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Abstract
Frictional finger trees are patterns emerging fromnon-equilibriumprocesses in particle-fluid systems.
Their formation share several properties with growth algorithms forminimum spanning trees (MSTs)
in random energy landscapes.We propose that the frictional finger trees are indeed in the same
geometric universality class as theMSTs, which is checked using updated numerical simulation
algorithms for frictionalfingers.We also propose a theoreticalmodel for anomalous diffusion in these
patterns, and discuss the role of diffusion as a tool to classify geometry.

1. Introduction

Frictionalfinger patterns are a result offlow instabilities in quasi-two-dimensional (2D)deformablemedia due
to frictional and capillary forces [1, 2]. Although these patterns have been studied for over a decade, the only
means of characterizing their complex geometry has been their channel width. Thefingers appear when liquid is
withdrawn from a two-phase, particle-fluid system [1–3]. The particles are initially distributed throughout the
systemwith an approximately uniformpacking fractionf, before themoving fluid-air interface compactify the
particle packing. This process leaves behindwalls of particles while the invading air forms bifurcating fingers in a
tree-like pattern (as illustrated infigures 2 and 3 ). The randomgeometry of the emerging patterns arises due to
non-uniformity in the initial packing fraction. Figure 3 shows several patterns, displaying the range of sizes
available. This set offigures is generated numerically, following the procedure outlined in appendix A. Figure 1
shows the 1D skeleton of the pattern, where the fingerwidth has been contracted as infigure 2(c). It is the
geometry of this skeleton treewewish to understand.

The process that generates the frictional finger patterns is inmanyways an optimal pathfinding process that
happens in small bursts. The bursts take place along the existing interface where the force needed to overcome
the compactified particle front is the smallest. This is very reminiscent of the formation ofminimum spanning
trees (MST). Here one assigns aweight e, often thought of as an energy, to every link in a graph or lattice. The
MST is then the tree spanning all the vertices of the lattice (but not all bonds) such that the total energy is
minimized [4]. Hence theMST is a geometry constructed on the basis of global optimization. For the frictional
finger structure, a very similar thing happens although the process now is off-lattice. Both processes terminate
when the structures are space-filling, i.e. they are both examples of random spanning trees.

TheMSTuniversality class is a famous one, towhichmany systems have been argued to belong [5].Minimal
paths onMST,minimal paths on invasion percolation clusters andwatershed lines are examples of random
planar curves with the same apparent fractal dimension of 1.22 [5]. Although the frictional finger trees and the
MSTs follow similar dynamical construction rules it is not obvious that they share universality class. By
numericallymeasuring various geometric exponents wewill see that these differences seemingly does not
significantly alter the resulting tree geometry and that the two are in the same universality class.

Once the geometric universality class is knownwe can predict other exponents by using existing scaling
relations.Most interesting perhaps is the relation between the exponents that define the geometric universality
class and the exponents of dynamical variables of a randomwalker. Randomwalks in randomgeometries,
fractals and tree-like structures often display anomalous diffusion [6–10], whereby themean-squared
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displacement of the randomwalk has a nonlinear asymptotic scalingwith time

x x t t, 1. 1t 0
2á - ñ ~ a ∣ ∣ ( )

In open and uniform space the diffusion exponentα=1 for any dimension. By contrast, in complex
geometries or underflow, the diffusion exponentαmay depart fromunity, being subdiffusive 0<α<1 or
superdiffusive 1<α<2. This type of anomalous transport is typical in complex systems [11–18]. Themost

Figure 1.A frictional finger tree representing the 1D skeleton of the frictional finger pattern. Inset shows a 5×magnification. The
colors represent aHorton–Strahler ordering, as explained in section 3.

Figure 2. (a)A small frictional finger pattern generated numerically. Note the inlet where the growth begins. (b) Frictional fingers with
simplified one-dimensional skeleton tree. (c) Simplified tree only.
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famous example of subdiffusion is perhaps deGennes ‘la fourmi dans le labyrinthe’ (the ant in the labyrinth),
referring to a randomwalker on a 2D critical percolation cluster [9]. In this case the diffusion exponentα is
determined by the critical percolation exponents [10]. Oftenα can be expressed in terms of a handfull of
parameters reflecting the system geometry and boundary conditions. For example, in the case of a random comb
model, the relevant geometric parameter is the tail index (scaling exponent) of the branch-length probability
density [7]. In this way,α depends on the class of geometries constructed using a certain type of length
distribution. Similarly, the universality class ofMST specify such a class of randomgeometries in the case of
spanning trees.

The rest of the paper is organized as follows. In section 2, we introduce the different scaling exponents and
fractal dimensions in random tree-like geometries.We also discuss an effectivemodel for anomalous diffusion
in the finger geometry, relating the diffusion exponent to the systems geometry. Section 3 discusses statistical
measures of branch ordering to classify different tree-like structures. This is then used to determine theHack
exponent of the system.Numericalmeasurements of scaling exponents are presented in section 4. Finally,
concluding remarks are offered in section 5.Numerical details on the frictional finger labyrinths and pattern
analysis are included in the two appendices.

2. Theory

For simplicity, wewillmake the assumption that thewidth of the fingers can be ignored.We therefore replace
the 2D geometry offigure 2with the one-dimensional (1D) tree shown in part (c) of thefigure. This corresponds
to studying the pattern on space and time scales that aremuch larger than the finger width. Amuch larger
version of the 1D tree is shown infigure 1.

2.1. Non-Euclidean fractalmeasures
Let us consider a 1D tree  inwhich distances aremeasured by the intrinsic distance function d, given by the
shortest-path or the geodesic distance between two points. Thus, our trees aremetric spaces consisting of 1D
curves that are topologically equivalent to line intervals. For any two points a b, Î there is a unique non-
intersecting curve connecting them,with a geodesic length d(a, b). This formally describes trees such as those in
figures 1 and 2(c).

To convert from the geodesic distance to the Euclidean one, we need to embed our tree into the plane. The
only requirementwe put on our embedding is that the tree becomes space-filling, tomimic the frictional finger
trees or theMST. The space-filling property ismeasured by the fractal dimension. Let us recall somewell-known
relations between various fractal dimensions.Wewill use themass-length definition of fractal dimension,
following the conventions of [10].

Let a, b be points in  and d(a, b) the geodesic distance between them. Ifj is the function that embeds 
into the Euclidean plane, wewill write x aa j= ( ) and x bb j= ( ) for the 2D vectors. The intrinsic distance d and
the Euclidean distance are related by theminimum-path dimension dm, typically introduced as [10]

Figure 3. Labyrinth-like frictional fingers of different sizes generated numerically.

3

New J. Phys. 21 (2019) 063020 KSOlsen et al



x xd a b, . 2b a
dm~ - j( ) ∣ ∣ ( )( )

Wewill use scalar variables r andℓ for a generic Euclidean and geodesic distance respectively. Tomake a
global estimate for the typical fractal dimension of shortest paths, we propose the following. Pick a point s inside
the tree that is not a branching point or end point. Then consider the set of points a geodesic distanceℓ away
from s:

P p T d s p, .s = Î =ℓ ℓ( ) { ∣ ( ) }

This is nothing but a circle in the geodesicmetric. The average Euclidean distance to these points are then

x xr
P

1
,s

s p P
s p

s

åá ñ º -
Îℓ∣ ( )∣

∣ ∣
ℓ( )

where Ps ℓ∣ ( )∣are the number of points a geodesic distanceℓ away from s. Based on this we could define a local
estimate for theminimumpath dimension. To go to a global estimate we pick a discrete set of sample points S
along line segments and perform aweighted average

r
W r

W
,s S s s

s s

å
å

=
á ñ

Îℓ( )

where theweightsWs are taken to be the length of the line segment containing s asmeasured between the two
nearest branching points. In the remainder of this paper, the overline will signify such an average over sample
points.Wewill then use the following definition for the globalminimumpath dimension

r 3d1 m~ jℓ ℓ( ) ( )( )

which of course depends on the embeddingj through the local average ... sá ñ .
The standard Euclidean fractal dimension df is defined by [10]

m r r , 4df~ j( ) ( )( )

wherem is themasswithin Euclidean radius r. By assumption, our embedding produces df=2 for the space-
filling frictional finger trees.We also introduce the scaling exponent of the connectedmass

m r r , 5c
df

c
~ j( ) ( )( )

wheremc(r) is themass of the connected part of the structure within radius r from a chosen reference point. That
is, if a branch exists the disc of radius r and then enters again somewhere else, the disconnected part is ignored.
On length scales wheremc(r)/m(r) is a constant, the two Euclidean fractal dimensions coincide. This is the scale
where the systemhas awell-developed fractal behavior, butwhere stillfinite-size effects has not significantly
entered.Note that for small radii the ratiomc(r)/m(r) is close to 1 since all themass is connected. In larger scales
when the twomasses deviate wemust have thatmc(r)<m(r), so the graph of their ratio initially decrease with
radius.However, sincewe areworkingwith afinite system size the ratiowill become unity againwhen the
systems radius is hit. To avoid the finite size effects we therefore work in an intermediate range of radii where
mc(r)/m(r) has not yet began to increase towards 1.Wewill discuss this again for the frictional fingers in the
numerical section.

Finally we introduce the connectivity dimension dc as a fractal dimension that ismeasured using themetric
of  (geodesic distance d) and therefore does not depend on the embedding of the tree. For a ball of geodesic
radiusℓcentered at a point s on the tree

B s p d s p, , ,= Î <ℓ ℓ( ) { ∣ ( ) }

we can define the connectivity dimension dc by looking at how themasswithin the ball scales withℓ, i.e.
B s, dc~ℓ ℓ∣ ( )∣ [10, 19]. To get a global estimatewewill again perform an average over a set of sample point, and
we define

B s, . 6dc~ℓ ℓ∣ ( )∣ ( )
Sincewewill only refer to the global connectivity dimension, wewill write d dc cº for simplicity. The three
fractalmeasures, d d,m f and dc, are related by the fact that themass, i.e. total length, of the tree should be
conserved under an embedding. Using equations (3) and (6)we see that

B s r, .d dc m~ℓ ℓ∣ ( )∣ ( )
The averagedmass B s, ℓ∣ ( )∣measured using Euclidean length is nothingmore that the connectedmass in
equation (5). Hence, we expect that d d df

c
c m= . Asmentioned above, there is a range of length scales where the

connectedmass and the totalmass scales with the same dimension, so in this rangewe expect that
d d d df

c
f c m= = . Hencewe only need two of these three exponents.We already know that our trees have df=2

by construction, so dc and dm are the interesting quantities.
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2.2. Anomalous diffusion
Tomodel anomalous diffusion in the space-filling frictional fingers we use an effectivemedium approach, where
the tree structure is replacedwith a homogeneousmediumwith a spatially varying diffusion coefficient.

We are interested in the transport in the radial direction. The current can bewritten

j r r r
r

,D r r d
d
t

= - +[ ( ) ( )]

where τ is the time step and r x xr t t1d = -+ˆ · ( ) is the projection onto the radial direction of the random
walkers step. Expanding in small step size wefind

j
r

.D r

2d
t

r= - ¶

By performing an ensemble averagewe can read of the diffusion coefficient

D r
r

,
2

ens

d
t

=( )

where ... ensá ñ is an ensemble average andD is defined so that the current takes the standard Fickian form
j DD rr= - ¶ . Since the diffusion happens on the tree structure, theremay be a non-trivial spatial dependence in
the diffusion coefficient.

Whenever the particlesmove in an external potentialV, the equations take the altered forms [20]

j x , 7tr¶ = - · ( ) ( )
j x x V D . 8m r r= -  - ( ) ( ) ( )

Hereμ is themobility. The current should vanish in equilibrium,where the distribution takes on a Boltzmann
form Z e V x k T1 Br = - - ( ) . Using this to calculate the gradient r we find

j x x D x k T V .Bm r= - + ( ) [ ( ) ( ) ]( )

For this current to vanish, the Einstein relation x D x k TBm =( ) ( ) must hold locally [20].
Themapping between the frictional fingers and the effectivemedium ismade through the Einstein relation

for conductivity.Wewill demand that the effectivemedium satisfies the same Einstein relation as in the tree
structure. In the presence of an electric field themobility reads x x nq2m s=( ) ( ) , whereσ is the conductivity, n
the equilibriumparticlemass density and q the particle charge [10]. At large times the particle density n is
uniform throughout the space-filling tree, so it has no interesting scaling. The Einstein relation then implies the
scalingD(r)∼σ(r), wherewe assumed a radial dependence only.

To extract the spatial scaling of the diffusion coefficient consider two large concentric circles in the frictional
finger tree, centered on the initial position of the randomwalker. LetΔR denote the radial distance separating
the two circles. Since the tree has a statistical self-similarity we expect that if we remove all the shortest branches
and increaseΔR the statistics of the paths connecting the two circles remains the same. In particular, the number
of paths remains the same. A randomwalker starting at the inner circle will pick one of the paths on its journey to
the outer circle, and the typical geodesic distance of the path is Rdmá ñ ~ Dℓ , where ...á ñ is some average over the
fixed number of paths. The conductivity of a single path scales with its inverse length, so the effective
conductivity should behave a leading order scaling behavior

R
1 1

... .dmsá ñ ~ =
á ñ

+ ~D -

ℓ ℓ

Using this as the relevant conductivity, the Einstein relation gives the power-law scaling D r r dm~ -( ) .
We can now solve the free diffusion problem.Using the continuity equation for our Fickian current

j D rD r= - ( ) we get the diffusion equation

r
rD r

1
0. 9t r rr r¶ - ¶ ¶ =[ ( ) ] ( )

If we think of the diffusion problemwith spatially depending diffusivity as a Langevin problem x g r th=˙ ( ) ( )
with δ-correlatedwhite noise η and g2/2=D an interpretation of the stochastic integrals is needed to derive the
Fokker–Planck/diffusion equation. Equation (9) corresponds to theHänggi interpretation, in contrast to the Ito
and Stratonovich interpretations which have an additional drift term proportional to∂r D(r) [20, 21].

The solution of equation (9) for a power-law diffusivity D r D r0= x-( ) is known to be [22]

r t
d D t

r

D t
,

2

2 2

1

2
exp

2
,

s 0
2

2

0
2

ds
2

r
x

p x x
=

+
G +

-
+

x+⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟( )

( ) ( ) ( )

where ds=4/(2+ξ) is the so-called spectral dimension governing the scaling of the return probability
t t0, d 2sr ~ -( ) . The distribution is normalized as r rd 2 1

0ò p r =
¥

( ) . Themoments of the distribution reads

5

New J. Phys. 21 (2019) 063020 KSOlsen et al



r
D t2

.m

m 2

2 0
2

2

2

m
2x

á ñ =
G +

G

x

x

+
+

+

x+( )
( )

[ ( ) ]

In particular, the secondmoment scales as r t2á ñ ~ a, withα=2/(2+ξ).We know that ξ=dm, which implies
the diffusion exponent

d

2

2
. 10

m

a =
+

( )

Hadwe not assumed that the particle density was uniform throughout a space-filling structure, the number 2 in
the denominator would have been replacedwith the fractal dimension, yielding the standard equation for
diffusion exponent in trees [10].

2.3.MSTuniversality class
AnMST is an example of a spanning tree generated byfindingminimal energy configurations on a lattice. If we
write (i,j) for a link connecting sites i and j on the square lattice we assign some energy òij to the links using some
probability distribution P(ò). A subset S of the lattice nowhas the energy [4]

E S .
i j S

ij
, 2




å=
Î Ì

( )
( )

AnMST is the tree on the lattice with lowest energy. This globally optimized structure can be obtained through
algorithms based on a local optimization procedure [23]. Here one chooses an initial site in the lattice and grows
a spanning tree byfirst choosing the bond connected to the initial site with the lowest energy, and the proceeds
by addingminimal energy links connecting sites in the cluster to ones neighboring the cluster. One can only add
bonds that does not form a loop in the cluster. The resulting geometry is independent of the initial site and is the
uniqueMST on the lattice provided that the energies òij of bonds are unique [23]. This can in practice be assumed
to hold, since if it were not the case some infinitesimal perturbation of the energies can be applied tomake them
unique.

It is well known that there is some universality associatedwith theMST. In particular, the values of the link
energies are irrelevant—only the ordering of energiesmatter [4]. Clearly, if wewere to shift all energies ò→f (ò)
in such away that the order remains unchanged, the same linkswill be invaded at every time step. This set of
transformations on the energy landscape leaves invariant the final geometry of the resultingMST. This freedom
in choosing the energies by any order-preserving function f is the a source of universality for theMST [4]. For
example, it does notmatter if the energies are distributed close to each other orwith largefluctuations, as long as
the energy hierarchy is the same.

Since it is a spanning tree, theMSThas fractal dimension d mst 2f =( ) . It is also known that theminimum
path dimension takes the value d mst 1.22 0.01m = ( ) [4]. This is also theminimumpath dimension of strands
in invasion percolation, optimal path cracks and fractal watershed lines [5]. From equation (6)we see that the
connectivity dimension forMSTs should be roughly d mst 2 1.22 1.64c » »( ) . Using equation (10), which
should hold for any space-filling tree structure, we also get an approximate diffusion exponent mst 0.62a =( ) .

Aswe noted in the introduction, the formation of frictional finger trees follow similar rules as theMST. The
interface in the fluid-particle system evolves by finding the region along the interface where the energy barrier is
smallest, and then evolves until friction stops the growth.Hence the frictional finger trees are formed by local
optimization rules. Also in this case it is the ordering thatmatters. If onewere to partition the interface into
boxes, eachwith an average energy barrier height, it is clear that the interface will evolve in the boxwith smallest
energy. Once the interface has evolved it has become longer, andmore boxes are needed for the partition.New
energies corresponding to newboxes are then added to the hierarchy of energies. The evolution of the interface
then proceeds again by finding the smallest energy. The distribution of energy barriers for the frictional finger
case depends on the random initialization of the packing fraction. Although the frictional finger trees are
constructed in the continuumwhile theMST on a lattice there is a lot of similarity in the two systems.Whether
or not this analogy can bemade into a statement of equivalence is one of themain questions asked in this paper.

3.Horton–Strahler statistics

The ordering scheme due toHorton [24] and Strahler [25] is a way to classify topologically complex networks.
Recall that ourworking definition of a tree is a connected set where for every two points there is a unique curve
connecting them.Wewill need somemore terminology for trees to proceed. A endpoint of the tree  is a point p
such that by removing it, p⧹ , we still have one connected component. A branching point is a point p Î such
that p⧹ has at least three disconnected components. Similarly, removing point along a line segmentwill split
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the tree into two connected parts. The line segment connecting an endpoint to its closest branching point is
called a leaf. By a root wewillmean a designated endpoint of the tree, and the line segment connecting this point
to a branching point is no longer considered a leaf.

3.1. Topological branch ordering
The pruning of a rooted tree is a transformation

:    ( )

that gives a new tree obtained by removing all leaves from the original tree [26]. The order of a line segment in the
tree is nowdefined as the number of pruning transformations needed to remove it. The union of a collection of
connected line segments with the same order is called a branch. TheHorton–Strahler number of the tree is
defined as the number of pruning transformations needed to eliminate the tree in its entirety, i.e. if   = Æ( )
the tree hasHorton–Strahler number [26].Whenwewant tomake theHorton–Strahler number of a tree
explicit wewill write . An example of these ordering rules are shown infigure 4.

Note that theHorton–Strahler number is a topological invariant of the tree—there is no reference to a
metric when defining it. It is also ameasure of the size and complexity of the tree. Another interesting topological
invariant for trees is the bifurcation ratio. Let nw be the number of branches with orderw. Following [27], the
bifurcation ratio is defined as

r w
n

n
. 11B

w

w 1

=
+

( ) ( )

This quantity contains information regarding the self-similarity of the tree. The type of self-similarity is a
topological one because it only relies on the counting of branches- if the bifurcation ratio is independent of
branch order rB(w)=rB the structure has rBmore branches at orderw than at orderw+1, and rBmore
branches at orderw+1 than at orderw+2 et cetera. The termination of this process is dictated by the
Horton–Strahler number, i.e. when w 1= - .

Analogously to the bifurcation ratiowe can define a length scaling ratio. Let Lw be the average internal length
of a branch of orderw. Then the length scaling ratio is defined as

r w
L

L
. 12L

w

w 1

=
-

( ) ( )

Figure 4.Example of a tree structurewith highest order 3. This tree has seven order 1 branches, two order 2 branches and one order 3
branch. The root is denotedR.
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3.2. The topological fractal dimension
With theHorton–Strahler parameters definedwe can analyze another generalized dimension of our system.
This analysis closely resembles that in [28, 29], but we review it here for the sake of completeness.

Consider a treewith givenHorton–Strahler parameters rB(w), rL(w) and. The totalmass of the tree can be
written as a sumover all orders

m n L .
w

w w
1




å=
=

( )

The topological fractal dimension dt can nowbe defined through thismass and the length of the highest order
branch m L dt ~( ) [28]. This can be rewritten as

d
m

L
lim

log

log
. 13t 










=
¥

( ) ( ) ( )

The number of branches of a given order nw can bewritten as a product of bifurcation ratios. Using the definition
in equation (11), we have

n r w .w
w w

B



= ¢
¢=

( )

Similarly, using equation (12) the average lengths can bewritten

L L r w .w
w

w

L1
2

=
=

¢

¢

( )/

Wewill set the leaf lengths L1=1, for simplicity. Assuming thatwe can approximate our treewith a self similar
treewe get n rw B

w= - and L rw L
w 2= - . Themass is then in the formof a geometric series

m
r

r

r

r

r

r r r

r

r
1 .B

L w

L

B

w
B

L B L

L

B
2

1


   

å= =
-

-
=

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( )

( )

Using equation (13)with L rL
2


= - and assuming that rL/rB<1wefind as in [28]

d
r

r

log

log
. 14t

B

L

 =¥( ) ( )

This topological fractal dimension is expected to satisfy the same relation as the connectivity dimension, i.e.
df=dt dm [30], and hencewe expect that dc=dt. This will be checked numerically in the next section.

The topological fractal dimension is closely related to the so-calledHack exponent. For any point p Î we
denote by p the subtree rooted at p containing all points further away from themain root. Let also m pℓ ( )
denote the geodesic length of the largest path containing p in such a subtree. TheHack exponent h is then
defined through [30]

m . 15p
h

m p ~ ℓ( ) ( ) ( )

In the study of river network topology, this exponent is typically defined through the relation between the
drainage basin area connected to p, sometimes denoted ap, and themaximal geodesic length inside it, but for
space-filling structures we expect a mp p~ ( ). For self-similar trees it is also expected that m pℓ ( ) scales in the
sameway as the highest order branch in the subtree. In this case theHack exponent should be h d1 t= . It is
known that theHack exponent indeed satisfies the inverse of equation (14) [30].Wewillmeasure theHack
exponent independently in addition to theHorton–Strahler ratios in the next section.

Beforewe turn to the numerical sectionwewant to point out that for space-filling systemswith df=2 every
other geometric exponent discussed in this paper can be expressed in terms of theHack exponent by using the
discussed scaling relations. In summary:

d d h1 , 16c t= = ( )

d h2 , 17m = ( )

h1 , 181a = + -( ) ( )

r r . 19L B
h= ( )

The last of these equations can be seen as a consistency condition between theHorton–Strahler ratios and the
Hack exponent for self-similar systems in the thermodynamic limit.
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4.Numerical results

In this section, we numerically calculate the various dimensions and exponent that we have discussed in the
theory andHorton–Strahler sections.We alsomeasure the diffusion exponent and comparewith equation (18).
The frictional finger patterns used are generated numerically using the scheme presented in appendix A, and
they aremapped into 1D trees using the pattern analysismethod from appendix B. Table 1 summarizes the
values for various exponents.

4.1. Connectivity andminimumpaths
The connectivity dimension dc and theminimum-path dimension dm are defined by equations (6) and (3)
respectively. A set of sampling points a is chosen such that it contains one randompoint along the length of each
line segment of the tree. Then for a series of lengths l along the branches, wemeasure both the total branch length
within l from a, B a l,∣ ( )∣, and themean Euclidean distanceD from a of the set of points exactly l from a. For
each l, we take aweighted average by branch length of both B a l,∣ ( )∣andD across all points a to derivemean
values for thewhole pattern. To avoid influence from the pattern’s edge, only points a at least a geodesic distance
l from the labyrinth perimeter are considered.

The fractal dimensions dc and dm can be found by plotting B a l,∣ ( )∣andD respectively against l, as is shown
infigure 6, using data from the largest labyrinthwithHorton–Strahler number 9. Numerical values are obtained
of dc=1.67±0.05 and dm=1.25±0.03.Note that d d d 2.09 0.08c m f= =  , which, in theory, should
correspond to the Euclidean fractal dimension df.

The range corresponding to the unshaded region infigure 6 is taken fromfigure 5, which shows the ratio
mc(r)/m(r).We see that as expected the graph interpolated between 1 at small r and 1 at large r, and in between
stabilizes in a range of radii. This range depends on the size of the system. The data infigure 6 corresponds to the
largest system.

4.2. Anomalous diffusion in frictionalfinger labyrinths
Diffusion in frictional fingers is studied by Brownian randomwalkers. Figure 7 shows the schematic setup of the
simulations. A discrete randomwalk is released inside the frictional fingers, with a lattice spacing that is smaller
than thefinger width by one order ofmagnitude. For the sake of simplicity, we use hard-wall boundary
conditions, i.e. when the particle hits thewalls that step is discarded and a new step is taken.

Themean-squared displacement x x tt 0
2á - ñ ~ a∣ ∣ is then calculated for labyrinths of different sizes.

Figure 8 shows the simulation results in systemswhere the sizes differ by a factor of 16. The largest system
corresponds tofigure 1.We see that the diffusion exponent decreases with system size, and for the biggest system
we haveα≈0.64.

Infigure 8 the slopes are found by the bestfit of the data points. The diffusion exponent could also be found
through detrended fluctuation analysis (DFA). In general, DFA is a tool that can be used to study correlations or
scaling for long time series [31–33]. By applying themethods ofDFA to the randomwalkers position xt, one can
through the scaling exponentαDFA of theDFA fluctuation function find the anomalous diffusion exponent
through 2 1DFAa a= -( ) [33]. Hencewe expectαDFA≈1.32, signifying a time signal with positive
correlations [31, 32].

Table 1.Definitions and values for various exponents. The fourth column shows the value of various exponents based on direct
measurements in the frictional finger trees. The last two columns shows the values for frictional finger trees and forMSTbased on expected
scaling relations from equations (16)–(18). The values forMST are based on the value for dm given in [4], and the values for the frictional
finger trees are based on the directmeasurement of theHack exponent. In both cases we assume df=2 is known. The algorithms used for
directmeasurements are described in the text.

Exponents

Defining relation Name

Value (direct
measurement)

Value (UsingHack

exponent) Value (MST)

df m r rdf~( ) Fractal dimension 1.997±0.007 × 2

h m p m p
h1 ~ ℓ( ) ( ) Hack exponent 0.60±0.015 × 0.61±0.005

dc m dc~ℓ ℓ( ) Connectivity dimension 1.67±0.05 1.67±0.04 1.64±0.01
dm rdm~ℓ Minimumpath dimension 1.25±0.03 1.20±0.03 1.22±0.01 [4]
dt m L dt ~( ) Topological fractal

dimension

× 1.67±0.04 1.64±0.01

α x x tt 0
2á - ñ ~ a( ) Diffusion exponent 0.64±0.03 0.63±0.01 0.62±0.002
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4.3. Topological scaling andHack exponent
From the simplified 1D tree structure, it is possible tofind theHorton–Strahler order of each branch, and to
report the number andmean length of branches of each order. These trees are not perfectly self-similar, but to a

Figure 6.Graph showing, for a series of lengths l along the branches, the total length B a l,∣ ( )∣within l of a position (red squares), and
themean Euclidean distanceD of points exactly l away from aposition (blue circles), averaged overmany reference positions within
the largest labyrinth. Equations (6) and (3)may be used to estimate the fractal dimensions dc and dm respectively from the gradients of
these lines. Lengths l are in arbitrary units, ranging between the typical width offingers at the left of the graph to the radius of the
labyrinth at the right. Values for small length scales—which are strongly influenced by the characteristic length scale of thefingers—
are not used for estimating the slopes. The non-shaded area, obtained fromfigure 5, is the domain usedwhenfitting the data.

Figure 7. Sketch of the numerical situation. The fingers are discretized so that the fingerwidth is of the order 5−7 lattice spacings.
Boundary conditions are reflective.

Figure 5.Graph showing the ratio of connectedmass to totalmass as a function of radius for finger patterns of various radiiR in
arbitrary units. A range of radii are identified as the domainwhere this ratio ismore or less constant. In thefigure this corresponds to
the unshaded region for the largest labyrinth.
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good approximationwe can use an average value of theHorton–Strahler ratios when doing our calculations.
Figure 9 shows the number of branches of a given order and their average geodesic length in a logarithmic scale.
Note that in a self-similar tree we should have n rw B

w= - , so that n w rlog logw B~ - ( ). Hence the slope in this
plot determines the bifurcation ratio for a self-similar structure, giving rB≈4.1±0.15. Similarly we find
rL=2.15±0.10 from the slope of the blue (circular) data points infigure 9.

Figure 10 shows themass of subtrees versusmaximal geodesic length, which gives us theHack exponent
h=0.60±0.015. Using equation (19) one can show that themeasured value for h and the values for rB and rL
indeed are consistent, within the uncertainties. Using the numerical values of the ratios and equation (19),
solving for h gives the value 0.54±0.06.However, there are larger sources of error in themeasurements of the
ratios, so the directmeasurement of theHack exponent ismore reliable.

Using equations (16)–(18)wehave from themeasuredHack exponent the values

d d1.67 0.04; 1.20 0.03; 0.63 0.01.t m a=  =  = 

We see this value of dt agrees verywell with the directmeasurement of the connectivity dimension dc as expected.
The diffusion exponent also agrees with simulations on frictional fingers.Within the uncertainties these values
all agreewith those of theMSTuniversality class.

Figure 9.Graph showing the scaling of branch count nw (red squares) andmean branch length lw (blue circles)with branch orderw.
Black lines showfits of rB=4.1 and rL=2.15, ignoring the points corresponding to branch order 1 in each case. Uncertainties on nw
are assumed equal to nw , and uncertainties on lw are estimated from the standard deviation. There is no uncertainty for l8 or l9 due to
insufficient data to find a standard deviation, and these values are not used in thefit. The error bars onmost other points are smaller
than the symbols.

Figure 8. Figure showing themean-square displacement for systems of different size. The orange line corresponds to a labyrinthwith
diameter d1=30 cm, the blue line to a diameter d2=8d1, and the purple line to the biggest labyrinthwith diameter d3=16.7d1. For
reference, lines with slope 6/10 and 7/10 has been included.We expect that the slopes have an uncertainty of the order±0.03.
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5. Conclusion

Wehave argued that the frictional finger trees belong to the same universality class as theMSTs. Several
geometric exponent weremeasured, both directly and indirectly, and comparedwith values forMSTs, which
confirmed the hypothesis. The values of the geometric exponents also give a value for the diffusion exponent
associatedwith the universality class, which agrees with randomwalk simulations.
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AppendixA.Numerical generation of labyrinths

The numerical simulations that generate the labyrinth are in principle the same as those described in [2].Motion
of the air-grain front takes placewhere there is least resistance in terms of frictional and capillary forces. This
means that both inertial and viscous forces are neglected.

The simulations are based on a discretization of the front into points labeled iwhich are updated bymoving
one point at the time a certain length dx along the local unit normal ni at each update, as is illustrated in
figure A1.

Wheremotion takes place, the driving pressure P balances the frictional and capillary forces so that

P
R

L. A.1
g

m= + ( )

Here γ is the effective surface tension,μ a friction coefficient,R the local radius of curvature and L the local
frontwidth. Figure A1 shows how these quantities are discretized.Here ri is the point to bemoved so that

xr r n di i i + . The normal vector is simply taken to be the unit normal to r ri i1 1-+ - . The curvature is
calculated as follows.

Consider the shaded triangle infigure A2.Here

a

b

r r r r n

r r

1

2
1

2
.

i i i i i

i i

1 1

1 1

=- - + -

= -

- +

+ -

[( ) ( )] ·

∣ ∣

Figure 10. Figure showing themaximal length of subtrees versus theirmass, for simplicity denoted a (‘area’). Slope gives theHack
exponent h 0.60 0.015=  .
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Pythagoras theorem then immediately gives

R

a

b a b

1

2 1
.

2 2
=

+[ ( ) ]

In the limit where b?awehave the following expression for the curvature

R

r r r n

r r

1

2

2 2
. A.2i i i i

i i

1 1

1 1
2

=
- -

-
+ -

+ -

( ) ·
( )

( )

In addition to the front particle positions ri{ }, the local front thickness needs to be stored and updated.
When xr r n di i i + the front thicknessmust be updated simultaneously. This happens by the combined
action of front stretching, which reduces Li, andmass accumulation, which increases L. Themass accumulation
happens because a region of packing densityf<1 becomes af=1 region. Themass added to the front gives
an additionf /(1−f ) dx to L. The stretching adds nomass to the front, so that this step conserves the area Ls
(see figure A1), that is, d(Ls)=0, so that dL=−Lds/s. The two steps combined then gives

L x L
s

s
d

1
d

d
, A.3i i

i

i

f
f

=
-

- ( )

where s r r r ri i i i i1
2

1
2= - + -+ -( ) ( ) , so that wemaywrite the increment

s
x

s

r r r n
d

2 d
. A.4i

i i i i1 1=
+ -+ -( ) · ( )

Figure A2.Triangle used in the calculation of the radius of curvature.

Figure A1.The discretized front, showing the point ri to bemoved along the unit normal ni. Here Li+1 is the local front width, and the
radius of curvatureR coincides with the local position vector ri.
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If the front folds back tomeet itself, it is stopped, as is illustrated infigure A3. Randomness is introduced by
adding a 10%white noise on the initial packing fractionf.

Appendix B. Pattern analysismethods

In order tomeasure branching statistics and fractal dimensions of our patterns, it is necessary to represent them
as logical tree structures. Labyrinths are first rendered as binary images, and a binary closing operation is
performed to remove small-scale structure on length scales below that of the frictional fingers. A skeletonizing
algorithm then reduces all branches to single-pixel width. A custom algorithm (previously used in [34]) uses this
skeletonized image to produce a formof the labyrinth expressed as a hierarchical tree of nodes, inwhich each
node holds information on its parent and descendant nodes, on its position, and on the length and shape of its
branch. Leaves with length below the length scale of the binary closing operation are pruned from the tree, as
they are unlikely to represent real structural features.
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