
Architectural Technical Debt in Microservices
A case study in a large company

Saulo S. de Toledo
Dept. of Informatics

University of Oslo
Oslo, Norway

Email: saulos@ifi.uio.no

Antonio Martini
Dept. of Informatics

University of Oslo
Oslo, Norway

Email: antonima@ifi.uio.no

Agata Przybyszewska
Dept. of Computer Science

IT University of Copenhagen
Copenhagen, Denmark

Email: agpr@itu.dk

Dag I.K. Sjøberg
Dept. of Informatics

University of Oslo
Oslo, Norway

Email: dagsj@ifi.uio.no

Abstract—Introduction: Software companies aim to achieve
continuous delivery to constantly provide value to their cus-
tomers. A popular strategy is to use microservices architecture.
However, such an architecture is also subject to debt, which
obstructs the continuous delivery process and thus negatively
affects the software released to the customers.

Objectives: The aim of this study is to identify issues, solutions
and risks related to Architecture Technical Debt in microservices.

Method: We conducted an exploratory case study of a real
life project with about 1000 services in a large, international
company. Through qualitative analysis of documents and in-
terviews, we investigated Architecture Technical Debt in the
communication layer of a system with microservices architecture.

Results: Our main contributions are a list of Architecture
Technical Debt issues specific for the communication layer in a
system with microservices architecture, as well as their associated
negative impact (interest), a solution to repay the debt and the its
cost (principal). Among the found Architecture Technical Debt
issues were the existence of business logic in the communication
layer and a high amount of point-to-point connections between
services. The studied solution consists of the implementation of
different canonical data models specific to different domains,
the removal of business logic from the communication layer, and
migration from services to use the communication layer correctly.
We also contributed with a list of possible risks that may affect
the payment of the debt, as lack of funding and inadequate
prioritization.

Conclusion: We found issues, solutions and risks that are
specific for microservices architectures not yet encountered in
the current literature. Our results may be useful for practitioners
that want to avoid or repay Technical Debt in their microservices
architecture.

Index Terms—Technical Debt, Architecture, Microservices,
Case Study

I. INTRODUCTION

Software companies aim to achieve continuous delivery
to constantly provide value to their customers [1]. With the
objective of making teams able to deploy new features inde-
pendently from other teams, and therefore more continuously,
a strategy recently adopted by several companies is the use
of a microservices architecture. Such architecture, based on
loosely-coupled services, is also perceived as favorable for
the evolution of the system, boosting quick replacement of
sub-optimal services and the addition of new ones [2].

However, microservices technology has only recently be-
come a popular topic, which implies a lack of empirical data

on long-standing systems using such technology [3]. Such lack
holds also with respect to what is defined (or considered to be)
a good microservices architecture and, consequently, to what
sub-optimal solutions can lead to costly Architectural Debt.

Architecture in microservices is in fact based on a number
of qualities and structural features that are different from
traditional systems. An example of this is the use of a collec-
tion self-contained microservices connected by a messaging
system usually called communication layer. However, knowl-
edge about what is either a virtuous or a harmful design of
such architectures is still missing [3], especially for evidence
collected in a systematic research fashion and in the context
of well-established industrial systems.

Understanding more about the negative effect (interest) of
Architectural Technical Debt (ATD), about possible solutions
and their cost (principal of ATD) would be useful for or-
ganizations and development teams that adopt microservices.
Consequently, our research questions are:

RQ1: What is ATD in microservices?
• RQ1.1: What is the negative impact (interest) generated

by ATD in microservices?
• RQ1.2: What is a solution for the identified ATD in mi-

croservices and its associated refactoring cost (principal)?
We have investigated a large company developing financial

services, in which microservices have been extensively used
(about 1000 services). After the first preliminary investigation,
we found that the organization had identified that the commu-
nication layer contained particularly costly ATD. In the studied
case, the software of the communication layer was refactored
and the services had started to be migrated to the new solution.

In addition to the previous RQs, we also studied what led
to the presence of ATD and which risks were encountered
by the organization when refactoring and migrating to the
new solution. We therefore also aim to answer the following
research question:

RQ2: What are the risks in refactoring ATD in microser-
vices?

The remainder of this paper is organized as follows. Sec-
tion II presents the main concepts on microservices, ATD
and the company context. Section III presents our research
methodology, data collection and analysis. Section IV Presents
our findings for each RQ. Section V presents the implications



for research and industry. Section VI presents the related work.
Finally, Section VII presents our conclusions.

II. BACKGROUND

A. Microservices and TD

Microservices is an architectural style that decomposes
a system into small and loosely coupled services [3]. Ac-
cording to Dragoni et al. [4], a service in the context of
microservices is an independent process that interacts with
their equals by means of messages, which can be synchronous
or asynchronous. For asynchronous messaging, it is common
to use technologies like Apache Kafka1 and RabbitMQ2 as a
communication layer [5], or to write a piece of software on
top of tools like these to act as such.

When the number of services in such architecture grows, it
is common to find for ways to standardize the communication.
One solution that has been adopted in Service Oriented Archi-
tecture (SOA) [6] projects, from which microservices architec-
ture has been considered a subarea by several practitioners [7],
is the use of canonical data models (or just canonical models).
Canonical models define how to structure an organization’s
information by being a reference for how to represent entities
and their relationships in the system [8]. As an example, a
canonical model can define that a user profile in a social
network for job seekers has a name, an email and optionally
the company he works for; that definition, along with details
like the requirement of having a valid email address, for
instance, should be shared by all services that work with this
data. If a particular service is part of another data domain, e.g.
a newsletter service, and does not need to access (or should
not know about) this data, it can use a specific canonical model
for that domain.

Technical Debt (TD) was first introduced as a way to present
to non-developers the dangers of shipping “not quite right
code” [9]. TD is a sub-optimal design or implementation that
brings benefits in the short term but increases the costs of the
system in the long run, consequently affecting its evolvability
and maintainability [10]. An example is the use of a database
solution that does not meet all needs of the system but is easier
to use immediately.

Several authors have expanded the metaphor of TD, in-
cluding the definition of several kinds of TD. Architectural
Technical Debt (ATD) is a kind of TD that is concerned with
the system architecture [11]. Kruchten et al. [11] identify ATD
as the most challenging type of TD to be uncovered.

The definition of TD [10] includes three key concepts:
• Debt: the presence of sub-optimal solutions. The amount

of debt in a system can be calculated as the amount of
sub-optimal solutions with respect to a desired solution.
For example, a system that has 100 dependency violations
has more debt than one that has only one violation.

• Interest: an extra cost that must be paid due to the
existence of a debt. In other words, it is the amount

1http://kafka.apache.org/
2https://www.rabbitmq.com/

that will be saved if the debt does not exist. By using
the previous dependencies example, the interest is the
additional cost of adding/changing code with the presence
of dependencies in contrast to a better solution. For
example, when several non-allowed dependencies are in
place, the developers might need to change the code in
several places instead of in one place only.

• Principal: the cost of developing the system avoiding
the debt or the cost of refactoring it. In our previous
example, the principal is the cost of setting up an optimal
system with loosely coupled files from the beginning or,
if the debt has already been accumulated, the principal
is the cost of refactoring the system to remove the
dependencies.

If the interest is low, accruing the debt might be beneficial.
For example, a dependency that does not generate extra cost,
should not necessarily be removed. On the contrary, if the
interest is greater than the principal, avoiding or refactoring
the debt is usually considered beneficial. Thus, a fundamental
question in our investigation on TD is when to incur or repay
the debt. In this case study, two other concepts also helped us
to reason about what influenced the decision to fix TD and
how to do it:

• Risk: they can affect the decision process today or
can be a source of concern in the future. The fear of
something go wrong may affect the probability of taking
that decision;

• Solution: An approach for fixing technical debt or re-
ducing the interest paid. In the example related to depen-
dencies, a solution is a rewriting a system without the
dependencies or reducing the work of the developers so
they do not have to change the code and pay the interest.

B. Company Context

The company where the study was performed, is a large,
multinational financial services, with a complex, heteroge-
neous IT system landscape.

• Business: The core of the financial business is about
compliance and risk.
The financial crisis has led to a series of tight regulations
of the financial sector, and different governance bodies
have different legislations (Basel, MiFID3 I, MiFID II,
FRTB4), that are a prerequisite to having a banking
license. More control is exercised about realistic and
timely reports on risk, exposure in different markets,
currencies and clients, limits on risk, data lineage and
reporting of trade activities to authorities.
Risk computations give a significant business advantage,
if they are performed as close to real time as possible,
and the different computation heavy simulations are per-
formed in as much detail as feasible. This gives a business
demand on computing as close to real time as possible,

3Markets in Financial Instruments Directive
4Fundamental Review of the Trading Book



that also needs to be consistent across a data set of around
20.000.000 daily transactions.

• Organization: As the company we studied is multi-
national, they are operating in several countries, and
separate national legislation, together with super-national
regulations like European Union (EU), give rise to an-
other dimension of IT complexity.
The organization has introduced a separation of duties,
where employees either belong to Business, IT or Opera-
tions. Accountability is structured in such a way, that ev-
ery application has an Application Owner in the business
that is the responsible sponsor, and drives the business
requirements. There is an Application provider in the
IT organization, that is responsible for the application
development and delivery. Finally, there is a sign-off,
where the Operations team takes the accountability for
operating the application/service, and is responsible for
the Service Level Agreement (SLA) [12]. Most teams are
structured as virtual teams, across the national borders.
Frequent organizational changes, together with the history
of mergers, have resulted in heterogeneous IT systems,
lack of ownership for older artifacts, and orphaned busi-
ness logic in the communication middleware.

• Architecture: Microservices architecture, consisting of
about 1000 services, of which about 150 are critical for
the business.
The services operate using different connectors - the
legacy communication layer solution, new communica-
tion solution, point to point service calls, database pumps,
direct database connections, file transfers and mails, ex-
ternal banking networks, and mainframe gateways.
The connectivity layers are often containing logic that
performs ETL5, and sometimes also contains business
logic. Some of the logic has become orphaned, due to
organizational changes, and a lack of direct link between
application and connector, as these are often owned by
different teams.

• Process: To counteract new compliance requirements and
legislation from regulators, and the inability to upgrade
systems when needed - due to accumulation of technical
debt, the management has decided to start a large pro-
gram, that will simplify some of the complexity, reduce
technical debt and restore business agility.
Focus was on data foundation, and fixing lack of account-
ability, by appoint Data Asset Owners, that will govern
and mandate the processing of various data assets inside
the organization.
Complicated logic, and inability to test changes, has led
to a complicated change process, and DevOps culture was
introduced to counteract this.
The traditional governance of architecture in the com-
pany, has been a waterfall-based model, inspired by the
PRINCE2 methodology [13], with a series of approval

5Extraction, transformation and loading: three steps to combine data from
multiple sources.

gates - early architecture approval, solution design ap-
proval, and a run gate. After a project is in run state,
there are no more controls.
A program has been set up to refactor the problematic
area, and the program has moved away from the tradi-
tional waterfall methodology. Instead, they aim to exe-
cute using agile and Scrum methodology. Later, during
the program’s lifetime, in order to coordinate the large
number of projects, the refactoring program embraced the
Scaled Agile Framework (SAFe) with its Agile Release
Trains (ART) construct.

III. METHODOLOGY

We conducted an exploratory case-study in a large, interna-
tional company. The company is involved in a large financial
group that works with financial services related assets. The
studied system has a Microservice oriented architecture with
several issues that were identified by the company mainly on
their messaging layer. It contains more than 1000 services,
a messaging layer used by most of the services, and some
other communication technologies. Due to the existence of
ATD, the company developed a new solution to replace the old
messaging layer and the other communication technologies,
unifying the data transmission terminology and solving several
related issues. Within the case, we were able to identify ATD
issues through the evaluation of documents and face-to-face
interviews. With the migration in process, we can also identify
both the interest (by investigating the costs especially on
areas that did not migrate to the new system yet) and the
principal (identified by the cost of migration itself and the
areas in the company that finished their migration to a new
solution free of those ATD). The need for fixing issues in
the communication layer made us to focus on this part of the
system. We examined some documentation on the business
case related to the Technical Debt and interviewed some
practitioners and we used qualitative techniques to analyze
them. Our main goal was to understand the problems in the
communication layer pointed out by the company, finding their
causes and costs, while looking to the case as a whole.

A. Data collection

The case we study is a large refactoring initiative, that works
on replacing the aged middleware, together with its burden of
embedded business logic, with a modern architecture, based on
the reactive manifesto. Both communication layer alternatives
have been in production in parallel for a long time, making
for a perfect lab, where architecture changes, and change to
technical debt can be studied.

We acquired data from the following sources:
• Business case documents created by the enterprise archi-

tects contained information about:
– the ATD present in the analyzed system. Based

on this information, we created a first list of ATD
issues, which was later refined in subsequent steps.
(Section IV);



– the negative impact created by the ATD, used to infer
the interest of ATD;

– the technologies used in the current implementation
and those that have been proposed to mitigate the
problems;

– a proposed approach to refactor the system to remove
the ATD;

– the risks regarding the removal of the ATD, also used
to define its principal;

– the risks regarding not removing the ATD, also used
to infer the interest of the ATD.

• A meeting with two enterprise architects and one product
owner. All of them worked in both the old and the new
solution. We collected the following information:

– an overview of the entire microservices architecture;
– an overview about the organization and the relation-

ship with the ATD case;
– an explanation about the motivations and the chal-

lenges of refactoring;
– a list of suitable interviewees to collect more data.

These two sources indicated that the major issues were af-
fecting the communication layer. We then decided to interview
those subjects mentioned in the meeting with the following
goals:

• confirm and get more details about the risks and impacts
described in the document;

• confirm our understanding and get more details about
the project, its context and its architecture, from different
perspectives;

• confirm the existence of the ATD pointed out in those
sources, including their impact and costs, as well as
getting more instances of ATD, interest and principal
from different people involved in the project;

• get information about the solution in progress and its
costs;

We conducted semi-structured face-to-face interviews with
ten subjects:

• three product owners/managers: The questions con-
cerned the company context and the challenges in the
project seen from a management point of view (for
handling the current solution or to change to a new one
without the debt);

• two architects: The questions concerned issues in the
software architecture and the proposed solutions, includ-
ing risks;

• five developers: The questions concerned daily issues
faced by the development team and the way they tried to
fix the issues.

Each interview was audio recorded. The relevant parts
were transcribed and then coded. During the interviews, our
questions focused in the specific role of the respondents
(e.g. we asked questions about the organization for managers,
and questions about architectural decisions to architects). The
interview guide is presented in Table I. Some questions, such
as the number eight, might seem to be suggestive: for example,

Fig. 1. Data analysis overview

“what are the problems with the messaging layer?” might lead
the interviewee to assume that problems are already present in
the messaging layer. However, this was done by design since
the questions were based on facts obtained from the previous
document analysis. We wanted to confirm if such problems
exist across the interviewees, elicit more details and identify
other information not mentioned in the document analysis.

B. Data analysis

We coded the interviews to search for evidence that would
answer our research questions. The best way to do it is by
classifying the data into the previously introduced categories
(i.e. ATD issues, interest, principal, organizational context, risk
and solution). Thus, we used a deductive approach on top of
open coding [14].

Figure 1 presents an overview of the data analysis. We
started by analyzing the business case document. We manually
classified the information therein according to the aforemen-
tioned categories and identified topics that were unclear. Those
categories were used as codes. We then conducted preliminary
interviews to acquire more information about the project
and validate our understanding of the document. Finally, we
planned and conducted the main interviews. We partially
transcribed them and coded both (audio and transcriptions) by
using a Qualitative Data Analysis (QDA) tool called NVivo,
which supports tracking of the links between codes and
the original data in the interviews and auxiliary documents.
The last step assisted us to find, confirm and rectify our
understanding about the data.

Some examples of coding:
• ATD issues: “There is business logic inside the messag-

ing layer code” (quote by an architect);
• Interest: “a lot of effort is needed to investigate why that

happened” (quote by a developer);
• Principal: “For each new IT development team migrated

to the new technology, there will be an associated start-
up cost equivalent to the man hours used within the team
to get accustomed to the new tools and ways of working”
(quote from the business case document);

• Risk: “the risk of not migrating is that the message and
data landscape becomes more complex” (quote by an
architect);

• Solution: “the solution is a middleware system that (...)
has been deployed to production” (adapted from the
business case document).



TABLE I
INTERVIEW QUESTIONS

ID Question Related to Target group
1 Tell us about the organization, its divisions and how the current problems

affect them.
• Debt
• Interest

• PO/Managers

2 Tell us about the organization, its divisions and how migrating to a new
solution is affecting them.

• Debt
• Principal

• PO/Managers

3 What are the risks of the migration not being properly funded? What is
the probability of that happening?

• Interest
• Risk

• PO/Managers

4 What incidents related to ATD happened recently? What are their causes
and impact?

• Debt
• Interest

• PO/Managers
• Architects

5 What are the challenges of migrating to a new solution? What are the
costs of the migration? What are the costs of not migrating?

• Interest
• Principal

• PO/Managers
• Architects

6 What is the probability/cost of the transition to a new solution never
finish?

• Interest
• Risk

• PO/Managers
• Architects

7 What is the effort required to migrate to the new solution? • Principal • PO/Managers
• Architects
• Developers

8 What are the problems with the messaging layer? What effort is required
to keep working on it?

• Debt
• Interest

• Architects
• Developers

9 We found some issues regarding data transformation in the messaging
layer on previous sources of data. Why is that important, how that works
in the old and in the new solution, and what is the cost/impact of that?

• Debt
• Interest
• Principal

• Architects
• Developers

10 What is the importance of a canonical model in the project? • Principal • Architects
• Developers

11 Can you give one or more examples of issues that (and why):
• reduce development speed?
• cause more bugs?
• have a negative impact on other system qualities?
• impact many developers?
• will become worse in the future?

• Debt
• Interest

• Developers

12 What is the importance of a canonical model in the project? • Principal • Developers
13 What are the risks of keeping working with the old solution? Why? • Interest

• Risk
• Developers

14 What are the risks of migrating to a new solution? Why? • Principal
• Risk

• Developers

The procedure leads us to identify the data presented in the
Section IV.

IV. RESULTS

This section discusses the results of each of the research
questions. Table II gives a summary.

A. What is ATD in Microservice? (RQ1)

The results we present below focus on the communication
layer between services. As shown in Table II, we identified
the following issues:

• Too many point-to-point connections among services:
Most of the services communicate through a messaging
layer, but this layer is not used correctly. Instead of ex-
posing data that could be used by any consumer through
the communication layer, every new service that arrives in
the system is designed to communicate only with its im-
mediate consumers, creating a point-to-point connection
unique for these endpoints. Thus, it is extremely complex
to visualize and predict the connections between services.
As a result, there is a high volume of connections between
the services in the system;

• Business logic inside the communication layer: There are
filters specific to some endpoints that contains business

logic in order to transform data between endpoints.
However, that creates a dependency between the services
and the communication layer code. If developers change
the data sent by a service, the communication layer can
encounter a scheme that it does not recognize and behave
unexpectedly. Service developers should not change the
format before it has been agreed with the communica-
tion layer team. Also, the latter must know how every
service (from several hundreds) work to proper update
the business logic when required;

• No standard communication model (Tower of Babel prob-
lem): There is no standard model for communication
among services. Each team creates its own communi-
cation mechanism, which is messy in an environment
with hundreds of services. We call it Tower of Babel
problem in analogy to the history on the Tower of Babel,
where speakers could not understand each other due to
the different languages;

• Weak source code and knowledge management for dif-
ferent services: Microservices encourage practitioners to
work with small, independent services. In an environment
with several services, some of these teams may be dis-
banded or allocated to work on other services. In this case
study, some knowledge about legacy services and also



TABLE II
BRIEF SUMMARY OF OUR FINDINGS

Debt (D) Description of Interest (I) Description of Principal (P)
1 Too many point-to-point connections among

services.
Extra effort when evolving and maintaining
the system due to the high amount of connec-
tions among services, increasing the system
management and operations effort.

Rewrite the communication layer and migrate
the services to use it properly.

2 Business logic implemented in the communi-
cation layer.

Communication layer developers must know
and work on unnecessary details related to
each client, decreasing business agility.

Remove the business logic form the commu-
nication layer and updated the services where
required.

3 There is no approach to standardise the com-
munication model among services (Tower of
Babel problem).

Too many different models to deal with, de-
creasing business agility and increasing the
cost of ownership for each service.

Define a canonical model per domain and
rewrite all clients to use it.

4 Weak source code and knowledge manage-
ment for different services.

Missing source code and lost knowledge due
to miss of documentation and related artifacts,
demanding code rewriting, reverse engineering
or some workaround, increasing the total cost
of ownership of the project.

Centralize the source code and documentation
for all services in a common management
system.

5 Unnecessary presence of different middleware
technologies in the communication among ser-
vices.

Extra effort to handle different technologies
that have the same objective of sending mes-
sages among services, decreasing business
agility.

Provide a common middleware that can be
used by all services and rewrite those to use
it.

some source code was lost due to changes in the teams or
due to key people no longer working in the organization.
Each team used its own source code management tool
and shared the knowledge only internally within the team.
Some information was lost a few months after the teams
are disbanded;

• Different middleware technologies: Seven different mid-
dleware technologies (including the communication layer
that was being rewritten) were used to exchange messages
among services.

B. What is the negative impact (interest) generated by ATD
in microservices? (RQ1.1)

We summarize each ATD issue and explain the related
interest found in our investigation:

• Interest on D1 (high number of point-to-point connections
among services):

– High cost for evolving and maintaining the system:
Several interviewees mentioned the complexity for
handling the high number of direct connections be-
tween the services. The connections are not easy to
track, as well as investigating the data exchanged
between them;

– Coupling between services: Once the services are
directly dependent of each other format, they are
coupled. That affecting the principle of lose coupling
between services in a microservices architecture, in
which each service should have none or a minimal
impact on other services. Therefore, there is an
extra work of changing dependent services instead
of updating only one.

• Interest on D2 (existence of business logic inside the
communication layer):

– Necessity of handling an overwhelming amount of
details about services in the communication layer:

Developers in the communication layer must know
details from the clients in order to maintain the
business logic. Every time a new client arises, there
is a possibility of having new business logic. It is
impossible for the developers to know the details for
all different services; thus, they need to put some
extra effort to understand such a complex system;

– Unnecessary dependency between development
teams: When a change in the data sent by a service
is required, the service developers should contact the
communication layer team before doing any changes
to prevent the system from behaving unexpectedly.
A conversation then takes place through formal
mail messages between the teams. One of our
interviewees mentioned that the work they do in an
entire week could take minutes if they did not have
this bureaucracy in the process. In such a way, the
extra-cost is the time wasted by both teams while
waiting for the agreement to be bound;

– Unnecessary implementation of transformations and
filters: The communication layer developers must
implement and maintain transformations and filters
that should not be present in that layer. This interest
grows over time due to the existence of an increasing
number of extra codes. As the system becomes more
complex, the more difficult it is to refactor it.

• Interest on D3 (no approach to standardize the commu-
nication model among services):

– There are too many different data formats to deal
with: Teams developing new services decide about
the format of the data to be used by them. If there
is no guideline to follow, it is likely to have a new
format different from existing ones. As a result, some
data transformation and filtering must take place in
order to allow these services to communicate. Thus,



there is an extra cost to implement and maintain the
code that performs this job.

• Interest on D4 (weak source code and knowledge man-
agement for different services):

– Effort for reverse engineering software with missing
source code: While updating the communication
layer, some changes may need to be done in one of
these projects with missing source code to support
new requirements. When that happens, extra effort
is required to one (or more) of these: (a) rewrite the
old code, (b) do reverse engineering in order to try
an alternative solution or (c) creating some sort of
workaround.

– Effort to understand software whose knowledge and
documentation is missing: When documentation or
any other source of knowledge about a piece of
software is not easily accessible, it may be hard for
the team that is working on it (especially if it is a
new team that did not work in the original software)
to understand the reasons of some inputs or outputs
in that software. Indeed, that happened in this case
and interviewees reported the loss of several hours
trying to figure out that information.

• Interest on D5 (unnecessary presence of different middle-
ware technologies in the communication among services):

– Need for maintaining different middleware solutions
with the same purpose: The existence of different
technologies for solving the same problem only
makes the architecture harder to handle, requiring
effort to understand different technologies every time
they are used by a new client.

C. What is a solution for the identified ATD in microservices
and its associated refactoring cost (principal) (RQ1.2)

The list presented below is the result of the company’s
experience by fixing these issues, and as such they indeed
represent real case solutions:

• Principal on D1 (high number of point-to-point connec-
tions among services):

– Rewrite the communication layer: Removing the
point-to-point connections requires redesign on the
way the services communicate. That, of course,
needs a communication layer capable of handling
this new way of exchanging messages. Thus, the
new layer should be redesigned according to such
scheme;

– Migrate the services to use the new architecture:
With a new communication layer in place, every
service should migrate to use it.

• Principal on D2 (existence of business logic inside the
communication layer):

– Remove the business logic inside the communica-
tion layer: It is important to simplify the layer by
removing all that logic, keeping the responsibility
of knowing how to communicate to the services

themselves. That, of course, only moves the problem
to another place, but that is reduced by solving D3
as we discuss later;

– Move the business logic to the services: There should
not be transformation code inside the communication
layer if that is required only by the services. They
should have the responsibility of handling the data
they want. Once this adds complexity to the services,
a better approach should be to combine this solution
with the solution to D3, as we discuss later.

• Principal on D3 (no approach to standardize the com-
munication model among services):

– Define a canonical model per domain: A way to
solve the need of transformation between several
services is the standardization of the communication.
That can be done by defining a canonical model.
However, in a big system, the meaning of entities
(e.g. user, company etc.) vary according to the con-
text they are applied (e.g. the data required in a social
media describing a user and the company he/she
works for is different from the data required for
a user subscribed in a newsletter service). In this
context, a single canonical model can be confus-
ing, because it will merge information from several
domains. That can (i) cause an overhead of details
in the model, requiring developers to put fields to
identify a complete user profile in a single newsletter
service that only needs their emails, (ii) expose
the structure of data that should not be shared (a
newsletter services does not need to know that some
service store the user address, for instance), and (iii)
different domains may interpret the same attribute in
a different way (“type” in a newsletter system can
store the type of newsletters that will be received
by the subscriber, but it can means the type of user
in a profile, as administrator or visitor). In addition,
the same field may contain different kinds of data
depending on the context. Thus, a good solution is
to have several canonical models for the different
domains;

– Update the services to use the newly defined canon-
ical models: After having the canonical models in
place, the next step is to update the services to use it.
That will also help to solve the problem pointed out
on the principal for D2, where we discussed about
the need of having business logic due to the existence
of non-standardized data among the services.

• Principal on D4 (weak source code and knowledge man-
agement for different services):

– Centralize the source code and documentation for
all services in a common management system: The
solution for this problem goes through keeping a
centralized management system whereby all the his-
toric data can be accessed, including documentation,
knowledge reports and source code. A change of



policy must be in place in the company to ensure
the teams will put data in this place. After that, no
additional cost should be required, once the teams
will only change the place where they will deposit
the information.

• Principal on D5 (unnecessary presence of different mid-
dleware technologies in the communication among ser-
vices):

– Provide a common middleware that can be used by
all services: The communication layer is a middle-
ware technology. The standardization of the middle-
ware used by the services represents a consensus
between practitioners, leading to a more robust and
reliable solution, while they do not need to worry
with different technologies for doing the same job;

– Rewrite services to use the same middleware: The
services should be updated to be compatible with
the new communication layer.

From the list above, we identify the need of some rewrite or
refactoring in the communication layer and in the services. As
it is a complex system, that work must be properly advised,
and that cannot be done without paying the following extra
principal costs:

• Define and execute a governance plan to handle the mi-
gration: The migration of services in the entire company
requires a coordinated effort that should be driven by the
company. There are extra costs to (i) define the plan, (ii)
define full-time employees (project managers) to execute
the migration on each project, and (iii) supervise the
migration in a company level in accordance to the plan;

• Maintain the system working with different solutions
during the migration period: Migrations in a system
running hundreds of services should happen step by step.
In the meanwhile, the total environment is more complex
than before due to the existence of all past technologies
plus the new one. There is a temporary increase in the
cost for maintaining the complex environment until the
migration is finished;

• New requirements should be down prioritized: Once the
refactor or rewrite of the system and the communications
layer is a priority, the teams need to reduce the time spent
on new functionalities to work with the priorities. The
cost for this issue is the possible amount of money lost
by not having the new requirements;

• Service developers must learn new technologies: Teams
that are used to some technologies will be forced to
migrate to a new solution for which they do not have the
proper technical knowledge. It is acceptable to consider
that they will work slower in the beginning than if they
were working with the technologies in which they have
full experience.

D. What are the risks in refactoring ATD in microservices?
(RQ2)

The company identified certain risks before the migration
to help prevent unexpected problems.

• Communication layer more complex than before if canon-
ical models are not properly supervised: If the company
does not inspect the creation and use of canonical models,
teams can try to add information that should not be
there, or that violates their definition if the company
defined them before. That can lead to complexity in the
communication layer. The company knows this issue and
is properly policing the creation of these models;

• Not sufficient funding: If there are no funds to finish the
migration, the company can make the environment even
worse, by having all the old technologies plus a new
one to deal with. They mitigated this risk by realizing
a previous analysis of the costs of the migration;

• Migration possibly halted before finished: If the man-
agement decides about halting the migration before it
finishes, the same problem as the previous point will hap-
pen, having an environment more complex than before.
The company mitigated this risk by preparing a plan and
previously discussing with their managers;

• Migration possibly not prioritized: The change for the
new solution must be done by all services. Only then
will the migration be finished and the whole environment
will be using the same solution. To mitigate this issue, the
company proposed the entire change in agreement with
the several sectors in the company.

V. DISCUSSION

A. Implications for Research

We contribute to the state of the art by presenting the rela-
tionship between ATD and microservices, not previously ex-
plored. We believe this study will stimulate more investigations
into the relationship among ATD, microservices and SOA. We
focus especially on the costly ATD that can be accumulated
in the communication layer of a microservices architecture.
Together with a list of ATD issues, we also identify their
principal and interest. Although this list cannot be considered
complete, we compiled a novel body of knowledge on ATD in
microservices. More research is needed regarding other aspects
of microservices, such as the ATD related to the allocation of
cross-cutting concerns in microservices, their deployment, etc.

Furthermore, we provided a set of clearly defined ATD
issues for which is possible to define metrics in order to
measure debt, principal and interest. For example, how to
measure the number of point-to-point connections, the cost
of having too many standards in the communication among
services, and the cost of removing the business logic from the
communication layer. We are in the process of further studying
the case in order to compile and validate such measures.

In addition, we present a list of risks that should be taken
in consideration by researchers to develop a risk assessment
model to be used when taking decisions about TD refactoring.

B. Implications for Industry

The results presented here can be useful to help practitioners
when developing systems with a microservices architecture.
These insights can be used to raise awareness of possible



ATD issues related to microservices. We present a list of ATD
issues together with their cost of refactoring and the associated
extra negative impact, summarized in quick reference table
complemented with a detailed explanation. These findings can
help developers and architects to avoid the accumulation of
ATD issues before they become too costly. Additionally, they
can help giving targets for refactoring and possible concrete
solutions that have been fruitful in other large organizations.
For example, practitioners might want to avoid too many point-
to-point connections, the existence of business logic in the
communication layer, or plan refactoring accordingly. As a
microservices system grows, the number of services affected
by the ATD present in the communication layer also grows.
This means that both principal and interest might grow linearly
(or even worse), making it more expensive both the presence
and the repayment of the debt. As such, being aware of
these issues in early stages is important for the health of the
organization. Likewise, the solution proposed in the current
context may be reused and studied as a possible approach in
other companies.

We also presented a list of risks that are being considered by
the company during the migration process. These findings can
help managers to handle similar initiatives, avoiding situations
that can lead to unfinished migrations and consequent increase
of complexity in the system.

It is important to mention that we also found other type
of TD in our investigation as, for example, testing TD. Such
issues have not been reported here because they either they
do not represent ATD, or they are not related specifically to
microservices, the core of our investigation.

C. Threats to Validity

When mapping the interview data to the categories we used
for coding, there was a challenge that different interviewees
did not necessarily agree on the solution to a problem. To
mitigate this threat, we triangulated the information from
multiple sources of evidence, including people and documents
provided by the company, to confirm the validity of the data.
We only considered in our results data that could be attested
by most of the sources.

A possible threat is that the issues we thought affected the
principal and interest of the ATD did not really do it. We
mitigated this threat in the creation of the questionnaire for the
interviews, making sure we asked about the negative impact
and their related costs for multiple interviewees.

This study was is conducted in a single organization. To
improve the external validity of the findings, studies in other
organizations are needed. In addition, we have covered only
the problems related to the communication layer, and not
related to other aspects of microservices, but we wanted to
collect a rich amount of details (debt, principal, interest etc.)
with a higher level of triangulation among the data sources.

To help ensure reliability, three researchers were present
during the interviews (observer triangulation), and we inves-
tigated several sources of evidence (source triangulation). All
results were checked by multiple researchers.

VI. RELATED WORK

Most research on ATD is recent. The area is challenging and
many more studies are needed [11] [15]. Kazman et al. [16]
conducted a case study in a software development organization
looking for what they call the roots of architectural problems.
They did not look at microservices and we need more research
to understand if such approach can work with in that context.

In a more recent study, Martini et al. [15] conducted
a case study in six large international software companies
to investigate the interest generated by ATD issues. They
present a taxonomy of the most dangerous issues and coin the
definition of contagious debt, a chain of events responsible for
increasing the TD in the system. While they investigate ATD
in general, we focus on the specific context of microservices.

Another work from Martini et al. [17] was conducted in
a large software company. ADT was automatically identified
through architectural smells. They looked at the cost/benefit
of the modularization of a component. We should try that
methodology in the context of microservices hereafter.

In our study, we were unable to identify architecture smells
specific to microservices due to insufficient tool support.

Microservices architecture is being widely adopted espe-
cially by those who are facing problems with previous software
monoliths due to their increasingly complexity, like the case
we investigated in this work. An example is the work of
Bucchiarone et al. [18], which presents an experience report
from a migration of a monolith to microservices, also in
the financial services domain. They focus in the migration
process, presenting what they did and their reasons to proceed.
We, by contrast, investigate ATD in an existing microservices
architecture, a further step.

A systematic mapping study by Francesco et al. [19] found
that most research on microservices architecture consists of
solution proposals and their validation, and that there are sev-
eral gaps on industry- and practitioners-oriented research as,
for instance, the lack of evaluation research on microservices,
testability and security. In addition, they did not find studies
that investigate the presence of ATD on microservices. We,
therefore, provide such new evidence.

Taibi et al. [20] presented a catalog of bad smells on
microservices. Despite there is a relationship between ATD
and architectural smells, they are not the same concept. Smells
can be used to identify the amount of debt, but not its interest
and principal. Thus, our work is differs because they only
define what are the bad smells in the microservices context,
and we present ATD and discuss their principal and interest. In
our investigation, we found a problem similar to what they call
too many standards in the communication layer: in our case
we have no defined standards in the communication, leading
to too many different terminologies being used, while only
one should be enough. We called that the “Tower of Babel”
problem. We did not find other issues presented by them in
our case, but the list of ATD issues in our work lead to data
they were not aware. So, our studies complement each other.



VII. CONCLUSIONS AND FUTURE WORK

We investigated what is ATD in microservices architectures
with focus on principal and interest through case study in a
large financial services company. We focused on the commu-
nication layer because a large set of refactoring were initiated
in that area due to the high interest paid. We evaluated the
system before and after the refactoring enabling us to identify
the interest and principal associated with ATD.

We found the ATD issues related to microservices as
follows: the existence of too many point-to-point connections
among services, the presence of business logic in the com-
munication layer, the lack of standards in the communication
among services, weak source code and knowledge manage-
ment and unnecessarily many different technologies used by
the service developers in the communication among services.
These issues caused substantial interest (of ATD), such as
need of rewriting the code, extra effort to handle different
technologies, and coupling between services. Some of the
principal found were creation of canonical models according to
the domain of the data, definition of a single middleware layer
and removal of business logic from the communication layer.
We also found risks that can lead to an unfinished refactoring
process, and presented information that may help practitioners
to mitigate them.

Our findings may help developers and architects avoid ATD
issues in advance, before the cost of fixing them increases,
and identify areas of the code that may need refactoring.
Our results contribute to an increased understanding of the
relationship between ATD and microservices.

Our future work includes analyzing additional cases, in-
vestigating metrics to measure debt, principal and interest
in microservices architecture, and quantify costs and benefits
related in this context. We also plan to investigate the existence
of ATD in other areas than the communication layer.

REFERENCES

[1] A. Martini, T. Besker, and J. Bosch, “Technical Debt
tracking: Current state of practice: A survey and multiple
case study in 15 large organizations,” Science of Computer
Programming, vol. 163, pp. 42–61, oct 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167642318301035

[2] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and
T. Lynn, “Microservices migration patterns,” Software: Practice and
Experience, vol. 48, no. 11, pp. 2019–2042, 2018. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2608

[3] H. Vural, M. Koyuncu, and S. Guney, “A Systematic Literature
Review on Microservices,” in Computational Science and Its
Applications – ICCSA 2017, O. Gervasi, B. Murgante, S. Misra,
G. Borruso, C. M. Torre, A. M. A. C. Rocha, D. Taniar, B. O.
Apduhan, E. Stankova, and A. Cuzzocrea, Eds. Cham: Springer
International Publishing, 2017, pp. 203–217. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-62407-5 14

[4] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, Microservices: Yesterday, Today, and
Tomorrow. Cham: Springer International Publishing, 2017, pp. 195–
216. [Online]. Available: https://doi.org/10.1007/978-3-319-67425-4 12

[5] S. Newman, Building Microservices: Designing Fine-Grained Systems,
1st ed. O’Reilly Media, Inc., 2017.

[6] M. P. Papazoglou, “Service-oriented computing: concepts,
characteristics and directions,” in Proceedings - 4th International
Conference on Web Information Systems Engineering, WISE
2003. IEEE Comput. Soc, 2003, pp. 3–12. [Online]. Available:
http://ieeexplore.ieee.org/document/1254461/

[7] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and
N. Josuttis, “Microservices in Practice, Part 1: Reality Check
and Service Design,” pp. 91–98, jan 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7819415/

[8] G. Hohpe and B. WOOLF, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions, ser. The Addison-
Wesley Signature Series. Prentice Hall, 2004. [Online]. Available:
http://books.google.com.au/books?id=dH9zp14-1KYC

[9] W. Cunningham, “The WyCash portfolio management system,”
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1992. [Online].
Available: http://doi.acm.org/10.1145/157710.157715

[10] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
Technical Debt in Software Engineering (Dagstuhl Seminar 16162),”
Dagstuhl Reports, vol. 6, no. 4, pp. 110–138, 2016. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2016/6693

[11] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18–21, 2012.

[12] PMI, Ed., A Guide to the Project Management Body of Knowledge
(PMBOK Guide), 5th ed. Newtown Square, PA: Project Management
Institute, 2013.

[13] AXELOS, Managing Successful Projects with PRINCE2. Stationery
Office, 2017.

[14] U. Flick, An Introduction to Qualitative Research. SAGE Publications,
2009.

[15] A. Martini and J. Bosch, “On the interest of architectural technical debt:
Uncovering the contagious debt phenomenon,” Journal of Software:
Evolution and Process, vol. 29, no. 10, pp. 1–18, 2017.

[16] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka, “A Case Study in Locating the Architectural
Roots of Technical Debt,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering. IEEE, may 2015, pp. 179–188.
[Online]. Available: http://ieeexplore.ieee.org/document/7202962/

[17] A. Martini, F. A. Fontana, A. Biaggi, and R. Roveda, “Identifying and
Prioritizing Architectural Debt through Architectural Smells: a Case
Study in a Large Software Company,” in 12th European Conference
on Software Architecture, ECSA, Madrid, Spain, 2018.

[18] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara,
“From Monolithic to Microservices: An Experience Report from the
Banking Domain,” IEEE Software, vol. 35, no. 3, pp. 50–55, may 2018.

[19] P. D. Francesco, I. Malavolta, and P. Lago, “Research on
Architecting Microservices: Trends, Focus, and Potential for Industrial
Adoption,” in 2017 IEEE International Conference on Software
Architecture (ICSA), apr 2017, pp. 21–30. [Online]. Available:
https://ieeexplore.ieee.org/document/7930195/

[20] D. Taibi and V. Lenarduzzi, “On the Definition of Microservice Bad
Smells,” IEEE Software, vol. 35, no. 3, pp. 56–62, may 2018.


