1 Distinct phenotype of CD4⁺ T cells driving celiac disease identified in multiple autoimmune

2 conditions

3

- 4 Asbjørn Christophersen^{1,2,3,4}, Eivind G Lund^{1,2,3,14}, Omri Snir^{1,2,3,14}, Elsa Solà^{4,5}, Chakravarthi
- 5 Kanduri^{1,6}, Shiva Dahal-Koirala^{1,2,3}, Stephanie Zühlke^{1,2,3}, Øyvind Molberg^{2,7}, Paul J Utz⁴, Mina
- 6 Rohani-Pichavant⁴, Julia F Simard⁸, Cornelia L Dekker⁹, Knut EA Lundin^{1,2,10}, Ludvig M
- 7 Sollid^{1,2,3,11,15} & Mark M Davis^{4,12,13,15}
- 8
- 9 ¹KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.
- 10 ²Institute of Clinical Medicine, University of Oslo, Norway.
- 11 ³Department of Immunology, University of Oslo, Oslo, Norway.
- 12 ⁴Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA,
- 13 USA.
- 14 ⁵Liver Unit, Hospital Clínic Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain.
- 15 ⁶Department of Informatics, University of Oslo, Oslo, Norway.
- 16 ⁷Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.
- 17 ⁸Epidemiology, Health Research and Policy, Stanford School of Medicine, Stanford, CA, USA
- 18 ⁹Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- 19 ¹⁰Department of Gastroenterology, Oslo University Hospital, Oslo, Norway.
- 20 ¹¹Department of Immunology, Oslo University Hospital, Oslo, Norway.
- 21 ¹²Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- 22 ¹³The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
- 23 ¹⁴These authors contributed equally to this work
- 24 ¹⁵These authors contributed equally as last authors to this work and correspondence should be directed to them
- 25 (I.m.sollid@medisin.uio.no and mmdavis@stanford.edu)

27 ABSTRACT

28 Combining HLA-DQ:gluten tetramers with mass cytometry and RNA-seq analysis, we find 29 that gluten-specific CD4⁺ T cells in blood and intestines of celiac disease patients display a 30 surprisingly rare phenotype. Cells with this phenotype are also elevated in patients with 31 systemic sclerosis and systemic lupus erythematosus, suggesting a way to characterize 32 CD4⁺ T cells specific for disease-driving antigens in multiple autoimmune conditions.

33

34 MAIN TEXT

35 Celiac disease (CeD) is an HLA-DQ2/8-associated autoimmune enteropathy driven by the 36 activation of gluten-specific CD4⁺ T lymphocytes upon gluten consumption¹. We combined 37 gluten peptide-HLA-class II tetramers with a 43-parameter antibody panel for mass 38 cytometry analysis (Extended Data Fig. 1-2, Supplementary Table 1). We found that cells 39 binding these tetramers, representing five gluten peptides complexed to HLA-DQ2.5 40 (Supplementary Table 2), cluster within a surprisingly narrow subset of small intestinal CD4⁺ T cells in HLA-DQ2.5⁺ untreated CeD patients and comprise 0.3-1.5% of the total (Fig. 1a-b, 41 participants: Supplementary Table 3). These gut T cells expressed multiple activation 42 43 markers (CXCR3, CD38, CD161, CD28, HLA-DR, OX40) as well as CD39 and PD-1, suggestive 44 of chronic activation, while being negative for the exhaustion marker KLRG1 (Fig. 1c-e, Supplementary Table 4, per donor in Extended Data Fig. 3). Importantly, the transcriptional 45 profile of these tetramer positive CD4⁺ gut T cells correlates highly with the surface marker 46 47 expression (Fig. 1f, Extended Data Fig. 4).

48

Additionally, RNA-seq analysis demonstrated that CD200, CD84, CXCL13 and IL-21 are
transcribed as well (Fig. 1g, complete list in Supplementary Table 5). These markers are

characteristic of follicular B-helper T (Tfh) cells, except that CXCR5 was not detectable on 51 52 the surface of tetramer positive gut T cells (Fig. 1c-e), despite some transcription (Fig. 2f). Relevant to this, it was recently demonstrated that CD4⁺/PD-1⁺/CXCR5⁻ cells, of unknown 53 antigen specificity, are expanded in the synovium of seropositive rheumatoid arthritis (RA) 54 patients and express a similar phenotype to what we report here, including expression of 55 CD200, CXCL13, IL-21, PD-1, ICOS, OX40 and CD28². The authors speculated that these cells 56 induce plasma cell differentiation in the inflamed tissue. In general, T-cell induced plasma 57 58 cell differentiation should show signs of proliferation and, with respect to the gluten-specific 59 CD4⁺ T cells analyzed here, the proliferation marker Ki-67 was expressed in blood (13-98%) but not in the gut (Fig. 1h-i). Conceivably, gluten-specific T cells in CeD can promote 60 production of disease-specific antibodies to transglutaminase 2 and deamidated gluten 61 62 peptides³. Our findings here, together with previous reports showing that these disease-63 specific gut plasma cells are negative for Ki-67^{4,5}, indicate that the disease-relevant T- and B 64 cells initially interact and proliferate outside the celiac lesion. Once entering the gut, T cells may interact with plasma cells via the plasma-cell presentation of gluten T-cell epitopes⁶ 65 and influence the microenvironment. IL-21 is a key cytokine for plasma cells⁷ and 66 intraepithelial lymphocytes⁸, both of which are increased in the celiac gut lesion^{1,4}. 67 68

While the relationship between lymphocytes in the blood versus those in tissues is
frequently a question, here we find that gluten tetramer-binding T cells in blood of
untreated CeD patients largely expresses the same pattern of markers as in the gut (CXCR3⁺,
CD38⁺, CD39⁺, PD-1⁺, HLA-DR⁺, CD161⁺, KLRG1⁻, CD28⁺, OX40⁺; Fig. 2a-e, per donor in
Extended Data Fig. 5), except for being CD69⁻. Further, despite Ki-67 expression (Fig. 1h-i),
only a small fraction of the tetramer positive cells in blood expressed CXCR5 (confirmed by

75 FACS in Extended Data Fig. 6) and thus do not express a classical Tfh phenotype. As

76 previously observed⁹⁻¹¹, the tetramer-binding cells were almost exclusively effector memory

- 77 cells (CD45RA⁻, CD62L⁻), integrin- β 7⁺ and CD38⁺.
- 78

79	It was recently reported that most gluten-specific cells express a Treg cell phenotype
80	(CD127 ⁻ /CD25 ⁺ /FoxP3 ⁺) after gluten exposure in vitro ¹² . While confirming this finding
81	(Extended Data Fig. 7a-b), our ex vivo analysis revealed that these cells are CD137 ^{low} , chiefly
82	CD25 ⁻ (Fig. 1 and 2) and negative for the Treg marker GARP (Extended Data Fig. 7c). And
83	while some gluten-specific cells express FoxP3, these cells were CD25 ⁻ (Extended Data Fig.
84	7d-g). Thus, gluten-specific T cells in vivo do not express a classical Treg phenotype.
85	
86	We next asked whether antigenic stimulation drives these CD4 ⁺ T cells. This involved a
87	three-day oral gluten challenge in five CeD patients (previously on a gluten-free diet), which
88	is known to mobilize preexisting clones of gluten-specific and gut homing T-cells into the
89	blood on day six ^{10,13} . Upon challenge, these cells upregulated markers expressed by gluten-
90	specific cells in the untreated celiac patients, including CD38, CD39, CXCR3, PD-1, ICOS,
91	CD161, CCR5 and CD28 (Fig. 2f). These cells clustered in close proximity to tetramer-binding
92	cells in untreated CeD, (Fig. 2g), differing chiefly by higher CCR5- and lower CD39-expression
93	after the gluten challenge. Taken together, specific antigen-stimulation in vivo prompts
94	gluten-specific T cells with an almost identical phenotype as those typical of untreated CeD.
95	
96	To characterize the CD4 ⁺ T-cells in patients with other autoimmune conditions, we
97	performed mass cytometry analysis in PBMCs of patients with systemic sclerosis, systemic

98 lupus erythematosus, together with CeD subjects and presumably healthy blood bank

donors (participants: Supplementary Table 6, antibody panel: Supplementary Table 7). We 99 100 also included subjects suffering from acute influenza infection for comparison purposes. 101 Unsupervised clustering of activated (CD38⁺), memory (CD45RA⁻) CD4⁺ blood T cells showed that, unlike in CeD and the two other autoimmune conditions, the influenza-response was 102 103 dominated by a CD161⁻/CD39⁻ subset (Fig. 2h), which faded with disease recovery and was very low in the other samples (Extended Data Fig. 8). We then tested whether an unbiased 104 estimation (Extended Data Fig. 9) would report elevated levels of cells with the gluten-105 106 specific T-cell phenotype profile in these disease states. Strikingly, we found that 7/8 107 untreated CeD patients, 8/10 systemic sclerosis patients and 4/10 SLE patients had significantly elevated numbers of CD4⁺ T cells with this phenotype compared to controls 108 109 (Fig. 2i). Manual gating gave similar results (Extended Data Fig. 10), and we conclude that 110 this subset is elevated in many patients with these types of autoimmunity. While 4/7 111 influenza infected individuals also showed elevated numbers of CD4⁺ T cells with the 112 phenotype displayed by gluten-specific cells, this was only a minor part of an influenza response (median <2% versus 20% constituted by the CD161⁻/CD39⁻ subset; Fig. 2h, 113 Extended Data Fig. 8). It is nonetheless intriguing that CD4⁺ T cells with the unique 114 115 phenotype of gluten-specific cells are elevated not only in autoimmune conditions but also 116 transiently during the acute phase of a viral infection. We speculate that these cells, unlike the CD161⁻/CD39⁻ cells, may represent self-antigen specific T cell clones that cross-react with 117 influenza antigens, as suggested by the abundance of self-specific cells in healthy human 118 beings¹⁴ and their propensity for cross-reactivity¹⁵. 119

120

In conclusion, CeD is the only human autoimmune disease in which the causative antigen is
known, despite decades of effort in other systems. Here our results, combined with similar

findings in RA², strongly suggest that there is a distinct and relatively rare type of CD4⁺ T
lymphocytes that is common to multiple autoimmune disorders and transiently in at least
one viral infectious disease. Since we know that most or all of the gluten-specific T cells are
in this subset in CeD patients, it is reasonable to imagine that these cells might be the key
disease-driving T cells in other autoimmune diseases as well.

128

129 ACKNOWLEDGEMENTS

130 We thank the patients participating in this study, S. Furholm, C. Hinrichs and M.H. Bakke for collecting patient material at the endoscopy unit (Oslo University Hospital – Rikshospitalet), 131 the Stanford-LPCH Vaccine Program with S. Swope and S. Mackey for the study of influenza 132 patients, A. Nau (Davis group), M. Leipold (The Human Immune Monitoring Center, Stanford 133 134 University) and Brith Bergum (Flow Cytometry Core Facility, University of Bergen) for technical assistance with the Helios mass cytometers, B. Simonsen and S.R. Lund (Sollid 135 group) for producing the biotinylated HLA-DQ2.5:gluten molecules, M.K. Johannesen (Sollid 136 group) for lab technical assistance, K.J. Rolfsen (University of Oslo) for producing the cookies 137 for gluten challenge, G.K. Sandve (University of Oslo) for critical inputs on RNA-seq data 138 analysis in addition to V.K. Sarna (University of Oslo) and L. Chung (Stanford Medicine) for 139 help in clinical assessment of patients. We also thank the Flow Cytometry Core Facility (Oslo 140 University Hospital – Rikshospitalet and Radiumhospitalet) and the Stanford Shared FACS 141 142 Facility for technical assistance. We express our gratitude to the funding bodies of this research: The University of Oslo Scientia Fellows program, co-funded by the University of 143 Oslo World-leading research program on human immunology (WL-IMMUNOLOGY) (L.M.S) 144 145 and by the EC FP7 Maria Sklodowska-Curie COFUND Programme (GA 609020) (A.C., L.M.S);

146 Stiftelsen KG Jebsen (project SKGJ-MED-017) (L.M.S., K.E.A.L.); The Unger-Vetlesen Medical

147 Fund (A.C.); The U.S.-Norwegian Fulbright Foundation for educational exchange (A.C.);

148 Fondsstiftelsen (Oslo University Hospital) (A.C.); The Howard Hughes Medical Institute

- 149 (M.M.D.); The Simons Foundation (M.M.D.); The National Institutes of Health; U19-
- 150 AI057229 (M.M.D.), U19-AI110491 (P.J.U.), UL1 TR001085 (C.L.D.) and R01 AI125197-01
- 151 (P.J.U.); The Donald E. and Delia B. Baxter Foundation (P.J.U.); The Henry Gustav Floren

152 Trust (P.J.U.); and a gift from Elizabeth F. Adler (P.J.U.).

153

154 AUTHOR CONTRIBUTIONS

A.C., L.M.S. and M.M.D. conceptualized the study and drafted the manuscript with support

156 from E.G.L. and O.S. A.C. developed the protocol for class II tetramer staining combined with

157 mass cytometry, established the mass cytometry staining panels and performed the flow

158 cytometry and most mass cytometry staining experiments. E.S. performed mass cytometry

159 staining experiments on influenza samples and some autoimmune samples. O.S. and L.M.S.

160 designed the RNA-seq study and O.S. prepared libraries for RNA seq. RNA-seq data was

analyzed by E.G.L., C.K. and mass cytometry data by E.G.L., A.C., respectively. The CeD

162 patient material was organized by K.E.A.L., S.D. and S.Z., and material from patients with

autoimmune disorders other than CeD was organized by Ø.M., P.J.U., M.P. and J.F.S.,

164 material from patients during and after influenza infection was organized by C.L.D. Critical

165 manuscript revisions were done by E.S., C.K., S.D., S.Z., Ø.M., P.J.U., M.P., J.F.S, C.L.D.,

166 K.E.A.L.

167

169 **COMPETING FINANCIAL INTERESTS**

170 The authors have no financial conflicts of interest.

172 **REFERENCES (MAIN TEXT ONLY)**

- 173 1. Abadie, V., et al. Annu Rev Immunol 29, 493-525 (2011).
- 174 2. Rao, D.A., et al. Nature 542, 110-114 (2017).
- 175 3. Sollid, L.M., *et al. Gut* **41**, 851-852 (1997).
- 176 4. Di Niro, R., *et al. Nat Med* 18, 441-445 (2012).
- 177 5. Steinsbo, O., *et al. Nat Commun* 5, 4041 (2014).
- 178 6. Hoydahl, L.S., *et al. Gastroenterology* (2018).
- 179 7. Moens, L., et al. Front Immunol 5, 65 (2014).
- 180 8. Kooy-Winkelaar, Y.M., et al. Proc Natl Acad Sci US A 114, E980-e989 (2017).
- 181 9. Christophersen, A., et al. United European Gastroenterol J 2, 268-278 (2014).
- 182 10. Raki, M., et al. Proc Natl Acad Sci USA 104, 2831-2836 (2007).
- 183 11. du Pre, M.F., et al. Am J Gastroenterol 106, 1147-1159 (2011).
- 184 12. Cook, L., et al. J Allergy Clin Immunol 140, 1592-1603 (2017).
- 185 13. Risnes, L.F., *et al. J Clin Invest* (2018).
- 186 14. Yu, W., et al. Immunity 42, 929-941 (2015).
- 187 15. Su, L.F., et al. Immunity 38, 373-383 (2013).

188

189

191 FIGURE LEGENDS (MAIN TEXT ONLY)

192

193	Figure 1. Distinct non-proliferative phenotype of gluten-specific CD4 $^{+}$ gut T cells. (a) <code>HLA-</code>
194	DQ2.5:gluten tetramer (tet)-staining in an untreated celiac disease (UCeD) patient and a
195	control subject with mass cytometry (Fig. 1a-e: <i>n</i> = 6 UCeD patients, 7 controls, five
196	experiments). (b) t-SNE plots of total CD4 ⁺ gut T cells in a UCeD patient and a control
197	subject. (c) Expression of proteins on tet ⁺ /tet ⁻ CD4 ⁺ gut T cells in an UCeD patient and (d)
198	summarized for tet ⁺ cells in the 6 merged UCeD patients. (e) Mass cytometry-derived and (f)
199	RNA seq-derived log2 fold-change expression of indicated markers in tet ⁺ versus tet ⁻ CD4 ⁺
200	gut T cells of UCeD patients and compared to CD4 $^+$ gut T cells of control subjects (Ctr.) (f-g: n
201	= 5 UCeD patients, 4 control subjects, two experiments). (g) RNA-seq derived log2 fold-
202	change expression of indicated markers in CD4 $^{\scriptscriptstyle +}$ gut T cells, differentially expressed in tet $^{\scriptscriptstyle +}$
203	versus tet ⁻ and versus CD4 ⁺ gut T cells in ctr. (h) Flow cytometry-derived Ki-67 ⁻ expression in
204	tet ⁺ /tet ⁻ CD4 ⁺ blood and gut T cells of a gluten-challenged and untreated CeD patient,
205	respectively (i) summarized for five gut samples, seven blood samples (four experiments).
206	
207	
208	Figure 2. Distinct, antigen-induced phenotype of gluten-specific CD4 * blood T cells and
209	occurrence of similar subset in other immune conditions. (a) HLA-DQ2.5:gluten tetramer
210	(tet)-staining with mass cytometry for an untreated celiac disease (UCeD) patient and
211	control subject (ctr.) (Fig. 2a-e: n = 7 UCeD patients, 10 ctr., nine experiments). (b) t-SNE
212	plots with CD4 ⁺ blood T cells of an UCeD patient and ctr. (c) Expression of proteins on
213	tet ⁺ /tet ⁻ CD4 ⁺ blood T cells of an UCeD patient. (d) Heat map with absolute expression
214	(staining intensity) of tet ⁺ cells and (e) log2 fold change for tet ⁺ versus pre tetramer-

215	enriched CD4 ⁺ T cells in seven UCeD patients and versus CD4+ T cells of 10 ctr. (f) Log2 fold-
216	change expression of indicated markers for tet ⁺ CD4 ⁺ blood T cells after versus before gluten
217	challenge of five treated CeD (TCeD)) patients (Fig. 2f-g, three experiments) and versus tet $^{+}$
218	cells of seven UCeD subjects (same UCeD in 2d, e). (g) t-SNE plot with tet ⁻ and tet ⁺ cells in a
219	TCeD subject before and following gluten challenge compared to tet $^{\scriptscriptstyle +}$ of an UCeD subject.
220	(h) t-SNE plots and unsupervised clustering of activated (CD38 ⁺) memory (CD45RA ⁻) CD4 ⁺
221	blood T cells in indicated participant groups ($n = 5$ distinct samples in each group) and tet ⁺
222	cells of seven UCeD patients. Cluster 1, containing 75% of tet ⁺ cells from UCeD patients, and
223	cluster 2, upregulated in subjects with influenza infection (Extended Data Fig. 8) are color-
224	coded. (i) Unbiased prevalence estimate of tet ⁺ cell phenotype profile in UCeD patients
225	among indicated diseases (19 experiments) using a supervised classification model
226	(Extended Data Fig. 8). P-values calculated with unpaired, two-tailed t-test. Median
227	frequency, interquartile range and max/min whiskers shown. Systemic lupus erythematosus
228	(SLE).

230 ONLINE METHODS

231 Human material

All participants gave informed written consent. We obtained patient material from the 232 endoscopy unit and the Rheumatology Department at Oslo University Hospital, from the 233 234 Immunology and Rheumatology Division at the Department of Medicine and influenza 235 patient material from the Emergency Department and the Express Outpatient Clinic at Stanford Hospital. All CeD patients were HLA-DQ2.5⁺ (i.e., DQA1*05 and DQB1*02) or HLA-236 237 DQ8⁺ (i.e., DQA1*03 and DQB1*03:02) and diagnosed according to the guidelines of the British Society of Gastroenterology¹⁶. The studies on patient material obtained from 238 subjects examined at Oslo University Hospital during routine follow-up were approved by 239 240 the Regional Committee for Medical and Health Research Ethics South-East Norway (2010/2720). Treated CeD patients who were challenged with gluten received one in-house 241 242 produced cookie containing 10g-enriched flour (Validus AS) each day for three days and 243 blood samples were taken on day six after gluten challenge when a peak in the frequency of gluten-specific CD4⁺ blood T cells was expected^{10,17} (Regional Committee for Medical and 244 Health Research Ethics South-East Norway, 2013/1237, Clinicaltrials.gov identifier 245 NCT02464150). Blood samples from patients during and after influenza virus infection were 246 247 obtained from a cohort of patients recruited from individuals with influenza-like symptoms attended at the Emergency Department or the Express Outpatient Clinic at Stanford 248 Hospital. The study was approved by the Stanford University Administrative Panels on 249 250 Human Subjects in Medical Research and covered by IRB 22442 (Immune Responses to 251 Influenza-like Illness). Patients who tested positive for influenza A virus through a 252 nasopharyngeal swab test (analyzed at the Virology Lab at Stanford Hospital) were included. All the included participants also tested negative with the same swab test for influenza B 253

virus, parainfluenza 1, 2 and 3 viruses, metapneumovirus and rhinovirus. Included 254 255 participants were examined again 23 and 41 days after their initial medical examination and inclusion. One of the seven included patients did not donate blood at this second 256 consultation. Influenza-associated symptoms of participants from the influenza cohort were 257 258 documented on a patient diary and were evaluated by a research nurse at inclusion and during the follow-up visit. The definition of infection recovery was based on the resolution 259 of influenza-like symptoms at the follow-up visit. Our study cohort of patients with 260 261 autoimmune disorders other than CeD did not receive immunomodulating treatment at the time of blood draw and met classification criteria for systemic sclerosis¹⁸ or systemic lupus 262 erythematosus¹⁹, respectively. The recruitment of these patients were covered by Regional 263 Committee for Medical Research Ethics in South-East Norway (2016/119) and IRB 14734 264 (Stanford University Immunological and Rheumatic Disease Database: Disease Activity and 265 266 Biomarker Study). Buffy coats were obtained from anonymous blood donors at the Stanford 267 blood center or Oslo University Hospital (blood bank). 268 We isolated PBMCs through density gradient centrifugation (Lymphoprep; Axis Shield). 269 270 Duodenal biopsies were treated 2x10 minutes with 2 mM EDTA + 2% fetal calf serum (FCS) 271 in PBS at 37°C to remove epithelial layer prior to further digestion with collagenase (1 mg/ml) in 2% FCS in PBS at 37°C for 60 min. The samples were then homogenized using a 272 1.2 mm syringe and filtered through a 40 or 70 μ m cell strainer to obtain single-cell 273

274 suspensions. All samples were cryopreserved.

275

277 HLA-class II tetramer staining and mass cytometry

278 The protocol established here was partially derived from protocols on combination of HLA class-I tetramers and mass cytometry^{20,21}. We thawed the frozen cell samples in 20% fetal 279 calf serum (FCS) in RPMI and washed the cells in 10% FCS with Benzonase (Sigma-280 Aldrich/Merck, 1:10 000) in RPMI before resuspending and counting the cells in CyFACS 281 buffer (0.1% bovine serum albumin, 2mM EDTA, 0.05% sodium azide in PBS). After 450g 282 centrifugation, cells were treated with 1:10 diluted FcR block (Miltenyi Biotek), stained with 283 284 anti-CD11c, anti-CD14 and 5 µg/ml purified anti-CD32 (clone FUN-2) to reduce nonspecific tetramer binding, and barcoded with anti-CD45 coupled with 89Y or $108Pd^{22}$ in 200 μ l 285 CyFACS buffer. Only names and staining concentrations of monoclonal antibodies not listed 286 287 in Supplementary Tables 1 and 7 are specified here. After one wash step, the samples from CeD patients were stained for 40 minutes at room temperature with HLA-DQ2.5:gluten 288 289 tetramers representing the five different disease-relevant and immunodominant gluten T-290 cell epitopes²³ DQ2.5-glia- α 1a, DQ2.5-glia- α 2, DQ2.5-glia- ω 1, DQ2.5-glia- ω 2 and DQ2.5hor3. (Supplementary Table 3) at 15 μg/ml each in 200 μl CyFACS buffer (BBMCs) or 100 μl 291 292 (biopsy-derived single-cell suspensions). We also added tetramers representing HLA-DQ2.5:CLIP2 at a 20 µg/ml concentration in order to exclude tetramer background staining 293 294 (Extended Data Fig. 1d). HLA-DQ2.5:gluten and HLA-DQ2.5:CLIP2 molecules were produced 295 as previously described²⁴ and, two hours prior to cell staining, multimerized on PE-Cy7-296 coupled streptavidin or APC-Cy7-coupled streptavidin, respectively (Thermo Fisher 297 Scientific). The cells were washed, and tetramer-binding cells were metal-tagged with 1.25 298 μl anti-PE and 1.25 μl anti-phycocyanin for 20 minutes on ice in 100 CyFACS buffer followed by another wash step. To facilitate tetramer enrichment, the PBMCs of CeD patients were 299 resuspended in 50 µl anti-Cy7 metal beads with 150 µl CyFACS buffer and incubated for 20 300

301 minutes on ice (combined anti-Cy7 enrichment and anti-PE staining was established with 302 the T-cell clone TCC1214P.A.27, derived from blood of CeD patient⁹, and is visualized in Fig. 1c). The cells were washed and 2% of the PBMCs of the CeD patients (pre-tetramer enriched 303 sample) were removed and added to one million CD45-barcoded carrier cells of a healthy 304 305 donor to reduce cell loss and left on ice until further staining. The remaining PBMCs of CeD patients were enriched for tetramer-binding cells on a magnetized LS column (Miltenyi 306 Biotec). We then added one million CD45-barcoded PBMCs from a healthy donor to the 307 308 tetramer-enriched sample (and to the biopsy-derived single-cell suspensions that had not 309 undergone tetramer enrichment), washed the cells x1 before all samples were stained for 20 minutes on ice with a panel of metal coupled antibodies (Supplementary Table 1 or in 310 311 the case of participants included in Extended Data Fig. 10e-f; Supplementary Table 7). After one wash step, the cells were stained for five minutes at room temperature with Cisplatin 312 313 (Fluidigm) at 1/1500 concentration and washed before overnight incubation at 4°C with 314 1:1000 diluted 125 µM DNA intercalator in Maxpar Fix and Perm Buffer (Fluidigm). The following day we washed the cells in CyFACS buffer, PBS and milli-Q water (1x each) before 315 they were analyzed in milli-Q water at a Helios instrument (Fluidigm). Unlike in the gut 316 317 samples analyzed here and in previous studies on gluten-specific cells in blood using flow 318 cytometry^{9,25}, we have not specified the frequency of tetramer-binding cells in blood analyzed with mass cytometry as washing, resuspension in water and mass cytometer 319 tubing considerably reduced the number of cells (including tetramer-binding cells) in the 320 321 tetramer-enriched sample relative to the total number of CD4⁺ T cells in the sample. 322

Prior to the establishment of the protocol, we also used fluorescein-coupled streptavidin
(Biolegend) and anti-fluorescein 160Gd (Fluidigm) (Extended Data Fig. 1a) and the gluten-

specific T-cell clone TCC1030.43 derived from blood of CeD patients⁹ to determine which 325 326 fluorophore generated the best staining intensity through secondary metal-tagged antibody staining. In each experiment we stained a gluten-specific T-cell clone with the corresponding 327 HLA-DQ2.5: gluten tetramer as a positive control for tetramer staining with mass cytometry. 328 329 Flow cytometric analysis 330 331 We prepared and stained CeD blood and biopsy material including T-cell clones with HLA-332 DQ2.5: gluten tetramers and surface markers according to protocols described elsewhere^{9,13}. 333 One CeD patient analyzed with flow cytometry was HLA-DQ8⁺/HLA-DQ2.5⁻ and for this 334 subject we used HLA-DQ8:gluten tetramers representing the two gluten epitopes HLA-DQ8glia- α 1 and HLA-DQ8-glia- γ 1b²⁶. Tetramer-sorted cells were cultured in vitro as previously 335 described²⁷. Staining for Ki-67 and FoxP3 was performed according to the manufacturer's 336 protocol (Thermo Fischer Scientific's eBioscience FoxP3/Transcription factor staining buffer 337 338 set). Antibodies used for flow cytometry staining are listed in Supplementary Table 8. The cells were analyzed with a LSR II instrument or sorted on a FACS Aria II instrument (BD 339 Bioscience). 340 341

342 RNA seq analysis

343 Single cell suspension of duodenal biopsies from five CeD patients and four healthy subjects

344 (Supplementary Table 3) were stained with PE-conjugated HLA-DQ2.5:gluten tetramers

representing four immunodominant T-cell epitopes of gluten: DQ2.5-glia-α1a, DQ2.5-glia-

346 α 2, DQ2.5-glia- ω 1 and DQ2.5-glia- ω 2 (Supplementary Table 2)²⁶ as previously described²⁸.

347 Following tetramer staining, the cells were labeled with anti-CD3 BV570 (Biolegend), anti-

348 CD4 APC-H7 (BD Biosciences), anti-CD14 Pacific Blue (Biolegend), anti-CD11c Horizon V450

(BD Bioscience), anti-CD27 PE-Cy7 (eBioscience), IgA FITC (Southern Biotech) and Live/Dead
Fixable Violet Dead Cell Stain (Thermo Fischer Scientific). See also the Life Sciences
Reporting Summary for more details on the antibodies used. We added anti-CD27 and antiIgA due to a parallel study on a different cell subset. HLA-DQ2.5:gluten tetramer positive
and tetramer negative CD4⁺ T cells were sorted in two separate tubes using FACS Aria II (BD
Bioscience). RNA was extracted using RNeasy micro kit (Qiagen) and quantified on 2100
Bioanalyzer using a RNA 6000 Pico kit (Agilent Technologies).

357 Approximately 90 ng of RNA was used for cDNA synthesis and amplification. cDNA synthesis

358 was performed at 42°C for 90 min and 70°C for 10 min and followed by amplification 95°C, 1

359 min; [98°C, 10 sec; 65°C, 30 sec; and 68°C, 3 min] 15x cycles and 72°C, 10 min using

360 SMARTer[®] Ultra[®] Low Input RNA Kit for Sequencing - v3 (Clontech Laboratories). Amplified

361 cDNA was quantified using the High Sensitivity DNA Kit (Agilent Technologies).

362 Tagmentation and adapter ligation were achieved using Nextera XT library preparation kit

363 (Illumina, Inc). Amplicon libraries were sequenced on NextSeq500 (Illumina, Inc) at the

364 Norwegian Sequencing Center (http://www.sequencing.uio.no).

365

366 Statistics and data analysis

Both mass cytometry and flow cytometry data were analyzed with *FlowJo* version 10.4

368 (FlowJo LLC) for visualization of data in two-parametric 2D-plots (Fig. 1a, 1c, Fig. 2a, 2c, 2h,

369 Extended Data Fig. 1a-d, Extended Data Fig. 2, Extended Data Fig. 6, Extended Data Fig. 7a-

b, 7d, 7f and Extended Data Fig. 10a) and for cell quantifications (Extended Data Fig. 7e, 7g,

371 Extended Data Fig. 10b-f). We used the GraphPad Prism 7 software (GraphPad Software,

372 Inc) for statistical analysis and visualization of cell frequencies (Fig. 1i, Extended Data Fig. 7e,

g and Extended Data Fig. 10b-f). Here we applied an unpaired, two-tailed t-test (Extended 373 374 Data Fig. 10b-c, 10e (median frequency and interquartile range indicated)), or a paired, twotailed t-test (Extended Data Fig. 10d, 10f) to calculate statistical significance. We also used 375 FlowJo to exclude cells that were not CD4⁺ T cells (gating strategy in Extended Data Fig. 2) 376 377 before exporting the fcs-files, containing only CD4⁺ blood or gut T cells, for generation of t-SNE-plots (t-Distributed Stochastic Neighbor Embedding)²⁹ and all other analysis presented 378 in Fig. 1d-g, 2d-i, Extended Data Fig. 3-5, and Extended Data Fig. 8-9. The markers used to 379 380 generate the t-SNE plots in Fig. 1b; Fig. 2b, 2g, Extended Data Fig. 3c and Extended Data Fig. 381 5c (31 markers both in gut and blood samples, which did not include the marker for tetramer staining (165Ho anti-Phycoerythrin)) are identified with one asterisk in 382 Supplementary Table 1. 383 384 385 Mass cytometry data (the fcs-file containing only blood or gut CD4⁺ T cells) was loaded into

386 R using the flowCORE package. Here the aggregate marker intensity (Fig. 1d, Fig. 2d and Extended Data Fig. 8b) was computed as the grand mean of each donors mean marker 387 388 intensity. Mass cytometry fold change (Fig. 1e, Fig. 2e, 2f, and Extended Data Fig. 3a, Extended Data Fig. 5a, Extended Data Fig. 7c, Extended Data Fig. 8c) was computed as the 389 390 log2 fold change of the aggregate marker intensity. Heat maps, to visualize the aggregate marker intensity and the log2 fold change, were generated using ggplot2, and t-SNE plots 391 392 were generated using the Rtsne package. For t-SNE plots, boxplots (Extended Data Fig. 3b, 393 Extended Data Fig. 5b), supervised classification (Fig. 2i, Extended Data Fig. 9) and fold 394 change significance testing (Supplementary Table 4), the raw mass cytometry intensity 395 values were first transformed using the inverse hyperbolic sine, as described by Nowicka et 396 *al*³⁰. In the generated boxplots in Extended Data Fig. 3b and Extended Data 5b (generated

with ggplot2), the Y-axis indicates arcsinh-transformed intensity and the boxes show 397 398 median frequency and interquartile range. Whiskers show largest/smallest value below 1.5 times the interquartile range. In Supplementary Table 4, we used a paired, two-tailed t-test 399 to calculate significant differences in mean marker intensity between tetramer positive and 400 401 tetramer negative cells from CeD patients in blood and gut. In the same table, we performed an unpaired, two-tailed t-test for all other comparisons where the test 402 conditions were from unmatched donors (e.g. CeD patients versus healthy controls). P-403 404 values were corrected for multiple testing using the Benjamini–Hochberg procedure. 405 406 In Figure 2h and Extended Data Fig. 8, we did unsupervised clustering of activated (CD38⁺) 407 memory (CD45RA⁻) CD4⁺ T cells using the *FlowSOM* and *ConsesusClusterPlus* packages. To avoid introducing bias to the clustering and the t-SNE visualization, we had a balanced 408 409 number of cells and samples per disease group. Thus, we randomly selected five samples 410 per disease, except for gluten challenge where we only had four samples with sufficient cells. Furthermore, we sampled at most 3707 activated cells per sample, which is the 411 412 median number of cells per sample, and used these cells for clustering. For t-SNE 413 visualization in figure 2h, we subsampled 807 cells per sample, which is the number of 414 activated cells in the smallest sample. We visualized the prevalence of cells within the two clusters (cluster 1 and cluster 2) in a boxplot (Extended Data Fig. 8a) indicating median 415 frequency and interquartile range. Here the whiskers show largest/smallest value below 1.5 416 417 times the interquartile range and single data points depict outliers. The markers used to 418 generate the t-SNE plot in Fig. 2h and Extended Data Fig. 8 are listed in Extended Data Fig. 419 8b-c.

420

We trained a supervised classification model on tetramer positive and tetramer negative 421 422 CD4⁺ T cells from tetramer-enriched PBMC samples from untreated CeD patients (Fig. 2i, with a diagram illustrating the workflow in Extended Data Fig. 9). The model was 423 subsequently used to obtain an unbiased prevalence estimate of CD4⁺ T cells with a 424 425 phenotype highly similar to the gluten specific CD4⁺ T cells in all included blood samples 426 analyzed with mass cytometry (excluding the tetramer-enriched samples that were only used to train the model). More specifically, we used 10-fold cross validation with three 427 repeats to train a random forest model³¹ using *caret* version 6.0-79. The optimal *mtry* 428 parameter for the data was selected with a grid search between one and the total number 429 430 of markers divided by three. Log loss was used as a metric to select the optimal model. The 431 doMC package, version 1.3.5, was used to parallelize model training. We used the GraphPad Prism 7 software to visualize the prevalence estimates in a boxplot (Fig. 2i), which shows 432 433 median frequency and interquartile range, while the whiskers indicate max/min values. 434 Here P-values (each participant group versus the group of healthy controls) were calculated 435 using an unpaired, two-tailed t-test. The markers used to generate the prediction model in 436 Fig. 2i (the 22 CD4⁺ T-cell markers that were common to the two mass cytometry staining panels in Supplementary Table 1 and Supplementary Table 7) are identified with two 437 438 asterisks in Supplementary table 7). The *importance* function of the *randomForest* package was used to extract the mean decrease Gini score from the final model. A high scoring 439 parameter is important to the model and a low scoring value is less relevant. This Gini score 440 441 is visualized in Extended Data Fig. 9b using ggplot2.

442

RNA-seq reads (76 bp paired end) were mapped to the human reference genome
GRCh38.p7 containing alternative loci with gene annotations curated by *Ensembl* release 86

445	using Salmon ³² version 0.7.2 for mapping with parameters -1 UIuseVBOptnumBootStraps
446	30seqBiasgcBias. The quasi-mapping index in Salmon was built using a default k-mer
447	length of 31. Read counts of transcripts (including those on alternative loci) were
448	aggregated to gene-level. The raw sequencing data were processed on a secure computing
449	platform; the TSD (Tjeneste for Sensitive Data) facilities owned by the University of Oslo,
450	operated and developed by the TSD-service group. Further data processing was performed
451	using <i>R</i> version 3.2 with the <i>Bioconductor</i> version 3.4 and the <i>Tidyverse</i> version 1.2.1
452	collection of packages. Estimated gene counts were loaded into <i>R</i> using <i>Tximport</i> . Gene
453	differential expression analysis and log fold change estimation (Fig. 1f-g, Extended Data Fig.
454	7c) was computed using <i>DESeq2</i> ³³ with a design formula controlling for sample donor. A full
455	list of the differentially expressed genes is listed with adjusted P values in Supplementary
456	Table 5. Here we used a significance threshold of 5e-3 after adjusting for multiple testing.
457	Heat maps, to visualize the the log2 fold change, were generated using ggplot2, as with fold
458	change expression in the mass cytometry data.
459	
100	Further information on mathema statistics date analysis is previded in the Life Colonese

460 Further information on methods, statistics, data analysis is provided in the Life Sciences461 Reporting Summary.

462

463 Data availability

The raw sequences of the RNA-seq data are deposited at the EGA European Genome
Phenome Archive (https://ega-archive.org) under accession number EGAS00001003017. All
other data supporting the findings of this study are available from the authors upon
request.

468

469 ONLINE METHODS-ONLY REFERENCES

- 470 16. Ludvigsson, J.F., et al. Gut 63, 1210-1228 (2014).
- 471 17. Anderson, R.P., et al. Nat Med 6, 337-342 (2000).
- 472 18. van den Hoogen, F., et al. Ann Rheum Dis 72, 1747-1755 (2013).
- 473 19. Hochberg, M.C. Arthritis Rheum 40, 1725 (1997).
- 474 20. Newell, E.W., *et al. Immunity* **36**, 142-152 (2012).
- 475 21. Newell, E.W., et al. Nat Biotechnol **31**, 623-629 (2013).
- 476 22. Mei, H.E., et al. J Immunol 194, 2022-2031 (2015).
- 477 23. Shan, L., et al. Science 297, 2275-2279 (2002).
- 478 24. Quarsten, H., et al. J Immunol 167, 4861-4868 (2001).
- 479 25. Christophersen, A., et al. J Immunol 196, 2819-2826 (2016).
- 480 26. Sollid, L.M., et al. Immunogenetics 64, 455-460 (2012).
- 481 27. Molberg, Ø., et al. Methods Mol Med 41, 105-124 (2000).
- 482 28. Bodd, M., et al. Eur J Immunol 43, 2605-2612 (2013).
- 483 29. van der Maaten, L., et al. J Mach Learn Res 9, 2579-2605 (2008).
- 484 30. Nowicka, M., et al. F1000Res 6, 748 (2017).
- 485 31. Andy, L., et al. R News 2, 18-22 (2002).
- 486 32. Patro, R., et al. Nat Methods 14, 417-419 (2017).
- 487 33. Love, M.I., et al. Genome Biol 15, 550 (2014).

Figure 1

Figure 2

1 **EXTENDED DATA FIGURES**

- 2 To manuscript entitled "Gluten-specific CD4⁺ T cells in celiac disease have a rare phenotype
- 3 shared with other autoimmune conditions"
- 4

5

6 Extended Data Figure 1. Establishing HLA-class II tetramer staining with mass cytometry. (a)

7 Gluten-specific T-cell clone binding a corresponding or negative control HLA-DQ2.5:gluten

8 tetramer reagent metal-tagged with secondary binding to phycoerythrin (PE), allophycocyanin

- 9 (APC) or fluorescein (FITC) (one T-cell clone in one experiment). (b) Comparison of tetramer-
- 10 staining in mass cytometry and flow cytometry with a gluten-specific T-cell clone binding the
- 11 corresponding or non-corresponding HLA-DQ2.5:gluten tetramer reagent (*n* = 8 T-cell clones in
- 12 two mass cytometry and two flow cytometry experiments, respectively) (c) Tetramer-
- 13 enrichment of a gluten-specific T-cell clone binding the corresponding PE-cyanine7 (PE-Cy7)-
- 14 coupled HLA-DQ2.5:gluten tetramer reagent (one T-cell clone in one experiment). The T-cell

- 15 clone was spiked into PBMCs, enriched with anti-Cy7 beads and metal-tagged with anti-PE (one
- 16 T-cell clone in one experiment). (d) Unspecific HLA-DQ2.5:gluten tetramer-binding was

17 excluded with APC-Cy7-coupled HLA-DQ2.5:CLIP2 and metal-tagged anti-APC (*n* = 2 T-cell clones

- 18 and 3 PBMC samples in two pilot experiments before established protocol).
- 19

- 21 Extended Data Figure 2. Gating strategy for cells analyzed with mass cytometry. From initial
- 22 plot to the plot and gate that encounters CD4⁺ blood or gut T cells. Anti-CD45 coupled with 89Y
- 23 or 108Pd was used for sample barcoding.

24

- 28 showing fold-change expression of indicated markers in CD4⁺ HLA-DQ2.5:gluten tetramer-
- negative gut T cells of untreated celiac disease (UCeD) patients (n = 6) versus CD4⁺ gut T cells of
- 30 healthy controls (n = 7); Five experiments in total. (b) Expression level of mass cytometry panel

31	markers (Supplementary Table 1) in gluten tetramer positive and tetramer negative CD4 $^{\scriptscriptstyle +}$ gut T
32	cells in UCeD patients. Y-axis indicates arcsinh-transformed intensity values with cofactor 5. (c)
33	t-SNE plots separately highlighting presence of cells expressing the markers in (a) and (b) in
34	CD4 ⁺ gut T cells merged from one UCeD patient and one healthy control. For comparison, the
35	location of HLA-DQ2.5:gluten tetramer-binding cells of the same patient are visualized in the
36	upper left plot.

46 Extended Data Figure 5. On the CD4⁺ blood T cells analyzed with mass cytometry. (a) Heat
47 map showing fold-change expression of indicated markers in CD4⁺ blood T cells of untreated
48 celiac disease patients (pre tetramer-enriched sample, n = 7) versus healthy controls (n = 10).
49 Untreated celiac disease (UCeD) patients and controls were analyzed with mass cytometry in

61 Extended Data Figure 6. Flow cytometry staining confirms CXCR5/ICOS-expression. General

62 gating strategy for flow cytometry analysis of tetramer-binding cells including expression of

63 CXCR5 and ICOS in tetramer (Tet) positive and negative (+/-) CD4+ blood T cells in one untreated

64 celiac disease patient (in one experiment).

Extended Data Figure 7. Expression of regulatory T-cell-associated markers on gluten-specific 67 68 CD4⁺ T cells in vitro and ex vivo. (a) CD4⁺ blood T cells of an untreated celiac disease (CeD) 69 patient were HLA-DQ2.5:gluten tetramer (tet)-sorted ex vivo and cultured in vitro with 70 phytohemmagglutinin and irradiated PBMCs for two weeks before re-staining with HLA-71 DQ2.5:gluten tetramers to analyze for expression of FoxP3 and CD25 (*n* = 2 in one experiment). (b) The same experiment as in (a), only with tetramer-sorted CD4⁺ gut T cells from the patient 72 73 in (a) (n = 1 in one experiment). (c) RNA seq-derived fold-change expression of indicated marker in HLA-DQ2.5: gluten tet⁺ versus tet⁻ CD4⁺ gut T cells of untreated CeD patients (n = 5) and in tet⁺ 74 75 of untreated CeD patients versus CD4⁺ gut T cells of control subjects (n = 4) calculated as the log2 fold change of the grand mean of donor marker intensity. GARP was differentially 76 77 expressed in tet⁺ versus tet⁻ cells *but not differentially expressed when compared to CD4⁺ gut 78 T cells in controls (complete list of differentially expressed genes in Supplementary Table 4). 79 There were <2 GARP (Glycoprotein A repetitions predominant) transcripts per million in tet⁺ 80 cells. (d) Ex vivo flow-cytometry staining of tet^{+/-} CD4⁺ gut T cells from an untreated CeD patient

with anti-CD127, anti-CD25 and anti-FoxP3 and (e) summarized CD25/FoxP3-staining in gut
biopsies of five untreated HLA-DQ2.5⁺ and one HLA-DQ8⁺ CeD patients (in five experiments). (f)
Tet ⁺/⁻ CD4⁺ blood T cells from an untreated CeD patient with anti-CD127, anti-CD25 and antiFoxP3 and (g) summarized CD25/FoxP3-staining in blood of five untreated and four gluten
challenged CeD patients (in four experiments). Median frequency and interquartile range are
indicated. Samples in a-b were stained with a different anti-CD25 antibody.

autoimmune diseases versus influenza infection. (a) In Fig. 2h, t-SNE visualization and
unsupervised clustering of activated (CD38⁺) memory (CD45RA⁻) CD4⁺ blood T cells in indicated
participant groups and gluten tetramer positive (tet⁺) cells of untreated celiac disease (UCeD)
patients are shown. In Fig. 2h, one cluster containing 75% of tet⁺ cells (cluster 1) from seven
UCeD patients and one cluster dramatically upregulated in subjects with influenza infection
(cluster 2) are color-coded. (a) Prevalence of activated CD4⁺ memory T cells belonging to cluster
1 and cluster 2, respectively, for each indicated participant group. (b) Heat map of indicated

proteins in cluster 1 and cluster 2 with absolute expression (staining intensity) and (c) versus
CD4⁺ blood T cells depicted as the log2 fold change of the grand mean of donor marker
intensity.

100

101

102 Extended Data Figure 9. Supervised clustering model predicting gluten-specific T-cell profile.

(a) Diagram illustrating workflow for model training and prediction. PBMC samples from donors
with untreated celiac disease are split in two parts as indicated. One part (right) is not tetramer
enriched and later used for estimation of gluten-specific T-cell profile cell prevalence within the
sample. The tetramer-enriched part (left) is used to train a random forest classification model
using repeated K-fold cross-validation on the phenotype of the tetramer positive cells. (b) The

108 scatter plot of mean decrease in Gini score for each predictor provides information on how

109 important the predictor variables are to the final model.

110

111

112 Extended Data Figure 10. Cells with profile of gluten-specific CD4⁺ T cells in celiac,

113 autoimmune and viral disease identified with manual gating. (a) Manual gating strategy with

- 114 markers giving a well-defined shift in staining intensity that define gluten-specific T cells,
- encompassing 41% and 48% of HLA-DQ2.5:gluten tetramer-binding CD4⁺ T cells in the gut and

116 CD4⁺ effector memory T cells in blood, respectively, in untreated celiac disease (CeD) patients 117 (while the gluten-specific cells were phenotypically similar, not all cells had a staining intensity 118 for all ten markers above or below the manually set threshold, as visualized also in Fig. 1c, 2c). 119 Here visualized in peripheral blood of an untreated CeD patient: CD45RA⁻, CD62L⁻, CXCR3⁺, 120 CD39⁺, CD38⁺, PD-1⁺, CD127^{low}, CD25⁻, ICOS⁺, CD161⁺ CD4⁺ T cells. (b) Frequency of cells gated 121 as in (a) in gut and (c) blood of untreated (gut n = 7, blood n = 8) and treated (gluten-free diet) 122 CeD patients (gut n = 7, blood n = 6), healthy controls (gut n = 7, blood n = 10) (d) and in treated 123 CeD patients prior to and following gluten challenge (n = 4) (differing from gating encountering) 124 gluten-specific cells in untreated CeD patients chiefly by lower CD39 expression as visualized 125 also in Fig. 2f). Blood and gut samples analyzed in 12 and six experiments, respectively. Gluten 126 challenge samples were analyzed in two experiments. (e) Frequency of cells gated as in (a) 127 within patients with indicated autoimmune disorders and different set as in (b) of control 128 subjects (f) and within a cohort during and after influenza infection (two experiments in total).

SUPPLEMENTARY TABLES

To manuscript entitled "Distinct phenotype of celiac disease-driving CD4⁺ T cells identified in multiple autoimmune conditions"

Label	Target	Clone	Supplier	Concentration
89Y	CD45	HI30	Fluidigm	2:100
108Pd	CD45	HI30	Biolegend	8 μg/ml
115In	CD57*' **	HCD57	Biolegend	1.5 μg/ml
139La	CD28*' **	CD28.2	Biolegend	4 μg/ml
141Pr	Intebrin-a4/CD49d*	9F10	Fluidigm	1:100
142Nd	KLRG1*' **	13F12F2	Thermo Fischer S.	3 μg/ml
143Nd	CD278/ICOS*' **	C398.4A	Fluidigm	0.5:100
144Nd	CD38*' **	HIT2	Fluidigm	1.5:100
145Nd	CD4	RPA-T4	Fluidigm	0.5:100
146Nd	CD8a	RPA-T8	Fluidigm	0.6:100
147Sm	CD137 (41BB)*	4-1BB	R&D systems	12 µg/ml
148Nd	CD27*' **	0323	Biolegend	1 μg/ml
149Sm	CD56 (NCAM)	NCAM16.2	Fluidigm	0.5:100
150Nd	CD127*' **	A019D5	Biolegend	1 μg/ml
151Eu	CD11c	Bu15	Biolegend	2 µg/ml
151Eu	CD19	HIB19	Biolegend	1 μg/ml
151Eu	CD14	M5E2	Fluidigm	1:100
152Sm	CD244*	2B4	R&D systems	4 μg/ml
153Eu	CD62L*' **	DREG-56	Fluidigm	0.5:100
154Sm	CD3	UCHT1	Fluidigm	0.8:100
155Gd	CD279 (PD-1)*' **	EH12.2H7	Fluidigm	1.8:100
156Gd	CD195 (CCR5)*	NP-6G4	Fluidigm	4:100
158Gd	CD194 (CCR4)*' **	L291H4	Fluidigm	0.5:100
159Tb	CD161*' **	HP-3G10	Fluidigm	0.5:100
160Gd	CD39*' **	A1	Fluidigm	1:100
161Dy	CD152 (CTLA-4)*' **	14D3	Fluidigm	5:100
162Dy	Integrin-β7*	F1B504	Fluidigm	0.5:100
163Dy	CD183 (CXCR3)*' **	G025H7	Fluidigm	0.75:100
164Dy	OX40 (CD134)*	Ber-ACT35	Biolegend	8 μg/ml
165Ho	Phycoerythrin	PE001	Fluidigm	1.25:100
166Er	CD85j/ILT2*	GHI/75	Fluidigm	1:100
167Er	CD197 (CCR7)*	G043H7	Fluidigm	1:100
168Er	CD73*' **	AD2	Fluidigm	1:100
169Tm	CD25 (IL-2R)*' **	2A3	Fluidigm	0.6:100
170Er	CD45RA*' **	HI100	Fluidigm	0.1:100
171Yb	CD185 (CXCR5)*' **	RF8B2	Fluidigm	0.75:100
172Yb	CD69*' **	FN50	Biolegend	1 μg/ml
173Yb	HLA-DR*' **	L243	Fluidigm	0.75:100
174Yb	CD196 (CCR6)*' **	G034E3	Biolegend	1 μg/ml
175Lu	CD184 (CXCR4)*	12G5	Fluidigm	1.25:100
176Yb	Allophycocyanin	APC003	Fluidigm	1.25:100
1911r/1931r	Nucleateed cells		Fluidigm	1:1000
195Pt	Dead cells		Fluidigm	1:1500
209Bi	CD11b*	ICRF44	Fluidigm	0.4:100

Supplementary Tale 1. Mass cytometry antibody panel for celiac disease patients.

Supplementary Table 1. Mass cytometry antibody panel for celiac disease patients.

Antibody panel for mass cytometry staining of HLA-DQ2.5:gluten tetramer-stained peripheral blood and single-cell suspensions of gut biopsies from celiac disease patients and controls subjects. The panel includes metal tags for sample barcoding (anti-CD45), secondary staining of phycoerythrin for identification of HLA-DQ2.5:gluten tetramer-binding cells and secondary staining of allophycocyanin for exclusion of non-HLA-DQ:gluten-specific HLA-DQ2.5:CLIP2 tetramer binding in addition to viability staining (195Pt) and nucleated cell staining (191/193Ir). One asterisk identifies markers included in the t-SNE plots in Fig. 1b, 2b, g and Extended Data Fig. 3c, 5c. Final concentrations are stated in μ g/ml when using self-conjugated antibodies or per volume 100 when the concentration was not available from the manufacturer.

HLA-DQ2.5 epitope	Peptide sequence with underlined 9-mer core
DQ2.5-glia-α1a	QLQPFPQPELPY
DQ2.5-glia-α2	PQPELPYPQPE
DQ2.5-glia-ω1	QQPFPQPEQPFP
DQ2.5-glia-ω2	FPQPEQPFPWQP
DQ2.5-hor-3	PIPEQPQPYPQ
DQ2.5-CLIP2	MATPLLMQALPMGAL
HLA-DQ8 epitope	
DQ8-glia-α1a	SGEGSFQPSQENPQ
DQ2.5-glia-y1b	FPEQPEQPYPEQ

Suuplementary Table 2. Epitopes representad by HLA-DQ2.5 and HLA-DQ8 tetramers.

Supplementary Table 2. Epitopes represented by HLA-DQ2.5 and HLA-DQ8 tetramers. We

used soluble biotinylated HLA-DQ2.5 (i.e., DQA1*05 and DQB1*02) or HLA-DQ8 (i.e., DQA1*03 and DQB1*03) molecules covalently linked with the here listed gluten-derived CD4⁺ T-cell epitopes (9-mer core sequence indicated in red).

Supplementary Table 3. Participant list.

Participant	Category	Sex	HLA type	Marsh Score	Anti-TG2	Anti-DGP	Matieral	Method
P1	UCeD	F	DQ2.5	3B-C	17	14	PBMC, SCS	Mass cytometry
P2	UCeD	F	DQ2.5/DQ2.2	3B-C	4.1	91	PBMC, SCS	Mass cytometry
P3	UCeD	F	DQ2.5	3B-C	>100	>100	PBMC, SCS	Mass cytometry
P4	UCeD	F	DQ2.5	3C	1	>100	PBMC, SCS	Mass cytometry
P5	UCeD	F	DQ2.5	3B	42	59	PBMC	Mass cytometry
P6	UCeD	М	DQ2.5	3A	100	37	PBMC	Mass cytometry
57			5005		95	100	PBMC	Mass cytometry
P7	UCeD	M	DQ2.5	38	25	>100	SCS	Flow cytometry
P8	UCeD	М	DQ2.5	3C	not determined	not determined	PBMC	Mass cytometry
P9	UCeD	F	DQ2.5	3A	24.9	42	SCS	Mass cytometry
P10	UCeD	М	DQ2.5	3C	128	not determined	SCS	Mass cytometry
P11	UCeD	F	D02.5	3A	32	<5	SCS	Mass cytometry
P12	UCeD	M	D02.5	3b	>100	36	PBMC	Flow cytometry
P13	UCeD	M	DO2 5	30	>100	>100	PBMC SCS	Flow cytometry
P14		M	DQ2.5	3B-C	>100	41	PBMC SCS	Flow cytometry
P15		F	DQ2.5	38	2.6	13	PBMC	Flow cytometry
P16			DQ2.5	30-B	2.0	64	PBMC	Flow cytometry
P10			DQ2.5	2A-D	20.0	not dotorminod		Flow cytometry
P17			DQ2.3					Flow cytometry
P18	UCeD		DQ2.5	3B-C	>100	>100	505	Flow cytometry
P19	UCeD	- F	DQ8	3B	//	not determined		Flow cytometry
P20	UCeD	F	DQ2.5	3B	27.3	>100	SCS	RNA Seq
P21	UCeD	F _	DQ2.5	30	>100	94	SCS	RNA Seq
P22	UCeD	F	DQ2.5	3A	4.2	18	SCS	RNA Seq
P23	UCeD	F	DQ2.5	3B	>100	>100	SCS	RNA Seq
P24	UCeD	F	DQ2.5	3C	>100	>100	SCS	RNA Seq
	TCeD	F	DQ2.5	not determined	<1	<5	PBMC	Mass cytometry
P25	Challanga	-		not dotorminod	-1	۲.		Flow & mass
	Challenge	F	DQ2.5	not determined	<1	<>	PRIVIC	cytometry
	TCeD	F	DQ2.5	not determined	<1	<5	PBMC	Mass cytometry
DOC								Fla 0 0 0 0
P20		F	DQ2.5	not determined	<1	<5	PBMC	Flow & mass
	Challenge							cytometry
P27	Challenge	М	DQ2.5	not determined	<1	<5	PBMC	Flow cytometry
P28	Challenge	М		not determined	<1	<5	PBMC	Flow cytometry
520	TCeD		503.5		<1	7	00040	
P29	Challenge	F	DQ2.5	not determined	1.1	8	PRIMC	Mass cytometry
530	TCeD		5005		<1	<5		
P30	Challenge	F	DQ2.5	not determined	<1	<5	PRIMC	Mass cytometry
	TCeD	_			not determined	not determined		
P31	Challenge	F	DQ2.5	not determined	1.1	6	РВМС	Mass cytometry
P32	TCeD	F	D02.5	0	<1	<5	PBMC	Mass cytometry
P33	TCeD	F	DO2 5	0	22	18	PBMC SCS	Mass cytometry
P34	TCeD	M	DO2 5	0	2	<5	PBMC SCS	Mass cytometry
D25		F	DQ2.5	0		~5	DRMC	Mass cytometry
P35	TCeD		DQ2.5	0	11	12	PBIVIC	Mass cytometry
F 30	TCeD		DQ2.5	0	-1.1	12	PDIVIC	Mass cytometry
F37	TCeD		DQ2.5	20	<1	15	PBIVIC	Mass externation
P38	TCeD	F	DQ2.5	3A	<1	<5	PBIVIC	Mass cytometry
P39	TC-D		DQ2.5	1	<1	<5		Mass cytometry
P40		F	DQ2.5	3A	2	5		iviass cytometry
P41	TCeD	F -	DQ2.5	0	<1	<5	SCS	Nass cytometry
P42	rCeD	F	DQ2.5	3B	42.1	80	SCS	Mass cytometry
P43	Control	F	DQ2.5	0	<1	6	PBMC, SCS	Mass cytometry
P44	Control	F	DQ2.5	0	<1	<5	PBMC, SCS	Mass cytometry
P45	Control	F	DQ2.5	0	not determined	not determined	PBMC, SCS	Mass cytometry
P46	Control	М	DQ2.5	0	<1	<5	PBMC,SCS	Mass cytometry
P47	Control	Unknown	not determined	not determined	not determined	not determined	PBMC	Mass cytometry
P48	Control	Unknown	not determined	not determined	not determined	not determined	PBMC	Mass cytometry
P49	Control	Unknown	not determined	not determined	not determined	not determined	PBMC	Mass cytometry
P50	Control	Unknown	not determined	not determined	not determined	not determined	PBMC	Mass cytometry
P51	Control	Unknown	not determined	not determined	not determined	not determined	PBMC	Mass cytometry
P52	Control	Unknown	not determined	not determined	not determined	not determined	PBMC	Mass cytometry
P53	Control	F	D02.5	0	<1	<5	SCS	Mass cytometry
P54	Control	F	D02.5	0	<1	<5	SCS	Mass cytometry
P55	Control	M	DO2 5	0	<1	14	scs	Mass cytometry
P56	Control	M	DO2 5	0	<1	 <5	505	RNA Sea
100	Control	141	542.5	U U	· · ·	~~	303	

P57	Control	М	DQ8	0	<1	<5	SCS	RNA Seq
P58	Control	F	DQ2.5	0	<1	<5	SCS	RNA Seq
P59	Control	F	DQ8	not determined	<1	<5	SCS	RNA Seq

Supplementary Table 3. Participant list. Untreated and treated celiac disease (UCeD and TCeD, respectively) patients and controls (for participants with other autoimmune diseases, influenza infection and controls, see Supplementary Table 6). The histological appearance in the duodenal mucosa was graded according to the Marsh score; Normal mucosa (Marsh score 0), increased number of intraepithelial lymphocytes (Marsh score 1), hyperplastic lesion and crypt hyperplasia (Marsh score 2) and various degree of villous atrophy (Marsh score 3A-C)^{17,18}. Reference range anti-transglutaminase 2 IgA antibodies (Anti-TG2) <3U/mL, anti-deamidated gliadin peptide IgG antibodies (ant-DGP) < 20 Units/mL. Analyzed material: Peripheral blood mononuclear cells (PBMC), single-cell suspension (SCS) from duodenal biopsies.

Supplementary Table 4. Mass c	ytometry-derived fold ch	ange, P values with false	discovery rate per marker.
			<i>i i</i>

UCeD tetramer pos vs neg CD4+ blood T cells							
Fold chang	P value	FDR					
3.37446489	6.2625E-06	0.00018161					
2.17292987	3.0457E-05	0.00044163					
3.66724386	4.7212E-05	0.00045638					
-1.8726527	9.614E-05	0.00055962					
2.67875437	9.6486E-05	0.00055962					
-2.0599651	0.0003219	0.00084863					
2.00321055	0.0002185	0.00084863					
0.70632218	0.00022526	0.00084863					
3.54694316	0.0002385	0.00084863					
1.98031909	0.00029958	0.00084863					
3.35498746	0.00031919	0.00084863					
1.52339882	0.00039355	0.00095108					
-0.8217108	0.00054343	0.00121227					
0.94168994	0.0008466	0.00165236					
-1.5620493	0.00085467	0.00165236					
1.03068158	0.00126272	0.00218587					
1.57652604	0.00128137	0.00218587					
-3.0189471	0.00169502	0.00273086					
-1.5208278	0.00189519	0.00289265					
0.16313598	0.00250674	0.00363478					
0.20448483	0.00312444	0.00431471					
-1.4573202	0.0038376	0.00505865					
2.20559632	0.06803669	0.08578539					
-0.5616357	0.07339271	0.08868286					
-0.9823509	0.11666971	0.13533686					
-0.6718246	0.16377833	0.18267583					
-0.4542505	0.31769572	0.34122874					
-0.543436	0.82730049	0.85684694					
-2.4448589	0.97096702	0.97096702					
	Amer pos vs Fold chang 3.37446489 2.17292987 3.66724386 -1.8726527 2.67875437 -2.0599651 2.00321055 0.70632218 3.54694316 1.98031909 3.35498746 1.52339882 -0.8217108 0.94168994 -1.5620493 1.03068158 1.57652604 -3.0189471 -1.5208278 0.16313598 0.20448483 -1.4573202 2.20559632 -0.5616357 -0.9823509 -0.6718246 -0.4542505 -0.543436 -2.4448589	ramer pos vs neg CD4+ bloFold changP value3.374464896.2625E-062.172929873.0457E-053.667243864.7212E-05-1.87265279.614E-052.678754379.6486E-052.05996510.00032192.003210550.00021850.706322180.00029583.546943160.00029583.546943160.000299583.54987460.000319191.523398820.00039355-0.82171080.000543430.941689940.0008466-1.56204930.000854671.030681580.001262721.576526040.00128137-3.01894710.00169502-1.52082780.001895190.163135980.002506740.204484830.00312444-1.45732020.00383762.205596320.06803669-0.56163570.07339271-0.98235090.11666971-0.67182460.16377833-0.45425050.31769572-0.5434360.82730049-2.44485890.97096702					

UCeD tetramer pos vs neg CD4+ gut T cells					
Variable	Fold chang	P value	FDR		
CD161	0.97220416	0.00032835	0.00952204		
CXCR3	0.80636811	0.00108693	0.01208599		
HLA-DR	1.39450801	0.00125028	0.01208599		
CD39	1.39717471	0.00233828	0.01520002		
OX40	1.46577946	0.00268195	0.01520002		
PD-1	1.85744183	0.00314483	0.01520002		
CD38	1.06108479	0.00368047	0.01524766		
CCR4	0.68483148	0.0069221	0.02007409		
CXCR5	0.77724598	0.00662812	0.02007409		
ICOS	1.41940434	0.00618273	0.02007409		
CD49d	0.66196686	0.01584541	0.04177427		
CD127	-2.1500238	0.01862315	0.04500594		
CCR6	0.2253228	0.02394554	0.05239352		
Integrin-β7	0.35987293	0.02529342	0.05239352		
CD69	0.46978026	0.02812773	0.05438027		
CD85j	1.19527263	0.03840194	0.06960352		
CD28	0.40522775	0.07587382	0.1294318		
CTLA-4	0.38342996	0.13391463	0.21575135		
CD57	-0.9246062	0.14609522	0.21576885		

VariableFold changP valueFDRPD-12.151569431.1733E-073.4026E-06CD1611.671251336.7931E-060.00019023CD62L-1.5389777.0713E-060.00046007CCR60.720838552.1544E-050.0005386CXCR31.640679353.9765E-050.00095437CD25-0.98388586.2388E-050.00143493CD45RA-1.34671490.000126260.00277762HLA-DR2.193612450.000131940.00277762CCR40.291491370.000170060.00340113CD73-0.75631810.000706880.01272393CD380.996684530.000960180.01626858Integrin-β71.832683170.000950180.01626858Integrin-β71.832683170.000463920.02391494CD49d0.812387420.001536170.02394264CD49d0.812387420.001635210.02391494CD49d0.503630210.007887350.08676084CXR50.503630210.007887350.08676084CXR50.503630210.00635210.0336372CTLA-40.238812630.06906320.4336741CD37-0.43372470.212679160.1<1CD280.09696720.46916720.4CD57-1.41868480.335034791KLRG10.238140810.82236830.1	UCeD tetramer pos vs control CD4+ blood T cells						
PD-12.151569431.1733E-073.4026E-06CD1611.671251336.7931E-060.00019021CD62L-1.5389777.0713E-060.0004607CCR60.720838852.1544E-050.0005386CXCR31.640679353.9765E-050.00095437CD25-0.98388586.2388E-050.00143493CD45RA-1.34671490.000126260.00277762HLA-DR2.193612450.000131940.00277762CCR40.291491370.000170060.00340113CD73-0.75631810.000706880.01228393CD380.996684530.000960180.01626858Integrin-β71.832683170.000950980.01226244ICOS1.161899320.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0269177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084CXR50.503630210.007887350.08676084CXR50.503630210.007887350.09336372CTLA-40.238812630.05602910.4528233CD85j-0.75652340.06909630.4836741CD27-0.43372470.2126791611CD280.096967220.4691672511CD27-1.41868480.3350347911KLRG10.238140810.8223688311	Variable	Fold chang	P value	FDR			
CD1611.671251336.7931E-060.00019021CD62L-1.5389777.0713E-060.00019033CD392.839129161.7926E-050.0005386CXR60.720838852.1544E-050.0005386CXCR31.640679353.9765E-050.00095437CD25-0.98388586.2388E-050.00143493CD45RA-1.34671490.000126260.00277762HLA-DR2.193612450.000131940.00277762CCR40.291491370.000170060.00340113CD73-0.75631810.00029840.00626701CXCR4-0.29443110.000706880.0122893CD380.996684530.000960180.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.86222950.51733769CCR50.18679080.270490221CD27-0.43372470.212679161CD57-1.41868480.335034791KLRG10.238140810.822368831	PD-1	2.15156943	1.1733E-07	3.4026E-06			
CD62L-1.5389777.0713E-060.00019093CD392.839129161.7926E-050.00046607CCR60.720838852.1544E-050.00095437CD25-0.98388586.2388E-050.00143493CD45RA-1.34671490.000126260.00277762HLA-DR2.193612450.000131940.00277762CCR40.291491370.000170060.00340113CD73-0.75631810.000329840.00626701CXCR4-0.29443110.000706880.01272393CD380.996684530.000960180.01626858Integrin-β71.832683170.000956980.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084CXR50.503630210.007887350.09336372CTLA-40.238812630.05602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.18679080.2704902211CD27-0.43372470.2126791611CD57-1.41868480.3350347911KLRG10.238140810.8223688311	CD161	1.67125133	6.7931E-06	0.00019021			
CD392.839129161.7926E-050.00046607CCR60.720838852.1544E-050.00095437CXCR31.640679353.9765E-050.00095437CD25-0.98388586.2388E-050.00143493CD45RA-1.34671490.000126260.00277762HLA-DR2.193612450.000131940.00277762CCR40.291491370.000170060.00340113CD73-0.75631810.000329840.00626701CXCR4-0.29443110.000706880.01272393CD380.996684530.000960180.01626858Integrin-β71.832683170.000956980.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.05602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.2704902211CD27-0.43372470.2126791611CD57-1.41868480.3350347911KLRG10.238140810.8223688311	CD62L	-1.538977	7.0713E-06	0.00019093			
CCR60.720838852.1544E-050.0005386CXCR31.640679353.9765E-050.00143493CD25-0.98388586.2388E-050.00143493CD45RA-1.34671490.000126260.00277762HLA-DR2.193612450.000131940.00277762CCR40.291491370.000170060.00340113CD73-0.75631810.000329840.00626701CXCR4-0.29443110.000706880.01272393CD380.996684530.000960180.01626858Integrin-β71.832683170.000956980.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084CXR50.503630210.007887350.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CR50.186799080.2704902211CD27-0.43372470.2126791611CD280.096967220.4691672511CD57-1.41868480.3350347911KLRG10.238140810.8223688311	CD39	2.83912916	1.7926E-05	0.00046607			
CXCR31.640679353.9765E-050.00095437CD25-0.98388586.2388E-050.00143493CD45RA-1.34671490.000126260.00277762HLA-DR2.193612450.000131940.00277762CCR40.291491370.000170060.00340113CD73-0.75631810.000329840.00266701CXCR4-0.29443110.000706880.01272393CD380.996684530.000960180.01626858Integrin-β71.832683170.000956980.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07625233CCR7-0.49324640.008191670.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD550.186790880.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CCR6	0.72083885	2.1544E-05	0.0005386			
CD25-0.98388586.2388E-050.00143493CD45RA-1.34671490.000126260.00277762HLA-DR2.193612450.000131940.00277762CCR40.291491370.000170060.00340113CD73-0.75631810.000329840.00626701CXCR4-0.29443110.000706880.01272393CD380.996684530.000960180.01626858Integrin-β71.832683170.000956980.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.286222950.51733769CCR50.18679080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CXCR3	1.64067935	3.9765E-05	0.00095437			
CD45RA-1.34671490.000126260.00277762HLA-DR2.193612450.000131940.00277762CCR40.291491370.000170060.00340113CD73-0.75631810.000329840.00626701CXCR4-0.29443110.000706880.01272393CD380.996684530.000960180.01626858Integrin-β71.832683170.000956980.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.28622950.51733769CR50.18679080.270490221CD27-0.43372470.212679161CD57-1.41868480.335034791KLRG10.238140810.822368831	CD25	-0.9838858	6.2388E-05	0.00143493			
HLA-DR2.193612450.000131940.00277762CCR40.291491370.000170060.00340113CD73-0.75631810.000329840.00626701CXCR4-0.29443110.000706880.01272393CD380.996684530.000960180.01626858Integrin-β71.832683170.000956980.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084CXCR50.503630210.007887350.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CD45RA	-1.3467149	0.00012626	0.00277762			
CCR40.291491370.000170060.00340113CD73-0.75631810.000329840.00626701CXCR4-0.29443110.000706880.01272393CD380.996684530.000960180.01626858Integrin-β71.832683170.000956980.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.286222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	HLA-DR	2.19361245	0.00013194	0.00277762			
CD73-0.75631810.000329840.00626701CXCR4-0.29443110.000706880.01272393CD380.996684530.000960180.01626858Integrin-β71.832683170.000956980.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084CXCR50.503630210.007887350.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CCR4	0.29149137	0.00017006	0.00340113			
CXCR4-0.29443110.000706880.01272393CD380.996684530.000960180.01626858Integrin-β71.832683170.000956980.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084CXCR50.503630210.007887350.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CD73	-0.7563181	0.00032984	0.00626701			
CD380.996684530.000960180.01626858Integrin-β71.832683170.000956980.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084CXCR50.503630210.007887350.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.286222950.51733769CCR50.186790880.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CXCR4	-0.2944311	0.00070688	0.01272393			
Integrin-β71.832683170.000956980.01626858CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084CXCR50.503630210.007887350.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.28622950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CD38	0.99668453	0.00096018	0.01626858			
CD49d0.812387420.001536170.02304254ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084CXCR50.503630210.007887350.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	Integrin-β7	1.83268317	0.00095698	0.01626858			
ICOS1.161899320.00168520.02359284CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084CXCR50.503630210.007887350.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.2704902211CD27-0.43372470.2126791611CD280.096967220.4691672511CD57-1.41868480.3350347911KLRG10.238140810.8223688311	CD49d	0.81238742	0.00153617	0.02304254			
CD127-0.29524470.004839820.0629177CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084CXCR50.503630210.007887350.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	ICOS	1.16189932	0.0016852	0.02359284			
CD69-1.24636820.00635210.07622523CCR7-0.49324640.008191670.08676084CXCR50.503630210.007887350.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CD127	-0.2952447	0.00483982	0.0629177			
CCR7-0.49324640.008191670.08676084CXCR50.503630210.007887350.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CD69	-1.2463682	0.0063521	0.07622523			
CXCR50.503630210.007887350.08676084OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CCR7	-0.4932464	0.00819167	0.08676084			
OX401.15296390.010373750.09336372CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CXCR5	0.50363021	0.00788735	0.08676084			
CTLA-40.238812630.056602910.4528233CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	OX40	1.1529639	0.01037375	0.09336372			
CD85j-0.75652340.06909630.4836741CD1370.823842760.086222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CTLA-4	0.23881263	0.05660291	0.4528233			
CD1370.823842760.086222950.51733769CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CD85j	-0.7565234	0.0690963	0.4836741			
CCR50.186799080.270490221CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CD137	0.82384276	0.08622295	0.51733769			
CD27-0.43372470.212679161CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CCR5	0.18679908	0.27049022	1			
CD280.096967220.469167251CD57-1.41868480.335034791KLRG10.238140810.822368831	CD27	-0.4337247	0.21267916	1			
CD57-1.41868480.335034791KLRG10.238140810.822368831	CD28	0.09696722	0.46916725	1			
KLRG1 0.23814081 0.82236883 1	CD57	-1.4186848	0.33503479	1			
	KLRG1	0.23814081	0.82236883	1			

UCeD tetramer pos vs control CD4+ gut T cells							
Variable	Fold chang	P value	FDR				
CD39	2.76037179	3.1303E-06	9.078E-05				
CD49d	0.04227848	1.1633E-05	0.00032572				
CCR4	1.17800479	0.00010815	0.00292013				
CD127	-1.1591164	0.0001516	0.0039416				
ICOS	3.41784645	0.00031783	0.00794571				
OX40	2.03091136	0.00150522	0.0361252				
PD-1	2.07209776	0.00168659	0.03879168				
Integrin-β7	0.34402756	0.00268442	0.05905725				
HLA-DR	0.38887431	0.00339612	0.0713185				
CD161	0.85093757	0.00784807	0.15696138				
CD85j	-0.3621977	0.01661189	0.315626				
CD38	-0.8229729	0.03193237	0.57478262				
CCR7	-0.1859834	0.036309	0.61725301				
CTLA-4	0.26910706	0.05595624	0.89529979				
CD137	-0.2766683	0.06308645	0.93138189				
CD28	0.6410895	0.06209213	0.93138189				
CD62L	-1.672258	0.07571616	0.98431007				
CCR5	0.02622354	0.75333356	1				
CCR6	-0.1799132	0.28255317	1				

CXCR4	-1.1292641	0.1488061	0.21576885	CD25	1.17686872	0.9910158	1
CD25	-0.4054953	0.18510135	0.25561614	CD27	0.71823074	0.95712371	1
CD45RA	-0.6689098	0.23821767	0.3140142	CD45RA	0.64616154	0.24243876	1
CD27	-1.3612242	0.3278513	0.41337773	CD57	-1.6656093	0.13109569	1
CCR5	-0.0952532	0.34324992	0.41476032	CD69	-0.1206862	0.54090404	1
CD73	-1.3430901	0.50025216	0.5802925	CD73	-0.7077205	0.09137822	1
KLRG1	-0.6835401	0.53751303	0.59953377	CXCR3	-0.62058	0.73659431	1
CCR7	-0.024925	0.67654213	0.70070434	CXCR4	-0.5520921	0.21856755	1
CD137	-0.1678129	0.65930509	0.70070434	CXCR5	0.33254566	0.10640317	1
CD62L	-0.6591668	0.9103162	0.9103162	KLRG1	-0.9329318	0.46390184	1

Supplementary Table 4. Fold change, P values with false discovery rate per marker. Mass cytometry-derived fold change (> 1.5 highlighted) of indicated markers (visualized as heat map in Figure 1e (gut) and 2e (blood). P values (< 0.05 highlighted) and false discovery rate (FDR) (<0.05 highlighted) are also shown. The fold change is calculated as the log2 fold change of the grand mean of donor marker intensity for tetramer positive versus tetramer pre-enriched (blood, n = 7, upper left) or tetramer negative (gut, n = 6, lower left) CD4⁺ T cells in untreated celiac disease (UCeD) patients. Fold change, P values and FDR are also shown for tetramer positive blood T cells in UCD patients versus CD4⁺ blood T cells in controls (n = 10 controls, upper right) and for tetramer positive gut T cells of UCeD patients versus CD4⁺ gut T cells of controls (n = 7 controls, lower right). P values and FDRs were calculated using an unpaired, two-tailed t-test and the Benjamini-Hochberg procedure, respectively.

Supplementary Table 5. List of differentially expressed genes. See separate excel-file.

Supplementary Table 6. Participants (P) with autoimmune disorders, influenza and controls in Fig. 2h-i, Extended Data Fig. 8 and 10e-f

				Organ involvement and	Elevated autantibodies
Participant	Category	Sex	Disease	other information	or relevant test
P60	Untreated	F	Systemic sclerosis	Pulmonary arterial hypertension, digital ulcers, sclerodactily, oesophagal dysmotility	ANA, anti-centromere, anti-Ro/SSA
P61	Untreated	F	Systemic sclerosis	Worsening skin thickening	ANA, anti-Scl-70
P62	Untreated	F	Systemic sclerosis	Pulmonary fibrosis, Stable skin and lung disease	ANA, anti-RNA polymerase III
P63	Untreated	F	Systemic sclerosis	Renaud syndrom, active digital ulcers, osteomyelitis	ANA, anti-centromere, anti-Ro/SSA
P64	Untreated	F	Systemic sclerosis	Raynaud, interstitial lung disease, oesophagal dysmotility	ANA
P65	Untreated	Μ	Systemic sclerosis	Raynaud sondrom, sclerodactily, subcutaneous calcinosis, oesophagal dysmotility	ANA, anti-centromere (CENP-B), anti-Ro/SSA
P66	Untreated	F	Systemic sclerosis	Raynaud, digital ulcers, oesophagal dysmotility	ANA, anti-centromere
P67	Untreated	М	Systemic sclerosis	Raynaud, sclerodactily, renal crisis, Interstitial lung disease	ANA, anti-RNA polymerase III
P68	Untreated	F	Systemic sclerosis	Worsening skin thickening	ANA, anti-Scl-70
P69	Untreated	F	Systemic sclerosis	Stable disease, sclerodactyly Stable disease Sclerodactyly Stable disease, sclerodactyly	ANA, Scl-70
P70	Untreated	F	Systemic lupus erythematosus	Flare of malar rash, fatigue, arthralgia	ANA, anti-dsDNA, anti- RO, anti-U1-snRNP, anti- Sm
P71	Untreated	F	Systemic lupus erythematosus	Nephritis (LN III A/C), arthritis	ANA, anti-dsDNA
P72	Untreated	F	Systemic lupus erythematosus	Lupus nephritis, arthitis	anti-Ro/SSA, anti-RNP, anti-Ku
P73	Untreated	F	Systemic lupus erythematosus	UV-sensitive rash, arthritis	ANA, anti-dsDNA, anti- beta2-glycoprotein 1
P74	Untreated	F	Systemic lupus erythematosus	In remission	ANA
P75	Untreated	F	Systemic lupus erythematosus	Raynaud's disease, arthritis, telangiectasias Arthritis	ANA, anti-RNP

P76	Untreated	F	Systemic lupus erythematosus	Dry eyes and mouth, children with neonatal systemic lupus erythemotosus	ANA, anti-dsDNA, anti- Ro/SSA, anti-La/SSB
P77	Untreated	F	Systemic lupus erythematosus	Sicca symptoms, skin flare	ANA, anti-Ro/SSA, anti- La/SSB
P78	Untreated	F	Systemic lupus erythematosus	Stalbe disease	ANA
P79	Untreated	F	Systemic lupus erythematosus	New rash and headache	ANA, anti-Ro/SSA
P80	Control	Unknown	Unknown	Blood bank donor	Not determined
P81	Control	Unknown	Unknown	Blood bank donor	Not determined
P82	Control	Unknown	Unknown	Blood bank donor	Not determined
P83	Control	Unknown	Unknown	Blood bank donor	Not determined
P84	Control	Unknown	Unknown	Blood bank donor	Not determined
P85	Control	Unknown	Unknown	Blood bank donor	Not determined
P86	Control	Unknown	Unknown	Blood bank donor	Not determined
P87	Control	Unknown	Unknown	Blood bank donor	Not determined
P88	Control	Unknown	Unknown	Blood bank donor	Not determined
P89	Control	Unknown	Unknown	Blood bank donor	Not determined
P90	Control	Unknown	Unknown	Blood bank donor	Not determined
P91	Control	Unknown	Unknown	Blood bank donor	Not determined
P92	Control	Unknown	Unknown	Blood bank donor	Not determined
P93	Control	Unknown	Unknown	Blood bank donor	Not determined
P94	Control	Unknown	Unknown	Blood bank donor	Not determined
P95	Control	Unknown	Unknown	Blood bank donor	Not determined
P96	Control	Unknown	Unknown	Blood bank donor	Not determined
P97	Control	Unknown	Unknown	Blood bank donor	Not determined
P98	Untreated	М	Influenza	Fever, cough, soar throat, runny nose, myalgia	NP Swab: Influenza A^+
			Recovery, 41 days	No influenza-related symptoms	Not determined
P99	Untreated	F	Influenza	Fever, cough, soar throat, runny nose, myalgia	NP Swab: Influenza A^+
P100	Untreated	F	Influenza	Fever, cough, soar throat, runny nose, myalgia	NP Swab: Influenza A⁺
P100	Unitedieu		Recovery, 27 days	No influenza-related symptoms	Not determined
P101	Untreated	F	Influenza	Fever, cough, soar throat, runny nose, myalgia	NP Swab: Influenza A^+
LIOI	Unitedleu	ſ	Recovery, 23 days	No influenza-related symptoms	Not determined
P102	Untreated	F	Influenza	Fever, cough, soar throat, runny nose, myalgia	NP Swab: Influenza A^+

			Recovery, 30 days	No influenza-related symptoms	Not determined
P103	Untreated	F	Influenza	Fever, cough, soar throat, runny nose, myalgia	NP Swab: Influenza A^+
			Recovery, 30 days	No influenza-related symptoms	Not determined
P104	Untreated	М	Influenza	Fever, cough, soar throat, runny nose, myalgia	NP Swab: Influenza A^+
			Recovery, 28 days	No influenza-related symptoms	Not determined

Supplementary Table 6. Participants (P) with autoimmune disorders, influenza and controls in Fig. 2h-i, Extended Data Fig. 8 and 10e-f. For participants (P) with autoimmune disorders, autoantibodies that were measured above the upper limit of normal at the time-point of blood draw for this study are listed. For participants included before and after influenza infection, positive nasopharengeal (NP) swab test results for influenza A virus is indicated. The patients are listed as untreated as none of them were treated with steroids or other immunomodulating drugs at the time point of blood draw. However, P99, P100, P101, P103 and P104 were treated with the antiviral drug Oseltamivir between the first and second consultation.

Label	Target	Clone	Supplier	Concentration
89Y	CD45	HI30	Fluidigm	2:100
108Pd	CD45	HI30	Biolegend	8 μg/ml
115In	CD57**	HCD57	Biolegend	1.5 μg/ml
139La	CD28**	CD28.2	Biolegend	4 μg/ml
141Pr	Intebrin-α4/CD49d	9F10	Fluidigm	1:100
142Nd	KLRG1**	13F12F2	Thermo Fischer S.	3 μg/ml
143Nd	CD278/ICOS**	C398.4A	Fluidigm	0.5:100
144Nd	CD38**	HIT2	Fluidigm	1.5:100
145Nd	CD4	RPA-T4	Fluidigm	0.5:100
146Nd	CD8a	RPA-T8	Fluidigm	0.6:100
147Sm	TIGIT	372702	Biolegend	8 μg/ml
148Nd	CD27**	0323	Biolegend	1 μg/ml
149Sm	CD56 (NCAM)	NCAM16.2	Fluidigm	0.5:100
150Nd	CD127**	A019D5	Biolegend	1 μg/ml
151Eu	CD11c	Bu15	Biolegend	2 μg/ml
151Eu	CD19	HIB19	Biolegend	1 μg/ml
151Eu	CD14	M5E2	Fluidigm	1:100
152Sm	TCRg/d	11F2	Fluidigm	1:100
153Eu	CD62L**	DREG-56	Fluidigm	0.5:100
154Sm	CD3	UCHT1	Fluidigm	0.8:100
155Gd	CD279 (PD-1)**	EH12.2H7	Fluidigm	1.8:100
156Gd	CD29	TS2/16	Biolegend	1.6 µg/ml
158Gd	CD194 (CCR4)**	L291H4	Fluidigm	0.5:100
159Tb	CD161**	HP-3G10	Fluidigm	0.5:100
160Gd	CD39**	A1	Fluidigm	1:100
161Dy	CD152 (CTLA-4)**	14D3	Fluidigm	5:100
162Dy	Integrin-β7	FIB504	Fluidigm	0.5:100
163Dy	CD183 (CXCR3)**	G025H7	Fluidigm	0.75:100
164Dy	CD200	OX-104	Biolegend	8 μg/ml
165Ho	CD103	B-Ly7	Thermo Fischer S.	0.5:100
166Er	CCR2	K036C2	Biolegend	2 μg/ml
167Er	CD197 (CCR7)**	G043H7	Fluidigm	1:100
168Er	CD73**	AD2	Fluidigm	1:100
169Tm	CD25 (IL-2R)**	2A3	Fluidigm	0.6:100
170Er	CD45RA**	HI100	Fluidigm	0.1:100
171Yb	CD185 (CXCR5)**	RF8B2	Fluidigm	0.75:100
172Yb	CD69**	FN50	Biolegend	1 μg/ml
173Yb	HLA-DR**	L243	Fluidigm	0.75:100
174Yb	CD196 (CCR6)**	G034E3	Biolegend	1 μg/ml
175Lu	CX3CR1	2A9-1	Biolegend	6 μg/ml
176Yb	TCRa/β	IP26	Fluidigm	1.5:100
1911r/1931r	Nucleateed cells		Fluidigm	1:1000
195Pt	Dead cells		Fluidigm	1:1500
209Bi	CD11b	ICRF44	Fluidigm	0.4:100

Supplementary Table 7. Mass cytometry antibody panel for autoimmune disorders.

Supplementary Table 7. Mass cytometry antibody panel for autoimmune disorders.

Antibody panel for mass cytometry staining of peripheral blood from participants with autoimmune disease, participants during and after influenza infection and control subjects (Figure 2h-i and Extended Data Fig. 8). Two asterisks identify the markers used to generate Fig. 2i (22 CD4⁺ T-cell markers common to mass cytometry staining panel in Supplementary table 1). Final concentrations are stated in μ g/ml when using self-conjugated antibodies or per volume 100 when the concentration was not available from the manufacturer.

Label	Target	Clone	Supplier	Concentration
APC	FoxP3	PCH101	Thermo Fischer S.	5 μg/ml
Alexa 700	CD4	A161A1	Biolegend	3:100
APC-Cy7	CD25	BC96	Biolegend	4:100
PE-Cy5	CD45RA	HI100	Biolegend	1:100
PE-Cy7	CD127	A019D5	Biolegend	5:100
Alexa 488	Ki-67	Ki-67	Biolegend	5 μg/ml
Pacific Blue	CD11c	3.9	Biolegend	1.5:100
Pacific Blue	CD56	5.1H11	Biolegend	1.5:101
Pacific Blue	CD14	HCD14	Biolegend	1.5:102
Pacific Blue	CD19	6D5	Biolegend	1.5:103
Aqua/510	Dead cells		Biolegend	1:100
BV605	CD3	UCHT1	Biolegend	4:100
BV650	Integrin β7	FIB504	BD Bisciences	5:100
Alexa 488	CD278/ICOS	C398.4A	Biolegend	1 μg/ml
PerCP	CD62L	DREG-56	Biolegend	3:100
Pe-Cy7	CD45RA	HI100	Thermo Fischer S.	2.5:100
APC	CXCR4	12G5	Biolegend	1:100
APC	CXCR5	J252D4	Biolegend	1:100
APC-H7	CD4	SK3	BD Bisciences	0.36 µg/ml
Fixable Violet/405	Dead cells		Thermo Fischer S.	1:100
BV605	CD3	OKT3	Biolegend	3:100
Alexa 488	CD25	14101	Thermo Fischer S.	4:100

Supplementary Table 8. Antibodies used in flow cytometry experiments.

Supplementary Table 8. Antibodies used in flow cytometry experiments. Antibodies used for flow cytometry staining. Final concentrations are stated in μ g/ml when information available or per volume 100 when the concentration was not available from the manufacturer.