling between KL and U we are curious to determine
if there is a geometry that minimizes the terminal descent
velocity, which we argue to be optimal in terms of the seeds
dispersion potential.

2. Base wing angle ψ = 35◦ and wing camber �α = 2.5◦

Fruits and seeds can also have wings with an
attachment/base angle ψ that is not necessary zero. To
understand how ψ influences the terminal descent velocity
we performed additional measurements with ψ = 35◦,
mg = 19 mN, and 
α = 2.5◦ where we vary mg and KL. A
stroboscopic image of these flight paths are shown in Fig. 8
for a fixed mass and flight time t = 5.5 s, to further illustrate
the relationship between the KL and U . Compared with the
case when ψ = 0◦ we notice that the optimal fold angle
has decreased, with a minimum terminal descent velocity
obtained near KL ≈ 1.2.

Similar to ψ = 0◦, we see that there is an influence in
U and f as a function of KL [see Fig. 9(a)]; however, the
influence is not as pronounced for these smaller fold angles
where the wings are not that highly curved and Eq. (1) predicts
U reasonably well. By rescaling U and f through St, we
notice that it is constant for each geometry but the magnitude
depends on KL. Experiments with additional wings, but keep-
ing the total wing area constant were found to only make a
slight change in Re and St numbers, and as such we did not
include these here.

B. Blade element model

We solve the blade element model for the synthetic fruit
with a model geometry with ψ = 0◦, αp = 15◦ and with an
effective mass loading of 1.2 g. The data is presented in
nondimensional 2D contour maps for F and M as presented
in Fig. 10. The dependence of the angle of attack, forward
moment, and vertical force on the position along wingspan
for a fruit with a fold angle of KL = 2.3 is shown in Fig. 11.

In Fig. 10 the level line for zero total moment is straight,
corresponding to a constant Strouhal number St, only deter-
mined by the geometry of the fruit wings. This is consistent
with all our experiments [Figs. 7(c) and 9(c)], and can be seen
in the blade element model from Eq. (3) by substituting the

value of FF :

M =
∫ l=S

l=0

1

2
ρU 2

R A[CL(α) sin(θ ) − CD(α) cos(θ )]Rdl. (5)

Using a constant St implies that the relative wind direction,
and therefore angle of attack α, remains constant for each
blade element. Therefore, if the fruit is experiencing a zero
mean torque, changing the descent speed for a given fruit
geometry and St will result in replacing UR by a scaled
value in Eq. (5) while keeping all other terms constant, i.e.,
the resulting moment M will still be zero. This result is
independent of the parametrization used for both CL(α) and
CD(α).

To find the terminal descent velocity and rotation rate of
the falling fruit, we need to determine the parameters [U ,
�], in nondimensional form, [Re, St] for which the total
resultant vertical force F and the resulting moment M are
zero. This is done numerically, based on an analysis of the
2D maps for both quantities. The equilibrium point is stable,
as confirmed by the experimental measurements. Indeed, as
visible in Fig. 10, for a large St we get a negative moment,
i.e., a reduction of St, while a small St leads to a positive
moment, i.e., an increase of St, implying that the fruit returns
to equilibrium. Similarly, the vertical force increases with a
large descent velocity U , i.e., a large Re number, leading to an
upwards resulting force that slows down the vertical motion
of the fruit, and opposite for a small descent velocity leading
to a large downwards resulting force, which will increase the
descent speed. Direct comparison between the experimental
results and the predictions from the blade element model show
that they are in good agreement, given the phenomenological
nature of this model (Fig. 12).

To demonstrate the sensitivity in geometrical changes in
the wing, we show in Fig. 13 the effect of both 
α and ψ

on the minimal terminal descent speed as predicted by the
blade element model. The camber 
α has no influence on
the placement of the minimal terminal descent velocity along
the KL axis, but only influences the magnitude of the descent
velocity as it increases/decreases the effective lift force. The
base angle ψ in Fig. 13(b) has both a limited influence on
the minimal terminal descent velocity, and shifts the position
along the KL axis, consistent with our experiments see Figs. 6
and 8: a larger ψ leads to smaller value fold angle KL to
ensure a minimal descent velocity.

Indeed, for a fixed weight we see that as we start with a
KL value close to 0 and gradually increase the fold angle the
descent velocity U is being reduced; see Fig. 12. For ψ = 0
a minimal U is identified for KL ≈ 2.0 and as we further
increase KL > 2.0 the descent velocity starts to increase.
We can in part understand the placement of these optimal
fold angles if we infer that the total force in the vertical
direction will scale with the projected length of the wing on
the horizontal axis as seen from Eq. (1). However, this cannot
alone explain the shift in minimal terminal descent speed as
shown in Fig. 7(a). As KL increases so does the wing swept
area and the wing tip approaches an approximately horizontal
shape. Near the peak in the KL-Re the wing tip is close
to being horizontal, and as KL increases the horizontal part
on the wing moves toward the wing base/fruit, which then
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reduces the relative velocity as R is smaller along with the
vertical lift force, although the wing swept area is nearly the
same. The wing shape must also influence how vortices are
shedded, which generate circulation and lift. Therefore, these
curved wings must be sufficiently long to have horizontal
segments, but also sufficiently short to ensure that their tip
segments are primarily aligned along the horizontal direction.
However, the exact optimum for the fold angle KL is a result
of the complex interplay between the flow and the wing
geometry.

IV. CONCLUSIONS

We have presented an experimental study and a minimal
phenomenological flow model encompassing the main physi-
cal ingredients of the flight of synthetic whirling fruits, which
mimic those found in nature. Our results point to geometrical
shapes of the wings of multi-winged seeds, fruits and dias-
pores, which provide them with an optimal dispersion poten-
tial, i.e., maximal flight time, and compares favourably with
wing geometries found in the wild [10]. For whirling fruits
to maximize the time they are airborne, their appendages that
function as wings must not curve too much or too little. Our
methodology consists of a combination of rapid prototyping
by 3D printing, a minimal theory and experiments, and may be
adopted for other studies of how wing geometry affects flight,
which may help understand the evolutionary links between
form and fitness of flight organs found in Nature.
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APPENDIX

1. Source files: CAD files, images of wild fruits, and the
numerical code solving the blade element model

Additional material including the baseline CAD file used
for performing the parametric analysis, the images of wild
fruits with osculating circle, and the code to solve the blade
element model, is available at Ref. [46].

2. Results from the blade element model with CD(α) and CL(α)
inspired by flat plate measurements

In this Appendix, we present the results obtained by using
a parametrization with stall inspired from translating wings
at slightly higher Reynolds (Re) numbers as described in the
main section of the text [43,44], corresponding to the CL and
CD coefficients from Fig. 14 [47–49]. Results are obtained
by solving the blade elements model, in the same way as
in the article. As visible in Fig. 15, the curves for the Re
number are in good agreement with the experiments, however
overall the results obtained with the parametrization inspired
from rotating wings at smaller Re numbers. The Strouhal
(St) number is also mostly following the trends observed in
experiments, though the discrepancy with the experiments
is larger than what was reported in Fig. 12, especially for
ψ = 0 when the strong stall takes place (high values of KL).
Finally, the results for the terminal Re number are found to
be insensitive to the peak value of CL(α)/CD(α), as shown in
Fig. 16.

(a) (b)

FIG. 14. Parametrization for (a) CD(α) and (b) CL (α) inspired from translating wings at slightly higher Re numbers. A sharp stall behavior
is present for an angle of attack of around 6◦.
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(a) (b)

FIG. 15. Comparison between experimental results with synthetic 3D-printed biomimetic fruits and the blade elements model, using the
parametrization of Fig. 14. The results are in reasonable agreement for the terminal velocity [Reynolds number, panel (a)]. The results for the
Strouhal number [panel (b)] follow the same trend as the experimental results, though the agreement is not as good as in Fig. 12, especially at
higher values of KL when stall takes place.

FIG. 16. Influence of varying the peak value of CL (α)/CD(α) for the parametrization inspired by translating wings. While the details of the
curves shape are altered, the position of the optimum curvatures remains mostly unchanged.
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