
ACCELERATING DEEP REINFORCEMENT LEARNING
STRATEGIES OF FLOW CONTROL THROUGH A

MULTI-ENVIRONMENT APPROACH

Jean Rabault
Department of Mathematics

University of Oslo
jean.rblt@gmail.com

Alexander Kuhnle
University of Cambridge

alexkuhnle@t-online.de

September 17, 2019

ABSTRACT

Deep Reinforcement Learning (DRL) has recently been proposed as a methodology to discover
complex Active Flow Control (AFC) strategies [Rabault, J., Kuchta, M., Jensen, A., Réglade, U., &
Cerardi, N. (2019): “Artificial neural networks trained through deep reinforcement learning discover
control strategies for active flow control”, Journal of Fluid Mechanics, 865, 281-302]. However, while
promising results were obtained on a simple 2D benchmark flow at a moderate Reynolds number,
considerable speedups will be required to investigate more challenging flow configurations. In the
case of DRL trained with Computational Fluid Dynamics (CFD) data, it was found that the CFD
part, rather than training the Artificial Neural Network, was the limiting factor for speed of execution.
Therefore, speedups should be obtained through a combination of two approaches. The first one,
which is well documented in the literature, is to parallelize the numerical simulation itself. The
second one is to adapt the DRL algorithm for parallelization. Here, a simple strategy is to use several
independent simulations running in parallel to collect experiences faster. In the present work, we
discuss this solution for parallelization. We illustrate that perfect speedups can be obtained up to
the batch size of the DRL agent, and slightly suboptimal scaling still takes place for an even larger
number of simulations. This is, therefore, an important step towards enabling the study of more
sophisticated Fluid Mechanics problems through DRL.

1 Introduction

Active Flow Control (AFC) is a problem of considerable theoretical and practical interest, with many applications
including drag reduction on vehicles and airplanes (Pastoor et al., 2008; You & Moin, 2008; Li et al., 2019a,b), or
optimization of the combustion processes taking place in engines (Wu et al., 2018). Unfortunately, the difficulty
of finding efficient strategies for performing AFC is well-known (Brunton & Noack, 2015; Duriez et al., 2016). It
arises from the combination of non-linearity, time-dependence, and high dimensionality inherent to the Navier-Stokes
equations.

The importance of AFC is apparent from the large body of literature that discusses both theoretical, computational, and
experimental aspects of the problem. In particular, active flow control has been discussed in simulations using both
Reduced Order Models and harmonic forcing (Bergmann et al., 2005), direct simulations coupled with the adjoint
method (Flinois & Colonius, 2015) or linearized models (Lee et al., 2001), and mode tracking methods (Queguineur
et al., 2019). Realistic actuation mechanisms, such as plasma actuators (Sato et al., 2015), suction mechanisms (Wang
et al., 2016), transverse motion (Li & Aubry, 2003), periodic oscillations (Lu et al., 2011), oscillating foils (Bao &
Tao, 2013), air jets (Zhu et al., 2019), or Lorentz forces in conductive media (Breuer et al., 2004), are also discussed
in details, as well as limitations imposed by real-wold systems (Belson et al., 2013). Similarly, a lot of experimental
work has been performed, with the goal of controlling either the cavitation instability (Che et al., 2019), the vortex flow
behind a conical forebody (Meng et al., 2018), or the flow separation over a circular cylinder (Jukes & Choi, 2009a,b).

ar
X

iv
:1

90
6.

10
38

2v
3

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
6

Se
p

20
19

ACCELERATING DRL OF AFC: MULTI-ENV APPROACH SEPTEMBER 17, 2019

Finally, while most of the literature has focused on complex, closed-loop control methods, some open-loop methods
have also been discussed, both in simulations (Meliga et al., 2010) and in experiments (Shahrabi, 2019).

However, it is still challenging to apply active flow control to situations of industrial interest. By reviewing the
literature presented in the previous paragraph one can observe that, while there are good candidates for both sensors
and actuators to be used in such systems, finding algorithms for using those measurements and actuation possibilities in
an efficient way to perform AFC is challenging. In addition, challenges such as disturbances inherent to the real world,
imperfections in the building of the sensors or actuators, and adaptivity to changing external conditions may also be
part of the problem. Therefore, the main limitation to AFC is currently the lack of robust, efficient algorithms that can
leverage the physical devices available for performing such control. The difficulty of finding efficient algorithms for
control and interaction with real world situations or complex systems is also present in other fields of research such as
speech recognition (Jelinek, 1997), image analysis (Tarr & Bülthoff, 1998), or playing complex games such as the game
of Go or poker. In those domains, great progress has recently been obtained through the use of data-driven methods and
machine learning, and problems that had been unattainable for several decades have been practically solved in recent
years (Graves et al., 2013; Krizhevsky et al., 2012; Silver et al., 2017; Brown & Sandholm, 2019).

Since data-driven and learning-based methods are suitable to be used on non-linear, high dimensional, complex problems,
they are, therefore, also promising for performing AFC (Duriez et al., 2016). More specifically, such promising methods
include Genetic Programming (GP) (Gautier et al., 2015; Duriez et al., 2016), and Deep Reinforcement Learning
(DRL) (Verma et al., 2018; Rabault et al., 2018, 2019). Those two methods are among the most successful data-driven
approaches at performing nonlinear control tasks in the recent years, and are regarded as possible solutions to the
challenges faced by AFC (Duriez et al., 2016). In addition, one of their key properties is their ability to naturally scale,
in a parallel fashion, to large amounts of data and / or computational power, which enables very efficient training. This
is a well known fact for GP, due to its inherently parallel nature. However, it is maybe slightly less known that the same
is true also of DRL, if a suitable implementation is used. In the present work, we illustrate how parallelization of DRL
can be performed by extending the work presented in Rabault et al. (2019), and we provide a flexible implementation
that will be available open-source. Therefore, we provide both implementations and guidelines that may be used by
future work as a basis for further investigation of the application of DRL to AFC in complex scenarios.

In the following, we first provide a short reminder of the Computational Fluid Dynamics (CFD) simulation used, and of
the main principles behind DRL. Then, we explain how the data collection part of the algorithm can be parallelized in a
general way. Finally, we present the scaling results obtained and we discuss their significance for the use of DRL in
more challenging AFC situations

2 Methodology

In this section, we summarize the methodology for the CFD simulation (subsection 2.1) and the DRL algorithm
(subsection 2.2). Those are identical to what was already used in Rabault et al. (2019). In addition, we present the
method used for parallelizing the DRL (subsection 2.3), which is the new contribution of this work.

2.1 Simulation environment

Figure 1: Unsteady non-dimensional pressure wake behind the cylinder after flow initialization without active control.
The location of the pressure probes is indicated by the black dots. The location of the control jets is indicated by the red
dots. This illustrates the configuration used to perform learning.

The CFD simulation is identical to the one presented in Rabault et al. (2019), and the reader interested in more de-
tails should refer to this work and the open-source code implementation: https://github.com/jerabaul29/

2

https://github.com/jerabaul29/Cylinder2DFlowControlDRL
https://github.com/jerabaul29/Cylinder2DFlowControlDRL

ACCELERATING DRL OF AFC: MULTI-ENV APPROACH SEPTEMBER 17, 2019

Cylinder2DFlowControlDRL. To summarize, the CFD case chosen is a simple 2D simulation of the non-
dimensionalized flow around a cylinder as described by the incompressible Navier-Stokes equations at Re = 100. The
configuration chosen is a copy of a classical benchmark used for the validation of numerical codes (Schäfer et al., 1996).
In addition, two small jets of angular width 10◦ are set on the sides of the cylinder and inject fluid in the direction
normal to the cylinder surface, following the control setup by the Artificial Neural Network (ANN). This implies that
the control relies on influencing the separation of the Kármán vortices, rather than direct injection of momentum as
could be obtained through propulsion. The jets are controlled through their mass flow rates, respectively Q1 and Q2.
We choose to use synthetic jets, meaning that no net mass flow rate is injected in the flow, which translates to the
constraint Q1 +Q2 = 0. The general configuration of the simulation is presented in Fig. 1.

The governing Navier-Stokes equations are solved in a segregated manner (Valen-Sendstad et al., 2012). More precisely,
the Incremental Pressure Correction Scheme (IPCS method, Goda (1979)) with an explicit treatment of the non-linear
term is used. Spatial discretization then relies on the finite element method implemented within the FEniCS framework
(Logg et al., 2012).

The aim of the control strategy is guided by the reward function fed to the DRL during training. In the present work, we
want to minimize the drag D through a reduction in the strength of the vortex shedding, in a way analogous to what is
obtained by boat tailing (Rabault et al., 2019). This means, in practice, that we are looking for strategies that use the
jets as a way to control the vortex shedding process, rather than a way to perform propulsion or converting some of the
drag into lift through curbing of the wake. For this, we define the reward function r from both the drag D and the lift L,
following:

r = 〈D〉S − |〈L〉S |, (1)

where 〈•〉S indicates the mean over an action step of the ANN (see section 2.2). In Eq. (1), the term related to drag
penalizes large drag values (which are negative due to conventions used in the code, i.e. a larger drag value is more
negative than a smaller one), while the term related to lift is here to penalize asymmetric wakes that could be obtained
from consistently biased blowing by the jets in one direction. Such consistently biased blowing strategies can be found
when no lift penalization is used (see Appendix B), but are not desired as they generate large lift values in addition to
the reduced drag. In the figures, we present the value of the drag coefficient, which is a normalized value of the drag
CD = −D

ρŪ2R
, where Ū = 2U(0)/3 is the mean velocity magnitude, ρ the volumetric mass density of the fluid, and R

the diameter of the cylinder.

2.2 Artificial Neural Network and Deep Reinforcement Learning algorithm

Artificial intelligence and particularly machine learning have become very attractive fields of research following several
recent high-profile successes of Deep Artificial Neural Networks (DANNs), such as attaining super-human performance
at image labeling (LeCun et al., 2015), crushing human professionals at the game of Go (Silver et al., 2017), or achieving
control of complex robots (Gu et al., 2017), which have shed light on their ability to handle complex, non-linear systems.
Those new techniques are now being applied to other disciplines, such as Fluid Mechanics (Kutz, 2017; Brunton et al.,
2019), and novel applications of DANNs have recently been proposed for both analyzing laboratory data (Rabault et al.,
2017), formulation of reduced order models (Srinivasan et al., 2019), AFC (Rabault et al., 2019), and the control of
stochastic systems from only partial observations (Bucci et al., 2019). In particular, the Deep Reinforcement Learning
(DRL) approach is a promising avenue for the control of complex systems, including AFC. This approach leverages
DANNs to optimize interaction with the system it should control through three channels: observing the state of the
system, acting to control the system, and a reward function giving feedback on its current performance. The choice of
the reward function allows to direct the efforts of the DANN towards solving a specific problem. In the following, we
will use the word “action” to describe the value provided by the ANN at each time step based on a state input, while
“control” describes the value effectively used in the simulation.

In the present case, similarly to Rabault et al. (2019), we use a DANN that is a simple fully-connected network, featuring
one input layer, two consecutive hidden layers of size 512 each, and one output layer providing the action. The classic
rectified linear unit (ReLU) is used as an activation function. The input layer is connected to 151 probes immersed in
the simulation that measure the value of the pressure in the vicinity of the cylinder. The output layer provides the action
used to obtain the control, i.e. the mass flow rates of the jets. The reward function, presented in Eq. 1, weights both
drag and lift to guide the network towards drag-reducing strategies. The DRL algorithm used for training, known in the
literature as the Proximal Policy Optimization method (PPO, Schulman et al. (2017)), is among the state-of-the-art
for training DANNs to perform continuous control. Each training episode (an episode is a sequence of interations
between the DANN and an independent simulation, generating data to be fed to the PPO algorithm) is started from a

3

https://github.com/jerabaul29/Cylinder2DFlowControlDRL
https://github.com/jerabaul29/Cylinder2DFlowControlDRL

ACCELERATING DRL OF AFC: MULTI-ENV APPROACH SEPTEMBER 17, 2019

converged, well-defined Kármán vortex street. In the following an episode has a duration corresponding to around 8
vortex shedding periods.

It is difficult for the PPO algorithm to learn the necessity to set time-correlated, continuous actions. This is a consequence
of the PPO trying at first purely random actions. Therefore, we added two limitations to the control effectively applied
in the CFD simulations. First, the action provided by the network is updated only around typically 10 times per vortex
shedding period, i.e. the action is in practise kept constant for a duration of around typically 10% of the vortex shedding
period, except if specifically stated otherwise. This allows the ANN to update its action at a frequency that corresponds
roughly to the phenomenon to control, rather than at either a frequency too low (in which case the ANN cannot manage
to perform any control), or too high (in which case the randomness from exploration noise does not lead to a sufficient
net effect on the system, which can reduce the learning speed). This is a well-known necessity in the literature, and
is analogous to the ‘frame skip’ used in the control of Atari games, for example (Braylan et al., 2015; Neitz et al.,
2018). Second, the control effectively set in the simulation is obtained from the latest action and previous control at
each numerical time step so that it is made continuous in time to avoid invalid physical phenomena such as infinite
acceleration of the fluid contained in the jets. To this end, the control at each time step in the simulation is obtained for
each jet as:

cs+1 = cs + α(a− cs), (2)

where cs is the control of the jet considered at the previous numerical time step, cs+1 is the new control, a is the action
provided by the PPO agent for the current set of time steps, and α = 0.1 is a numerical parameter. In the present
baseline case, there are 50 updates of the control between two consecutive updates of an action, so the value of α allows
a quick convergence of the control to the action, relative to the time between action updates. In practice, the exact value
of α has little to say for the performance of the control. The existence of those two time scales, and the update of action
versus control, are illustrated in Fig. 2. We provide an illustration of the effect of both the frequency of action updates
and the value of α in Appendix C.

Figure 2: Illustration of the existence of two different time scales in the algorithm. The first one is a fast time scale,
which corresponds to the timestep dt of the simulation, and is imposed by considerations around the numerical stability
of the simulation. The control applied through the jets (i.e. c) is updated at this time scale to enforce continuity of
the quantities used in the solver. The second time scale is a slower time scale, which corresponds to around 10% of
the vortex shedding period, and captures the relevant time scale of the system. The action set by the ANN is updated
following this slower time scale.

2.3 Parallelization of the data collection for the DRL algorithm

The code released so far (Rabault et al. (2019), https://github.com/jerabaul29/Cylinder2DFlowControlDRL)
allows to train the ANN to perform AFC in about 24 hours using a modern CPU running on a single core. The time
needed to perform training is one of the weaknesses of this study, as one would expect that more realistic (and complex)
flow simulations may require significantly more learning before an appropriate control strategy is found. Therefore,
obtaining speedups is critical for applying this approach to more challenging problems. Benchmarking the code revealed
that typically about 99.7% of the computation time is spent on the environment itself (i.e., the CFD part), rather than the
ANN and DRL algorithm. This is due to, on the one hand, the very efficient ANN and DRL implementations provided
by TensorFlow / Tensorforce and, on the other hand, the inherent cost associated with CFD. In addition, we note that our
hardware uses purely CPUs, and that GPU acceleration may even increase this proportion. Therefore, the optimization
effort should focus on the environment part of the code, with Amdahl’s Law predicting that full parallelization would
allow a theoretical speedup factor of up to typically 300 for this specific case.

There are two different ways of obtaining such speedups: first, one can increase the speed of the CFD simulation itself,
i.e. parallelizing the simulation. This topic is well discussed in the literature for a wide range of numerical methods

4

https://github.com/jerabaul29/Cylinder2DFlowControlDRL

ACCELERATING DRL OF AFC: MULTI-ENV APPROACH SEPTEMBER 17, 2019

(for a short introduction on the topic, one may for example refer to Simon (1992); Gropp & Smith (1990); Gropp et al.
(2001)). However, this approach has its limitations. For example, in our simple 2D simulation, the Finite Element
Model (FEM) problem is small enough that our attempts to parallelize the code lead to very limited speedups (no more
than a factor of typically less than 2, independently of using more CPUs), due to the large amount of communication
needed between the physical cores compared to the small size of the problems to be solved by the individual cores. This
is a well known problem in parallelizing numerical models (Gropp et al., 2001). Therefore, this option is not feasible in
our case, and even in the case of more complex CFD simulations it will reach a limit, given enough CPUs are available.

Second, one can attempt to parallelize not the DRL / ANN by themselves (as those use only 0.3% of the computing
time), but the collection of data used to train those algorithms. As the environment itself cannot be sped up much further,
another approach is therefore to use several environments, with each being an independent, self-sufficient simulation
which feeds data in parallel to the DRL algorithm. This means in practice that the DRL agent learns in parallel from
several interactions with simulations. This results in a very simple parallelization technique, which is well-adapted to
cases when most of the computational time is spent in the environment itself.

More concretely, the PPO algorithm optimizes the expected return of its stochastic policy, which is in practice estimated
based on a number TL of ‘rollouts’, that is, independent episodes of environment interactions which can be simulated
simultaneously. While there exist more sophisticated distributed execution schemes, we observe the following: if the
simulation is by far the dominant bottleneck of the training process (which is usually the case in fluid mechanics),
the simplest approach is to avoid distributing the (already complex) DRL logic and instead add a lightweight network
communication layer on top of the agent-environment interaction. The DRL framework Tensorforce (Kuhnle et al.,
2017) supports the capability for DRL models to keep track of parallel streams of experience, which in combination with
our environment wrapper allows to parallelize any DRL algorithm for any simulation. In practice, the communication
layer is implemented in Tensorforce and associated with a thin wrapper class that communicates through sockets with
the different environments. This allows to distribute the environments (i.e., in our case, the expensive CFD simulations),
whether on one machine or on a group of machines available through a network if this may be relevant. Those features
are all part of the open-source code release (see Appendix A).

We want to emphasize that our main contribution does not consist of a sophisticated parallelization method for
DRL training, as indeed even the original PPO paper (Schulman et al., 2017) mentions the parallelized collection
of experiences. Instead we observe that recent approaches to distributing DRL (Horgan et al., 2018; Espeholt et al.,
2018) are concerned with massive-scale parallelization, based on the HOGWILD! method (Recht et al., 2011). These
approaches are useful if the aim is to run 100s of environments simultaneously and if the overhead of message-passing
and syncing between different instances, or local cluster of instances, is the bottleneck. Our paper points out that a
more straightforward parallelization approach is better suited to the moderately short learning processes but expensive
simulations of fluid mechanics problems, which otherwise result in impractical runtimes.

3 Results and discussion

The update period of the network is set to TL = 20 episodes, similarly to what was used in Rabault et al. (2019). This
means that the data from 20 episodes are gathered between each learning step, as discussed in the previous section.
Therefore, using a number of environments that is a divider of TL, together with the synced running mode (meaning
that the DRL algorithm waits for all simulations to be finished before starting a new series of simulations), will result in
a situation that is effectively identical to the serial learning process. This is illustrated by Fig. 3, by using respectively 1,
2, 5, 10 and 20 simulation environments. In Fig. 3, three runs are performed in each case. The individual performance
curves are indicated by thin lines, while the average of all three runs is indicated by a thicker line. As visible in Fig. 3
(a), the learning curves using 1, 2, 5, 10 and 20 environments running in parallel all collapse on top of each other. This
implies that the learning performance is strictly identical between those cases, as we expected. This results in a perfect
speedup by a factor equal to the number of environments, as visible in Fig. 3 (a) and (b).

While perfect scaling is obtained in Fig. 3 as expected from the structure of the algorithm, we are interested in exploring
the effect of further increasing the number of environments on the training quality. This means, in practice, that we
“over-parallelize” the collection of data beyond the DRL algorithm’s natural parallelization capabilities. Results are
presented in Fig. 4, where we used 32 and 60 environments to investigate the ability of the algorithm to make use of a
number of parallel simulations larger than TL, corresponding to an over-parallelization of by a factor up to 3. This case
is not equivalent with serial training, and therefore we do not enforce synchronization of episodes. As visible in Fig. 4,
satisfactory speed-up is still observed, although the learning quality is slightly reduced, with the appearance of clear
steps in the learning curves.

These steps are due to the fact that several ANN updates take place in a very short time interval, when the environments
reach the end of an episode. As this happens more or less at the same time for all environments this means, for example,

5

ACCELERATING DRL OF AFC: MULTI-ENV APPROACH SEPTEMBER 17, 2019

(a) (b)

Figure 3: Scaling results obtained by using a total number of environments that is a divider of the update period TL of
the network, in a synced fashion. 3 repetitions are performed for each number of environments. Individual learnings are
indicated by thin lines. The average of all 3 learnings in each case is indicated by a thick line. In the present case, the
learning is formally identical to the serial case (i.e. with one single environment). This is illustrated by (a), which shows
that the shapes of the learning curves are identical independently of the number of environments used. This naturally
results in a perfect speedup, as illustrated by both (a) and (b).

that three network updates happen in short succession in case of 60 parallel environments. Overall, this results in a
comparatively larger cumulative update of the policy, and that a larger number of episodes pass in between such updates.

It is interesting to note that the second and third of each of those three consecutive updates are actually performed
based on data that have been collected following an older policy rather than the current policy at time of the second
and third update. Therefore, the second and third updates are based on off-policy data. However, our results indicate
empirically that this does not seem to cause problems regarding consistency and stability of the learning algorithm. This
can be explained by the fact that deep learning generally follows an iterative approximate as opposed to a fully analytic
optimization approach. For instance, policy gradient methods like PPO are based on the assumption that a relatively
small number of episode rollouts TL = 20 approximate the expected reward well. Moreover, PPO specifically already
performs multiple small updates within one policy optimization step, thus technically using off-policy data for most of
these sub-steps. We conjecture, and observe in our experiments, that such “slightly off-policy” updates do not affect
the learning process of on-policy DRL algorithms negatively, which further adds to the effectiveness of our simplistic
parallelization approach.

4 Conclusion

In this work, we build on the results presented in Rabault et al. (2019) by providing algorithm parallelization improve-
ments and a multi-environment implementation that greatly speeds up the learning. This allows the DRL algorithm to
gather simultaneously data from several independent simulations in a parallel fashion. For a number of environments
that is a divider of the update period of the ANN, the situation is effectively equivalent to classical serial training,
and thus perfect scaling is obtained both theoretically and in practice, up to 20 times in our case. For a number of
environments larger than the update period of the ANN, some of the network updates take place off-policy. This,
together with timing effects in the policy update, causes steps in the learning curve. However, the PPO algorithm
is found to be robust to these “slightly” off-policy updates and learning still takes place almost as expected. We
experimentally measure speedups of up to around 60 in this case. We expect there to be a trade-off between extreme
over-parallelization and increasingly deteriorating results when comparing to the same effective number of training
steps in the serial case.

Those results are an important milestone towards the application of DRL/PPO to Fluid Mechanics problems which are
more sophisticated and realistic than the simple benchmark problem of Rabault et al. (2019). Furthermore, the ability to
perform training in parallel will allow to perform several valuable parametric studies in a reasonable amount of time,
for example exploring the optimal position of pressure sensors or how many inputs are necessary for effective control.
The scalings observed here are expected to enable even larger performance increases on more complex problems.

6

ACCELERATING DRL OF AFC: MULTI-ENV APPROACH SEPTEMBER 17, 2019

(a) (b)

Figure 4: Scaling results obtained by using a total number of environments that is larger than the update period TL.
3 repetitions are performed for each number of environments. Individual learnings are indicated by thin lines. The
average of all 3 learnings in each case is indicated by a thick line. As visible in (a), learning still takes place almost
satisfactory though steps are clearly visible in the learning curves. This is due to many updates of the network taking
place almost simultaneously, when multiple batches of environments reach the end of an episode at about the same
time, which consequently triggers a comparatively large cumulative improvement of the policy. While this slightly
degrades the learning speed measured in terms of raw number of episodes compared with the equivalent synced case of
a smaller number of environments (a), favorable speedups are still observed (b). Note the difference in scale for (b)
compared with Fig. 3 (b), and the final speedup factor obtained (around 55 to 60).

Indeed, one usually increases the batch size and the number of episodes between updates together with the underlying
complexity of a DRL task, since more trajectories in the phase space are required to generate meaningful gradient
updates with higher complexity. In addition, the present parallelization could be combined with the parallelization of
the simulation itself, when the size of the underlying problem is suitable. This is also an important point for getting
closer to real-world applications.

To summarize, we foresee that the combination of both parallelism methods could allow DRL of AFC through
CFD to scale to thousands of CPUs, which opens way to applying the methodology to more challenging, and more
realistic, problems. In order to support the development of such methods, all code and implementations are released as
open-source (see Appendix A).

5 Acknowledgement

The help of Terje Kvernes for setting up the computational infrastructure used in this work is gratefully acknowledged.
In addition, we want to thank Dr. Miroslav Kuchta for many interesting discussions and an early version of the socket
communication. We gratefully acknowledge help, guidance, and CPU time provided by UH-IaaS (the Norwegian
Academic Community Cloud, IT departments, University of Oslo and University of Bergen. http://www.uh-iaas.no/).
This work was performed thanks to funding received by the University of Oslo in the context of the ’DOFI’ project
(grant number 280625).

6 Appendix A: Open Source code

The source code of this project, together with a docker container that enforces full reproducibility of our results, is re-
leased as open-source on the GitHub of the first author [NOTE: the repository is empty for now, the code will be released
upon publication in the peer-reviewed literature]: https://github.com/jerabaul29/Cylinder2DFlowControlDRLParallel.
The simulation environment is based on the open-source finite element framework FEniCS (Logg et al., 2012) v
2018.1.0. The PPO agent is based on the open-source implementation provided by Tensorforce (Kuhnle et al., 2017),
which builds on top of the Tensorflow framework (Abadi et al., 2016). This code is an extension of the serial DRL for
active flow control available here: https://github.com/jerabaul29/Cylinder2DFlowControlDRL.

7

http://www.uh-iaas.no/

ACCELERATING DRL OF AFC: MULTI-ENV APPROACH SEPTEMBER 17, 2019

7 Appendix B: learning with and without lift penalization

In the case when no lift penalization is used in the equation for the reward Eqn. (1), the DRL algorithm is able to
increase its reward through discovering strategies in which a systematic bias is present, i.e. jets blow consistently in the
same direction at their maximum strength after a given point in time. This is considered as a ’cheating’ strategy, as the
drag reduction is accompanied by the production of a large lift. This problem is illustrated in Fig. 5. This problem is
effectively suppressed by applying the lift penalization presented in Eqn. (1), since this applies a negative reward to
large lift biases introduced by this kind of strategies.

Figure 5: Illustration of the effect of ’cheating’ strategies when no lift penalization is present. All velocity maps indicate
the velocity magnitude, averaged over around 10 vortex shedding periods. At the top, no control is present. In the
middle, control is present, and the DRL algorithm was trained with lift penalization. In this case, control is taking
place satisfactorily and the jets are used to control the vortex shedding. At the bottom, control is present and no lift
penalization is used during training (in addition, the maximum intensity of the jets is allowed to be larger so that the
effect of biased blowing is more visible). In this case, clear asymmetry of the wake and velocity pattern is visible, and
the velocity excess present at the top of the cylinder compared to the bottom creates a large mean lift value.

8 Appendix C: effect of action frequency and control smoothing

8.1 Effect of the action update frequency

As explained in Fig. 2 and section II B, there are two different natural time scales: the first one is very short and
corresponds to the numerics of the CFD simulation (typical period associated with the numerics of the simulation: dt),
and the second one is slower and corresponds to the physical dynamics happening in the system (typical period of the
Karman vortex shedding: TK). Therefore, the control applied to the simulation must be applied at an intermediate time
scale Ta such that TK > Ta > dt. A bad choice of Ta makes learning impossible, as illustrated in Fig. 6. In the case
when Ta/TK = 0.5%, the action frequency is too high, and therefore the random exploration noise is applied for a very
short time before being updated. This means that the ANN is never able to significantly modify the state of the Karman
vortex street and cannot learn. By contrast, in the case when Ta/TK = 100%, the action update frequency is too low
for the ANN to control anything of the vortex dynamics. In the middle of those values, there is a sweet spot at around
Ta/TK = 10% where the frequency of action update is high enough so that the ANN can control the system, but low
enough so that the random exploration noise has enough time to act before update so that the system reacts to it in a
measurable way.

8.2 Effect of the smoothing law

As a consequence of the necessity to choose a relevant action time scale Ta that is much larger than the numerical
simulation time scale dt, one needs to interpolate between action updates to generate the control to use at each time step.

8

ACCELERATING DRL OF AFC: MULTI-ENV APPROACH SEPTEMBER 17, 2019

Figure 6: Illustration of the importance of the choice of a relevant time scale for the update of the action set by the
network (action update is performed with a period Ta), relatively to the time scale describing the dynamics of the
system to control (the Karman alley has a typical time scale described by the period TK). A too low Ta means that
the random exploration does not create any consistent forcing that changes the state of the system, and therefore no
learning takes place. A too high Ta means that the update in the action is too slow to perform a control varying with the
phase of the vortex shedding, and therefore no control can take place. In the middle, there is a sweet spot where control
is possible and learning takes place. As in the other similar figures, individual learnings are indicated by thin lines. The
average of all 3 learnings in each case is indicated by a thick line.

This is schematically shown by Fig. 2, and also explained in section II B. The interpolation can be performed in several
fashions, and must follow some conditions of smoothness and continuity to avoid both unphysical phenomena such as
infinite accelerations in the fluid, and phenomena of numerical instability. One can for example use an exponential
decay law based on the control value from the previous action to the new one, corresponding for example to what is
used in Eqn. (2). In this case, which is the one used in this whole paper unless explicitly stated differently, the choice
of the decay constant allows to adapt the speed of the convergence of the control towards the value given by the new
action. In our case, we find that reasonable values lead to satisfactory learning (see Fig. 7). Other laws can be used, for
example linear interpolation between the actions determining the controls. This also works fine, as illustrated in Fig. 7.
A careful observation of Fig. 7 can suggest that the linear interpolation is slightly less efficient than the exponential
decay, and this may be a consequence of the fact that the linear interpolation converges to the value of the updated
action slower than the exponential decay, which may introduce a form for lag in the control by the ANN. However, this
phenomenon is quite minor.

Figure 7: Illustration of the stability of the learning process respectively to the exact value of α and, more generally, the
kind of interpolation used for computing the control between action updates by the ANN. As in the other similar figures,
individual learnings are indicated by thin lines. The average of all 3 learnings in each case is indicated by a thick line.

9

ACCELERATING DRL OF AFC: MULTI-ENV APPROACH SEPTEMBER 17, 2019

References
ABADI, MARTÍN, BARHAM, PAUL, CHEN, JIANMIN, CHEN, ZHIFENG, DAVIS, ANDY, DEAN, JEFFREY, DEVIN,

MATTHIEU, GHEMAWAT, SANJAY, IRVING, GEOFFREY, ISARD, MICHAEL & OTHERS 2016 Tensorflow: A system
for large-scale machine learning. In OSDI, , vol. 16, pp. 265–283.

BAO, Y. & TAO, J. 2013 Active control of a cylinder wake flow by using a streamwise oscillating foil. Physics of Fluids
25 (5), 053601, arXiv: https://doi.org/10.1063/1.4802042.

BELSON, BRANDT A., SEMERARO, ONOFRIO, ROWLEY, CLARENCE W. & HENNINGSON, DAN S. 2013 Feedback
control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators. Physics of
Fluids 25 (5), 054106, arXiv: https://doi.org/10.1063/1.4804390.

BERGMANN, MICHEL, CORDIER, LAURENT & BRANCHER, JEAN-PIERRE 2005 Optimal rotary control of the
cylinder wake using proper orthogonal decomposition reduced-order model. Physics of Fluids 17 (9), 097101, arXiv:
https://doi.org/10.1063/1.2033624.

BRAYLAN, ALEX, HOLLENBECK, MARK, MEYERSON, ELLIOT & MIIKKULAINEN, RISTO 2015 Frame skip is
a powerful parameter for learning to play atari. In Workshops at the Twenty-Ninth AAAI Conference on Artificial
Intelligence.

BREUER, KENNETH S., PARK, JINIL & HENOCH, CHARLES 2004 Actuation and control of a turbulent channel flow
using lorentz forces. Physics of Fluids 16 (4), 897–907, arXiv: https://doi.org/10.1063/1.1647142.

BROWN, NOAM & SANDHOLM, TUOMAS 2019 Superhuman ai for multiplayer poker. Science p. eaay2400.

BRUNTON, STEVEN, NOACK, BERND & KOUMOUTSAKOS, PETROS 2019 Machine learning for fluid mechanics.
arXiv preprint arXiv:1905.11075 .

BRUNTON, STEVEN L & NOACK, BERND R 2015 Closed-loop turbulence control: progress and challenges. Applied
Mechanics Reviews 67 (5), 050801.

BUCCI, MICHELE ALESSANDRO, SEMERARO, ONOFRIO, ALLAUZEN, ALEXANDRE, WISNIEWSKI, GUILLAUME,
CORDIER, LAURENT & MATHELIN, LIONEL 2019 Control of chaotic systems by deep reinforcement learning.
arXiv preprint arXiv:1906.07672 .

CHE, BANGXIANG, CHU, NING, CAO, LINLIN, SCHMIDT, STEFFEN J., LIKHACHEV, DMITRIY & WU, DAZHUAN
2019 Control effect of micro vortex generators on attached cavitation instability. Physics of Fluids 31 (6), 064102,
arXiv: https://doi.org/10.1063/1.5099089.

DURIEZ, THOMAS, BRUNTON, STEVEN L & NOACK, BERND R 2016 Machine Learning Control-Taming Nonlinear
Dynamics and Turbulence. Springer.

ESPEHOLT, LASSE, SOYER, HUBERT, MUNOS, REMI, SIMONYAN, KAREN, MNIH, VLAD, WARD, TOM, DORON,
YOTAM, FIROIU, VLAD, HARLEY, TIM, DUNNING, IAIN, LEGG, SHANE & KAVUKCUOGLU, KORAY 2018
IMPALA: Scalable distributed deep-RL with importance weighted actor-learner architectures. In Proceedings of the
35th International Conference on Machine Learning (ed. Jennifer Dy & Andreas Krause), Proceedings of Machine
Learning Research, vol. 80, pp. 1407–1416. Stockholmsmässan, Stockholm Sweden: PMLR.

FLINOIS, THIBAULT L. B. & COLONIUS, TIM 2015 Optimal control of circular cylinder wakes using long control
horizons. Physics of Fluids 27 (8), 087105, arXiv: https://aip.scitation.org/doi/pdf/10.1063/1.4928896.

GAUTIER, NICOLAS, AIDER, J-L, DURIEZ, THOMAS, NOACK, BR, SEGOND, MARC & ABEL, MARKUS 2015
Closed-loop separation control using machine learning. Journal of Fluid Mechanics 770, 442–457.

GODA, KATUHIKO 1979 A multistep technique with implicit difference schemes for calculating two- or three-
dimensional cavity flows. Journal of Computational Physics 30 (1), 76 – 95.

GRAVES, ALEX, MOHAMED, ABDEL-RAHMAN & HINTON, GEOFFREY 2013 Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6645–6649.
IEEE.

GROPP, WILLIAM D, KAUSHIK, DINESH K, KEYES, DAVID E & SMITH, BARRY F 2001 High-performance parallel
implicit cfd. Parallel Computing 27 (4), 337 – 362, parallel computing in aerospace.

10

ACCELERATING DRL OF AFC: MULTI-ENV APPROACH SEPTEMBER 17, 2019

GROPP, WILLIAM D. & SMITH, EDWARD B. 1990 Computational fluid dynamics on parallel processors. Computers
& Fluids 18 (3), 289 – 304.

GU, S., HOLLY, E., LILLICRAP, T. & LEVINE, S. 2017 Deep reinforcement learning for robotic manipulation with
asynchronous off-policy updates. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pp.
3389–3396.

HORGAN, DAN, QUAN, JOHN, BUDDEN, DAVID, BARTH-MARON, GABRIEL, HESSEL, MATTEO, VAN HASSELT,
HADO & SILVER, DAVID 2018 Distributed prioritized experience replay. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.

JELINEK, FREDERICK 1997 Statistical methods for speech recognition. MIT press.

JUKES, TIMOTHY N. & CHOI, KWING-SO 2009a Control of unsteady flow separation over a circu-
lar cylinder using dielectric-barrier-discharge surface plasma. Physics of Fluids 21 (9), 094106, arXiv:
https://doi.org/10.1063/1.3237151.

JUKES, TIMOTHY N. & CHOI, KWING-SO 2009b Flow control around a circular cylinder using pulsed dielectric
barrier discharge surface plasma. Physics of Fluids 21 (8), 084103, arXiv: https://doi.org/10.1063/1.3194307.

KRIZHEVSKY, ALEX, SUTSKEVER, ILYA & HINTON, GEOFFREY E 2012 Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105.

KUHNLE, ALEXANDER, SCHAARSCHMIDT, MICHAEL & FRICKE, KAI 2017 Tensorforce: a tensorflow library for
applied reinforcement learning. Web page.

KUTZ, J. NATHAN 2017 Deep learning in fluid dynamics. Journal of Fluid Mechanics 814, 1–4.

LECUN, YANN, BENGIO, YOSHUA & HINTON, GEOFFREY 2015 Deep learning. Nature 521 (7553), 436.

LEE, KEUN H., CORTELEZZI, LUCA, KIM, JOHN & SPEYER, JASON 2001 Application of reduced-order controller to
turbulent flows for drag reduction. Physics of Fluids 13 (5), 1321–1330, arXiv: https://doi.org/10.1063/1.1359420.

LI, FU & AUBRY, NADINE 2003 Feedback control of a flow past a cylinder via transverse motion. Physics of Fluids
15 (8), 2163–2176, arXiv: https://doi.org/10.1063/1.1582182.

LI, RUIYING, BORÉE, JACQUES, NOACK, BERND R., CORDIER, LAURENT & HARAMBAT, FABIEN 2019a Drag
reduction mechanisms of a car model at moderate yaw by bi-frequency forcing. Phys. Rev. Fluids 4, 034604.

LI, YIQING, CUI, WENSHI, JIA, QING, LI, QILIANG, YANG, ZHIGANG & NOACK, BERND R 2019b Optimiza-
tion of active drag reduction for a slanted ahmed body in a high-dimensional parameter space. arXiv preprint
arXiv:1905.12036 .

LOGG, ANDERS, MARDAL, KENT-ANDRE & WELLS, GARTH 2012 Automated solution of differential equations by
the finite element method: The FEniCS book, , vol. 84. Springer Science & Business Media.

LU, LIN, QIN, JIAN-MIN, TENG, BIN & LI, YU-CHENG 2011 Numerical investigations of lift suppression by
feedback rotary oscillation of circular cylinder at low reynolds number. Physics of Fluids 23 (3), 033601, arXiv:
https://doi.org/10.1063/1.3560379.

MELIGA, PHILIPPE, SIPP, DENIS & CHOMAZ, JEAN-MARC 2010 Open-loop control of compressible afterbody flows
using adjoint methods. Physics of Fluids 22 (5), 054109, arXiv: https://doi.org/10.1063/1.3425625.

MENG, XUANSHI, LONG, YUEXIAO, WANG, JIANLEI, LIU, FENG & LUO, SHIJUN 2018 Dynamics and control of
the vortex flow behind a slender conical forebody by a pair of plasma actuators. Physics of Fluids 30 (2), 024101,
arXiv: https://doi.org/10.1063/1.5005514.

NEITZ, ALEXANDER, PARASCANDOLO, GIAMBATTISTA, BAUER, STEFAN & SCHÖLKOPF, BERNHARD 2018
Adaptive skip intervals: Temporal abstraction for recurrent dynamical models. In Advances in Neural Information
Processing Systems, pp. 9816–9826.

PASTOOR, MARK, HENNING, LARS, NOACK, BERND R, KING, RUDIBERT & TADMOR, GILEAD 2008 Feedback
shear layer control for bluff body drag reduction. Journal of fluid mechanics 608, 161–196.

11

ACCELERATING DRL OF AFC: MULTI-ENV APPROACH SEPTEMBER 17, 2019

QUEGUINEUR, MATTHIEU, GICQUEL, L. Y. M., DUPUY, F., MISDARIIS, A. & STAFFELBACH, G. 2019
Dynamic mode tracking and control with a relaxation method. Physics of Fluids 31 (3), 034101, arXiv:
https://doi.org/10.1063/1.5085474.

RABAULT, JEAN, KOLAAS, JOSTEIN & JENSEN, ATLE 2017 Performing particle image velocimetry using artificial
neural networks: a proof-of-concept. Measurement Science and Technology 28 (12), 125301.

RABAULT, JEAN, KUCHTA, MIROSLAV, JENSEN, ATLE, RÉGLADE, ULYSSE & CERARDI, NICOLAS 2019 Artificial
neural networks trained through deep reinforcement learning discover control strategies for active flow control.
Journal of Fluid Mechanics 865, 281–302.

RABAULT, JEAN, REGLADE, ULYSSE, CERARDI, NICOLAS, KUCHTA, MIROSLAV & JENSEN, ATLE 2018 Deep
reinforcement learning achieves flow control of the 2d karman vortex street. arXiv preprint arXiv:1808.10754 .

RECHT, BENJAMIN, RE, CHRISTOPHER, WRIGHT, STEPHEN & NIU, FENG 2011 Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in Neural Information Processing Systems 24 (ed. J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira & K. Q. Weinberger), pp. 693–701. Curran Associates, Inc.

SATO, MAKOTO, NONOMURA, TAKU, OKADA, KOICHI, ASADA, KENGO, AONO, HIKARU, YAKENO, AIKO,
ABE, YOSHIAKI & FUJII, KOZO 2015 Mechanisms for laminar separated-flow control using dielectric-
barrier-discharge plasma actuator at low reynolds number. Physics of Fluids 27 (11), 117101, arXiv:
https://aip.scitation.org/doi/pdf/10.1063/1.4935357.

SCHÄFER, M., TUREK, S., DURST, F., KRAUSE, E. & RANNACHER, R. 1996 Benchmark Computations of Laminar
Flow Around a Cylinder, pp. 547–566. Wiesbaden: Vieweg+Teubner Verlag.

SCHULMAN, JOHN, WOLSKI, FILIP, DHARIWAL, PRAFULLA, RADFORD, ALEC & KLIMOV, OLEG 2017 Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347 .

SHAHRABI, A. F. 2019 The control of flow separation: Study of optimal open loop parameters. Physics of Fluids
31 (3), 035104, arXiv: https://doi.org/10.1063/1.5082945.

SILVER, DAVID, SCHRITTWIESER, JULIAN, SIMONYAN, KAREN, ANTONOGLOU, IOANNIS, HUANG, AJA, GUEZ,
ARTHUR, HUBERT, THOMAS, BAKER, LUCAS, LAI, MATTHEW, BOLTON, ADRIAN & OTHERS 2017 Mastering
the game of Go without human knowledge. Nature 550 (7676), 354.

SIMON, HORST D 1992 Parallel computational fluid dynamics-implementations and results. NASA STI/Recon Technical
Report A 94.

SRINIVASAN, PA, GUASTONI, L, AZIZPOUR, HOSSEIN, SCHLATTER, PHILIPP & VINUESA, RICARDO 2019
Predictions of turbulent shear flows using deep neural networks. Physical Review Fluids 4 (5), 054603.

TARR, MICHAEL J & BÜLTHOFF, HEINRICH H 1998 Image-based object recognition in man, monkey and machine.
Cognition 67 (1), 1 – 20.

VALEN-SENDSTAD, KRISTIAN, LOGG, ANDERS, MARDAL, KENT-ANDRE, NARAYANAN, HARISH & MORTENSEN,
MIKAEL 2012 A comparison of finite element schemes for the incompressible navier–stokes equations. In Automated
Solution of Differential Equations by the Finite Element Method, pp. 399–420. Springer.

VERMA, SIDDHARTHA, NOVATI, GUIDO & KOUMOUTSAKOS, PETROS 2018 Efficient collective swimming by
harnessing vortices through deep reinforcement learning. Proceedings of the National Academy of Sciences , arXiv:
http://www.pnas.org/content/early/2018/05/16/1800923115.full.pdf.

WANG, CHENGLEI, TANG, HUI, YU, SIMON C. M. & DUAN, FEI 2016 Active control of vortex-induced vibrations
of a circular cylinder using windward-suction- leeward-blowing actuation. Physics of Fluids 28 (5), 053601, arXiv:
https://doi.org/10.1063/1.4947246.

WU, ZHI, FAN, DEWEI, ZHOU, YU, LI, RUIYING & NOACK, BERND R. 2018 Jet mixing optimization using machine
learning control. Experiments in Fluids 59 (8), 131.

YOU, D. & MOIN, P. 2008 Active control of flow separation over an airfoil using synthetic jets. Journal of Fluids and
Structures 24 (8), 1349 – 1357, unsteady Separated Flows and their Control.

ZHU, HONGJUN, TANG, TAO, ZHAO, HONGLEI & GAO, YUE 2019 Control of vortex-induced vibration of
a circular cylinder using a pair of air jets at low reynolds number. Physics of Fluids 31 (4), 043603, arXiv:
https://doi.org/10.1063/1.5092851.

12

	1 Introduction
	2 Methodology
	2.1 Simulation environment
	2.2 Artificial Neural Network and Deep Reinforcement Learning algorithm
	2.3 Parallelization of the data collection for the DRL algorithm

	3 Results and discussion
	4 Conclusion
	5 Acknowledgement
	6 Appendix A: Open Source code
	7 Appendix B: learning with and without lift penalization
	8 Appendix C: effect of action frequency and control smoothing
	8.1 Effect of the action update frequency
	8.2 Effect of the smoothing law

