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Abstract 

Background: We aimed at exploring potential pathophysiological processes across psychotic 

disorders, applying metabolomics in a large and well-characterized sample of patients and 

healthy controls. 

Methods: Patients with schizophrenia and bipolar disorders (N = 212) and healthy controls 

(N = 68) had blood sampling with subsequent metabolomics analyses using electrochemical 

coulometric array detection. Concentrations of 52 metabolites including tyrosine, tryptophan 

and purine pathways were compared between patients and controls while controlling for 

demographic and clinical characteristics. Significant findings were further tested in 

medication-free subsamples.   

Results: Significantly decreased plasma concentrations in patients compared to healthy 

controls were found for 3-hydroxykynurenine (3OHKY, p = 0.0008), xanthurenic acid 

(XANU, p = 1.5*10-5), vanillylmandelic acid (VMA, p = 4.5*10-5) and metanephrine (MN, p 

= 0.0001). Plasma concentration of xanthine (XAN) was increased in the patient group (p = 

3.5*10-5). Differences of 3OHKY, XANU, VMA and XAN were replicated across 

schizophrenia spectrum disorders and bipolar disorders subsamples of medication-free 

individuals. 

Conclusions: Although prone to residual confounding, the present results suggest the 

kynurenine pathway of tryptophan metabolism, noradrenergic and purinergic system 

dysfunction as trait factors in schizophrenia spectrum and bipolar disorders. Of special 

interest is XANU, a metabolite previously not found to be associated with bipolar disorders.  
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Introduction 

Schizophrenia and bipolar disorder are highly heritable disorders with phenotypic and 

genotypic overlap (Lichtenstein et al., 2009; Tesli et al., 2014). Despite intensive research, 

the underlying mechanisms are still unresolved (Grande et al., 2016; Owen et al., 2016). To 

enable better treatments and potentially preventive measures, there is a continuing need for 

research pursuing pathophysiological components by taking advantage of new and advanced 

methods for mapping of biological processes.  

The complexity of neuroactive substances and signaling involved in mental processes 

imply the need for comprehensive assessments of signaling pathways and physiological 

processes to unveil the mechanisms of severe mental disorders. Metabolomics, the analysis of 

a broad spectrum of metabolites from the metabolic processes and interactions in the body, is 

an emerging method enabling characterization of the actual metabolic status of an individual 

(Kaddurah-Daouk & Krishnan, 2009; Guest et al., 2015; Sethi & Brietzke, 2015). 

Metabolomics have already been applied in both central and peripheral tissues in severe 

mental disorders and other brain disorders (Yao et al., 2010a; Yao et al., 2010c; Condray et 

al., 2011; Yao et al., 2012; Kaddurah-Daouk et al., 2012; Motsinger-Reif et al., 2013; 

Kaddurah-Daouk et al., 2013a; Fazio et al., 2015; Zhang et al., 2016; Rotroff et al., 2016; 

Gupta et al., 2016). These studies have identified several potential biomarkers (Oresic et al., 

2011; Kaddurah-Daouk et al., 2012; Yoshimi et al., 2016), being able to distinguish 

diagnostic groups from healthy controls (Bicikova et al., 2013; Motsinger-Reif et al., 2013; 

Fukushima et al., 2014; Liu et al., 2014; Xu et al., 2014; Tasic et al., 2017). Disease-related 

processes indicated by biomarkers from metabolomics studies include such as 

neurotransmission, energy metabolism, mitochondrial functioning and oxidative stress (Sethi 

& Brietzke, 2015).  
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Despite promising results, metabolomics is a novel approach and studies of severe 

mental disorders suffer from essential shortcomings. These include potential for confounding 

effects of medication and other extraneous factors (Turck & Filiou, 2015) and risk of type 1 

errors due to multiple testing based on a broad range of metabolites. To overcome these 

limitations, large and well-characterized samples of patients and healthy controls are needed 

to be able to control for several confounders, including analyzes of metabolite levels in 

individuals free from psychotropic drugs and other medications. Moreover, the use of large 

samples across psychotic disorders makes it possible to alleviate the issue of multiple testing. 

As bipolar disorders and schizophrenia spectrum disorders are pathophysiological related 

disorders (Cardno & Owen, 2014; Volk et al., 2016) metabolite findings of one group could 

be tested in the other diagnostic group. Being able to replicate findings across the two 

disorders would strengthen the findings and simultaneously indicate mechanisms in common 

for the disorders. 

 In the present metabolomics study, we investigated a predefined range of metabolites 

including monoamine-, purine- and sulfur amino acid pathways, in a large sample of both 

bipolar and schizophrenia spectrum disorders. We aimed at identifying pathophysiologically 

related metabolites targeting well-known candidate pathways of psychosis spectrum disorders 

mechanisms. We hypothesized dysregulations mainly related to tryptophan, tyrosine and 

purine pathways as established pathophysiological candidates involving dopamine, 

norepinephrine, epinephrine, serotonin and purine metabolism (Gysin et al., 2007; Michel et 

al., 2011; Ortiz et al., 2015; Grande et al., 2016; Owen et al., 2016; Lieberman and First, 

2018), and with conclusions based on replicated findings in the two diagnostic groups in 

medication-free individuals.   

 

Methods 



5 
 

Participants 

Patients were included through the ongoing Thematically Organized Psychosis (TOP) Study 

carried out at the University Hospitals of Oslo, Norway. General inclusion criteria for the 

TOP study are 1) being registered in the psychiatric services of any one of the participating 

hospitals, 2) age 18 to 65 years, 3) meeting the Diagnostic and Statistical Manual of Mental 

Disorders (DSM)-IV criteria for bipolar or schizophrenia spectrum disorders, and 4) to be 

willing and able to give written, informed consent to participation. General exclusion criteria 

are a history of moderate or severe head injury, serious somatic illness, neurological disorder 

and mental retardation.  

Included in the current substudy were consecutively referred patients (N = 212) and a 

healthy control group (N = 68) included from 2004 to 2013, with metabolomics 

measurements. Duration of illness (median [interquartile range]) was 4 (9) years for the total 

patient sample and 7 (16) years for the unmedicated (N = 52) patients. The patients had a 

DSM-IV Schizophrenia and Other Psychotic Disorders diagnosis, excluding Psychotic 

Disorder Due to a General Medical Condition and Substance-Induced Psychotic Disorder, in 

the following termed “schizophrenia spectrum” (SCZ, N = 139 [25 unmedicated]), or any 

type of DSM-IV Bipolar Disorder diagnosis, in the following termed “bipolar disorder” (BD, 

N = 73 [27 unmedicated]). The reason for not receiving medication was usually early phase of 

disease or discontinuation. The healthy control group (N=68, [50 unmedicated], 18 typically 

used over-the-counter painkillers, contraceptives or antiallergics) was randomly selected from 

statistical records from the same catchment area as the patients. Table 1 shows the sample 

characteristics.  

 

Clinical assessments  
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Inclusion and diagnostic interviews were done by trained medical doctors and psychologists 

using The Structured Clinical Interview for DSM-IV Axis I Disorders, SCID 1 (First et al., 

1995). The Inventory of Depressive Symptomatology-Clinician Rated (IDS-C, BD group) 

(Rush et al., 1996), Calgary depression scale for schizophrenia (CDSS, SCZ group) 

(Addington et al., 1990), Young Mania Rating Scale (YMRS) (Young et al., 1978), the 

Structured Clinical Interview for the Positive and Negative Syndrome Scale (SCI-PANSS) 

(Kay et al., 1987), and Global Assessment of Functioning, symptom scale (GAF-S) (Pedersen 

et al., 2007) were used for symptom assessments (table 1).  

In addition, a series of clinical characteristics were assessed including illicit drug use 

(number of times used last two weeks), use of tobacco (yes/no), body mass index (BMI) and 

diet (complete list given in table 1). Diet was assessed by interview as very or moderate 

unhealthy or healthy during the last six months, and dichotomized as unhealthy (very or 

moderate) or healthy in the analyses. The items early morning awakening from IDS and 

CDSS were used as a measure of sleep pattern (Mukherjee D et al., 2018). 

 

Sample collection and metabolomics concentration analyses 

Blood was drawn from the antecubital vein in the morning while participants were fasting. 

The sample was centrifuged for 15 min at 1200 x g while temperature was kept at 4 oC in a 

cooled centrifuge. Then the plasma was rapidly collected in a conic tube and immediately 

frozen at -80 oC. All samples were collected and prepared by the same personnel at the same 

laboratory. 

 Plasma samples were analyzed using a liquid chromatography electrochemical array 

(LCECA) platform that has been extensively validated and used in our prior studies in 

neurodegenerative and psychiatric disorders (Rozen et al., 2005; Bogdanov et al., 2008; 

Johansen et al., 2009; Zhu et al., 2013; Kaddurah-Daouk et al., 2013b). Targeted assays with 
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the LCECA platform include compounds from the tyrosine, tryptophan, purine and sulfur 

amino acid pathways, vitamins, oxidative, nitrative and methylation markers and a number of 

drugs and metabolites. The complete list of metabolites analyzed is shown in table 2. 

 

Ethics 

The investigation was carried out in accordance with the Declaration of Helsinki. After 

complete description of the study to the subjects, written informed consent was obtained. The 

Regional Ethics Committee and The Norwegian Data Inspectorate approved the study. The 

Norwegian Directorate of Health approved the biobank. 

 

Statistical analysis 

For testing between-group differences of demographic and clinical data we used Mann-

Whitney U test and chi-square test for continuous and categorical variables, respectively 

(table 1). Metabolite plasma concentrations were compared between all patients and healthy 

controls and between SCZ and BD with ANCOVA, applying adjustments with backward 

elimination of number of affective episodes, number of psychotic episodes (proxies for 

duration of illness and illness course), BMI, GAF-S (for comparison of SCZ and BD), age and 

sex. Due to skewed distributions, metabolite concentrations were transformed using 

logarithmic, square root and inverse transformations as appropriate. Number of psychotic and 

affective episodes were set at zero for healthy controls. The Mann-Whitney U test was used 

for variables not fulfilling criteria for parametric analyses (see table 2).  

To further test the significant associations of the main analyses for potential 

confounding of the demographic and clinical variables not recorded in healthy controls (use 

of illicit drugs, alcohol and tobacco; diet; level of symptoms [general; affective, including 

sleep pattern; and psychosis]), we first identified the variables significantly associated with 
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metabolite concentrations in the patient group (table 3). Secondly, we grouped patients 

according to being below or above (defined as equal or above) the median (continuous 

variables) and according to the categories (dichotomous variables) of these variables. We then 

compared metabolite concentrations of each of these subgroups of patients with those of the 

healthy control group. Spearman’s rho was applied for the association analyses between 

metabolite concentrations and continuous clinical variables and independent samples t-tests 

were applied for analyses across groups (Mann-Whitney U test for 2,5 dihdroxyphenylacetic 

acid [HGA]) (table 3).   

Level of significance was set at p < 0.00096 for the testing of metabolite concentration 

differences in the total patient sample of both medicated and medication-free individuals 

versus healthy controls, to correct for multiple statistical testing (a total of 52 metabolites). 

Significant findings in the total patient sample were further tested using ANCOVA with 

adjustments for sex and age in only medication-free individuals for replicated differences in 

both SCZ and BD separately at the level of p < 0.05; significant findings in the psychosis 

spectrum group, SCZ, are only reported if findings in the more uniform group of patients with 

a schizophrenia specific diagnosis (SZdiagn) were insignificant.  

 

Results 

Metabolite concentrations in patients and healthy controls  

Total patient sample versus healthy controls 

Plasma concentrations of 3-hydroxykynurenine (3OHKY), xanthurenic acid (XANU), 

xanthine (XAN), vanillylmandelic acid (VMA) and metanephrine (MN) differed significantly 

in the total patient sample compared to the healthy controls in analyses independent of 

medication status. Lower concentrations in patients versus healthy controls were found for 

3OHKY (F = 11.5, df = 1, p = 0.0008, figure 1a), XANU (F = 19.5, df = 1, p = 1.5*10-5, 
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figure 1b), VMA (F = 17.2, df = 1, p = 4.5*10-5, figure 1c) and MN (F = 15.0, df = 1, p = 

0.0001). Higher plasma concentrations in patients vs healthy controls were found for XAN (F 

= 17.7, df = 1, p = 3.5*10-5, figure 1d). For p-values of metabolite comparisons between all 

patients and healthy controls not given in the main text, please see supplementary table S1.  

 

BD versus SCZ 

Glutathione (reduced) was lower in BD compared to SCZ (p = 0.017), and 5-

hydroxytryptophan higher in BD compared to SCZ (p = 0.037). Otherwise there were no 

significant metabolite concentration differences between BD and SCZ. 

 

BD and SCZ medication-free subsamples versus healthy controls 

Of those metabolites with significantly different plasma levels in the total patient sample 

compared to healthy controls, significantly lower plasma concentration of 3OHKY (SCZ [p = 

0.021]; BD [p = 0.013], figure 1a), XANU (SZdiagn [p = 0.007]; BD [p = 0.0002], figure 1b) 

and VMA (SCZ [p = 0.027]; BD [p = 0.003], figure 1c), and significantly higher plasma 

concentration of XAN (SCZ [p = 0.002]; BD [p = 0.013], figure 1d) were found across SCZ 

and BD medication-free subsamples. MN did not differ significantly from healthy controls in 

SCZ or BD medication-free subsamples. 

 Lower plasma concentration of HGA were suggested across SCZ (p = 0.011) and BD 

(p = 0.033) medication-free subsamples based on a trend level lower concentration in the total 

patient sample (p = 0.003, supplementary figure S1). Lower plasma concentrations of 

dopamine were suggested in all patients (trend level, p = 0.00097) compared to healthy 

controls, but were not replicated across SCZ (ns) and BD (p = 0.014) in medication-free 

subsamples. Otherwise there were no metabolites with significant differences in both the 

medication-free subsamples versus healthy controls. 
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Metabolite concentrations and sample characteristics 

Significant associations between metabolite plasma concentrations and sample characteristics 

not recorded in healthy controls, including affective and psychosis symptoms, are given in 

table 3. To control for potential confounding of these variables, metabolite concentrations in 

subgroups of patients were compared to metabolite concentrations among (all) healthy 

controls.  

 

3OHKY, XANU, VMA, XAN, MN and HGA 

Diet: Plasma concentration of XANU was significantly lower in patients with healthy (p < 

0.001) and unhealthy (p = 0.002) diet compared to healthy controls.  

Illicit drugs: Plasma concentrations of 3OHKY were significantly lower in patients with and 

without use of illicit drugs compared to healthy controls (both p < 0.001). 

Symptoms: Higher plasma concentrations of MN were associated with less symptoms on 

several rating scales (GAF-S, SCI-PANSS and CDSS [SCZ]) and higher levels of HGA were 

associated with lower GAF-S scores; significantly lower concentrations of MN and HGA in 

patients were shown in the subgroups with symptom scores below (trend level significance 

for HGA) and above the median symptom scores, compared to healthy controls (table 3). 

Plasma concentrations of 3OHKY and XANU were not associated with symptom levels. 

Sleep pattern measured as early morning awakening was not significantly associated with the 

metabolite concentrations. 

Metabolite concentrations of VMA and XAN were not significantly associated with 

the demographic or clinical variables. Further details of statistical associations of metabolite 

concentrations and demographic and clinical variables and subgroup analyses for 3OHKY, 

XANU, HGA and MN are given in table 3.   
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Discussion 

The main findings of the present study are decreased plasma concentration of 3OHKY, 

XANU and VMA and increased concentration of XAN across diagnostic categories in 

psychotic disorders. Differences in metabolite concentrations were significant in the overall 

patient group and confirmed across subsamples of schizophrenia spectrum and bipolar 

disorders in medication-free individuals. Although not reaching statistical significance after 

correcting for multiple testing, data were also suggestive of decreases in HGA across SCZ 

and BD. Decreased concentration was found for MN in the overall patient group; however, 

without being replicated across the medication-free subsamples.   

 The present findings in the kynurenine pathway is in line with the pathway being 

increasingly implicated in the pathogenesis of SCZ and BD in recent years (Erhardt et al., 

2017). Kynurenic acid has antagonistic effects on NMDA receptors and seems to be increased 

at central levels in psychotic disorders (Erhardt et al., 2017; Plitman et al., 2017). In line with 

the present findings, 3OHKY and its metabolite XANU of the kynurenine pathway were 

recently reported decreased in serum of patients with SCZ (Fazio et al., 2015). The same 

study reported decreased XANU in relatives of the patients and suggested XANU as a trait 

marker and potentially a drug target in SCZ. XANU is reported in neurons in the rodent brain 

(Gobaille et al., 2008; Roussel et al., 2016), it seem to influence glutamate synaptic 

transmission (Neale et al., 2013; Fazio et al., 2015) and with a suggested role in cognition 

(Sathyasaikumar et al., 2017). The present findings replicate deficient levels of 3OHKY and 

XANU in SCZ, and expand the finding to include BD in line with the psychosis continuum 

hypothesis (Lichtenstein et al., 2009; Van Snellenberg & de, 2009; Tesli et al., 2014). 

Although kynurenine pathway dysfunction has previously been linked to BD pathophysiology 

(Sellgren et al., 2016), this is to the best of our knowledge the first data indicating reduced 



12 
 

levels of XANU in BD. Potential mechanisms of kynurenine pathway dysfunction in 

psychotic disorders include genetic and immune regulatory mechanisms (Wonodi et al., 2011; 

Kegel et al., 2014; Chaves Filho et al., 2018). Cytokines are regulatory factors in the 

conversion of tryptophan to N-formylkynurenine, catalyzed by the enzymes indoleamine 2,3-

dioxygenase and tryptophan 2,3-dioxygenase (Chaves Filho et al., 2018). In a study of bipolar 

disorder, Sellgren et al. (2016) recently reported an association between the minor allele of a 

SNP at 1p21.3 and increased kynurenic acid mediated by cytokine activation. Interestingly, 

immunological pathogenetic mechanisms are amongst the most robust novel findings in 

psychotic disorders (Dieset et al., 2012; Aberg et al., 2013; Volk et al., 2015; Hartwig et al., 

2017). Furthermore, dysregulation of the kynurenine pathway seem to be common to several 

mental disorders (Aarsland et al., 2015; Lim et al., 2016), indicating shared etiological factors 

in line with recent evidence of broad genetic correlations across mental disorders (Anttila et 

al., 2018).   

Plasma concentrations of kynurenine and related metabolites other than 3OHKY and 

XANU, did not differ between patients and healthy controls in the overall sample or in the 

medication-free subsamples of SCZ and BD. In line with the present results, a recent 

systematic review and meta-analysis found no significant difference in peripheral kynurenic 

acid levels, but increased central levels in SCZ compared to controls (Plitman et al., 2017). In 

BD, normal blood levels of kynurenine, 3OHKY and anthranilic acid and reduced kynurenic 

acid relative to healthy controls were recently reported (Birner et al., 2017). In a study using 

skin fibroblasts, increased production of 3OHK and kynurenic acid was indicated in BD, as 

well as in SCZ (Johansson et al., 2013). In the present sample, unaltered levels of kynurenine, 

kynurenic acid and anthranilic acid and decreased levels of 3OHKY were consistent across 

the overall sample and medication-free subsamples. Further data are needed to determine the 

characteristics of kynurenine pathway metabolites at peripheral levels (Erhardt et al., 2017); 
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divergent findings between studies could be due to the impact of several factors, including 

clinical characteristics (Carlborg et al., 2014; Chiappelli et al., 2014) and 

psychopharmacological agents. Importantly, contrary to the present study, all patients in the 

samples of Johansson et al. (2013) and Birner et al. (2017) used psychopharmacological 

agents, making analyses independent of medication status impossible. 

Significantly increased levels of XAN are in line with the established hypothesis of 

purinergic system dysfunction in psychotic disorders (Michel et al., 2011; Yao et al., 2013; 

Ortiz et al., 2015; Bartoli et al., 2016). XAN is oxidized to uric acid by the enzyme xanthine 

oxidase as the last step of purine catabolism (Day et al., 2016). The purinergic system is 

essential in brain function by various processes including energy metabolism and 

neurotransmission (Lindberg et al., 2015). Studies of peripheral levels have indicated 

increased uric acid in BD (Albert et al., 2015; Bartoli et al., 2016; Bartoli et al., 2017b). 

Decreased levels have been suggested in SCZ (Reddy et al., 2003; Yao et al., 2010b). Few 

studies have reported on XAN in psychotic disorders; however, two studies with mixed 

samples consisting of about 35% BD, indicated associations between cerebrospinal fluid 

XAN and hypoxanthine levels and depressive symptomatology and monoamine metabolites 

(Agren et al., 1983; Niklasson et al., 1983). Furthermore, Yao et al. (2010b) reported 

unaltered XAN, but increased xanthosine plasma levels, a metabolite interconverting to XAN, 

in neuroleptic- naive first episode psychosis patients. The authors suggest a metabolic shift 

towards xanthosine. In the present sample, xanthosine levels were similar across patients and 

healthy controls. Importantly, the current patient sample is larger, and with replicated findings 

across SCZ and BD in medication-free individuals. Uric acid levels were unaltered in patients 

compared to healthy controls; however, the finding of increased XAN in both SCZ and BD 

support purinergic system dysfunction as a trait component in common across psychotic 

disorders. The underlying mechanism is unclear, but could be linked to alterations in xanthine 
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oxidase activity (Akyol et al., 2002; Brunstein et al., 2005; Michel et al., 2011; Bartoli et al., 

2017a).  

There were reduced plasma levels of the epinephrine metabolite MN and the in 

common metabolite VMA of epinephrine and norepinephrine relative to healthy controls in 

the overall patient sample. However, only VMA was replicated across the diagnostic 

categories. Norepinephrine have been linked to the pathophysiology of both BD (Manji et al., 

2003) and SCZ (Fitzgerald, 2014; Maletic et al., 2017), and the precursor of VMA, 3-

Methoxy-4-hydroxyphenylglycol (MHPG) (Goldstein et al., 2003), have been associated with 

symptom scores of both disorders (Maas et al., 1993; Kurita et al., 2014). Thus, decreased 

plasma levels of VMA in the present patient sample support the hypothesis of noradrenergic 

dysfunction in psychosis spectrum disorders. Indicated reductions of HGA in SCZ and BD 

and of dopamine similarly suggest alterations related to tyrosine metabolism. To the best of 

our knowledge, the suggested association of HGA with psychotic disorders has not previously 

been reported.  

The current study has noteworthy strengths. Due to the well characterized sample of 

related psychotic disorders, we were able to utilize the large size of the overall sample by 

combining the various diagnostic categories as well as testing associations with an extensive 

range of potential confounders. Despite phenotypic differences, there are solid evidence of 

overlapping pathogenetic factors between SCZ and BD (Lichtenstein et al., 2009; Cross-

Disorder Group of the Psychiatric Genomics Consortium, 2013), and we were able to confirm 

findings indicated from the total sample in small well-defined medication-free independent 

diagnostic subsamples (SZdiagn or SCZ and BD). This procedure reduces the possibility of 

type 1 errors. Importantly, there were only differences between SCZ and BD in two of 52 

metabolites (p-value levels of 0.02 and 0.04) and no significant differences of 3OHKY, 

XANU, VMA, MN or XAN. 
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Conclusions about the direction of effects are tentative due to the cross-sectional 

design. However, the present significant findings generally involve pathways previously 

suggested in the pathophysiology of psychotic disorders. Moreover, a broad range of 

demographic and clinical variables did not seem to explain the main findings. Due to non-

normality of some metabolite concentrations and recording of several characteristics only in 

patients (use of illicit drugs, alcohol and tobacco; diet; level of symptoms [general; affective, 

including sleep pattern; and psychosis]), we were unable to perform statistical adjustments of 

these variables in the main analyses. However, separate analyses of associations between 

demographic and clinical variables and the metabolite plasma concentrations were performed. 

Importantly, higher plasma levels of XANU in patients with unhealthy diet and lower levels 

of 3OHKY in patients using illicit drugs, seem unable to explain lower metabolite levels in 

patients compared to controls, due to corresponding significant differences in analyses of 

subgroups of patients (table 3). Nevertheless, it should be noted that the findings might be 

prone to residual confounding including stress-related changes (Chiappelli et al., 2014); 

however, the stress system has been implicated in the pathophysiology of psychotic disorders 

(van Winkel et al., 2008). The subgroup analyses of medication-free individuals could be 

susceptible to bias, and the re-identification of significant metabolites in the subsamples could 

be seen as likely, although the patient subsample were only 25 % of the total patient sample. 

Moreover, the assay variation of the metabolites of the current study was not available; 

however, the analysis platform has been extensively validated and used in a range of prior 

studies (see Methods section).      

We measured peripheral metabolite levels as compared to central levels. This 

complicates the interpretation of the results. Metabolites of pathways indicated as 

dysfunctional in the present analyses, cross the blood-brain barrier (Esler et al., 1995; 

Gobaille et al., 2008; Bowman et al., 2010), giving grounds for peripheral sampling; 
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however, dynamics are uncertain. Correlations of MN and HGA with symptom measures 

suggest central communication. In the case of the kynurenine pathway, peripheral kynurenine 

and probably 3OHKY readily crosses the blood-brain barrier and influence the central 

kynurenine pathway metabolism (Fukui et al., 1991; Schwarcz et al., 2012; Hestad et al., 

2017), indicating the utility of blood sampling, especially as the method enables a large 

sample without being distressing or conferring risk of serious complications as with lumbar 

puncture (Wright et al., 2012). Moreover, peripheral measurements is a widely used method 

in psychiatric research of metabolic processes (Grossman & Potter, 1999; Bicikova et al., 

2013; Albert et al., 2015; Fazio et al., 2015; Bartoli et al., 2016; Birner et al., 2017). Also, 

studies of brain samples have the inherent risk of biases due to the postmortem interval 

(Lewis, 2002). The selection of metabolites could influence the interpretation of the findings. 

Several metabolites were not measured, including quinolinic acid and picolinic acid of the 

kynurenine pathway. Interestingly, a recent study of IgA responses to tryptophan catabolites 

in deficit and nondeficit schizophrenia reported increased responses to quinolinic acid, 

picolinic acid, 3OHKY and XANU; however, the relation to serum levels is unclear 

(Kanchanatawan et al., 2018). The reason for dysregulation of only certain metabolites of the 

pathways is unclear, but indicate complex regulatory mechanism.         

In conclusion, the results indicate dysfunctions of the kynurenine pathway and the 

noradrenergic and purinergic system in common across SCZ and BD. Of special interest is the 

association with XANU, a metabolite with recently revealed features relevant for psychotic 

disorders and previously not focused in BD. The study was able to take advantage of the 

psychosis continuum model by confirming associations from the total patient sample in 

medication-free independent subsamples of SCZ and BD, thus strengthening the findings as 

well as indicating pathophysiological mechanisms in common for the psychosis continuum. 

The present findings may contribute to the understanding of the pathophysiology of psychotic 
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disorders and the possibility of better pharmacological treatment. Future studies may aim to 

include large well-characterized samples with targeted metabolomic, immune and genetic data 

to further disentangle specific gene x environmental mechanisms. Moreover, longitudinal 

designs combining peripheral and central assessments would be of major benefit to elucidate 

the underlying dynamics.       
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Figure Legends 

Figure 1. Metabolites of the a) tryptophan, b) purine and c) tyrosine pathways assessed in the 

study. 

 

 

Figure 2. Box plots of plasma concentration measured in ng/ml of (a) 3-hydroxykynurenine 

(3OHKY), (b) xanthurenic acid (XANU), (c) vanillylmandelic acid (VMA) and (d) xanthine 

(XAN) with significant differences in both Schizophrenia or Schizophrenia spectrum 

disorders and Bipolar disorder samples relative to healthy controls in medication-free (left 

side of plots) individuals; the right side of the plots shows the respective blood concentrations 

of the total sample of patients vs. healthy controls independent of medication status. The 

boxes represent 25th and 75th percentiles and whiskers represent 1.5 times the interquartile 

range. Markers for particularly high plasma concentration values (ng/ml) of unmedicated 

bipolar disorder ([a]: 87.0), unmedicated healthy controls ([b]: 307.2; [c]: 274.3, 348.7, 

365.7), all patients ([a]: 87.0, 97.6, 149.6, 154.8, 223.4, 236.2; [b]: 294.2; [c]: 430.7; [d]: 

359.9) and all healthy controls ([a]: 91.2, 112.9; [b]: 307.2; [c]: 274.3, 348.7, 365.7; [d]: 

251.3, 378.3) are omitted from the plots to get a suitable scaling of the y-axis. 

*p < 0.05, **p ≤ 0.01 and ***p < 0.001 vs. healthy controls. 

 

 


