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Summary 
Notions of mathematical competence promoting an enriched view of mathematical mastery 

have influenced curriculum reforms around the world. However, there are concerns that the 

implementation of these notions has stalled in curriculum documents at the system level and 

that classroom practices still follow a traditional format in which mastering mathematics 

means possessing factual knowledge and procedural skills. This thesis has investigated the 

mathematical competency demands of tasks used in Norwegian secondary mathematics and 

teachers’ knowledge about these task demands. In this investigation, six mathematical 

competencies play a leading role in providing an insight on the topic. These include 

Communication, Devising strategies, Mathematising, Symbols and formalism, Representation 

and Reasoning and argument. 

A first study aimed to investigate teachers’ ability to recognise competency demands 

of mathematical tasks through the use of an item analysis scheme involving the six 

aforementioned competencies with four levels of demand for each competency. The results 

showed a high consistency among the teachers in their ratings of demands, but also that they 

mainly used the lower levels of the rating scale (Article 1). This indicated that the teachers 

were able to recognise the mathematical competencies involved in the task solution, but 

struggled with identifying higher levels of demands. For further scrutinising the teachers’ 

ratings of competency demands, an explanatory item response modelling approach was 

applied in which the rated demands were combined with students’ responses to the tasks 

(Article 2). The results showed that the teachers’ ratings of competency demands could 

explain around half of the variance in task difficulty, thus providing some empirical evidence 

supporting the validity of the teachers’ ratings. When distinguishing the demands for 

individual competencies, the results showed that the ratings of some of the competencies (e.g. 

Symbols and formalism and Reasoning and argument) were related to the difficulty of the 

items, whereas those of others (e.g. Mathematising and communication) were not. This 

suggested that the teachers were more successful in recognising the demands for some of the 

competencies than for others. The results also indicate that for the Norwegian exam, the 

demands for only two of the competencies were identified and related to task difficulty. This 

questions the extent to which the exam captures the various cognitive skills and abilities that 

are represented in mathematical competence. The main methodological contribution of this 

study is the application of the explanatory item response modelling approach that was able to 
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empirically identify and separate the demands of individual competencies in mathematical 

tasks. 

Partly inspired by the results from the first study, the second study aimed to 

investigate teachers’ considerations of the demands of mathematical tasks they had used in 

their teaching practices to challenge high-achieving students. The results of content analysis 

of the teachers’ considerations showed that the teachers mainly emphasised two 

competencies—Symbols and formalism and Devising strategies—and that these 

considerations mostly aligned with the identified competency demands of the tasks. Some 

differences were found when comparing individual teachers in terms of both their 

considerations of task demands and the competency demands of the tasks they had submitted. 

These differences were seen to reflect disparities in the teachers’ mathematical-task 

knowledge with regards to their awareness of the mathematical competencies involved in 

mathematical tasks. 

The findings of the two studies suggest that the demands of tasks typically used in 

Norwegian secondary mathematics classrooms are dominated by a few competencies, among 

which the Symbols and formalism competency plays the leading role. This indicates that the 

traditional focus on factual knowledge and procedural skills still pervades classroom 

activities. Furthermore, the participating teachers seem to mainly recognise and consider the 

demands for some of the competencies, especially Symbols and formalism, whereas they 

seem to focus less on the demands for other competencies, such as Mathematising. Even 

though the number of teachers involved in the two studies is too low to generalise the results, 

it is believed that these teachers were rather confident in their knowledge of mathematical 

tasks; thus, it can be considered that the challenges with recognising competency demands are 

not unique to the participating teachers. Thus, overall, these findings indicate that Norwegian 

secondary mathematics education lack some of the components needed to ensure that students 

develop a general mathematical competence as outlined in the national curriculum. 

 

 

 

 

  



 
 

vii 
 

Table of contents 
Acknowledgments ..................................................................................................................... iii 

Summary .................................................................................................................................... v 

Table of contents ...................................................................................................................... vii 

Part I: Extended abstract 

1 Introduction ........................................................................................................................ 1 

1.1 Background and rationale ............................................................................................ 1 

1.2 Main objective and research questions ........................................................................ 2 

1.3 A note on terminology ................................................................................................. 5 

1.4 Structure and content of thesis ..................................................................................... 7 

2 Theoretical background and framing ................................................................................. 9 

2.1 Nature of mathematical knowledge ............................................................................. 9 

2.1.1 Growth of competency frameworks in mathematics education ......................... 10 

2.2 Mathematical tasks .................................................................................................... 12 

2.2.1 Task analysis ...................................................................................................... 14 

2.2.2 MEG item analysis scheme ................................................................................ 16 

2.2.3 Task analysis: Empirical research ...................................................................... 17 

2.3 Assessing mathematical competencies ...................................................................... 19 

2.4 Mathematical-task knowledge for teaching ............................................................... 20 

3 Methodology and research design .................................................................................... 23 

3.1 General overview ....................................................................................................... 23 

3.1.1 Philosophical position ........................................................................................ 23 

3.1.2 Research design .................................................................................................. 24 

3.1.3 The two studies ................................................................................................... 25 

3.2 Participants ................................................................................................................ 27 

3.3 Data collection and analysis ...................................................................................... 28 

3.3.1 Mathematical tasks ............................................................................................. 28 

3.3.2 Analysis of mathematical tasks .......................................................................... 29 

3.3.3 Teacher considerations and use of tasks ............................................................ 31 

3.3.4 Secondary analysis of PISA and exam data ....................................................... 31 



 
 

viii 
 

3.4 Research validity ....................................................................................................... 33 

3.4.1 Construct validity ............................................................................................... 34 

3.4.2 Statistical conclusion validity ............................................................................. 36 

3.4.3 Internal validity .................................................................................................. 37 

3.4.4 External validity ................................................................................................. 37 

3.5 Ethical considerations ................................................................................................ 38 

4 Towards competency-oriented mathematics education ................................................... 41 

4.1 Summary of articles ................................................................................................... 41 

4.1.1 Identifying competency demands in mathematical tasks: Recognising what 
matters (Article 1) ............................................................................................................ 41 

4.1.2 Mathematical competency demands of assessment items: A search for empirical 
evidence (Article 2) .......................................................................................................... 42 

4.1.3 Teachers’ considerations of mathematical tasks used to challenge high-
achieving students (Article 3) .......................................................................................... 44 

4.2 Main contributions ..................................................................................................... 46 

4.2.1 Empirical contributions ...................................................................................... 46 

4.2.2 Theoretical contributions .................................................................................... 48 

4.2.3 Methodological contributions ............................................................................ 49 

4.3 Implications and concluding remarks ........................................................................ 50 

References ................................................................................................................................ 54 

 Part II: Articles 

Article 1:  Pettersen, A., & Nortvedt, G. A. (2018). Identifying competency demands in 
mathematical tasks: Recognising what matters. International Journal of Science 
and Mathematics Education, 16(5), pp. 949–965. 

Article 2: 

 

Pettersen, A., & Braeken, J. (2017). Mathematical competency demands of 
assessment items: A search for empirical evidence. International Journal of 
Science and Mathematics Education. doi:10.1007/s10763-017-9870-y 

Article 3: 

 

Pettersen, A., & Nortvedt, A. G. (under review). Teachers’ considerations of 
mathematical tasks used to challenge high-achieving students. Scandinavian 
Journal of Educational Research 



 
 

 
 

Part I 

Extended Abstract





 
 

1 
 

1 Introduction 

1.1 Background and rationale 
For long, the focus of school mathematics was to develop students’ knowledge of 

mathematical facts and procedural skills. However, in the second half of the 1900s, 

mathematicians and mathematics educators advocated an increased focus on the process-

oriented aspects of mathematics (Apple, 1992; Niss, Bruder, Planas, Turner, & Villa-Ochoa, 

2016; Schoenfeld, 1992). This led to an enriched view of mathematical mastery that 

emphasised the enactment of mathematics, with a focus on problem solving and the ability to 

apply mathematical knowledge and skills to solve extra-mathematical problems (Clarke, 

Goos, & Morony, 2007; Niss et al., 2016; Schoenfeld, 2016). In the 1990s, notions and 

frameworks of mathematical competence, mathematical literacy, and mathematical 

proficiency emerged and influenced curriculum reforms around the world by portraying a 

further enriched view of what it means to master mathematics (Kilpatrick, 2014a; Niss & 

Jablonka, 2014). One example of this influence is found in the Norwegian curriculum reform 

Kunnskapsløftet (“The Knowledge Promotion Reform”) from 2006. The mathematics 

curriculum that followed the reform states that the subject of mathematics in compulsory 

education is intended to contribute to the development of the mathematical competence 

needed by both society and the individual through the development of competencies such as 

problem solving, modelling, reasoning, communicating, and the ability to use aids and 

technologies (Norwegian Directorate for Education and Training [Utdanningsdirektoratet], 

n.d.). The Norwegian curriculum and other mathematics curricula around the world have been 

influenced by the Danish KOM report (Kilpatrick, 2014a; Niss et al., 2016; Valenta, Nosrati, 

& Wæge, 2015) that identifies eight mathematical competencies that encapsulate the essence 

of what it means to master mathematics (Niss & Højgaard, 2011).  

Nonetheless, it is not curriculum reforms that develop students’ mathematical 

competencies, but rather the teaching practices and learning situations offered in mathematics 

classrooms. Tietze (1994) argues that the effectiveness of a curriculum is determined by 

classroom practices and the decisions, behaviours and attitudes of the teacher and not by the 

intentions and content of the curriculum. Studies (e.g. Boesen et al., 2014; Charalambous & 

Philippou, 2010) have shown that teachers seem to assimilate their understanding of 

curriculum reform messages to fit with current classroom practices rather than change 
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practices, which means that the implementation of curriculum reforms does not necessarily 

lead to the intended changes in classroom practices. According to Niss and colleagues (Niss et 

al., 2016), the implementation of mathematical competencies in mathematics education so far 

mainly concerns the curriculum development and teacher education programmes and there is 

a lack of research and knowledge about quality teaching to foster and develop mathematical 

competencies. 

The implementation of mathematical competencies beyond curriculum documents 

would mean adjusting classroom practices with the new view on what it means to master 

mathematics. Thus, as most teaching and learning in mathematics classrooms is situated 

around tasks (Bergem, 2016; Boesen et al., 2014; Doyle, 1988), the mathematical tasks in 

which students engage would need to provide opportunities for the development of a wide 

range of mathematical competencies (Niss & Højgaard, 2011; Turner, Blum, & Niss, 2015). 

Several authors have recognised the importance of selecting appropriate tasks as a key to 

successful mathematics teaching (Anthony & Walshaw, 2009; Chapman, 2013; Hiebert & 

Wearne, 1993; Tatto et al., 2012), and knowledge about the mathematical thinking and 

understanding stimulated by tasks is seen as a crucial part of mathematics teachers’ 

knowledge (Ball, Thames, & Phelps, 2008; Baumert & Kunter, 2013; Chapman, 2013; Krauss 

et al., 2008; Tatto et al., 2012). Studies have shown that the types of tasks that dominate 

traditional and current classroom practices are rather uniform with a strong focus on 

procedural skills (Boesen et al., 2014; Hiebert et al., 2003; Kaur, 2010; Lithner, 2004; Palm, 

Boesen, & Lithner, 2011). According to Niss et al. (2016), to move mathematics education 

beyond its traditional confines, where mathematical knowledge is reduced to a combination of 

factual knowledge and procedural skills, it is crucial to support mathematics teachers in 

understanding and embracing notions of competency and in developing appropriate teaching 

practices. To accomplish this, more research is needed on the extent to which mathematical 

tasks demand the use of mathematical competencies as well as teachers’ knowledge of such 

task demands. 

1.2 Main objective and research questions 
The main objective of this thesis is to contribute to knowledge about the mathematical 

competency demands of tasks used in Norwegian secondary mathematics and to examine 

teachers’ knowledge about these task demands. Thus, this objective can be seen as twofold: to 
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investigate both tasks and teachers’ knowledge about tasks from a competency perspective. 

As the concept of mathematical-task knowledge is a complex and multi-dimensional construct 

(Chapman, 2013), this thesis focuses on two aspects of teachers’ task knowledge: the ability 

to recognise demands for specific mathematical competencies and the consideration of 

competency demands when selecting tasks for teaching practices. 

As illustrated in Figure 1, two complementary studies have been conducted which 

focus on different aspects of the main objective. Study 1 involved an analysis of mathematical 

competency demands of tasks from two different assessments and an investigation of 

teachers’ ability to recognise competency demands of tasks based on the use of an item 

analysis scheme. This study is presented in Articles 1 and 2. Study 2, presented in Article 3, 

involved an analysis of teacher-selected tasks used in secondary mathematics and an 

investigation of the teachers’ considerations of the demands of these tasks. 

 
Figure 1. Overview of research project, its two studies’ and their focus on different aspects of the main objective 
of this thesis. 
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Article 1 

Pettersen, A., & Nortvedt, G. A. (2018). Identifying competency demands in 

mathematical tasks: Recognising what matters. International Journal of Science and 

Mathematics Education, 16(5), pp. 949–965. 

Article 1 presents an investigation of teachers’ recognition of mathematical 

competency demands of tasks. A group of teachers applied an item analysis scheme to 

individually rate the demands for six mathematical competencies in 141 assessment tasks 

(from the PISA 2012 survey and a Norwegian national exam). The teachers’ ratings’ of 

competency demands provided the quantitative data which was used to answer the research 

question concerning the degree to which the group of teachers and prospective teachers 

consistently analyse the competency demands of tasks originally developed to assess 

students’ mathematical competence. 

Article 2 

Pettersen, A., & Braeken, J. (2017). Mathematical competency demands of assessment 

items: A search for empirical evidence. International Journal of Science and 

Mathematics Education. doi:10.1007/s10763-017-9870-y 

Expanding on the first article, Article 2 presents a psychometric approach for further 

scrutinising the teachers’ rated competency demands of the tasks from the two assessments. 

By combining the rated demands from Article 1 with students’ responses to the same tasks, an 

explanatory item response modelling approach was applied to address the following research 

question: To what extent do differences in teacher-rated competency demands in mathematics 

assessment items align with the differences in empirical item difficulty? 

Article 3 

Pettersen, A., & Nortvedt, A. G. (under review). Teachers’ considerations of 

mathematical tasks used to challenge high-achieving students. Scandinavian Journal 

of Educational Research 

Article 3 presents an investigation of teachers’ considerations of the demands of 

mathematical tasks they have previously used to challenge their high-achieving students. 

Thus, while the first study focused on teachers’ ability to recognise the competency demands 

of tasks based on the use of a theoretical framework, this study concerned teachers’ 

considerations of the demands of tasks they have selected and used in their teaching practices. 
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Two research questions were addressed: (1) What characterises teachers’ considerations of 

task demands? (2) How do these considerations align with the competency demands of the 

tasks according to a competency framework? Seven mathematics teachers from lower- and 

upper-secondary school submitted a total of 78 tasks they had used to challenge their students 

along with information about the use and their considerations of the task demands. To answer 

the two research questions, the teachers’ considerations of task demands were analysed both 

deductively and inductively and compared with an analysis of the competency demands of the 

submitted tasks. 

Mathematics teaching and learning are culturally embedded activities (D’Ambrosio, 

1994). My research involves Norwegian mathematics teachers and tasks situated in 

Norwegian secondary schools based on a Norwegian curriculum. Thus, the results and 

findings should be seen in a Norwegian context. Still, competency-oriented mathematics 

curricula have been implemented in many countries (Niss et al., 2016), and therefore, the 

competency perspective adopted in my research should also be relevant to other educational 

contexts. Furthermore, mathematics curricula worldwide increasingly seem to be aligned (Cai 

& Howson, 2013) and some of the mathematical tasks involved in this thesis are adopted from 

an international assessment study (i.e. Programme for International Student Assessment  - 

PISA, the 2012 Survey). Thus, this research could be relevant to countries with similar school 

systems and mathematics education frameworks.  

1.3 A note on terminology 
A large variety of terminologies exist in educational research literature, partly owing to 

different research traditions and fields and the lack of unanimity among these. This diversity 

can lead to ambiguity and confusion and create obstacles in the communication and progress 

of research. Therefore, the following sections aim to define and clarify two key terms in the 

current thesis. 

In this thesis, the term mathematical competence refers to a capability to understand, 

do, and apply mathematics in a variety of contexts. This draws on the definition provided by 

Niss and Højgaard (2011), who defined mathematical competence as ‘having knowledge of, 

understanding, doing, using and having an opinion about mathematics and mathematical 

activity in a variety of contexts where mathematics plays or can play a role’ (p. 49). The 

constructs and notions of mathematical competence are sometimes referred to as competency 
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frameworks (Kilpatrick, 2014a; Niss & Højgaard, 2011), in which mathematical competence 

is described through a set of sub-constructs or strands (Niss et al., 2016). These sub-constructs 

or strands are referred to as a mathematical competency (or competencies). Examples of such 

competencies are communication, mathematical reasoning, modelling, and problem solving 

(for a more exhaustive list of competencies, see e.g. Kilpatrick, 2014a; Niss et al., 2016). 

The concept of mathematical tasks is complex and multifaceted (see Chapter 2.2). An 

oft-cited definition of a mathematical task is presented by Stein, Grover, and Henningsen 

(1996) as ‘a classroom activity, the purpose of which is to focus students' attention on a 

particular mathematical concept, idea or skill’ (p. 460). This can be seen as a broad definition 

where a task could involve one or several mathematical problems to be solved, exercises to be 

performed, questions to be answered, or other mathematical activities (such as playing a 

mathematical game or engaging in a classroom discussion). In this thesis, the term 

‘mathematical task’ is restricted to activities where students are expected to provide a solution 

or an answer. This involves both what can be regarded as mathematical exercises (i.e. routine-

based tasks in which the answer is obtained through known strategies and algorithms (Borasi, 

1986)) and mathematical problems1 (i.e. non-routine tasks that are intellectually challenging 

and for which no methods, procedures, or algorithms for solving the problem are readily 

accessible to the problem solver (Blum & Niss, 1991)). Tasks used in mathematics teaching 

and learning are drawn from multiple sources (e.g. textbooks, the teacher, and tests) and can 

be used for different purposes (e.g. instruction and assessment). In the field of psychometrics, 

the term ‘item’ is used to refer to the questions, problems, or tasks involved in tests or 

assessments intended to measure certain abilities or attributes. Thus, the same task can be 

seen as an exercise, problem, instructional task, assessment task, or item depending on its use. 

The current thesis does not distinguish between tasks from different sources and used for 

different purposes; rather, it treats these tasks the same and considers all to be relevant with 

regards to investigating competency demands. Furthermore, the terms ‘task’ and ‘item’ are 

used interchangeably to refer to mathematical problems and exercises from assessments. 

Curriculum is another concept that is understood and defined in numerous ways. In 

this thesis, the term ‘curriculum’ is used to refer to the formal written documents that involve 

the goals and expectations for the learning of mathematics at a system level. This is typically 

referred to as the intended curriculum (Cai & Howson, 2013), as contrasted with the 

                                                 
1 The term ‘mathematical task’ is preferred over ‘mathematical problem’ as the latter has multiple and 
contradictory meanings in both research literature and curriculum documents (Schoenfeld, 1992). Furthermore, 
my thesis includes both typical routine-based tasks which are often not perceived as mathematical problems. 
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implemented curriculum (i.e. classroom practices) and the attained curriculum (i.e. what 

students learn). When referring to the curriculum at another level than the intended, this is 

explicitly stated in the text. 

1.4 Structure and content of thesis 
This thesis consists of two main parts. Part I contains the extended abstract, and Part II 

encompasses the three articles. As the extended abstract elaborates on the relationship 

between the articles and places their rationales and findings in a broader educational context, I 

would recommend reading the extended abstract before reading the articles. Still, each article 

stands on its own as a unique contribution. 

Part I comprises four chapters. The current introductory chapter (Chapter 1) has stated 

the rationale and main objective of my thesis, and clarified some key terminology. Chapter 2 

presents the theoretical foundation on which the thesis is based. It provides a brief historical 

outline that illustrates the complexity of the research field and the background for the growth 

of what can be considered competency-oriented mathematics education. Chapter 2 also 

provides an overview of research on features and demands of mathematical tasks, how such 

task characteristics relate to the potential learning opportunities provided by tasks, and 

teachers’ use and knowledge of mathematical tasks. These overviews are used to position my 

research in the context of existing literature as well as to identify knowledge gaps. Finally, 

this chapter discusses the importance and challenges of developing assessments and 

assessment tasks that provide valid measures of mathematical competence. Chapter 3 presents 

the design of the research project and its two studies and the philosophical assumptions on 

which it is based. The methodological considerations, issues, and limitations are discussed 

and the research validity is addressed. This chapter also describes ethical concerns involved in 

my research.  Chapter 4 presents a summary of the three articles and discusses the main 

contributions of the thesis in light of the main objective. This chapter aims to discuss the 

results and findings across the two studies and within the Norwegian educational context. 
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2 Theoretical background and framing 
Mathematics education as a scientific field is situated at the nexus of education and 

mathematics and is grounded in a variety of fields such as psychology and philosophy 

(Ernest, 1991; Kilpatrick, 2014b; Schoenfeld, 2008; Sriraman & English, 2010). During the 

1900s, research in mathematics education was shaped and steered by several shifting and 

coexisting epistemological and philosophical views, theories of learning, and research 

traditions (Blum, Artigue, Mariotti, Sträßer, & Van den Heuvel-Panhuizen, 2017; Ernest, 

1991, 2010; Kilpatrick, 2014b; Schoenfeld, 2016; Sriraman & English, 2010) that built on a 

range of ‘isms’ including connectionism, behaviourism, and cognitivism (for a more thorough 

historical briefing, see e.g. Blum et al., 2017; Kilpatrick, 2014b; Schoenfeld, 2008, 2016). 

This pluralism led to different research traditions and views of mathematics teaching and 

learning and, according to Sriraman and English (2010), to a ‘utilitarian mix-and-match 

culture’ among mathematics education researchers. This is evident from the research and 

studies that are presented throughout this chapter which draw on different research traditions 

and methodologies. 

2.1 Nature of mathematical knowledge 
Different philosophies of mathematics lead to different educational practices, as mathematics 

curriculum and teaching practices are shaped by the philosophy and views on mathematical 

knowledge on which they are based (Ernest, 1991). Mathematics was long seen as the unique 

realm of certain knowledge and infallible objective truth established by logical deduction 

from axioms, where the axioms are considered as basic self-evident truths which do not need 

further justification (Ernest, 1991). In line with such an absolutist view is the belief that 

acquisition of mathematical knowledge means to remember and correctly apply mathematical 

rules and facts provided by authorities (such as teachers and textbooks), which again shapes 

teaching and learning practices in mathematics classrooms (Ernest, 1989)2. 

In the 1960s and 1970s, a growing number of mathematicians and philosophers 

questioned and criticised the absolutist view of mathematical knowledge (Ernest, 1991). A 

                                                 
2 There is no one-to-one relation between epistemological beliefs about mathematical knowledge and views on 
instruction and school mathematics (for instance, it is possible to see mathematical knowledge as objective and 
certain and at the same time believe that students’ should learn mathematics through discussion and engagement 
in personal real-life problems and activities). Still, several studies indicate that there is a strong relationship 
between epistemological beliefs and views on school mathematics and instruction (see Philipp, 2007). 
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highly influential critic, Imre Lakatos, argued that rather than being developed as a steady 

accumulation of infallible truths, mathematical knowledge is discovered in a process of 

human activity involving dialogues, exposure to criticism, reformulations, and, possibly, 

refutations (Lakatos, 1976). This criticism led to the evolution of a new tradition of 

philosophy of mathematics that sees mathematics as fallible and corrigible and as being 

developed through a process of human activity, thus dismissing the absolutist view of 

mathematical knowledge as a product of certain unchallengeable truths (Ernest, 1994; 

Sriraman & English, 2010). A similar shift can be seen in mathematics education. In the 

1940s, mathematicians and mathematics were already stressing that mastering mathematics 

went beyond the traditional focus on knowledge of mathematical facts and rehearsing of 

procedures and involved aspects such as the enactment of and doing mathematics (Niss et al., 

2016; Schoenfeld, 1987, 1992). One prominent influence of the process-oriented view on 

mathematics is the renewed attention to teaching and learning of problem solving that evolved 

within the field of mathematics education (Lesh & Zawojewski, 2007; Schoenfeld, 1992). 

While problem solving traditionally concerned whether students were able to solve problems, 

the process-oriented perspective shifted the focus to the cognitive activities involved in the 

problem solving processes, such as the strategies and metacognitive behaviour that were 

conducted (Schoenfeld, 1992). 

2.1.1 Growth of competency frameworks in mathematics education 

In the 1990s, notions of mathematical competence and similar concepts such as mathematical 

literacy, numeracy, and mathematical proficiency gained an increased foothold in 

mathematics education (Kilpatrick, 2014a; Niss et al., 2016). The term ‘mathematical 

competence’ in itself has long been used as a generic term for a persons’ ability to handle or 

apply mathematics. For instance, Hiebert and Lefevre (1986) argued that ‘[b]eing competent 

in mathematics involves knowing concepts, knowing symbols and procedures, and knowing 

how they are related’ (p. 16). However, the notions that emerged in the 1990s provided an 

enriched view of mathematical mastery beyond that of conceptual and procedural knowledge 

and promoted a more nuanced image of school mathematics that involved a variety of 

mathematical competencies (Kilpatrick, 2014a). There is no common definition or 

understanding of ‘competence’ in general (Blömeke, Gustafsson, & Shavelson, 2015; 

Pikkarainen, 2014; Westera, 2001) or of mathematical competence in particular (Niss et al., 

2016), and several competency frameworks of mathematical competence have been 
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developed and coexist in the field of mathematics education (Kilpatrick, 2014a). According to 

Boesen et al. (2014), constructs of mathematical competence can be seen to be inspired by 

ontological and epistemological development from the process-oriented focus that evolved in 

the 1960s and 70s as well as from ideas from social constructivism related to teaching and 

learning mathematics. With regard to the epistemological foundation, Niss et al. (2016) claim 

that theoretical constructs of mathematical competence have grown out of the experiences and 

minds of the proponents through observations, reflections and discussions and through 

systematic empirical and experimental work. Thus, notions of mathematical competence seem 

to have a pragmatic nature (Cherryholmes, 1992; Hildebrand, 2013) in that they are based on 

a range of research traditions and philosophies in which a main concern seems to relate to the 

consequences and usefulness of the proposed notions, that is, whether the proposed 

competence frameworks promote the ‘right’ kind of mathematics learning and teaching (Niss 

et al., 2016). 

This diverse and pragmatic nature is also reflected in mathematics curricula in 

countries around the world where a wide range of different notions and conceptualisations of 

mathematical competence have been adopted (Niss et al., 2016). One conceptualisation of 

mathematical competence that has been highly influential on curriculum reforms in several 

European countries such as Norway (Valenta et al., 2015), Sweden (Boesen et al., 2014), and 

Denmark and Germany (Niss et al., 2016) originated from the Danish KOM project  (Niss & 

Højgaard, 2011; Niss & Jensen, 2002)3. From this project, a framework was derived 

(hereafter referred to as the KOM framework) that identified and characterised eight distinct 

but overlapping mathematical competencies, namely, thinking mathematically, problem 

tackling competency, modelling competency, reasoning competency, representing 

competency, symbol and formalism competency, communicating competency, and aids and 

tools competency. The idea behind the proposed conceptualisation was that these 

competencies should function as a means for identifying and characterising mathematical 

mastery and that mathematics teaching and learning should focus on the development of these 

eight competencies across mathematical content domains and educational levels (Kilpatrick, 

2014a). 

Still, while notions of mathematical competence have gained a foothold in 

mathematics curricula documents worldwide, the implementation of competencies in 

                                                 
3 KOM is the abbreviation for ‘Competencies and Mathematical Learning’ in Danish. This thesis mainly refers to 
the English version of the KOM report (see Niss & Højgaard, 2011) which was originally presented in Niss and 
Jensen (2002). 
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classroom practices is less pronounced (Niss et al., 2016). For instance, Boesen et al. (2014) 

found that even 15 years after the implementation of competency-oriented mathematics 

reform in Sweden, teaching practices were not in line with the reform message and were still 

dominated by practicing procedures. One reason for this may be that teachers seem to find it 

challenging to come to grips with and implement notions of mathematical competencies, 

which is a crucial factor for adopting teaching practices in line with a competency-oriented 

view of the learning of mathematics (Niss et al., 2016). The current thesis focuses on two key 

components of teaching and learning of mathematics that are vital to ensure that mathematical 

competencies are not implemented solely in the intended curriculum but also in classroom 

practices: the mathematical tasks in which students engage and teachers’ knowledge of these 

tasks. 

2.2 Mathematical tasks 
Mathematical tasks are used to engage students in particular mathematical concepts or ideas 

and are often formulated or shaped as a problem, exercise, or question for the students to 

solve or answer (see Chapter 1.3). Mathematical tasks play a key role in mathematics teaching 

and learning as the tasks in which students engage are seen to determine their opportunities to 

develop mathematical understanding and skills and to engage in mathematical thinking 

(Ainley, Bills, & Wilson, 2005; Hiebert & Wearne, 1993; Richardson, Carter, & Berenson, 

2010; Stein & Smith, 1998; Sullivan, Clarke, & Clarke, 2013). In their synthesis of what 

research can tell about quality mathematics teaching, Anthony and Walshaw (2007, p. 94) 

argue that ‘it is through tasks, more than any other way, that opportunities to learn are made 

available to students’. Sierpinska (2004) argues that mathematical tasks are the fabric of both 

mathematics teaching and learning and of research in mathematics education. The crucial role 

of tasks in mathematics education is reflected in the research literature where tasks are found 

to be used as both (1) a means of research to investigate teaching practices or students’ 

proficiency and as (2) an object of research to investigate the features, characteristics, or 

demands of tasks. 

Research involving mathematical tasks is not grounded in a single theoretical 

perspective or philosophical stance. Rather, it draws on the different research traditions, 

methods, and theories of learning that coexist within the field of mathematics education (as 

discussed in previous sections). From a sociocultural perspective, a mathematical task is seen 
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as tightly related to the social context in which the task is embedded and, as such, research 

based on this perspective is often concerned with the nature of and interaction between 

teachers and students directly and indirectly involved in the task activity (Shimizu, Kaur, 

Huang, & Clarke, 2010). An example of such a study was conducted by Henningsen and Stein 

(1997) who investigated how classroom-based factors such as classroom norms and teachers’ 

and students’ dispositions shape student engagement with tasks. Another research practice is 

to focus on the properties and characteristics of mathematical tasks as stated in curriculum 

and instructional material (e.g. textbooks) more or less independently of the classroom 

situation in which they are to be implemented. An example of such an approach is found in 

one of the publications from the COACTIV study (Professional Competence of Teachers, 

Cognitively Activating Instruction, and Development of Students’ Mathematical Literacy) 

that analysed different characteristics of tasks as they were presented in instructional 

documents and used these characteristics as indicators of the potential for cognitive activation 

offered by the tasks (M. Neubrand, Jordan, Krauss, Blum, & Löwen, 2013). The different 

perspectives and approaches provide different possibilities and should be seen as 

complementary rather than competitive. As illustrated by the two aforementioned studies, the 

former perspective is often associated with studies investigating how mathematical tasks are 

implemented in teaching and learning situations whereas the latter perspective is concerned 

with the potential of tasks in terms of the learning opportunities they are seen to promote. 

According to J. Neubrand (2006), in analyses of mathematical tasks, it is vital to distinguish 

between problems as they are posed independent of their implementation and problems as 

they take place and are enacted in practice. This distinction formed a basis for the 

investigation of teaching practices conducted in the TIMSS 1999 Video Study, in which the 

analysis distinguished between potential demands of tasks as they were stated and how 

mathematical tasks were actually worked on in the classroom (Hiebert et al., 2003). 

Numerous types of tasks with different characteristics and properties are described in 

the literature, such as routine- and non-routine problems, word-problems, exercises, 

procedural tasks, modelling tasks, representational tasks, contextual tasks, open-ended tasks, 

rich tasks, real-world tasks, and investigative tasks (see e.g. Borasi, 1986; de Lange, 1995; 

Haapasalo & Kadijevich, 2000; Haladyna & Rodriguez, 2013; Mayer & Hegarty, 1996; 

Sullivan et al., 2013; Yeo, 2017). Tasks can be used for instructional purposes (intended to 

promote learning of mathematics) and assessment purposes (intended to generate information 

about student learning) (Shimizu et al., 2010) and can be implemented in school or as 
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homework. Tasks can be targeted for different grade levels, may involve different 

mathematical content (e.g. geometry or algebra), activities (classroom discourse, games, or 

individual seat work) and mental processes, and require different types of responses (e.g. 

answering a question or solving a problem with or without explanations and justifications, 

orally or in writing). This complexity makes it challenging to provide an exhaustive overview 

of research related to mathematical tasks. Instead, the following sections concentrate on 

studies concerned with the analysis of task characteristics and how these relate to the potential 

learning opportunities provided by the tasks. 

2.2.1 Task analysis 

One distinction that can be made in the analysis of mathematical tasks is between task 

features and task demands. Task features are related to the presentation and formulation of the 

task, the statements it involves, and its mathematical and contextual features. This involves 

the mathematical content and topics related to the task, possible visual features (e.g. 

illustrations and figures), textual quantity and quality, and the context or situation in which 

the problem is embedded. Some features (such as mathematical content, embedded context, 

and visual features) are regarded as surface characteristics (Arbaugh & Brown, 2005; Turner, 

Dossey, Blum, & Niss, 2013) and are more or less directly observable when examining the 

task, whereas other features are more latent, such as the openness of tasks in terms of goal and 

method(s) of solution (Yeo, 2017). Task demands refer to requirements assumed to be needed 

to be able to solve or complete the task. This typically entails the mathematical knowledge, 

operations, and other cognitive aspects (such as mathematical and mental processes) involved 

in the solution process. 

Several frameworks have been developed to analyse mathematical tasks in terms of 

both their features and demands. In an early work, Goldin and McClintock (1979) presented a 

task variables framework based on a review of research on mathematical problems and 

problem solving. This framework consisted of four main categories: problem syntax, 

mathematical content and non-mathematical context, problem structure, and heuristic 

processes. These categories were seen to identify significant aspects of tasks in terms of task 

complexity and difficulty, and the framework was seen as a useful tool both for measuring 

and stimulating the learning of mathematical problem solving (Goldin & McClintock, 1979). 

Li (2000) argued that it is vital to analyse different features and requirements of textbook 

problems, and not only textbook content, which has been the traditional focus of interest, as 
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textbook problems play an important role in students’ learning of mathematics. Li (2000) 

developed a framework involving three dimensions—mathematical features, contextual 

features, and performance requirements—and applied this framework to analyse and compare 

textbook problems. Yeo (2017) developed a framework to analyse the openness of 

mathematical tasks based on a set of task variables including the goal of the task, method for 

solution, and task complexity. According to Yeo (2017), this framework could be useful for 

teachers to design and select tasks that engage their students in appropriate mathematical 

thinking processes and for researchers when investigating the relationship between task 

openness and learning in mathematics. The Task Analysis Guide developed by Stein, Smith, 

Henningsen, and Silver (2000) describes the characteristics of tasks associated with four 

levels of cognitive demand: doing mathematics, procedures with connection, procedures 

without connections, and memorization. Stein et al. (2000) argue that the framework can 

support teachers in differentiating between different levels of demand and raise their 

awareness of the demand of tasks and how they relate to goals for student learning. The Task 

Analysis Guide has been adopted and used in several studies to investigate the cognitive 

demands of tasks both as they are presented in educational material and set up and 

implemented in the classroom (e.g. Boston & Smith, 2009, 2011; Brändström, 2005; 

Charalambous, 2008). 

Despite the large number of studies that have analysed the features and demands of 

mathematical tasks, few empirical studies have been conducted involving an entire system of 

mathematical competencies (Niss et al., 2016). According to Boesen, Lithner, and Palm 

(2018), one reason for this might be that mathematical competency frameworks have been 

mainly developed for curriculum development and not for analysing empirical data. One 

exception is the research conducted by Lithner et al. (2010), who developed a research 

framework for mathematical competencies to serve as a basis for the analysis of tasks as well 

as other empirical data. Based on their analysis of Swedish national tests, Boesen et al. (2018) 

argue that this framework is useful for examining the extent to which tasks are evenly 

distributed across competencies and whether tests actually ‘capture the whole spectrum of 

what it means to be mathematically competent’ (p. 121). Another exception is the research 

conducted by the PISA Mathematics Expert Group (hereafter referred to as the MEG) which 

involved the development of an item analysis scheme to be used to analyse mathematical 

problems given to 15-year-old students with regard to the extent to which solving these 

problems required the activation of mathematical competencies (Turner et al., 2015). This 
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scheme was used to analyse 48 mathematical problems used in both the PISA 2003 and PISA 

2006 surveys by Turner et al. (2013). Turner et al. (2015) subsequently concluded that this 

scheme could be used effectively by experts to identify the competency demands of these 

problems. 

2.2.2 MEG item analysis scheme 

The MEG item analysis scheme (see Appendix 1) comprises six mathematical competencies: 

Communication, Devising strategies, Mathematising, Representation, Symbols and 

formalism, and Reasoning and argument. These were originally derived from the eight 

competencies included in the first PISA Mathematics Frameworks (Turner et al., 2015), 

which again is based on (and evolved in parallel and intertwined with) the KOM framework 

(Niss, 2015). The reduction from eight to six competencies followed from merging 

mathematical reasoning and mathematical thinking into the Reasoning and argument 

competency and omitting the mathematical aids and tools competency (Turner et al., 2015). 

As the notion of mathematical competence in the Norwegian curriculum is also based on the 

KOM framework (Valenta et al., 2015), the MEG scheme and its six competencies are 

regarded as highly relevant to mathematics education in Norway and a suitable tool for 

analysing mathematical tasks in Norwegian secondary education. However, in the Norwegian 

curriculum the ability to use aids and technologies is described as an important aspect of 

mathematics. The lack of an aids and tool competency in the MEG framework means that the 

analysis of tasks based on the MEG scheme does not capture this aspect of the Norwegian 

mathematics curriculum. 

The MEG competencies are in line the definition proposed by Klieme and Leutner (as 

cited in Klieme, Hartig, & Rauch, 2008) in which competencies are defined as ‘context-

specific cognitive dispositions that are acquired by learning and needed to successfully cope 

with certain situations or tasks in specific domains’ (p. 9). Several frameworks breakdown 

mathematical competency into separate dimensions such as knowledge (e.g. factual and 

procedural knowledge), cognitive processes (e.g. remember, understand, and apply), and 

mathematical content (e.g. algebra, geometry, and measurement) (Kilpatrick, 2014a). In the 

MEG framework, a mix of skills, knowledge, and mental processes are used to describe each 

of the individual competencies. Compared to other competency frameworks, such as the US 

National Research Council’s five strands of mathematical proficiency (Kilpatrick, 2014a), the 

MEG framework has no clear emphasis on the importance of a deep understanding of 
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mathematical concepts. This can be seen as a limitation, given the strong position of 

conceptual understanding in mathematics education. Still, this type of understanding is 

implicitly included in the handling of mathematical concepts involved in, for instance, the 

Representation competency and the Symbols and formalism competency. Another issue is the 

two-sided character of the mathematical competencies described in the KOM report, 

involving both an investigate side (i.e. the ability to understand, reflect, and analyse) and a 

productive side (i.e. the ability to carry out processes). Although the two sides are not 

explicitly stated they are implicitly involved in several of the competencies. For instance, the 

Communication competency involves both reading and interpreting statements and making 

sense of information as well as presenting and explaining mathematical work and reasoning. 

Similarly, Mathematising involves both interpreting outcomes and validating given 

mathematical models as well as constructing models based on extra-mathematical situations. 

The operational definitions in the MEG scheme involve four levels of cognitive 

demands (0–3) for each of the six competencies, where level 0 implies no or very minimal 

demand for the activation of this competency and level 3 implies a demand at an advanced or 

complex level (Turner et al., 2015). To support reliable and consistent ratings of competency 

demands, the operational definitions have been developed to make the distinctions between 

the competencies as distinct as possible (Turner et al., 2015). However, mathematical 

competencies are seen to have an overlapping and intertwined nature (Niss et al., 2016), 

which is also the case for the KOM competencies (Niss & Højgaard, 2011). The study 

conducted by Turner et al. (2013) showed rather high correlations between the rated demands 

for some of the competencies, which could indicate challenges with obtaining such clear 

distinctions and thus with separating the demands for the different competencies. 

2.2.3 Task analysis: Empirical research 

In many studies, the analysis of task features and/or demands based on the abovementioned or 

similar frameworks has been used as a means to investigate teaching and learning practices of 

mathematics. This research is based on the assumption that certain task characteristics could 

be influential or beneficial with regard to the quality of teaching more or less independently 

of the classroom context in which the task is implemented and of the students engaging in the 

task. Results from these studies have contributed to an increased understanding of the learning 

opportunities students are provided in the mathematics classroom and of the types and use of 

mathematical tasks that are associated with quality mathematics teaching. 
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As a part of the COACTIV study, Baumert et al. (2010) analysed assessment tasks 

developed and used by Grade 10 mathematics teachers in Germany in terms of three 

dimensions of cognitive demands: type of task, level of mathematical argumentation required, 

and translation processes within mathematics. These assessment tasks were found to reflect 

the task structure found in teacher instruction, and the results showed that the use of more 

cognitively demanding tasks had a substantial positive effect on students learning gains 

(Baumert et al., 2010). Furthermore, the results also showed that tasks provided by German 

Grade 10 teachers had a low overall level of cognitive challenge (Baumert et al., 2010). Stein 

and Lane (1996) analysed instructional tasks as they were set up and implemented in 

classrooms and found that the use of tasks that involved high levels of cognitive demand (i.e. 

doing mathematics or procedures with connection) led to greater student gains on a 

performance assessment involving high levels of mathematical thinking and reasoning. 

Similarly, in the TIMSS 1999 video study, the cognitive demand of mathematical problems 

was analysed two times: first to characterise the problem, and second, to describe its 

implementation (Stigler & Hiebert, 2004). The results revealed that in the highest-achieving 

countries, mathematical problems characterized as high-demanding were, to a large extent, 

implemented as high-demanding. This was in contrast to what happened in US classrooms, 

where all high-demanding tasks changed into routine exercises or other cognitively low-

demanding activities when they were implemented (Stigler & Hiebert, 2004). 

Several studies have analysed the demands of mathematical tasks in textbooks to 

examine students’ potential learning opportunities. For instance, in her doctoral thesis, 

Brändström (2005) analysed the cognitive demand of differentiated tasks (i.e. tasks located in 

separate strands according to ability level) in Swedish textbooks and found that the tasks at 

the low strands mainly involved a low cognitive demand in terms of memorisation and 

remembering. According to Brändström (2005), this breaks with the Swedish curriculum 

which states that all students should engage in higher-order thinking such as reasoning and 

reflecting with the help of mathematics. Similarly, Jones and Tarr (2007) analysed US 

middle-grade mathematics textbooks and found that for six of the eight textbook series, a vast 

majority of the tasks (>83%) required low cognitive demand (i.e. procedures without 

connections and memorization). Furthermore, they argued that the two other textbook series 

that involve a higher proportion of cognitively demanding tasks have a higher potential for 

developing a deeper understanding of mathematical content (Jones & Tarr, 2007). Several 

other studies have also analysed the features and demands of textbook tasks to investigate and 
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compare students’ potential for learning mathematics both within and between countries (e.g. 

Baker et al., 2010; Charalambous, Delaney, Hsu, & Mesa, 2010; Li, 2000; J. Neubrand, 

2006). 

The research framework for mathematical competencies developed by Lithner et al. 

(2010) was used to analyse the mathematical activities in Swedish mathematics classrooms 

(Boesen et al., 2014) and Swedish national mathematics tests (Boesen et al., 2018). Based on 

the observation of 197 lessons, they concluded that despite the implementation of a 

mathematical competence reform, carrying out procedures still dominated classroom practices 

(Boesen et al., 2014). The analysis of the national tests showed that these seem to capture, to a 

fairly high extent, all of the mathematical competencies but that the complex nature of the 

competencies is not fully captured as aspects such as the ability to evaluate and reflect on 

mathematics and to draw conclusions are not involved in the tests (Boesen et al., 2018). 

The results from the aforementioned studies yield a somewhat coherent picture 

illustrating the importance of cognitively demanding tasks in teaching and learning 

mathematics and simultaneously identifying that the tasks provided in mathematics 

classrooms mainly engage students in activities that involve low cognitive demand. 

2.3 Assessing mathematical competencies 
Mathematical tasks also play an important role when it comes to assessing students’ learning 

in mathematics. Suurtamm et al. (2016) distinguish between large-scale assessments (such as 

PISA, TIMSS, and national assessments) and classroom assessments (typically, teacher-made 

or teacher-selected tests) where the two types of assessments are grounded in different 

traditions with different epistemological perspectives and theories of learning. Classroom 

assessments are based on cognitive, constructivist, and/or sociocultural views of learning in 

which assessment is seen as a social practice mainly intended to support students’ learning 

(Suurtamm et al., 2016; Wiliam, 2007). Large-scale assessments stem from a psychometric 

tradition (Glaser & Silver, 1994) associated with a postpositivist worldview (Creswell & 

Plano Clark, 2011) in which a main intention is to gain reliable measures of students’ learning 

outcomes. In some cases, large-scale assessments also function as a means to implement 

reform messages as teaching practices are assumed to be adapted to fit with what is measured 

in the tests (Boesen et al., 2018; de Lange, 2007). 
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For both large-scale and classroom assessments, it is important for the assessment to 

reflect the type of mathematics that is valued and described in the curriculum (de Lange, 

2007; Suurtamm et al., 2016; Wiliam, 2007). Thus, the shift to a competency-oriented 

mathematics education also requires a shift in assessment practices as the range of knowledge, 

skills, and cognitive processes involved in the notions of mathematical competence requires 

different types of tasks than what is involved in traditional knowledge tests. However, 

because of its complex nature, the assessment of students’ mathematical competencies is 

regarded as highly challenging (Koeppen, Hartig, Klieme, & Leutner, 2008; Niss et al., 2016), 

and there are concerns over whether current assessment practices are able to measure the 

complex abilities and higher-order thinking involved in such competencies (e.g. Koeppen et 

al., 2008; Lane, 2004; Niss, 2007). Developing and selecting tasks that demand the use of 

these competencies is challenging for both teachers and test developers, and it is seen as one 

of the crucial aspects for the implementation of mathematical competencies in mathematics 

teaching and learning (Niss et al., 2016). 

2.4 Mathematical-task knowledge for teaching 
The selection of appropriate tasks is regarded as a key to successful mathematics teaching 

(Anthony & Walshaw, 2007, 2009; Ball et al., 2008; Doyle, 1988; Hiebert & Wearne, 1993), 

whether used for instructional or assessment purposes. Appropriate tasks are seen as tasks that 

challenge students at an appropriate level, extend current understanding and knowledge, and 

provide opportunities for students to struggle with important mathematical ideas and engage 

in high-level thinking (Anthony & Walshaw, 2009; Shimizu et al., 2010). For teachers to 

select and develop appropriate tasks when planning lessons, they need knowledge of 

mathematical tasks and the potential learning opportunities they provide. According to Ball 

(2000, p. xii), ‘[a]cquiring the ability to think with precision about mathematical tasks and 

their use in class can equip teachers with more developed skills in the ways they select, 

modify, and enact mathematical tasks with their students’. The importance of knowledge of 

the learning potential of mathematical tasks is also emphasised in many frameworks for 

mathematics teachers’ professional knowledge (see, e.g., Ball et al., 2008; Baumert & Kunter, 

2013; Krauss et al., 2008). Chapman (2013) uses the term ‘mathematical-task knowledge for 

teaching’ to refer to the knowledge teachers need to select and develop appropriate tasks and 

to optimize the learning potential of tasks. This task knowledge has many facets, including 
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knowledge of cognitive demands of tasks and the learning and understanding they can 

promote as well as the ability to identify and create tasks that provide opportunities to develop 

meaningful and deep understanding in accordance with the learning needs of the students. 

According to Chapman (2013), mathematical-task knowledge is a key factor in teachers’ 

treatment of tasks. This was, to some extent, confirmed in a study by Baumert et al. (2010), 

who found that the extent to which teachers provided cognitively challenging tasks was 

largely determined by their pedagogical content knowledge and their knowledge of 

mathematical tasks. The enriched view of mathematical mastery promoted by notions of 

mathematical competence can be seen to further add to the mathematical-task knowledge for 

teaching. To stimulate the development of mathematical competence, teachers need to select 

and develop tasks that provide opportunities for developing a range of competencies (Turner 

et al., 2015) or, in the words of Niss and Højgaard (2011, p. 31), orchestrate activities ‘with 

the explicit aim of developing the mathematical competencies of the individual’. An essential 

factor for this is that teachers must grasp the notions of mathematical competencies and be 

empowered to develop teaching approaches that implement these competencies (Niss et al., 

2016). 

Several studies have shown that teaching practices are dominated by the selection and 

use of tasks that involve lower levels of cognitive demand (Baumert et al., 2010; Boston & 

Smith, 2009; Silver, Mesa, Morris, Star, & Benken, 2009). Furthermore, studies of teachers’ 

(e.g. Boston, 2013) and pre-service teachers’ (e.g. Osana, Lacroix, Tucker, & Desrosiers, 

2006) evaluation of mathematics problems have shown that teachers might struggle with 

recognising and understanding the cognitive demands of problems involving high levels of 

complexity. Some studies also indicate that when analysing tasks, teachers tend to focus on 

surface characteristics (e.g. Arbaugh & Brown, 2005; Osana et al., 2006; Smith & Stein, 

1998). Furthermore, Sproesser, Vogel, Dörfler, and Eichler (2018) found a rather large 

discrepancy between teachers’ estimations of task solution rates and empirical solution rates 

of tasks for students of age 12 and 16 years and argued that the ability to accurately judge the 

difficulty of tasks is important to support students’ learning. These findings suggest that 

mathematics teachers struggle with recognising or tend to not consider the cognitive 

challenges involved in the tasks they use in their teaching practices; this might indicate a lack 

of sufficient mathematical-task knowledge. Furthermore, this could result in students not 

being provided with appropriate tasks, thus jeopardising their opportunities to extend their 

mathematical understanding and knowledge and to become mathematically competent. 
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It is important to note that the recognition and selection of appropriate tasks in itself 

does not ensure successful mathematics teaching. The characteristics and demands of tasks 

can change when moving from instructional material to classroom implementation (Stein et 

al., 1996), and studies have shown that maintaining the cognitive demand of tasks can be 

challenging for teachers (Brodie, Jina, & Modau, 2009; Stein et al., 2000; Stigler & Hiebert, 

2004). The importance of task implementation is also reflected in Chapman’s (2013) concept 

of mathematical-task knowledge, which involves knowledge of how to orchestrate and 

organise students work and support their process of thinking without reducing or eliminating 

the cognitive challenge. Consequently, the appropriateness of a task cannot be determined 

solely by analysing its features and demands, as this also depends on the students who are to 

engage in the task (such as their abilities, interests, and motivation) and the social context in 

which the task is implemented. Thus, successful mathematics teaching requires knowledge of 

tasks, students, and the student-task interaction as well as the ability to implement and adjust 

tasks in accordance with the sociocultural context of the classroom. Still, all studies are bound 

by particular restrictions and limitations. This research project follows in the footsteps of 

several of the aforementioned studies in focusing on the potential of mathematical tasks and 

their features and demands as they are presented in instructional material, as well as on 

teachers’ task knowledge in terms of their recognition and considerations of these. 
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3 Methodology and research design 
Quantitative and qualitative research differ in that the former is characterised by a focus on 

deduction, hypothesis testing, statistical analysis, and a search for objective knowledge 

whereas the latter is associated with induction, exploration, and theory generation where 

subjective experiences and interpretations form a basis for data and analyses (Johnson & 

Onwuegbuzie, 2004). In practice, this dichotomy is not very fruitful as the problems 

addressed in social sciences are often complex and require the use of different methodological 

approaches (Brewer & Hunter, 2006; Creswell & Plano Clark, 2011). This pluralism can also 

be seen in research involving mathematical tasks, where different research traditions and 

epistemological positions coexist (see Chapter 2.2). Sierpinska (2004) argues that 

mathematical tasks can be seen to function as research tools on the same level as other 

methodological tools. This is reflected in the methodological design of my research project, in 

which mathematical tasks and task analysis pervade the research process, functioning both as 

a means and mode of data collection, influencing the methods used, and forming the 

theoretical underpinnings. Furthermore, the complex nature of mathematical tasks and the 

analysis of competency demands encouraged the inclusion of both quantitative and qualitative 

components. 

3.1 General overview 

3.1.1 Philosophical position 

The philosophical worldview or paradigm that underlies research practice involves a range of 

assumptions about how researchers gain knowledge of the world, the research process, the 

nature of reality, and the researcher’s role in the research process (Creswell & Plano Clark, 

2011; Lincoln, Lynham, & Guba, 2005). As this worldview influences how research is 

conducted, it is important that researchers be aware of and identify the assumptions and ideas 

underlying their research (Creswell & Plano Clark, 2011). The current research project can be 

seen as based on a postpositivist philosophy (Creswell & Plano Clark, 2011; Phillips & 

Burbules, 2000). Unlike positivism, in which sensory experience is regarded as the only 

source of knowledge and the possibility of gaining knowledge of unobserved entities is 

rejected, postpositivism sees knowledge as conjectural and that it can be supported by all 
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available evidence including empirical evidence, arguments, controlled experiments, and 

interviews (Phillips & Burbules, 2000). This means that although it is usually associated with 

quantitative methods and statistical analyses (Creswell & Plano Clark, 2011; Lincoln et al., 

2005), postpositivism is not restricted to certain methodologies or methods and does not reject 

qualitative approaches or interpretative methodologies in the search for knowledge (Phillips 

& Burbules, 2000). Thus, it is in line with the use of a quantitatively driven research approach 

applying a variety of methods. Postpositivism aims to discover or approximate a singular 

reality (although this might not be achievable) through objectivity and falsification of 

hypotheses (Lincoln et al., 2005; Phillips & Burbules, 2000). My project reflects the idea of 

singular reality and objectivity through the use of an item analysis scheme for task analysis, 

where the scheme is seen to ensure that information about task competency demands is 

collected objectively without being influenced by the subject conducting the analysis. This is 

also reflected in the use of statistical analyses to investigate teachers’ recognition and 

considerations of task competency demands. For instance, the estimation of the consistency of 

teachers’ ratings of demands to evaluate the accuracy of their ratings (Article 1) is based on 

the assumption that the tasks have a certain set of competency demands and that if teachers 

have independently arrived at the same set of ratings, these are likely to reflect an objective, 

singular reality. The focus on the potential demands of mathematical tasks as presented in 

educational and instructional materials, while ignoring several important aspects of the use of 

tasks in mathematics teaching, draws on ideas of reductionism, another characteristic of 

postpositivism (Creswell & Plano Clark, 2011). The idea of reductionism also underlies the 

use of ratings to represent the task demands in that these ratings are assumed to provide 

valuable knowledge about the potential of tasks in terms of the mathematical competencies 

they involve. 

3.1.2 Research design 

The design of my research project was guided by the two aspects of its main objective: to 

investigate competency demands of tasks and teachers’ knowledge about these task demands.  

In this study, data collection and analyses are dominated by a quantitative orientation but are 

informed and supported by qualitative data and methods. The quantitative and qualitative 

approaches are sequential rather than mixed and combined, and thus, the research design 

resembles what is called a quantitatively driven approach to multimethod research (Brewer & 

Hunter, 2006; Hesse-Biber & Johnson, 2015; Mark, 2015).  
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Two studies were conducted intended to provide complementary knowledge with 

regards to the competency demands of mathematical tasks and teachers’ knowledge of these 

demands. Study 1 involved one set of mathematical tasks used in Norwegian secondary 

mathematics from two different assessments and focused on participating teachers’ ability to 

recognise the competency demands of these tasks. Study 2 involved mathematical tasks used 

and selected by teachers and focused on teachers’ considerations of the demands of these 

tasks. Study 1 preceded Study 2 in chronological order, and the results of Study 1 influenced 

and inspired Study 2. 

3.1.3 The two studies 

Study 1 – Article 1 and Article 2: This study aimed to investigate the extent to which a 

group of teachers could recognise the competency demands of mathematical tasks, which 

constitute an important aspect of task knowledge for teaching (see Chapter 2.4). Because of 

the ambiguous nature of the concept of mathematical competence, the MEG item analysis 

scheme was used to provide a common theoretical framework for the teachers that involved a 

set of competencies relevant to Norwegian secondary mathematics. The use of this scheme 

also provided a standardised instrument for rating competency demands, thereby allowing a 

comparison and further examination of their ratings through statistical approaches. The 

participating teachers first attended a training session in how to use the scheme and then used 

the scheme individually to analyse and rate the competency demands of 151 assessment tasks. 

The outcome of the teachers’ ratings was analysed based on consistency estimates and 

descriptive statistics to evaluate the extent to which the teachers seemed to be able to 

recognise the demands for the six competencies. Furthermore, by combining the teachers’ 

ratings with students’ scored responses to the same tasks, a psychometric approach was 

conducted to further evaluate the ratings of competency ratings and to determine whether they 

reflected actual demands as experienced by students. This approach can be considered two-

sided, either as a validation of the teachers’ rated task competency demands or as a validation 

of the two assessments in terms of the mathematical competencies they can measure. These 

two sides and their relations are further discussed in Article 2. The assessment tasks stemmed 

from the PISA 2012 assessment and the Norwegian 2014 grade 10 exam, which are two 

externally mandated assessments implemented at the end of compulsory education in Norway 

to measure students’ mathematical competence. 
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Study 2 – Article 3: The second study aimed to investigate in-service secondary school 

teachers’ considerations of the demands of mathematical tasks they have previously used in 

their teaching practices, which related to another aspect of teachers’ mathematical-task 

knowledge. As the results from Study 1 indicated that the participating teachers might 

struggle with recognising the demands of more complex and high-demanding tasks, the 

teachers were asked to submit tasks they had used to challenge their high-achieving students. 

Along with each task, the teachers submitted a task questionnaire designed to provide 

information about the teachers’ use of the submitted tasks and their considerations of task 

demands through the following question: what do you think makes this a demanding task for 

high-achieving students? The intention of this open-ended question was to have teachers’ use 

their own terms and vocabulary to describe the aspects they consider most important, rather 

than providing a theoretical framework of mathematical competence to guide their reflections 

about task demands (as in Study 1). Thus, Study 2 adopts a more exploratory approach than 

Study 1. To examine teachers’ considerations of task demands, content analysis was 

conducted deductively, wherein the six MEG competencies formed the coding categories, and 

then inductively. Furthermore, the results from this analysis were compared with an analysis 

of the competency demands of submitted tasks. 

The teacher-submitted tasks were seen to further add to the pool of mathematical 

tasks. When put together, the two studies involve a rather large number of tasks used in 

Norwegian mathematics classrooms. Thus, the analysis of these is intended to provide a rough 

picture of the competency demands of tasks provided to Norwegian secondary students. 

Table 1 provides an overview of the main elements of the research process involved in 

the three articles: main aims, research questions, and data material and analysis.  
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Table 1. Overview of main elements of research process involved in the three articles. 

 Study 1 Study 2 

 Article 1 Article 2 Article 3 

Main aim Investigate teachers’ 
recognition of the 
competency demands of 
tasks through the use of 
an analysis scheme 

Further scrutinise the 
teachers’ rated 
competency demands of 
tasks 

Investigate teachers’ 
considerations of task 
demands 

Research 
question(s) 

To what degree do a 
group of teachers and 
prospective teachers 
consistently analyse the 
competency demands of 
[mathematical 
assessment] tasks? 

To what extent do 
differences in teacher-
rated demands of the six 
MEG competencies in 
mathematics assessment 
items align with the 
differences in empirical 
item difficulty? 

(1) What characterises 
teachers’ considerations 
of task demands? 

(2) How do these 
considerations align with 
the competency demands 
of the tasks according to 
a competency 
framework? 

Data 
material 

Teachers’ (n = 5) ratings 
of competency demands 
of tasks (n = 141) 

Teachers’ (n = 5) ratings 
of competency demands 
of tasks (n = 141) 

Students’ task responses 
(n = 4686 + 1312) 

Tasks (n = 78) submitted 
by teachers (n = 7) 

Teacher considerations of 
task demands (n = 35) 

Data 
analysis 

Analysis of task demands 

Rater consistency 
estimates 

Descriptive statistics 

Analysis of task demands 

Explanatory item 
response modelling 

Analysis of task demands 

Content analyses 
(deductive and inductive) 

Descriptive statistics 

3.2 Participants 
The study participants were two groups of Norwegian mathematics teachers, including in-

service, pre-service, and former teachers with teaching experience from lower and/or upper 

secondary school mathematics (see Articles 1 and 3 for a more thorough description of the 

teachers). 

Neither Study 1 nor Study 2 aimed at providing a representative sample of teachers in 

Norway. The teachers in Study 1 (n = 5) were purposefully sampled based on their teaching 

experience, educational background, and availability for training and analysing tasks. These 
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teachers were all linked to the University of Oslo as students or former students at the teacher 

education programme or as employees. In Study 2, the rather low number of teachers (n = 7) 

was due to recruitment difficulties. More than 100 schools were approached by email. In 

addition, teachers were approached at lectures held at the University campus and through 

personal emails. Many of these teachers were positive to participating and received 

information and questionnaires. Nonetheless, a vast majority finally chose not to participate. 

The participating teachers in Study 2 worked at schools located in Oslo and Akershus. 

3.3 Data collection and analysis 
My research revolved around two main concepts: competency demands of mathematical tasks 

and teachers’ knowledge about these task demands. The following sections describe the data 

collection and analysis conducted to investigate these concepts. 

3.3.1 Mathematical tasks 

In this thesis, the mathematical tasks involved can be seen to function both as an object of 

research (to examine the competency demands of tasks used in Norwegian secondary 

mathematics) and as a means of research (to provide an insight into teachers’ recognition and 

considerations of the competency demands of tasks), both of which are involved in each of 

the two studies. 

Study 1: The mathematical tasks involved in the first study were taken from two 

different assessments: 85/84 mathematical tasks4 from the PISA 2012 survey and 56 tasks 

from the Norwegian 2014 grade 10 national mathematics exam. Both the PISA survey and the 

national exam have been developed to assess 15-year-old students’ mathematical competence 

at the end of their compulsory education (i.e. grade 10 in Norway), and their underlying 

frameworks have been influenced by the notion of mathematical competence provided by the 

KOM report (Niss, 2015; Valenta et al., 2015). Thus, these tasks are seen to be rooted in a 

competency-oriented view on mathematics education and are therefore relevant to be studied 

from a competency perspective. 

                                                 
4 While the teachers’ analysis in Article 1 involved 85 PISA tasks, Article 2 involved only 84 of these tasks 
because one task was deleted from the data at a national level owing to problems with the functioning of the task 
(OECD, 2014). Thus, because this task lacked data for student responses, it could not be used in the 
psychometric modelling approach. 
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The selection of assessment tasks from a Norwegian exam and PISA 2012 was partly 

motivated by the validation approach used in Article 2. This approach required a rather large 

number of student responses, i.e. data that could be obtained for research purposes (see 

Chapter 3.3.4). Ideally, to investigate whether the ratings of competency demands are 

reflected in task responses, the psychometric modelling approach should be based on 

assessments developed to measure the competencies of interest (i.e. MEG competencies), 

where the assessment items vary systematically with regard to these competencies (Wilson, 

De Boeck, & Carstensen, 2008). Although the PISA and exam tasks are not developed to vary 

systematically across the six MEG competencies and four levels of demand, the two 

assessments can be seen to involve these competencies at a more conceptual level in the item 

development process through the influence of the KOM framework. 

Study 2: The mathematical tasks involved in the second study were submitted by 

teachers based on the following two criteria: the tasks had to be (1) previously used at a 

secondary school (i.e. grades 9–115) with the intention to (2) challenge high-achieving 

students. The intention of the first criteria was to provide an insight into the teachers’ 

considerations of the demands of tasks they had used in teaching practices. The second 

criteria was inspired by the results from Study 1 that indicated that it was more challenging 

for the teachers to recognise the competency demands of higher-demanding tasks. Thus, the 

intention was to further explore teachers’ analysis of high-demanding tasks when they were 

not provided with an analysis scheme. The 78 submitted tasks involved instructional and 

assessment tasks and consisted of both teacher-made and teacher-selected tasks, where the 

sources included textbooks, tests, and websites. It would be fair to assume that the submitted 

tasks do not represent typical tasks used by Norwegian teachers or even the participating 

teachers but rather the tasks they consider ‘worthy’ and confident of submitting to a research 

project. In this case, the tasks can be seen to represent tasks they associate with successful 

mathematics teaching.  

3.3.2 Analysis of mathematical tasks 

A key component of this research project was the analysis of mathematical tasks in terms of 

their demands for six mathematical competencies. Both the tasks from the two assessments 

(Study 1) and the teacher-submitted tasks (Study 2) are in a written format involving numeric 

                                                 
5 In Norway, lower secondary school includes grades 8–10 and upper secondary school includes grades 11–13 
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and mathematical symbols, text, graphs, tables, illustrations, formulas, and/or other 

mathematical representations. The mathematical tasks pose a problem or a question for the 

students to solve or answer. The task analysis procedure applied in this research started with 

what can be regarded as a mathematical analysis where the mathematical knowledge, skills, 

and cognitive processes involved in the solution of the task was inspected. Next, the MEG 

scheme was implemented, and the perceived demands were matched with the operational 

definitions of four rating levels (0–3) for each of six mathematical competencies: 

Communication, Devising strategies, Mathematising, Representation, Symbols and 

formalism, and Reasoning and argument (for a more exhaustive description of the 

competency rating process, see Article 1). Thus, the competency demands of a task were 

represented by a set of six ratings on a scale of 0–3. The MEG item analysis scheme was used 

in this research based on the fact that the notion of mathematical competence in the MEG 

scheme was built on the same framework (i.e. the KOM framework) that had influenced the 

Norwegian mathematics curriculum. Thus, the identified competency demands were relevant 

to the Norwegian context of this thesis. 

This type of analysis of textual data through the use of categories and coding 

resembles content analysis, a widely used and well-established method in both qualitative and 

quantitative research (Silverman, 2011). While content analysis was originally regarded as a 

quantitative method ‘for the objective, systematic, and quantitative description of the manifest 

content of communication’ (Berelson, 1952, as cited in Flick, 2014, p. xx), recently, it has 

been used for a range of analytical approaches involving both impressionistic, intuitive, and 

interpretive analyses as well as more systematic and strict textual analyses (Hsieh & Shannon, 

2005). The task analysis conducted in the current research can be viewed as a systematic 

approach to ‘discover’ the objective descriptions of the competency demands of mathematical 

tasks in line with a postpositivistic perspective (see Chapter 3.1.1). However, the argument 

here is that the task analysis process did not resemble an automatic procedure involving 

counting distinct elements as in quantitative content analysis (Mayring, 2014). Identifying 

cognitive processes involved in mathematical tasks is recognised as highly challenging 

(Haladyna & Rodriguez, 2013; Lane, 2004), and coding of competency demands required a 

profound analysis which sometimes was closer to an act of interpretation rather than 

automated coding. 

The rated demands of mathematical tasks played a somewhat different role in the two 

studies involved in the research. In Study 1, the analysis of competency demands functioned 
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both as data collection (to investigate teachers’ ability to recognise these demands) and data 

analysis (to investigate the demands of the assessment task). In Study 2, the task analysis was 

only a part of the analytical process of teachers’ submitted tasks.  

3.3.3 Teacher considerations and use of tasks 

In Study 2, a questionnaire was used to collect data about the teachers’ reflections about and 

their use of the mathematical tasks they submitted. This task questionnaire (see Appendix 2) 

asked the teachers about how they had used the submitted tasks in their teaching practices, for 

instance, whether a task had been used for individual work or group work or for instructional 

or assessment purposes. In addition, the questionnaire included an open-ended question: 

“What do you think makes this a demanding task for high-achieving students?” This was 

intended to gain insight into what the teachers considered to be key aspects of the task with 

regard to task demands. The use of interviews involving follow-up questions or prompts 

instead of questionnaires might have yielded richer data in terms of teacher considerations 

and mathematical-task knowledge. However, teachers’ personal reflections unaffected by the 

presence of the researcher and his or her questions can be seen to better reflect the 

considerations teachers make when planning and selecting tasks for their teaching practices. 

The questionnaire was piloted to ensure that the questions were unambiguous and understood 

as intended. Even though the intention of the second study was to investigate teachers’ 

considerations of the competencies required to solve mathematical tasks, it was decided not to 

include the term ‘competency’ in the open-ended question to avoid steering the teachers’ 

thoughts in a certain direction and to have them consider and put forth all types of task 

features and characteristics as a source of task demand. 

The teachers’ considerations of task demands were analysed using a content analysis 

approach, as further described in Article 3. The content analysis consisted of a deductive and 

an inductive phase. The deductive coding adopted a competency perspective to examine the 

extent to which references to the six MEG competencies could be observed in the teachers’ 

considerations. As it was expected that the considerations involved aspects not related to the 

six competencies, inductive coding was conducted to explore the further explanations 

provided by the teachers. 

3.3.4 Secondary analysis of PISA and exam data 
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The term secondary analysis refers to the analysis of already existing data conducted by 

researchers that have not been involved in the data collection process, where the purpose of 

the analysis was probably not envisaged by those responsible for the data collection (Bryman, 

2016). This is the case for the psychometric modelling described in Article 2 which involved 

student responses to PISA and exam tasks gathered through the PISA 2012 survey and the 

Norwegian Ministry of Education and Research, respectively. Bryman (2016) lists several 

advantages of secondary analysis. One advantage that is crucial to my research is the 

possibility of using numerous data sets that would not be possible to collect yourself. An 

example of this is the 1300–1400 student responses to each of the 140 tasks involved in 

Article 2. The validation of the teachers’ ratings based on the explanatory item response 

modelling approach required such a large number of responses to provide measures that were 

sufficiently accurate to identify and disentangle the demands of the six competencies. 

An important limitation with secondary analysis is that because the data has been 

collected for other purposes than yours, some theoretically important variables and aspects 

might be missing (Bryman, 2016). Even though the two assessments were not developed 

explicitly to measure the six competencies involved in the MEG framework, the constructs of 

mathematical competence involved in both the PISA assessment and the Norwegian exam are 

heavily influenced by the notion of mathematical competence presented in the KOM 

framework on which the development of the MEG scheme is based (Niss, 2015; Turner et al., 

2015; Valenta et al., 2015). Accordingly, the linking of students’ scored responses with the 

rated demands of these tasks was assumed to be appropriate at a theoretical level, although the 

missing Aids and tools competency resulted in some misalignment with the Norwegian 

curriculum (see Chapter 2.2.2). 

Explanatory item response modelling was used to provide empirical evidence about 

the extent to which the teachers’ ratings of competency demands actually reflected the 

demands students encounter when solving the tasks. Explanatory item response models offer 

the opportunity to examine the effects of specific item features, that is, whether properties of 

items, such as competency demands, can explain the responses generated by them (Koeppen 

et al., 2008; Wilson et al., 2008). This made it possible to link the rated demands for the 

individual competencies to student responses (for a more exhaustive description of this 

approach, see Article 2). Being able to model and explain item responses, usually represented 

by item difficulty (proportion of correct/incorrect responses), based on the identified features 

of test items is important to understand what is measured in tests (De Boeck, Cho, & Wilson, 
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2016; Graf, Peterson, Steffen, & Lawless, 2005) and has been used as empirical evidence 

validity for many tests (see e.g. Enright, Morley, & Sheehan, 2002; Freedle & Kostin, 1993; 

Gorin & Embretson, 2006). In my thesis, this approach was also used to further evaluate the 

extent to which the teachers involved in Study 1 were able to recognise the demands for the 

different competencies in the assessment tasks. A covariation between the rated demand for a 

certain competency and item difficulty shows a relationship between higher ratings and more 

demanding tasks, which indicates that the ratings reflect an actual demand experienced by the 

students when engaging the task. Conversely, if no covariation is found, this shows that 

higher rated demands do not necessarily reflect a higher experienced demand. This missing 

covariation could be due to teachers’ lack of ability to recognise competency demands but 

could also result from other factors. For instance, the variation in the assessment tasks in 

terms of demands for different competencies could be too low to obtain statistically 

significant relationships between rated demands and item difficulty. Another possible source 

is the fact that the MEG item analysis scheme and its operational definitions involve strong 

overlaps between competencies or do not adequately represent the demands students actually 

experience. Article 2 further discusses the different plausible explanations of the results from 

the explanatory item response modelling. 

3.4 Research validity 
The term validity refers to the rigor of research, and several concepts of validity can be found 

in literatures related to both quantitative and qualitative research (Creswell & Plano Clark, 

2011; Kleven, 2008; Newton & Shaw, 2014). Shadish, Cook, and Campbell (2002) define 

validity as the approximate truth of an inference, whereas Creswell and Plano Clark (2011) 

describe validity as the accuracy and trustworthiness of the interpretations and conclusions 

drawn by the researcher A key idea is that validity is not a property of the data, design, or 

methods involved in the research but of whether the inferences and conclusions drawn by the 

researcher based on the results of these data, design, and methods are trustworthy (Creswell & 

Plano Clark, 2011; Shadish et al., 2002). The following discussion draws on the validity 

system presented by Shadish et al. (2002) involving four types of validity: construct validity, 

statistical conclusion validity, internal validity, and external validity. In this validity system, 

evidence to support inferences is based on both empirical evidence and other sources of 

knowledge, such as findings and theories obtained from previous research (Shadish et al., 
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2002). As such, the system can be seen to be rooted in postpositivism and is relevant to both 

qualitative and quantitative research (Kleven, 2008). 

3.4.1 Construct validity 

Construct validity refers to the correspondence between a theoretical construct and the 

operationalisations and measures of this constructs (Shadish et al., 2002). In my research, the 

main construct of interest is overall mathematical competence and individual competencies, 

and the following discussion mainly concerns the ratings of competency demands as valid 

operationalisations of the mathematical competencies needed to be able to solve mathematical 

tasks. The analysis and rating (i.e. measurement) of the competency demands of mathematical 

tasks was based on an item analysis scheme. Two key issues concern the soundness of these 

competency ratings and the extent to which the conclusions I draw based on these are valid: 

the appropriateness of the MEG item analysis scheme and the process of rating competency 

demands of tasks.  

The MEG scheme has previously been shown as an efficient instrument to rate the 

competency demands of mathematical problems, where these ratings were found to relate to 

the difficulty of the problems (Turner et al., 2013). This supports the MEG scheme as an 

appropriate operationalisation of competency demands in mathematical tasks. Still, a main 

issue with operationalising and measuring a set of individual mathematical competencies is 

that these competencies are often overlapping by definition (Niss et al., 2016). With regard to 

the rating process, this could mean that raters fail to distinguish between demands for 

different competencies and that tasks perceived to have high demand receive high, inflated 

ratings across competencies that do not reflect the actual competency demands. This 

phenomenon, wherein a global evaluation is found to potentially influence the evaluation of 

several individual attributes, is recognised in literature as the so-called halo effect and is 

considered a threat to the validity of ratings (Feeley, 2002; Nisbett & Wilson, 1977). Another 

issue related to this is the clarity of the definitions in the MEG scheme, as unclear and fuzzy 

categories are recognised as another source of halo errors (Feeley, 2002). According to Turner 

et al. (2015), in the development of the MEG scheme, there was a focus on maximising the 

distinction between the competencies, clarifying definitions and descriptions and reducing the 

use of relative terms with subjective meaning. To further strengthen the validity of the ratings 

as adequate measures of competency demands, the teachers that analysed the assessment tasks 

in Study 1 participated in a training session to enhance their understanding of the six 
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competencies and provided experience with applying the scheme. The use of rater training is 

found to potentially reduce rater bias (Feeley, 2002). Nonetheless, the analysis of competency 

demands can be seen to involve interpretive elements (see Chapter 3.3.2) and the scheme 

includes subjective words with relative meanings (e.g. ‘simple’ and ‘complex’). Thus a 

different group of raters may have ended up with slightly different sets of ratings. 

Furthermore, different approaches were implemented to increase the quality of the ratings and 

to provide evidence to support their appropriateness as measures of competency demands. In 

both studies, multiple raters were used to ensure the reliability of the ratings. For Study 1, the 

high consistency reported in Article 1 indicated that agreement among the teachers 

strengthens the validity of the ratings. Similarly, check-coding (Lewis, 2009) was performed 

as a validation approach in Study 2, where two researchers first individually rated the 

demands of all tasks before comparing ratings and discussing differences to reach mutual 

agreement about competency ratings. 

Several authors (e.g. Embretson & Gorin, 2001; Messick, 1995) argue that being able 

to understand and identify the processes that underlie item responses is a key aspect of 

construct validity, where the modelling of task responses and item difficulty is regarded as a 

possible source of empirical evidence. The explanatory item response modelling approach 

presented in Article 2 links the teachers’ rated competency demands with student responses 

and thus functions as a source of empirical evidence for construct validity. The results of this 

approach showed that considerable variation in task difficulty could be explained by the rated 

competency demands, thus strengthening the validity of the ratings as adequate measures of 

task demands. Furthermore, the results revealed considerable differences between the 

different competencies in terms of their relation to task difficulty, thus confirming the 

adequateness of some measures of competencies and invalidating others. The empirical 

evidence from the explanatory item response modelling shape the discussion of the results 

and findings presented in Chapter 4. 

Another question regarding the use of the scheme is whether different task 

competency demands would have been identified through the use of another theoretical 

framework. The answer to this is yes, as different constructs of mathematical competence 

coexist. According to Niss et al. (2016), the discussion of interest is not whether a construct of 

mathematical competence is right or wrong or whether it is correct or incorrect but whether it 

contains relevant features and whether it serves its intended purpose. Nonetheless, although 

different competency frameworks involve different strands and competencies, they are similar 
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in that they intend to capture what it means to master mathematics at large including a variety 

of knowledge and processes (Kilpatrick, 2014a; Niss & Jablonka, 2014). This means that 

results related to certain individual competencies might depend on the use of the MEG 

scheme but that the main findings related to the presence of a general mathematical 

competence focus in Norwegian secondary mathematics classrooms should not. Furthermore, 

the MEG scheme and its six competencies are seen as highly relevant for the Norwegian 

context of this thesis (see Chapter 2.2.2). However, the omission of an Aids and tools 

competency is a source of construct underrepresentation. Construct underrepresentation refers 

to the possibility that the indicators fail to cover the entire construct is seen as a threat to 

construct validity (Messick, 1995). Thus, for the analysis of task demands, the inclusion of an 

aids and tools competency would have further strengthened the validity and relevance of my 

findings. This lack of an aids and tools competency in the ratings of competency demands of 

tasks is considered in the inferences and conclusions drawn in Chapter 4 to strengthen their 

validity. In the analysis of teacher considerations of task demands in Study 2, an inductive 

content analysis was conducted to identify aspects that were not captured by the six MEG 

competencies, such as an aids and tools competency. This inductive analysis phase was 

conducted to counter the validity threat of construct underrepresentation. 

3.4.2 Statistical conclusion validity 

Statistical conclusion validity deals with statistical inferences and the covariation between 

variables (Shadish et al., 2002). Kleven (2008) argues that this is not solely about statistical 

methods such as significance tests and estimates of effect size but also, more generally, about 

whether a tendency is substantial enough to be worthy of interpretation. Several covariations 

between variables related to the ratings of competency demands are involved in the different 

articles, such as consistency estimates (Article 1), correlations in ratings between 

competencies (Article 2), and regression coefficients (Article 3). The consistency estimates 

and correlations relate to the reliability of the ratings and the overlap between the 

competencies, whereas the regression coefficients relate to the linking of rated demands and 

task responses through the explanatory item response modelling approach. Consequently, 

these covariations are important with regard to the validity of the inferences and conclusions 

that are drawn in this thesis. The significance and meaning of the covariations are discussed in 

the different articles. 
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3.4.3 Internal validity 

While Shadish et al. (2002) refer to internal validity as inferences about causal relationships 

based on observed covariations between variables, Kleven (2008) applies a broader 

perspective arguing that internal validity ‘is important whenever we infer that something has 

an influence on something’ (p. 228). My research is not designed or intended to investigate 

causal relationships, and the results and findings do not search for or draw such causal 

inferences. Nonetheless, in the discussions of the results, some relationships are implied. For 

instance, one inferred implication is that the use of the MEG item analysis scheme could 

support teachers in their ability to recognise competency demands. This inference is built on 

rational arguments rather than statistical control, partly based on the results of the two studies 

involved in this research project and partly based on findings from previous studies. It is not 

my intention to confirm this or other possible causal relationships. 

3.4.4 External validity 

External validity addresses the issue of generalization and transferability, namely, whether the 

inferences drawn from the context of the study are also valid for other contexts outside the 

study (Shadish et al., 2002). While statistical generalizations require probability samples of 

the population of interest, which is seldom obtained in educational research, the external 

validity of research often relates to non-statistical judgement-based generalizations based on 

rational arguments (Kleven, 2008). 

The intention of this research project was not to make claims about the mathematical-

task knowledge of Norwegian mathematics teachers in general but rather to examine teachers’ 

knowledge about task competency demands at a smaller scale and to discuss the relevance 

and transferability of these to a broader population of Norwegian mathematics teachers. 

Relatively few teachers have participated in the two studies and in terms of mathematical-task 

knowledge, it is probable that they not reflect typical teachers. The teachers in the second 

study were a few of the very many who had been approached for participation. One reason for 

their participation could be that they are more confident in their knowledge about 

mathematical tasks and their teaching practices. In addition, a high proportion of the 

submitted tasks were developed by the teachers themselves, which could further indicate that 

the teachers were confident about their mathematical-task knowledge. Teachers with such 

confidence might not represent typical teachers. Thus, when discussing the results and 
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findings, I am cautious not to generalise to the whole population of teachers, for instance, by 

referring to the (participating) teachers rather than teachers in general.  

The other aspect of the main objective relates to mathematical tasks used in 

Norwegian secondary education. The mathematical tasks (n = 219) involved in the two 

studies are different types of tasks, such as assessment tasks and instructional tasks, that have 

been used in Norwegian secondary mathematics. As teaching practices are assumed to be 

adapted to fit with what is measured in high stakes national assessments (Boesen et al., 2014; 

de Lange, 2007), such as the Norwegian grade 10 exam, the exam tasks are likely to represent 

tasks typically used in Norwegian classrooms. As discussed in Chapter 3.3.1, the tasks 

involved in the second study are likely to be tasks the participating teachers consider as 

‘worthy’ tasks used to challenge high-achieving students, but where around half of the tasks 

have been used in whole-class settings. Thus, rather than providing an extensive mapping of 

tasks in use in mathematics education in Norwegian secondary schools, the two studies 

investigate the competency demands of a somewhat broad but limited selection of tasks used 

in Norwegian secondary education. Nonetheless, I argue that this provides important 

knowledge that adds to the existing body of knowledge on mathematics teaching and learning 

as well as classroom practices.  

3.5 Ethical considerations 
The ethical issues in my research project mainly concern the anonymity and privacy of the 

participating teachers, and ensuring the same was a main focus in data collection and data 

handling. All participating teachers were approached through email. In line with the 

guidelines from Norwegian Social Science Data Services (NSD) and Norwegian National 

Research Ethics Committees (NESH, 2016), the participants were informed of the purpose of 

the study they were involved in, that their involvement was voluntary and that they could 

withdraw from the study any time. They were also informed about the anonymity and 

confidentiality of the data collected and submitted free and informed consent before 

participation (Appendix 3). No personal data, i.e. data that could directly or indirectly be 

related to a person (NESH, 2016), was gathered from the participants. The teachers were 

prompted to not provide their name or any other identifiable information in the submitted 

material, and written consent including participants’ names were separated from the data 

material. Furthermore, to ensure anonymity, both the teachers’ analysis of tasks (Articles 1 
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and 2) and the teachers’ submitted tasks and questionnaires (Article 3) were submitted in a 

paper-based format to prevent data from being linked back to individual teachers (for instance 

through email and IP addresses). 

My research also used existing data from the PISA survey and the Norwegian 2014 

Grade 10 examination. The (re)use of data (e.g. PISA and exam data) for secondary analysis 

can be considered a gentle approach with regard to students’ anonymity, as this is ensured in 

the original data collection and handling process. Students’ scored responses to the 

Norwegian exam were provided by the Norwegian Directorate for Education and Training. 

The students, schools, and ‘oppmenn’ (i.e. trained teachers scoring the responses) involved in 

the data set were anonymised by the directorate before the data were provided to me. The use 

of the data relied on several conditions, for instance that my research project must be found 

worthy of using these data, that the data is only used for the research described in the 

application, and that a declaration of confidentiality had to be signed. The Norwegian 

Directorate for Education and Training also granted access to the set of tasks involved in the 

Norwegian 2014 Grade 10 examination. The students’ scored responses to the PISA tasks 

were obtained through the Norwegian PISA group (but are also available through the official 

PISA webpage). These data were collected after obtaining participants’ free and informed 

consent (in Norway, participation in large international studies, such as PISA and TIMSS, 

was made mandatory from 2014). The Norwegian PISA group also granted permission to use 

tasks from the PISA survey with certain reservations about the confidentiality of non-

published tasks. Confidentiality schemes were submitted by both me and the teachers 

involved in Study 1, where it was requested that the no one else would be informed of the 

tasks and that no copies of the tasks could be made. The PISA tasks shown in Articles 1 and 2 

are all released tasks that are publicly available on the official PISA website. 

  



 
 

40 
 

  



 
 

41 
 

4 Towards competency-oriented 
mathematics education 
Notions of mathematical competence that have influenced mathematics curricula around the 

world have introduced an enriched view of what it means to master mathematics that involves 

a range of mathematical competencies, thus extending the traditional focus on factual 

knowledge and procedural skills. The main objective of this thesis is to investigate the 

competency demands of mathematical tasks used in Norwegian secondary mathematics 

classrooms and teachers’ recognition and considerations of these demands, both of which are 

important components of competency-oriented mathematics education. Two studies, resulting 

in three separate articles, have been conducted to investigate different aspects of this main 

objective. In this final chapter, I summarise the three articles with a focus on their results and 

findings before discussing the findings in light of the main objective and the broader 

educational context. Following this discussion, I discuss the contributions, implications, and 

limitations of my research and provide some concluding remarks. Finally, I suggest some 

future directions for realizing competency-oriented mathematics education. 

4.1 Summary of articles 

4.1.1 Identifying competency demands in mathematical tasks: 
Recognising what matters (Article 1) 

Pettersen, A., & Nortvedt, G. A. (2018). Identifying competency demands in mathematical 

tasks: Recognising what matters. International Journal of Science and Mathematics 

Education, 16(5), pp. 949–965. doi:10.1007/s10763-017-9807-5 

The aim of Article 1 was to investigate teachers’ ability to recognise the demands for 

six mathematical competencies involved in assessment tasks through the use of the MEG item 

analysis scheme. The research question regarded the degree to which the teachers consistently 

analysed the competency demands of tasks. In this study, five mathematics teachers and 

prospective teachers (hereafter referred to simply as teachers) attended a training session 

intended to enhance their understanding of these competencies and how to apply the item 

analysis scheme to rate the competency demands of tasks. Following the training session, the 

teachers applied the scheme to individually rate a set of assessment tasks from the PISA 2012 
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survey (n = 56) and a Norwegian grade 10 national exam (n = 85). Both assessments have 

been developed to measure students’ mathematical competence,  and the tasks were seen to 

represent different types of tasks in which Norwegian mathematics teachers should be 

familiar (see Chapter 3.3.1). 

The teachers’ ratings of the competency demands of the assessment tasks were 

analysed using different statistical approaches. In response to the research question, 

estimations of rater reliability and agreement revealed fairly high consistency among the 

teachers’ in their ratings for all six competencies across the two assessments, ranging from 

agreement measures of .88 for Devising strategies to .80 for Mathematising. Further 

inspection of the estimates revealed a somewhat lower consistency for more complex tasks, 

namely, tasks that demanded the activation of multiple competencies, especially for the 

Mathematising competency. Descriptive statistics of the distribution of the teachers’ ratings 

showed that a vast majority of the ratings were at the lower levels of cognitive demand, 

indicating that the teachers rarely judged a task to demand a high level of competency. This 

latter result was somewhat surprising considering the fact that students’ success rates in 

solving the tasks show that highly challenging tasks are included in both assessments. Based 

on these results, we argued that the teachers were rather successful in identifying the 

involvement of the six competencies in tasks but that demands at higher levels and in more 

complex tasks were more challenging to recognise. 

The small number of teachers and prospective teachers participating in this study 

means that no general claims should be made about teachers. However, the rather large 

number of tasks and the high consistency in the teachers’ ratings provided a foundation for 

further statistical analysis and validation of the teacher-rated competency demands of the 

assessment tasks through the use of an explanatory item response modelling approach. This 

approach is described in Article 2. 

4.1.2 Mathematical competency demands of assessment items: A 
search for empirical evidence (Article 2) 

Pettersen, A., & Braeken, J. (2017). Mathematical competency demands of assessment items: 

A search for empirical evidence. International Journal of Science and Mathematics 

Education. doi:10.1007/s10763-017-9870-y 

The main aim of Article 2 was to further scrutinise the teachers’ ratings of the 

competency demands of the assessment tasks involved in Article 1 through what can be 
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considered an empirical validation of the ratings. The following research question was 

addressed: To what extent do differences in teacher-rated demands of the six MEG 

competencies in mathematics assessment items align with the differences in the empirical 

item difficulty? 

The scored responses of around 1400 and 4700 students for the exam and PISA tasks, 

respectively, were linked to the teachers’ ratings of task demands through an explanatory item 

response modelling approach. The average ratings on each of the six competencies given by 

the five teachers were used as tasks demands. This use of averaged ratings was supported by 

the high interrater consistency found in Article 1. 

Addressing the research question, the results showed that when including the demand 

for all six competencies in the explanatory model, slightly more than and less than half of the 

variance in task difficulty could be explained for the PISA and exam data, respectively. This 

level of explanatory power for modelling item difficulty has previously been considered 

strong (e.g. Embretson & Daniel, 2008) and thus provides some empirical evidence 

supporting the validity of the teachers’ ratings of competency demands. When examining 

individual competencies’ relation to task difficulty, considerable differences were observed. 

Across the two assessments, the rated demands for Symbols and formalism and Reasoning 

and argument had a significant and strong association with task difficulty, whereas no such 

relationship was observed for Mathematising and Communication. For Devising strategies 

and Representation, a statistically significant relationship was found between the rated 

demands and task difficulty for the PISA data but not for the exam data. These findings 

suggest that the teachers were more successful in recognising and rating the demands for 

some competencies. 

Some plausible explanations were provided for the unexplained variance in task 

difficulty. For instance, a substantial correlation in ratings was found between Mathematising 

and Devising strategies and between Mathematising and Reasoning and argument. This could 

indicate difficulties with separating the demands for the different competencies and could 

explain the low explanatory power of the rated demand for some competencies (e.g. 

Mathematising). According to Niss et al. (2016), the overlapping and intertwined nature of 

mathematical competencies is one of the challenges with measuring them. In literature, 

training and experience as well as clearly defined and concrete categories have been 

recommended for increasing raters’ ability to discriminate between categories (Feeley, 2002). 

Thus, we argued that further clarifying definitions and descriptions in the MEG scheme as 
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well as more rater training could have better supported the teachers in separating the demands 

for the different competencies and increased the accuracy of their ratings. Another 

explanation relates to features or aspects that are not captured by the rated demands for the 

MEG competencies, such as the lack of the Aids and tools competency in the analysis scheme 

(further discussed in Chapter 2.2.2). 

Another aspect of the psychometric modelling of the cognitive complexity of 

assessment items is providing empirical evidence to ensure and support claims about the 

validity of tests and assessments (Embretson & Gorin, 2001; Lane, 2004; Messick, 1995). 

This aspect is highly relevant to the assessments of students’ mathematical competence, 

which is an important aspect of the implementation of competency-oriented mathematics 

curricula (see Chapter 2.3). The results revealed that only two of the competencies are related 

to task difficulty for the national exam, compared to four for the PISA assessment. The weak 

link between the six competencies and the exam tasks was not unexpected, as many exam 

tasks can be regarded as non-contextualised tasks that mainly assess procedural skills. Based 

on these results, we questioned the extent to which the Norwegian grade 10 national exam 

captures the various cognitive skills and abilities that are represented in mathematical 

competence. 

4.1.3 Teachers’ considerations of mathematical tasks used to 
challenge high-achieving students (Article 3) 

Pettersen, A., & Nortvedt, A. G. (under review). Teachers’ considerations of mathematical 

tasks used to challenge high-achieving students. Scandinavian Journal of Educational 

Research 

Article 3 aimed to investigate teachers’ considerations of tasks that they had selected 

and used previously in their mathematics teaching to challenge high-achieving students. This 

focus was partly shaped by the results of the first study in which the teachers seemingly 

struggled with recognising competency demands in complex and high-demanding tasks 

(Article 1). Two research questions were raised: (1) What characterises teachers’ 

considerations of task demands? (2) How do these considerations align with the competency 

demands of the tasks according to a competency framework? The data for this study involved 

seven secondary school teachers (grades 9–11) who submitted 78 mathematical tasks along 

with their considerations of task demands and information about the source and usage of the 

tasks. Compared to Study 1, this study followed a more exploratory approach as the teachers 
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were not guided by a certain competency framework in their reflections on task demands and 

as the mathematical tasks were self-selected by the teachers. Surprisingly, about half of the 

teacher-submitted tasks were developed by the teachers themselves. Deductive and inductive 

content analysis was conducted to analyse teachers responses to the following open-ended 

question: “What do you think makes this a demanding task for high-achieving students?” 

Furthermore, the submitted tasks were analysed using the MEG scheme. 

For the first research question, the results showed that in their considerations, the 

teachers mainly emphasised two competencies: Symbols and formalism and Devising 

strategies. These accounted for nearly 60% of teachers’ explanations in the deductive coding 

process. Other competencies were far less emphasised by the teachers. In particular, few 

references were made to the Mathematising competency; it appeared in only three 

considerations. For the second research question, strong similarities were found when 

comparing teachers’ considerations with the rated competency demands of the submitted 

tasks. However, when comparing individual teachers, some differences were observed both in 

considerations of tasks and in the competency demands of the submitted tasks. Some teachers 

provided considerations that were more aligned with the rated competency demands of the 

tasks, and some submitted tasks that involved a wider range of competencies at higher levels 

of competency demands. We argued that this indicated that there were disparities in teachers’ 

reflections and awareness of the mathematical competencies involved in mathematical tasks 

and that this could influence their ability to select appropriate tasks that engage students in a 

variety of competencies. 

Based on these findings, we argued that the teachers provided insightful considerations 

of the tasks they submitted. However, from a competency perspective, the prominent role of 

some competencies illustrated a somewhat unbalanced focus when selecting and analysing 

tasks and task demands. The findings also suggested large differences between the teachers 

both with regard to the challenges they provide for their students as well as their knowledge 

and considerations of task demands. We argue that these aspects would influence teaching 

practices and the opportunities provided to students to engage in and develop a variety of 

mathematical competencies. 
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4.2 Main contributions 
In line with its main objective, the main contribution of this thesis is to add to the empirical 

understanding of mathematical competencies in Norwegian secondary mathematics. The 

analysis of the demands for six mathematical competencies in assessment tasks (Study 1) and 

teacher-submitted tasks (Study 2) based on the MEG scheme provided insights into the range 

of competencies and levels of cognitive demands involved in Norwegian mathematics 

classrooms. Furthermore, insights into two aspects of teachers’ mathematical-task knowledge 

were obtained by examining teachers’ ability to recognise the competency demands of tasks 

through the use of the MEG scheme (Study 1) and teachers’ considerations of task demands 

(Study 2). In addition, the thesis includes theoretical contributions regarding the nature of 

mathematical competencies and the use of the MEG scheme as well as a main methodological 

contribution with regard to the explanatory item response modelling approach. These 

contributions are discussed further below. 

4.2.1 Empirical contributions 

The main empirical contribution of this research is increased knowledge about the 

competency demands of mathematical tasks used in Norwegian mathematics education and 

teachers’ knowledge of these task demands. Although notions of mathematical competence 

comprising a range of individual competencies have gained a foothold in the Norwegian 

mathematics curriculum (Valenta et al., 2015) and curricula worldwide (Niss et al., 2016), the 

findings of this thesis suggest that not all individual competencies have a similarly strong 

standing in teaching practices in Norwegian classrooms. 

The prominent role of the Symbols and formalism competency was apparent 

throughout this thesis. The demands of the tasks in the two studies are dominated by the 

Symbols and formalism competency, and the teachers seem well aware of the demand for this 

competency in their task analysis and their consideration of task demands. The Symbols and 

formalism competency focuses on the application of mathematical procedures, rules, and 

conventions (Niss & Højgaard, 2011) and thus resembles what traditionally has been referred 

to as procedural knowledge (Haapasalo & Kadijevich, 2000; Hiebert, 1986). The central role 

of procedural knowledge in mathematics education has been confirmed in many studies. For 

instance, in her thesis, Pedersen (2014) found a strong emphasis on the application of 

procedures and methods in the Norwegian curriculum for upper secondary school. Other 
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studies have found a strong emphasis on procedural skills when investigating mathematical 

tasks and classroom activities (Boesen et al., 2014; Boesen et al., 2018; Dole & Shield, 2008; 

Hiebert et al., 2003; Kolovou, van den Heuvel-Panhuizen, & Bakker, 2011). 

Over the last couple of decades, there has been a concern about Norwegian students’ 

apparent lack of algebraic and procedural skills (Nilsen, Angell, & Grønmo, 2013; Pedersen, 

2014). Accordingly, and considering the strong position of procedural knowledge in 

mathematics and mathematics education, it is not surprising that the Symbols and formalism 

competency appears to play such a dominant role in Norwegian secondary mathematics. 

Nonetheless, selecting and implementing tasks that involve the Symbols and formalism 

competency does not ensure that students master this competency sufficiently. For instance, a 

task in which student engagement is reduced solely to mindless copying and rehearsing of 

procedures is not likely to provide any development of the Symbol and formalism 

competency. Rather, successful mathematics teaching is associated with engaging students in 

tasks that promote a deep understanding and involve higher cognitive demands, for instance, 

tasks in which the use of procedures is connected to concepts or understanding (Stein et al., 

1996). Identifying and using such tasks is a part of the nature of mathematical task-knowledge 

for teaching (Chapman, 2013). 

A second finding concerns the demand for the Mathematising competency. The 

findings in the two studies suggest that teachers might not be aware of and recognise the role 

of the Mathematising competency in mathematical tasks and that the tasks which Norwegian 

students encounter do not elicit its use. The Mathematising competency deals with the 

translation of the extra-mathematical context into mathematical structures (and vice versa) 

and with interpreting and modifying mathematical models (Niss & Højgaard, 2011). This is 

considered one of the competencies or processes involved in mathematical modelling, that is 

the solving of real-world problems using mathematics (Blum, 2015; Blum & Ferri, 2009). 

Mathematical modelling has received increased attention in mathematics education and 

curricula over the last few decades (Blum, 1993; Lesh & Zawojewski, 2007; Lingefjärd, 

2006), in line with the increased attention to process-oriented aspects of mathematics (see 

Chapter 2.1.1). Blum (2015) argues that the teaching of mathematical modelling needs to 

engage students actively and cognitively (and meta-cognitively), with a focus on modelling as 

a whole and on the sub-competencies of modelling (such as mathematising). 

In this thesis, one apparent issue is the strong overlap between the teachers’ ratings of 

the demand for the Mathematising competency with the demand for the Devising strategies 
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competency. Turner et al. (2013) found a similar overlap in their analysis. The Devising 

strategy competency refers to the ability to select, construct, and activate a solution strategy. 

Thus, while the Mathematising competency involves the ability to translate a real-world 

problem into mathematics, the Devising strategies competency involves the next stage in a 

problem solution process where a strategy for handling this mathematics must be worked out. 

The results in the second study showed that the participating teachers were aware of and 

concerned with the demand for the Devising strategies competency in mathematical tasks. 

However, the demand for the Mathematising competency was either not recognised or not 

emphasised by the teachers when explaining the challenging aspects of a task. The high 

involvement of the Devising strategies competency could have resulted from the request for 

tasks that had been used to challenge high-achieving students as the teachers might consider 

that it is especially beneficial for these students to engage in tasks where they are required to 

select or devise problem solving strategies. Nonetheless, a majority of the tasks had been used 

in whole-class settings, indicating that teachers feel that students across achievement levels 

should engage in this competency. 

Another empirical contribution relates to the Norwegian Grade 10 exam and the PISA 

survey as valid measures of mathematical competence. For both assessments, the substantial 

proportion of the variance in item difficulty that could be explained by the rated competency 

demands showed the relevance of the competencies in describing the task. However, for the 

Norwegian exam, the demands for only two of the competencies were identified and related 

to task difficulty. National assessments are considered an important tool for implementing 

curriculum ideas as teachers are assumed to tailor classroom activities and practices so that 

they reflect the demands of assessments (Boesen et al., 2014; de Lange, 2007), which is often 

referred to as the washback effect (Buck, 1988). The strong position of the Symbols and 

formalism competency in the teacher-submitted tasks and the teachers’ considerations of task 

demands might result from such an effect, considering the dominant role of this competency 

in the Norwegian exam. Thus, ensuring that the Norwegian grade 10 exam involves a range of 

mathematical competencies would be an important means for influencing the types of tasks 

and learning opportunities teachers provide for their students. 

4.2.2 Theoretical contributions 

The main theoretical contribution relates to a theoretical understanding of the nature of 

mathematical competence. A substantial correlation in ratings of demand was observed 
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between some competencies, for instance, between Mathematising, Devising strategies, and 

Reasoning and argument (reported in Article 2). This confirms the overlapping and 

intertwined nature of mathematical competencies illustrated in theoretical constructs of 

mathematical competence, such as the KOM framework (Niss et al., 2016). Being aware of 

these overlaps is important both from a research perspective, for example, when investigating 

mathematical competencies empirically, and a teaching perspective, for example, when 

planning mathematics teaching and learning activities to stimulate the development of these 

competencies. Nonetheless, further development of the MEG scheme and other theoretical 

frameworks that further clarifies and identifies features that distinguish these competencies 

would be important for future research and for the implementation of mathematical 

competencies in educational practices. For instance, when presenting and discussing notions 

of mathematical competence in teacher education and professional development programmes, 

it would be important to be aware of these overlaps and the challenges with distinguishing 

these competencies in tasks and other classroom activities. 

Another theoretical contribution concerns the applicability of the MEG item analysis 

scheme. While the scheme was originally used by the PISA Mathematics Expert Group to 

analyse mathematical problems in the PISA survey, the results from Study 1 suggest that the 

scheme can also be used by teachers to analyse tasks and recognise demands for several 

mathematical competencies. Thus, the use of this scheme could support teachers in grasping 

notions of mathematical competencies and in implementing these competencies when 

planning lessons and teaching approaches. 

4.2.3 Methodological contributions 

The mathematical competency perspective adopted in my research, which involves an entire 

system of individual competencies, proved to be fruitful in the analysis of both the demands 

of mathematical tasks and in teachers’ considerations of task demands. Through this 

perspective, considerable differences were observed between the tasks involved in two 

assessments with regard to the number and types of mathematical competencies involved. 

This perspective also made it clear that teachers recognised and emphasised some of these 

competencies but not others when analysing task demands. 

The results presented in this thesis, where the demand for four individual 

mathematical competencies were distinguished and identified, illustrate some of the strengths 

and possibilities of explanatory item response modelling for investigating the competency 
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demands of mathematical tasks.  Although explanatory item response modelling by itself is 

not new, there are relatively few applications of this technique in mathematics education and 

for investigating the demands and features of mathematical tasks. One exception is the study 

conducted by Embretson and Daniel (2008), who applied an explanatory item response model 

(LLTM) to examine the sources of the cognitive complexity of items on a test of quantitative 

ability. Twelve item features were involved in the modelling approach, for instance, the 

number of words in the item stem, whether the required equation was given in words, and the 

number of equations needed to be recalled, and the implications of the results are mainly of 

interest to item development and test design rather than teaching practices. Most of the 12 

item features were found to be significant predictors of item difficulty and, in total, around 

half of the variance in difficulty could be explained. Based on these results, Embretson and 

Daniel (2008) argued that the results supported the validity of the postulated model of 

cognitive complexity for mathematical problem solving. Another exception is Hohensinn and 

Kubinger (2009) who applied explanatory item response modelling to investigate the effect of 

different response formats on item difficulty and found that although the format may 

influence the difficulty of items, it does not seem to change the proficiency measured by the 

item. 

Compared to the two abovementioned studies which involved item features, many of 

which can be regarded as surface characteristics, the current thesis demonstrates the 

possibility of identifying the influence of task competency demands that are more closely 

related to understanding, problem solving, and student learning in mathematics. As there has 

been a call for more empirical evidence to ensure that complex abilities and mental processes 

are properly captured by assessment items (Koeppen et al., 2008; Lane, 2004; Messick, 1995), 

this thesis shows that the explanatory item response modelling approach could potentially be 

one such source of empirical evidence and could provide valuable information for developing 

tasks that involves mathematical competencies. 

4.3 Implications and concluding remarks 
Based on the current investigation of the demands of mathematical tasks and teachers’ 

knowledge about task demands, there seems to be a need for some further steps on the road 

toward competency-oriented mathematics education. While notions of mathematical 

competence implemented in curriculum reforms worldwide stress the importance of 
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developing a variety of competencies, this enriched view on mathematical mastery does not 

seem to be reflected in classroom practices where carrying out procedures has and still does 

play a dominant role (Boesen et al., 2014; Hiebert et al., 2003; Kaur, 2010; Niss et al., 2016; 

Palm et al., 2011). The main objective of this thesis has been to contribute knowledge about 

the demands for competencies in mathematical tasks used in Norwegian secondary 

mathematics as well as teachers’ recognition and considerations of these demands. The 

findings in the two studies suggest that the types of tasks used in Norwegian secondary 

mathematics do not seem to stimulate the development of the variety of competencies 

portrayed in notions of mathematical competence. The Norwegian exam tasks and the 

teacher-submitted tasks mainly require the use of few mathematical competencies above a 

very basic level, with the Symbols and formalism competency playing a prominent role. 

In Norway, the mathematics curriculum is currently being revised. An important 

change is the implementation of core elements, or big ideas, intended to guide progression 

and promote students’ development of the understanding of content and relationships within 

the subject (Stortingsmelding (White Paper) nr. 28, 2015–2016). The core elements in the 

subject of mathematics are exploring and problem solving, modelling and applications, 

reasoning and argumentation, representation and communication, abstraction and 

generalisation, and mathematical knowledge domains. These, to a large extent, match the 

competencies involved in my thesis. The implementation of these core elements in the 

Norwegian mathematics curriculum means that mathematics teachers at all educational levels 

need to be aware of these elements and plan and implement classroom activities that stimulate 

their development. The findings in this thesis indicate the necessity of a shift in current 

practices.  

How then could ambiguous and complex mathematical competencies move from 

being merely theoretical phenomena referenced in academic literature to being implemented 

in classroom activities? Niss and Højgaard (2011) argue that a first step toward promoting 

mathematics teaching that is in line with a competency perspective on mathematical mastery 

is to increase the awareness of mathematical competence and competence thinking when 

planning, arranging, and implementing teaching. Hopefully, this thesis could contribute to 

such awareness. Furthermore, Sierpinska (2004) argues that one of the strengths of the 

concept of mathematical tasks is that it forms a common ground for where teachers and 

researchers meet. Thus, tasks and task analysis can be seen as a gateway for supporting 

teachers to grasp competencies and implement them in their teaching practices. This thesis 
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has shown that the use of an analysis scheme could support teachers in recognising 

competency demands in tasks. Similar promising results have been obtained by other studies 

through the use of similar tools for recognising key characteristics of cognitively demanding 

tasks (e.g. Arbaugh & Brown, 2005; Boston, 2013; Boston & Smith, 2011; Stein et al., 1996). 

Thus, providing in-service and preservice teachers with such tools to support and encourage 

reflections on task demands and the types of mathematical thinking and understanding they 

can promote could enhance teachers’ mathematical-task knowledge. In a Norwegian context, 

such a tool should involve the competencies and new core elements included in the 

curriculum, and thus, it could draw on and further extend the MEG scheme by involving other 

competencies such as Aids and tools. Revisions and renewals of tools and frameworks for 

analysing tasks are also important for research purposes as, for instance, analyses of tasks as a 

means for investigating the learning potential provided by tasks or teachers’ mathematical-

task knowledge need to be based on the notion of mathematical competence that is relevant to 

the mathematics education in which the research is situated. 

A possible further step toward a competency-oriented mathematics education relates to 

assessment practices and the grade 10 examination. White Paper no. 28 (Stortingsmelding 

(White Paper) nr. 28, 2015–2016) describes the need for an inspection of exam tasks and the 

possible need to start with pilot testing of exams. Both the findings in this thesis and the 

concerns of a range of authors regarding the validity of tests (e.g. Koeppen et al., 2008; Lane, 

2004; Niss, 2007) strongly support such a practice, as it is regarded as highly challenging to 

develop tests and assessments that are able to capture the types of high-level thinking skills 

and complex abilities involved in the core elements that are to be implemented in the 

Norwegian curriculum. In such a development process, both the type of task analysis and the 

psychometric modelling approach involved in my thesis would serve as useful tools for test 

developers to provide additional information about the extent to which the competencies or 

other cognitive activities of interest are captured adequately by the assessments. In addition, 

as what is measured in national assessments is seen to shape teachers’ classroom practices 

(Boesen et al., 2014; de Lange, 2007), ensuring that the assessment tasks involve a full 

spectrum of competencies could also affect the mathematical tasks teachers use in their 

practices and the competencies they emphasise when considering task demands. 

As pointed out by Stein et al. (1996), tasks may change as they move through different 

phases. For instance, the demands and features of a task as it appears in instructional material 

might change when the task is implemented in the classroom. This thesis has been concerned 
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with tasks as they are presented in instructional and educational material and, from this 

perspective, contributed knowledge about some aspects of the competency demands of tasks 

used in Norwegian mathematics education and teachers’ knowledge of these task demands. 

Nonetheless, more research is needed on teachers’ implementation and students’ engagement 

in tasks to further clarify the extent to which the use of tasks in mathematics classrooms 

provides opportunities for developing a range of competencies and to determine whether 

teachers’ practices successfully maintain or enhance the competency demands and optimise 

the learning potential of tasks. Such knowledge is vital to ensure that competency-oriented 

mathematics education not only exists in curriculum documents but also pervades 

mathematics teaching and learning activities in schools. 



 
 

54 
 

References 
Ainley, J., Bills, L., & Wilson, K. (2005). Designing spreadsheet-based tasks for purposeful 

algebra. International Journal of Computers for Mathematical Learning, 10(3), 191–
215.  

Anthony, G., & Walshaw, M. (2007). Effective pedagogy in mathematics/Pangarau: Best 
evidence synthesis. Wellington: New Zealand Ministry of Education. 

Anthony, G., & Walshaw, M. (2009). Characteristics of effective teaching of mathematics: A 
view from the West. Journal of Mathematics Education, 2(2), 147–164.  

Apple, M. W. (1992). Do the standards go far enough? Power, policy, and practice in 
mathematics education. Journal for Research in Mathematics Education, 23(5), 412–
431.  

Arbaugh, F., & Brown, C. A. (2005). Analyzing mathematical tasks: A catalyst for change? 
Journal of Mathematics Teacher Education, 8(6), 499–536.  

Baker, D., Knipe, H., Collins, J., Leon, J., Cummings, E., Blair, C., & Gamson, D. (2010). 
One hundred years of elementary school mathematics in the United States: A content 
analysis and cognitive assessment of textbooks from 1900 to 2000. Journal for 
Research in Mathematics Education, 41(4), 383–423.  

Ball, D. (2000). Foreword. In M. K. Stein, M. S. Smith, M. Henningsen, & E. A. Silver 
(Eds.), Implementing standards-based mathematics instruction: A casebook for 
professional development (pp. ix–xiv). New York: Teachers College Press. 

Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: What makes it 
special? Journal of Teacher Education, 59(5), 389–407.  

Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional 
competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. 
Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional 
competence of teachers (pp. 25–48). New York, NY: Springer. 

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., . . . Tsai, Y.-M. (2010). 
Teachers’ mathematical knowledge, cognitive activation in the classroom, and student 
progress. American Educational Research Journal, 47(1), 133–180.  

Bergem, O. K. (2016). “Usually we are not where the teacher is”. In K. Klette, O. K. Bergem, 
& A. Roe (Eds.), Teaching and learning in lower secondary schools in the era of PISA 
and TIMSS (pp. 47–61). Cham: Springer International Publishing. 

Blum, W. (1993). Mathematical modelling in mathematics education and instruction. In T. 
Breiteig, I. Huntley, & G. Kaiser-Messmer (Eds.), Teaching and learning mathematics 
in context (pp. 3–14). New York, USA: Ellis Horwood. 

Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can 
we do? In S. J. Cho (Ed.), The Proceedings of the 12th International Congress on 
Mathematical Education–Intellectual and attitudinal challenges (pp. 73–96): 
Springer. 

Blum, W., Artigue, M., Mariotti, M. A., Sträßer, R., & Van den Heuvel-Panhuizen, M. 
(2017). European didactic traditions in mathematics: Aspects and examples from four 
selected cases. In G. Kaiser (Ed.), Proceedings of the 13th International Congress on 
Mathematical Education (pp. 291–303): Springer. 

Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt? 
Journal of Mathematical Modelling and Application, 1(1), 45–58.  

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, 
applications, and links to other subjects — State, trends and issues in mathematics 
instruction. Educational Studies in Mathematics, 22(1), 37–68.  



 
 

55 
 

Blömeke, S., Gustafsson, J.-E., & Shavelson, R. J. (2015). Beyond dichotomies: Viewing 
competence as a continuum. Zeitschrift für Psychologie, 223(1), 3–13.  

Boesen, J., Helenius, O., Bergqvist, E., Bergqvist, T., Lithner, J., Palm, T., & Palmberg, B. 
(2014). Developing mathematical competence: From the intended to the enacted 
curriculum. Journal of Mathematical Behavior, 33, 72–87.  

Boesen, J., Lithner, J., & Palm, T. (2018). Assessing mathematical competencies: An analysis 
of Swedish national mathematics tests. Scandinavian Journal of Educational 
Research, 62(1), 109�–124.  

Borasi, R. (1986). On the nature of problems. Educational Studies in Mathematics, 17(2), 
125–141.  

Boston, M. D. (2013). Connecting changes in secondary mathematics teachers’ knowledge to 
their experiences in a professional development workshop. Journal of Mathematics 
Teacher Education, 16(1), 7–31.  

Boston, M. D., & Smith, M. S. (2009). Transforming secondary mathematics teaching: 
Increasing the cognitive demands of instructional tasks used in teachers' classrooms. 
Journal for Research in Mathematics Education, 40(2), 119–156.  

Boston, M. D., & Smith, M. S. (2011). A ‘task-centric approach’ to professional 
development: Enhancing and sustaining mathematics teachers’ ability to implement 
cognitively challenging mathematical tasks. ZDM, 43(6-7), 965–977.  

Brewer, J., & Hunter, A. (2006). Foundations of multimethod research. Thousand Oaks, CA: 
SAGE Publications. 

Brodie, K., Jina, Z., & Modau, S. (2009). Challenges in implementing the new mathematics 
curriculum in Grade 10: A case study. African journal of research in mathematics, 
science and technology education, 13(1), 19–32.  

Bryman, A. (2016). Social research methods (5th ed.). Oxford: Oxford University Press. 
Brändström, A. (2005). Differentiated tasks in mathematics textbooks: An analysis of the 

levels of difficulty. (Doctoral dissertation), Luleå tekniska universitet, Luleå. Retrieved 
from http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18110  

Buck, G. (1988). Testing listening comprehension in Japanese university entrance 
examinations. JALT Journal, 10(1 & 2), 15–42.  

Cai, J., & Howson, G. (2013). Toward an international mathematics curriculum. In M. A. 
Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third 
international handbook of mathematics education (pp. 949–974). New York, NY: 
Springer New York. 

Chapman, O. (2013). Mathematical-task knowledge for teaching. Journal of Mathematics 
Teacher Education, 16(1), 1–6.  

Charalambous, C. Y. (2008). Mathematical knowledge for teaching and the unfolding of tasks 
in mathematics lessons: Integrating two lines of research. Paper presented at the 
Proceedings of the 32nd Conference of the International Group for the Psychology of 
Mathematics Education. 

Charalambous, C. Y., Delaney, S., Hsu, H.-Y., & Mesa, V. (2010). A comparative analysis of 
the addition and subtraction of fractions in textbooks from three countries. 
Mathematical Thinking and Learning, 12(2), 117–151.  

Charalambous, C. Y., & Philippou, G. N. (2010). Teachers’ concerns and efficacy beliefs 
about implementing a mathematics curriculum reform: Integrating two lines of 
inquiry. Educational Studies in Mathematics, 75(1), 1–21.  

Cherryholmes, C. H. (1992). Notes on pragmatism and scientific realism. Educational 
Researcher, 21(6), 13–17.  

http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18110


 
 

56 
 

Clarke, D., Goos, M., & Morony, W. (2007). Problem solving and working mathematically: 
An Australian perspective. The International Journal on Mathematics Education, 
39(5), 475–490.  

Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods 
research (2nd ed. ed.). Los Angeles: Sage. 

D’Ambrosio, U. (1994). Cultural framing of mathematics teaching and learning. In R. 
Biehler, R. W. Scholz, R. Sträßer, & B. Winkelmann (Eds.), Didactics of mathematics 
as a scientific discipline (pp. 443–455). Dordrecht: Kluwer Academic Publishers. 

De Boeck, P., Cho, S. J., & Wilson, M. (2016). Explanatory item response models. In A. A. 
Rupp & J. P. Leighton (Eds.), The handbook of cognition and assessment: 
Frameworks, methodologies, and applications (pp. 249–268). Hoboken, NJ, USA: 
John Wiley & Sons, Inc. 

de Lange, J. (1995). Assessment: No change without problems. In T. A. Romberg (Ed.), 
Reform in school mathematics and authentic assessment (pp. 87–172). Albany, NY: 
State University of New York Press. 

de Lange, J. (2007). Large-scale assessment and mathematics education. In F. K. Lester (Ed.), 
Second handbook of research on mathematics teaching and learning (pp. 1111–1142). 
Charlotte, NC: Information Age. 

Dole, S., & Shield, M. (2008). The capacity of two Australian eighth-grade textbooks for 
promoting proportional reasoning. Research in Mathematics Education, 10(1), 19–35.  

Doyle, W. (1988). Work in mathematics classes: The context of students' thinking during 
instruction. Educational Psychologist, 23(2), 167–180.  

Embretson, S. E., & Daniel, R. C. (2008). Understanding and quantifying cognitive 
complexity level in mathematical problem solving items. Psychology Science, 50(3), 
328–344.  

Embretson, S. E., & Gorin, J. S. (2001). Improving construct validity with cognitive 
psychology principles. Journal of Educational Measurement, 38(4), 343–368.  

Enright, M. K., Morley, M., & Sheehan, K. M. (2002). Items by design: The impact of 
systematic feature variation on item statistical characteristics. Applied Measurement in 
Education, 15(1), 49–74.  

Ernest, P. (1989). The knowledge, beliefs and attitudes of the mathematics teacher: A model. 
Journal of Education for Teaching, 15(1), 13–33.  

Ernest, P. (1991). The philosophy of mathematics education. London: Falmer Press. 
Ernest, P. (1994). The dialogical nature of mathematics. In P. Ernest (Ed.), Mathematics, 

education and philosophy: An international perspective (pp. 33–48). London: The 
Falmer Press. 

Ernest, P. (2010). Reflections on theories of learning. In B. Sriraman & L. D. English (Eds.), 
Theories of mathematics education: Seeking new frontiers. Heidelberg: Springer. 

Feeley, T. H. (2002). Comment on halo effects in rating and evaluation research. Human 
Communication Research, 28(4), 578–586. doi:10.1111/j.1468-2958.2002.tb00825.x 

Flick, U. (2014). Mapping the field. In U. Flick (Ed.), The SAGE handbook of qualitative data 
analysis (pp. 3–18). London: SAGE Publications Ltd. 

Freedle, R., & Kostin, I. (1993). The prediction of TOEFL reading item difficulty: 
Implications for construct validity. Language Testing, 10(2), 133–170.  

Glaser, R., & Silver, E. A. (1994). Assessment, testing, and instruction: Retrospect and 
prospect. Review of Research in Education, 20, 393–419.  

Goldin, G. A., & McClintock, C. E. (1979). Task variables in mathematical problem solving. 
Columbus, OH: ERIC Clearinghouse for Science, Mathematics and Environmental 
Education. 



 
 

57 
 

Gorin, J. S., & Embretson, S. E. (2006). Item difficulty modeling of paragraph comprehension 
items. Applied Psychological Measurement, 30(5), 394–411.  

Graf, E. A., Peterson, S., Steffen, M., & Lawless, R. (2005). Psychometric and cognitive 
analysis as a basis for the design and revision of quantitative item models. ETS 
Research Report Series, 2005(2).  

Haapasalo, L., & Kadijevich, D. (2000). Two types of mathematical knowledge and their 
relation. Journal für mathematik-didaktik, 21(2), 139–157.  

Haladyna, T. M., & Rodriguez, M. C. (2013). Developing and validating test items. New 
York, NY: Routledge. 

Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: 
classroom-based factors that support and inhibit high-level mathematical thinking and 
reasoning. Journal for Research in Mathematics Education, 524–549.  

Hesse-Biber, S. N., & Johnson, R. B. (2015). The Oxford handbook of multimethod and mixed 
methods research inquiry: Oxford University Press. 

Hiebert, J. (1986). Conceptual and procedural knowledge : the case of mathematics. 
Hillsdale, N.J: Erlbaum. 

Hiebert, J., Gallimore, R., Garnier, H., Givvin, K. B., Hollingsworth, H., Jacobs, J., . . . 
Stigler, J. W. (2003). Teaching mathematics in seven countries: Results from the 
TIMSS 1999 video study. Washington, DC: National Center for Education Statistics. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge. In Conceptual and 
procedural knowledge : The case of mathematics (pp. 1–27). Hillsdale, N.J: Erlbaum. 

Hiebert, J., & Wearne, D. (1993). Instructional tasks, classroom discourse, and students’ 
learning in second-grade arithmetic. American Educational Research Journal, 30(2), 
393–425.  

Hildebrand, D. (2013). Dewey's pragmatism: instrumentalism and meliorism. In A. R. 
Malachowski (Ed.), The Cambridge companion to pragmatism (pp. 55–80): 
Cambridge University Press. 

Hohensinn, C., & Kubinger, K. D. (2009). On varying item difficulty by changing the 
response format for a mathematical competence test. Austrian Journal of Statistics, 
38(4), 231–239.  

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. 
Qualitative Health Research, 15(9), 1277–1288.  

Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm 
whose time has come. Educational Researcher, 33(7), 14–26.  

Jones, D. L., & Tarr, J. E. (2007). An examination of the levels of cognitive demand required 
by probability tasks in middle grades mathematics textbooks. Statistics Education 
Research Journal, 6(2), 4–27.  

Kaur, B. (2010). Mathematical tasks from Singapore classrooms. In Y. Shimizu, B. Kaur, R. 
Huang, & D. Clarke (Eds.), Mathematical tasks in classrooms around the world (pp. 
15–33). Rotterdam, Netherlands: Sense Publishers. 

Kilpatrick, J. (2014a). Competency frameworks in mathematics education. In S. Lerman 
(Ed.), Encyclopedia of mathematics education (pp. 85–87). Dordrecht, Netherlands: 
Springer. 

Kilpatrick, J. (2014b). History of research in mathematics education. In Encyclopedia of 
mathematics education (pp. 267–272): Springer. 

Kleven, T. A. (2008). Validity and validation in qualitative and quantitative research. Nordic 
Studies in Education, 28(03), 219–232.  

Klieme, E., Hartig, J., & Rauch, D. (2008). The concept of competence in educational 
contexts. In J. Hartig, E. Klieme, & D. Leutner (Eds.), Assessment of competencies in 
educational contexts (pp. 3–22). Göttingen: Hogrefe Publishing. 



 
 

58 
 

Koeppen, K., Hartig, J., Klieme, E., & Leutner, D. (2008). Current issues in competence 
modeling and assessment. Zeitschrift für Psychologie, 216(2), 61–73.  

Kolovou, A., van den Heuvel-Panhuizen, M., & Bakker, A. (2011). Non-routine problem 
solving tasks in primary school mathematics textbooks–a needle in a haystack. 
Mediterranean Journal for Research in Mathematics Education, 8(2), 29–66.  

Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., & Jordan, A. 
(2008). Pedagogical content knowledge and content knowledge of secondary 
mathematics teachers. Journal of Educational Psychology, 100(3), 716–725.  

Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge, 
England: Cambridge University Press. 

Lane, S. (2004). Validity of High‐Stakes Assessment: Are Students Engaged in Complex 
Thinking? Educational Measurement: Issues and Practice, 23(3), 6–14.  

Lesh, R. A., & Zawojewski, J. (2007). Problem solving and modeling. In F. K. Lester (Ed.), 
Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 763–
804). Charlotte, NC: Information Age. 

Lewis, J. (2009). Redefining qualitative methods: Believability in the fifth moment. 
International Journal of Qualitative Methods, 8(2), 1–14.  

Li, Y. (2000). A comparison of problems that follow selected content presentations in 
American and Chinese mathematics textbooks. Journal for Research in Mathematics 
Education, 31(2), 234–241.  

Lincoln, Y. S., Lynham, S. A., & Guba, E. G. (2005). Paradigms and perspectives in 
contention. In N. K. Denzin & Y. S. Lincoln (Eds.), The SAGE handbook of 
qualitative research (pp. 183–190). 

Lingefjärd, T. (2006). Faces of mathematical modeling. ZDM, 38(2), 96–112.  
Lithner, J. (2004). Mathematical reasoning in calculus textbook exercises. Journal of 

Mathematical Behavior, 23(4), 405–427.  
Lithner, J., Bergqvist, E., Bergqvist, T., Boesen, J., Palm, T., & Palmberg, B. (2010). 

Mathematical competencies—A research framework. Paper presented at the MADIF 7 
Mathematics and mathematics education: Cultural and social dimensions, Stockholm, 
Sweden.  

Mark, M. M. (2015). Mixed and multimethods in predominantly quantitative studies, 
especially experiments and quasi-experiments. In S. N. Hesse-Biber & R. B. Johnson 
(Eds.), The Oxford handbook of multimethod and mixed methods research inquiry (pp. 
21–41): Oxford University Press. 

Mayer, R. E., & Hegarty, M. (1996). The process of understanding mathematical problems. 
The Nature of Mathematical Thinking, 12, 24–59.  

Mayring, P. (2014). Qualitative content analysis: Theoretical foundation, basic procedures 
and software solution. Klagenfurt, Austria. Retrieved from http://nbn-
resolving.de/urn:nbn:de:0168-ssoar-395173  

Messick, S. (1995). Validity of psychological assessment: Validation of inferences from 
persons' responses and performances as scientific inquiry into score meaning. 
American Psychologist, 50(9), 741–749.  

NESH. (2016). Forskningsetiske retningslinjer for samfunnsvitenskap, humaniora, juss og 
teologi [Guidelines for research ethics in social-sciences, humaniora, law and 
theology]. Retrieved from 
https://www.etikkom.no/globalassets/documents/publikasjoner-som-
pdf/60125_fek_retningslinjer_nesh_digital.pdf 

Neubrand, J. (2006). The TIMSS 1995 and 1999 video studies. In F. K. S. Leung, K. D. Graf, 
& F. J. Lopez-Real (Eds.), Mathematics education in different cultural traditions: A 
comparative study of East Asia and the West (pp. 291–318): Springer. 

http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173
http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173
https://www.etikkom.no/globalassets/documents/publikasjoner-som-pdf/60125_fek_retningslinjer_nesh_digital.pdf
https://www.etikkom.no/globalassets/documents/publikasjoner-som-pdf/60125_fek_retningslinjer_nesh_digital.pdf


 
 

59 
 

Neubrand, M., Jordan, A., Krauss, S., Blum, W., & Löwen, K. (2013). Task analysis in 
COACTIV: Examining the potential for cognitive activation in German mathematics 
classrooms. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. 
Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional 
competence of teachers (pp. 125–144). New York: Springer. 

Newton, P., & Shaw, S. (2014). Validity in educational and psychological assessment. 
London: SAGE Publications. 

Nilsen, T., Angell, C., & Grønmo, L. S. (2013). Mathematical competencies and the role of 
mathematics in physics education: A trend analysis of TIMSS Advanced 1995 and 
2008. Acta Didactica Norge, 7(1), 1–21.  

Nisbett, R. E., & Wilson, T. D. (1977). The halo effect: Evidence for unconscious alteration 
of judgments. Journal of Personality and Social Psychology, 35(4), 250–256.  

Niss, M. (2007). Reflections on the state of and trends in research on mathematics teaching 
and learning. In F. K. Lester (Ed.), Second handbook of research on mathematics 
teaching and learning (pp. 1293–1312). Charlotte, NC: Information Age. 

Niss, M. (2015). Mathematical competencies and PISA. In K. Stacey & R. Turner (Eds.), 
Assessing mathematical literacy (pp. 35–55): Springer. 

Niss, M., Bruder, R., Planas, N., Turner, R., & Villa-Ochoa, J. A. (2016). Survey team on: 
conceptualisation of the role of competencies, knowing and knowledge in 
mathematics education research. ZDM, 48(5), 611–632.  

Niss, M., & Højgaard, T. (2011). Competencies and mathematical learning. Ideas and 
inspiration for the development of mathematics teaching and learning in Denmark 
(English edition). Roskilde: IMFUMFA. 

Niss, M., & Jablonka, E. (2014). Mathematical literacy. In S. Lerman (Ed.), Encyclopedia of 
mathematics education (pp. 391–396). Dordrecht, Netherlands: Springer. 

Niss, M., & Jensen, T. H. (2002). Kompetencer og matematiklæring – Idéer og inspiration til 
udvikling af matematikundervisning i Danmark (Vol. 18). Copenhagen, Denmark: The 
Ministry of Education. 

Norwegian Directorate for Education and Training [Utdanningsdirektoratet]. (n.d.). 
Curriculum for the common core subject of mathematics. Retrieved from 
https://www.udir.no/kl06/MAT1-04?lplang=http://data.udir.no/kl06/eng 

OECD. (2014). PISA 2012 technical report. Retrieved from Paris: 
https://www.oecd.org/pisa/pisaproducts/PISA-2012-technical-report-final.pdf 

Osana, H. P., Lacroix, G. L., Tucker, B. J., & Desrosiers, C. (2006). The role of content 
knowledge and problem features on preservice teachers’ appraisal of elementary 
mathematics tasks. Journal of Mathematics Teacher Education, 9(4), 347–380.  

Palm, T., Boesen, J., & Lithner, J. (2011). Mathematical reasoning requirements in Swedish 
upper secondary level assessments. Mathematical Thinking and Learning, 13(3), 221–
246.  

Pedersen, I. F. (2014). Insights from TIMSS advanced on critical aspects of the advanced 
mathematics program in Norwegian upper secondary school: Content, competence, 
and motivation. Department of Teacher Education, Faculty of Educational Sciences, 
University of Oslo, Oslo. (no. 213) 

Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester (Ed.), Second 
handbook of research on mathematics teaching and learning (pp. 257–315). Charlotte, 
NC: Information Age. 

Phillips, D. C., & Burbules, N. C. (2000). Postpositivism and educational research. Lanham, 
Maryland: Rowman & Littlefield Publishers. 

Pikkarainen, E. (2014). Competence as a key concept of educational theory: A semiotic point 
of view. Journal of Philosophy of Education, 48(4), 621–636.  

https://www.udir.no/kl06/MAT1-04?lplang=http://data.udir.no/kl06/eng
https://www.oecd.org/pisa/pisaproducts/PISA-2012-technical-report-final.pdf


 
 

60 
 

Richardson, K., Carter, T., & Berenson, S. (2010). Connected tasks: The building blocks of 
reasoning and proof. Australian Primary Mathematics Classroom, 15(4), 17–23.  

Schoenfeld, A. H. (1987). Cognitive science and mathematics education. Hillsdale, New 
Jersey: Lawrence Erlbaum Associates, Publishers. 

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, 
and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on 
mathematics teaching and learning (pp. 334–370). New York, N: Macmillan. 

Schoenfeld, A. H. (2008). Research methods in (mathematics) education. In L. D. English & 
D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 
481–533). 

Schoenfeld, A. H. (2016). Research in mathematics education. Review of Research in 
Education, 40(1), 497–528.  

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-
experimental designs for generalized causal inference. Boston: Houghton Mifflin. 

Shimizu, Y., Kaur, B., Huang, R., & Clarke, D. (2010). The role of mathematical tasks in 
different cultures. In Y. Shimizu, B. Kaur, R. Huang, & D. Clarke (Eds.), 
Mathematical tasks in classrooms around the world (pp. 1–14). Rotterdam, 
Netherlands: Sense Publishers. 

Sierpinska, A. (2004). Research in mathematics education through a keyhole: Task 
problematization. For the Learning of Mathematics, 24(2), 7–15.  

Silver, E. A., Mesa, V. M., Morris, K. A., Star, J. R., & Benken, B. M. (2009). Teaching 
mathematics for understanding: An analysis of lessons submitted by teachers seeking 
NBPTS certification. American Educational Research Journal, 46(2), 501–531.  

Silverman, D. (2011). Interpreting qualitative data: A guide to the principles of qualitative 
research (4th ed. ed.). Los Angeles, Calif: SAGE. 

Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From 
research to practice. Mathematics Teaching in the Middle School, 3(5), 344–350.  

Sproesser, U., Vogel, M., Dörfler, T., & Eichler, A. (2018). Teachers’ judgement accuracy of 
task difficulty related to functions. Paper presented at the Proceedings of the 42nd 
Conference of the International Group for the Psychology of Mathematics Education, 
Umeå, Sweden. 

Sriraman, B., & English, L. D. (2010). Surveying theories and philosophies of mathematics 
education. In B. Sriraman & L. English (Eds.), Theories of mathematics education: 
Seeking new frontiers. Heidelberg: Springer. 

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for 
mathematical thinking and reasoning: An analysis of mathematical tasks used in 
reform classrooms. American Educational Research Journal, 33(2), 455–488.  

Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity 
to think and reason: An analysis of the relationship between teaching and learning in a 
reform mathematics project. Educational Research and Evaluation, 2(1), 50–80.  

Stein, M. K., & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: From 
research to practice. Mathematics Teaching in the Middle School, 3(4), 268–275.  

Stein, M. K., Smith, M. S., Henningsen, M., & Silver, E. A. (2000). Implementing standards-
based mathematics instruction: A casebook for professional development. New York: 
Teachers College Press. 

Stigler, J. W., & Hiebert, J. (2004). Improving mathematics teaching. Educational 
Leadership, 61(5), 12–17.  

Stortingsmelding (White Paper) nr. 28. (2015–2016). Fag – Fordypning – Forståelse — En 
fornyelse av Kunnskapsløftet [Subjects – Depth – Understanding — A renewal of The 
Knowledge Promotion]. Oslo: Ministry of Education and Research,. 



 
 

61 
 

Sullivan, P., Clarke, D., & Clarke, B. (2013). Teaching with tasks for effective mathematics 
learning (Vol. 9). New York: Springer Science & Business Media. 

Suurtamm, C., Thompson, D. R., Kim, R. Y., Moreno, L. D., Sayac, N., Schukajlow, S., . . . 
Vos, P. (2016). Assessment in mathematics education: Large-Scale assessment and 
classroom assessment. Switzerland: Springer Open. 

Tatto, M. T., Schwille, J., Ingvarson, L., Rowley, G., Bankov, K., Peck, R., . . . Senk, S. L. 
(2012). Policy, practice, and readiness to teach primary and secondary mathematics 
in 17 countries: Findings from the IEA Teacher Education and Development Study in 
Mathematics (TEDS-M). Amsterdam: International Association for the Evaluation of 
Educational Achievement (IEA). 

Tietze, U.-P. (1994). Curricula and goals. In R. Biehler, R. W. Scholz, R. Sträßer, & B. 
Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 41–53). 
Dordrecht: Kluwer Academic Publishers. 

Turner, R., Blum, W., & Niss, M. (2015). Using competencies to explain mathematical item 
demand: A work in progress. In K. Stacey & R. Turner (Eds.), Assessing mathematical 
literacy: The PISA experience (pp. 85–115). New York: Springer. 

Turner, R., Dossey, J., Blum, W., & Niss, M. (2013). Using mathematical competencies to 
predict item difficulty in PISA: A MEG study. In M. Prenzel, M. Kobarg, K. Schöps, 
& S. Rönnebeck (Eds.), Research on PISA (pp. 23–37). New York: Springer. 

Valenta, A., Nosrati, M., & Wæge, K. (2015). Skisse av den «ideelle læreplan i matematikk» 
[Draft of the «ideal curriculum in mathematics»]. Trondheim: Nasjonalt senter for 
matematikk i opplæringen Retrieved from https://docplayer.me/1644531-Skisse-av-
den-ideelle-laereplan-i-matematikk.html. 

Westera, W. (2001). Competences in education: A confusion of tongues. Journal of 
curriculum studies, 33(1), 75–88.  

Wiliam, D. (2007). Keeping learning on track. In F. K. Lester (Ed.), Second handbook of 
research on mathematics teaching and learning (pp. 1053–1098). Charlotte, NC: 
Information Age. 

Wilson, M., De Boeck, P., & Carstensen, C. H. (2008). Explanatory item response models: A 
brief introduction. In E. Klieme & D. Leutner (Eds.), Assessment of competencies in 
educational contexts: State of the art and future prospects (pp. 91–120). Göttingen: 
Hogrefe & Huber. 

Yeo, J. B. (2017). Development of a framework to characterise the openness of mathematical 
tasks. International Journal of Science and Mathematics Education, 15(1), 175–191.  

https://docplayer.me/1644531-Skisse-av-den-ideelle-laereplan-i-matematikk.html
https://docplayer.me/1644531-Skisse-av-den-ideelle-laereplan-i-matematikk.html


 
 

62 
 

Appendix 1 – MEG item analysis scheme6 
Competency definitions and level descriptions 

Communication 
The communication competency has both ‘receptive’ and ‘constructive’ components. The receptive 
component includes understanding what is being stated and shown related to the mathematical 
objectives of the task, including the mathematical language used, what information is relevant, and 
what is the nature of the response requested. The constructive component consists of presenting the 
response that may include solution steps, description of the reasoning used and justification of the 
answer provided. 

In written and computer-based items, receptive communication relates to understanding text and 
images, still and moving. Text includes verbally presented mathematical expressions and may also be 
found in mathematical representations (for example titles, labels and legends in graphs and 
diagrams).  

Communication does not include knowing how to approach or solve the problem, how to make use of 
particular information provided, or how to reason about or justify the answer obtained, rather it is the 
understanding or presenting of relevant information. It also does not apply to extracting or processing 
mathematical information from representations. In computer-based items, the instructions about 
navigation and other issues related to the computer environment may add to the general task demand, 
but is not part of the communication competency. 

Demand for the receptive aspect of this competency increases according to the complexity of material 
to be interpreted in understanding the task; the need to link multiple information sources or to move 
backwards and forwards (to cycle) between information elements. The constructive aspect increases 
with the need to provide a detailed written solution or explanation. 

Definition: Reading and interpreting statements, questions, instructions, tasks, images and objects; 
imagining and understanding the situation presented and making sense of the information provided 
including the mathematical terms referred to; presenting and explaining one’s mathematical work or 
reasoning. 

Level 0: Understand short sentences or phrases relating to concepts that give immediate access to the 
context, where all information is directly relevant to the task, and where the order of information 
matches the steps of thought required to understand what the task requests. Constructive 
communication involves only presentation of a single word or numeric result. 

Level 1: Identify and link relevant elements of the information provided in the text and other related 
representation/s, where the material presented is more complex or extensive than short sentences and 
phrases or where some extraneous information may be present. Any constructive communication 
required is simple, for example it may involve writing a short statement or calculation, or expressing 
an interval or a range of values. 

Level 2: Identify and select elements to be linked, where repeated cycling within the material 
presented is needed to understand the task; or understand multiple elements of the context or task or 
their links. Any constructive communication involves providing a brief description or explanation, or 
presenting a sequence of calculation steps. 
                                                 
6 Reprinted from Turner et al. (2015) with permission of Springer International Publishing, copyright 2015. 
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Level 3: Identify, select and understand multiple context or task elements and links between them, 
involving logically complex relations (such as conditional or nested statements). Any constructive 
communication would involve presenting argumentation that links multiple elements of the problem or 
solution.  

Devising strategies 
The focus of this competency is on the strategic aspects of mathematical problem solving: selecting, 
constructing or activating a solution strategy and monitoring and controlling the implementation of 
the processes involved. ‘Strategy’ is used to mean a set of stages that together form the overall plan 
needed to solve the problem. Each stage comprises a sub-goal and related steps. For example a plan 
to gather data, to transform them and to represent them in a different way would normally constitute 
three separate stages.  

The knowledge, technical procedures, mathematising and reasoning needed to actually carry out the 
solution process are taken to belong to those other competencies. 

Demand for this competency increases with the degree of creativity and invention involved in 
identifying a suitable strategy, with increased complexity of the solution process (for example the 
number, range and complexity of the stages needed in a strategy), and with the consequential need for 
greater metacognitive control in the implementation of the strategy towards a solution.   

Definition: Selecting or devising a mathematical strategy to solve a problem as well as monitoring 
and controlling implementation of the strategy. 

Level 0: Take direct actions, where the solution process needed is explicitly stated or obvious. 

Level 1: Find a straight-forward strategy (usually of a single stage) to combine or use the given 
information. 

Level 2: Devise a straight-forward multi-stage strategy, for example involving a linear sequence of 
stages, or repeatedly use an identified strategy that requires targeted and controlled processing. 

Level 3: Devise a complex multi-stage strategy, for example that involves bringing together multiple 
sub-goals or where using the strategy involves substantial monitoring and control of the solution 
process; or evaluate or compare strategies. 
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Mathematising 
The focus of this competency is on those aspects of the modelling cycle that link an extra-mathematical 
context with some mathematical domain. Accordingly, the mathematising competency has two 
components. A situation outside mathematics may require translation into a form amenable to 
mathematical treatment. This includes making simplifying assumptions, identifying variables present 
in the context and relationships between them, and expressing those variables in a mathematical form. 
This translation is sometimes referred to as mathematising. Conversely, a mathematical entity or 
outcome may need to be interpreted in relation to an extra-mathematical situation or context. This 
includes translating mathematical results in relation to specific elements of the context and validating 
the adequacy of the solution found with respect to the context. This process is sometimes referred to as 
de-mathematising.  

The intra-mathematical treatment of ensuing issues and problems within the mathematical domain is 
dealt with under other competencies. Hence, while the mathematising competency deals with 
representing extra-mathematical contexts by means of mathematical entities, the representation of 
mathematical entities is dealt with under the representation competency. 

Demand for activation of this competency increases with the degree of creativity, insight and 
knowledge needed to translate between the context elements and the mathematical structures of the 
problem. 

Definition: Translating an extra-mathematical situation into a mathematical model, interpreting 
outcomes from using a model in relation to the problem situation,  or validating the adequacy of the 
model in relation to the problem situation. 

Level 0: Either the situation is purely intra-mathematical, or the relationship between the extra-
mathematical situation and the model is not relevant to solving the problem. 

Level 1: Construct a model where the required assumptions, variables, relationships and constraints 
are given; or draw conclusions about the situation directly from a given model or from the 
mathematical results. 

Level 2: Construct a model where the required assumptions, variables, relationships and constraints 
can be readily identified; or modify a given model to satisfy changed conditions; or interpret a model 
or mathematical results where consideration of the problem situation is essential. 

Level 3: Construct a model in a situation where the assumptions, variables, relationships and 
constraints need to be defined; or validate or evaluate models in relation to the problem situation; or 
link or compare different models. 
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Representation 
The focus of this competency is on decoding, devising, and manipulating representations of 
mathematical entities or linking different representations in order to pursue a solution. By 
‘representation of a mathematical entity’ we understand a concrete expression (mapping) of a 
mathematical concept, object, relationship, process or action. It can be physical, verbal, symbolic, 
graphical, tabular, diagrammatic or figurative.  

Mathematical tasks are often presented in text form, sometimes with graphic material that only helps 
set the context. Understanding verbal or text instructions and information, photographs and graphics 
does not generally belong to representation competency – that is part of the communication 
competency. Similarly, working exclusively with symbolic representations lies within the using 
symbols, operations and formal language competency. On the other hand, translation between 
different representations is always part of the representation competency. For example, the act of 
transforming mathematical information derived from relevant text elements into a non-verbal 
representation is where representation commences to apply. 

While the representation competency deals with representing mathematical entities by means of other 
entities (mathematical or extra-mathematical), the representation of extra-mathematical contexts by 
mathematical entities is dealt with under the mathematising competency.  

Demand for this competency increases with the amount of information to be extracted, with the need 
to integrate information from multiple representations, and with the need to devise representations 
rather than to use given representations. Demand also increases with added complexity of the 
representation or of its decoding, from simple and standard representations requiring minimal 
decoding (such as a bar chart or Cartesian graph), to complex and less standard representations 
comprising multiple components and requiring substantial decoding perhaps devised for specialised 
purposes (such as a population pyramid, or side elevations of a building). 

Definition: Decoding, translating between, and making use of given mathematical representations in 
pursuit of a solution; selecting or devising representations to capture the situation or to present one’s 
work.  

Level 0: Either no representation is involved, or read isolated values from a simple representation, for 
example from a coordinate system, table or bar chart; or plot such values; or read isolated numeric 
values directly from text. 

Level 1: Use a given simple and standard representation to interpret relationships or trends, for 
example extract data from a table to compare values, or interpret changes over time shown in a graph; 
or read or plot isolated values within a complex representation; or construct a simple representation. 

Level 2: Understand and use a complex representation, or construct such a representation where some 
of the required structure is provided; or translate between and use different simple representations of a 
mathematical entity, including modifying a representation. 

Level 3: Understand, use, link or translate between multiple complex representations of mathematical 
entities; or compare or evaluate representations; or devise a representation that captures a complex 
mathematical entity.  
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Using symbols, operations and formal language 
This competency reflects skill with activating and using mathematical content knowledge, such as 
mathematical definitions, results (facts), rules, algorithms and procedures, recalling and using 
symbolic expressions, understanding and manipulating formulae or functional relationships or other 
algebraic expressions and using the formal rules of operations (e.g. arithmetic calculations or solving 
equations). This competency also includes working with measurement units and derived quantities 
such as ‘speed’ and ‘density’.  

Developing symbolic formulations of extra-mathematical situations is part of mathematisation. For 
example, setting up an equation to reflect the key elements of an extra-mathematical situation belongs 
to mathematisation, whereas solving it is part of the using symbols, operations and formal language 
competency. Manipulating symbolic expressions belongs to the using symbols, operations and formal 
language competency even though they are mathematical representations. However, translating 
between symbolic and other representations belongs to the representation competency. 

The term ‘variable’ is used here to refer to a symbol that stands for an unspecified number or a 
changing quantity, for example C and r in the formula 𝐶𝐶 = 2𝜋𝜋𝜋𝜋. 

Demand for this competency increases with the increased complexity and sophistication of the 
mathematical content and procedural knowledge required. 

Definition: Understanding and implementing mathematical procedures and language (including 
symbolic expressions, arithmetic and algebraic operations), using the mathematical conventions and 
rules that govern them; activating and using knowledge of definitions, results, rules and formal 
systems.  

Level 0: State and use elementary mathematical facts and definitions; or carry out short arithmetic 
calculations involving only easily tractable numbers. For example, find the area of a rectangle given 
the side lengths, or write down the formula for the area of a rectangle. 

Level 1: Make direct use of a simple mathematical relationship involving variables (for example, 
substitute into a linear relationship); use arithmetic calculations involving fractions and decimals; use 
repeated or sustained calculations from level 0; make use of a mathematical definition, fact, or 
convention, for example use knowledge of the angle sum of a triangle to find a missing angle. 

Level 2: Use and manipulate expressions involving variables and having multiple components (for 
example, by algebraically rearranging a formula); employ multiple rules, definitions, results, 
conventions, procedures or formulae together; use repeated or sustained calculations from level 1. 

Level 3: Apply multi-step formal mathematical procedures combining a variety of rules, facts, 
definitions and techniques; work flexibly with complex relationships involving variables, for example 
use insight to decide which form of algebraic expression would be better for a particular purpose. 
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Reasoning and argument 
This competency relates to drawing valid inferences based on the internal mental processing of 
mathematical information needed to obtain well-founded results, and to assembling those inferences 
to justify or, more rigorously, prove a result. 

Other forms of mental processing and reflection involved in undertaking tasks underpin each of the 
other competencies. For example the thinking needed to choose or devise an approach to solving a 
problem is dealt with under the devising strategies competency, and the thinking involved in 
transforming contextual elements into a mathematical form is accounted for in the mathematising 
competency. 

The nature, number or complexity of elements that need to be brought to bear in making inferences, 
and the length and complexity of the chain of inferences needed would be important contributors to 
increased demand for this competency. 

Definition: Drawing inferences by using logically rooted thought processes that explore and connect 
problem elements to form, scrutinise or justify arguments and conclusions. 

Level 0: Draw direct inferences from the information and instructions given. 

Level 1: Draw inferences from reasoning steps within one aspect of the problem that involves simple 
mathematical entities. 

Level 2: Draw inferences by joining pieces of information from separate aspects of the problem or 
concerning complex entities within the problem; or make a chain of inferences to follow or create a 
multi-step argument. 

Level 3: Use or create linked chains of inferences; or check or justify complex inferences; or 
synthesise and evaluate conclusions and inferences, drawing on and combining multiple elements of 
complex information, in a sustained and directed way. 
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Appendix 2 – Task questionnaire7
 

Name or number of task:  

1) At what grade level did you use this task? 

2) Which students worked on this task? 

☐ High-achieving students only ☐ Students at different achievement level 

3a) In which learning situation was the task used? 

☐ Instruction ☐ Homework ☐ Assessment/test 

3b) If the task was used for instructional purposes, how did the students work 

with the task? 

☐ Individually ☐ Pairs/Groups ☐ Whole-class 

4) What is the source of the task? 

☐ Textbook ☐ Internet ☐ Colleague ☐ Self-made ☐ Other 

5) What do you think makes this a demanding task for high-achieving students? 

 

                                                 
7 The questionnaire has been translated from Norwegian 
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Appendix 3 – Consent form 
 

Studien gjennomføres i samsvar med retningslinjer utarbeidet av Personvernombudet for 
forskning, NSD.  Innsamlingen, oppbevaringen og rapportering av data skjer i tråd med disse 
retningslinjene. Det innsamlede materialet vil bli fullstendig anonymisert og det vil ikke være 
mulig å knytte resultater og funn fra studien til enkeltlærere eller skoler. 

 

• Jeg erklærer at samtykke er gitt frivillig og at jeg er informert om hva det skal brukes 
til 

• Jeg er informert om at samtykke når som helst kan trekkes tilbake 

☐ Jeg samtykker til å dele oppgavene jeg sender inn med de andre lærerne som deltar i 
studien. 

 

 

________________  ________________________________ 
Dato     Underskrift 
 

 

________________________________ 
Navn med blokkbokstaver 
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