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Abstract

A central problem in traffic management is that of scheduling the movements
of vehicles so as to minimize the cost of the schedule. It arises in important
applications such as train timetabling, rescheduling, delay and disruption man-
agement, airplane surface routing, runway scheduling, air traffic control and more.
This problem can be modeled as a job-shop scheduling problem. We introduce
a new MILP formulation for job-shop scheduling which is alternative to classi-
cal approaches, namely big-M and time-indexed formulations. It does not make
use of artificially large coefficients and its constraints correspond to basic graph
structures, such as paths, cycles and trees. The new formulation can be obtained
by strengthening and lifting the constraints of a classical Benders’ reformulation.
Tests on a large set of real-life instances from train rescheduling show the new
approach performs on average better than our previous approaches based on big-
M formulations and particularly better on a class of instances with non-convex
costs very common in the practice.

1 Introduction
A central problem in transportation is that of routing and scheduling the movements
of vehicles so as to minimize the cost of the schedule. It arises, for instance, in train
timetabling [10], rescheduling (or dispatching) [9], delay and disruption management
[12], runway scheduling [6], airplane surface routing [16], and many more. These are
both online (real-time) and off-line problems. For instance, train timetabling amounts
to finding a long term (official) schedule of all trains movements, whereas in its online
version, train rescheduling, the timetable is modified in real-time in order to react and
recover from unexpected deviations from the plan. In both cases, the ability to find good
or optimal schedules in short computing time is crucial: for real-time problems, because
decisions must be taken and implemented in a few seconds; for off-line problems, because
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the scheduling problem must generally be solved repeatedly in the overall solution
framework.

For the fixed routing case, the problem boils down to finding a minimum cost
conflict-free schedule, i.e. a schedule where potential conflicts are prevented by a correct
timing of the vehicles on the shared resources. Namely, whenever two vehicles want to
access the same, non-sharable resource - e.g. a runway or a station platform - a decision
about who goes first [28] must be taken. In [22] this problem is shown to belong to the
class of job-shop scheduling problems with blocking and no-wait constraints, a class
which generalizes canonical job-shop scheduling (see [26]).

This decision is modeled as a disjunction of two linear constraints in the scheduling
variables [3, 5]. So, a basic mathematical representation of the scheduling problem in-
volves continuous variables representing times, (time-precedence) linear constraints as-
sociated with single vehicles, and disjunctive (precedence) linear constraints associated
with pairs of vehicles. In this paper we focus on this basic mathematical representation,
which is the central building block for modelling and solving real-life scheduling prob-
lems. There are two major ways to linearize disjunctive formulations (see [27]), namely
by means of big-M formulations or by time-indexed formulations1. In big-M formula-
tions each disjunction is represented with two linear constraints and one (or two) binary
variable(s), where the variables select which of the two constraints must be satisfied by
the schedule (the other constraint becomes redundant). Although big-M formulations
are generally very compact, notoriously they tend to produce weak relaxations and con-
sequently large search trees. Time-indexed formulations were introduced precisely to
address this major drawback: the time horizon is subdivided into periods, with a binary
variable for each original scheduling variable and each time period ([14]). Disjunctive
constraints are expressed by cardinality constraints in these variables. Time-indexed
formulations typically return much stronger bounds than big-M formulations. However
this comes at the cost of increasing the number of variables and constraints, at times
dramatically, particularly for problems with large time horizons and fine time granu-
larity (typically the case for traffic management problems in transportation). In our
experience for train rescheduling [20], the trade-off is significantly in favour of big-M
formulations. Indeed in [20], for time-indexed formulations, the increase in computing
time to solve the linear relaxation due to larger instance size is not even closely compen-
sated by the reduced size of the search tree. For this reason, in the recent development
of a master/slave approach to train rescheduling ([17, 18]) we resorted to the big-M
formulation for modeling and solving the master (job-shop scheduling) problem.

Despite the effectiveness of this approach, which led to successful real-life imple-
mentations, the “big-M trap” (i.e. the intrinsic limitation of the approach) remained
behind the corner. To speed up the solution of the subproblems and/or tackle larger
instances required strengthening the big-M formulation, which has been attempted for
decades with little or no success. In very recent years, some authors have attempted to
overcome this issue by exploring new paths. For instance, Bonami et al. [8] developed a

1See [8] for a discussion on how to handle generic indicator constraints
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new, general method borrowed from Non-Linear Programming. However, according to
the figures presented in [8], the application to scheduling problems appears to lead only
to small improvements. A different approach, explicitly designed for train rescheduling,
was presented in [15]. The authors show this approach can solve some real-life instances
in the very short running times dictated by real-time. However, the approach is heuris-
tic, and the exact delayed row generation algorithm presented in [17, 18] seems to lead
to larger speeds up (although computational results cannot be directly compared as
they relate to different sets of proprietary instances).

In this paper we develop a new, non-compact formulation for the job-shop schedul-
ing problem with separable, non-decreasing non-negative cost function [31]. This new
formulation allows to overcome the limitations of previous models and avoid the big-M
trap (it does not make use of artificial large coefficients). The constraints in the formu-
lation correspond to basic structures like paths, cycles and trees in an associated graph.
We show how such constraints may be derived by strengthening and lifting from a clas-
sical Benders’ reformulation [23]. We test the new approach on a large set of real-life
instances from train rescheduling and show that it compares favorably with respect to
the (effective) approach previously developed in [17, 18]. The average improvement in
terms of computation time is small for convex costs, but becomes significant for the
non-convex case (see Section 5). As mentioned, obtaining such speed-up is (clearly)
particularly relevant in solving real-time traffic management problems (e.g. runway se-
quencing, train re-scheduling, etc.), but can also be important when attacking feasibility
off-line problems, like the class of train timetabling problems presented in [19].

Summarizing, in ([17, 18]) we apply the so called Logic Benders’ reformulation (see
[11]) in order to decompose the original problem into a "line problem" (i.e. relative to
the railway line) and a number of station problems (i.e. associated with each station),
with the line problem being a big-M formulation (of a scheduling problem). In this
paper we only focus on the line problem defined in the above decomposition, and pro-
ceeding from the classic Benders’ reformulation we show how to get rid of the big-M
constraints.

As mentioned earlier, our problem is a job-shop scheduling problem. Each vehicle
is a job, each network resource (e.g. roads, crossings, waypoints, tracks) is a machine
and the (sequence of) movements of each vehicle through the network are operations.
Now, job-shop scheduling problems in traffic management have some common features
for which the new approach is particularly suited. First, the number of disjunctions is
limited, typically in the order of, or smaller, than the number of operations (whereas
in principle this number could grow quadratically). Secondly, and perhaps more im-
portantly, the objective function is associated with the schedule of few operations,
sometimes even only one operation per job (i.e. the arrival time, or delay, of the vehicle
at some specific target location). However, the approach developed in this paper can
in principle be applied to a more general class of job-shop scheduling problems.
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2 A big-M formulation for the job-shop scheduling
problem in traffic management

In this section we formally introduce the job-shop scheduling problem considered in
this paper. We then introduce a natural Mixed Integer Linear Program (MILP) for the
problem. Finally we transform the natural formulation in a way which is suitable for
the developments in the following sections.

The movement of a vehicle through a transportation network can be modeled as a
sequence of atomic movements, corresponding to the occupation of a specific network
resource. For example, a train in a railway network runs through a sequence of tracks;
an airplane in the airdrome runs through a sequence of taxiways; a vehicle on a road
through road segments, etc. The ordered sequence of atomic movements associated
with a vehicle is called route. Let O be the set of atomic movements of all vehicles.
With every atomic movement u ∈ O we associate the quantity tu ∈ IR+ representing
the time the vehicle starts atomic movement u (i.e. the vehicle starts occupying the
corresponding network resource). The vector t ∈ IR|O|+ is called schedule. If we consider
two successive atomic movements u, v ∈ O on the route of a vehicle, then we have that
the schedule satisfies the time-precedence (linear) constraint

tv − tu ≥ λuv (1)

where λuv is the minimum time necessary for the vehicle to complete the atomic move-
ment u. Now, consider two distinct vehicles A and B, both going through a non-sharable
network resource R1, as in Figure 1.2

R3 R1 R2

route A u
v

route Bz w

Figure 1: The routes of two trains running through the single track section R1 in opposite
directions.

Let u ∈ O be the atomic movement on the route of A corresponding to the occupa-
tion of resource R1, and let v be the next movement - corresponding to the occupation
of a new resource R2. Similarly, let w be the movement corresponding to resource R1

on the route of B and let z be the next movement (corresponding to a resource R3

which may be distinct from R2). Since the resource R1 is non-sharable, either vehicle
A precedes B on R1 or viceversa. In the first case, A enters the next resource R2 before

2Note that here we consider a basic case of incompatible movements. More complicated cases can
be easily handled in a similar fashion.
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B enters R1, that is tw ≥ tv; in the second case B enters R3 before A enters R1, and we
have tu ≥ tz. Therefore, the schedule t must satisfy the following disjunctive constraint:

(tw − tv ≥ 0)
∨

(tu − tz ≥ 0) (2)

Observe that the above disjunction consists of two terms, each term being a (linear)
precedence constraint in the schedule variables3.

A job-shop scheduling problem in traffic management can be represented by a di-
rected graph whose nodes correspond to atomic movements, whereas the edges corre-
spond to linear precedence constraints and to disjunctions. In the graph of Figure 2
each disjunction is represented by a pair of directed edges (dotted edges in the picture),
one for each term of the disjunction

v

z
tw

u

w

tu tv

tz

A

B

luv

Figure 2: A directed graph representing a job-shop scheduling instance

We are now able to state the problem addressed in this paper:

Problem 2.1 Let O be a set of atomic movements, let tu be the starting time of move-
ment u ∈ O and let O2 = O × O be the set of the ordered pairs of atomic movements.
Let A ⊆ O2 be a set of (indices of) linear precedence constraints with associated r.h.s.
λ ∈ IR

|A|
+ . Let D ⊆ {{e, f} : e, f ∈ O2, e 6= f} be the set of (indices of) disjunctive

precedence constraints. Finally, let c : IR
|O|
+ → IR be the cost of the schedule. Find a

schedule t ∈ IR
|O|
+ satisfying all simple precedence constraint (1), for (u, v) ∈ A, and

all disjunctive precedence constraints (2), for {(v, w), (z, u)} ∈ D, and such that c(t) is
minimized.

Next, we introduce the set F = {(u, v) ∈ O2 : {(u, v), (w, z)} ∈ D} of the simple
precedence constraints contained in one or more disjunctions of D. For the sake of sim-
plicity, in the remainder of the paper we assume F to be a simple set - the generalization
is immediate.

3In principle, the r.h.s. of each term may be non-zero. We prefer here this version in order to
simplify the following discussion
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Problem 2.1 can be easily represented as a Mixed Integer Program (MIP). For each
(u, v) ∈ F we introduce a binary variable yuv, with yuv = 1 if the schedule satisfies
tv − tu ≥ 0. Then Problem 2.1 can be written as the following MIP:

min c(t)

s.t.
(i) tv − tu ≥ λuv, (u, v) ∈ A

(ii) tv − tu ≥M(yuv − 1) (u, v) ∈ F,

(iii) yuv + ywz = 1, {(u, v), (w, z)} ∈ D,

(iv) tu ≥ 0, u ∈ O,

t ∈ IR|O| y ∈ {0, 1}|F |

(3)

where M is a suitably large constant and λuv ≥ 0 for all uv ∈ A. Constraints (3.ii)
and (3.iii) ensure that at least one simple precedence constraint in every disjunction is
satisfied by t.

Program (3) is the "natural" formulation for our problem, adopted, in a form or
another, by many studies on this topic. If c(t) is linear, and all the binary variables are
fixed to 0 or 1, (3) reduces to a linear program with non-negative variables and a very
nice structure: all constraints are time-precedence constraints, of the form ty−tx ≥ λxy.
This very desirable property will be exploited in the remain of the paper. To this end,
we need to manipulate (3) in order to reduce it to a form which is more convenient
to our purposes. First, we will show how we can consider a convex piece-wise linear
cost function and still maintain the wanted property (Program (8)). Then (8) is simply
rewritten in the compact form (9). Finally, we apply a linear transformation to (the
coefficient matrix of) (9) so to obtain precisely the dual (BF) of a max-cost flow problem.

2.1 Cost function and MILP formulation.

We assume the cost function to be non-negative, piecewise linear and convex, as depicted
in Figure 3. Later on in the paper we show that convexity can be relaxed without
challenging the validity of the approach.

For every u ∈ O we let the breakpoints of cu in correspondence to (breakpoint)
times T 1

u , . . . , T
b(u)
u - with b(u) being the number of breakpoints. We let c1

u, . . . , c
b(u)
u

be the corresponding non-negative slope increments of the cost function. Namely, for
tu ∈ [T iu, T

i+1
u ), i = 1, . . . , b(u), the slope will be c1

u+ · · ·+ciu (we let T
b(i)+1
u = +∞). For

every u ∈ O and times T 1
u , . . . , T

b(u)
u , we associate variables δ1

u, . . . , δ
b(u)
u (referred to as

delay variables) representing the delay with respect to each breakpoint time. Namely,
we have

δiu = max(0, tu − T iu), i = 1, . . . , b(u) (4)

Then the cost of starting the atomic movement u at time tu is defined as
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cu

𝑇𝑇𝑢𝑢1
tu0 𝑇𝑇𝑢𝑢2 𝑇𝑇𝑢𝑢3

𝑐𝑐𝑢𝑢1

Figure 3: Convex piecewise linear cost function.

c1
uδ

1
u + · · ·+ cb(u)

u δb(u)
u (5)

Since all slope increments are non-negative and we want to minimize the overall
cost, we can replace (4) with the following family of constraints in the delay variables:

δiu ≥ 0, i = 1, . . . , b(u) (6)

δiu ≥ tu − T iu i = 1, . . . , b(u) (7)

Problem (3) can now be rewritten as a Mixed Integer Linear Program (MILP):

min
∑

u∈O
∑

q=1,...b(u) c
1
uδ

1
u + c2

uδ
2
u + · · ·+ c

b(u)
u δ

b(u)
u

s.t.
(i) tv − tu ≥ λuv, (u, v) ∈ A

(ii) tv − tu ≥M(yuv − 1) (u, v) ∈ F,

(iii) yuv + ywz = 1, {(u, v), (w, z)} ∈ D,

(iv) δiu − tu ≥ −T iu, u ∈ O, i = 1, . . . , b(u),

(v) δiu ≥ 0, u ∈ O, i = 1, . . . , b(u),

(vi) tu ≥ 0, u ∈ O,

t ∈ IR|O|, δu ∈ IR|b(u)|, u ∈ O, y ∈ {0, 1}|F |

(8)

The next remarks follow immediately from the definitions.

Remark 2.2 The following facts hold:

1. Only delay variables have non-zero cost coefficients in the objective of (8).
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2. Each delay variable appears in only two constraints of (8), namely one constraint
of type (8.iv) and one non-negativity constraint (8.v)

We now simply rewrite (8) in a more compact form. In particular, since all the con-
straints involving continuous variables are either non-negative constraints, or time-
precedence constraint we can consider a new variable vector t̄ = (t, δ). Renaming all
constants accordingly, we can rewrite (8) as

min
∑

u∈V̄ k̄ut̄u

s.t.
(i) t̄v − t̄u ≥ λ̄uv, (u, v) ∈ Ā

(ii) t̄v − t̄u ≥M(yuv − 1) (u, v) ∈ F,

(iii) yuv + ywz = 1, {(u, v), (w, z)} ∈ D,

(iv) t̄u ≥ 0, u ∈ V̄ ,

t̄ ∈ IR|V̄ |, y ∈ {0, 1}|F |

(9)

where V̄ is the set of variable indexes, k̄u ≥ 0 is the cost of variable t̄u for u ∈ V̄ and Ā
is the (extended) family of simple precedence constraints, corresponding to constraints
(8.i) and (8.iv). The r.h.s. vector λ̄ extends vector λ to include the (negative of the)
breakpoint times appearing in the r.h.s. of (8.iv). With some abuse of notation we still
denote by D the set of (renamed) disjunctive pairs and by F the corresponding set of
simple precedence constraints appearing in the disjunctions. Observe that the original
delay variables δ of (8) correspond to a subset Vc ⊂ V of the new set of indices. Again,
we have k̄u 6= 0 only for variables t̄u with u ∈ Vc.

Finally, we further transform the above MILP by introducing a new fictitious move-
ment o, the origin. We let V = V̄ ∪ {o}, introduce real variables su for u ∈ V , and let
t̄u = su − so, for u ∈ V \ {o}. The transformed problem reads as:

min
∑

u∈V kusu

s.t.
(i) sv − su ≥ luv, (u, v) ∈ E

(ii) sv − su ≥M(yuv − 1) (u, v) ∈ F,

(iii) yuv + ywz = 1, {(u, v), (w, z)} ∈ D,

s ∈ IR|V |, y ∈ {0, 1}|F |

(BF)

where E is the resulting family of simple precedence constraints. It is not difficult to
see that ku = k̄u for u ∈ V \ {o} and ko = −(

∑
u∈V \{o} ku). Also, by construction, we

have ku ≥ 0 for all u ∈ V \ {o}. Observe that the s variables are unconstrained in sign.
Indeed, the original set of non-negativity constraints (9.iv) is mapped into the family
of simple precedence constraints su − so ≥ 0, for u ∈ V . Finally, we include all simple
precedence constraints in the set E and l extends the original vector λ accordingly. For
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convenience, we let l ∈ IR|E∪F |, with luv = 0 for (u, v) ∈ F . Note that Vc ⊂ V̄ , and
for u ∈ Vc, delay variable t̄u corresponds to (delay) variable su. Next remark derives
immediately from Remark 2.2:

Remark 2.3 For u ∈ Vc delay variable su appears in exactly two constraints of (BF):

1. constraint su−sw ≥ −T ba , where T ba is the original breakpoint time associated with
su and sw is the start time of the corresponding atomic movement a.

2. constraint su − so ≥ 0, derived from an original non-negativity constraint.

Finally, observe that through suitable scaling, we may assume that the cost vector
k and the length vector l are integral vectors. As a consequence, (BF) is either empty
or admits an optimal integer solution ([7]).

2.2 Disjunctive Graph

With program (BF) we associate in a standard fashion the directed graph G = (V,E ∪
F ), with nodes corresponding to the variables and directed edges associated with simple
precedence constraints, including those appearing in a disjunctive constraint. This type
of graph was first introduced by Balas in [3], in the context of production scheduling.
The vector l ∈ IR|E∪F | can be regarded as the lengths of the edges of G. The nodes
Vc ⊂ V are called delay nodes. The edges in F are called disjunctive edges and the two
disjunctive edges associated with an original disjunction are called disjunctive pair (of
edges)4.

A disjunctive graph associated with two vehicles A and B is depicted in Figure 4.
Node 0 is the origin. Nodes 1,2 correspond to the atomic movements of vehicle A,
whereas 3,4 are those of B. There is only one disjunction with corresponding pair of
disjunctive edges, (2,4) and (4,2) (dotted in the picture). Nodes 5 and 6 are the delay
nodes associated with atomic movement 2, whereas 7,8 are the delay nodes associated
with atomic movement 4. Edge weights l12 and l34 are running times whereas −l25,−l26

(−l47,−l48) are the breakpoints on the time axis of the piecewise linear convex cost
function associated with node 2 of train A (node 4 of train B).

The following facts are simple consequences of the previous definitions and are given
without proof.

Property 2.4 The following holds for the disjunctive graph G:

1. For every delay node u ∈ Vc, there are exactly two incoming edges and no outgoing
edges.

2. There is a directed path from the origin o to all v ∈ V , even when restricted to
the set E of non-disjunctive edges.

4In the literature a disjunctive pair of edges is often denoted as a disjunctive arc
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Figure 4: A disjunctive graph associated with two vehicles, A and B.

The second property follows from the fact that, for every v ∈ V , there is an edge
from o to v of length 0, deriving from the original non-negativity constraint on the
variables. Now, let ȳ ∈ {0, 1}|F | satisfy constraints (BF.iii). Note that this corresponds
to selecting exactly one simple precedence constraint per disjunction, as the other term
becomes redundant. So program (BF) reduces to a linear program (BF(ȳ)) in the
s variables only and with only simple precedence constraints. A natural question is
whether (BF(ȳ)) admits a feasible solution s̄, ȳ. A simple answer to this question
exploits the properties of the disjunctive graph introduced above.

Note first that vector ȳ can be regarded as the incidence vector of a subset F (ȳ) of
disjunctive edges of G. Such set F (ȳ) is called complete selection, because it contains
(exactly) one edge for each disjunction inD. LetG(ȳ) = G(V,E∪F (ȳ)) be the subgraph
of G obtained by dropping all the disjunctive edges in F \F (ȳ). Observe that the linear
program (BF(ȳ)) is the dual of a max-cost network flow problem defined on graph G(ȳ)
(we will come back to this in the next section). The following lemma and some other
related facts exploited in the following are basic results from network optimization (see,
e.g., [1, 7]).

Lemma 2.5 Let ȳ ∈ {0, 1}|F | satisfy (BF.iii). Then (BF(ȳ)) is feasible if and only
if the graph G(ȳ) contains no directed cycles C with strictly positive length l(C) =∑

uv∈C luv.

If G(ȳ) does not contain a strictly positive length directed cycle, then G(ȳ) contains
a longest directed path P ∗u (ȳ) from o to u for every u ∈ V , and we let Lu(ȳ) = l(P ∗u (ȳ))
be its length. Note that Lo(ȳ) = 0. It is well known (see [7]) that su = Lu(ȳ), for
u ∈ V , is a feasible solution to (BF(ȳ)). Also, if s̃ is a feasible solution to (BF(ȳ)), then
s̄u = s̃u − s̃o, for u ∈ V is also feasible for (BF(ȳ)) and

∑
u∈V kus̃u =

∑
u∈V kus̄u; also,

s̄u ≥ Lu(ȳ), for u ∈ V .5

5Indeed, if Puv is a path from u to v in G(ȳ) and s̄ is a feasible solution to (BF(ȳ)), we have
s̄v ≥ s̄u + l(Puv). Since s̄o = 0 by construction, then s̄v ≥ l(P ∗u (ȳ)) = Lu(ȳ)
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A feasible complete selection F̄ is a complete selection of F such that G(V,E ∪ F̄ )
contains no strictly positive directed cycle. We denote by Yf ⊆ {0, 1}|F | the set of
incidence vectors of the feasible complete selections of F .

Lemma 2.6 Let ȳ ∈ Yf . For u ∈ V , let Lu(ȳ) be the length of a longest path from o to
u in G(ȳ). For u ∈ V , s∗u = Lu(ȳ) is an optimal solution to (BF(ȳ)).

Proof. First recall that if (BF(ȳ)) has an optimal solution, then it has an optimal
solution s̃ with s̃o = 0 ([7]). The cost of such solution will be c(s̃) =

∑
u∈Vc kus̃u since

ku = 0 for all u /∈ Vc ∪ {o} and s̃o = 0. Now, it is well known that s∗ = L(ȳ) is
feasible for (BF(ȳ)) and we have s∗o = 0. Moreover, let s̄ be any feasible for (BF(ȳ))
with s̄o = 0: then s̄ ≥ s∗. The Lemma follows from the fact that for u ∈ Vc. ku ≥ 0
and thus c(s̄) =

∑
u∈Vc kus̄u ≥

∑
u∈Vc kus

∗
u = c(s∗).

�

The cost c(s∗) of such optimal solution is thus
∑

u∈V kuLu(ȳ). Also, since Lu(ȳ) ≥ 0
for all u ∈ V (due to the 0-length edge from o to u), then any feasible solution has
non-negative cost. Now, from basic network optimization theory we know that Lu(ȳ)
corresponds to the length of the unique path from o to u in a certain directed spanning
tree of G(ȳ) rooted at o called longest-path tree. Summarizing:

Property 2.7 For y ∈ Yf , the optimal schedule for BF(ȳ) is in correspondence to a
longest-path tree (rooted in o) of G(ȳ).

Such spanning trees are branchings (see [29]) since the in-degree of each node is 1,
except for the root o (with in-degree 0).

Note that the proof of the above Lemma relies on the crucial property that every
feasible solution s to (BF(ȳ)) such that so = 0 is such that each component su is not
smaller than Lu(ȳ). This allows for an immediate generalization to any non-decreasing
non-negative cost function:

Corollary 2.8 Let c : IR|V | → IR be a non-decreasing non-negative function, let ȳ ∈ Yf
and consider a problem Q(ȳ) obtained from (BF(ȳ)) by replacing the original objective
function with c(s) and including the constraint so = 0. Let T (ȳ) be a longest path tree
in G(ȳ). Then s∗u = Lu(ȳ) is an optimal solution for Q(ȳ), where Lu(ȳ) is the length of
the unique path from o to u in T (ȳ).

So, let T = T (ȳ) be a longest-path tree (from now on all our longest path trees will
be directed spanning trees rooted at o) of G(ȳ). We define the cost c(T ) of T as the
cost of the solution associated with BF(ȳ), namely c(T ) =

∑
u∈Vc kuLu(ȳ). Since Lu(ȳ)

is the length Lu(T ) of the unique path Pu(T ) from o to u in T , we can rewrite

c(T ) =
∑
u∈Vc

kuLu(T ) =
∑
u∈Vc

c(Pu(T )) (10)
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where we define c(Pu(T )) = kuLu(T ) as the cost of path Pu(T ).
Finally, observe that, because a delay node u ∈ Vc has in-degree 2 and out-degree 0

(see Property 2.4), then the following holds.

Property 2.9 Let T be a longest path tree of G(ȳ) rooted at o and let u ∈ Vc be a delay
node. Then u is a leaf of T .

In Figure 5 we give an example. The solid edges are the edges of a longest-path
tree T of G(ȳ) for ȳ24 = 1, ȳ42 = 0. Delay nodes are (the only) leaves of T . The
associated solution in the delay nodes is s6 = 1, s7 = 0, s8 = 7, s9 = 3. Assuming
k6 = 3, k7 = 4, k8 = 5, k9 = 3, we have c(T ) = 47.
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Figure 5: Longest-path tree T of G(ȳ).

3 Benders’ decomposition and reformulation
We now rewrite program (BF) by applying the classical Benders’ reformulation ([23]).
For any vector y ∈ {0, 1}|F | satisfying (BF.iii), program (BF) reduces to the dual of
the following max-cost flow problem:

max
∑

(u,v)∈E luvxuv + (
∑

(u,v)∈F M(yuv − 1)xuv

s.t.
(i)

∑
uv∈δ−(v) xuv −

∑
vu∈δ+(v) xvu = kv, v ∈ V

(ii) xuv ≥ 0, uv ∈ E ∪ F

(MF (y))

where δ−(v) and δ+(v) are the incoming and outgoing stars of v ∈ V in graph G =
(V,E ∪ F ). We let P (G) be the polyhedron of the feasible points of (MF (y)).

When y is the incidence vector of a complete selection and G(y) does not contain
strictly positive length cycles (i.e. y ∈ Yf ), the following holds:
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Lemma 3.1 Let y ∈ Yf , and let H be a longest path tree of G(y) of cost c(H). Then

1. MF (y) has an optimal feasible solution x(y) = p∗, where p∗ is an extreme point
of P (G) and p∗e = 0 for all e /∈ H.

2. The value of the optimal solution is v(p∗) =
∑

(u,v)∈H∩E luvp
∗
uv

3. We have v(p∗) = c(H)

Proof. 1.) and 3.) derive directly from classical duality results (see, e.g., [7]). As for
2.), let y be the incidence vector of F (y) ⊆ F and so by construction H ⊆ E ∪ F (y).
By 1.) we have that, for e ∈ F , p∗e > 0 implies e ∈ F (y), and thus ye = 1. So, for e ∈ F
we have p∗e(1− ye) = 0 and

∑
(u,v)∈F M(yuv − 1)p∗uv = 0. �

Let K and J be the set of extreme points pk (k ∈ K) and extreme rays rj (j ∈ J) of
P (G), respectively. Observe that since they are feasible flows, all extreme points and
rays are non-negative vectors. Also, since we assume the r.h.s. kv to be integer for all
v ∈ V , then P (G) is an integral polyhedron and all its vertices are integral points ([7]).
Benders’ reformulation of (BF) writes as

min η

s.t.
(i) yuv + ywz = 1, {(u, v), (w, z)} ∈ D,

(ii)
∑

e∈E ler
j
e +

∑
e∈F M(ye − 1)rje ≤ 0, j ∈ J,

(iii)
∑

e∈E lep
i
e +
∑

e∈F M(ye − 1)pie ≤ η, i ∈ K,

y ∈ {0, 1}|F |, η ∈ IR+

(11)

Constraints (11.ii) are called feasibility cuts, whereas constraints (11.iii) are the
optimality cuts. We remark that, since any feasible solution to (BF) has non-negative
cost, we have that also η is non-negative in every feasible solution to (11), and we
explicitly stipulate this.

Note that the reformulation only contains the original binary variables y (one for
each disjunctive edge), plus one continuous variable η representing the cost of the solu-
tion. However, the notorious big-M coefficients are still present in the constraints. In the
remaining of this section we exploit classical results from polyhedral combinatorics and
network optimization to finally get rid of such coefficients. In particular, the following
definitions and results may be found in [4]. Let S = {z ∈ {0, 1}|K| :

∑
i∈K aizi ≤ b} be

the feasible solution set to the knapsack constraint
∑

i∈K aizi ≤ b, where ai ∈ Z+.
A cover (of the knapsack constraint) is a subset Q ⊆ K such that

∑
i∈Q ai > b.

The cover inequality associated with a cover Q is
∑

i∈Q zi ≤ |Q| − 1 and is satisfied
by every z ∈ S. A cover Q is minimal if no proper subset of Q is a cover. The
cover inequality associated with a minimal cover is facet defining for conv(S). A
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stronger formulation for S can be obtained by replacing the original knapsack con-
straint with the cover constraints associated with the set Q of its minimal covers,
namely S = {z ∈ {0, 1}|K| :

∑
i∈Q zi ≤ |Q| − 1, Q ∈ Q}.

Lemma 3.2 The set of constraints (11.ii) can be replaced by the following set of con-
straints: ∑

e∈F∩C

ye ≤ |F ∩ C| − 1 C ∈ C (12)

where C is the set of strictly positive length directed cycles of G.

Proof. It is well known (see e.g. [7]) that each extreme ray rC ∈ P (G) is the incidence
vector of a directed cycle C in G. Consider the constraint (11.ii) associated with C.
Now, if l(C) =

∑
e∈C le =

∑
e∈E∪F ler

C
e =

∑
e∈E ler

C
e ≤ 0, then (11.ii) is trivially

satisfied, because
∑

e∈F (ye − 1) ≤ 0 for any y ∈ {0, 1}|F |. So, we can restrict (11.ii)
to the set C of strictly positive length directed cycles of G. Now, let C ∈ C and let∑

e∈E∩C le +
∑

e∈F∩CM(ye − 1) ≤ 0 be the knapsack constraint (11.ii) associated with
(the incidence vector of) C. Then it is not difficult to see that the knapsack has a
unique minimal cover F ∩ C. �

Incidentally, constraint (12) can also be interpreted as a "combinatorial Benders’
cut" (see [11]). It has a direct interpretation: for each strictly positive directed cycle
C of G and each selection vector y, at least one of the disjunctive edges contained in C
cannot be selected by y.

Next, we focus on constraints (11.iii) associated with the extreme points of P (G).
Each extreme point of P (G) is in one-to-one correspondence with the set T of spanning
trees of G corresponding to the feasible basis of (MF (y)), for y ∈ Yf (see [7]). In
particular, by Lemma 3.1 if pH ∈ P (G) is the extreme point corresponding to spanning
tree H ∈ T , we have that pHe = 0 for all e /∈ H. In order to highlight this mapping, we
rewrite the set (11.iii) as:∑

e∈E∩H

lep
H
e +

∑
e∈F∩H

M(ye − 1)pHe ≤ η, H ∈ T (13)

We will now show that the set T can be restricted to the family of longest path
trees of G(y), for y ∈ Yf . Observe that if y ∈ {0, 1}|F | satisfies (11.i) and (11.ii),
then y is the incidence vector of a complete selection and G(y) does not contain strictly
positive length cycles, so y ∈ Yf . In other words, for y /∈ Yf , constraints (11.iii) become
redundant. When y ∈ Yf we have the following:

Lemma 3.3 The set of constraints (11.iii) is dominated by the set of valid inequalities∑
e∈E∩H

lep
H
e +

∑
e∈F∩H

M(ye − 1)pHe ≤ η, H ∈ T ∗ (14)

where T ∗ = {H∗(y) : y ∈ Yf , H∗(y) any longest path tree in G(y), }.
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Proof. We assume Yf 6= ∅ (otherwise problem (11) is trivial or infeasible). Let ȳ ∈ Yf
and let T (ȳ) be the set of spanning trees associated with the feasible basis of (MF (y)).
For H ∈ T (ȳ), the l.h.s. of constraint (13) is dominated by

max
H∈T (ȳ)

( ∑
e∈E∩H

lep
H
e +

∑
e∈F∩H

M(ȳe − 1)pHe

)
≤ η,

By Lemma 3.1 the maximum above is obtained for H∗ longest path tree of G(ȳ).
�

By statement 3.) of Lemma 3.1, for H ∈ T ∗, each constraint (14) can also be written
as

c(H) +
∑

e∈F∩H

M(ye − 1)pHe ≤ η, (15)

It is not difficult to see that, for y ∈ {0, 1}|F |, the above constraint is satisfied if and
only if y satisfies the following inequality:

c(H)(
∑

e∈F∩H

ye − |F ∩H|+ 1) ≤ η, (16)

In fact, one can show a stronger result still. Let H ∈ T ∗. For e ∈ F ∩ H, let
Me = pHe ·M . Note that pHe > 0 for some e ∈ F ∩H, implies Me ≥ M , because pH is
integral. Let N = {e ∈ F ∩H : Me > 0}.

Lemma 3.4 Let Y H = {(y, η) ∈ {0, 1}|F∩H| × IR1
+ : (y, η) satisfies (15)}. Then the

constraint

c(H)(
∑
e∈N

ye − |N |+ 1) ≤ η, (17)

is facet defining for conv(Y H).

The proof of Lemma 3.4 can be found in the appendix.

So, when N = F ∩H, we have that (16) is facet defining for conv(Y H); otherwise it
is the trivial lifting of a facet defining inequality. Incidentally, note that one can easily
prove that, for e ∈ F ∩H, we have pHe > 0 (i.e. e ∈ N) if and only if e is on the unique
path in H from o to some delay node v ∈ Vc, that is to a node v such that kv > 0.
The variables corresponding to these disjunctive edges are the only ones appearing in
the constraint (17). We somehow exploit this observation in our main result, stated in
Theorem 3.5. To this end, recall that for H ∈ T ∗, its cost c(H) can be computed as∑

u∈Vc c(Pu(H)) where Vc is a set of leaves of H and c(Pu(H)) = kuLu(H) is the cost
of the unique path Pu(H) from o to u in H. The following theorem holds:
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Theorem 3.5 Let H ∈ T ∗ and let µu ∈ IR, for u ∈ Vc. Then constraint (16) is
dominated6 by the following system of valid inequalities:

(i) η =
∑

u∈Vc µu, ,

(ii) c(Pu(H))(
∑

e∈F∩Pu(H) ye − |F ∩ Pu(H)|+ 1) ≤ µu, u ∈ Vc.
(18)

Before proving our main theorem, we prove an intermediate lemma. Let L1 and
L2 be a partition of Vc and let H1 (H2) be the subtree of H containing only the edges
in the paths Pu(H), from the origin o to every node u ∈ L1 (u ∈ L2) (see Figure 6).
Let c(H1) =

∑
u∈L1

c(Pu) be the cost of H1 and c(H2) =
∑

u∈L2
c(Pu) be the cost of

H2. Clearly c(H) = c(H1) + c(H2). Note that H1 and H2 may intersect. Finally, let
F0 = H ∩ F , F1 = H1 ∩ F and F2 = H2 ∩ F be the set of disjunctive edges in H, H1

and H2, respectively. Note that

F0 = F1 ∪ F2 = (F1 \ F2) ∪ (F2 \ F1) ∪ (F1 ∩ F2) (19)

L1 L2 
L1 L2 

H1 H2 

o o 

Figure 6: The bipartition of the leaves of H and the corresponding trees H1 and H2

Lemma 3.6 Constraint (16) is dominated by the following system of valid inequalities:

(i) η = µ1 + µ2, ,

(ii) c(H1)(
∑

e∈F1
ye − |F1|+ 1) ≤ µ1, i ∈ L1,

(iii) c(H2)(
∑

e∈F2
ye − |F2|+ 1) ≤ µ2, i ∈ L2,

(20)

Proof. The validity of (20) is trivial. Next, note that system (20) dominates the
surrogate constraint

6By "dominated" we mean here that if the real vector (ȳ, η̄, µ̄) is feasible for (18) then its projection
(ȳ, η̄) is feasible for (16)
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c(H1)(
∑
e∈F1

ye − |F1|+ 1) + c(H2)(
∑
e∈F2

ye − |F2|+ 1) ≤ µ1 + µ2 = η.

We show now that the above constraint dominates (16) by proving that, for any y ∈
[0, 1]F , we have:

c(H1)(
∑
e∈F1

ye− |F1|+ 1) + c(H2)(
∑
e∈F2

ye− |F2|+ 1) ≥ (c(H1) + c(H2))(
∑
e∈F0

ye− |F0|+ 1)

or, after simplification:

c(H1)(
∑
e∈F1

ye − |F1|) + c(H2)(
∑
e∈F2

ye − |F2|) ≥ (c(H1) + c(H2))(
∑
e∈F0

ye − |F0|) (21)

Observe that F1 can be partitioned in F1 \ F2 and F1 ∩ F2; similarly F2 can be
partitioned in F2 \ F1 and F1 ∩ F2: then the left-hand side of (21) can be written as:

c(H1)(
∑

e∈F1\F2

ye−|F1\F2|)+c(H2)(
∑

e∈F2\F1

ye−|F2\F1|)+(c(H1)+c(H2))(
∑

e∈F1∩F2

ye−|F2∩F1|)

(22)
While, by using (19), the right-hand side of (21) writes as:

(c(H1) + c(H2))

 ∑
e∈F1\F2

ye − |F1 \ F2|+
∑

e∈F2\F1

ye − |F2 \ F1|+
∑

e∈F1∩F2

ye − |F2 ∩ F1|


(23)

Substituting (22) and (23) in (21) and simplifying, we obtain:

0 ≥ c(H2)(
∑

e∈F1\F2

ye − |F1 \ F2|) + c(H1)(
∑

e∈F2\F1

ye − |F2 \ F1|)

which is trivially satisfied for any y ∈ [0, 1]F since c(H1), c(H2) ≥ 0 �

In order to prove Theorem 3.5, we can use induction: if both L1 and L2 are sin-
gletons, we are done; otherwise we can (recursively) apply Lemma 3.6 to H1 and H2

separately. �

We can finally rewrite problem (11) as follows
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min
∑

u∈Vc µu

s.t.
(i) yuv + ywz = 1, {(u, v), (w, z)} ∈ D,

(ii)
∑

e∈C∩F ye ≤ |C ∩ F | − 1, C ∈ C,

(iii) c(Pu(H))(
∑

e∈F∩Pu(H) ye − |F ∩ Pu(H)|+ 1) ≤ µu, u ∈ Vc, H ∈ T ∗

y ∈ {0, 1}|F |, η ∈ IR+

(Bend)

Extension to separable, non-decreasing non-negative cost functions. Now,
consider non decreasing non-negative functions cu : IR → IR, for u ∈ Vc and, for
s ∈ IR|V |, let c(s) =

∑
u∈Vc cu(su). In other words, we assume c to be separable, and the

non-zero components of c correspond to the nodes in Vc. As in corollary 2.8, consider
problem Q(ȳ) obtained from (BF(ȳ)) by replacing the original objective function with
c(s). Then it is not difficult to see that problem Q(ȳ) can be reformulated as (Bend),
where c(Pu(H)) is defined as cu(Lu(H)) and Lu(H) is the length of Pu(H).

A final observation, even if c is a non-separable (non-decreasing non-negative) func-
tion we can still reformulate the original problem by using the weaker inequalities (16)
instead of (Bend.iii) (and considering the original objective min η).

4 Solution Algorithm
To solve MILP (Bend) we use classical delayed row and column generation [2, 13]. Recall
that, given an optimal solution y∗ to (Bend), the associated optimal schedule s∗ = s(y∗)
can be computed by a longest path tree computation in graph G(y∗) = (V,E ∪ F (y∗)),
where F (y∗) is the set of disjunctive edges "selected" by y∗.

Our algorithm solves a sequence of subproblems (Bend1), (Bend2), . . . , until an
optimal solution is found or the problem is (proven) infeasible. Problem (Bendk) is
associated with the triple (Dk, Ck,VT k) representing the current subset of (indices of)
constraints (Bend.i), (Bend.ii) and (Bend.iii), respectively (with VT k ⊆ Vc×T ∗). Also,
we let yk be the optimal solution to (Bendk), with yuv = ywz = 0 for all {(u, v), (w, z)} ∈
D \Dk. So, if Dk 6= D, the selection F (yk) is not a complete selection, since some of
the original disjunctive pairs are not taken into account as the corresponding pairs of
variables are fixed to 0. We denote by F k the set of disjunctive edges associated with
the disjunctions of Dk and by G(yk) = G(V,E ∪ F k). Also, we let sk = s(yk) be the
associated optimal schedule, calculated by solving (BF(yk)), namely problem (BF)(y))
restricted to the constraints in E ∪ F k and to the disjunctions of Dk.

The algorithm proceeds by growing sets Dk, Ck,VT k. Namely we have ∅ = D0 ⊆
D1 ⊆ . . . , ∅ = C0 ⊆ C1 ⊆ . . . and ∅ = VT 0 ⊆ VT 1 ⊆ . . . .
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At each iteration we first check if yk violates a cycle inequality C. If so, we add
C to the set of cycle inequalities and iterate. If not, we compute a longest path tree
T k in G(yk) and check whether some path inequalities associated with T k are violated.
If so, we add them to the set of path inequalities and iterate. Otherwise we perform
a macro-iteration, namely we check if solution sk associated with T k violates any of
the disjunctions in the set D \ Dk. If not, we are done: we let s∗ = sk, we (trivially)
extend yk to a feasible complete selection y∗ respecting s∗ and we have that (s∗, y∗) is
an optimal solution to our original problem. Otherwise, we add the violated disjunction
{(u, v), (w, z)} to the current set Dk and iterate.

Paths&Cycles Algorithm (PC)

0. Set k = 0; Set D1 = ∅, C1 = ∅, VT 1 = ∅.

Micro Iterations

1. k = k+ 1. Solve (Bendk). If (Bendk) infeasible, (Bend) is infeasible and STOP.

2. Let yk be the optimal solution to (Bendk).

3. If yk violates cycle inequality C:
Let Ck+1 = Ck ∪ {C}, Dk+1 = Dk, VT k+1 = VT k. GoTo 1.

4. Solve (BF(yk)). Let T k ∈ T ∗ be the longest path tree of G(yk) and sk be the
associated schedule.

5 If yk violates path inequalities V T k = {(v, T k) : v ∈ V k
c ⊆ Vc}:

Let VT k+1 = VT k ∪ V T k, Dk+1 = Dk, Ck+1 = Ck. GoTo 1.

Macro Iterations

6. If sk violates disjunction d, let Dk+1 = Dk ∪ {d}. Ck+1 = Ck, VT k+1 = VT k.
GoTo 1.

7. STOP: extend yk to a complete selection y∗, and (y∗, s∗ = sk) is an optimal
solution for (BF).

The solution of the 0,1 program (Bendk) at Step 1 can be obtained by invoking
any MILP solver (see Section 5). Problem (BF(yk)) amounts to a longest path tree
computation in G(yk), which in turn can be obtained in O(|E ∪ F (yk)|) for acyclic
graphs (which is the case for the real-life instances presented in Section 5, and more
generally for many relevant traffic management problems). Note that, in each macro
iteration k, only a subset of the y variables can be different from 0, namely variables ye
for e ∈ F k. One can then neglect all other variables ye for e ∈ F \F k. So, at iteration k
only variables ye for e ∈ F k are actually included in the current MILP (Bendk) (delayed
column generation).
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5 Computational Results
In this section we present computational results for the PC algorithm. We test the
algorithm on real-life instances from train rescheduling, an operational problem that
arises in managing real-time railway traffic. This is in fact the application which orig-
inally motivated this new study: the necessity to improve on a successful but big-M
based approach (referred to as BM) presented in [18] (which extends and completes the
formulation introduced in [17]). In BM , the big-M formulation (3) is solved repeatedly
following the macroscopic/microscopic decomposition approach described in [30]. In
this paper, we compare BM with the new PC algorithm. BM is also based on delayed
row generation as the PC algorithm (see Section 4); however, at Step 1, formulation
(Bend) is replaced by the initial big-M formulation (3) introduced in Section 2. Con-
sequently, Steps 2, 3, 4, and 5 of the PC Algorithm are skipped, while 6 and 7 are
executed. For more detail regarding BM we refer to ([18]).

The instances are provided by a train TMS (traffic management system) operative
on a railway line in Norway, in the Stavanger region (see Section 5.1). In the rest of the
section, we first present information about the test instances and the implementation
details, then present comparisons between BM and PC for different types of non-
decreasing non-negative objective functions that typically arise in this kind of traffic
management problems.

5.1 Test instances

First, we give some context regarding the instances used in this paper for our tests. All
instances refer to real-life trains running on a railway line at a certain moment in time.
More precisely, a snapshot of the state of the system (train position, network status) is
taken each time an event occurs on the line (train reaches signaling point, delays are
registered etc.). The instances are provided by an optimization-based train reschedul-
ing system implemented in Norway in February 2014. The system was developed at
SINTEF and funded by Norway’s infrastructure manager (Jernbaneverket), train oper-
ating companies (NSB, Flytoget, CargoNet) and Research Council (Forskningsrådet).
The system was implemented on the main line of the Stavanger region (the Jærbane)
on the west coast of Norway (also including the railway between Egersund and Moi).
The Jærbane (123 km, 16 stations) is one of the few lines in Norway with both single-
and double-tracks and is the most trafficked line in Norway outside of the Oslo area.

As mentioned in the introduction, the problem can be decomposed into "station
problems" and a "line problem", and in this paper we only focus on the latter (in [18]
we show how the two problems can be re-coupled exactly by means of Benders’ logic
decomposition). The line problem can be viewed as a problem where each station is
collapsed into a single, capacitated node (and thus we call it a macroscopic represen-
tation of the railway). So, in the line problem the railway is essentially reduced to a
sequence of nodes representing the original stations, connected by single or double-track
sections. In single track sections, trains can only meet or pass in stations. In double
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track sections, each track is devoted to one of the two directions, so meets can happen
anywhere, whereas passes can only occur in stations. In other words, the line problem
consists in finding a schedule for the trains running during the planning horizon such
that meets and passes occur only in feasible regions of the network and some cost asso-
ciated with the delays is minimized. In our instances, trains traveling along the entire
line have approximately 50 (macroscopic) atomic movements.7 Even though neglected
in this paper, it is worth mentioning that each station problem is a feasibility problem
that, besides scheduling, also involves routing trains. Indeed, in many stations trains
can choose among several routes and platforms. In [18] we show how this problem can
be modelled and solved. However, we remark here that, in our instances, the bottleneck
of the overall solution process is the solution to the line problem, requiring significantly
higher computational effort.

5.2 Implementation details

Tests were run on a Dell laptop with an Intel (R) Core (TM) i7-5600U CPU @2.60 GHz
16GB RAM. IBM Cplex 12.5 32 bit was used for all experiments, with the exception
of some of the instances in Tables 3 and 6 for which the 64-bit version was used due to
memory issues when solving the MILPs (more info is given in describing the tables).

5.3 Convex non-decreasing (non-negative) piecewise linear cost
functions

Convex non-decreasing (non-negative) objective functions are commonly adopted for
job-shop scheduling problems in traffic management. Such objectives can typically be
expressed or approximated with piece-wise linear functions (see Figure 3). Broadly
speaking, if the system is in a state that requires recovery, e.g. train i is delayed,
a convex objective function enforces that the delay will be somehow spread out on
the trains encountered by i (assuming, for instance, these are not themselves already
delayed). Convex functions are chosen to model recovery decisions for a combination
of reasons. First of all, they model the behaviour/recovery strategies of planners (or
controllers, dispatchers etc.) reasonably well, particularly in situations that are not
unusually critical (like when one or more vehicles are extremely delayed or there are
large scale disruptions). Secondly, they are deemed preferable on the modeling side
due to their computational tractability. Modeling a convex objective function for BM
only requires adding an extra continuous variable for each interval (or "piece") of the
objective and some linear constraints. In this study we show however that this type
of objective function can also present some non-negligible drawbacks, which will be
discussed later in this section.

7Aside from 16 stations, the line also has 7 stops where passengers can load and unload but no
train meets and passes are possible, and 5 tracks which are divided in multiple block sections.

21



In Table 1 we present results for 5 days of real-life data from the railway line in
Stavanger, aggregated over four-hour time periods8. A 1 hour time limit was set (and
in no instance reached). The objective, agreed with practitioners from the Norwegian
infrastructure manager, is of the type shown in Figure 3, with 6 delay intervals (or
classes) which are penalized increasingly: less than 1 minute delay, between 1 and 3,
between 3 and 5, between 5 and 10, between 10 and 15 and more than 15 minutes delay.
In column ’Periods’ we indicate the day and hour range (format: dd hh-hh). In columns
’Trains’ and ’Late’ we indicate the average number of trains controlled by the system
and the average number of these running late, respectively, within the time period.
Column ’Runs’ indicates the number of instances considered for the given period in
these experiments.9 The remaining columns give information about the performance
of the two algorithms, namely the average run time (’Time’), the average number of
algorithm iterations (’Iterations’), the average time taken to solve each iteration (’It.
time’), the average aggregated number of branching nodes made by Cplex in solving
each instance (’Branchings’) and the average number of initial and generated rows and
columns. Note that, for both algorithms, the column ’Iterations’ refers to the number of
times the algorithm performs the most-time consuming task, namely solving the MILP
at hand with Cplex. For BM , basically all the overall computation time is taken up
by this task. For PC, the proportion of time used by Cplex w.r.t. to the other steps of
the algorithm (namely 3, 4 and 5, see Section 4) is less skewed but still very significant.
Notably, this proportion grows with the size of the problem and number of iterations
(an overview is given in Figure 7). Column ’Branchings’ in Table 1 is calculated by
summing the number of branching nodes explored by Cplex each time it is called during
an algorithm run.

As can be noted in Table 1, PC performs better than BM in terms of computation
time in 22 periods out of 25 (’Time’). Column ’It. time’ shows that the time required
by PC for each iteration is, on average, somewhere between 15% and 30% of the
corresponding iteration time for BM . The average number of iterations for PC is (quite
naturally) always higher than BM , due to the additional micro-iterations that have to
be performed by PC. Indeed, as described in Section 4, PC requires a series of steps
(namely 3, 4 and 5) to check for violated cycle and path inequalities. Whenever at least
one such inequality is violated, the corresponding constraint is separated and added to
the MILP, and Cplex is invoked to find a new optimal selection yk. PC spends a non-
negligible amount of time to perform these steps (depending on the instance, between
5 and 9 out of 10 iterations are of this kind). Therefore, using strategies to skip at least
a part of these micro-iterations (e.g. by smart heuristic generation of constraints and
variables) could further increase the improvement over BM .10

Thus, to summarize the performance of the two algorithms: a PC run solves a
8Note that the data is spread out over 6 days, and that time periods where on average less than 1

train is late were removed
9Note that here the instances were randomly sampled at a rate of between 1 and 2 per minute,

while, in the real-life setting, on average an instance every 20 seconds has to be solved.
10These questions will be matter of future studies.
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Period Trains Late Runs Time Iterations It. time Branchings Initial Generated
(seconds) (milliseconds) Rows Columns Rows Columns
BM PC BM PC BM PC BM PC BM PC BM PC BM PC BM PC

1 12-16 84 4 216 8.01 8.87 12 44 691 202 7258 2204 3858 0 3233 0 350 822 97 233
1 16-20 62 5 240 2.25 1.60 6 12 381 133 794 5 2766 0 2402 0 372 226 125 135
1 20-24 66 5 240 2.17 1.32 7 9 314 147 55 0 2911 0 2527 0 691 173 256 128
2 04-08 115 7 222 26.77 23.84 16 117 1705 204 84009 11180 5044 0 4263 0 1590 2621 401 399
2 08-12 109 5 231 12.41 12.55 13 54 933 232 14267 1296 4824 0 4060 0 785 972 217 319
2 12-16 84 3 240 7.74 13.36 12 60 650 223 4007 794 3874 0 3249 0 425 1440 115 261
2 16-20 62 4 240 2.05 1.38 7 10 315 138 206 0 2758 0 2395 0 366 185 124 132
2 20-24 66 5 224 6.22 3.87 9 21 723 184 6844 574 2889 0 2509 0 780 367 276 165
3 04-08 113 3 240 5.20 3.60 10 19 536 189 912 65 4957 0 4164 0 478 379 165 215
3 08-12 105 4 163 2.27 1.74 7 10 329 174 270 14 4696 0 3924 0 84 197 29 155
3 12-16 86 2 240 3.16 2.15 8 12 405 179 156 0 3963 0 3318 0 117 226 51 170
3 16-20 57 4 238 2.49 1.83 6 14 422 131 633 0 2562 0 2208 0 198 202 62 133
3 20-24 38 3 240 1.21 0.34 5 7 257 49 22 0 1836 0 1615 0 228 91 84 70
4 08-12 40 1 240 0.77 0.24 4 5 183 48 4 0 2338 0 1945 0 63 68 24 60
4 12-16 30 1 240 0.72 0.10 4 4 200 25 17 0 1738 0 1444 0 77 49 29 45
4 16-20 23 1 237 0.39 0.04 3 3 134 13 2 0 1180 0 1000 0 74 36 29 32
4 20-24 15 1 240 0.05 0.01 2 1 28 10 0 0 745 0 649 0 2 19 1 17
5 08-12 37 1 240 0.76 0.24 4 6 205 40 28 0 2346 0 1976 0 50 63 15 55
5 12-16 34 1 240 1.76 0.52 6 11 289 47 80 0 2128 0 1798 0 89 94 32 71
5 16-20 35 2 240 1.70 0.86 5 11 327 78 81 0 1875 0 1628 0 181 108 59 76
5 20-24 59 3 240 3.21 1.50 7 14 459 107 236 0 2694 0 2316 0 318 156 107 115
6 04-08 112 3 239 4.58 3.30 9 18 492 183 657 39 4923 0 4125 0 263 330 84 203
6 08-12 111 3 107 13.25 10.89 14 48 946 227 8032 716 4843 0 4053 0 350 804 106 292

Table 1: Algorithmic information for the convex objective function

significantly higher number of MILPs very fast, while BM requires solving fewer MILPs
at each run but is slower. Accordingly, the number of branchings is higher for BM in all
periods, while for PC in most periods Cplex is able to solve at root node. In addition,
PC always terminates with a significantly smaller MILP (see columns ’Initial’ and
’Generated’ variables and constraints).

Figure 8 shows the frequency of instances in Table 1 solved within certain time
ranges by the two algorithms. The first two columns show how many instances were
solved within 1 second, the second two columns between 1 second and 3 seconds and
so on. Figure 9 shows the cumulative distribution of the instances solved by the two
algorithms, i.e. the percentage of instances solved within a given time. For instance,
we notice that PC solves 50% of instances within 1 second and 72% of instances within
2 seconds, against 33% and 56% for BM , respectively. PC reaches the 90% mark of
solved instances after approximately 7 seconds, while BM requires around 9.4 seconds.
The chart is truncated at 90% due to the outliers in the remaining 10% that hinder its
readability.

In Table 2 we present aggregated results with respect to computation time for the
same 5 days of data from March 2014. For results presented in this table however,
we use a much more stringent time limit for the algorithms, one that is in line with
what happens in the practical setting for train traffic management (and other real-
time applications). The time limit in this case was set to 30 seconds, as agreed with
dispatchers in Stavanger.11 Column ’Day’ indicates the day of the month the instances
were generated. Column ’Runs’ indicates the number of instances taken into account

11Depending on the line this time limit may actually range from a few seconds to minutes.
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Figure 7: Instances solved by PC represented in terms of overall solution time (horizontal
axis) and percentage of solution time used by Cplex respect to the overall solution time (vertical
axis).

in this experiment for that day. ’Optimal (%)’ expresses the percentage of instances
solved in seconds. We note that the instances for which the optimal solution was not
found within the time limit are also counted in the average run time as being solved
in 30 seconds. This models what happens in the real-life setting, where the algorithm
is given T seconds (in this case T = 30) to find a solution, before some other solution
method must come in play to find a solution (a fast, possibly sub-optimal heuristic
method or "manual" intervention by the operators). Table 2 shows that on average
PC solves faster than BM in all ranges. While the speed up is small for days 1 and 2
(1.07x and 1.01x, respectively), it increases to as much as 4.45x on day 4.

In Table 3 we compare the algorithms on 10 representative instances. These were
selected by dividing all our instances in two classes, one with less trains (< 100) and one
more trains (>= 100) and picking 5 at random from each class, with a higher probability
placed on instances with more trains late. These instances are available in anonymised
form as part of this paper’s online companion in Operations Research. In this test, the
1 hour time out (t.o.) was set. In addition to BM and PC, we attempt to solve the
instances using the full big-M formulation12 and feeding the resulting program to Cplex.
We denote this approach as FBM . For the columns we use the same headings as in

12The big-M formulation without using the delayed generation approach, i.e. with all variables and
constraints that model the possible disjunctive pairs.
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Figure 8: Histogram of the frequency of instances with respect to computational time pre-
sented in Table 1.

Table 1, with the exception of ’Last it. time’ (which expresses the time taken by Cplex to
solve the last MILP) and ’Rows’ and ’Columns’ (which here represent the total number
of rows and column of the final MILP, i.e. initial plus generated). Note that for FBM
we omit columns ’Iterations’ and ’Last it.time’ as there is no delayed generation, thus it
solves a single MILP/iteration. In column ’Time’ we notice how FBM takes orders of
magnitude more computation time respect to the other two approaches, timing out on
3 occasions (more than 1 hour running). Moreover, again for FBM , the 32-bit version
of Cplex crashed in solving instances 5 to 10 due to lack of memory, requiring the use
of the 64-bit version. This results clearly demonstrate that solving "directly" the full
big-M would be impracticable, at least for our test-bed of real-life traffic management
instances. As shown for the aggregate results, PC solves a higher number of MILPs
w.r.t. BM but spending significantly less time. This can be seen as consequence of
the smaller size of the MILPs (see ’Rows’ and ’Columns’) and more importantly of the
stronger formulation which allows to explore a reduced search tree (see ’Branchings’).
In addition, the time taken to solve the last iteration/MILP is considerably smaller for
PC, again pointing to the fact that, with an effective strategy to generate the "right"
constraints and variables (and skipping as many micro-iterations as possible), one could
further improve the overall performance of the algorithm.

Convex functions are, in many cases, a reasonable proxy of a planner’s decision
process. However, in many cases the effect on decisions can become increasingly distant
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Figure 9: Cumulative distribution of the percentage of instances solved in Table 1 with
respect to computation time.

from the wish or behaviour of the planners, operators, stakeholders. We will elaborate
on this more in the following subsection.

5.4 Non-convex non-decreasing (non-negative) cost functions

A class of cost functions frequently adopted by practitioners in traffic management prob-
lems, is that of non-convex non-decreasing (non-negative) functions. In many cases,
these functions model the recovery strategies of planners more accurately than convex
ones. In public transport for instance, heavily delayed vehicles often actually lose prior-
ity over other vehicles after a certain threshold (the opposite of what the corresponding
convex objective function would enforce). Controllers, dispatchers, or the operators
themselves, may prefer avoiding the recovery of such a vehicle should it come at the
price of delaying others. In other words, they may favour the strategy of not further
disturbing the system, rather than attempting the recovery of one (or more) heavily
delayed vehicles. In mathematical terms, this can be expressed with a function of the
type depicted in Figure 10.

The "loss of convexity" is generally seen as a drawback, as the computational com-
plexity of traditional models tends to increase as a consequence (e.g. for BM a function
of this kind requires adding suitable binary variables and constraints).

In the following we compare the two algorithms using a non-convex non-decreasing
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Day Runs Optimal (%) Run time (s) Speed up
BM PC BM PC

1 696 99.6 97.6 4.01 3.76 1.07x
2 1188 88.6 82.9 10.93 10.85 1.01x
3 1360 100 100 2.92 1.86 1.57x
4 1434 100 100 0.49 0.11 4.45x
5 1378 100 100 1.34 0.55 2.44x

Table 2: Aggregate comparisons for 5 days of computations using the
convex objective function.

Id Trains Late Time Iterations Last it. time Branchings Rows Columns
(seconds) (milliseconds)

FBM BM PC BM PC BM PC FBM BM PC FBM BM PC FBM BM PC
1 77 0 88.34 0.41 0.15 2 2 200 23 43 0 0 126361 2912 84 14562 2858 81
2 96 2 276.72 13.80 3.88 14 29 620 30 1627 1723 0 203894 4669 500 22658 3815 242
3 96 1 196.46 6.77 6.16 14 31 1654 21 903 1700 0 201583 4678 525 22487 3812 240
4 92 3 204.01 11.25 2.71 14 34 942 154 1129 3561 0 182640 4555 640 20696 3660 260
5 88 4 238.35 6.77 6.31 9 32 901 334 1585 2699 0 171706 4332 520 19706 3534 230
6 105 3 549.97 42.92 22.61 17 101 3846 540 5398 24517 2184 223957 5962 2174 23910 4358 341
7 105 3 2025.69 137.68 88.71 18 175 30018 736 27691 115475 26258 229178 6477 3493 28035 4421 407
8 119 7 t.o. 96.68 78.37 20 136 18037 513 - 84144 7267 290091 7088 3609 35173 4920 493
9 118 5 t.o. 95.39 117.55 19 180 38582 615 - 86802 15493 286200 6981 3642 34600 4854 518
10 120 7 t.o. 510.96 373.24 20 229 51564 5758 - 606519 36170 288642 6884 7008 34812 4885 522

Table 3: Algorithmic information for 10 representative instances with the convex objective
function

(non-negative) objective function. In particular, we use a cost function with a similar
structure to that used for the convex case (the same 6 delay intervals), only with a
"plateau" for the last interval (more than 15 minutes delay). In other words, any train
delayed more than 15 minutes, whose delay cannot be brought under such threshold,
loses all dispatching priority. Comparisons are presented in Tables 4, 5 and 6, for the
same instances and indicators used previously in Tables 1, 2 and 3, respectively.

Table 4 confirms and adds to the results obtained with the convex objective. Indeed,
the trade-off between shorter (average) iteration time and higher number of iterations
is even more favourable to PC in this case, as it performs better than BM in terms of
average computation time in 23 periods out of 25. This improvement can be explained
as the consequence of PC solving even smaller MILPs than in the convex case, which
can be noted by the size of the MILPs (columns ’Initial’ + ’Generated’) and the number
of branchings (PC on average solves every sub-problem at node 0 for 19 periods of 25).

Aside from PC performing proportionally better with this objective than BM , an
improvement w.r.t to the convex case was registered for both algorithms, which may
seem counter-intuitive given the increased computational complexity of using such a
non-convex objective. However, this can be explained intuitively analyzing the be-
haviour of the algorithms in situations of disruption. Indeed, in the convex case, the
number of "similar" solutions (in terms of objective function) is often very high. There-
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Figure 10: Example of non-convex non-decreasing (non-negative) function.

fore algorithms such as BM and PC that follow a "delayed" approach will tend to
generate many rows and columns associated with potential conflicts to explore such
solutions.
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Figure 11: Histogram of the frequency with respect to computational time for instances in
Table 4.

In Figure 11 we show the frequency of instances in Table 4 solved within certain
time ranges. The superior performance of PC in terms of computation time stands out
as PC has less instances in each range except for the less than 1 second case. Similarly,
in Figure 12 we show that PC solves a higher percentage of instances than BM by any
given computation time. For example, PC solves 50% of the instances within 1 second,
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Period Trains Late Runs Time Iterations It. time Branchings Initial Generated
(seconds) (milliseconds) Rows Columns Rows Columns
BM PC BM PC BM PC BM PC BM PC BM PC BM PC BM PC

1 12-16 84 4 216 4.75 6.35 11 31 440 207 2904 172 3941 0 3233 0 324 569 93 233
1 16-20 62 5 240 2.09 1.69 6 12 327 147 247 0 2827 0 2402 0 383 222 127 135
1 20-24 66 5 240 3.53 1.30 7 9 527 141 126 0 2977 0 2527 0 698 173 260 128
2 04-08 115 7 222 17.77 4.77 21 18 858 273 2708 0 5160 0 4263 0 2751 420 614 310
2 08-12 109 5 231 11.49 5.16 15 21 787 246 4067 12 4933 0 4060 0 1393 434 320 278
2 12-16 84 3 240 6.76 5.14 11 25 609 210 4514 207 3958 0 3249 0 809 466 156 212
2 16-20 62 4 240 2.20 1.26 7 10 333 125 94 0 2819 0 2395 0 376 184 124 131
2 20-24 66 5 224 4.94 2.90 8 16 633 177 5307 32 2955 0 2509 0 780 276 275 161
3 04-08 113 3 240 4.17 2.22 8 12 502 193 66 0 5070 0 4164 0 881 252 220 198
3 08-12 105 4 163 2.66 1.76 6 10 416 181 259 11 4801 0 3924 0 101 197 39 154
3 12-16 86 2 240 2.97 2.15 8 12 386 173 47 0 4050 0 3318 0 142 227 58 170
3 16-20 57 4 238 2.16 1.83 6 14 338 133 417 0 2615 0 2208 0 216 202 66 133
3 20-24 38 3 240 1.01 0.34 5 7 210 50 5 0 1874 0 1615 0 235 91 88 70
4 08-12 40 1 240 1.04 0.24 6 5 182 53 0 0 2378 0 1945 0 104 68 32 60
4 12-16 30 1 240 0.44 0.10 4 4 119 29 1 0 1768 0 1444 0 81 49 31 45
4 16-20 23 1 237 0.32 0.04 3 3 107 14 0 0 1203 0 1000 0 75 35 29 32
4 20-24 15 1 240 0.05 0.01 2 1 28 9 0 0 760 0 649 0 2 10 1 8
5 08-12 37 1 240 0.77 0.23 5 6 171 40 15 0 2383 0 1976 0 55 63 18 55
5 12-16 34 1 240 0.97 0.52 6 11 156 47 10 0 2162 0 1798 0 92 94 33 71
5 16-20 35 2 240 1.07 0.87 5 11 214 78 8 0 1910 0 1628 0 182 108 59 76
5 20-24 59 3 240 2.63 1.49 6 14 424 110 22 0 2753 0 2316 0 318 155 109 115
6 04-08 112 3 239 3.73 2.32 8 13 448 186 85 0 5035 0 4125 0 679 240 142 192
6 08-12 111 3 107 10.96 12.08 14 50 766 242 9724 1028 4954 0 4053 0 399 845 114 295

Table 4: Algorithmic information for the non-convex objective function.

74% after 2 seconds, 94% after 5 seconds and 98% after 10 seconds, against the 35%,
56%, 85% and 94% of BM , respectively.

Day Runs Optimal (%) Run time (s) Speed up
BM PC BM PC

26 696 99.9% 99.9% 3.41 3.00 1.14x
27 1188 97% 100% 8.47 3.79 2.23x
28 1360 100% 100% 2.78 1.62 1.72x
29 1434 100% 100% 0.52 0.10 5.20x
30 1378 100% 100% 0.94 0.55 1.71x

Table 5: Aggregate comparisons for 5 days of computations using the
non-convex function

In Table 5 we show the performance of the algorithms aggregated over each day
of instances. Similarly to Table 2, we set a 30 second time limit for the algorithms
to find the optimal solution. We notice that the average speed up achieved using PC
increases compared to the convex case (Table 2) on the first 4 days.13 In particular,

13On the last day, the average computation time for PC is actually the same as the convex case
(0.55 seconds), while BM performs better (0.94 seconds against 1.34). Still, PC performs better than
BM (0.55 against 0.94 seconds).
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Figure 12: Cumulative distribution of the percentage of instances solved in Table 4 with
respect to computation time.

this improvement is most noticeable on day 2, where PC is 2.23 times faster than BM
on average, against the convex case where the algorithms basically performed the same
(1.01x speed up, see Table 2).

Id Trains Late Time Iterations Last It. time Branchings Rows Columns
(seconds) (milliseconds)

FBM BM PC BM PC BM PC FBM BM PC FBM BM PC FBM BM PC
1 77 0 9.35 1.03 0.07 4 1 162 20 0 0 0 126438 2999 84 14562 2863 81
2 96 2 52.61 8.55 5.07 15 28 387 141 281 1306 0 208387 4869 500 26385 3824 242
3 96 1 44.56 6.94 5.61 15 30 570 225 423 1395 0 206067 4868 519 26207 3819 240
4 92 3 33.53 4.28 7.26 14 32 241 140 595 2163 0 186921 4713 628 24254 3661 260
5 88 4 28.39 7.13 5.24 13 29 508 165 283 1748 0 175847 4498 478 23149 3535 230
6 105 3 67.42 9.47 1.69 9 16 730 10 444 0 0 228616 6820 307 27838 4482 257
7 105 3 85.35 6.75 3.44 12 16 582 285 411 80 0 229283 8387 305 28035 4743 267
8 119 7 3257.91 22.03 2.29 17 13 1663 20 9309 4408 0 290144 9136 610 35173 5243 371
9 118 5 2301.93 29.47 2.07 14 13 1795 10 3475 2736 0 288766 9002 428 34812 5193 322
10 120 7 t.o. 22.12 1.33 14 13 2754 10 - 3722 0 9366 619 5278 368

Table 6: Algorithmic information for 10 representative instances with the non-convex objec-
tive function

In Table 6 we compare the algorithms on the same 10 representative instances in
Table 6 using the non-convex objective. Again, we additionally attempt to solve the
instances using the full big-M formulation and feed the resulting program to Cplex
(approach FBM). What stands out from Table 6 is that PC performs significantly
better than BM , in particular for the hard instances 8-10, for which the improvement
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is drastic. Again, in searching for a rationale behind this improvement it is natural
to point to the size of the MILPs being solved and the number of branchings required
to solve them (significantly smaller than for the big-M approaches). Also to be noted
is that FBM performs significantly better than in the convex case, at least for some
instances, but remains very distant from BM and PC in terms of overall performance.

These experiments somehow confirm the intuitive fact that the choice of objective
function, even reasonably similar ones, can non-negligibly impact the performance of an
algorithm. Therefore, it is important, particularly when dealing with real-life problems
for which the definition of the objective can be fuzzy, to carefully elicitate and analyze
the specifications, rules of thumb, wishes and goals of the stakeholders. In some cases,
real-life may be simpler than the models. To give an example, the performance of
the traffic management department of the Danish train operating company DSB is
evaluated on a single indicator, namely the percentage of trains delayed over 3 minutes
([24]). Thus, practically speaking, their only true objective is to comply with this
requirement. The resulting (binary) cost function is shown in Figure 13.

cu

tu0 3

Figure 13: Example of binary function: 3-minutes-or-die.

We finally test and compare the performance of the two algorithms using the DSB
cost function in Figure 13. We present the results in analogous Tables to those presented
for the previous objectives. In Table 7 we give algorithmic information regarding the
solution process when using the binary objective function. In general, both algorithms
perform competitively, solving on average under 3 seconds for all time periods. Again
however PC performs better than BM in 23 periods out of 25, "losing" by only decimals
of a second in periods 2 04-08 and 2 20-24.

Like for the previous two objectives, in Figures 14 and 15 we show the frequency
of instances being solved within certain time ranges and their cumulative distribution.
Again, it can be noted that for any given computation time PC has cumulatively solved
more, or at least as many, instances as BM . Finally, in Table 8 we show the performance
of the algorithms aggregated over each day of instances also for the binary objective.
PC performs better than BM on all 5 days, with the performance being very similar
on day 2 and noticeably better on all the other days.
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Period Trains Late Instances Run time Iterations Iteration time Branchings Initial Generated
(seconds) (milliseconds) Rows Columns Rows Columns
BM PC BM PC BM PC BM PC BM PC BM PC BM PC BM PC

1 12-16 84 4 216 1.44 0.89 10 19 145 46 65 0 3944 0 2900 0 867 476 172 307
1 16-20 62 5 240 0.82 0.38 8 11 98 33 20 0 2827 0 2155 0 784 199 201 204
1 20-24 66 5 240 0.62 0.55 6 7 100 77 0 0 2977 0 2263 0 1441 134 372 187
2 04-08 115 7 222 2.91 3.04 10 23 294 135 70 0 5160 0 3805 0 3821 465 653 446
2 08-12 109 5 231 2.18 1.74 10 17 229 101 7 0 4933 0 3623 0 1574 370 345 388
2 12-16 84 3 240 1.07 0.96 9 17 126 57 7 0 3958 0 2914 0 922 343 184 298
2 16-20 62 4 240 0.63 0.48 7 10 91 47 3 0 2819 0 2149 0 652 166 178 196
2 20-24 66 5 224 0.86 0.83 7 9 130 91 0 0 2955 0 2246 0 1881 170 384 215
3 04-08 113 3 240 1.09 1.16 8 9 140 127 1 0 5070 0 3713 0 1415 222 292 313
3 08-12 105 4 163 0.74 0.47 7 7 104 69 0 0 4801 0 3502 0 495 164 114 258
3 12-16 86 2 240 0.71 0.52 8 10 95 53 0 0 4050 0 2973 0 470 209 121 259
3 16-20 57 4 238 0.75 0.40 8 10 91 39 5 0 2615 0 1978 0 627 154 140 196
3 20-24 38 3 240 0.39 0.11 6 5 70 20 0 0 1874 0 1464 0 528 77 123 109
4 08-12 40 1 240 0.21 0.08 5 3 45 24 0 0 2378 0 1785 0 163 60 54 100
4 12-16 30 1 240 0.29 0.04 5 3 58 13 0 0 1768 0 1322 0 123 45 45 75
4 16-20 23 1 237 0.30 0.02 6 2 53 10 0 0 1203 0 908 0 192 33 48 56
4 20-24 15 1 240 0.08 0.01 3 1 30 1 0 0 760 0 588 0 12 19 4 33
5 08-12 37 1 240 0.32 0.04 6 3 53 14 0 0 2383 0 1829 0 131 54 43 91
5 12-16 34 1 240 0.31 0.08 7 5 47 15 0 0 2162 0 1661 0 231 67 67 101
5 16-20 35 2 240 0.34 0.10 7 8 53 12 0 0 1910 0 1488 0 612 79 119 106
5 20-24 59 3 240 0.69 0.25 7 9 95 29 0 0 2753 0 2080 0 1314 121 237 170
6 04-08 112 3 239 1.48 0.69 8 9 197 73 0 0 5035 0 3678 0 1658 213 243 307
6 08-12 111 3 107 2.40 1.26 10 23 233 55 0 0 4954 0 3610 0 886 445 170 396

Table 7: Algorithmic information for binary objective function.

Day Runs Optimal (%) Run time (s) Speed up
BM PC BM PC

26 696 100% 100% 0.95 0.60 1.58x
27 1398 100% 100% 1.41 1.40 1.01x
28 1362 100% 100% 0.75 0.52 1.44x
29 1434 100% 100% 0.24 0.04 6.00x
30 1440 100% 100% 0.32 0.09 3.56x

Table 8: Aggregate comparisons for 5 days of computations using the
binary objective.

6 Final remarks and future developments.
The non-compact formulation introduced in this paper for certain job-shop scheduling
problems arising in transportation networks favorably compares with the classic big-
M formulation, in particular on a class of non-convex cost functions which are commonly
used in a real-life setting. A merit of the new approach is to open a number of potential
research paths.

A first candidate for investigation is the fact that the constraints in the new formula-
tion correspond to basic graph structures (such as paths, cycles and trees). This opens
the way for strengthening the formulation through polyhedral work, identifying classes
of valid, possibly facet-defining inequalities. Other interesting modeling developments
to look into are the integration of this approach with routing, which was not considered
in this paper, and the relaxation of the non-decreasing cost function assumption.
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Figure 14: Histogram of the frequency with respect to computational time for instances in
Table 7.

From an algorithmic standpoint, a natural enhancement is to separate the the path
and cycle constraints during the Branch&Bound process, rather than only at the end.

Finally, the approach can be extended to tackle other related applications such
aircraft scheduling and routing.

On a final note, as mentioned we expect this new formulation to be particularly
suited for the class of job-shop scheduling problems that arise in transport traffic man-
agement because of their common structure. In particular, the fact that the number of
"necessary" disjunctions is limited, typically in the order of the number of operations,
and that the objective function is generally associated with the timing of few operations
(e.g. the delay of a vehicle at a given location). It seems natural to extend the approach
to handle other, similar traffic management problems, such as train delay management,
runway scheduling and airport ground movement management. At a later stage, it may
be interesting to also investigate its performance on other job-shop scheduling problems
in possibly non-transport related application areas.
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7 Appendix: proof of Lemma 3.4
To prove Lemma 3.4 we use the following result by Marchand and Wolsey ([21]):

Lemma 7.1 Let Y = {(y, η) ∈ {0, 1}|N | × IR1
+ :
∑

j∈N ajyj ≤ b+ η}, where 0 < aj ≤ b
for j ∈ N . Let Y0 = {(y, η) ∈ Y : η = 0}.

If
∑

j∈N πjyj ≤ π0 with π ≥ 0,
∑

j∈N πj > π0 > 0 defines a facet of conv(Y0),
then

∑
j∈N πjyj ≤ π0 + η

β
defines a facet of conv(Y ), where β = minη>0

η
σ(η)−π0 , σ(η) =

max{
∑

j∈N πjyj :
∑

j∈N ajyj ≤ b+ η, y ∈ {0, 1}|N |}.

Proof of Lemma 3.4. We first show that (17) is facet defining for the conv(Y N),
where

Y N = {(y, η) ∈ {0, 1}|N | × IR1
+ :
∑
e∈N

Meye ≤
∑
e∈N

Me − c(H) + η} (24)
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If N = ∅, both (17) and the knapsack defining Y N reduces to c(H) ≤ η and the lemma
follows trivially.

If N = {e}, the knapsack defining Y N reduces to Meye ≤ Me − c(H) + η. It is not
difficult to see that Y N = {{(ye = 0, η) : η ≥ 0} ∪ {(ye = 1, η) : η ≥ c(H)}}, for which
conv(Y N) is defined by the trivial facets ye ≥ 0, ye ≤ 1 and c(H)ye ≤ η, the latter
coinciding with (17).

η
0

c(H)

1

0
c(H)

1

η

yy

a) b)

Figure 16: a) Y N for |N | = 1 (in gray) b) conv(Y N )

The remaining case is |N | ≥ 2, for which we will use the same notation of Lemma 7.1.
For η = 0, the knapsack defining Y N reduces to the following binary knapsack:∑

e∈N

Meye ≤
∑
e∈N

Me − c(H) (25)

Observe that, for e ∈ N , we have 0 < Me ≤
∑

e∈N Me−c(H) = b and the conditions
of Lemma 7.1 are satisfied. The only (minimal) cover of the above knapsack constraint
is N . Therefore, the cover inequality∑

e∈N

ye ≤ |N | − 1 (26)

is facet defining for the polyhedron conv(Y N
0 ).

So, we have

σ(η) = max{
∑
e∈N

ye :
∑
e∈N

Meye ≤
∑
e∈N

Me − c(H) + η} =

{
|N | − 1, 0 ≤ η < c(H)

|N |, c(H) ≤ η

and thus
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β = min
η>0

η

σ(η)− (|N | − 1)
= min

η>0

{
η

|N |−1−(|N |−1)
, 0 ≤ η < c(H)

η
|N |−(|N |−1)

, c(H) ≤ η
= c(H).

Having computed β we can substitute in the expression in the statement of Lemma
7.1 and the constraint ∑

e∈N

ye ≤ |N | − 1 +
η

c(H)
(27)

is facet defining for conv(Y N). To complete the proof we need to show that (27)
is also facet defining for conv(Y H), as N may be a proper subset of F ∩H. But since
Me = 0 for e ∈ (F ∩H) \N , this derives from simple lifting results (see [32]). �
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