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ABSTRACT
Sensor data from marine engine systems can be used to detect changes in perfor-
mance in near real-time which may be indicative of an impending failure. Thus,
sensor-based condition monitoring can be important for the reliability of ship ma-
chinery systems and improve maritime safety. However, there is a need for efficient
and robust algorithms to detect such changes in the data streams. In this paper,
sensor data from a marine diesel engine on an ocean-going ship are used for anomaly
detection. The focus is on unsupervised methods based on clustering and the idea
is to identify clusters in sensor data in normal operating conditions and to assess
whether new observations belong to any of these clusters. The anomaly detection
methods presented in this paper are applied to sensor data with no known faults.
Being fully unsupervised, however, they do not rely on the assumption that all mea-
surements are fault-free as long as the amount of faulty data is small. The methods
explored in this study include K-means clustering, Mixture of Gaussian models,
density based clustering, self-organizing maps and support vector machines. These
could be used separately or in combination to provide an efficient initial screening
of the data and decide whether more detailed analysis is required. The performance
of the various methods is generally found to be good, also in comparison with other
methods. Overall, cluster-based methods are found to be promising candidates for
online anomaly detection and condition monitoring of ship machinery systems based
on sensor data.
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1. Introduction

Sensor data collected from machinery systems on board ships provide real-time infor-
mation about the condition of the ship. Such sensor-based condition monitoring can
be used to detect changes in the performance of the system in near real-time which
may be indicative of a system fault or even an impending failure. However, there is
a need for efficient and robust algorithms to detect such changes in the data streams.
Typically, a data-driven condition monitoring system includes anomaly detection, fault
identification and prognostics. The first task is to monitor the data streams to detect
deviations from normal system behaviour indicative of a change of the system. This is
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referred to as anomaly detection, and for this task only nominal data is needed to train
the algorithms. The next step is fault isolation or fault identification where a diagnostic
tool is applied to estimate what type of deviation the anomaly is, i.e. to distinguish
real faults from unexpected but normal behaviour, and to identify the type of fault. In
order to train such algorithms, information (data) about both normal and faulty states
of the system is needed. Essentially, in a data-driven approach, this is a classification
task, where labelled data is needed in order to perform the classification, see e.g. Vanem
(2018b) for a review of statistical methods that can be used for this purpose. Finally, the
prognostics task try to estimate the future behaviour of the system, conditioned on the
current state, and to estimate the remaining useful life (RUL). Typically for this task
to be feasible with a data-driven approach, there is a need for run-to-failure data under
varying conditions, something which is rarely available. Data-driven methods are alter-
natives to model-based approaches based on a physical modelling of the system from
first principles (see e.g. Maftei et al. (2009); Lamaris and Hountalas (2010); Dimopoulos
et al. (2014); Zymaris et al. (2016); Zacharewicz and Kniaziewicz (2017); Cipollini et al.
(2018)), which may be more difficult to develop and use.

Sensor data from a marine diesel engine onboard an ocean going ship are analysed in
this paper, collecting essential parameters such as power output from the engine, engine
speed, bearing temperatures and various other temperatures, speeds and pressures for
selected engine components. The idea is to utilize the information in these sensor signals
to monitor the condition of the engine. The initial data streams collected from the ship
are high-dimensional, with more than 100 data streams, but a subset of the data streams
are carefully chosen for this analysis. The signals that are believed to be informative
about the condition of the engine is selected based on engineering knowledge. Hence,
what remains is a 24-dimensional dataset that will be used for condition monitoring.
Further dimension reduction is applied in order to alleviate condition monitoring and
anomaly detection.

The focus of this paper is on unsupervised methods for anomaly detection based
on clustering. The idea is to identify clusters in the sensor data for normal operating
conditions and to assess whether new data belong in any of these clusters. New data
that cannot be assigned to any of the identified clusters, may be regarded as anomalies
and call for further scrutiny and more detailed analysis of the data in order to diagnose
the deviation and possibly flag an alarm. However, there are many ways for the data
to fall outside a cluster without there being an actual fault in the system. Hence, the
unsupervised techniques that are explored in this paper could be recommended for
initial screening of the data and should be used in combination with other methods.

The approaches to anomaly detection presented in this paper is truly unsupervised,
and they are applied to sensor data with no known faults. This does not mean, however,
that the data are guaranteed to be without faults. Being fully unsupervised, the cluster
based approaches does not need to explicitly assume that all observations in the training
data are fault-free as long as the faulty data are not forming a separate cluster. This
may be an advantage compared to for example the method based on AAKR Hines and
Garvey (2006); Garvey et al. (2007), where a single faulty training data point may have
a big influence on the signal reconstruction and thereby on the anomaly detection. The
unsupervised anomaly detection presented in this paper may also detect anomalies in
the training data and there is no need to be completely confident that the training data
contains no faults.

Previously, different approaches for anomaly detection have been applied to the same
dataset, i.e. the use of dynamical linear models (DLM) and sequential testing (Vanem
and Storvik 2017) and the use of auto associative kernel regression (AAKR) (Brandsæter
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et al. 2016, 2017). Both these approaches are based on fitting a model to normal data
and predict or reconstruct new sensor data and then comparing to the predicted or
reconstructed signals. Sequential testing are then performed on the residuals to detect
anomalies. In both cases, sequential probability ratio tests (SPRT) were applied. Even
though these methods generally work well, they did encounter some problems with the
marine engine data streams, due to the different operational conditions which give rise
to spurious jumps in the data. This time- and operational state dependence in the data
makes prediction and re-construction challenging and anomaly detection based on signal
reconstruction or predictions are not straightforward. Hence, in this paper, a simple and
unsupervised approach to anomaly detection based on clustering is explored.

2. Data description and exploratory analysis

The dataset contains several sensor signals that can be related to the main bearing
condition of one of four separate diesel engines on a ship. It is noted that the collected
data do not contain any known faults or failures of the system, and the data are not
compared to maintenance logs of the system. The list of selected signals are included in
table 1. The MG1TE702-stream contains only zero-values and these signals are excluded
from the subsequent analysis.
Table 1. Sensor signals in the dataset

MAIN GENERATOR ENGINE 1

MG019 MGE1 ENGINE SPEED [rpm]
MG1PT201 MGE1 LO PRESS ENGINE INLET [bar]
MG1PT401 MGE1 HT WATER JACKET INLET PRESS [bar]
MG1PT601 MGE1 CHARGE AIR PRESS AT ENGINE INLET [bar]
MG1SE518 MG1 TC A SPEED [rpm]
MG1SE528 MG1 TC B SPEED [rpm]
MG1TE201 MGE1 LO TEMP ENGINE INLET [C]
MG1TE272 MGE1 LO TEMP TC OUTLET A [C]
MG1TE282 MGE1 LO TEMP TC OUTLET B [C]
MG1TE511 MGE1 EXHAUST GAS TEMP TC A INLET [C]
MG1TE517 MGE1 EXHAUST GAS TEMP TC A OUTLET [C]
MG1TE521 MGE1 EXHAUST GAS TEMP TC B INLET [C]
MG1TE527 MGE1 EXHAUST GAS TEMP TC B OUTLET [C]
MG1TE600 MGE1 AIR TEMP TC INLET [C]
MG1TE601 MGE1 CHARGE AIR TEMP AT ENGINE INLET [C]
MG1TE700 MAIN BEARING NO 0 TEMP MGE1 [C]
MG1TE701 MAIN BEARING NO 1 TEMP MGE1 [C]
MG1TE702 MAIN BEARING NO 2 TEMP MGE1 [C]
MG1TE703 MAIN BEARING NO 3 TEMP MGE1 [C]
MG1TE704 MAIN BEARING NO 4 TEMP MGE1 [C]
MG1TE705 MAIN BEARING NO 5 TEMP MGE1 [C]
MG1TE706 MAIN BEARING NO 6 TEMP MGE1 [C]
MG1TE707 MAIN BEARING NO 7 TEMP MGE1 [C]
PM100.07 MG1 POWER [kW]

The sensor signals cover a period of about 10 months starting from December 2014
with a sampling frequency of one minute, but the hourly means are calculated and used
in the subsequent analysis. It is observed that many of the signals are highly correlated.
For example, the various temperature measurements for the main bearings are all very
strongly correlated, see the traceplots in Figure 1. Traceplots of the engine speed is also
shown in the figure. Note that the reduced dataset contains hourly averaged values and
that this is different from a moving average. Thus, there are no overlap between data
points within the different hours. The data for engine speed display two main modes
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of operation, with some transient states between these. This corresponds to the engine
being turned on or off, for example in a load sharing scheme with the other generator
engines.

Figure 1. Traceplots illustrating strong correlation between some of the signals (engine 1); the various tem-
perature readings for main bearing temperatures (left) and the engine speed (right); hourly averaged data

One important property of the sensor data is the temporal dependence in the signals.
The partial autocorrelation function of the individual data streams gives an indication of
the temporal dependence and memory in the data, and these show that there are strong
temporal dependence in the temperature signals, but less so for the engine speed. Tem-
peratures display a memory of at least 10 minutes, but with residual serial correlation
beyond this. Nevertheless, in the cluster-based anomaly detection this time-dependence
will be disregarded, and data-points will be clustered individually without any regard
of the sequence they arrive in.

The data are divided into a training and a test dataset. The training data are used
to identify clusters in the data, and the test data will then be assigned to one of these
clusters. The underlying assumption is that the data naturally tend to cluster in a few
clusters and that if new data arrives that are far from these clusters, this deviating
behaviour causes suspicion of faults in the system. The time-dependence in the signals
are neglected and the training data consist of 75% of the original data randomly selected.
The remaining 25% constitute the test data. It is noted that randomly splitting the data
into training- and test data is normally not recommended for time series data (Bergmeir
et al. 2018), but for the purpose of clustering this can be defended.

2.1. Data preprocessing and dimension reduction

The data for generator engine 1 is 23-dimensional, and although it is possible to per-
form clustering in this 23-dimensional space, one may hope to get better performance
if some form of dimension reduction is performed. Hence, principle component analysis
and decomposition is performed on the training data and the same decomposition is
subsequently applied to the test data. Plotting the variance and the cumulative propor-
tion of the variance that are explained by the principal components can aid in selecting
number of principal components to keep for the subsequent analysis, as shown in Figure
2. 99.5% of the information in the data is kept by the 7 first principal components, and
this is the number of principal components kept brought forward for further analysis.
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Traceplots of the 7 first principal components are shown in Figure 2, including both the
training and test data.

Figure 2. Variance explained by the principal components in the training data (left) and 7 first principal
components (right)

3. Clustering methods for unsupervised anomaly detection

This section outlines the cluster analyses on the sensor signals and the subsequent ap-
plication for anomaly detection. Various methods for clustering have been investigated,
and different ways of using the various cluster methods for anomaly detection is ex-
plored.

3.1. K-means clustering

Before exploring the use of various clustering-methods for anomaly detection, the K-
means clustering algorithm is applied in an initial cluster analysis (Hastie et al. 2009).
This method divides the data into a specified number, K, of clusters based on the
squared Euclidean distance, and requires K to be given. Essentially, the method itera-
tively identifies K centre-points and clusters the data around these in such a way that
the distance between the data and the centre-points within each cluster is minimized.
There are no way to unambiguously determine the optimal number of clusters. However,
one may look at the ratio of the between-cluster variance and the total variance and
indications of reasonable values of K can be found by looking at so-called elbow plots.
This is shown in Figure 3. Vertical lines indicate K = 5, 8, and 15, and the elbow in
the graph appear around K = 5. Hence, this is presumably a reasonable value of K for
these data.

Scatterplots of the data (first 7 principal components) which indicate cluster member-
ship based on K-means clustering with K = 5 are shown in Figure 4. The distribution
of points within each cluster is also shown in the figure showing that all clusters are
reasonably populated. Similar plots for the test data, where each data point in the test
data is assigned to the cluster with the nearest cluster center are shown in the figure.
By inspecting these plots, it appears that the test data has been reasonably clustered
and that the distribution of observations to each cluster seem to be comparable.
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Figure 3. Estimating the number of clusters in the data, K

3.2. Mixture of Gaussian models

Compared to K-means clustering, clustering with mixture of Gaussian models has two
main advantages. First, a parametric model is fitted to the data, so it is possible to obtain
density estimates and p-values for how likely the data are given the model. Moreover,
since K-means clustering is based on the Euclidean distance, the clusters will be defined
by hyperspheres around the cluster centres, whereas the mixture of Gaussian models
take the correlation into account and can give ellipsoid-shaped clusters of varying shapes
and orientations.

The density of a Gaussian mixture model is on the form of a mix of K individual
Gaussian densities, and the density function can be written as (see e.g. Hastie et al.
(2009))

f(x) =
K∑
k=1

πkφ(x;µk,Σk). (1)

The πk’s are the mixing proportions determining the contribution from each of the K
mixtures, and

∑
k πk = 1. The density of each mixture is described by the Gaussian

density function, φ(·) with a mean vector µk and a covariance matrix Σk. Fitting such
a model to data means estimating the model parameters, π̂k, µ̂k and Σ̂k, and this is
done using the maximum likelihood and the Expectation-Maximization (EM) algorithm.
Having estimated a mixture model, it may provide an estimate for the probability than
an observation, i belongs to a component, l as shown in eq. (2) and clustering may be
performed by assigning the observation to the component with the highest probability.

p̂il = π̂lφ(xi; µ̂l, Σ̂l)∑K
k=1 π̂kφ(xi; µ̂k, Σ̂k)

(2)

One of the tasks of fitting a mixture model to data is to determine the value of K.
One way to do this is to calculate the Bayesian Information Criterion (BIC) and choose
the model that maximizes this. Alternatively, the integrated complete likelihood (ICL)
can be used. ICL can be thought of as similar to BIC, but penalized by the mean entropy
(Baudry et al. 2010). Typically, this will suggest a lower number of clusters compared
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Figure 4. Data clustered in K = 5 clusters with K-means (left) and distribution of observations within the
clusters (right); Clustering on training data (top) and applied to the test data (bottom)

to the BIC. The BIC and the ICL as a function of number of components in a mixture
of Gaussians model are shown in Figure 5 for the training data. No restrictions have
been put on the various components, which may have varying orientation, shape and
volume. Both the BIC and ICL favour models with a high number of components and
according to both criteria, the mixture model with K = 31 components is suggested as
this corresponds to maximum BIC and ICL, as shown in Figure 5.

Including many components in the mixture model increases the probability of over-
fitting and it might be reasonable to choose a lower number of components. Hence,
in this study, both the suggested value of K = 31 as well as K = 5 will be tried.
The distribution of observations assigned to each cluster for both models are shown in
Figure 6, for both the training and test data. One thing that is observed is that for the
mixture model with K = 31 components one of the clusters did not get any observation
assigned to it in the test data. This indicates that the model is overfitted. Apart from
this, the same clustering structure is observed in the training as in the test data.

3.2.1. Anomaly detection based on mixture of Gaussian clustering
A fitted Gaussian mixture model can be used directly in condition monitoring and
anomaly detection of new observations. The implicit assumption is that new patterns
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Figure 5. Estimating the number of components of the mixture model by BIC (left) and ICL (right)

in the sensor signals that are extreme according to the established model will be flagged
as anomalous. There are many ways of defining extremes within the context of mixture
models, and in this study an anomaly will be defined based on some probability of being
extreme according to all the model components, and a p-value can be calculated for each
Gaussian component separately. Then, the overall p-value will be the maximum p-value
among the K components.

In the multivariate setting, there are different definitions of being extreme, see e.g.
Serinaldi (2015); Vanem (2018a). Figure 7 illustrates four ways of defining extremes in
a bivariate setting, where the shaded areas correspond to the probability of being more
extreme than a particular point. In the first example, the probability of being more
extreme than an observation is defined as the probability of both marginals being more
extreme, PAND. The second example defines the probability of being extreme as the
probability of either of the marginals being as extreme, POR. The third example defines
extreme as being outside an exceedance hyperplane, Pe. This definition of multivariate
extremes is in line with the concept of environmental contours often applied in structural
reliability analysis (Haver and Winterstein 2009; Huseby et al. 2013, 2015) and Pe can be
calculated in different ways. Finally, the last example defines extreme as being further
away from the central point (mean vector) of the distribution in any direction, PD, and
can be calculated based on the Mahalanobis distance. In the n-variate normal case, the
squared Mahalanobis distance will be distributed according to the χ2-distribution with
n degrees of freedom, and one may define a PD as the probability of having a squared
Mahalanobis distance greater than what is observed. I.e. for an observation xi with
distance Di, PD(xi) = Pχ2

n
(d ≥ D2

i ).
The p-values for characterising how extreme an observation is will be very different

according to the definition that is adopted. For higher dimensions, this difference will
grow. The PD value will typically be larger than the other P -values discussed above.
Hence, in the following, the PD value is calculated for each observation based on every
Gaussian component, k = 1, . . . , K, of the mixture model and a p-value can be set as
the largest of the K PD-values, i.e.

p = max
1≤k≤K

PD,k (3)
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Figure 6. Distribution of observations assigned to each cluster by the mixture of Gaussian models with K = 5
(left) and K = 31 (right); training data (top) and test data (bottom)

One may use this for anomaly detection and flag any observations with small p-values
as possibly anomalous. This corresponds to testing whether the observation belongs to
the mixture component for which it is most likely to belong to, and if one can reject the
hypothesis that it belongs to this component, one may reject the overall hypothesis that
it belongs to the mixture model. What remains is to choose a suitable α-level for the
test. In this study, each observation with p < 0.05 is initially regarded as an anomaly.
Figure 8 shows the time series of the largest p-values for both the training and the test
data and reports the number of anomalies in the training and test data, respectively,
for the mixture models with K = 31 and K = 5. The solid horizontal line in the plot
corresponds to p = 0.05. It is observed that if a mixture model with K = 5 is chosen,
then approximately 4-5% of the observations are flagged as anomalous. If K = 31 this
is reduced to 2-3%. This agrees well with the 5% level of the test and could be expected
even if the mixture models were entirely correct and in the absence of any anomalies.

This anomaly detection scheme essentially performs one test for each component of
the mixture model, and as such it can be construed as multiple testing. This may give
rise to false negatives just by chance, and it may be reasonable to correct for this. One
common correction is the Bonferroni correction that adjusts the α-level in the test to
α
n , where n is the number of tests performed. An implicit assumption here is that the
tests are independent. In this case, with n = K and K = 5 and K = 31, this gives the
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Figure 7. Different definitions of characterizing extremeness in the bivariate case

adjusted α-levels as 0.01 and 0.0016, respectively, and these levels are also indicated in
Figure 8. The rate of observations flagged as anomalous with the adjusted levels are
approximately 2% for the model with K = 5 and less than 0.1% for the model with
K = 31.

If there are actual faults in the system, this presumably will be reflected in subsequent
sensor readings, and one may require more than one anomalous observation to flag
an alarm. Hence, sequential tests for anomalies could be established. A very simple
approach could be to monitor the PD-values and flag an alarm whenever a pre-defined
number of subsequent values are below the p-value. This would significantly reduce false
alarms due to spurious outliers. For example, for the data used in this study, the anomaly
ratio for the various set-ups reduce to the numbers in Table2 by only requiring that two
subsequent values of PD are below the specified p-value. Depending on the system being
monitored, a larger number of subsequent anomalous readings could be required in order
to reduce the sensitivity to individual outliers, if needed. More elaborate sequential tests,
based on combining the p-values from subsequent measurements could also be envisaged,
but this is out of scope of this study.

3.3. Density based clustering - DBscan

Another approach to clustering is based on the density of observations in the feature
space and groups observations with many neighbouring points into clusters. DBscan
is an algorithm for such clustering (Martin et al. 1996) where the number of clusters
in the data will be determined by the algorithm. However, there is a need to specify
two parameters; the size of a neighbourhood (ε) and the minimum number of core
points that needs to be contained within a neighbourhood for it to form a cluster, k.
In principle, any distance function could be used, but in this application, the Euclidean
distance will be assumed.
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Figure 8. Maximal p-values for anomaly detection; mixture model with K = 5 (left) and K = 31 (right)

Table 2. Ratio of anomalies in the data, as detected by the mixture of Gaussian model clustering and flagging
for 2 subsequent low p-values

Training data Test data

p = α = 0.05
K = 5 2.95% 2.59%
K = 31 0.43% 0.58%

p = α/K = 0.01
K = 5 1.06% 0.94%

p = α/K ≈ 0.0016
K = 31 0% 0%

DBscan estimates the density around each data-point by counting the number of
observations within the specified neighbourhood size. It then distinguishes between core
points, bordering points and a noise points. A core point has at least k points within
the specified distance, ε. Points within the neighbourhood distance from a core point is
said to be directly reachable from those core points. A point that is directly reachable
from a core point, but with less than k points within the neighbourhood distance is
referred to as a border point. A cluster is then all points that are reachable from a core
point. Hence, each cluster must contain at least one core point and one or more border
points. Points that are not reachable from any other points are regarded as outliers or
noise-points. In this way, clusters may take any shape, and they may differ from the
spherical- or ellipsoid shapes used for defining clusters with K-means og mixture of
Gaussian models.

One attractive feature of density based clustering algorithms is that outliers or noise
points are identified directly, which can be exploited for anomaly detection. However,
the cluster structure will be highly dependent on the parameters ε and k and it may not
be straightforward to determine the optimal values of these. As ε increases, the number
of clusters decreases towards 1 and also the number of noise points decreases towards
0. Choosing too large value for ε thus results in all the data forming one cluster with
no outliers. On the other hand, too small ε will give a complicated model with many
clusters and may tend to overfit. Plots of number of clusters and number of noise points
versus ε for various values of k (not shown herein) indicate that reasonable values for ε
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should be in the range of 0.25 - 1.
It is recommended to use domain knowledge to determine the value of k in DBscan.

In this study, results for three values of k are reported, i.e. k = 10, k = 20 and k =
50. For k = 10 ε is set to 0.5, for k = 20 ε = 0.6 and for K = 50 it is set to
1. These parameter choices yield clustering with 10, 5 and 3 clusters, respectively. The
distribution of training data points in each cluster are shown in Figure 9. It is interesting
to observe that the number of noise points or outliers (denoted as cluster 0) is very
similar for the three pairs of parameter values. With k = 10, k = 20 and k = 50 the
anomaly rates are 5.47%, 5.55% and 3.67%, respectively, which slightly higher than the
ratios obtained by the mixture of Gaussian clustering.

Figure 9. Distribution of data points in each clusters for the training data for different values of ε and k

3.3.1. Anomaly detection with DBscan
Having applied DBscan to the training data and defined a set of clusters, new observa-
tions can be assigned to any of the clusters as they are collected. Observations that do
not belong to any of the clusters will be regarded as noise points and can be regarded as
anomalies. The distribution of observations assigned to the various clusters are shown
in Figure 10, and the distributions appear to be very similar to the distribution for the
training data.

Figure 10. Distribution of number of points in each clusters for the test data for different values of ε and k

The ratio of noise points or anomalies in the test data, as detected by the DBscan
clustering method is 6.9% for k = 10, 7.1% for k = 20 and 4.1% for k = 50. This is
slightly higher than for the training data, and seems reasonable. It can also be observed
that most of the data points detected as anomalies are the same regardless of the
parameters. For example, of the 98 anomalies detected with k = 20, 80 of the same
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points were detected with k = 10 and 70 with k = 50. Hence, even though the number
of clusters are different, there is general agreement for most of the detected anomalies.

In a simple sequential manner, one may also regard outliers as possible anomalies
only if two or more subsequent observation are regarded as noise points. If only flagging
for possible anomalies with at least two subsequent noise point, the anomaly rate in the
training data reduces to 4.08% (k = 10), 4.32 (k = 20) and 2.67 (k = 50), respectively.
For the test data, the corresponding rates are 4.47% (k = 10), 4.76% (k = 20) and
2.09% (k = 50), respectively.

3.3.2. Hierarchical DBscan - HDBscan
Hierarchical DBscan, HDBscan, is an extension of DBscan (Campello et al. 2013). It
allows for varying density clusters and does not require the neighbourhood distance ε to
be specified. Instead, it provides a hierarchy of clusters for any value of ε in a three-like
structure. This three can then be cut at any place, corresponding to fixing the value of
ε at any value to give different number of clusters. The algorithm then finds the optimal
cuts in the hierarchy based on a cluster stability score.

Hierarchical DBscan clustering is performed on the training data for the three differ-
ent values of k that was also used in the DBscan clustering above, i.e. k = 10, k = 20
and k = 50, as well as k = 100, and the flat solution corresponds to a solution with
68 clusters for k = 10, 33 clusters for k = 20, 12 clusters for k = 50 and 7 clusters for
k = 100. Thus, the hierarchical DBscan results in significantly more clusters compared
to the ones found by fixing the ε-parameter with DBscan.

The HDBscan algorithm calculates an outlier score for each data point, ranging from
0 to 1, with higher value corresponding to higher degree of outlierness. The score is
based on both local and global properties of the hierarchy (Campello et al. 2015), and
may identify points that are outliers compared to points in its neighbouring region
without necessarily being outliers globally. It is possible to base anomaly detection on
this score and regard all data points with an outlier score above a predefined threshold
as possible anomalies. Histograms of the outlier score for the various values of k are
shown in Figure 11, where the percentage of points having an outlier score above 0.95
is indicated. These percentages are 5.9% for k = 10, 4.4% for k = 20, 2.6% for k = 50
and 0.84% for k = 100.

Hierarchical DBscan is a transductive method, and this means that new observa-
tions should in principle be allowed to influence the underlying cluster structure and
prediction of cluster membership and outlier scores are not straightforward for new
observations based on a fixed clustering. Even though there are ways around this, clus-
tering based on HDBscan are not brought forward for use in anomaly detection of new
observations in this study.

3.4. Self-Organising Maps (SOM)

Self-organising maps, also sometimes referred to as Kohonen maps is a type of artificial
neural networks for unsupervised learning (Kohonen 1982). They contain nodes with
a weight vector of the same dimension as the input data which are represented as a
location on the map. The weight vectors of a map are set at random and then iteratively
updated by feeding input vectors from the training data. For each training data point,
the distance (typically Euclidean distance) to all weight vectors is computed and the
node with the weight vector that is closes to the input data will be called the best
matching unit (BMU). The weight vectors of the nodes in the neighbourhood of the
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Figure 11. Histograms of outlier scores as calculated from HDBscan clustering for different values of k

BMU will be updated by pulling them closer to the input vector (training data point).
This is repeated iteratively for all training data and for a specified number of iterations
(cycles). The result is a map which associates output nodes with groups or patterns in
the training data set. With a trained map, new observations can be mapped by assigning
input vectors to the node with the closest weight vector, the so-called winning node.

One must specify the dimensions of the map and the distance function used to calcu-
late the distances. In this study, all maps are based on the squared Euclidean distances.
Moreover, one must specify the number of cycles or number of times the training data
should be sent to the network. It must be ensured that a sufficient number of cycles is
specified so that the training of the map converges. In order to check whether a rea-
sonable map has been specified, there are some diagnostics plots that can be made,
such as node count plots, plot of changes between iterations, and plot of the distribu-
tion of parameter values across the map. Such plots are not shown in this paper but
self-organizing maps of different sizes have been explored. However, only results for
self-organizing maps with 15 × 15 nodes are reported in the following. A previous ap-
plication of self-organising maps for condition monitoring of marine engines is reported
in Raptodimos and Lazakis (2018).

Clustering with self organizing maps can be based on the distances to neighbouring
nodes. Initial K-means clustering of the map nodes indicates that around 5 clusters are
reasonable. The actual clustering of the map nodes will be performed by hierarchical
clustering. and the resulting clustering of the map is illustrated in Figure 12 for number
of clusters k = 4, . . . , 9. These plots agrees well with a value of k = 5.

Having performed clustering on the self organizing map, one may look at the cluster
assignment for the training data and also predict the cluster membership on the test
data. The distribution of observations in each cluster for both data sets, based on k = 5
and a map with 15 × 15 nodes, is shown in Figure 13.

14



Figure 12. Clustering of the self organizing maps for different number of clusters; hierarchical clustering

3.4.1. Anomaly detection using self-organizing maps
There are different ways one could use self-organizing maps for anomaly detection. For
example, one could identify some nodes in the map as outliers and do anomaly detection
similar to the scheme based on DBscan above. However, in this study, a somewhat
different approach is investigated, based on signal reconstruction and residual analysis.
This resemble the anomaly detection approaches based on AAKR or DLM as reported
in Brandsæter et al. (2017); Vanem and Storvik (2017). Self-organizing maps is also
used for marine engine condition monitoring in e.g. Raptodimos and Lazakis (2018).

Reconstruction of new observations based on a trained map consists of first mapping
the new observation to a node in the trained map and then to predict the parameter
values corresponding to that node. This will typically be the average of all the train-
ing data that belongs to the same node. Assuming that the map has been trained on
anomaly-free data, large deviations of the reconstructed signal from the observed signal
can be regarded as a possible anomaly. One must then either define a threshold for
when a residual is construed as large, or one could apply a sequential test such as the
sequential probability ratio test (SPRT) as outlined in e.g. Brandsæter et al. (2017);
Vanem and Storvik (2017). In this study a simple threshold approach is taken, and a
possible anomaly is flagged whenever the absolute value of the residual is larger than a
predetermined threshold. For the purpose of this exercise, this threshold is set to ±0.6
since the prediction error is typically below this for the training data. This is done
on each sensor signal. Trace plots of the test data and the predictions based on the
self-organizing maps are shown in Figure 14 (top row) for the three first principal com-
ponents. Also the residuals are shown in the bottom row and the threshold is indicated
by a horizontal dashed line.

Applying such an anomaly detection approach on the ship sensor signals, one gets
an anomaly rate of 0.58% on the training data and 1.66% on the test data. If one
require two subsequent anomalies to trigger an alarm, these rates reduce to 0.14% on
the training data and 0.43% on the test data, respectively.
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Figure 13. Distribution of observations within each cluster for the training (left) and test (right) data with
clustering performed by self organizing maps; 5 clusters based on map with 15× 15 nodes

Figure 14. Anomaly detection can be performed by studying the residuals between the observed signals and
the ones predicted by the trained map; Traceplots of test data and SOM prdictions (top row) and traceplots
of residuals (bottom row)

3.5. Novelty detection with Support Vector Machines (SVM)

Support vector machines (SVM) is a supervised learning technique typically used for
classification problems, see e.g. Hastie et al. (2009). However, it can also be used for
anomaly detection by formulating this as a one-class problem, sometimes referred to
as unary classification. The idea is that all training data are assumed to belong to one
class (i.e. no fault) and the task is to detect deviations from this class and regard them
as anomalies. This is often referred to as novelty detection.

Various kernels may be defined, but only the Gaussian radial basis function kernel
have been employed in this study. The kernel can be interpreted as a similarity measure
between data vectors, and the radial basis function kernel on two sample vectors, X
and X′ is

K(X,X′) = e−
‖X−X′‖2

2σ2 (4)

The inverse kernel width σ is a hyperparameter that is estimated from the training
data; typically it is a value between the 10- and 90-percentile of the euclidean distance
in a fraction of the training data. In addition, one parameter, ν, needs to be specified
which sets the upper bound on the training error and the lower bound on the fraction
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of data-points that may become support vectors. Essentially this determines the degree
of ”softness” of the margins of the support vector machine.

One-class support vector machines have been fitted to the training data for various
values of the parameter ν and applied to the test data for anomaly detection. The ratio
of anomalies for various values of ν is presented in Table 3. By definition, all training
data are labelled as ”known”, so there will be no anomalies in the training data with
this method.
Table 3. Support vector machines: Anomaly rates in the test data for different values of ν

ν 0.001 0.005 0.01 0.02 0.05 0.1 0.15 0.2 0.25 0.5 0.75

# anomalies 37 43 38 49 77 149 202 260 335 667 1018
Anomaly rate 0.027 0.031 0.027 0.035 0.056 0.11 0.15 0.19 0.24 0.48 0.73

It is generally observed that the number of anomalies increases with the value of ν,
but it is not straightforward to determine an optimal value. However, one may assume
that the different classes, i.e. normal data and anomalous data, are perfectly separable in
some enlarged space, and this suggests that support vector machines with hard margins
should be preferred, i.e. small value of ν. When the time-points where the various
support vector machines suggests anomalies are investigated it is generally observed
that the points flagged as anomalous with smallest ν-parameter are also regarded as
anomalies by the other models, but with additional points added for increasing values
of ν. Hence, it may be concluded that one of the models with low value of ν should be
used for anomaly detection.

4. Discussion

4.1. Anomalies detected by the different methods

One way to compare different methods is to compare the anomaly ratios. However, it
can also be of interest to investigate how robust cluster-based anomaly detection is by
comparing which observations are regarded as anomalous in the test data by the various
methods. Figure 15 plots the flags that would occur from different schemes based on
mixture of Gaussian, DBscan and SOM. This illustrates that many of the same data
points are flagged as anomalies by several methods. Summing the number of possible
anomalies from each method one gets 412 possible anomalies, but there are only 192
unique observations that are detected at least once.

Table 4 summarizes the number of methods that has detected the various possible
anomalies in the data, for both the training and test data. Comparing all the methods,
it is seen that the overall anomaly rate, as detected by any of the methods are 11.3%
for the training data and 13.8% for the test data. This is probably too high, and much
higher than the anomaly ratio from any of the individual methods.

Table 4. Anomalies detected by different number of methods

Number of times detected
1 2 3 4 5 6 7 8

∑
Training data 190 123 95 48 9 6 1 0 472
Test data 80 46 35 23 6 1 1 0 192
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Figure 15. Comparing the possible anomalies detected by the different clustering methods. Vertical lines
corresponds to time points where the different methods would flag an alarm.

On way to get more robust anomaly detection is to apply an ensemble of methods
and disregard anomalies that are only detected by one method. For example, if applying
all the 8 methods above and flagging an alarm only if two or more methods regards
an observation as a possible anomaly, one would obtain anomaly ratios of 6.8% for the
training data and 8.1% for the test data, respectively. If detection by three or more
methods are required, the anomaly rates would reduce even further, to 3.8% for the
training data and 4.8% for the test data.

By requiring two subsequent anomalous observations to trigger an alarm, the anomaly
rate for each individual method decreased notably. Figure 16 illustrate which observa-
tions will be regarded as possible anomalies using this approach for the test data. There
are notable overlap and the overall anomaly rate from all the methods with this setup is
7.7% for the training data and 8.4% for the test data, respectively. This is considerably
lower than the overall anomaly ratio as detected without requiring 2 subsequent anoma-
lous readings. Moreover, the methods could again be combined to raise a flag only if
a minimum number of the methods agree on a possible anomaly. If the requirement is
that a possible anomaly is detected by at least two methods the anomaly rate reduce
to 4.7% for both the training and the test data. If the requirement is set to at least 3
methods these rates reduce further to 2.4% and 2.2%, respectively, for the training and
test data.

There are several ways to combine an ensemble of methods to establish robust
anomaly detection methods for ship sensor data. Combinations with other methods,
such as for example the AAKR method (Brandsæter et al. 2017, 2019) or DLM (Vanem
and Storvik 2017, 2018) could also be investigated, but is out of scope of the current
study. For final implementation in an actual condition monitoring system, the perfor-
mance of the methods and how they are combined should be investigated in more detail.
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Figure 16. Comparing the possible anomalies detected by the different clustering methods when requiring 2
subsequent anomalous readings to flag an anomaly. Vertical lines corresponds to time points where the different
methods would flag an alarm.

4.2. Time-dependencies in the data

The sensor data analysed in this study are essentially time series data, with temporal
dependencies on various scales, both across different sensor streams and within the same
signal. These temporal cross- and autocorrelations have not been taken into account,
and the observations are simply regarded as independent observations of the marine
engine system. Presumably, there are information in the temporal dependencies, and it
may be that better and more robust detection strategies could have been developed if
the time-dependence are taken into account. One approach to deal with these is to apply
a suitable time-series model to the data in the preprocessing step to obtain residuals
free from auto-correlation and then do the subsequent analysis on the residuals. This
route, however, was not taken in this study. In general, time-series data should not be
treated as independent observations of a system. For example, it is well known that
autocorrelation might influence the cross-correlation between time series (Yule 1926).
In this study, principal component analysis is performed and these are, by definition,
linearly uncorrelated, so the linear cross-correlation between the transformed sensor
signals is zero.

In time series the ordering of the data is meaningful, as opposed to independent data.
This has an effect on how the data should be split in different parts, e.g. in a training
set and a test set, see e.g. Bergmeir and Benitez (2012); Bergmeir et al. (2018). This
is ignored in this study, and the splitting of the data is done completely at random.
This splitting of the data into two parts without accounting for the autocorrelation will
presumably give more similar training- and test-data than what would be the case if the
data had been truly independent. This is reflected in the results, where the clustering
on the training- and the test data yields very similar distribution of observations across
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the clusters. On the other hand, it ensures the representativeness of the training data
compared to the test data, which will be discussed further in the following subsection.

4.3. Importance of representative training data

If data-driven methods are trained on a dataset that is not representative of new obser-
vations, one cannot expect the methods to perform well on new data. In unsupervised
anomaly detection, the implicit assumption is that the training data contain measure-
ments of the system in all normal conditions, and that if new observations exhibit very
different characteristics they will be regarded as anomalies, for example due to faults in
the system or due to deviation from nominal operation of the system. If measurements
of some normal conditions are not included in the training data, future measurements
under such conditions may be categorized as an anomaly even though it is perfectly
normal. On the other hand, if the training data contain extensive measurements from a
faulty or wrongly operated system, this would be regarded as normal and the method
would fail to identify similar future measurements as anomalies.

In the study presented herein, anomaly detection is performed on sensor signals
collected from a main generator engine onboard a ship in operation. Even though the
data are time-series data, the splitting between training data and test data was done
completely random, ignoring the temporal ordering of the data. This is not entirely
correct for time series data, but it ensures that the training data is a good representation
of the test data. To illustrate how important this is the clustering methods presented in
this paper are repeated with a different separation of the data into training and test-sets;
the training data will be chosen to be the first 75% of the sensor measurements, whereas
the last 25% are kept as test data. In this case, the training data will be less similar
to the test data. Only the anomaly detection based on mixture of Gaussian modelling
is reported, but similar results are found for the other methods. Thus, a mixture of
Gaussian model with k = 5 is fitted to the training data and the test data are assigned
to one of the mixtures as outlined above.

With this setup, the test data are distributed differently to the various clusters com-
pared to the training data and this suggests that the ship has been operated differently
during the training phase and the test phase. If one calculates the p-values correspond-
ing to the Gaussian mixtures as outlined above, the anomaly rate in the training data
becomes 3.75%, but the anomaly rate in the test data is almost 75%. This is obviously
too high, indicating that there is something wrong with the engine in 75% of the time
during the test phase. These data contain no known faults, so this is clearly not the
case, but is an effect of the training data not being representative for the test data.

The above demonstrates the importance of having a representative training data
set for doing data-driven anomaly detection based on sensor data. However, it is not
straightforward to obtain such a representative training data. Splitting the data at
random is demonstrated to yield two subsets that are representative of one another.
However, there is no guarantee that any of these subsets are representative of future
observations of the system. This would be the case when one employs anomaly detec-
tion in an actual online condition monitoring system. In that case, one would need to
have training data that one could reasonably assume to be representative for all future
measurements of the system, in that

• The training data contain observations corresponding to all possible nominal con-
ditions in order to avoid false alarms

• The training data contain no observations from a faulty or wrongly operated
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system in order to avoid missed alarms
Obviously, it is difficult to ensure that these conditions are fully met, but one way

to fulfil the first condition is to extend the coverage of the data used for training.
In the case of ship monitoring systems, the training data should cover all operational
modes and all environmental conditions the ship is believed to be operating in. This
means that training data covering several years of operation should be collected to
cover normal variations due to different seasons, different trades, different fuel quality,
different operations, etc. In order to comply with the second condition, one may need
to perform some cleaning of the data to reduce the amount of anomalous observations
in the training data.

Notwithstanding these difficulties in obtaining a representative training data, this
study demonstrates that various cluster methods can be used in different ways for
anomaly detection on sensor data, and that the various methods perform reasonably
well if the training data is representative of future measurements.

4.4. Information loss due to dimensionality reduction

Principal component analysis is performed in order to reduce the dimensionality of the
problem, i.e. from 23 to 7. This makes the anomaly detection problem more manageable
and the algorithms runs much faster. Moreover, it was found that almost all information
content in the sensor data would be preserved; 99.5% of the variation in the data will be
explained by the first 7 principal components. Typically, the first principal components
are assumed to contain the signal in the data, whereas the last principal components
contains mostly noise.

However, it may be that the last principal components will be most affected by
certain types of anomalies. For example, if faults in the systems affects the noise more
than the actual signal. In order to check if this is a problem with the current dataset,
the cluster-based anomaly detection methods are carried out on the 7 last principal
components. The training data now consist of the 7 last principal components of the
training data that was analysed above and the test data is the last principal components
of the previous test data.

Applying a mixture of Gaussian models on these data, the BIC criterion suggests
a mixture of 4 components, whereas the ICL criterion suggests 2. This indicates that
the data structure is less complex in the last principal components. Assuming a model
with 4 clusters, the anomaly detection scheme based on the Mahalanobis distance now
yields anomaly rates of 0.19% and 0.22%, respectively in the training and test data. If
two subsequent anomalous readings are required to trigger an alarm, no alarms will be
triggered in the training data, and only one in the test data. Similar results are obtained
with the other clustering methods.

Thus it is demonstrated that using the last principal components detects much fewer
alarms. However, it also illustrates that some possible anomalies can be detected from
analysing the least varying principle components, and these are not necessarily the same
time points as the anomalies in the first principal components. Hence, there is a risk
of loosing this information when applying dimensionality reduction. It is not entirely
clear whether these were false alarms or indeed real anomalies, and data with known
faults would be needed in order to assess this. In general it is difficult a priori to know
in which principal component a possible fault will be detectable, and it may vary for
different types of faults.

One possible compromise between the need for dimensionality reduction to make

21



the problem manageable and the need to minimize the risk of throwing away impor-
tant information is to run several models in parallel, each monitoring a subset of the
principal components. In this way, all principal components would be monitored, and
each model would be manageable. Obviously, some information would still be lost, e.g.
regarding the inter-dependencies between the subsets of data streams, but since the
principle components are linearly uncorrelated the effect of this is presumably small.
Notwithstanding, this study has demonstrated that far more possible anomalies are de-
tected by only looking at the most varying principal components. Thus, it is believed
to be reasonable to base anomaly detection routines on the first principal components
in most cases.

5. Summary and conclusions

This paper has presented a study on the use of cluster-based methods for unsupervised
anomaly detection of ship machinery sensor data for condition monitoring. In particular,
four very different approaches are explored, based on a mixture of Gaussian models,
density based clustering, self-organizing maps and support vector machines, respectively.
The methods are simple to use and have been found to perform well on the sensor data
from a marine engine system, and were able to detect a reasonable number of anomalies.
However, all the algorithms have different parameters that needs to be determined and
fine-tuning and validation would need to be carried out before the methods can be
employed in actual online condition monitoring systems.

One advantage of the methods presented in this paper, compared to other methods
that has recently been proposed, is that they are truly unsupervised. All methods ex-
cept one are able to account for faulty training data and can work well even if some
erroneous measurements are used to train the models. This is deemed to be impor-
tant, since it is very difficult to ensure that sensor data are completely without faults.
In terms of detection rates, the different methods are comparable, and there are great
overlap between the times the different methods would flag an alarm. However, it is sug-
gested that more robust detection algorithms can be obtained by combining the different
methods in ensembles. However, further investigations on the optimal combinations and
detection strategies are recommended for future research. It is demonstrated that rep-
resentative training data is crucial, something that is of paramount importance for all
data-driven methods, and this is generally difficult to guarantee. Notwithstanding, this
study has demonstrated the usefulness of cluster-based methods for anomaly detection
in condition monitoring systems of ship machinery systems.
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