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Preface

This thesis is submitted in partial fulfilment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research is carried out
between August 2015 and November 2019, under supervision by Professor Ingrid
K. Glad (University of Oslo) and Associate Professor Erik Vanem (DNV GL
and University of Oslo).

The doctoral project is carried out in collaboration between the University of
Oslo and DNV GL, funded under the Industrial Ph.D. scheme of the Norwegian
Research Council (project number 251396). Furthermore, the research is
conducted in close collaboration with the research-based innovation centre Big
Insight, also funded by the Norwegian Research Council (project number 237718).

The thesis is a collection of five papers. The papers are preceded by an
introductory part providing background, context and motivation for the work.
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Chapter 1
Introduction

This thesis consists of five papers concerning the development and assurance of
data-driven methods for various applications, mainly in the maritime industry,
including analysis of multiple sequential sensor streams, anomaly detection,
classification and regression, and explainability and interpretation of black-box
models.

Use-cases are mainly selected from the maritime industry, however the
methods presented are generally applicable to many industries and domains, in
particular safety critical applications involving high-consequence scenarios.

Both traditional statistical methods and modern machine learning methods
are studied. We avoid the (sometimes interesting) debate on the difference
between statistics and machine learning (see for example Bzdok et al. (2018)),
and use terminology from statistics and machine learning interchangeably. We
strive to avoid repeating information from the papers. However, to enable the
discussion presented in the synopsis, brief descriptions are occasionally retrieved
from the papers.

In the following, we describe the main aims of the thesis. Furthermore, we
discuss the scope and limitations of the work. In Chapter 2, we introduce basic
theory, providing background and context for the five papers. Summaries of
the five papers are provided in Chapter 3. We discuss challenges, limitations
and propose topics for future research in Chapter 4. In Chapter 5, we conclude.
Finally, the five papers are included.

1.1  Aims and scope

One of the main aims of this thesis is to develop methods for data-driven
prediction and anomaly detection, and several modifications and enhancements
are proposed to improve existing anomaly detection techniques.

We study how the proposed methods can be implemented for various
applications, also in safety critical domains. When the consequences of faulty
predictions are low, the path from algorithm and model development to full scale
implementation can be relatively short. For such applications, increased accuracy
is often enough to justify implementation. For safety critical applications however,
trust and confidence in the models are required before implementation. Hence,
reliable estimation of future performance is required, and we investigate different
evaluation techniques.

But trust can include more than confidence that a model will perform well.
Even if a model is demonstrated to be sufficiently accurate, we might be reluctant
to implement it if we do not understand how it works (Lipton 2016). Therefore
a second main aim is to develop methods to explain and interpret predictions
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Figure 1.1: Tllustrating the concept behind condition-based monitoring. (Adapted
from (Knutsen et al. 2014))

and classifications of black-box models. A novel training data centric approach
to explain and interpret data-driven methods is proposed.

The thesis is conducted in close collaboration with DNV GL, a global
quality assurance and risk management company. DNV GL issues classification
certificates and provides technical assurance, software and independent expert
advisory services to different industries. A key challenge for DNV GL is to assure
and verify systems which are based on data-driven methods.

1.2 Motivation

For many years, run to failure was the most common maintenance strategy. "If
it ain’t broke, don’t fix it"" might be an adequate, and sometimes even preferred,
maintenance strategy for many applications. For safety critical applications,
however, the cost of an accident is often too high, and preventive maintenance
regimes are often implemented where system components are maintained or
replaced according to a time-schedule. The assumption behind such a strategy
is that a component has a defined lifetime, after which its failure rate increases
(Knutsen et al. 2014). However, Nowlan and Heap (1978) analysed failures on
aircraft equipment and found that as much as 89 % of the failures were not
age-related. Similar results are shown for the maritime industry, although slightly
lower (Allen 2001). This demonstrate an important deficiency with preventive
maintenance, and motivates condition-based monitoring (see Figure 1.1). In
condition-based maintenance, we assume that some physical change occurs in
the component or system before a failure occurs, and that this can be detected
using appropriate sensors (Knutsen et al. 2014).

In the last decades, affordable sensors and data storage have enabled massive
collection of sensor data in various industries, including the maritime industry.
An increasing number of ships are equipped with sensor systems, offering high

1Widely attributed to Thomas Bertram Lance, Director of the Office of Management and
Budget in Jimmy Carter’s 1977 administration, who argued that the government could save
billions if it adopted this simple motto. https://www.phrases.org.uk/meanings/if-it-aint-broke-
dont-fix-it.html
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Motivation

frequency measurements which are used to monitor both the ship’s performance
and condition as well as the ship’s operating environment. The captured sensor
data can contain information which can contribute to achieve improvements
both in operation and design.

Valuable information can be well hidden in the sensor data, and we need
statistical methods to transform the data into insight. Increasingly complex
models are used to capture the intricate relationships in large datasets. These
models are often referred to as black-box models, since we do not understand
their inner workings. One can however argue, that no models are intrinsically
interpretable, and sufficiently high-dimensional models, for example deep decision
trees, can be considered less transparent than comparatively compact neural
networks (Lipton 2016).

Nevertheless, as black-box models, or machine learning models, are taking
an increasingly important part in new applications, the inability of humans
to understand the machine learning models seems problematic (Caruana et al.
1999; Lipton 2016). Hence, the importance of transparency, explainability and
interpretability of machine learning models is growing, particularly for decision
making in safety critical systems (Kim et al. 2016). If we understand the model’s
reasoning, it is easier to verify the model and determine when the model’s
reasoning is in error, and to improve the model (Caruana et al. 1999; Doshi-Velez
and Kim 2017; Lundberg and Lee 2017). Doshi-Velez and Kim (2017) argue
that explanations and interpretations can be important to ensure safety since
we often cannot create a complete list of training scenarios in which a system
can fail. Furthermore, transparency, explainability and interpretability can
guard against unethical or biased predictions, such as discriminations, and we
can better deal with competing objective functions of the algorithms, such as
privacy and prediction quality (Doshi-Velez and Kim 2017). Interpretation also
lets us learn from the model, and convert interpretations and explanations into
knowledge (Shrikumar et al. 2016).






Chapter 2
Background

In this chapter, we briefly describe learning methods. We provide a general
description of anomaly detection methods and frameworks, and explain how the
available methods can be divided into three categories; supervised, unsupervised
and semi-supervised methods. An anomaly detection method with signal
reconstruction followed by residual analysis is presented in more details. We
also discuss anomaly detection techniques based on clustering. In safety critical
applications, a key challenge is lack of trust and confidence in the outputs of
machine learning models. Therefore, an important focus throughout this thesis
is reliability and robustness of data-driven methods. We discuss challenges
related to explainability and interpretation and provide a brief description of
the most important and popular methods. We also discuss how a method’s
performance should be measured, and discuss challenges related to testing and
cross-validation.

2.1 Learning methods

Widespread use of artificial intelligence and machine learning is seen for a number
of applications, including anomaly detection, regression and classification. In the
machine learning literature, a distinction between supervised and unsupervised
learning is common. In supervised learning, we denote some of the variables as
inputs which affect some output variables (Hastie et al. 2009, Ch. 2). Typically,
the task in supervised learning is to model the relationship between the input
variables and the outputs. When the task is to determine membership of a class,
and the model is trained with labelled data, we call it classification. Regression
typically concerns continuous data. The models include both parametric methods
such as linear models, as well as non-parametric models such as k-nearest
neighbours and decision trees. Parametric models are learning models that
summarize data with a set of parameters of fixed size, while models that cannot
be characterized by a bounded set of parameters are called non-parametric
(Russell and Norvig 2016, Ch. 18). In unsupervised learning, the properties of
the data distribution are directly inferred without the use of explicitly provided
labels (Hastie et al. 2009, Ch. 14). Clustering can for example be performed on
unlabelled data, where the goal is to discover a natural grouping of the observed
data (HajKacem et al. 2019). Semi-supervised learning usually refers to problems
where only a small portion of the observed data is labelled (HajKacem et al.
2019).
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2.2 Anomaly detection

Anomaly detection refers to the problem of finding patterns in data that do not
conform to expected behaviour (Chandola et al. 2009). Change points are found
where the distributional properties of the considered dataset change (Killick
et al. 2012).

Data-driven anomaly detection techniques are alternatives to model-based
approaches based on physical modelling of the system from first principles
(See for example (Cipollini et al. 2018; Dimopoulos et al. 2014; Lamaris and
Hountalas 2010; Zymaris et al. 2016)), which may be more difficult to use
(Vanem and Brandszeter 2019). An extensive number of data-driven anomaly
detection techniques are described in literature and used in a wide variety of
applications in various industries. The available techniques comprise classification
methods that are rule-based, or based on Neural Networks, Bayesian Networks
or Support Vector Machines; nearest neighbour based methods, including k&
nearest neighbour and relative density; clustering based methods; statistical and
fuzzy set-based techniques, including parametric and non-parametric methods
(Chandola et al. 2009; Kanarachos et al. 2017; Laxhammar et al. 2009; Olson
et al. 2018; Steinwart et al. 2005; Zheng et al. 2016).

In Brandsaeter et al. (2019), we divide the fundamental approaches to data-
driven anomaly detection into three categories (Chandola et al. 2009; Hodge and
Austin 2004):

e Supervised anomaly detection Availability of a training dataset with labelled
instances for normal and anomalous behaviour is assumed. Typically,
a classifier is trained to distinguish between normal and anomalous
observations, and unseen data are assigned to one of the classes.

e Unsupervised anomaly detection Here, the training dataset is not labelled,
and an implicit assumption is that the normal instances are far more
frequent than anomalies in the test data. If this assumption is not true,
such techniques suffer from high false alarm rate and/or missed detection
rate.

o Semi-supervised anomaly detection In semi-supervised anomaly detection,
the training data only includes normal data. A typical anomaly detection
approach is to build a model for the class corresponding to normal
behaviour, and use the model to identify anomalies in the test data. Since
the semi-supervised methods do not require labels for the anomaly class,
they are more widely applicable than supervised techniques.

Note that the definition of semi-supervised anomaly detection differs from
the definition of semi supervised learning as described in section 2.1. In this
setting, semi-supervised learning refers to problems where only a small portion
of the observed data are labelled, while in the anomaly detection setting, the
full dataset is labelled but all samples originate from the normal class.
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Anomaly detection

The choice of anomaly detection technique depends on the application.
Our interest in anomaly detection is primarily motivated in condition-based
maintenance and fault detection and prediction in the maritime industry. We
often lack essential knowledge and data of the fault-process, and we are therefore
not able to accurately and reliably predict failures. Due to this, our focus is on
detecting anomalous behaviour, potentially indicating a first sign of trouble (see
Figure 1.1). We strive to accurately determine when anomalous behaviour occurs.
The detection delay, that is the time between the occurrence of an anomaly,
and the time it is detected, should be minimized, hence on-line methods are
preferred.

Loosely speaking, the fire alarm should warn you early enough before a fire,
enabling you to take preventive actions. However, minimum detection delay has
to be balanced with a low false alarm rate. Furthermore, transients between
different operational modes should not be identified as anomalous behaviour.

2.2.1 Anomaly detection with signal reconstruction followed by
residual analysis

In Brandsaeter et al. (2016), Brandsaeter et al. (2019), and Brandseeter et al.
(2017), we use an on-line anomaly detection technique to satisfy the requirements
outlined above. The technique we use consists of two steps, where first, the sensor
signal is reconstructed under normal conditions, and secondly, the residuals, that
is the difference between the reconstructed signal and the observed signal, are
analysed to identify anomalies.

Hines and D. R. Garvey (2006) used Auto Associative Kernel Regression
(AAKR) for signal reconstruction, and analysed the residuals using Sequential
Probability Ratio Test (SPRT) (see Figure 2.1), for on-line monitoring of a
model of a nuclear power plant steam system. Similar more recent work are
performed by for example Di Maio et al. (2013) and Li et al. (2017) who also
use this approach to monitor the condition of sensors on a nuclear power plant.
In the latter, simulations of fault detection and identification on the sensors
and components in the reactor coolant system are carried out. Boechat et al.
(2012) combine AAKR and SPRT for drift correction and detection in oil well
sensors monitoring, Kappaganthu et al. (2010) use the approach for model-based
diagnostics of an aircraft generator, and Niu et al. (2015) integrates the on-line
anomaly monitoring approach using AAKR and SPRT with a model-based
strategy for system fault modelling of a multi-energy domain dynamic system.
Additionally, they propose to use linear fractional transformations-based bond
graph for physical parameter uncertainty modelling.

Several different methods can be used to reconstruct the signals, and to
analyse the residuals. Baraldi et al. (2015a) compare the AAKR reconstruction
method with two other data-driven signal reconstruction methods: fuzzy
similarity (F'S) (Zio and Di Maio 2010) and Elman recurrent neural networks
(RNN) (Seker et al. 2003). Capabilities and drawbacks of the different methods
are presented. In the evaluated cases, AAKR is reported as the fastest in
triggering alarms in case of anomalous conditions. However, it is the least

7
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Historical
data

AAKR: Signal SPRT:

Test data i
reconstruction Residual
analysis

Original signal

No limit reached

Figure 2.1: The methodology can be divided into two main steps: signal
reconstruction (via AAKR) and analysis of residuals (via SPRT)

resistant to the spillover effect which occurs when anomalies are detected in
signals with normal behaviour (Baraldi et al. 2015b). The recommendation of
Baraldi et al. (2015a) is to use an ensemble of the three methods. Based on the
examples in the study, it is reported that the ensemble method provides more
satisfactory results, overcoming the limitations of each method while exploiting
their strengths. However, the use of ensemble methods impose challenges
related to voting strategies, and deciding which models to include, taking into
consideration the individual methods accuracy and diversity (Wang 2008). Our
focus is on improving the AAKR method, hopefully also leading to improved
ensemble methods.

Regression models can also be used in the reconstruction step. For example,
Vanem and Storvik (2017) compare the predictions produced by dynamical linear
models (DLM) with the observed values, and Vanem and Brandsseter (2018)
and Vanem and Brandsaeter (2019) use self-organizing maps.

2.2.1.1 Signal reconstruction using AAKR

Since descriptions of Auto Associative Kernel Regression (AAKR) did not
readily appear in the open literature at that time, Hines and D. R. Garvey (2006)
provided a description which was derived based upon multivariate, inferential
kernel regression as derived by Wand and Jones (1995). In the following, we
briefly introduce the AAKR method following this description. For other excellent
descriptions of the AAKR method, both comprehensive and more brief, see for
example Baraldi et al. (2015a), Baraldi et al. (2011), Baraldi et al. (2012), Baraldi
et al. (2015b), Brandsaeter et al. (2016), Brandsater et al. (2019), Di Maio et al.
(2013), J. Garvey et al. (2007), and Hines et al. (2008).

Auto Associative Kernel Regression (AAKR) is a data-driven method where
the reconstructed signal is estimated as a weighted linear combination of historical
observations. The information from the current observation is used to calculate
the weights. The methodology follows the following procedure: At each time t
in the test data, a reconstruction of a test point x'***(t) = [x(¢, 1), ..., z(t, J)] is
calculated as a weighted linear combination of the observations (the rows) in a
training matrix X"***. The weight w of a row k of the training data is given by

8
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the Gaussian kernel .
1 d
Wik R (2.1)

= e 2 s
' V2mh
where the parameter h is the bandwidth, and d;  is the distance between the J
signal measurements in the observation X’Efs)t and the k-th observation in X' "

for k=1,..., K. Several distance functions can be used (J. Garvey et al. 2007),
but the most common is the Euclidean norm

N2
dy = (X’gggﬁ) - Xf;‘f;f) . (2.2)
j=1
o test
Finally, the reconstructed value X(:;) of the j-th observation Xfffjt), is given
as the weighted linear combination of the rows of the training matrix, that is

K train
A~ test Zkzl Wi - X(k,j)

(2.3)

2.2.1.2 Residuals analysis using SPRT

Once a reconstruction is produced, the residual, i.e. the difference between
the observed signal and the reconstructed signal, is analysed using Sequential
Probability Ratio Test (SPRT). SPRT is a statistical technique developed by
Wald (1947) which we use to determine whether the residual from a prediction is
caused by a faulted system or if it is due to normal process and instrumentation
variations (Hines and D. R. Garvey 2006). We briefly describe the methodology
in the following. For a more thorough description we suggest Brandseaeter et al.
(2016), Brandsaeter et al. (2019), Cheng and Pecht (2012), Gross and Lu (2004,
May 11), and Saxena et al. (2008).

The residuals, R = Xt — Xt are analysed sequentially by the standard
Sequential Probability Ratio Test (SPRT) to determine if the system is in normal
or abnormal state. The normal state is described by a null hypothesis Hy, where
each component of the residuals, Ry ;), are assumed to be normally distributed
with mean 0 and standard deviation o. The anomalous state is described by
an alternative hypothesis H,, which assumes that the residuals are normally
distributed with specified mean and/or standard deviation different from the
null hypothesis.

Based on the residuals R ; jy, an index is calculated and updated sequentially
for each new observation. In order to determine the condition of the system, two
threshold values are specified and at each observation the index is compared to
these lower and upper decision boundaries. There are three possible outcomes
at each time step:

1. the lower limit is reached, in which the null hypothesis is accepted (normal
state), and the test statistic is reset.
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2. the upper limit is reached, in which the null hypothesis is rejected
(anomalous state), and the test statistic is reset.

3. no limit is reached, in which case the amount of information is not sufficient
to make a conclusion.

For each sensor signal j, the analysis is performed independently on the
sequence of residuals Ry, j,..., Ry, ;), where ¢, denotes the current time
point, and ¢; denotes the time point when the test statistic was last reset. When
either of the limits are reached (outcome 1 and 2), the sequence is reset to zero.
If no limits are reached (outcome 3), the sequence is extended with the new
residual.

The SPRT index is given as the natural logarithm of the likelihood ratio L,
given by

__prob of Rty 5y, ..., R,,j) given Hq H fa R(t )
prob of R, jy,..., R, ;) given Ho fo( Ry, J)

where f(-) is the corresponding normal density. Note that this construction is
based on an assumption of normally distributed residuals, and independence
among the residuals.

Alternative hypotheses can be evaluated to detect changes in the mean,
variance and/or covariance (Tveten 2017). For example, to detect positive and
negative changes in the mean for each sensor j, the following indices are used:

SPRTy = = Z (Res - 5) (2.4)

t=t1

tn

m m

SPRTy = 253 (R — ) (2.5)
t=t,

The standard deviation, o, is computed from the training data. m is the mean

value of the alternative hypothesis, which is decided by the user. m is usually

chosen to be several times larger than o (Cheng and Pecht 2012).

2.2.2 Anomaly detection based on clustering methods

Alternatives to the two-step process with signal reconstruction and residual
analysis as described above, include methods based on clustering. Clustering
refers to the division of data into groups of similar objects (Berkhin 2006), and
instances in the different clusters should be as different as possible (D. Xu and
Tian 2015). Numerous clustering methods exist including hierarchical methods,
partitioning relocation methods, density-based methods and grid-based methods.
We refer to D. Xu and Tian (2015) and Berkhin (2006) for two comprehensive
surveys.

A common approach to cluster-based anomaly detection, is to first cluster the
data, and then classify the data according to one of the following assumptions:

10
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1. Normal data instances belong to a cluster in the data, while anomalies do
not belong to any cluster (clusters with only one member).

2. Normal data instances lie close to their closest cluster centroid, while
anomalies are far away from their closest cluster centroid.

3. Normal data instances belong to large and dense clusters, while anomalies
either belong to small or sparse clusters.

Various clustering techniques can be applied. For example, mixtures of
Gaussian models (Hastie et al. 2009, Ch. 14) can be used to produce ellipsoid-
shaped clusters of varying shapes and orientations. With this approach, a
parametric model is fitted to the data, and anomalies can be identified where
the sensor signals in the test data are extreme according to the established
parametric model. Density-based clustering such as DBscan (Ester et al. 1996)
and Hierarchical DBscan(Campello et al. 2013), can also be used. These
clustering techniques group observations with many neighbours into clusters.
In DBscan both the neighbourhood distance and the minimum number of core
points per cluster is specified by the user. In the hierarchical extension, the
neighbourhood distance can stay unspecified. Instead, a hierarchy of clusters
for any neighbourhood distance are provided in a three-like structure. In both
these frameworks, anomalies are identified for observations that do not belong
to any of the clusters. Moreover, we can use support vector machines (SVM)
(Hastie et al. 2009, Ch. 14) to formulate a classification problem with only one
class representing normal data. Observations deviating from this one class are
identified as anomalous. The above-mentioned methods are used and described
in Vanem and Brandseeter (2019), and we refer to this paper for details and
examples.

2.3 Explaining the output of any predictor

Many agree on the importance of interpretability, and explanations are sometimes
required. For example, the EU General Data Protection Act (GDPR) provides
individuals the right to receive an explanation for algorithmic decisions which
significantly affect that individual (Goodman and Flaxman 2017). But it is not
articulated precisely what interpretability means or why it is important. Lipton
(2016) discusses the interpretability of human decision-makers, and what notion
of interpretability these explanations satisfy, and argues that human explanations
seem unlikely to clarify the mechanisms or the precise algorithms by which brains
work. Nevertheless, the information conferred by human interpretation may be
useful. Doshi-Velez and Kim (2017) propose to define interpretability as "the
ability to explain or to present in understandable terms to a human".

Several methods are proposed and developed to interpret the black-box
models and explain their predictions. Some of these methods are model-specific,
that is, they can only be used on a subset of machine learning models, while
other methods are model-agnostic, and these are the focus of this thesis. If a

11



2. Background

task should be solved with machine learning methods, typically, several types of
machine learning models are evaluated, and when comparing models in terms of
interpretability, it is easier to work with model-agnostic explanations (Molnar
2019).

A popular and frequently used model-agnostic approach to interpret and
explain the decisions and predictions is feature importance. For a linear regression
model, the importance of different features is readily available, and various
methods aim to provide a similar interpretation of more complex models. The
available methods include perturbation methods (Breiman 2001; Fisher et
al. 2018), local surrogate models such as LIME (Ribeiro et al. 2016), and
Shapley values (Strumbelj and Kononenko 2010; Strumbelj and Kononenko
2011; Strumbelj and Kononenko 2014). Since the predictions made by the
data-driven methods rely heavily on the training data used, we also advocate
explanations which convey how the training data affects the predictions. This
includes case-based explanation methods which select particular points of the
dataset to explain the behaviour of machine learning models (Caruana et al.
1999), and influence functions which tell us how the model parameters change
when a point in the training dataset is up-weighted by an infinitesimal amount
(Koh and Liang 2017) . We refer to Brandsaeter and Glad (2019) for a brief
description of selected popular methods.

2.4 Performance measures

When deciding if we should trust a model, we might care not only about how often
a model’s prediction and/or classification is right but also for which examples
it is right (Lipton 2016). If the model tends to make mistakes in regions of
input space where humans also make mistakes, and is typically accurate when
humans are accurate, then the model may be considered trustworthy in the
sense that there is no expected cost of relinquishing control. The severity of
a missclassification should also be taken into consideration. For example, if a
kayak is classified as a pleasure boat by one classifier and as an oil tanker by
a second classifier, the performance of the first classifier can be regarded as
better than the second classifier even though both classifications were wrong
(Brandsaeter and Knutsen 2018).

When evaluating performance in regression problems, metrics such as mean
square error (MSE), mean absolute error (MAE) and R-squared are commonly
used. In classification problems with few classes, error matrices (also called
confusion matrices) are often used to communicate a model’s performance
(Stehman 1997). However, error matrices are impractical in cases with a high
number of classes. When we evaluate anomaly detection methods, we are
interested in the number of true and false positives (TP and FP) as well as
the number of true and false negatives (TN and FN), where for example a true
positive is an instance where an anomaly occurred, and the anomaly detection
method successfully detected it. Anomaly detection methods should preferably
achieve a high number of true positives and negatives and at the same time keep

12



Performance measure estimation

the number of false positives and negatives at a minimum.
Two commonly used measures are sensitivity and specificity. Sensitivity is
the true positive rate which has the following expression

TP
TPR= ——F—. 2.6
TP+ FN (2:6)
Specificity is the probability of predicting that an instance is normal (non-
anomalous) given that the true state is normal (non-anomalous). This
information can also be presented as the False Positive Rate, which is given as 1

minus the specificity, that is:

PP
~ FP+TN
The TPR and FPR are often presented in a receiver operating characteristics
(ROC) graph, which is a scatterplot with the TPR on the vertical axis and the
FPR on the horizontal axis. According to Fawcett (2006), the ROC graphs
have properties that make them especially useful for domains with skewed class
distribution and unequal classification error costs.

FPR 1 — specificity. (2.7)

2.5 Performance measure estimation

Reliable estimates of the accuracy of a model on future unseen data is essential
when deciding how the model should be used, especially for safety critical
operations (Wolpert 1992). If we assess the accuracy of a model on the data which
is used to train the model, our accuracy estimates tend to be overoptimistic (Arlot
and Celisse 2010). Such practice represents an extreme dependency between the
training and test datasets (they are identical) which favour over-fitted models
(Hawkins 2004). Various techniques, including hold-out, bootstrap and cross
validation, are proposed in the literature to tackle this problem (see for example
Arlot and Celisse (2010) and James et al. (2013, Ch. 5)).

In hold-out methods, the available data D is divided into two mutually
exclusive subsets; a training set Dy.qin and a test set Dyess. The training data is
used to train or fit the model. Once the training is performed, the accuracy is
measured on the unseen test dataset.

Cross-validation methods are proposed to better utilize the limited amount of
available data. The dataset is repeatedly divided into a training and test dataset,
and the model is trained and tested repeatedly. In k-fold cross-validation, the
dataset D is split into k mutually exclusive sets Dy, D, ..., D of approximately
equal size. The training process is repeated k times, and for each iteration
t € 1,...,k, the training is performed using a dataset D \ D;, and testing is
performed on D;. Different strategies can be applied when splitting the dataset
into folds. The most common strategy is, perhaps, to randomly assign each point
to a fold. Another common approach is called stratification, where points are
assigned such that each fold is a good representative of the whole. For example
in classification problems, each fold contains approximately the same proportion
of labels as the original dataset.
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2. Background

The cross-validation accuracy estimate is based on the overall prediction
error. Brandsater and Vanem (2018) suggest to analyse the distribution of
the fold specific accuracy estimates, for example using box plots, illustrating
how the accuracy estimates are vulnerable for changes in the distribution of the
test dataset. Such analyses are of particular interest when the observations are
dependent, such as for example for sequential sensor data.

Dependency between the training and test dataset can result in overly
optimistic estimates of model performance (Arlot and Celisse 2010). Roberts
et al. (2017) argue that a similar situation can occur when there are
dependence structure in the data. If the test data are drawn nearby in the
dependency structure, the independence between the training and test data
can be compromised. This for example applies to datasets containing sensor
measurements collected in sequential time. Examples of this effect is presented
by Vanem et al. (2017) and Vanem and Brandseaeter (2019), where two different
splitting techniques are applied. First, the data are split into two parts randomly
without accounting for the autocorrelation. With this approach, the clustering
on the training and test data yields very similar distribution of observations
across the clusters. Secondly, parts of the analysis is repeated using a different
splitting approach, where the first 75% of the data are used for training and
the remaining 25% of the data are reserved for testing. This approach gives
completely different results, with an anomaly rate close to 75%. This exercise
both illustrates the importance of accounting for the temporal dependency, as
well as the importance of representative training data.

We refer to the latter splitting approach as blocking. In k-fold blocked
cross-validation, the dataset is sliced into k folds at some central points of the
dependency structure, for example in time or space (Bergmeir and Benitez 2012).
A year of time series data can for example be split into 12 folds such that each
fold contains data from a specific month. Roberts et al. (2017) claim that block
cross-validation provides accuracy estimates that are closer to the true value.
Through a series of simulations and case studies, they show that block cross-
validation is nearly universally more appropriate than random cross-validation
if the goal is prediction to new data or predictor space, or for selecting causal
predictors.

Furthermore, k-fold block cross-validation can be modified to reduce the
dependency between the folds by excluding from the training data the data in
the folds which are adjacent to the validation set. That is for each k € 1,..., K
the models that are tested on Dy are trained on D\ {Dy_1 U Dy U Dy41}.

By repeating the cross-validation multiple times using different splits into
folds, a better Monte-Carlo estimate to the complete prediction accuracy can be
achieved. It is assumed that repeated k-fold cross-validation stabilizes the error
estimation, and therefore reduces the variance of the cross-validation estimate
(Kohavi 1995). However, similar to Rodriguez et al. (2009), we have not seen
proof of this.
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Enhanced testing

2.6 Enhanced testing

The knowledge of a data-driven method, for example a deep neural network, is
limited to the examples it has seen during training (Wood et al. 2019) and the
implicit assumptions of the model. Thorough investigation and analysis of the
dataset can therefore contribute to increased trust in the model.

To ensure that a model’s performance is thoroughly tested, an extensive test
dataset is often used. For example in the automotive industry, large amounts
of real world data from ordinary operations is gathered to test autonomous
navigation systems (Fei-Fei 2010; Pei et al. 2017a; Zhao and Peng 2017).
Additionally, simulated real-world data is also sometimes used to massively
increase the amount of data (Madrigal 2017; Zhao and Peng 2017). Pei et al.
(2017a) claim that for applications involving autonomous navigation in the
automotive industry, this is usually completely unguided. Hence, due to the
large input space of real-world scenarios, none of these approaches can hope to
cover more than a tiny fraction (if any at all) of all possible corner cases. Here,
a corner case is defined as an unusual, but far from impossible, scenario. As an
example, again from the automotive industry, a Tesla in autopilot mode recently
crashed into a trailer because the autopilot system failed to recognize the trailer
as an obstacle due to its “white color against a brightly lit sky” and the “high
ride height” (Lambert 2016).

Unfortunately, deep learning methods and other data-driven methods, despite
impressive capabilities, often demonstrate unexpected or incorrect behaviours
in corner cases for several reasons such as biased training data, overfitting, and
underfitting of the models (Pei et al. 2017a). Various methods are proposed
to optimize testing and to identify erroneous behaviours of the different data
driven models. In Brandsaeter and Knutsen (2018) we survey different methods
to increase the coverage of a test which is performed on a limited dataset by
slightly perturbing the original test data. In image classification problems, the
test image can for example be slightly rotated, and the brightness and contrast
can also be slightly changed, see for example Pei et al. (2017a), Pei et al. (2017b),
and Tian et al. (2017)). Similarly, Liu et al. (2017) propose an unsupervised
image-to-image translation framework based on Coupled Generative Adverserial
Networks (CoGANSs), demonstrating how a scene can be transformed to another
one, including transformations of images from sunny to rainy, day to night,
summery to snowy, and vice versa.
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Chapter 3

Summaries of the papers and main
contributions

3.1 Paperl

Brandsaeter, A. and Vanem, E. (2018). Ship speed prediction based
on full scale sensor measurements of shaft thrust and environmental
conditions. Ocean Engineering, 162:316 — 330.

A ship’s speed through water is estimated using different statistical and
machine learning models. The covariates used in the regression include shaft
thrust, the ship’s motions and wind measurements. Accurate estimates of ship
speed are important to be able to optimize ship design and operation, and to
quantify the effect of modifications. In this example, the ship’s speed through
water is measured with an additional sensor, and hence, the response is known.
The labelled dataset allows us to train a model which captures patterns and
inherent dependencies between the thrust and the environmental forces. This
can also allow us to detect anomalies by analysing the difference between the
measured speed and the model output.

Our main contribution in this paper is to demonstrate how regression models
such as linear regression, projection pursuit and generalized linear models can
be implemented for this application. We also discuss different evaluation and
cross-validation techniques, and demonstrate the importance of taking time-
dependency into account. Furthermore, we advocate presenting the predictor’s
performance on the different test sets of the cross validation, to communicate
robustness and credibility in the estimates.

3.2 Paperli

Brandsaeter, A., Vanem, E., and Glad, I. K. (2019). Efficient on-line
anomaly detection for ship systems in operation. Expert Systems with
Applications, 121:418 — 437.

An anomaly detection technique combining signal reconstruction and residual
analysis is presented. The reconstruction is performed using Auto Associative
Kernel Regression (AAKR), and Sequential Probability Ratio Test (SPRT) is
used for residual analysis. The dataset used to train the model is assumed
to comprise data from normal operation exclusively, and anomalies are only
present in the test data. Our main contributions are the following three novel
comprehensive modifications:
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3. Summaries of the papers and main contributions

1. We propose a novel cluster-based method to select memory vectors to be
considered by the AAKR. The advantage of the cluster based method is
the increased speed. The computation time of the AAKR grows rapidly
when the size of the training data increases, and we demonstrate how the
presented cluster based memory vector selection technique can be used
to dramatically decrease the computation time, at the same time as the
performance is kept at an acceptable level. The methodology is applied
to multiple imbalanced benchmarking datasets, in addition to a dataset
with sensor signals from a marine diesel engine in operation. Most of the
anomalies are quite subtle, restrained enough not to easily be revealed
by for example analysing scatter plots of the data. Results of the cluster
based methods are presented and compared to the traditional set-up, and
the analyses show that comparable results are achieved, even when very
few clusters are used.

2. We also propose a generalization of the distance measure used in the signal
reconstruction, which enables the users to impose system-knowledge on the
anomaly detection framework making it possible to distinguish response
and explanatory variables, and to optimize the weighting of the different
features. This generalization of the AAKR method can be particularly
useful when we have reason to assume that the sensor signals correctly
return the actual value (no faults in the sensors), and when we are not
interested in finding anomalies in all the sensor signals. For example,
if we are interested in detecting engine problems, we do not want an
alarm whenever we encounter abnormal combinations of environmental
conditions.

3. Finally, we introduce a credibility estimate which enables the SPRT method
to reach a conclusion faster when it operates in regions close to instances
which are well represented in the training dataset, and allows it to use
more time to reach a conclusion when it operates in less explored regions.

3.3 Paperlil

Vanem, E. and Brandsseter, A. (2019). Unsupervised anomaly
detection based on clustering methods and sensor data on a marine
diesel engine. Journal of Marine Engineering € Technology, pages
1-18.

A selection of cluster-based methods for anomaly detection are explored,
including mixtures of Gaussian models, density based clustering, self-organizing
maps and support vector machines.

Our main contribution in this paper is to demonstrate benefits and deficiencies
with the different cluster-based anomaly detection methods. In general, the
performance of the methods is found to be good. However, changing our
evaluation technique from cross-validation with random splitting to blocked
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Paper IV

cross-validation, dramatically changes the results, demonstrating the importance
of having representative training data when performing data-driven anomaly
detection based on sensor data.

3.4 PaperlV

Brandsseter, A. and Knusten, K. E. (2018) Towards a framework
for assurance of autonomous navigation systems in the maritime

industry. In Safety and Reliability—Safe Societies in a Changing
World : Proceedings of ESREL 2018, (pp. 449-457). CRC Press.

In this paper, we discuss potential assurance frameworks for autonomous
navigation of maritime surface ships, with emphasis on testing and verification
of the ship’s perception performance and capacities. We propose and describe a
range of recommended practices and tools that can be applied to test and validate
the ability, performance and robustness of safety critical systems whose decisions
are based on data-driven methods. These practices and tools originate partly
from traditional statistical analysis and partly from testing and assurance of
autonomy in the automotive industry. Challenges related to machine perception
that are unique or particularly pronounced in the maritime domain are discussed,
and we suggest how the recommended practices and tools should be used and
possibly adapted to suit the maritime domain.

3.5 PaperV

Brandsseter, A. and Glad, I. K. (2019). Explainable Artificial
Intelligence: How Subsets of the Training Data Affect a Prediction.
Submitted for publication

We propose a novel approach which allows us to explore and investigate how
the training data affects the predictions made by any black-box method. We
call the explanations Shapley values for training data subset importance. The
Shapley value concept originates from coalitional game theory, developed to
fairly distribute the payout among a set of cooperating players. We extend this
to training data subset importance, where a prediction is explained by treating
the subsets of the training data as players in a game where the predictions are
the payouts.

Since a prediction made by data-driven methods relies heavily on the data
used to train the model, we believe explanations should convey information
about how the training data affects that prediction. Koh and Liang (2017)
suggest that we can better understand a model’s behaviour by studying how the
model is derived from its training data, and propose to identify training points
most responsible for a given prediction. Similarly, our proposed Shapley values
quantify the importance of different subsets of the training data, allowing new
aspects of the reasoning and inner workings of a prediction model and learning
method to be conveyed. The presented methodology is suggested as a supplement
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3. Summaries of the papers and main contributions

to established explanations and interpretations methods such as methods based
on feature importance, influential functions and case-based explanations.
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Chapter 4
Discussion

4.1 Dependent signals

Often, data from a large number of sensors are captured, and the different sensors
are generally not independent of each other. For example, temperature sensors
placed on different parts of an engine will often suffer from spatial dependencies.
Sensor data which are captured and stored in sequential time are also prone
to temporal dependencies. Preferably, the complexity of the full sensor system
should be taken into consideration when designing methods and models to
analyse. In many cases, standard methods can still be used, but caution should
be taken when evaluating the results, and cross-validation techniques which take
the dependency structure into consideration should be applied.

If the sensor signals are highly correlated, the AAKR method is not
satisfactorily robust (Baraldi et al. 2012), and the reconstructed signals are
less accurately estimating the values of the signals in normal conditions (Baraldi
et al. 2015b). The low robustness gives rise to two problems: (1) increased
detection delay, that is the time before an anomaly is detected, and (2) spillover,
which occurs when anomalies are detected in signals with normal behaviour.
To overcome this problem, Baraldi et al. (2015b) propose a modification of the
AAKR method. Their idea is to modify the weights with a penalty vector to
give less importance to the signals with large normalized residuals. One main
assumption is fundamental for the proposed modification: the probability of
occurrence of anomalies in a small number of signals is higher than the probability
of anomalies occurring in a large number of signals.

Dependency between covariates can also make it challenging to understand
and interpret even simple linear models. In observational studies and machine
learning problems, it is very rare that the features are statistically independent
(Aas et al. 2019). Nevertheless, several existing explanation methods assume
independent features, which may give wrong explanations.

4.2 Fault free data

A key assumption in the anomaly detection methods presented in Section 2.2.1
is that all training data is fault free. It is therefore recommended that different
data quality checks and outlier detection are performed before deployment. In
the cluster-based methods presented in Section 2.2.2, we do not assume that
the training data is fault free, but we assume that the number of faults in the
training data is small. There are, however, many ways new data can fall outside
the clusters without being a fault. Hence, the cluster-based techniques presented
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4. Discussion

here are recommended for initial screening, and should be used in combination
with other models (Vanem and Brandsseter 2019).

4.3 High dimensions

The methods and applications demonstrated in this thesis are performed on
datasets with multiple sensors or features (typically between 5 and 10 different
features). However, we have not investigated datasets in really high dimensions,
where measuring similarity and dissimilarity can be difficult and lack practical
meaning. This effect is referred to as the curse of dimensionality, meaning
the distance measures become unstable. As the dimensionality increases, the
distance to the nearest data point approaches the distance to the farthest data
point (Beyer et al. 1999). Furthermore, the presence of irrelevant features can
eliminate the potential clustering tendency, and the number of irrelevant features
grows with dimension (Berkhin 2006).

4.4 Importance of representative data

Vanem and Brandsaeter (2018) demonstrate the importance of representative
training data for cluster-based anomaly detection, and discuss challenges related
to ensuring and testing that the data are representative. Brandsaeter et al. (2016)
demonstrate and discuss challenges with representative training data related
to signal reconstruction using AAKR. AAKR cannot be effectively applied to
reconstruct data outside the training region; no non-linear models have the ability
to correctly extrapolate beyond their training region (Hines et al. 2008). Hence,
whenever the system which is monitored faces operating conditions which are
unseen in the training data, we cannot expect the accuracy of the reconstruction
to be satisfactory. If we use parametric models, retraining with a dataset which
is representative of the new operating condition must be performed, or new first-
principles models must be derived. For most non-parametric models, including
AAKR, the training data memory matrix may be either replaced or supplemented
with new data that are characteristic of the systems current operating state
(Hines et al. 2008).

4.5 Transients

Anomaly and fault detection for condition monitoring of components which are
operated in different operational modes and during transients can be particularly
challenging. It is for example common that several alarms are triggered during
start-up of a ship engine. When reconstruction methods such as the AAKR
are used, it might be advantageous to develop models dedicated to the different
operational modes. This could also allow the alarm limits to vary in the different
modes, depending on the operation’s criticality. To achieve this, the training data
should be divided and used to fit different models. This will result in reduced
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Lack of specification

computational efforts and increased model reconstruction accuracy (Baraldi et al.
2012; Al-Dahidi et al. 2014).

Baraldi et al. (2012) discuss and propose new approaches to face these
challenges related to transients. The results of their proposed approaches are
presented on a case study concerning condition monitoring of a gas turbine during
start-up transients. The first proposed approach is to develop operational mode
specific reconstruction models. This leads to remarkably reduced computational
effort, however it is reported that the robustness at the borders between two
operational modes is not always satisfactory. The use of a signal processing tool
based on the Haar wavelet transform, which takes into account not only the
present value but also the past evolution of the signal, has also been proposed.
It is reported that the approach leads to more robust reconstructions in the
case of abrupt changes. However, for smooth transients the reconstructions are
reported to be slightly less accurate.

4.6 Lack of specification

The lack of specification is an important challenge when testing and verifying a
model, especially for use in safety critical domains. A training set is necessarily
incomplete, and it is not possible to guarantee that it is even representative of
the space of possible inputs (Salay et al. 2017). For example, machine perception,
as discussed in Brandseseter and Knutsen (2018), is a functionality which is
not completely specified. What is for example the specification for recognizing
a sailing boat? Problems which involve advanced functionality that are not
completely specifiable has motivated the implementation of machine learning
based software which learns from examples rather than being programmed from
a specification (Salay et al. 2017; Spanfelner et al. 2012). Based on experimental
data reviewed, Rouder and Ratcliff (2006) argue that human categorization is
also dependent on stored exemplars, in addition to abstracted rules.

4.7 What is a good explanation?

Lipton (2016) claims that although interpretability is often suggested as a remedy,
few articulate precisely what interpretability means or why it is important. The
paper discusses the interpretability of human decision-makers, and what notion of
interpretability these explanations satisfy, and argues that human explanations
seem unlikely to clarify the mechanisms or the precise algorithms by which
brains work. Nevertheless, the information conferred by an interpretation may
be useful.

Due to their subjective nature, it is challenging to quantify and rate the
quality of different interpretations and explanations (Hall and Gill 2018). An
expert and a lay user might for example prefer different explanations. Miller
(2018) claims that most of the research and practice in the area of explainable Al
seems to use the researchers’ intuitions of what constitutes a 'good’ explanation.
Miller et al. (2017) argue that this could lead to failure, and that the model
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4. Discussion

experts are not in the right position to judge the usefulness of explanations to
lay users.

A possible approach to test the quality of an explanation, is to use human
subject evaluation, assuming that good model explanations are consistent with
explanations from humans who understand the model (Lundberg and Lee 2017).
One can sometimes also test if explanations can guide users to select the best
predictior or classifier, or to improve it (Ribeiro et al. 2016).
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Chapter 5
Conclusion

In this thesis we have presented five papers concerning the development and
assurance of data-driven methods, mainly with applications from the maritime
industry, including analysis of sequential sensor data, anomaly detection,
classification and regression, and explainability of black-box models.

An important topic throughout the work has been the importance of thorough
assurance processes and appropriate cross-validation techniques for performance
evaluation. In particular, we have discussed challenges and possibilities for
assurance of autonomous navigation of surface ships. Because the machine
perception and situational awareness algorithms are expected to be partly or fully
based on machine learning algorithms, including deep learning, whose functional
reasoning is challenging or even impossible to fully understand and predict, the
assurance and verification of such systems are fundamentally different from a
traditional assurance and verification process based on physical understanding.
We have reviewed several methods for testing autonomous navigation systems,
proposed and used mainly in the automotive industry, and have discussed how
these methods can be adapted, combined and applied to form a framework for
assurance of autonomy in the maritime industry.

We have also presented a novel data-centric method to explain individual
predictions based on Shapley values for training data subset importance. The
proposed method allows the user to explore and investigate how different parts
of the training data affect a prediction. The use of our proposed method,
in combination with other well-established methods for explainability and
interpretation, can provide better understanding of a prediction made by an
opaque machine learning and statistical model.

Furthermore, we have demonstrated the usefulness of data-driven methods for
anomaly detection in maritime applications. Three comprehensive modifications
are proposed for the anomaly detection framework based on reconstruction with
auto associative kernel regression (AAKR) and residuals analysis using sequential
probability ratio test (SPRT). The first modification includes clustering of the
training data (memory vectors) considered by the AAKR. The training data is
replaced by clusters which represent the normal operating regions. The use of
this method drastically reduces the computation time. The second modification
is a generalization of the distance measure. We demonstrate how this enables the
possibility to distinguish between explanatory and response variables. Finally, a
regional credibility estimation used in the residuals analysis is proposed. This lets
the time used to identify if a sequence of query vectors represents an anomalous
state or not depend on the amount of data situated close to or surrounding the
query vector.
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The primary goal of this study is to adapt and validate various regression models to predict a ship's speed
through water based on relevant and available full scale sensor measurements from a ship, including mea-
surements of external environmental forces. The wind is measured by on-board wind sensors, and the effect of
the waves is measured by motion reference units (MRUs) installed on the ship, measuring motions in six degrees
of freedom; three translational motions and rotations about these. Accurate speed estimates, which relate di-
rectly to the estimates of the propulsion efficiency, fuel efficiency and pollution, are vital to be able to optimize
ship design and operation. We demonstrate how regression models such as linear regression, projection pursuit

(PPT) and generalized additive models (GAM) can be easily implemented for this application. A simple re-
gression model based on the well-established relationship between ship speed and shaft thrust represent a
benchmark model towards which the other models are compared.

1. Introduction

Accurate estimates of ship propulsion and fuel efficiency are im-
portant to be able to optimize ship design and operation. Deviations
between the measured ship speed and the speed predictions based on
propulsion power and other internal and external conditions can be
indicative of an anomaly, such as e.g. hull, propeller or engine damage.
Furthermore, the effect of modifications can be quantified. This can
include modifications of the ship hull, such as for example hull cleaning
or bow optimization, installation of new equipment such as kites, fixed
sails or batteries for machinery optimization, propeller optimization
such as contra rotating propeller and various efficiency improvement
devices, and operational optimization measures such as weather
routing and trim and draft optimization. The logistics planning can also
be optimized with accurate of time of arrival estimation.

Due to the complexity of a modern ship and its exposure to external
factors such as wind, waves and currents, estimating the ship efficiency
accurately is not an easy task. Various methods are described in lit-
erature and used by the industry. The methods can be divided into four
main groups as suggested by (Petersen et al., 2012):

1. Traditional and standard series methods which typically rely on a
set of parameters describing the hull (Savitsky, 1964; @yan, 2012;
Holtrop and Mennen, 1982),
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2. regression based methods based on a set of sensor measurements
(Petersen et al., 2012; Bocchetti et al., 2015; Mao et al., 2016),

3. direct model tests in test tanks (Chuang and Steen, 2011), and

4. computational fluid dynamics (CFD) (Peri et al., 2001; Sadat-
Hosseini et al., 2013; Ozdemir and Barlas, 2016).

The methods are often ordered on a scale between methods that are
governed by physical laws and empirical or data driven methods
(sometimes referred to as black box methods) that are based on sta-
tistical inference of historical data. Due to the fact that the data driven
methods require little knowledge of the physical system (Coraddu et al.,
2017) and there is no need to manually build a model of the data, these
methods can be easily implemented in marine operations; making such
technologies a lean alternative to complex tailor-made analytics
(Brandsater et al., 2016). At the same time, the data driven methods
can be unsatisfactory in terms of physical explanation and it might
require a significant amount of data to be sufficiently accurate (Vanem
et al., 2017; Petersen et al., 2012).

The primary goal is to survey various regression models to estimate
the ship speed through water based on relevant and available sensor
measurements of the shaft thrust and external environmental forces
from wind, waves and currents. The wind is measured by on-board
wind sensors, and the effect of the waves is measured by motion re-
ference units (MRUs) installed on the ship, measuring motions in six
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degrees of freedom; three translational motions and rotations about
these, and the sea currents are incorporated in the measure of ship
speed through water. The speed through water y relates directly to the
propulsion efficiency which is commonly defined as e,,,, = 2, where p is
the propulsion power. It is also linked directly to the fuel efficiency
Cfiel = %, where f is the energy in the consumed fuel, as defined by
(Petersen et al., 2012).

We work towards a better understanding of how the external con-
ditions affect the ship's speed, propulsion and fuel efficiency, and aim to
be able to quantify these effects. Several case studies using different
methods are described in the recent literature, both with main focus on
propulsion efficiency estimation (Petersen et al., 2012; Vanem et al.,
2017; Chuang and Steen, 2011; @yan, 2012; Holtrop and Mennen,
1982; Mao et al., 2016) and fuel efficiency and emission estimation
(Trodden et al., 2015; Bialystocki and Konovessis, 2016; Coraddu et al.,
2017; Rakke, 2016; Bocchetti et al., 2015).

2. Data description

This study is based on an extended version of the dataset used in
(Vanem et al., 2017). For completeness, parts of the data description
provided in (Vanem et al., 2017) is rendered in the following with
minor modifications.

The dataset contains variables associated with the efficiency of the
ship machinery system, such as the speed through water (knots), pro-
pulsion power [kW] and shaft thrust (N). The shaft thrust is assumed to
be proportional to the propulsion power over speed over ground. Other
variables included in the dataset are related to the ship's motions, wind
speed relative to the ship and trim and draft. These variables represent
external factors and are used to explain variation in the efficiency and
ship speed.

The ship is installed with two motion reference units (MRUs)
measuring the ship's motion in all six degrees of freedom (heave, surge,
sway, roll, yaw and pitch). From the raw motion data recorded at 5 Hz
various integrated parameters are stored every 30 s, calculated from the
preceding 15min time record of the motions. The integrated para-
meters reported by the system include the first five spectral moments of
each motion signal (m,, my, , m3 and my), the mean, standard deviation,
skewness and kurtosis of the signal as well as the maximum and
minimum values during the time window. Also the spectral peak period
T, and zero crossing period T, were recorded.

Out of these parameters many are not relevant for the present
analysis and are not considered here. Besides, some of the parameters
carry redundant information and can be derived from other parameters,
such as the standard deviation of the signal o= ./m, and
T, = Tp, = /mo/m,. We therefore limit ourselves to consider m, and T,
for each of the degrees of freedom. The zeroth spectral moment m, = o
is the total energy of the motion spectrum and indicates the magnitude
of the ship motion. Note that for a wave record the significant wave
height is usually defined as Hy = 4,/m,. Likewise, T, indicates the ty-
pical period of the different motions. Since the periodic ship motions
are primarily an effect of the waves, both m, and T, can be considered
as proxies for the real wave conditions in the sense that m, will be
proportional to the real significant wave height and T, will be similar to
the typical period of the wave field. Moreover, the ship response in the
different degrees of freedom will to a certain extent reflect the wave
direction relative to the ship.

In addition to the ship motions, representing the effect of the waves,
the wind speed relative to the ship is recorded; the wind component
perpendicular to the ship (Wind-y) and the wind parallel to the ship
(Wind-x). Wind-x is defined so that a positive value means wind
blowing in the same direction as the ship speed. Two other parameters
that are important for the hydrodynamic resistance of a ship is the draft
and trim, which have also been recorded and included in the present
analyses. The draft is defined as the vertical distance between the
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waterline and the bottom of the hull and is naturally related to the
cargo level of the ship, while the trim is the difference between the
forward and aft drafts.

For the analysis presented in this paper the original 30 s data were
down-sampled to 5min resolution by calculating the average values
within each 5 min window. This makes the dataset smaller and easier to
handle, and reduces the time dependency.

The data have been collected from an ocean-going ship over ap-
proximately 10 months in normal operation. Due to data quality issues,
a large fraction of the data were removed in initial cleaning and outlier
removal. For example when the difference between the measured speed
through water and speed over ground is significantly larger than rea-
sonable current, at least one of the measured speed sensors must report
wrong values. Although the measurement of the speed through water is
known not to be most reliable (van den Boom and Hasselaar, 2014), it is
difficult to know which reading is wrong, hence we remove the data
point. After the initial filtering and outlier removal, the dataset used in
the analysis contains about 33000 data points, which correspond to
about 115 days of data.

Initially, 18 selected variables are included in the analysis. Trace
plots of the data are shown in Fig. 1. The upper plot shows the speed
and thrust data series, the next shows all the ship motion data and the
two lower plots show the wind and the trim and draft data, respectively.
Each point on the horizontal axis represents the average sensor value in
the previous 5 min.

A correlation plot showing the linear correlation between the var-
ious variables in the data set is shown in Fig. 2. It is seen that the a
highly correlated structure is present in the dataset.

3. Methodology
3.1. Regression models

We employ various regression models to describe and predict the
data, i.e., linear regression models, generalized additive models (GAM)
and projection pursuit regression (PPR) models. Other models including
various regression trees and kernel density estimation were also ex-
plored to some extent. We were not able to tune these models to provide
accurate predictions, hence they are omitted. In the following, a brief
introduction to each of the models will be provided. Reference is made
to textbooks such as (Hastie et al., 2009) for a more thorough in-
troduction.

The response variable will be denoted Y and the explanatory vari-
ables will be denoted X = (X, X;,...,Xp). The basic problem is to con-
struct a prediction rule for predicting Y conditioned on the explanatory
variables based on a stochastic model on the form

Y=fX) +e, ®

where ¢ represents stochastic white noise and is often modelled as a
zero-mean Gaussian variable. Different models for the f(-) function
give rise to different regression models. Assuming N observations, the
observed values are ¥ and x; for j =1, ..,N.

3.1.1. Linear regression models
In linear regression one assumes a linear model on the following

form:
Y =p3,4BX +BXo + . +BpXp + & @

The error made in such predictions are referred to as the residuals,
and the residual sum of squares (RSS) will be a function of the model
parameters. It is defined as

N
RSS(B) =Y, 0y 57
i 3

and the fitted model parameters ﬁ;, p =0, ..,P are estimated from the
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Fig. 1. Trace plot of the data. Each point on the horizontal axis represents the average sensor value in the previous 5 min.
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3.1.2. Generalized additive models (GAM) Wind_x / ah
The generalized additive model has the form Wind_y /|
0.8
: S 22
Y=a+ pr(Xp)+£ o

-

G)

where fp(-) are smooth functions of one covariate (Wood, 2006). Esti-

p=1 . . . . .
Fig. 2. Correlation plot of the linear correlations in the data from the sensors

signals used in the models. Dark blue color indicates strong correlations, white

mation of the smooth functions to fit the data as well as possible and to
be as smooth as possible can be formulated as minimization of a pe-
nalized sum of squares, where a tuning parameter A is introduced to
control the degree of smoothing as follows:

P
> Sy,

p=1 1t

N
PRSS(oc,fp) = Z y—a-—
j=1

P
D) [+ 4
p=1 6)
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indicates no correlations, and dark red indicates strong negative correlation.
(For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

If the tuning parameter 4 — oo, the estimate for f will approach a
straight line, while choosing 4 = 0 results in an un-penalized regression
spline estimate. We choose the tuning parameter A using generalized
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cross validation (GCV), applying the mgcv package in R (Wood, 2017).

To impose additional smoothing, we inflate the model degrees of
freedom in the GCV by choosing a constant multiplier y (Wood, 2017).
We report results using

y = 0.5xlog (P) (7)

where P is the number of explanatory variables. We refer to this model
as GAM smooth.

A GAM model based on a subset of the variables is also fitted and the
results are reported. The subset contains the variables believed to be
most important, but it is not necessarily the optimal subset. The fol-
lowing variables are selected: Shaft thurst, Heave (MO0), Heave (T02),
Surge (T02), Sway (MO0), Roll (T02), Yaw (T02), Wind-x, Wind-y and
trim. This model is referred to as GAM selected.

3.1.3. Projection pursuit regression (PPR) models

A further generalization of the generalized additive model can be
obtained where the smooth functions are allowed to be non-linear
smooth functions of some linear combinations of the covariates X.
Projection pursuit regression models are such models on the form

m=1

M
F@ =By + D, gulwnX) =B, +
m=1 (8)

The g,’s are smooth functions (called ridge functions, varying only
in the direction defined by the vector w,,) estimated from the data to-
gether with the direction vectors w,. The direction vectors are nor-
malized, ||w,,|| = 1 and one must choose parameter M and smoothness
of each of the g,’s (tuning parameters). Note that the scalar variable
Vi = wlX is the projection of X onto the unit vector w,,. Projection
pursuit regression models are able to handle interaction effects between
variables and are in fact universal approximators in that they can ap-
proximate almost any function for large M. We report results from
projection pursuit models using 3 and 10 terms.

3.2. Baseline regression method

The above mentioned methods use wind and waves measurements
as well as shaft thrust as explanatory variables. We compare the accu-
racy of these methods with predictions produced using a baseline
method which does not take weather effects into account. The baseline
model is based on the following well known relationship between the
ship's speed and power demand in calm sea conditions (Tupper, 2004)

YZ
X ~—.

S

NEE
P

e N

9

Here, A. denotes the admiralty coefficient which is assumed to be
constant for the ship, and A denotes the ships weight displacement
which we also assume to be constant. The speed through water [knots]
is denoted by Y and the installed power [kW] is denoted by P. The shaft
thrust [kN], denoted by S, is assumed to be approximately proportional
to power over speed.

Based on the this relationship we construct the following simple
baseline method for the ship's speed through water:

Y =BS +¢
where S; is the measured shaft thrust, ¢; is the prediction error, and f is a
constant calculated from the training data

2 J—
Qi 7Y _Y
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where 2, denotes the training dataset. This  minimizes the sum of
squares:
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Fig. 3. Prediction using the baseline method. Each point on the horizontal axis
represents the average sensor value in the previous 5 min. The black line shows
the observed speed through water, and the green line shows the speed through
water predicted by the baseline method. The red dotted vertical lines indicates
the boundry between the different folds. Here we use 10-fold cross validation.
(For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

We refer to this method as the baseline method. Due to the diffi-
culties comparing our results with previous work (Petersen et al.,
2012), we use this method to benchmark the different models explored
in this paper.

The speed through water (STW) predictions produced by the base-
line method are displayed in Fig. 3. Here, we use 10-fold cross vali-
dation, and the 10 folds are distinguished in the figure by the vertical
red dotted lines, see section 3.3 for further explanation.

3.3. Cross validation

It is well known that when we evaluate predications from a statis-
tical model on the dataset used to train the model, our accuracy esti-
mates tend to be overoptimistic (Arlot and Celisse, 2010). To address
this issue, a basic approach is to divide the dataset Z into two exclusive
parts Z; and Z; where one part Z is used to train the model, and the
other 7 is reserved for validation. To build robust and accurate models
we ideally want to use all data available. The same applies to testing;
we want to test our models in all situations, not only on a subset. Cross
validation introduces various methods of repetitively splitting the data
into training and validation datasets. Each of the splits provides a va-
lidation estimate, and by averaging over all the estimates we get a cross
validation estimate. A range of different splitting techniques can be
applied, providing different cross validation estimates. See for example
(Arlot and Celisse, 2010; Kohavi, 1995) for a brief overview of the most
common splitting techniques.

3.3.1. Standard K-fold cross validation

In this study we restrain to K-fold cross validation, which in its
standard form splits the original dataset & into K subsets (folds)
D, ...k, as described in (Arlot and Celisse, 2010). Here, we choose
the sets to be mutually exclusive with equal size. For each k € 1,2, ..,K
the models are trained on &, = /%, and tested on Z. Furthermore,
we experiment with several K-s and report results with K = 10, 20, 50
and 3385. When K = 3385, each fold contains 10 points.
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3.3.2. Modified K-fold cross validation

Cross validation is applicable to almost any algorithms and frame-
works, involving regression, classification and many others (Arlot and
Celisse, 2010). The only assumptions needed is that the data is identi-
cally distributed and that the training and validation sets are in-
dependent. The data itself do not need to be independent (Arlot and
Celisse, 2010). In the case where the data is not independent, as is often
the case with date retrieved from continuous sensor measurements, the
independence between the training and validation datasets can be
controlled by choosing 2, and 2 such that

minie g je o i — jl > h

where h is a parameter h > 0.

Modified cross validation excludes from the training data the data in
the folds which are adjacent to the validation set, that is for each
k€1, ...K the models that are tested on %, are trained on
RZk-1 U D U Dy}

3.3.3. Repeated K-fold cross validation

To make sure that the results are not strongly dependent on how the
folds are selected, we repeatedly run the K-fold cross validation with
new selections. When we run K-fold cross validation with L repetitions,
we divided the original dataset & into K subsets (folds) in L different
ways, such that no folds selected are equal.

That is, we choose &}, the dataset of the k-th in the I-th repetition,
such that 7} # [Zﬁ foralll # 1 and k # 1.

3.4. Model comparison and evaluation

3.4.1. Root mean squared error (RMSE)

After fitting the various models on the training data &, the per-
formance of the predictions are evaluated based on the root mean
squared error (RMSE)

| N

13)

where Y denotes the predicted speed through water based on shaft
thrust and external forces, while Y is the direct speed measurement. N
denotes the number of data points in the validation set. The model with
the lowest RMSE will be preferred.

3.4.2. R-squared
For initial model checking we use the coefficient of determination, R
squared

 Zea G-
Ziel/l o - )_’i)2

This is a measure of how well the regression model explains the total
variation of the response variable. The coefficient varies from 0 to 1,
where 1 indicates a perfect fit of the model to the data. The adjusted R?
introduces a penalty for increasing (effective) number of parameters in
order to avoid overly complex models.

RP=1
a4

4. Analysis and results

If we fit the regression models introduced above using only shaft
thrust as explanatory variable, the prediction accuracy, in terms of
RMSE based on predictions using 10-fold cross validation, are similar
but still worse than the accuracy achieved with the baseline method.
Out of the analysed methods, the linear model achieves the highest
average RMSE of 2.055, some 0.8 % higher than the baseline method.
When we instead use the square root of the shaft thrust as explanatory
variable when fitting a linear model, the obtained RMSE is even slightly
higher. This suggests that we need more elaborate methods to be able to
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Fig. 4. Boxplot of the RMSE per repetition | € 1, ...,7 for the different regres-
sion models, using 10-fold cross validation. For each regression method the box
displays the inner quartile range, and the median is marked with a horizontal
line. The mean value is indicated with a cross, while the actual values are
marked with circles. The whiskers in this plot displays the maximal and
minimal values.

increase our accuracy.

The total RMSE of the different regression models where all the
explanatory variables are utilized, also variables which describe ex-
ternal conditions, are shown in the boxplot in Fig. 4. The RMSE values
per repetition [ € 1, ...,7 are shown, using 10-fold cross validation. For
each regression method the box displays the inner quartile range (the
range between the 25th percentile and the 75th percentile), and the
median is marked with a horizontal line. The mean value is indicated
with a cross, while the actual values are marked with circles. The
whiskers in this plot displays the maximal and minimal values.

We observe that the spread in the results are not very large, which
indicate that the results are not heavily dependent on how we chose to
select the folds. The RMSE of both the linear model and the full GAM
model achieves RMSE values significantly below the baseline model,
with mean values 12 and 16% below the baseline model respectively.
The smoothed GAM and the GAM on selected explanatory variables
achieves average values about 5% below the baseline method. The
same applies to the PPR with 3 terms, while the average RMSE of the
PPR with 10 terms are about the same as the baseline method.

Fig. 5 shows the density of the residuals of the predictions by the
baseline, linear, PPR with 3 terms and GAM models. Here we use 10-
fold cross validation without repetition. The figure indicate that the
predictions are not biased, except for the baseline method which tend to
predict too high values.

Fig. 6 shows a scatter plot with shaft thrust on the horizontal axis
and speed through water on the vertical axis. The observed values are
marked in black, while the predicted values based on the baseline,
linear, GAM and PPR with 3 terms models are marked in green, red,
blue and grey respectively. We note that the predictions based on the
linear, PPR and GAM models have a good spread, while the baseline
model does not take notice of the variations which we believe are in-
duced by the external conditions.
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Fig. 5. Densityplot of the residuals for the different models, using 10-fold cross
validation without repetition. The bandwidth is set to 0.2.
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Fig. 6. Scatter plot of the shaft thrust vs the speed through water and the values predicted using the different models, using 10-fold cross validation.
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Fig. 7. Boxplot of the RMSE per fold k € 1, ...,10, without repetition, for each
regression model.

4.1. Fold specific results

A boxplot of the fold specific RMSE values of the different regression
models is displayed in Fig. 7. Here we have used 10-fold cross valida-
tion without repetition. The GAM model achieves the lowest 75th
percentile, at 1.9, while the baseline method has a slightly lower
median and 25th percentile compared to the GAM model. The linear
model achieves the lowest maximal RMSE value at 2.4, which indicates
robust performance. The results indicate that the baseline method
performs well in many cases, but as we observe from the high maximal
value, which is some 50 % higher than the maximum value reported for
the linear model, it is not robust in all situations.

The R? values, which are calculated for each fold, are displayed in
Fig. 8. The coefficient varies from O to 1, where 1 indicates a perfect fit
of the model to the data. The PPR10 achieves the highest value, fol-
lowed by the full GAM model, and the other PPR and GAM's. The lowest
R? calculated for PPR10 and the GAM model is 0.89, which indicate that
the total variation of the response variable is quite well explained by
the regression model.

1
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[ baseline H PPR10
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Fig. 8. Boxplot of the adjusted R? per fold k € 1, ...,10, without repetition, for
each regression model. The whiskers extend upwards to the largest element that
is less than 1.5 times the inner quartile range higher than the upper quantile,
and downwards to the lowest element. Elements outside this range are con-
sidered outliers, and are marked with a dot, as seen for one of the values using
the baseline model.
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4.2. Comparing folds with calm and harsh weather

To demonstrate the importance of representative training data, and
the different regression models' strengths and weaknesses in this re-
spect, we select two periods which represent calm and harsh weather
and investigates these in somewhat greater depth.

Data from three selected weather sensors; heave, pitch and wind
perpendicular to the ship are displayed in Fig. 9. Fig. 10 shows a scatter
plot of the wind component and the pitch motion. The figures indicate
that calm weather are well represented by fold 2, while the weather
conditions seam to be more severe in fold 9. Fold 2 and 9 are marked in
magenta and cyan respectively.

Fig. 11 shows a scatter plot with shaft thrust on the horizontal axis
and speed through water on the vertical axis. Again, fold 2 and 9 are
highlighted. The observed values from the other folds are marked in
black, while the predicted values based on the baseline models are
marked in green. We observe that the observed values of fold 2 lie close
to the baseline predictions. This indicates that the baseline method
performs well in many cases, including calm weahter (fold 2), but we
also observe that the baseline method is unable to achieve accurate
predictions in harsh weather (fold 9). This is supported by the fold
specific RMSE calculation for the baseline method, as reported in
Fig. 12. It shows that the RMSE of fold 2 is low, while the reported
RMSE of fold 9, where the weather conditions are more severe, is high.

The observed speed through water and corresponding predictions
produced by the baseline, linear and GAM models on fold 2 and 9 are
shown in Fig. 13.

From Table 1, we see that in terms of RMSE, the baseline method
outperforms both the GAM and the linear model in calm weather (fold
2), while in harsh weather (fold 9), the RMSE of both the linear and the
GAM method is more than 40% lower than the baseline method.

4.3. Modified K-fold cross validation

In the modified version of K-fold cross validation the data in the
folds which are adjacent to the validation set are excluded from the
training set. That is for each k € 1,2, ...,K the models that are tested on
9y are trained on /{Zj_1 U Z U Z41}. For example, the training set
used for predictions of the data points in fold 11 in modified 30-fold
cross validation consists of data from fold 1-9 and 13-30.

We observe that the predictions for the corresponding folds in the
standard 10-fold and the modified 30-fold cross validation are similar.
This is supported by the fold specific RMSE calculations, displayed in
Table 2. We note, however, that the RMSE for the predictions made by
the GAM model on fold 4-6 in the 30-fold cross validation differ sig-
nificantly from the RMSE calculation using standard 10-fold cross va-
lidation for the corresponding fold.

5. Discussion
5.1. Changing the numbers of folds in the cross validation

In Fig. 14 the RMSE of the different regression models are displayed
with standard K—fold cross validation for K=10, 20, 50 and 3385. In
addition results using 30-fold modified cross validation is presented.

Clearly, the calculated RMSE values decrease with increasing
number of folds in the cross validations. This is not surprising, due to
the implicit increase in available training data. But it illustrates, how-
ever, that insufficiency in training data can lead to inaccurate predic-
tions (Vanem et al., 2017; Petersen et al., 2012).

5.2. Ensemble methods
By combining the before-mentioned methods we are able to achieve

slightly increased accuracy. For example, on average the GAM model
achieves the best predictions, but we have observed that in cases where
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Fig. 9. Traceplot of data from selected weather sensors;

— Fold 13810 . - - .
o o4 — Fol2 ' heave, pitch and wind perpendicular to the ship. The dataset
f. di Fok9 is divided into 10 mutually exclusive folds with equal size.
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- T i spectively. Each point on the horizontal axis represents the
o | A Lo e . . . .
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Fig. 10. Scatter plot of the wind component perpendicular to the ship and the
pitch motion. The dataset is divided into 10 mutually exclusive folds with equal
size. Fold 2 and 9 of are higlighted in magenta and cyan respectively. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the Web version of this article.)

the pitch motion is higher than usual, as is the case in fold 9, the linear
model performs better. The ensemble model selects the prediction
based on the GAM model when the pitch motion is below the mean
value, and reversely, when the pitch motion is above the mean value,
the prediction based on the linear model is selected.

Furthermore, if we are in an anomaly detection setting, we might
want to make use of the information we have on the speed through
water. We might then create an ensemble method which uses one
model for speed through water above a given threshold, and another
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Fig. 11. Scatter plot of the shaft thrust and speed through water. The green
makers are the predictions based on the baseline method. The magenta and
cyan markers show the observed data in fold 2 and 9 respectively. The data
from the remaining folds are marked in black. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the Web version
of this article.)

model for speeds below. As an example, we observe that the baseline
model achieves better prediction accuracy at high ship speeds com-
pared to the results of the GAM model. Hence we can use the baseline
model at high speeds (for example above 11 knots) and use the GAM for
lower speeds (below 11 knots).

Table 3 reports the RMSE values for the two ensemble methods
described above. As reference, the results of the baseline model, the full
GAM model and the linear model are also reported. The percentage
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Fig. 12. RMSE of the baseline prediction, for 10 different folds. The RMSE value
of fold 2, representing calm weahter conditions, and fold 9, representing harsh
weather conditions, are highlighted in magenta and cyan respectively. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the Web version of this article.)
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Fig. 13. Prediction with different regression models on fold 2 (calm weather)
and 9 (harsh weather), using 10-fold cross validation.

Table 1
RMSE for fold 2 and 9, using 10-fold cross validation, without repetition.
Regression method Fold 2 Fold 9 Total
RMSE % RMSE % RMSE %
Baseline 1.27 0 3.80 0 2.06 0
Linear 1.39 9 2.06 —43 1.80 —-12
GAM full 1.39 9 2.25 —-38 1.76 —-14
Table 2
RMSE for fold 4-6 and 25-27, in modified 30-fold cross validation.
Regression method Fold 4-6 Fold 25-27 Total
RMSE % RMSE % RMSE %
Baseline 1.26 0 3.57 0 2.04 0
Linear 1.40 11 2.00 —44 1.81 -11
GAM full 1.58 25 2.16 —40 1.82 -11

relative difference between the results based on the baseline method
and the other methods are reported in right hand column.
This method seems a bit ad-hoc and might be prone for over fitting.
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Fig. 14. RMSE for the different regression mehods, with K = 5, 10, 20, 50 and
3385 folds. The green bars, marked with 30 m, is the results of the modified 30
fold corss validation. (For interpretation of the references to color in this figure

legend, the reader is referred to the Web version of this article.)

Table 3

RMSE values, including ensemble method, using standard 10-fold cross vali-

dation.
Method RMSE %
Baseline 2.04 0
Linear 1.80 11.9
GAM 1.76 13.7
Ensemble: GAM-Linear (based on pitch) 1.74 -14.7
Ensemble: GAM-Baseline (based on STW) 1.70 —-16.7

Hence, we merely mention it here, and have not investigated it to great
depth. When prediction is not the aim, and we do have information
about the speed, a simple ensemble method could prove to be useful.
Also, comparing the predictions produced by the different methods
could be used as an indicator of the prediction accuracy.

5.3. Insufficient training data

As illustrated above, the amount and quality of the training data
available are critical for the methods explored here. For example, when
a ship is entering a type of operation that is not well represented in the
training data this will often cause inaccurate predictions. Training data
can possibly be ”"borrowed” from sister ships or other ships with similar
design. When the ships are not identical by design, the training data can
possibly be reused after some modifications detailed by for example
simulation software such as (Dimopoulos et al., 2014; Tillig et al.,
2016). Notwithstanding, it should be noted that this of course can both
be work intensive and might introduce biases and inaccuracies.

5.4. Operational mode selection

Typical operational modes of a ship include transit (in different
speeds and loading conditions), harbour, stand by (with or without
anchor) and dynamic positioning. During the different modes, the be-
haviour of the ship changes substantially, and it might therefore be
advantageous to select among different methods based on the current
operational mode. The training data should be divided and used to fit
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different models. This might result in reduced computational efforts
and increased accuracy (Al-Dahidi et al., 2014; Baraldi et al., 2012;
Brandseter et al., 2016).

6. Conclusions

Accurate ship speed estimates, and accompanied propulsion and
fuel efficiency estimates, are vital to be able to optimize ship design and
operation. This paper points at some of the strengths and weaknesses
associated with the use of standard statistical methods for speed pre-
dictions. The results are compared and benchmarked with respect to a
simple model based on the well established relationship between ship
speed and shaft thrust.

In many cases, especially in calm weather conditions, the baseline
method performs well in terms of prediction accuracy. Furthermore, the
various regression models explored were not able to outperform the
simple baseline method when shaft thrust was the only explanatory
variable, but when environmental conditions were included, the accu-
racy of the predictions were significantly increased.

By the models investigated in this work both the generalized ad-
ditive model (GAM) and the linear models prove most useful, with in-
creased accuracy of 16 and 12% compared to the baseline model re-
spectively, using 10-fold cross validation.

When the cross validation was performed on higher number of folds,

Appendix A. Additional figures

Appendix A.1. Increasing the number of folds

Ocean Engineering 162 (2018) 316-330

the relative difference increased significantly, essentially for the GAM
model, which when validated on the 50-fold and the 3385-fold cross
validation, achieved an accuracy increase of 26 and 41% respectively,
compared to the baseline method.

The lower RMSE achieved by the GAM model in the case where the
K—fold cross validation were performed on higher K-s might indicate
that the GAM would perform even better with a more extensive and
more representative dataset available. Also the projection pursuit
models were satisfactory with respect to accuracy when evaluated on a
high number of folds, but they were not able to produce accurate pre-
dictions when the number of folds in the K-fold cross validations were
in the lower range.

It is not surprising that the accuracy increases when the number of
folds increase, since this makes more data available when training the
model. Nevertheless, the large accuracy increase points at the im-
portance of large, relevant, high quality datasets, which is difficult to
obtain.
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Fig. A.15 shows a boxplot of the fold specific RMSE using 50-fold cross validation without repetition
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Fig. A.15. Boxplot of the RMSE per fold k € 1, ...,50, without repetition, for each regression model.
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Appendix A.2. Other performance measures

The mean error %Zfil (3, = %) is reported in the boxplot in Fig. A.16. Again, we use 10-fold cross validation with 7 repetitions. The figure
indicate that the predictions are not biased, except for the baseline method which tend to predict too high values.
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Fig. A.16. Boxplot of the total mean error per repetition I € 1, ...,7 for the different regression models, using 10-fold cross validation.

The relative mean absolute error (MAE) is reported in the boxplot in Fig. A.17. Here we report the results per [ € 1, ...,7 for the different
regression models, using 10-fold cross validation. The GAM model achieves the lowest value, for each of the different cross validations.
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Fig. A.17. Boxplot of the mean absolute error (MAE) per repetition ! € 1, ...,7 for the different regression models, using 10-fold cross validation.

The relative mean absolute percentage error (MAPE) is reported in the boxplot in Fig. A.18. Again, we report the results per repetition! € 1, ...,7
for the different regression models, using 10-fold cross validation.
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Fig. A.18. Boxplot of the mean absolute percentage error (MAPE) per repetition [ € 1, ...,7 for the different regression models, using 10-fold cross validation.
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Appendix A.3. Intermediate results

In Fig. A.19 a diagnostics plot of the linear model is shown. Here, all data are used for training, leaving no data for model validation. In this
situation the obtained adjusted R squared value is 0.807.

Residuals vs Fitted

Residuak

A diagnostics plot for the GAM model is shown in Fig. A.20. Again, all data are used for model fitting. When this is done for the GAM model, the adjusted
R squared value is 0.894. The estimated functions for the GAM model using a selection of the available explanatory variables are displayed in Fig. A.21.
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Fig. A.22 displays the estimated functions for the PPR model with 10 terms. The adjusted R squared value is 0.891.
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Fig. A.22. Estimated functions for the PPR model with 10 terms.
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ABSTRACT

We propose novel modifications to an anomaly detection methodology based on multivariate signal re-
construction followed by residuals analysis. The reconstructions are made using Auto Associative Kernel
Regression (AAKR), where the query observations are compared to historical observations called memory
vectors, representing normal operation. When the data set with historical observations grows large, the
naive approach where all observations are used as memory vectors will lead to unacceptable large com-
putational loads, hence a reduced set of memory vectors should be intelligently selected. The residuals
between the observed and the reconstructed signals are analysed using standard Sequential Probability
Ratio Tests (SPRT), where appropriate alarms are raised based on the sequential behaviour of the residu-
als.

The modifications we introduce include: a novel cluster based method to select memory vectors to be
considered by the AAKR, which gives an extensive reduction in computation time; a generalization of the
distance measure, which makes it possible to distinguish between explanatory and response variables;
and a regional credibility estimation used in the residuals analysis, to let the time used to identify if a
sequence of query vectors represents an anomalous state or not, depend on the amount of data situated
close to or surrounding the query vector.

We demonstrate how the anomaly detection method and the proposed modifications can be successfully
applied for anomaly detection on a set of imbalanced benchmark data sets, as well as on recent data
from a marine diesel engine in operation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Traditionally, sensor based component control is typically rule-
based. A temperature threshold might for example be predefined,

Anomaly detection refers to the problem of finding patterns in
data that do not conform to expected behaviour (Chandola, Baner-
jee, & Kumar, 2009). In other words, anomalies can be defined
as observations, or subsets of observations, which are inconsis-
tent with the remainder of the data set (Hodge & Austin, 2004).
Depending on the field of research and application, anomalies
are also often referred to as outliers, discordant observations,
exceptions, aberrations, surprises, peculiarities or contaminants
(Chandola et al,, 2009; Hodge & Austin, 2004). Anomaly detec-
tion is related to, but distinct from noise removal (Chandola et al.,
2009).

* Corresponding author at: Strategic Research and Innovation, Veritasveien 1,
Hovik, Norway.
E-mail addresses: andreas.brandsaeter@dnvgl.com (A.
erik.vanem@dnvgl.com (E. Vanem), glad@math.uio.no (LK. Glad).

Brandsater),

https://doi.org/10.1016/j.eswa.2018.12.040
0957-4174/© 2018 Elsevier Ltd. All rights reserved.

forcing the system to automatically shut-down if the temperature
surpasses a predefined threshold. The problem with the rule-based
approach emerges when we want to analyse multiple signals, and
base our decisions on the combined behaviour. To illustrate this,
we can consider two signals, x; and x,, where normal behaviour
is located on a circle, with an anomaly in the centre of the cir-
cle (see Fig. 1). While the anomalous point can be easily identi-
fied when we analyse both signals together, it will not be detected
as anomalous if we analyse the signals separately. When we want
to monitor and analyse a system with many signals, the problem
space grows rapidly, making it almost impossible to describe rules
that cover every permutation (Flaherty, 2017). Hence, more sophis-
ticated anomaly detection methods are needed.

An extensive number of anomaly detection methods are de-
scribed in the literature and used extensively in a wide vari-
ety of applications in various industries. The available techniques
comprise (Chandola et al., 2009; Kanarachos, Christopoulos, Chro-
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Fig. 1. Points representing normal behaviour is located on a circle. An anomaly is
located in the middle.

neos, & Fitzpatrick, 2017; Olson, Judd, & Nichols, 2018; Zheng,
Li, & Zhao, 2016): classification methods that are rule-based, or
based on Neural Networks, Bayesian Networks or Support Vector
Machines; nearest neighbour based methods, including k nearest
neighbour and relative density; clustering based methods; and sta-
tistical and fuzzy set-based techniques, including parametric and
non-parametric methods based on histograms or kernel functions.

The fundamental approaches to the problem of anomaly detec-
tion can be divided into three categories (Chandola et al., 2009;
Hodge & Austin, 2004):

o Supervised anomaly detection: Availability of a training data set

with labelled instances for normal and anomalous behaviour is

assumed. Typically, predictive models are built for normal and
anomalous behaviour, and unseen data are assigned to one of
the classes.

Unsupervised anomaly detection: Here, the training data set is

not labelled, and an implicit assumption is that the normal in-

stances are far more frequent than anomalies in the test data.

If this assumption is not true then such techniques suffer from

high false alarm rate.

o Semi-supervised anomaly detection: In semi-supervised anomaly
detection, the training data only includes normal data. A typi-
cal anomaly detection approach is to build a model for the class
corresponding to normal behaviour, and use the model to iden-
tify anomalies in the test data. Since the semi-supervised meth-
ods do not require labels for the anomaly class, they are more
widely applicable than supervised techniques.

Our main motivation in this study is related to anomaly de-
tection in the maritime industry. Modern ships are a highly com-
plex systems, often equipped with thousands of sensors to moni-
tor various features of the system. Our aim is eventually to iden-
tify anomalies and unexpected system behaviour that can repre-
sent faults in the system, but in principle, any behaviour that de-
viates from the behaviour represented in the training data can be
discovered, not only faults.

We repeatedly refer to the maritime case study in many of
the examples and demonstrations. However, the methods we en-

58

visage and the modifications we propose are widely applicable to
anomaly detection problems concerning time series data.

In most industries, including the maritime industry, data from
normal operating conditions are continuously collected on a large
and increasing number of assets. However, comprehensive fault
data are more rare, hence we pursue a semi-supervised approach,
and present a kernel function based non-parametric statistical
anomaly detection technique.

We use an on-line anomaly detection technique, consisting of
two steps. In the first step, the observed signal is reconstructed
under normal conditions. Secondly, the residuals, i.e. the differ-
ence between the observed signal and the reconstructed signal, are
analysed. In this study, the signal reconstruction is performed us-
ing Auto Associative Kernel Regression (AAKR), (see Section 2.1),
and the residual analysis is performed sequentially, with Sequen-
tial Probability Ratio Test (SPRT), (see Section 2.2).

One of the main drawbacks with the AAKR signal reconstruc-
tion method becomes evident when the set of historical obser-
vations grows large. Then the crude approach where all observa-
tions are used as memory vectors will lead to unacceptable large
computational loads. Therefore, a reduced set of memory vectors
should be intelligently selected (Hines, Garvey, & Seibert, 2008;
Hines, Garvey, Seibert, & Usynin, 2008), and in this paper we sug-
gest a novel approach to memory vector selection, where the orig-
inal dataset is represented by sets surrounding a selection of clus-
ters.

In Baraldi, Di Maio, Genini, and Zio (2015), the AAKR signal
reconstruction method is compared with other popular signal re-
construction techniques, including Fuzzy Similarity (FS), and Elman
Recurrent Neural Network (RNN), and capabilities and drawbacks
are discussed. Hence, in this paper we will restrain to compar-
ing the results of the modifications we propose to the crude AAKR
method.

The remaining of the paper is structured as follows: The
anomaly detection framework mentioned above will be briefly pre-
sented in Section 2. In Section 3, we propose three modifications
of the standard framework:

A. Cluster based memory vector selection method: Perform a cluster
analysis on the training data set, which represent normal con-
ditions. Replace the original training data set with rectangular
boxes - one for each cluster, centred at the cluster means - and
define everything inside the boxes as normal condition.

B. Modified distance measure between the query vector and the
memory vectors: Modifying the distance measure to enable the
possibility of treating the variables differently based on the
credibility of the signals, and distinguish between explanatory
and response signals.

C. Credibility estimation: Regard some regions in the sample space
more credible or trustworthy than others. Assume that the re-
construction of a response signal is more credible if the corre-
sponding explanatory signals are similar to previously observed
signals.

In Section 4, the performance of the proposed cluster based
method is demonstrated on 14 different data sets - 13 benchmark
data sets from the KEEL database (Alcala-Fdez et al., 2011), and
one data set from a marine engine in operation, and the results
of the proposed cluster based method are compared to the re-
sults of the original (crude) method without memory vector se-
lection. To further demonstrate the methodology and the proposed
modifications, a more comprehensive study of the data set with
the marine engine is presented in Section 5. A short discussion of
the assumptions and results is presented in Section 5.8. Finally, in
Section 6 some concluding remarks are offered, together with a
discussion on further work.
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Fig. 2. The methodology can be divided into two main steps: signal reconstruction (via AAKR) and analysis of residuals (via SPRT).

The analysis is conducted in R version 3.3.3 (2017-03-06), using
RStudio Version 1.0.136, on a single computer running Windows 10
Enterprise, version 1607, with Intel Core i5-6600 CPU @ 3.30 GHz
processor, and 3.02GB installed RAM.

2. Standard framework for anomaly detection with AAKR and
SPRT

The classical framework can be divided into two main steps:
signal reconstruction and residual analysis (see Fig. 2). In particu-
lar, Auto Associative Kernel Regression (AAKR) is used for the re-
construction, and Sequential Probability Ratio Test (SPRT) is used
to analyse the residuals between the reconstructed and the ob-
served signal.

At each new time t of the on-line anomaly detection moni-
toring, both the reconstruction and the residuals analysis are per-
formed in a sequential manner. In the signal reconstruction step,
the values of the monitored signals are reconstructed as an esti-
mate of the signals under normal conditions. AAKR is a data driven
method where the reconstructed signal is estimated as a weighted
linear combination of historical observations. The information from
the current observation is used to calculate the weights. In the sec-
ond step, the residuals, i.e. the difference between the observed
test points (queries) and the reconstructed signals, are analysed
sequentially, building evidence that the sensors report possibly
anomalous behaviour.

2.1. Signal reconstruction using Auto Associative Kernel Regression
(AAKR)

Many excellent descriptions of the AAKR method, both compre-
hensive and more brief, are given in the literature (Baraldi, Canesi,
Zio, Seraoui, & Chevalier, 2011; Baraldi, Di Maio, Genini et al.,
2015; Baraldi, Di Maio, Pappaglione, Zio, & Seraoui, 2012; Baraldi,
Di Maio, Turati, & Zio, 2015; Di Maio, Baraldi, Zio, & Seraoui, 2013;
Garvey, Garvey, Seibert, & Hines, 2007; Hines, Garvey, & Seibert,
2008; Hines, Garvey, Seibert, & Usynin, 2008). In the following
we will render a basic description, following Brandsater, Manno,
Vanem, and Glad (2016).

The historical observations are collected in an L xJ matrix,
where L is the total number of time points of historical observa-
tions, and J is the number of sensors. If all historical observations
should be taken into account by the AAKR, the reconstruction pro-
cess will be very computationally expensive when the data set of
historical observations grows large. Therefore, more or less intelli-
gent selection methods (Hines, Garvey, & Seibert, 2008; Hines, Gar-
vey, Seibert, & Usynin, 2008) are used to select some K <L histor-
ical observations, or memory vectors, and collect them in a new
K x J matrix X™"_ to be used in the reconstruction procedure.

Note that the reconstruction method does not consider time or-
dering, not even the sequentiality, of the observations in the train-

ing data.
At each test point t, a reconstruction of the test point X/ (t) =
[x(t,1),...,x(t,])] is calculated as a weighted linear combination

of the observations (the rows) in the training matrix X", The
weight w of a row k is given by the Gaussian kernel

1 a4 )
= — ¢ m,
k V2mh

where the parameter h is the bandwidth, and d; is the distance

between the ] signal measurements in the observation Xﬁfsg and

the kth observation in X™", for k = 1, ..., K. Several distance func-
tions can be used (Garvey et al., 2007), but the most common is
the Euclidean norm

'l .
3 (Xl - Xy, )
j=1

d, =

. stest . .
Finally, the reconstructed value X(f_sj) of the jth observation

Xifsj) is given as the weighted linear combination of the rows of
the training matrix, that is

K train
otest Y g Wi X )
t.j = K :
2k=1 Wi

The methodology processes the various signals together. To
avoid numerical instabilities due to possibly very different range
of magnitudes in the different signals, the signal values need to
be normalized. Without normalization, the effect of a deviation in
one signal cannot be directly compared to the other signals. In the
present work we have used the following normalization procedure,
sometimes referred to as the z score normalization, encouraged by
Di Maio et al. (2013). Having measured a signal X, ;), the normal-

ized signal, X ;) is given by

3)

5 Xej) — Rj
X(ty Hh = — (4)
] O-j

where

Y (X

fy= = (5)

K xtrain ~\2

G — ket (X — 24) (6)

a K :

Alternative normalization procedures should also be investi-
gated, such as the min max-normalization or the decimal scaling,
see e.g. Saranya and Manikandan (2013). It is noted that in some
situations the choice of normalization technique can influence the
results significantly.

2.2. Residuals analysis using Sequential Probability Ratio Test (SPRT)

The residuals, i.e. the differences between the reconstructed
value under normal conditions, and the observed test value, Ry =
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)A(E‘gsg - Xf(;’S; , are analysed sequentially by the standard SPRT to de-
termine if the system is in normal or abnormal state. The method-
ology will be briefly described in the following. For a more thor-
ough description we suggest (Brandsater et al., 2016; Cheng &
Pecht, 2012; Gross & Lu, 2002; Saxena et al., 2008).

The normal state is described by a null hypothesis Hy, where
each component of the residuals, Ry j), are assumed to be normally
distributed with mean 0 and standard deviation o. The anomalous
state is described by an alternative hypothesis H,, which assumes
that the residuals are normally distributed with specified mean
and/or standard deviation different from the null hypothesis. The
SPRT is performed for each signal j =1,...,J independently.

Based on the residuals R, j), an index is calculated and updated
sequentially for each new observation. In order to determine the
condition of the system, two threshold values, A and B, are speci-
fied and at each observation the index is compared to these lower
and upper decision boundaries. There are three possible outcomes
at each time step:

1. The lower limit is reached, in which the null hypothesis is ac-
cepted (normal state), and the test statistic is reset.

2. The upper limit is reached, in which the null hypothesis is re-
jected (anomalous state), and the test statistic is reset.

3. No limit is reached, in which case the amount of information is
not sufficient to make a conclusion.

For each sensor signal j, the analysis is performed on the se-
quence of residuals r;, ). ..., r, j. When either of the limits are
reached (outcome 1 and 2), the sequence is reset to zero. If no
limits are reached (outcome 3), the sequence is extended with the
new residual.

The SPRT index is given as the natural logarithm of the likeli-
hood ratio Lg4, given by

_ pI'Ob of r(il,f)’ N r(i,.,j) given Ha _ In fa (l‘(u))
prob of r j.....r, j given Hy i Jo(r )’

a

where f{ -) is the corresponding normal density. Note that this con-
struction is based on an assumption of independence among the
residuals.

We consider two alternative hypotheses, i.e. deviations in either
direction of the mean, leading to the following indices, for each
sensor j

M & M
i=1
M & M
SPRT;, = p Z (71’1' - j) (8)
i=1

The standard deviation, o, is computed from the training data.
M is the mean value of the alternative hypothesis, which is decided
by the user. M is usually chosen to be several times larger than o
(Cheng & Pecht, 2012).

2.3. Limitations associated with the standard framework

There are some well-known challenges and limitations related
to the anomaly detection framework presented above.

An important challenge relates to the efficiency of the AAKR
method. When the data set of historical observations grows large,
the signal reconstruction procedure becomes very computation-
ally costly (Michau, Palme, & Fink, 2017). To encounter this, vari-
ous memory vector selection techniques are used (Hines, Garvey,
& Seibert, 2008; Hines, Garvey, Seibert, & Usynin, 2008). In this
paper, we present a novel cluster based memory vector selection
technique, see Section 3.1.
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Fig. 3. The modified anomaly detection framework.

When the relative importance of the various signals is known
and understood, for example based on physical meaning or by sub-
ject matter expert’s experience, it should be possible to incorporate
this information in the model. We propose to impose the relative
importance on the AAKR model by changing the distance measure,
see Section 3.2. The proposed generalization of distance measure
provides the possibility to distinguish between explanatory and re-
sponse signals. This also makes it more natural to compare the re-
constructions produced with AAKR, with reconstructions based on
other regression methods.

With the standard framework, all regions in the sample space
are considered equally credible. We suggest to assume that the
reconstruction of a response signal is more credible if the corre-
sponding explanatory signals are similar to previously observed
signals. In Section 3.3, we describe one possible approach to en-
counter this.

Other challenges associated with the anomaly detection frame-
work, such as challenges related to time dependency and the need
for representative training data, as well as problems associated
with evaluating the accuracy when labelled data is lacking, are of
general nature and is not addressed here.

3. Proposed modifications

In the following, we propose three novel modifications aiming
to improve the anomaly detection framework as presented above,
and to address associated challenges. A sketch of the suggested
modified anomaly detection framework is shown in Fig. 3, with the
new boxes marked with dashed borders.

3.1. Cluster based memory vector selection for AAKR

In the maritime industry, as in many other industries, the
amount of available and potentially interesting data is large and
growing. In the AAKR method, the distance between the observed
query vector and each of the memory vectors have to be calcu-
lated, as well as the weights associated with each memory vector
and eventually the weighted linear combination of all the mem-
ory vectors. Consequently, if we use a naive approach, and let all
training data points be represented in the set of memory vectors,
the algorithm will be very computationally costly for large training
data sets. Hence, intelligent memory vector selection methods are
needed.

Several memory vector selection methods exist, including vec-
tor ordering, min-max selection, combination of vector order-
ing and min-max selection (Boechat, Moreno, & Haramura, 2012;
Coble, Humberstone, & Hines, 2010; Hines, Garvey, & Seibert,
2008). The methods all strive to adequately represent the operating
conditions expected in future fault free operations. If variants of
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normal operating conditions, such as changes in weather, seasonal
variations, are not included in the memory vectors, no confidence
can be given to predictions of the model and the memory matrix
must either be appended or replaced with new data (Boechat et al.,
2012; Hines & Garvey, 2006).

In our experience, a ship’s operation pattern can be divided into
relatively few sub-operations, such as for example harbour, transit
(in a few different speeds) and manoeuvring. This relatively sim-
ple operation pattern is typically also reflected in related systems
such as the machinery. Hence, we propose to use a memory selec-
tion method based on clustering, which exploits this property of
the data. Our first experiences with this method was presented in
Brandsater, Vanem, and Glad (2017). Here we elaborate and sys-
tematically investigate the methodology.

3.1.1. Clustering for anomaly detection

Several clustering based anomaly detection techniques have
been developed (see e.g. Chandola et al., 2009), and various cat-
egories of clustering methods for anomaly detection are suggested
in the literature. One common approach is to cluster the data first,
and then classify the data according to one of the following as-
sumptions:

1. Normal data instances belong to a cluster in the data, while
anomalies do not belong to any cluster.

2. Normal data instances lie close to their closest cluster centroid,
while anomalies are far away from their closest cluster cen-
troid.

3. Normal data instances belong to large and dense clusters, while
anomalies either belong to small or sparse clusters.

The approach we propose in this paper, is somewhat inspired
by both 1 and 2 above. In brief, we suggest to first cluster all his-
torical observations. Secondly, the regions surrounding the cluster
centroids are identified. The clustering and identification of sur-
rounding sets are performed off-line, prior to operation. Then, dur-
ing operation, for each new query point, one memory vector from
each of the surrounding sets are selected such that the distance
between the query point and the representative of the surround-
ing set is minimized. Finally, the selected memory vectors are used
in the AAKR reconstruction procedure. In this way, a new set of
memory vectors is selected for each query vector.

3.1.2. Prediction based on representatives from the surrounding sets
After the clustering process is executed on the training data,

and the surrounding sets are identified, the reconstruction of the

test data can take place. The reconstruction of the query vector,

)A(Efsg is produced using AAKR as described in Section 2.1, but now

the training data X" which contains selected or all historical ob-
servations, is replaced by a matrix Xc0sest containing the unique
closest point per cluster, i.e. the ith row of Xsest is given by

. 2
p*=argmin ) (p; - X%, (9)

J
pe0; j=1
where 0; is the surrounding set of cluster i. Uniqueness follows in
the Euclidean space for surrounding sets that are closed and con-
vex (Dattorro, 2010).

Hence, if a test point X! lies inside a surrounding set O;, the
distance between the test point and the closest point in that sur-
rounding set is 0. If on the other hand, the test point lies outside
the surrounding set, the distance between the test point and the
closest point in that surrounding set is strictly greater than 0, and
the closest point will be on the surrounding set’s border. This is
illustrated in Fig. 4 a simplistic example in 2 dimensions.

+ training

® cluster mean

— border of surrounding set
O query vector

® closest point per cluster

L+

+
+
i
+
%#

o gt +

Fig. 4. Illustration of the surrounding hyperrectangles, and their unique closest
points to a query vector.

3.1.3. Surrounding sets

One candidate for the surrounding set of a cluster is the convex
hull of its members (see left hand plots of Fig. 5). Another sugges-
tion is to use an ellipsoid, centred at the cluster mean with shape
parameters based on the standard deviation of the cluster mem-
bers, for each sensor signal (see the centre plots of Fig. 5). Fur-
thermore, the clustering can be performed using clustering tech-
niques such as Density-based spatial clustering of applications with
noise (DBSCAN) (Ester, Kriegel, Sander, Xu et al., 1996), CLARA (Ng
& Han, 1994) and CLARANS (Ng & Han, 2002). Such techniques en-
able identification of clusters with arbitrary shape, that are non-
linearly separable, which cannot be adequately clustered with k-
means or Gaussian Mixture EM clustering (Ester et al., 1996).

However, for simplicity, and due to the computational cost of
calculating the distance between a query vector and the boundary
of more complex shapes (Cameron, 1997; Jarvis, 1973), we chose
to use axis-aligned hyperrectangles/boxes.

If the data set is in R2, it is possible to find the set of k axis-
aligned rectangles of minimum area that covers the points in the
data set using optimization techniques such as for example mixed
integer and linear programming (see Ahn et al.; Park & Kim). But
to our knowledge, no efficient method exists that applies to large
data sets in high dimensions.

Fortunately, we do not need to determine the optimal set of
hyperrectangles/boxes and can be satisfied with a good selection.
Hence, we will explore the use of well-known clustering tech-
niques to cluster the data. When the data set is divided into clus-
ters the size and position of the hyperrectangles are determined in
one of the following ways:

1. Centred: The boxes are centred at the mean value of the mem-
bers of the cluster (in each dimension), where the distance be-
tween cluster centroids and boundary are given by the standard
deviation.

2. Enclosed: The boxes are placed such that they cover all points
assigned to each specific cluster.

In addition, a rectangle scaling factor y is used to increase or
decrease the size of the surrounding set.

Four different surrounding sets for a simplistic two dimensional
example are illustrated in Fig. 5: convex hulls, ellipses, rectangles
centred at the cluster mean and rectangles placed such that they
cover all points assigned to each specific cluster. In the upper and
lower plots, the number of clusters is set to 7 and 15 respectively.
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Fig. 5. Illustration of different surrounding sets, with 7 and 15 clusters (upper and lower).

Hierarchical clustering has been used to find the cluster centroids,
with the complete linkage criterion, see (Section 3.1.4). The rect-
angle scaling factor, y, which adjusts the shape and size of the el-
lipses and the rectangles is set to 2. In the lower plot, the rectangle
scaling factor is set to 1, and the number of clusters is increased to
15.

3.1.4. Clustering techniques
The following clustering techniques are explored (See e.g. Cord
& Cunningham, 2008; Friedman, Hastie, & Tibshirani, 2009):

1. Standard k-means clustering: In the initialization, k cluster cen-
troids are chosen randomly. Then for each iteration, the obser-
vations are reassigned to the closest cluster centroid, before the
cluster centroids are updated to reflect the new cluster mean.
The iterations continue until the cluster centroids no longer
change from one iteration to another.

2. Agglomerative hierarchical clustering: Each observation starts in
its own cluster, and the pair of clusters with minimum distance,
according to a linkage criterion, are merged. To calculate the
distance between two points, we use Euclidean distance. We
explore two different linkage criteria:

o Single: Where the distance between two clusters A and B, is
given as min{d(a, b): acA,beB}, where a and b are obser-
vations assigned to cluster A and B respectively.
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o Complete: Where the distance between two clusters A and
B, is given as max{d(a, b): acAbeB}, where a and b are
observations assigned to cluster A and B respectively.

3.1.5. Choosing the number of clusters

Unlike in classification tasks, cluster analysis procedures will
generally be unable to refer to predefined class labels when em-
ployed in real-world applications. Consequently, there is usually no
clear definition of what constitutes a correct clustering for a given
data set (Cord & Cunningham, 2008). However, since the final goal
of our analysis in this study is anomaly detection, which is a clas-
sification task, we can claim that the best number of clusters is the
one which provides the most accurate anomaly detection. However
in practice, this approach can only be utilized through cross vali-
dation, on a training set with labelled anomalies.

For standard clustering analysis, not involving classification, a
wide variety of validation methods have been proposed (For an
overview, see for example Cord & Cunningham, 2008; Friedman
et al, 2009; Guha & Mishra, 2016; Wilks, 2011). Cord and Cun-
ningham (2008) organize them into three distinct categories:

1. Internal validation: Compare clustering solutions based on the
goodness-of-fit between each clustering and the raw data on
which the solutions were generated.
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2. External validation: Assess the agreement between the output of
a clustering algorithm and a predefined reference partition that
is unavailable during the clustering process.

3. Stability-based validation: Evaluate the suitability of a given
clustering model by examining the consistency of solutions
generated by the model over multiple trials.

In this study, we concentrate on internal validation, which
means that we compare the various combinations of clustering
methods and number of clusters, based on the goodness-of-fit ac-
cording to some evaluation function. In addition to well-known
methods such as the elbow, silhouette and gap statistic meth-
ods, there are more than thirty other indices and methods that
have been published for identifying the optimal number of clus-
ters (Charrad, Ghazzali, Boiteau, Niknafs, & Charrad, 2014). We can
for example use the NbClust package (Charrad et al., 2014) in R,
which provides 30 of the most popular indices for determining the
number of clusters for a given data set. The number of clusters is
chosen according to the majority rule. However, to allow easy com-
parison between the various clustering methods, and to illustrate
the effect of using different number of clusters, we use a fixed ar-
ray of number of clusters in the demonstration in Section 4.

As described above, choosing the optimal number of clusters
is often ambiguous. Fortunately however, the cluster based AAKR
method proposed in this paper, does not require that the optimal
number of clusters is found. The motivation behind the clustering
is to increase the computational speed. If we increase the number
of clusters, we know that we should retain more of the informa-
tion in the original data. But the number of clusters to use is a
trade-off between computational speed and accuracy. With too few
clusters, a lot of the information in the data is lost, but with suffi-
ciently many clusters, the assumption is that we can approximate
the information in the full training data with sets surrounding the
clusters. The aim is to find the right balance between model per-
formance and model run time (Hines, Garvey, & Seibert, 2008). If
the model performance turns out to be poor, more clusters should
be included to expand the memory matrix coverage of the opera-
tional region (Coble et al., 2010).

That being said, we see that in some of the cases presented in
Section 4, the results show that the cluster based AAKR outper-
forms the crude method, where no clustering has been performed.
We believe this is due to insufficient training data, and do not re-
gard this performance improvement significant.

3.2. Modified distance measure to distinguish explanatory and
response signals

When reconstructions are produced using AAKR, usually all sig-
nals are weighted equally when the distance between the query
vector and the memory vectors is calculated. In Baraldi, Di Maio,
Turati et al. (2015), a new procedure for determining the distance
is proposed, where the data are projected into a new signal space,
by defining a penalty vector which reduces the contribution of sig-
nals affected by malfunctioning. The procedure is motivated by the
conjecture that faults or malfunctions causing variations of a small
number of signals are more frequent than those causing variations
of a large number of signals.

In this paper, we propose to modify the distance calculation, in
a fashion inspired by Baraldi, Di Maio, Turati et al. (2015), such that
the contribution of the various signals can be weighted differently.
Instead of the standard Euclidean norm (see Eq. (2)), we propose to
use a weighted version by multiplying the difference in each direc-
tion with a penalty vector which we refer to as the distance scaling

o
~ 7] * Train — Memory vectors
Test — Query vector * o
O Prediction of [x1,x2], s=[1,1] ko Fopk X
A Prediction of x1, s=[1,1] bl ot
e 2% F*
w | v Prediction of x1, s=[1,0.5] *.é*k**
o 7| x Prediction of x1, s=[1,0.1] % X
Prediction of x1, s=[1,0] Hk
**
*x F
X S * Bk *
o
ek a &F
O S Xl v
*k *{k"’% * gk
* * * #k ;
o i&* *%St * Yax
o ** x***
I * ) * W
* *
e g%
***.,gc**f*jc*
o *
- — *
: T T T T T
-1.0 -0.5 0.0 0.5 1.0
x1

Fig. 6. Illustrating the usage of the modified distance measure, with different dis-
tance scaling vectors s. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

vector s = [sq,...,s;]. This gives the following distance measure

J
4 = | K - xn] s 10
j=1

If all elements of s are equal to 1, the classical distance measure
is used. Note that if one of the signals is completely disregarded,
i.e. the weight is set to 0, and the weights of the other signals are
not changed, then the AAKR reconstruction resembles the tradi-
tional Nadaraya-Watson estimator, where the signal with 0 weight
is the response variable, and the remaining signals are the explana-
tory variables. This choice of s, also makes comparisons to other
regression methods more natural.

This generalization of the AAKR method can be particularly use-
ful when we are not interested in finding anomalies in all the
sensor signals, such as sensors measuring environmental condi-
tions. For example, if our aim is to detect anomalies that could be
caused by or lead to engine failure, we might find it uninteresting
to search for anomalies in the outside air temperature sensor. As
long as there is nothing wrong with the sensor, there is obviously
nothing wrong with the air temperature, and we are not interested
in alarms regarding this. At the same time, this sensor signal could
be important in explaining the behaviour in other signals, such as
engine temperature or bearing temperature. Hence, we do want to
be able to include it in the analysis as an explanatory variable.

In Fig. 6 the usage of the modified distance measure is illus-
trated with a simplistic example in two dimensions. The black
coloured stars are the training data (also referred to as mem-
ory vectors), and the light blue coloured square is a query vector
(also referred to as test data), located at [x1,x;] = [0, 0]. The AAKR
method with the standard Euclidean distance measure would re-
construct the signal at [0.43,—0.24], as shown by the green circle.
If signal x; measures an environmental parameter, such as for ex-
ample outside temperature or wind speed, and we assume that
the sensor recordings are without faults, we are not interested in
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residuals in this dimension. Hence, we would regard signal x; as
an explanatory variable, and place the reconstruction at the query
vector, in this dimension. This is represented by the dark blue tri-
angle. If we reduce the second entry of the distance scaling vector
s, we reduce the contribution of observations that are near to the
query point in the x, direction, and far away in the x; direction.
The orange triangle shows the reconstructions produced with dis-
tance scaling vector s equal to [1,0.5], while the blue cross, and
the yellow star shows the reconstructions produced using distance
scaling vector [1,0.1] and [1,0] respectively.

In many real-life applications, the choice of explanatory and re-
sponse variables is determined by the subject matter experts. Of-
ten, it is natural to let s take values O or 1, but other values are also
acceptable. The distance scaling vector can be chosen to achieve
acceptable levels of expected detection delay (EDD) and average
run length (ARL), as described and demonstrated in Section 5.

3.3. Reconstruction credibility

As the training data is not evenly distributed in the data space,
we propose to regard reconstructions from some regions of the
sample space more credible or trustworthy than others. The idea is
that we should have more confidence in our reconstructions when
the query vector is close to, or at least not too far away from, the
historical observations for the subset of the signals which we can
treat as explanatory variables, such as environmental conditions or
similar.

If reconstructions are made using AAKR with the cluster based
memory vector selection method presented in Section 3.1, the
number of members of a nearby cluster can also be taken into con-
sideration when assessing the credibility of a reconstruction. One
can argue that a high number should lead to higher confidence.

To illustrate the idea, we look at the simplistic example in 2
dimensions, shown in the upper plot of Fig. 7. The signal on the
horizontal axis, x;, can for example represent an environmental
variable such as wind speed and we decide to treat this as an ex-
planatory variable. Furthermore, the vertical axis, x,, can for ex-
ample represent the bearing temperature, and we decide to treat
this as a response variable. Now, if we observe a value [x{,x;] =
[—0.75,1.00] (see the leftmost red point in Fig. 7), we will be con-
fident that this is an anomaly, since we have many historical ob-
servations of x; in the area around —0.75, and no corresponding
values of x, near 1.00. However, for [x1,x;] = [-0.25, 1.00] (right-
most red point) we have very few historical observations, hence
our confidence in the reconstructions in this area is decreased.

A credibility estimate can be taken into account when the resid-
uals are analysed in the Sequential Probability Ratio Test (SPRT).
We suggest to multiply the credibility estimate with the SPRT in-
dex (see Egs. (7) and (8)). This enables the anomaly detection
framework to reach a conclusion faster when our confidence in the
reconstruction is high, and use more time when our confidence is
low. It should be noted, however, that the statistical properties of
the SPRT will change.

3.3.1. Suggested formula for credibility estimate calculation

Different estimates can be used to calculate the credibility esti-
mates, and we believe that different estimates should be used in
different applications and cases. In the case presented here, we
have used the following credibility estimate, yr, of a query vector

test
x(fv) ’
1

=1
v 1+log(n<+1)

where 7 denotes the sum of the number of points in the surround-
ing sets which are close to Xiﬁsg A surrounding set is regarded as
close if the distance between the point and the cluster centre is

(11)
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Fig. 7. The upper plot shows a simplistic data set, in two dimensions. In the two
lower plots the credibility estimate is calculated for points along the horizontal axis,
with different bandwidths. In the middle plot, the distances to all historical obser-
vations has been calculated, while the estimates in the lower plot are based on the
distance to the unique closest point per cluster and the number of cluster members
in that cluster. The number of clusters used in this figure is 15. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

less than a predefined parameter A. We experiment with different
values for A, and in the following section we show results using
the following values: inf, 0.5, 0.25, 0.1, 0.05 and 0.01. When A is
infinite, all data points are regarded as close, and the credibility
estimate will be constant throughout the data set. A parameter, «,
is set to control the importance of the number of points. Here, for
simplicity, we fix « to 0.1.

We see that the credibility estimate in Eq. (11) requires that the
distances between Xﬁfsg and all the historical observations are cal-
culated. To avoid this, we replace the full training data set with
the clusters as explained in the earlier section. Also the number of
points in each cluster is taken into consideration. Hence, the cred-
ibility is given by Eq. (11) where n is substituted by 7j, the sum of
cluster members in clusters with nearby centres, i.e. the distance
is less than a specified bandwidth.

The lines in the middle and lower plot of Fig. 7 show the pro-
posed credibility estimates, obtained with different values of A.
The estimates in the middle plot are based on the full training data
set, and the estimates in the lower plot are based on the 15 clus-
ters and their surrounding data sets.
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Table 1
Data sets used in the analysis.

Data set no.  Data set name Imbalance ratio  No. of features  No. of training samples
1 vehicleO 3.23 18 428

2 yeast6 53.89 8 963

3 ecoli-0-1-3-7_vs_2-6 14.50 6 186

4 glass5 6.89 9 142

5 shuttle-c0-vs-c4 3.99 9 1218

6 dermatology-6 13.88 32 226

7 shuttle-6_vs_2-3 18.00 9 147

8 winequality-red-4 2433 1 1034

9 poker-9_vs_7 12.50 10 160

10 yeastl 2.89 8 687

11 segmentO 5.99 18 1319
12 vehicle2 3.23 18 409

13 vehicle3 3.04 18 415

14 enginel 1.50 5 10,000

2 Data set 14 originally includes 175,558 training samples. Due to this high number, computing the
results of the crude methods is impractical. Hence, we sample 10,000 training samples without replace-
ment, and use the result of this as an approximation of the crude method.

4. Demonstration on benchmark data sets

In this section we demonstrate the cluster based AAKR method
on multiple imbalanced data sets. We present results using differ-
ent clustering techniques and surrounding sets (see Section 3.1.3),
and compare them to the results obtained with the crude AAKR
method.

4.1. Data sets

We use 13 imbalanced data sets from the KEEL database
(Alcala-Fdez et al., 2011) (See Table 1). The rows in the data sets
are pre-labelled, such that all anomalies are known, and we as-
sume that all datapoints that are not marked as anomalies, repre-
sent normal behaviour.

The imbalanced data sets we envisage here, are data sets orig-
inated from data sets of multiple classes, where one (or more)
of the classes are labelled as anomalous. For example, the imbal-
anced data set yeast6 is based on the classification data set yeast,
which contains information about a set of yeast cells, for predicting
the cellular localization sites of proteins. In the classification data
set, each instance is classified in 10 different localizations. In the
imbalanced version, yeast6, the positive examples consist of class
EXC and the negative examples consist of the other 9 classes. See
Appendix A for a description of the other data sets.

We train on 2/3 of the data, and test on the remaining 1/3.
Rows with anomalies occurring in the fraction of the data set used
for training are removed.

In addition to the benchmark data sets from the KEEL database,
we include another imbalanced data set from a marine engine in
operation. The data set originally includes 175,558 rows. Due to the
high number of rows, computing the results of the crude meth-
ods is impractical. Hence, we sample 10,000 rows without replace-
ment, and use the result of this as an approximation of the crude
method. A thorough description of this data set, together with a
comprehensive analysis, is provided in Section 5.

The data sets represent various real world applications. In this
section, we do not take into account any possible knowledge of
the real application, and all columns of the data set are treated as
equally important for detecting anomalous behaviour.

4.2. Algorithms

We present results based on the combinations of clustering al-
gorithms and surrounding sets as presented in Table 2. The k-
means clustering is performed with the kmeans implementation in

the stats package in R (R Core Team, 2017), with the Lloyd algo-
rithm (Lloyd, 1982). For hierarchical clustering we use the hclust
implementation, also from the stats package, with the following
two linkage criteria: single and complete.

Even for the largest data set, the clustering with k-means is per-
formed in less than a second, hence we will not report the time
to perform the clustering. For the enginel data set, with 175,558
rows, the hierarchical clustering method cannot be performed due
to memory restrictions. It requires that the dissimilarity structure
(as produced by the dist function in R) is provided, which needs
allocation of more than 100GBs memory.

4.3. Simple threshold based residual analysis

Many of the data sets considered in this section are not time
dependent, and many of the anomalies occur alone, i.e. the obser-
vation imminently before and after are not anomalous. Due to this,
we will not use the Sequential Probability Ratio Test (SPRT) when
comparing the methods here. A comprehensive demonstration of
SPRT will be provided in the maritime case study in Section 5.
Here, we will restrain to a simple threshold method when we anal-
yse the residuals. Again to ease the comparison between the meth-
ods, we adjust the threshold limit for each feature with a parame-
ter 7, which controls the false alarm rate.

Furthermore, for the data sets we investigate, we have no
knowledge about which signals are causing the anomaly, hence
we do not distinguish this here. If an alarm is triggered in one of
the signals, we consider all signals anomalous at this row/time in-
stance.

The threshold limits obtained using this procedure should be
similar to the limits we can obtain with cross validation on a train-
ing set, assuming we have known anomalies present in the training
set.

4.4. Results

We present results using a range of different number of clus-
ters, k, and a range of 50 different threshold values, t, between 0.7
and 1. In the following, we highlight a selection of the results. The
full table of results can be found in the supplementary material.

4.4.1. Decreased computation time for the cluster based methods

The main goal of the proposed cluster based method is to de-
crease the computation time of the different methods, and at the
same time keeping the performance at an acceptable level. Fig. 8
shows savings in prediction time relative to the crude method
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Table 2

Combinations of clustering algorithms and surrounding sets in the presented results.

Clustering algorithm

Surrounding set

1 crude, no clustering
2 k-means,

Lloyd’s algorithm
3 k-means,

Lloyd’s algorithm

points, every point is represented

points, centred at mean with y =0, i.e. every cluster is
represented with a single point

centred, centred at mean with y =1, i.e. every cluster is
represented with a box centred at the mean of the cluster

members, with size based on the standard deviation

4  k-means,

Lloyd’s algorithm
5  hierarchical,

complete linkage criteria
6  hierarchical,

single linkage criteria

enclosed, every cluster is represented with a box which
encloses the cluster members
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Fig. 8. Decreased computation time per prediction: The vertical axis of the figure shows the maximum computation time, when using the cluster based methods, relative
to the computation time when the crude method is used. The horizontal axis represents the number of samples in the training divided by the number of clusters.

achieved with the proposed methods. The horizontal axis in the
figure shows the number samples in the original training set di-
vided by the number of clusters. As expected, as this ratio in-
creases, i.e. when we have fewer clusters than training samples,
we achieve greater time savings.

4.4.2. Comparing performance
When comparing the different methods ability to classify the
anomalies, we have to balance the number of:

True Positives (TP) - anomalous instance which is correctly
identified as anomalous,

False Positives (FP) - normal instances which are incorrectly
identified as anomalous,

False Negatives (FN) - anomalous instance which is incorrectly
identified as normal

o True Negatives (TN) - normal instances which are correctly
identified as normal

In this analysis, it is often useful to examine the sensitivity,
which is also called the True Positive Rate. It is a measure of the
probability of predicting that an instance is anomalous given that
the true state is anomalous (Friedman et al., 2009). The True Posi-
tive Rate has the following expression

TP
" TP+FN’
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TPR (12)

Another useful measure is the specificity, which is the prob-
ability of predicting that an instance is normal (non-anomalous)
given that the true state is normal (non-anomalous). This informa-
tion can also be presented as the False Positive Rate, which is given
as 1 minus the specificity, that is:

FP
FP4+TN —

The TPR and FPR are often presented in a receiver operating
characteristics (ROC) graph, which is a scatterplot with the TPR
on the vertical axis, and the FPR on the vertical axis. The ROC
graphs have properties that make them especially useful for do-
mains with skewed class distribution and unequal classification er-
ror costs, which is important for cost-sensitive learning and learn-
ing in the presence of imbalanced classes (Fawcett, 2006).

The ROC graphs of four selected data sets are shown in Fig. 9.
We find the most favourable results, of a ROC graph, in the upper
left corner, where the FNR is low at the same time as the TPR is
high. Similarly, the least favourable results are found in the lower
right corner.

From Fig. 9, we observe that the different methods’ per-
formance is quite similar, except for the hierarchical clustering
method with the single linkage criterion, which is clearly out-
performed by the other methods especially on the vehicleO and
semgnet0 data sets. On the enginel data set, the hierarchical meth-
ods are not used due to the computational burden of performing
the clustering.

FPR = 1 — specificity (13)
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Fig. 9. The ROC graph for four selected data sets. Results are shown for 50 threshold values T between 0.7 and 1. Straight lines are drawn between the points for increased

readability.

In model selection, the area under the ROC curve is a popular
measure, where the model with the highest area under the ROC
curve will be selected. The area under the ROC-curve for the 14
data sets is provided in Table 3.

We observe that the area under the curve for the different
methods are quite similar, again with a somewhat decreased per-
formance for the hierarchical clustering with the single linkage cri-
terion. The performance differs extensively on the different data
sets, with area under the curve as high as 1.00 on some data sets,
meaning that all instances are correctly labelled, both the true nor-
mal and the true anomalous. On other data sets, however, the per-
formance is quite low, and for some data sets even close to 0.5.
That being said, we have not investigated how subtle the anoma-
lies are in the different data sets. In some of the data sets, the
anomalies can be very obvious, and in others they can be well-
hidden. Hence, the numbers presented here are intended for com-
parison of performance of the proposed methods with each other,

and with the crude method. Our claim is not that the proposed
cluster based methods are specifically suitable to solve the par-
ticular problems of the specific data sets, but we aim to demon-
strate that the best proposed cluster based methods efficiently
can achieve performance results comparable to the crude method,
while inducing considerable reduction in computation time.

4.4.3. Number of clusters

Fig 10 illustrates how changes in the number of clusters used
affects the performance. In figure (a) and (b) respectively, the True
Positive Rate and True Negative Rate for the segment0 data set are
shown for various number of clusters. The threshold value 7 is
kept constant at 0.97. We observe, as expected, that the results
converge towards the result of the crude method, as the number
of clusters increases. However, we also observe surprisingly good
results with very few clusters for all methods, except the hierar-
chical clustering method which uses the single linkage criterion.
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Table 3

429

Area under the ROC curve. (Hierarchical clustering is not performed for data set 14 due to the large size of the training set). The number of clusters is 25 for data set

1-13. For data set 14, 100 clusters are used.

Dataset  Crude  K-means points  K-means centred  K-means enclosed  Hier. complete  Hier. single Time crude  Time cluster  Relative time
1 0.92 0.88 0.92 0.91 0.89 0.47 179 5.2 2.9%
2 0.59 0.71 0.52 0.52 0.35 0.16 371 4.2 1.1%
3 0.75 0.77 0.93 0.76 0.83 0.69 11 0.6 5.4%
4 0.41 0.62 0.57 0.55 0.60 0.51 9 0.7 8.3%
5 1.00 1.00 0.98 0.97 1.00 0.71 629 5.8 0.9%
6 1.00 1.00 1.00 1.00 1.00 0.86 64 3.9 6.2%
7 1.00 0.99 0.99 0.97 1.00 1.00 10 0.7 7.5%
8 0.59 0.70 0.59 0.60 0.59 0.33 538 6.0 1.1%
9 0.96 0.86 0.95 0.97 0.93 0.14 12 0.9 7.5%
10 0.61 0.51 0.54 0.48 0.53 0.24 265 43 1.6%
11 0.91 0.79 0.88 0.90 0.75 0.45 1511 15.3 1.0%
12 0.94 0.81 0.88 0.88 0.79 0.46 159 5.5 3.5%
13 0.73 0.74 0.77 0.74 0.68 0.55 158 5.0 3.2%
14 0.73 0.82 0.81 0.75 5834 19.6 0.3%
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Fig. 10. The True Positive Rate and False Positive Rate of data set segment0 is shown, where the number of clusters used by the cluster based methods vary on the horizontal

axis. The threshold value 7 is kept constant at 0.97.

5. Marine engine case study with comparisons

In this section, the anomaly detection framework using AAKR in
combination with SPRT, both with and without the modifications
proposed in Section 3, are applied on the data set consisting of
sensor measurements from a large marine diesel engine. The data
is collected from a large ocean going ship in operation.

We limit the further analysis to only consider the surrounding
sets that are centred at the cluster mean. The size of the surround-
ing sets are determined by the standard deviation of the clus-
ter members, multiplied with the rectangle scaling factor y. We
present results using three different sizes of y, and refer to them
as points (y = 0), small rectangles (y = 0.5) and large rectangles

(y=1)
5.1. Data description

The data is collected over a period of 10 months, starting in De-
cember 2014. A total of 333,144 observations are recorded, which
includes idling. In this study, we concentrate on normal operation
and use a simple filter based on engine speed [rpm] to remove the
idling states, leaving us with a data set consisting of 175,558 rows.

We consider the following sensors:

o engine speed [rpm],
o lubricant oil inlet pressure [bar],
e lubricant oil inlet temperature [C],
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e engine power [kW]
o engine bearing temperature [C]

The bearing temperature is considered the response signal, and
the others are used as explanatory variables, when this is distin-
guished. The time series are shown in Fig. 11.

5.2. Operational mode

The ship investigated in this study, is operated in different oper-
ational modes, such as transit (in different speeds), port and stand
by (with or without anchor), in addition to transient modes. A ship
is in a transient mode when its operation changes from one de-
fined mode to another. According to our experience, these modes
are the most challenging ones, in respect to anomaly detection.

5.3. Cross validation

When predictions from a statistical model is evaluated on the
data set used to train the model, the accuracy estimates tend to
be overoptimistic (Arlot & Celisse, 2010). Hence, the data set D
should be divided into exclusive parts where one part, Dygin, iS
used to train the model, and the other, Dest, is reserved for test-
ing. To build robust and accurate models we ideally want to in-
clude all data available in the training data set. The same applies
to testing; we want to test our models in many situations. Cross
validation introduces various methods of repetitively splitting the
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Fig. 11. Time series with training data for the evaluated signals.

data into training and test data sets. A range of different splitting
techniques can be applied. See for example (Arlot & Celisse, 2010;
Kohavi, 1995) for a brief overview of the most common splitting
techniques. We also note that repeated k-fold cross validation can
be used to stabilize the error estimation and reduce the variance
(Jiang & Wang, 2017; Kohavi, 1995; Rodriguez, Perez, & Lozano,
2010).

In this study, we repeatedly select folds or time intervals con-
taining 1000 query vectors, which constitute the test data set,
Drest. The remaining 174,000 points constitute the training data set
Derain- We repeat this procedure 15 times, leaving us with a total
of 15,000 tested points.

5.4. Fault simulation

To our knowledge, no faults or anomalies are registered and re-
ported by the crew, shipowner, etc. for the data set we envisage.
Hence, we assume that the data set represent normal behaviour
and we define normal states based on this data.

To be able to test the anomaly detection framework, we alter
some of the signals to simulate faulty states. The anomaly we in-
duce in the test data, is a temperature change in one of the main
bearings of the engine. The other signals remain unchanged. For
each test set Diesr, We increase the temperature with A* degrees
Celsius in the area 200:400, and decrease the temperature with
A~ degrees Celsius in the area 600:800. The set up is illustrated in
Fig. 12.

The signals are only altered slightly. Fig. 13 shows a scatter plot
comparing the training and the test data set, with both A* and A~
set to 1.0. The training data are shown in purple, and the test data
are shown in blue, green and red, to mark the normal state and the
two states with increased and decreased temperatures respectively.
On the diagonal, a density plot of each individual signal are shown.
The correlations are shown in the upper triangle. We observe that
the test values, both in the regions with normal condition, and in
the regions were we have altered the signals, lie within the normal
operating mode of that specific signal. Hence, a rule based anomaly

Training data
(174 000 points)

_l )

Increased Decreased

IS ]

0 200 400 600 800

Test data
(1000 points)

1000

Fig. 12. Illustration of the test set up.

detection method based on a single threshold would not be able to
detect the anomaly.

5.5. Evaluating the signal reconstruction

First, we evaluate the signal reconstructions, by comparing the
root mean squared error (RMSE) under various conditions. When
no anomalies or faults are present in the data, we want the differ-
ence between the observed signals and their reconstructions to be
as small as possible. The RMSE of the reconstructed temperature
signal using the proposed cluster based AAKR is shown in Fig. 14.
Due to high computational cost, for very large number of clusters,
we select a subset of the available data consisting of 20,000 points,
and produce predictions combining different number of clusters
and rectangle scaling factors. Here, no anomalies are simulated (A*
and A~ are set to 0), and the data are assumed to be collected from
normal operation.

Note that a rectangle scaling factor of 0 corresponds infinitely
small rectangles, i.e. points. Hence, if the rectangle scaling factor is
0, and the number of clusters is equal to the number of historical
observations, the reconstruction method resembles the standard
AAKR method with the crude memory vector selection where all
historical observations are included. The RMSE, using this method,
is shown in the lower right hand corner in Fig. 14.

The choice of number of clusters depends on the requirements
in calculation time. More clusters will increase accuracy, but com-
putation time will also increase. In this study, we chose to use 100
clusters, and experiment with three rectangle scaling factors 0, 0.5,
and 1. We refer to these three options as points, rectangles and
large rectangles respectively.

5.5.1. Difference in RMSE with and without anomalies

For the Sequential Probability Ratio Test (SPRT) to be able to
successfully detect anomalies, the residuals, i.e. the difference be-
tween the observed and the reconstruction signals, should be more
pronounced for observations from the anomalous states, compared
to observations from normal state. To indicate how the residuals
change when we induce anomalies, we reconstruct the signals on
the 15 different folds, and calculate the RMSE before and after the
anomalies are induced.

The results are shown in the box plots in Fig. 15, for the 15
different folds. Results based on the crude AAKR, where all his-
torical observations are included as memory vectors, and the clus-
ter based version with points (infinitely small rectangles), rectan-
gles and large rectangles are shown. We observe that the calcu-
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Fig. 14. The root mean squared error (RMSE) of the cluster based AAKR, with different number of clusters and different rectangle scaling factors. Note that when the number
of clusters is equal to the number of points, in this example 20,000, and the rectangle scaling factor is set to 0, it resembles the crude AAKR. The kernel bandwidth h is set
to 0.2.
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Fig. 15. Box plot of RMSE values calculated with the different memory vector se-
lection methods with and without induced anomalies, on 15 different folds or folds.

lated RMSE is greater after anomalies are introduced, which indi-
cates that it should be possible to detect the anomalies. The low-
est RMSE is achieved with the crude method, closely followed by
the method which use large rectangles. We observe that the differ-
ences between RMSE before and after anomalies are induced are
more pronounced for reconstructions based on the cluster based
methods.

5.5.2. Distance scaling vector

Now we analyse how the distance scaling vector s, as intro-
duced in Section 3.2, effects the RMSE before and after anoma-
lies are induced. Fig. 16 shows the average of the RMSE calculated
from the different 15 folds. The filled and dotted lines are based on
calculations before and after anomalies are induced respectively.
Here, we only vary the Jth component of the distance scaling vec-
tor s, and keep the other distance scaling vectors constant at 1. The
Jth signal is the bearing temperature.

When the Jth component of the distance scaling vector is 0,
the results of both the crude method and the cluster based meth-
ods are small and similar, with values in the range [0.12,0.15]. For
larger values of the Jth component of the distance scaling vec-
tor, we observe a significant difference in favour of the cluster
based version. Remember, when anomalies are induced we want
the AAKR method to produce reconstructions resulting in large
residuals, and large RMSE values, while for fault-free signals, with-
out anomalies, we want the RMSE values to be as low as possible.

5.5.3. Analysing the empirical distributions of the residuals

The empirical distribution of the residuals based on reconstruc-
tions made with the crude AAKR and the cluster based AAKR,
with large rectangles, rectangles and points as surrounding sets,
are shown in Fig. 17. As described in Section 5.4, a positive and
negative change in mean has been induced in the time intervals
200:400 and 600:800 respectively. Outside of these two time in-
tervals, no anomalies are induced.

The vertical dotted lines in the figure show the means of the
three hypotheses; Hy in the middle, where no anomalies are in-
duced, and the two chosen alternative hypotheses, H; on the right
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Fig. 16. RMSE values calculated based on reconstructions using the different mem-
ory vector selection methods. Values based on calculations with and without
anomalies induced are showed with in filled and dotted lines respectively. Here,
we vary the Jth component of the distance scaling vector s, and keep the other
distance scalings factors constant at 1. The Jth signal is the bearing temperature.
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Fig. 17. Estimated densities of the residuals based on the reconstructions from
the crude AAKR and the cluster based AAKR, with large rectangles, rectangles and
points as surrounding sets. In the upper plot, the densities are based on signals
that are not changed. In the middle and lower plot, the densities are based on val-
ues from signals that are altered in the positive and negative direction respectively.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

hand side and H, on the left hand side, for respectively positive
and negative changes in mean.

When no anomalies are introduced, we expect the residuals to
be small, and centred around zero. The estimated densities of the
residuals, when no anomalies are induced, are shown in the upper
plot of Fig. 17. We observe that the residuals are mainly situated
around zero, but especially the density of the residuals based on
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Fig. 18. The residuals are shown in the upper plot. The middle and lower plot show the SPRT indices for positive and negative changes in the mean.

reconstructions using points as surrounding sets (green line) seems
to be shifted in the negative direction.

The middle and lower plots show estimated densities from sig-
nals which are altered to mimic anomalies. Residuals based on a
positive and a negative change in mean are shown in the middle
and lower plots respectively. The middle plot shows a slight shift
in the positive direction. The shift is most evident in the residuals
from reconstructions using the cluster based AAKR with points as
surrounding sets. Also the residuals based on reconstructions using
rectangles as surrounding sets are quite noticeable. In the lower
plot, a shift in negative direction is indisputable, for all reconstruc-
tions.

5.5.4. Computation time

The computation time of producing 1000 reconstructions with
175,000 historical observations is about 22 minutes using the
crude memory vector selection method. In comparison, the cluster
based version, with 100 clusters, produces the 1000 reconstruc-
tions in less than 5 s. The time to perform the clustering, using
K-means clustering, with the Lloyd algorithm, is about 95 s. How-
ever, the clustering only needs to be performed once, and does not
need to be performed on-line, hence we believe the time to per-
form clustering should not be an issue.

5.6. Illustration of the sequence of residuals and the SPRT indices

An example of the residuals analysis using SPRT is displayed in
Fig. 18. The residuals are displayed in the upper plot, while the
middle and lower plots show the SPRT indices of the positive and
negative change in mean respectively. If a value exceeds the up-
per horizontal dotted line, an alarm is raised, either for positive or
negative change in mean, and the sequential test is reset. Similarly,
if the value is below the lower horizontal line, the sequential test
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is reset. But now, confidence of normal state is reached, and no
alarm is raised.

The approximated expected detection delay (EDD) and average
run length (ARL) of the various reconstruction methods are re-
ported in the figure. The EDD is the expected number of time
points from an anomaly is introduced until it is detected, and ARL
is the expected number of time points between false alarms.

The induced fault in the example presented in Fig. 18 is a tem-
perature change of +1 °C in the first anomalous time interval and
—1 °C in second anomalous time interval. Furthermore, the ker-
nel bandwidth, h, is 0.1, the mean value of the two alternative hy-
pothesis, for positive and negative change in mean, M, is set to 1,
and the standard deviation, o, is extracted from the training data.
The distance scaling factor s is fixed at [1,1,1,1,0.1]. Note that if the
last entry is 1, the original AAKR reconstruction will be performed,
while if the last entry is 0, a standard Nadaraya-Watson regression
will be used. See Figs. 19 and 21 for results with other choices of
s.

For positive change in mean, an EDD of 29 is returned when
points are used as surrounding sets, while it is 100 when large
rectangles are used. Otherwise no alarms for positive change in
mean are raised in this example. Neither, no false alarms are
raised. For negative change in mean, more alarms are raised. We
observer that the lowest EDD is achieved by the use of points as
surrounding sets, but this also provides a low ARL of 12. We note
that the results are well aligned with Fig. 17.

5.7. Results using multiple surrounding sets, distance scaling vectors
and credibility factors

Results of the proposed anomaly detection framework are pre-
sented in Figs. 19-21. Multiple surrounding sets are used for the
cluster based AAKR reconstruction, and this is combined with mul-
tiple distance scaling vectors and credibility factors. All entries in
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the distance scaling vector can be adjusted, but here we concen-
trate on the Jth component. The values in the tables represent
approximations of the mean EDD and mean ARL, taken over the
whole test period of 15 folds, with 1000 points in each. The pre-
sented results are well aligned with our expectations, and show
consistent behaviour.

In Fig. 19, the anomaly detection capability of the methodol-
ogy using the crude and the cluster based AAKR with different sur-
rounding sets for reconstruction, combined with residuals analysis
using a range of different distance scaling factors, are presented.
We observe that the lowest EDD is achieved by combining points
(infinitely small rectangles) as surrounding sets with distance scal-
ing vector 0. Furthermore, the EDD increases when the distance
scaling vector is increased. Also, the EDD seems to increase when
the size of the surrounding sets is increased. As expected, the ARL
follows the same pattern. This illustrate the usual trade-off be-
tween EDD and ARL; we want low EDD, but this will of course
cause a decrease in the ARL.

Fig. 20 illustrates how changes in credibility factor effects the
EDD and ARL. Again, we apply reconstructions produced both with
the crude and cluster based AAKR. Here, we fix the distance scal-
ing vector s at [1,1,...,1,0.1], and concentrate on the change in
credibility factor. We observe, as expected, that both the EDD and
the ARL decreases with when the credibility factor increases.

In Fig. 21, EDD and ARL based on various combinations of dis-
tance scaling vectors and credibility factor are presented. We chose
to use the reconstruction version with large rectangles as sur-
rounding set.

5.8. Discussion and suggestions for further research
In the following, we discuss some key challenges and sugges-

tions for anomaly detection, with emphasis on the maritime in-
dustry.
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Fig. 20. Surrounding set and credibility factors: EDD and ARL at various sur-
rounding sets and various credibility estimate factors. If no alarms are raised, the
EDD and ARL cannot be calculated. These are represented with black colour. The
distance scaling vector, sj, is 0.1.
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Fig. 21. Distance scaling vectors and credibility factors: EDD and ARL at various
distance scaling vectors, and credibility factors. The figure is based on reconstruc-
tions produced using cluster based AAKR, with large rectangles.
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Fig. 22. Partial auto correlation function of the residuals in the bearing temperature
Sensor.

5.8.1. Extensions to high-dimensional sensor data

In this paper we apply the anomaly detection framework on
data sets containing a very limited amount of sensor signals and
performed the reconstruction of the measured signals based on
distances from the training data in low-dimensional space. How-
ever, sensor monitoring of typical ship systems will often consist
of hundreds of sensors and it remains to be seen how well the
proposed approach scales in higher dimensions. The method will
suffer from the curse of dimensionality (Keogh & Mueen, 2011),
which will make it more challenging to establish similar models
for high-dimensional data. Sensible techniques for dimension re-
duction will have to be carried out before the signals are analysed
with AAKR. Additionally, feature extraction should be investigated
further. We believe this is an interesting and important topic for
further research.

5.8.2. Operational mode selection

During the different operating modes the behaviour of a ship
changes substantially, and it might therefore be advantageous to
develop reconstruction models dedicated to the different opera-
tional modes. This could also allow the alarm limits to vary in the
different modes, depending on the operations criticality. To achieve
this, the training data should be divided and used to fit different
models. This will result in reduced computational efforts and in-
creased model reconstruction accuracy (Al-Dahidi, Baraldi, Di Maio,
& Zio, 2014; Baraldi et al., 2012).

5.8.3. Partial auto correlation in the residuals

The partial auto correlation function of the residuals, made with
crude AAKR and cluster based AAKR, with large rectangles, rectan-
gles and points as surrounding sets are shown in Fig. 22. The fig-
ure reveals that some time dependence is present in the residuals,
for time lags below 5-10 s. We also observe that the dependency
structure is similar in the four cases.

5.8.4. Training data extension

Sometimes training data are not available. For instance when a
ship is entering a type of operation that has not been tested be-
fore, or if a ship is moved to a new geographical area, where it has
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never operated before, the training data might need to be modi-
fied to represent the “new” normal conditions. If the sensors are
affected in a deterministic way, new training data can be simu-
lated, based on the other training data. Ships are usually built in
sister series. The sensor data collected by the first ship in a series,
can possibly be reused by a later ship in the series. Also when the
ships are not identical, it is possible that the training data from
the first ship can be used on the later one, after necessary cali-
brations and modifications detailed by simulation software such as
for example Dimopoulos, Georgopoulou, Stefanatos, Zymaris, and
Kakalis (2014).

6. Conclusion

The paper introduces three generalizations and modifications of
an on-line anomaly detection framework consisting of signal re-
construction with Auto Associative Kernel Regression (AAKR) and
residuals analysis using Sequential Probability Ratio Test (SPRT).

We demonstrate the ability of the cluster based memory vector
selection method for AAKR, which is successfully used for faster
signal reconstruction. The methodology is applied to multiple im-
balanced benchmarking data sets, in addition to the data set with
sensor signals from a marine diesel engine in operation. Many of
the anomalies are quite subtle, restrained enough not to easily be
revealed by for example analysing scatter plots of the data. Re-
sults of the crude and the cluster based methods are presented
and compared, and the analysis show that comparable results are
achieved, even when very few ( <25) clusters are used. The ad-
vantage of the cluster based methods is the increased speed. The
computation time of the AAKR grows rapidly when the size of the
training data increases, and we demonstrate how the presented
cluster based memory vector selection technique can be used to
dramatically decrease the computation time, at the same time as
the performance is kept at an acceptable level.

We also show how the cluster based AAKR can be used in com-
bination with the SPRT, which is used for residuals analysis, to
construct a robust and fast anomaly detection framework. The re-
sults are well aligned with our expectations, and show consistent
behaviour. A generalization of the distance measure used in the
signal reconstruction process is proposed, which enables the users
system-knowledge to be imposed on the anomaly detection frame-
work to distinguish response and explanatory variables and opti-
mize the weighting of the different features. The distance scaling
vector can be chosen to achieve acceptable levels of expected de-
tection delay (EDD) and average run length (ARL).

We also introduce a credibility estimate which enables the SPRT
method to reach a conclusion faster when it operates in regions
close to instances which are well represented in the training data
set, and allows it to use more time to reach a conclusion when it
operates in less explored regions.
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Abstracts of the original classification data sets is provided below, together with a description of how anomalies are defined for each
of the data sets. The descriptions are collected here: Alcala-Fdez et al., 2011 and Dua and Efi (2017).

Data set Abstract Description of anomaly

vehicleO 3D objects within a 2D image by application of an ensemble of shape Positive examples belong to class 0 (Van) and the negative
feature extractors to the 2D silhouettes of the objects examples belong to the rest.

yeast6 Predicting the Cellular Localization Sites of Proteins Positive examples belong to class EXC and the negative examples

ecoli-0-1-3-7_vs_2-
6

glass5
shuttle-c0-vs-c4

dermatology-6

shuttle-6_vs_2-3

winequality-red-4

poker-9_vs_7

This data contains protein localization sites

From USA Forensic Science Service; 6 types of glass; defined in terms
of their oxide content (i.e. Na, Fe, K, etc.)

The shuttle data set contains 9 attributes all of which are numerical.
Approximately 80% of the data belongs to class 1

Aim for this data set is to determine the type of Eryhemato-Squamous
Disease.

The shuttle data set contains 9 attributes all of which are numerical.
Approximately 80% of the data belongs to class 1. The task is to decide
what type of control of the vessel should be employed.

The data set is related to red variant of the Portuguese Vinho Verde
wine. Due to privacy and logistic issues, only physicochemical (inputs)
and sensory (the output) variables are available (e.g. there is no data
about grape types, wine brand, wine selling price, etc.).

Each record of this data set is an example of a hand consisting of five
playing cards drawn from a standard deck of 52. Each card is described
using two attributes (suit and rank), for a total of 10 nominal

belong to the rest.

Positive examples belong to classes pp and imL and the negative
examples belong to classes cp, im, imU and imS.

Positive examples belong to class 5 and the negative examples
belong to the rest.

Positive examples belong to class 0 and the negative examples
belong to class 4.

Positive examples belong to the class 6 and the negative examples
to the rest of the classes.

Positive examples belong to the class 6 and the negative examples
belong to the classes 2-3.

Positive examples belong to the class 4 and the negative examples

belong to the rest of classes.

Positive examples belong to the class 9 and the negative examples
belong to the class 7.

attributes. The class attribute describes the Poker Hand obtained

yeast1 Predicting the Cellular Localization Sites of Proteins

segment0 This data set is an image segmentation database similar to a database
already present in the repository (Image segmentation database) but in
a slightly different form.

vehicle2 3D objects within a 2D image by application of an ensemble of shape
feature extractors to the 2D silhouettes of the objects

vehicle3 3D objects within a 2D image by application of an ensemble of shape

feature extractors to the 2D silhouettes of the objects

Positive examples belong to class NUC and the negative examples
belong to the rest.

Positive examples belong to class 1 and the negative examples
belong to the rest.

Positive examples belong to class 2 (Bus) and the negative
examples belong to the rest.

Positive examples belong to class 3 (Opel) and the negative
examples belong to the rest.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.eswa.2018.12.040.
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ABSTRACT

Sensor data from marine engine systems can be used to detect changes in perfor-
mance in near real-time which may be indicative of an impending failure. Thus,
sensor-based condition monitoring can be important for the reliability of ship ma-
chinery systems and improve maritime safety. However, there is a need for efficient
and robust algorithms to detect such changes in the data streams. In this paper,
sensor data from a marine diesel engine on an ocean-going ship are used for anomaly
detection. The focus is on unsupervised methods based on clustering and the idea
is to identify clusters in sensor data in normal operating conditions and to assess
whether new observations belong to any of these clusters. The anomaly detection
methods presented in this paper are applied to sensor data with no known faults.
Being fully unsupervised, however, they do not rely on the assumption that all mea-
surements are fault-free as long as the amount of faulty data is small. The methods
explored in this study include K-means clustering, Mixture of Gaussian models,
density based clustering, self-organizing maps and support vector machines. These
could be used separately or in combination to provide an efficient initial screening
of the data and decide whether more detailed analysis is required. The performance
of the various methods is generally found to be good, also in comparison with other
methods. Overall, cluster-based methods are found to be promising candidates for
online anomaly detection and condition monitoring of ship machinery systems based
on sensor data.

KEYWORDS
Ship propulsion system; condition monitoring; maritime safety and reliability;
anomaly detection; sensor data; data-driven methods; unsupervised learning

1. Introduction

Sensor data collected from machinery systems on board ships provide real-time infor-
mation about the condition of the ship. Such sensor-based condition monitoring can
be used to detect changes in the performance of the system in near real-time which
may be indicative of a system fault or even an impending failure. However, there is
a need for efficient and robust algorithms to detect such changes in the data streams.
Typically, a data-driven condition monitoring system includes anomaly detection, fault
identification and prognostics. The first task is to monitor the data streams to detect
deviations from normal system behaviour indicative of a change of the system. This is
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referred to as anomaly detection, and for this task only nominal data is needed to train
the algorithms. The next step is fault isolation or fault identification where a diagnostic
tool is applied to estimate what type of deviation the anomaly is, i.e. to distinguish
real faults from unexpected but normal behaviour, and to identify the type of fault. In
order to train such algorithms, information (data) about both normal and faulty states
of the system is needed. Essentially, in a data-driven approach, this is a classification
task, where labelled data is needed in order to perform the classification, see e.g. Vanem
(2018b) for a review of statistical methods that can be used for this purpose. Finally, the
prognostics task try to estimate the future behaviour of the system, conditioned on the
current state, and to estimate the remaining useful life (RUL). Typically for this task
to be feasible with a data-driven approach, there is a need for run-to-failure data under
varying conditions, something which is rarely available. Data-driven methods are alter-
natives to model-based approaches based on a physical modelling of the system from
first principles (see e.g. Maftei et al. (2009); Lamaris and Hountalas (2010); Dimopoulos
et al. (2014); Zymaris et al. (2016); Zacharewicz and Kniaziewicz (2017); Cipollini et al.
(2018)), which may be more difficult to develop and use.

Sensor data from a marine diesel engine onboard an ocean going ship are analysed in
this paper, collecting essential parameters such as power output from the engine, engine
speed, bearing temperatures and various other temperatures, speeds and pressures for
selected engine components. The idea is to utilize the information in these sensor signals
to monitor the condition of the engine. The initial data streams collected from the ship
are high-dimensional, with more than 100 data streams, but a subset of the data streams
are carefully chosen for this analysis. The signals that are believed to be informative
about the condition of the engine is selected based on engineering knowledge. Hence,
what remains is a 24-dimensional dataset that will be used for condition monitoring.
Further dimension reduction is applied in order to alleviate condition monitoring and
anomaly detection.

The focus of this paper is on unsupervised methods for anomaly detection based
on clustering. The idea is to identify clusters in the sensor data for normal operating
conditions and to assess whether new data belong in any of these clusters. New data
that cannot be assigned to any of the identified clusters, may be regarded as anomalies
and call for further scrutiny and more detailed analysis of the data in order to diagnose
the deviation and possibly flag an alarm. However, there are many ways for the data
to fall outside a cluster without there being an actual fault in the system. Hence, the
unsupervised techniques that are explored in this paper could be recommended for
initial screening of the data and should be used in combination with other methods.

The approaches to anomaly detection presented in this paper is truly unsupervised,
and they are applied to sensor data with no known faults. This does not mean, however,
that the data are guaranteed to be without faults. Being fully unsupervised, the cluster
based approaches does not need to explicitly assume that all observations in the training
data are fault-free as long as the faulty data are not forming a separate cluster. This
may be an advantage compared to for example the method based on AAKR Hines and
Garvey (2006); Garvey et al. (2007), where a single faulty training data point may have
a big influence on the signal reconstruction and thereby on the anomaly detection. The
unsupervised anomaly detection presented in this paper may also detect anomalies in
the training data and there is no need to be completely confident that the training data
contains no faults.

Previously, different approaches for anomaly detection have been applied to the same
dataset, i.e. the use of dynamical linear models (DLM) and sequential testing (Vanem
and Storvik 2017) and the use of auto associative kernel regression (AAKR) (Brandseeter
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et al. 2016, 2017). Both these approaches are based on fitting a model to normal data
and predict or reconstruct new sensor data and then comparing to the predicted or
reconstructed signals. Sequential testing are then performed on the residuals to detect
anomalies. In both cases, sequential probability ratio tests (SPRT) were applied. Even
though these methods generally work well, they did encounter some problems with the
marine engine data streams, due to the different operational conditions which give rise
to spurious jumps in the data. This time- and operational state dependence in the data
makes prediction and re-construction challenging and anomaly detection based on signal
reconstruction or predictions are not straightforward. Hence, in this paper, a simple and
unsupervised approach to anomaly detection based on clustering is explored.

2. Data description and exploratory analysis

The dataset contains several sensor signals that can be related to the main bearing
condition of one of four separate diesel engines on a ship. It is noted that the collected
data do not contain any known faults or failures of the system, and the data are not
compared to maintenance logs of the system. The list of selected signals are included in
table 1. The MG1TET702-stream contains only zero-values and these signals are excluded
from the subsequent analysis.

Table 1. Sensor signals in the dataset

MAIN GENERATOR ENGINE 1

MG019 MGE1 ENGINE SPEED [rpm]

MG1PT201 MGEIL LO PRESS ENGINE INLET [bar]

MGIPT401 MGE1 HT WATER JACKET INLET PRESS [bar]
MG1PT601 MGE1 CHARGE AIR PRESS AT ENGINE INLET [bar]
MG1SE518  MG1 TC A SPEED [rpm]

MGISE528 MGI1 TC B SPEED [rpm]

MG1TE201 MGE1 LO TEMP ENGINE INLET [C]

MGITE272 MGEL LO TEMP TC OUTLET A [C]

MGITE282 MGE1 LO TEMP TC OUTLET B [C]

MGITE511 MGE1 EXHAUST GAS TEMP TC A INLET [C]
MGITE517 MGEL EXHAUST GAS TEMP TC A OUTLET [C]
MGITE521 MGE1 EXHAUST GAS TEMP TC B INLET [C]
MGITE527 MGEL EXHAUST GAS TEMP TC B OUTLET [C]
MGITE600 MGE1 AIR TEMP TC INLET [C]

MGI1TE601 MGE1 CHARGE AIR TEMP AT ENGINE INLET [C]
MGITE700 MAIN BEARING NO 0 TEMP MGEL [C
MGITE701 MAIN BEARING NO 1 TEMP MGE1 [C
MGITE702 MAIN BEARING NO 2 TEMP MGEL [C
MGITE703 MAIN BEARING NO 3 TEMP MGEL [C
MGITE704 MAIN BEARING NO 4 TEMP MGE1 [C
MGITE705 MAIN BEARING NO 5 TEMP MGEL [C
MGITE706 MAIN BEARING NO 6 TEMP MGEL [C
MGITE707 MAIN BEARING NO 7 TEMP MGE1 [C
PM100.07  MGI1 POWER [kW]

The sensor signals cover a period of about 10 months starting from December 2014
with a sampling frequency of one minute, but the hourly means are calculated and used
in the subsequent analysis. It is observed that many of the signals are highly correlated.
For example, the various temperature measurements for the main bearings are all very
strongly correlated, see the traceplots in Figure 1. Traceplots of the engine speed is also
shown in the figure. Note that the reduced dataset contains hourly averaged values and
that this is different from a moving average. Thus, there are no overlap between data
points within the different hours. The data for engine speed display two main modes
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of operation, with some transient states between these. This corresponds to the engine
being turned on or off, for example in a load sharing scheme with the other generator
engines.

Hourly mean main bearing temeratures Hourly mean engine speed
Main generator engine 1 Main generator engine 1
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Figure 1. Traceplots illustrating strong correlation between some of the signals (engine 1); the various tem-
perature readings for main bearing temperatures (left) and the engine speed (right); hourly averaged data

One important property of the sensor data is the temporal dependence in the signals.
The partial autocorrelation function of the individual data streams gives an indication of
the temporal dependence and memory in the data, and these show that there are strong
temporal dependence in the temperature signals, but less so for the engine speed. Tem-
peratures display a memory of at least 10 minutes, but with residual serial correlation
beyond this. Nevertheless, in the cluster-based anomaly detection this time-dependence
will be disregarded, and data-points will be clustered individually without any regard
of the sequence they arrive in.

The data are divided into a training and a test dataset. The training data are used
to identify clusters in the data, and the test data will then be assigned to one of these
clusters. The underlying assumption is that the data naturally tend to cluster in a few
clusters and that if new data arrives that are far from these clusters, this deviating
behaviour causes suspicion of faults in the system. The time-dependence in the signals
are neglected and the training data consist of 75% of the original data randomly selected.
The remaining 25% constitute the test data. It is noted that randomly splitting the data
into training- and test data is normally not recommended for time series data (Bergmeir
et al. 2018), but for the purpose of clustering this can be defended.

2.1. Data preprocessing and dimension reduction

The data for generator engine 1 is 23-dimensional, and although it is possible to per-
form clustering in this 23-dimensional space, one may hope to get better performance
if some form of dimension reduction is performed. Hence, principle component analysis
and decomposition is performed on the training data and the same decomposition is
subsequently applied to the test data. Plotting the variance and the cumulative propor-
tion of the variance that are explained by the principal components can aid in selecting
number of principal components to keep for the subsequent analysis, as shown in Figure
2. 99.5% of the information in the data is kept by the 7 first principal components, and
this is the number of principal components kept brought forward for further analysis.
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Traceplots of the 7 first principal components are shown in Figure 2, including both the
training and test data.

Principal Component Analysis Traceplot of principal components
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Figure 2. Variance explained by the principal components in the training data (left) and 7 first principal
components (right)

3. Clustering methods for unsupervised anomaly detection

This section outlines the cluster analyses on the sensor signals and the subsequent ap-
plication for anomaly detection. Various methods for clustering have been investigated,
and different ways of using the various cluster methods for anomaly detection is ex-
plored.

3.1. K-means clustering

Before exploring the use of various clustering-methods for anomaly detection, the K-
means clustering algorithm is applied in an initial cluster analysis (Hastie et al. 2009).
This method divides the data into a specified number, K, of clusters based on the
squared Euclidean distance, and requires K to be given. Essentially, the method itera-
tively identifies K centre-points and clusters the data around these in such a way that
the distance between the data and the centre-points within each cluster is minimized.
There are no way to unambiguously determine the optimal number of clusters. However,
one may look at the ratio of the between-cluster variance and the total variance and
indications of reasonable values of K can be found by looking at so-called elbow plots.
This is shown in Figure 3. Vertical lines indicate K = 5,8, and 15, and the elbow in
the graph appear around K = 5. Hence, this is presumably a reasonable value of K for
these data.

Scatterplots of the data (first 7 principal components) which indicate cluster member-
ship based on K-means clustering with K = 5 are shown in Figure 4. The distribution
of points within each cluster is also shown in the figure showing that all clusters are
reasonably populated. Similar plots for the test data, where each data point in the test
data is assigned to the cluster with the nearest cluster center are shown in the figure.
By inspecting these plots, it appears that the test data has been reasonably clustered
and that the distribution of observations to each cluster seem to be comparable.
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Figure 3. Estimating the number of clusters in the data, K

3.2. Mixture of Gaussian models

Compared to K-means clustering, clustering with mixture of Gaussian models has two
main advantages. First, a parametric model is fitted to the data, so it is possible to obtain
density estimates and p-values for how likely the data are given the model. Moreover,
since K-means clustering is based on the Euclidean distance, the clusters will be defined
by hyperspheres around the cluster centres, whereas the mixture of Gaussian models
take the correlation into account and can give ellipsoid-shaped clusters of varying shapes
and orientations.

The density of a Gaussian mixture model is on the form of a mix of K individual
Gaussian densities, and the density function can be written as (see e.g. Hastie et al.
(2009))

K
fl@) = mo(@; pe, Sie). (1)

k=1

The m;’s are the mixing proportions determining the contribution from each of the K
mixtures, and ), m, = 1. The density of each mixture is described by the Gaussian
density function, ¢(-) with a mean vector pg and a covariance matrix Xg. Fitting such
a model to data means estimating the model parameters, 7, ft;, and 33, and this is
done using the maximum likelihood and the Expectation-Maximization (EM) algorithm.
Having estimated a mixture model, it may provide an estimate for the probability than
an observation, i belongs to a component, [ as shown in eq. (2) and clustering may be
performed by assigning the observation to the component with the highest probability.

(@i fuy, )
L Fro (s fy, S

(2)

b =

One of the tasks of fitting a mixture model to data is to determine the value of K.
One way to do this is to calculate the Bayesian Information Criterion (BIC) and choose
the model that maximizes this. Alternatively, the integrated complete likelihood (ICL)
can be used. ICL can be thought of as similar to BIC, but penalized by the mean entropy
(Baudry et al. 2010). Typically, this will suggest a lower number of clusters compared
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Figure 4. Data clustered in K = 5 clusters with K-means (left) and distribution of observations within the
clusters (right); Clustering on training data (top) and applied to the test data (bottom)

to the BIC. The BIC and the ICL as a function of number of components in a mixture
of Gaussians model are shown in Figure 5 for the training data. No restrictions have
been put on the various components, which may have varying orientation, shape and
volume. Both the BIC and ICL favour models with a high number of components and
according to both criteria, the mixture model with K = 31 components is suggested as
this corresponds to maximum BIC and ICL, as shown in Figure 5.

Including many components in the mixture model increases the probability of over-
fitting and it might be reasonable to choose a lower number of components. Hence,
in this study, both the suggested value of K = 31 as well as K = 5 will be tried.
The distribution of observations assigned to each cluster for both models are shown in
Figure 6, for both the training and test data. One thing that is observed is that for the
mixture model with K = 31 components one of the clusters did not get any observation
assigned to it in the test data. This indicates that the model is overfitted. Apart from
this, the same clustering structure is observed in the training as in the test data.

3.2.1. Anomaly detection based on mixture of Gaussian clustering

A fitted Gaussian mixture model can be used directly in condition monitoring and
anomaly detection of new observations. The implicit assumption is that new patterns
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Figure 5. Estimating the number of components of the mixture model by BIC (left) and ICL (right)

in the sensor signals that are extreme according to the established model will be flagged
as anomalous. There are many ways of defining extremes within the context of mixture
models, and in this study an anomaly will be defined based on some probability of being
extreme according to all the model components, and a p-value can be calculated for each
Gaussian component separately. Then, the overall p-value will be the maximum p-value
among the K components.

In the multivariate setting, there are different definitions of being extreme, see e.g.
Serinaldi (2015); Vanem (2018a). Figure 7 illustrates four ways of defining extremes in
a bivariate setting, where the shaded areas correspond to the probability of being more
extreme than a particular point. In the first example, the probability of being more
extreme than an observation is defined as the probability of both marginals being more
extreme, Pynyp. The second example defines the probability of being extreme as the
probability of either of the marginals being as extreme, Pog. The third example defines
extreme as being outside an exceedance hyperplane, P.. This definition of multivariate
extremes is in line with the concept of environmental contours often applied in structural
reliability analysis (Haver and Winterstein 2009; Huseby et al. 2013, 2015) and P, can be
calculated in different ways. Finally, the last example defines extreme as being further
away from the central point (mean vector) of the distribution in any direction, Pp, and
can be calculated based on the Mahalanobis distance. In the n-variate normal case, the
squared Mahalanobis distance will be distributed according to the y2-distribution with
n degrees of freedom, and one may define a Pp as the probability of having a squared
Mahalanobis distance greater than what is observed. l.e. for an observation x; with
distance D;, Pp(x;) = P2 (d > D7).

The p-values for characterising how extreme an observation is will be very different
according to the definition that is adopted. For higher dimensions, this difference will
grow. The Pp value will typically be larger than the other P-values discussed above.
Hence, in the following, the Pp value is calculated for each observation based on every
Gaussian component, kK = 1,..., K, of the mixture model and a p-value can be set as
the largest of the K Pp-values, i.e.

= P
D lg}caéXK Dk (3)
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Figure 6. Distribution of observations assigned to each cluster by the mixture of Gaussian models with K =5
(left) and K = 31 (right); training data (top) and test data (bottom)

One may use this for anomaly detection and flag any observations with small p-values
as possibly anomalous. This corresponds to testing whether the observation belongs to
the mixture component for which it is most likely to belong to, and if one can reject the
hypothesis that it belongs to this component, one may reject the overall hypothesis that
it belongs to the mixture model. What remains is to choose a suitable a-level for the
test. In this study, each observation with p < 0.05 is initially regarded as an anomaly.
Figure 8 shows the time series of the largest p-values for both the training and the test
data and reports the number of anomalies in the training and test data, respectively,
for the mixture models with K = 31 and K = 5. The solid horizontal line in the plot
corresponds to p = 0.05. It is observed that if a mixture model with K = 5 is chosen,
then approximately 4-5% of the observations are flagged as anomalous. If K = 31 this
is reduced to 2-3%. This agrees well with the 5% level of the test and could be expected
even if the mixture models were entirely correct and in the absence of any anomalies.
This anomaly detection scheme essentially performs one test for each component of
the mixture model, and as such it can be construed as multiple testing. This may give
rise to false negatives just by chance, and it may be reasonable to correct for this. One
common correction is the Bonferroni correction that adjusts the a-level in the test to
o, where n is the number of tests performed. An implicit assumption here is that the
tests are independent. In this case, with n = K and K = 5 and K = 31, this gives the
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Figure 7. Different definitions of characterizing extremeness in the bivariate case

adjusted a-levels as 0.01 and 0.0016, respectively, and these levels are also indicated in
Figure 8. The rate of observations flagged as anomalous with the adjusted levels are
approximately 2% for the model with K = 5 and less than 0.1% for the model with
K = 31.

If there are actual faults in the system, this presumably will be reflected in subsequent
sensor readings, and one may require more than one anomalous observation to flag
an alarm. Hence, sequential tests for anomalies could be established. A very simple
approach could be to monitor the Pp-values and flag an alarm whenever a pre-defined
number of subsequent values are below the p-value. This would significantly reduce false
alarms due to spurious outliers. For example, for the data used in this study, the anomaly
ratio for the various set-ups reduce to the numbers in Table2 by only requiring that two
subsequent values of Pp are below the specified p-value. Depending on the system being
monitored, a larger number of subsequent anomalous readings could be required in order
to reduce the sensitivity to individual outliers, if needed. More elaborate sequential tests,
based on combining the p-values from subsequent measurements could also be envisaged,
but this is out of scope of this study.

3.3. Density based clustering - DBscan

Another approach to clustering is based on the density of observations in the feature
space and groups observations with many neighbouring points into clusters. DBscan
is an algorithm for such clustering (Martin et al. 1996) where the number of clusters
in the data will be determined by the algorithm. However, there is a need to specify
two parameters; the size of a neighbourhood (¢) and the minimum number of core
points that needs to be contained within a neighbourhood for it to form a cluster, k.
In principle, any distance function could be used, but in this application, the Euclidean
distance will be assumed.
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Figure 8. Maximal p-values for anomaly detection; mixture model with K =5 (left) and K = 31 (right)

Table 2. Ratio of anomalies in the data, as detected by the mixture of Gaussian model clustering and flagging
for 2 subsequent low p-values

Training data Test data

p=a=0.05
K=5 2.95% 2.59%
K =31 0.43% 0.58%
p=a/K =0.01
K=5 1.06% 0.94%
p=«a/K ~0.0016
K =31 0% 0%

DBscan estimates the density around each data-point by counting the number of
observations within the specified neighbourhood size. It then distinguishes between core
points, bordering points and a noise points. A core point has at least & points within
the specified distance, €. Points within the neighbourhood distance from a core point is
said to be directly reachable from those core points. A point that is directly reachable
from a core point, but with less than & points within the neighbourhood distance is
referred to as a border point. A cluster is then all points that are reachable from a core
point. Hence, each cluster must contain at least one core point and one or more border
points. Points that are not reachable from any other points are regarded as outliers or
noise-points. In this way, clusters may take any shape, and they may differ from the
spherical- or ellipsoid shapes used for defining clusters with K-means og mixture of
Gaussian models.

One attractive feature of density based clustering algorithms is that outliers or noise
points are identified directly, which can be exploited for anomaly detection. However,
the cluster structure will be highly dependent on the parameters € and k£ and it may not
be straightforward to determine the optimal values of these. As ¢ increases, the number
of clusters decreases towards 1 and also the number of noise points decreases towards
0. Choosing too large value for ¢ thus results in all the data forming one cluster with
no outliers. On the other hand, too small ¢ will give a complicated model with many
clusters and may tend to overfit. Plots of number of clusters and number of noise points
versus € for various values of k (not shown herein) indicate that reasonable values for e
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should be in the range of 0.25 - 1.

It is recommended to use domain knowledge to determine the value of k£ in DBscan.
In this study, results for three values of k are reported, i.e. kK = 10, £k = 20 and k£ =
50. For k = 10 ¢ is set to 0.5, for & = 20 ¢ = 0.6 and for K = 50 it is set to
1. These parameter choices yield clustering with 10, 5 and 3 clusters, respectively. The
distribution of training data points in each cluster are shown in Figure 9. It is interesting
to observe that the number of noise points or outliers (denoted as cluster 0) is very
similar for the three pairs of parameter values. With k£ = 10, k£ = 20 and k = 50 the
anomaly rates are 5.47%, 5.55% and 3.67%, respectively, which slightly higher than the
ratios obtained by the mixture of Gaussian clustering.
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Figure 9. Distribution of data points in each clusters for the training data for different values of € and k

3.8.1. Anomaly detection with DBscan

Having applied DBscan to the training data and defined a set of clusters, new observa-
tions can be assigned to any of the clusters as they are collected. Observations that do
not belong to any of the clusters will be regarded as noise points and can be regarded as
anomalies. The distribution of observations assigned to the various clusters are shown
in Figure 10, and the distributions appear to be very similar to the distribution for the
training data.

Distribution in clusters, DBscan Distribution in clusters, DBscan Distribution in clusters, DBscan

£=05k=10 £=06k=20 e=1,k=50

Figure 10. Distribution of number of points in each clusters for the test data for different values of £ and k

The ratio of noise points or anomalies in the test data, as detected by the DBscan
clustering method is 6.9% for & = 10, 7.1% for k = 20 and 4.1% for k = 50. This is
slightly higher than for the training data, and seems reasonable. It can also be observed
that most of the data points detected as anomalies are the same regardless of the
parameters. For example, of the 98 anomalies detected with k& = 20, 80 of the same
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points were detected with £ = 10 and 70 with & = 50. Hence, even though the number
of clusters are different, there is general agreement for most of the detected anomalies.

In a simple sequential manner, one may also regard outliers as possible anomalies
only if two or more subsequent observation are regarded as noise points. If only flagging
for possible anomalies with at least two subsequent noise point, the anomaly rate in the
training data reduces to 4.08% (k = 10), 4.32 (k = 20) and 2.67 (k = 50), respectively.
For the test data, the corresponding rates are 4.47% (k = 10), 4.76% (k = 20) and
2.09% (k = 50), respectively.

3.3.2. Hierarchical DBscan - HDBscan

Hierarchical DBscan, HDBscan, is an extension of DBscan (Campello et al. 2013). It
allows for varying density clusters and does not require the neighbourhood distance € to
be specified. Instead, it provides a hierarchy of clusters for any value of ¢ in a three-like
structure. This three can then be cut at any place, corresponding to fixing the value of
€ at any value to give different number of clusters. The algorithm then finds the optimal
cuts in the hierarchy based on a cluster stability score.

Hierarchical DBscan clustering is performed on the training data for the three differ-
ent values of k that was also used in the DBscan clustering above, i.e. k = 10, k = 20
and k£ = 50, as well as kK = 100, and the flat solution corresponds to a solution with
68 clusters for £ = 10, 33 clusters for k£ = 20, 12 clusters for £ = 50 and 7 clusters for
k = 100. Thus, the hierarchical DBscan results in significantly more clusters compared
to the ones found by fixing the e-parameter with DBscan.

The HDBscan algorithm calculates an outlier score for each data point, ranging from
0 to 1, with higher value corresponding to higher degree of outlierness. The score is
based on both local and global properties of the hierarchy (Campello et al. 2015), and
may identify points that are outliers compared to points in its neighbouring region
without necessarily being outliers globally. It is possible to base anomaly detection on
this score and regard all data points with an outlier score above a predefined threshold
as possible anomalies. Histograms of the outlier score for the various values of k are
shown in Figure 11, where the percentage of points having an outlier score above 0.95
is indicated. These percentages are 5.9% for k = 10, 4.4% for k = 20, 2.6% for k = 50
and 0.84% for k = 100.

Hierarchical DBscan is a transductive method, and this means that new observa-
tions should in principle be allowed to influence the underlying cluster structure and
prediction of cluster membership and outlier scores are not straightforward for new
observations based on a fixed clustering. Even though there are ways around this, clus-
tering based on HDBscan are not brought forward for use in anomaly detection of new
observations in this study.

3.4. Self-Organising Maps (SOM)

Self-organising maps, also sometimes referred to as Kohonen maps is a type of artificial
neural networks for unsupervised learning (Kohonen 1982). They contain nodes with
a weight vector of the same dimension as the input data which are represented as a
location on the map. The weight vectors of a map are set at random and then iteratively
updated by feeding input vectors from the training data. For each training data point,
the distance (typically Euclidean distance) to all weight vectors is computed and the
node with the weight vector that is closes to the input data will be called the best
matching unit (BMU). The weight vectors of the nodes in the neighbourhood of the
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Figure 11. Histograms of outlier scores as calculated from HDBscan clustering for different values of k

BMU will be updated by pulling them closer to the input vector (training data point).
This is repeated iteratively for all training data and for a specified number of iterations
(cycles). The result is a map which associates output nodes with groups or patterns in
the training data set. With a trained map, new observations can be mapped by assigning
input vectors to the node with the closest weight vector, the so-called winning node.

One must specify the dimensions of the map and the distance function used to calcu-
late the distances. In this study, all maps are based on the squared Euclidean distances.
Moreover, one must specify the number of cycles or number of times the training data
should be sent to the network. It must be ensured that a sufficient number of cycles is
specified so that the training of the map converges. In order to check whether a rea-
sonable map has been specified, there are some diagnostics plots that can be made,
such as node count plots, plot of changes between iterations, and plot of the distribu-
tion of parameter values across the map. Such plots are not shown in this paper but
self-organizing maps of different sizes have been explored. However, only results for
self-organizing maps with 15 x 15 nodes are reported in the following. A previous ap-
plication of self-organising maps for condition monitoring of marine engines is reported
in Raptodimos and Lazakis (2018).

Clustering with self organizing maps can be based on the distances to neighbouring
nodes. Initial K-means clustering of the map nodes indicates that around 5 clusters are
reasonable. The actual clustering of the map nodes will be performed by hierarchical
clustering. and the resulting clustering of the map is illustrated in Figure 12 for number
of clusters k = 4,...,9. These plots agrees well with a value of k = 5.

Having performed clustering on the self organizing map, one may look at the cluster
assignment for the training data and also predict the cluster membership on the test
data. The distribution of observations in each cluster for both data sets, based on k = 5
and a map with 15 x 15 nodes, is shown in Figure 13.
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Figure 12. Clustering of the self organizing maps for different number of clusters; hierarchical clustering

3.4.1. Anomaly detection using self-organizing maps

There are different ways one could use self-organizing maps for anomaly detection. For
example, one could identify some nodes in the map as outliers and do anomaly detection
similar to the scheme based on DBscan above. However, in this study, a somewhat
different approach is investigated, based on signal reconstruction and residual analysis.
This resemble the anomaly detection approaches based on AAKR or DLM as reported
in Brandseeter et al. (2017); Vanem and Storvik (2017). Self-organizing maps is also
used for marine engine condition monitoring in e.g. Raptodimos and Lazakis (2018).

Reconstruction of new observations based on a trained map consists of first mapping
the new observation to a node in the trained map and then to predict the parameter
values corresponding to that node. This will typically be the average of all the train-
ing data that belongs to the same node. Assuming that the map has been trained on
anomaly-free data, large deviations of the reconstructed signal from the observed signal
can be regarded as a possible anomaly. One must then either define a threshold for
when a residual is construed as large, or one could apply a sequential test such as the
sequential probability ratio test (SPRT) as outlined in e.g. Brandsaeter et al. (2017);
Vanem and Storvik (2017). In this study a simple threshold approach is taken, and a
possible anomaly is flagged whenever the absolute value of the residual is larger than a
predetermined threshold. For the purpose of this exercise, this threshold is set to £0.6
since the prediction error is typically below this for the training data. This is done
on each sensor signal. Trace plots of the test data and the predictions based on the
self-organizing maps are shown in Figure 14 (top row) for the three first principal com-
ponents. Also the residuals are shown in the bottom row and the threshold is indicated
by a horizontal dashed line.

Applying such an anomaly detection approach on the ship sensor signals, one gets
an anomaly rate of 0.58% on the training data and 1.66% on the test data. If one
require two subsequent anomalies to trigger an alarm, these rates reduce to 0.14% on
the training data and 0.43% on the test data, respectively.
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Figure 13. Distribution of observations within each cluster for the training (left) and test (right) data with
clustering performed by self organizing maps; 5 clusters based on map with 15 X 15 nodes
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Figure 14. Anomaly detection can be performed by studying the residuals between the observed signals and
the ones predicted by the trained map; Traceplots of test data and SOM prdictions (top row) and traceplots
of residuals (bottom row)

3.5. Nowvelty detection with Support Vector Machines (SVM)

Support vector machines (SVM) is a supervised learning technique typically used for
classification problems, see e.g. Hastie et al. (2009). However, it can also be used for
anomaly detection by formulating this as a one-class problem, sometimes referred to
as unary classification. The idea is that all training data are assumed to belong to one
class (i.e. no fault) and the task is to detect deviations from this class and regard them
as anomalies. This is often referred to as novelty detection.

Various kernels may be defined, but only the Gaussian radial basis function kernel
have been employed in this study. The kernel can be interpreted as a similarity measure
between data vectors, and the radial basis function kernel on two sample vectors, X
and X' is

_Ix=x/)2

KX, X)=¢ 37 (4)

The inverse kernel width ¢ is a hyperparameter that is estimated from the training
data; typically it is a value between the 10- and 90-percentile of the euclidean distance
in a fraction of the training data. In addition, one parameter, v, needs to be specified
which sets the upper bound on the training error and the lower bound on the fraction
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of data-points that may become support vectors. Essentially this determines the degree
of ”softness” of the margins of the support vector machine.

One-class support vector machines have been fitted to the training data for various
values of the parameter v and applied to the test data for anomaly detection. The ratio
of anomalies for various values of v is presented in Table 3. By definition, all training
data are labelled as "known”, so there will be no anomalies in the training data with
this method.

Table 3. Support vector machines: Anomaly rates in the test data for different values of v

v 0.001 0.006 0.01 002 005 01 015 02 025 05 0.75

# anomalies 37 43 38 49 77149 202 260 335 667 1018
Anomaly rate 0.027 0.031 0.027 0.035 0.056 0.11 0.15 0.19 0.24 048 0.73

It is generally observed that the number of anomalies increases with the value of v,
but it is not straightforward to determine an optimal value. However, one may assume
that the different classes, i.e. normal data and anomalous data, are perfectly separable in
some enlarged space, and this suggests that support vector machines with hard margins
should be preferred, i.e. small value of v. When the time-points where the various
support vector machines suggests anomalies are investigated it is generally observed
that the points flagged as anomalous with smallest v-parameter are also regarded as
anomalies by the other models, but with additional points added for increasing values
of v. Hence, it may be concluded that one of the models with low value of v should be
used for anomaly detection.

4. Discussion

4.1. Anomalies detected by the different methods

One way to compare different methods is to compare the anomaly ratios. However, it
can also be of interest to investigate how robust cluster-based anomaly detection is by
comparing which observations are regarded as anomalous in the test data by the various
methods. Figure 15 plots the flags that would occur from different schemes based on
mixture of Gaussian, DBscan and SOM. This illustrates that many of the same data
points are flagged as anomalies by several methods. Summing the number of possible
anomalies from each method one gets 412 possible anomalies, but there are only 192
unique observations that are detected at least once.

Table 4 summarizes the number of methods that has detected the various possible
anomalies in the data, for both the training and test data. Comparing all the methods,
it is seen that the overall anomaly rate, as detected by any of the methods are 11.3%
for the training data and 13.8% for the test data. This is probably too high, and much
higher than the anomaly ratio from any of the individual methods.

Table 4. Anomalies detected by different number of methods

Number of times detected
1 2 3 4 5 6 7 8

Training data 190 123 95 48 9 6 1 0 472
Test data 80 46 35 23 6 1 1 0 192
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Figure 15. Comparing the possible anomalies detected by the different clustering methods. Vertical lines
corresponds to time points where the different methods would flag an alarm.

On way to get more robust anomaly detection is to apply an ensemble of methods
and disregard anomalies that are only detected by one method. For example, if applying
all the 8 methods above and flagging an alarm only if two or more methods regards
an observation as a possible anomaly, one would obtain anomaly ratios of 6.8% for the
training data and 8.1% for the test data, respectively. If detection by three or more
methods are required, the anomaly rates would reduce even further, to 3.8% for the
training data and 4.8% for the test data.

By requiring two subsequent anomalous observations to trigger an alarm, the anomaly
rate for each individual method decreased notably. Figure 16 illustrate which observa-
tions will be regarded as possible anomalies using this approach for the test data. There
are notable overlap and the overall anomaly rate from all the methods with this setup is
7.7% for the training data and 8.4% for the test data, respectively. This is considerably
lower than the overall anomaly ratio as detected without requiring 2 subsequent anoma-
lous readings. Moreover, the methods could again be combined to raise a flag only if
a minimum number of the methods agree on a possible anomaly. If the requirement is
that a possible anomaly is detected by at least two methods the anomaly rate reduce
to 4.7% for both the training and the test data. If the requirement is set to at least 3
methods these rates reduce further to 2.4% and 2.2%, respectively, for the training and
test data.

There are several ways to combine an ensemble of methods to establish robust
anomaly detection methods for ship sensor data. Combinations with other methods,
such as for example the AAKR method (Brandsaeter et al. 2017) or DLM (Vanem and
Storvik 2017) could also be investigated, but is out of scope of the current study. For
final implementation in an actual condition monitoring system, the performance of the
methods and how they are combined should be investigated in more detail.
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Figure 16. Comparing the possible anomalies detected by the different clustering methods when requiring 2
subsequent anomalous readings to flag an anomaly. Vertical lines corresponds to time points where the different
methods would flag an alarm.

4.2. Time-dependencies in the data

The sensor data analysed in this study are essentially time series data, with temporal
dependencies on various scales, both across different sensor streams and within the same
signal. These temporal cross- and autocorrelations have not been taken into account,
and the observations are simply regarded as independent observations of the marine
engine system. Presumably, there are information in the temporal dependencies, and it
may be that better and more robust detection strategies could have been developed if
the time-dependence are taken into account. One approach to deal with these is to apply
a suitable time-series model to the data in the preprocessing step to obtain residuals
free from auto-correlation and then do the subsequent analysis on the residuals. This
route, however, was not taken in this study. In general, time-series data should not be
treated as independent observations of a system. For example, it is well known that
autocorrelation might influence the cross-correlation between time series (Yule 1926).
In this study, principal component analysis is performed and these are, by definition,
linearly uncorrelated, so the linear cross-correlation between the transformed sensor
signals is zero.

In time series the ordering of the data is meaningful, as opposed to independent data.
This has an effect on how the data should be split in different parts, e.g. in a training
set and a test set, see e.g. Bergmeir and Benitez (2012); Bergmeir et al. (2018). This
is ignored in this study, and the splitting of the data is done completely at random.
This splitting of the data into two parts without accounting for the autocorrelation will
presumably give more similar training- and test-data than what would be the case if the
data had been truly independent. This is reflected in the results, where the clustering
on the training- and the test data yields very similar distribution of observations across
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the clusters. On the other hand, it ensures the representativeness of the training data
compared to the test data, which will be discussed further in the following subsection.

4.3. Importance of representative training data

If data-driven methods are trained on a dataset that is not representative of new obser-
vations, one cannot expect the methods to perform well on new data. In unsupervised
anomaly detection, the implicit assumption is that the training data contain measure-
ments of the system in all normal conditions, and that if new observations exhibit very
different characteristics they will be regarded as anomalies, for example due to faults in
the system or due to deviation from nominal operation of the system. If measurements
of some normal conditions are not included in the training data, future measurements
under such conditions may be categorized as an anomaly even though it is perfectly
normal. On the other hand, if the training data contain extensive measurements from a
faulty or wrongly operated system, this would be regarded as normal and the method
would fail to identify similar future measurements as anomalies.

In the study presented herein, anomaly detection is performed on sensor signals
collected from a main generator engine onboard a ship in operation. Even though the
data are time-series data, the splitting between training data and test data was done
completely random, ignoring the temporal ordering of the data. This is not entirely
correct for time series data, but it ensures that the training data is a good representation
of the test data. To illustrate how important this is the clustering methods presented in
this paper are repeated with a different separation of the data into training and test-sets;
the training data will be chosen to be the first 75% of the sensor measurements, whereas
the last 25% are kept as test data. In this case, the training data will be less similar
to the test data. Only the anomaly detection based on mixture of Gaussian modelling
is reported, but similar results are found for the other methods. Thus, a mixture of
Gaussian model with £ = 5 is fitted to the training data and the test data are assigned
to one of the mixtures as outlined above.

With this setup, the test data are distributed differently to the various clusters com-
pared to the training data and this suggests that the ship has been operated differently
during the training phase and the test phase. If one calculates the p-values correspond-
ing to the Gaussian mixtures as outlined above, the anomaly rate in the training data
becomes 3.75%, but the anomaly rate in the test data is almost 75%. This is obviously
too high, indicating that there is something wrong with the engine in 75% of the time
during the test phase. These data contain no known faults, so this is clearly not the
case, but is an effect of the training data not being representative for the test data.

The above demonstrates the importance of having a representative training data
set for doing data-driven anomaly detection based on sensor data. However, it is not
straightforward to obtain such a representative training data. Splitting the data at
random is demonstrated to yield two subsets that are representative of one another.
However, there is no guarantee that any of these subsets are representative of future
observations of the system. This would be the case when one employs anomaly detec-
tion in an actual online condition monitoring system. In that case, one would need to
have training data that one could reasonably assume to be representative for all future
measurements of the system, in that

e The training data contain observations corresponding to all possible nominal con-
ditions in order to avoid false alarms
e The training data contain no observations from a faulty or wrongly operated
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system in order to avoid missed alarms

Obviously, it is difficult to ensure that these conditions are fully met, but one way
to fulfil the first condition is to extend the coverage of the data used for training.
In the case of ship monitoring systems, the training data should cover all operational
modes and all environmental conditions the ship is believed to be operating in. This
means that training data covering several years of operation should be collected to
cover normal variations due to different seasons, different trades, different fuel quality,
different operations, etc. In order to comply with the second condition, one may need
to perform some cleaning of the data to reduce the amount of anomalous observations
in the training data.

Notwithstanding these difficulties in obtaining a representative training data, this
study demonstrates that various cluster methods can be used in different ways for
anomaly detection on sensor data, and that the various methods perform reasonably
well if the training data is representative of future measurements.

4.4. Information loss due to dimensionality reduction

Principal component analysis is performed in order to reduce the dimensionality of the
problem, i.e. from 23 to 7. This makes the anomaly detection problem more manageable
and the algorithms runs much faster. Moreover, it was found that almost all information
content in the sensor data would be preserved; 99.5% of the variation in the data will be
explained by the first 7 principal components. Typically, the first principal components
are assumed to contain the signal in the data, whereas the last principal components
contains mostly noise.

However, it may be that the last principal components will be most affected by
certain types of anomalies. For example, if faults in the systems affects the noise more
than the actual signal. In order to check if this is a problem with the current dataset,
the cluster-based anomaly detection methods are carried out on the 7 last principal
components. The training data now consist of the 7 last principal components of the
training data that was analysed above and the test data is the last principal components
of the previous test data.

Applying a mixture of Gaussian models on these data, the BIC criterion suggests
a mixture of 4 components, whereas the ICL criterion suggests 2. This indicates that
the data structure is less complex in the last principal components. Assuming a model
with 4 clusters, the anomaly detection scheme based on the Mahalanobis distance now
yields anomaly rates of 0.19% and 0.22%, respectively in the training and test data. If
two subsequent anomalous readings are required to trigger an alarm, no alarms will be
triggered in the training data, and only one in the test data. Similar results are obtained
with the other clustering methods.

Thus it is demonstrated that using the last principal components detects much fewer
alarms. However, it also illustrates that some possible anomalies can be detected from
analysing the least varying principle components, and these are not necessarily the same
time points as the anomalies in the first principal components. Hence, there is a risk
of loosing this information when applying dimensionality reduction. It is not entirely
clear whether these were false alarms or indeed real anomalies, and data with known
faults would be needed in order to assess this. In general it is difficult a priori to know
in which principal component a possible fault will be detectable, and it may vary for
different types of faults.

One possible compromise between the need for dimensionality reduction to make
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the problem manageable and the need to minimize the risk of throwing away impor-
tant information is to run several models in parallel, each monitoring a subset of the
principal components. In this way, all principal components would be monitored, and
each model would be manageable. Obviously, some information would still be lost, e.g.
regarding the inter-dependencies between the subsets of data streams, but since the
principle components are linearly uncorrelated the effect of this is presumably small.
Notwithstanding, this study has demonstrated that far more possible anomalies are de-
tected by only looking at the most varying principal components. Thus, it is believed
to be reasonable to base anomaly detection routines on the first principal components
in most cases.

5. Summary and conclusions

This paper has presented a study on the use of cluster-based methods for unsupervised
anomaly detection of ship machinery sensor data for condition monitoring. In particular,
four very different approaches are explored, based on a mixture of Gaussian models,
density based clustering, self-organizing maps and support vector machines, respectively.
The methods are simple to use and have been found to perform well on the sensor data
from a marine engine system, and were able to detect a reasonable number of anomalies.
However, all the algorithms have different parameters that needs to be determined and
fine-tuning and validation would need to be carried out before the methods can be
employed in actual online condition monitoring systems.

One advantage of the methods presented in this paper, compared to other methods
that has recently been proposed, is that they are truly unsupervised. All methods ex-
cept one are able to account for faulty training data and can work well even if some
erroneous measurements are used to train the models. This is deemed to be impor-
tant, since it is very difficult to ensure that sensor data are completely without faults.
In terms of detection rates, the different methods are comparable, and there are great
overlap between the times the different methods would flag an alarm. However, it is sug-
gested that more robust detection algorithms can be obtained by combining the different
methods in ensembles. However, further investigations on the optimal combinations and
detection strategies are recommended for future research. It is demonstrated that rep-
resentative training data is crucial, something that is of paramount importance for all
data-driven methods, and this is generally difficult to guarantee. Notwithstanding, this
study has demonstrated the usefulness of cluster-based methods for anomaly detection
in condition monitoring systems of ship machinery systems.
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ABSTRACT:  We discuss potential assurance frameworks for autonomous navigation systems in the mar-
itime industry, with emphasis on testing and verification of the system’s perception performance and capacities.
Ongoing research in this field has revealed profound challenges related to artificial situation awareness and
machine perception specific to the marine environment. The lack of a clear and transparent framework and
methodologies to assure the safety associated with the usage of such solutions, have been identified as key
barriers for the implementation of autonomous navigation solutions at scale. Because the machine perception
and situational awareness algorithms are expected to be partly or fully based on machine learning algorithms,
including deep learning, whose functional reasoning is challenging or even impossible to understand and pre-
dict, the verification of such systems is fundamentally different from a traditional verification process based
on physical understanding and theory. We review several methods for testing autonomous navigation systems,
proposed and used mainly in the automotive industry, and discuss how these methods can be adapted, combined

and applied to form a framework for assurance of autonomy in the maritime industry.

1 INTRODUCTION

Autonomous transport on land, in the air and at sea
has been coined the technology trend with the high-
est potential to disrupt the transport sector in the fu-
ture. It has the potential for making transport solu-
tions more cost effective, safe and environmentally
friendly, but also to disrupt entire business models
and value chains associated with the mode of trans-
port. Given the disruptive potential of this technology
trend, increasing research efforts are being invested to
realize the technological solutions.

1.1  The autonomy revolution

Technologies and methods for autonomous systems is
a very active area of research both in the industry and
in academia. However, the majority of the research
being done for autonomous vehicle navigation is fo-
cused around the automotive industry. The amount of
test data for such vehicles is becoming abundant and
is considered an important contributor to the current
state of the art in the research field. Major advances
in object detection, classification and image analysis
have been made in recent years, with extensive use of

artificial intelligence related technologies such as fea-
ture extraction, artificial neural networks, deep learn-
ing models such as convolutional neural networks
(CNNs), gradient-based and derivative-based match-
ing approaches (see for example (Hofmann 2013,
Rout 2013, MathWorks 2017c¢)). Research is needed
to identify if and how the algorithms, methods and
sensors, developed for the automotive industry, can
be utilized in the maritime domain.

1.2 Opportunities in the maritime industry

Several studies have shown that human error con-
tributes to a majority of marine casualties (Rothblum
2000, Harrald et al. 1998). However, automated sys-
tems and autonomy can also introduce new chal-
lenges, and existing challenges might be amplified
(Liitzhoft & Dekker 2002). Nevertheless, we expect
that if the interaction between the humans and ma-
chines are treated carefully, with thorough testing and
verification, autonomy can contribute significantly to
increase safety in many maritime operations.
Unmanned ships will enable optimization of en-
ergy efficiency due to changes in flgsjgn constraints
and freeing of space, previously used to accommo-



date crew. In addition, more hydrodynamic and aero-
dynamic designs may in turn lead to less fuel con-
sumption and reduced emissions. Furthermore, au-
tonomous ships might be able to compete with road
transportation and contribute to reduced emission
from road transportation as well as reduced road wear
and tear.

If autonomous ships are successfully implemented,
it will most probably enable fundamentally new types
of ship transportation operations, such as for exam-
ple single container shipment (Woodgate 2017); ex-
tremely slow speed transportation with very low emis-
sions (Tvete 2017); container feeder to replace road
transport (Kongsberg 2017); and unmanned patrol
ships (Fingas 2017).

Several demonstrators have already proven that it
is feasible for a transport solution to be operated by
sensors and software either partially or fully based on
deep learning algorithms (Huval et al. 2015, Acker-
man 2017). Among others, a company Drive.ai, has
an ambition to use deep learning fully from sensory
input to decision making, while others usually use
deep learning in parts of the system, e.g. situational
awareness, while relying on traditional control system
logic in other parts of the system (Huval et al. 2015,
Ackerman 2017, Muoio 2016). Nevertheless, the so-
lutions are yet to be deployed at scale. One of the rea-
sons for the lack of deployments is that the solutions
are still not proven to be sufficiently safe.

1.3 Early rule development as an enabler for
innovation

A key element required to keep the autonomous sys-
tem safe, is the ability of the system to achieve sit-
uational awareness. Situational awareness algorithms
are usually partly or fully based on machine learn-
ing algorithms whose functional reasoning are chal-
lenging or even impossible to understand and predict.
Hence, the verification of such a system is fundamen-
tally different from a traditional verification process
based on physical understanding and theory. The ma-
chine learning algorithms are data driven, and com-
pletely dependent on the quality of the training data.
Therefore, verification will likely be carried out by a
combination of testing, simulations and benchmark-
ing against real and synthetic data sets. Furthermore,
adaptive methods, where data are automatically col-
lected and used to retrain the system, will also be con-
sidered.

For a manned system, awareness is achieved by the
human operator by using his or her senses and per-
ceptive abilities to interpret instrument signals and in-
put from surroundings. An unmanned ship should use
a priori information, such as maps, combined with
sensor readings to make observations relative to the
environment, and use software to perceive the situa-
tion based on{hy input. This digital perception will
be used as input to a decision-making algorithm. In

turn, this controls the actuators of the vessel which are
effectuating the decision made. For the autonomous
system to make safe decisions, the situational aware-
ness must be sufficiently accurate for all feasible situ-
ations and conditions which the vessel may encounter.

System functional and performance requirements
necessary to obtain a required safety level of an au-
tomated situational awareness system should be es-
tablished as early as possible, as this will offer the
technology providers a standard to be met by their
solutions. If requirements are not set before or early
in the technology development phase, developers risk
spending significant efforts and money on developing
solutions which in the end may not meet the safety
standard. However, establishing such a standard is dif-
ficult when no solutions exist to evaluate the standard
against.

In addition to a standard for required system and
component performance, tools are needed for veri-
fying that the technology meets the requirements set
in the standard. For a situational awareness system,
this will include verifying that the sensors adequately
detect objects affecting the safety of the vessel and
its surroundings under various conditions, and that
the perception algorithm can use this information to-
gether with other a priori information to adequately
understand the situation.

1.4 Focus of this study

In this paper, we discuss rules and regulations related
to autonomous navigation systems in a maritime con-
text, with focus on autonomous perception and situa-
tional awareness. However, we believe that a frame-
work for approval developed for autonomous applica-
tions will also be applicable to other systems that are
based on machine learning algorithms and artificial
intelligence.

The remainder of the paper is structured as follows.
In section 2, we propose and describe a range of rec-
ommended practices and tools that can be applied to
test and validate the ability, performance and robust-
ness of safety critical systems which decisions are
based on data-driven methods. These practices and
tools originate partly from traditional statistical anal-
ysis and are suggested and applied for testing and as-
surance of autonomy in the automotive industry. In
section 3, we discuss challenges related to machine
perception that are unique or particularly pronounced
in the maritime domain, and suggest how the recom-
mended practices and tools should be used and possi-
bly adapted to suit the maritime domain. Furthermore,
we present a possible scope for assurance framework,
and discuss potential implications of autonomy such
as for example operational dependent requirements.
We also describe the IMO guidelines for approval of
alternatives and equivalents. We conclude in section
4.
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Figure 1: Proposed components in an assurance framework for
safety critical systems.

2 TOOLS AND RECOMMENDED PRACTICES
FOR ASSURANCE

In the following, we propose and describe a different
recommended practices and tools that can all be ap-
plied to test and validate the ability, performance and
robustness of safety critical systems which decisions
are based on data-driven methods. See Figure 1 for an
overview of the methods.

2.1 Confusion matrix

It is not obvious how to measure and evaluate the per-
formance of autonomous navigation systems. If two
systems provides divergent predictions or decision, it
is difficult to define and quantify which reaction was
most correct. In classification problems, the results
are often presented in a confusion matrix, where the
predicted class is compared with the actual or the true
class. With two classes, for example object detection
with two objects, it is straight forward to define the
confusion matrix, which inhere the number of

— true positives (TP), hits

— true negatives (TN), correct rejections

— false positives (FP), false alarms, Type I errors

— false negatives (FN), misses, Type Il errors

When more classes are needed, defining the criteria
for performance evaluation becomes more challeng-
ing. For example, how should we quantify the per-
formance of a perception system which correctly de-
tects a vessel, but misclassifies it as a ferry? And
how should this be compared to misclassifying it as
a kayak? Or what if the system is not even able to
recognize it as an object?

To be able to make the above-mentioned compar-
ison, we are fully dependent on a correctly labelled
dataset of the ground truth. An autonomous ship will
likely be equipped with multiple sensors, including
multiple daylight and IR cameras in various direc-
tions, radars with different settings, in addition to au-
tomatic identification system (AIS) and other satellite
data, etc. The labelling process should take all these
sources into account when labelling the data. For ex-
ample, if an object is not visible in the video stream
due to thick fog or other difficult weather conditions,

but we know the objects position from AIS data or
other sources, the object will be labelled in the ground
truth data set. All relevant information should be cor-
rectly labelled, in all datasets.

Data collection, and especially data annotation or
labelling, are surprisingly time consuming and costly
tasks for vehicle classification (Schoning et al. 2015,
Chen and Ellis 2014). However, various tools and
methods for semi-automatic ground truth labelling
on video streams designed for the automotive indus-
try are available, such as for example (MathWorks
2017b, MathWorks 2017a, Cuevas et al. 2015, Lopez-
Villa et al. 2015, Schoning et al. 2015). Another ap-
proach is to crowd source the data annotation like
Mighty Al has done in automotive, where they have
developed a mobile app in which users may anno-
tate images manually and get paid for it, whereupon
Mighty Al makes a business out of selling anno-
tated datasets [https://mty.ai/]. The available solutions
should be explored, and if necessary adapted for our
use in a maritime context.

2.2  Cross-validation

It is well known that when we evaluate predictions
from a statistical model on the dataset used to train
the model, our accuracy estimates tend to be overop-
timistic (Arlot & Celisse 2010). To build robust and
accurate models we ideally want to use all data avail-
able. The same applies to testing; we want to test our
models in all situations, not only on a subset. Cross-
validation introduces various methods of repetitively
splitting the data D into two exclusive parts D, and
D,; where one part D; is used to train the model, and
the other D,, is reserved for validation.

A range of different splitting techniques can be ap-
plied, providing different cross-validation estimates.
See for example Arlot & Celisse 2010, Kohavi 1995
for a brief overview of the most common splitting
techniques.

One of the most widely used splitting technique
is called K -fold cross-validation, which in its stan-
dard form splits the original dataset D into K subsets
(folds) Dy, ..., Dk, as described in (Arlot and Celisse
2010, Brandsater and Vanem 2016). For each k €
1,2,..., K the models are trained on D; = D \ Dy,
and tested on D;.. To make sure that the results are not
strongly dependent on how the folds are selected, we
repeatedly run the K -fold cross-validation with new
selections. The sets are often chosen to be mutually
exclusive with equal size.

2.3 Extensive testing

The standard approach for assurance of autonomous
navigation in the automotive industry is extensive
testing (Pei et al. 2017a, Zhao and Peng 2017, Waymo
2016, Fei-Fei 2010), where largejgmounts of real
world data from ordinary operation is gathered and



manually labelled, and data on driver performance,
behaviour, environment, driving context and other
factors that were associated with critical incidents,
near misses and crashes are analysed and used in eval-
uating the system performance (Zhao and Peng 2017).

Simulated real-world data is also sometimes used
to massively increase the amount of data (Madrigal
2017, Zhao and Peng 2017), but usually this is com-
pletely unguided, and due to the large input space of
real-world scenarios, none of these approaches can
hope to cover more than a tiny fraction (if any at all)
of all possible corner cases (Pei et al. 2017a). Here,
a corner case is defined as an unusual, but far from
impossible, scenario. In particular, if each individual
parameter, such as temperature, fog, daylight, driv-
ing speed, number of other vehicles involved, etc. are
well within the normal range for that parameter, but
still the combined scenario is unusual. As an example,
again from the automotive industry, a Tesla in autopi-
lot recently crashed into a trailer because the autopi-
lot system failed to recognize the trailer as an obstacle
due to its white color against a brightly lit sky and the
high ride height (Lambert 2016). Such corner cases
were not part of Waymos (Googles) or Teslas test set
(Pei et al. 2017a) and thus never showed up during
testing.

2.4 Third party testing and unrehearsed
experiments

In 2003 the Defense Advanced Research Projects
Agency (DARPA) announced the first Grand Chal-
lenge with the goal of developing vehicles capable
of autonomously navigating desert trails and roads at
high speeds. In Krotkov et al. 2007, the conduct of
six evaluation experiments for the DARPA PerceptOR
program is described. Key distinctions of the testing
methodology include conduct of the experiments by
an independent third party, and the use of unrehearsed
experiments that provide little advance knowledge of
and access to the test courses. The article also presents
quantified, objective performance metrics for the sys-
tems evaluated. Furthermore, it includes blind exper-
iments that do not allow the system operators to see
the test courses until all tests are completed.

The test environment and the test content are de-
scribed in detail; however, the evaluation approach are
not thoroughly discussed (Sun et al. 2011).

2.5 Cost function-oriented quantitative evaluation
methods

Wei and Dolan 2009 claims that most teams in the
2007 DARPA Urban Challenge preferred to avoid dif-
ficult manoeuvres in high-density traffic by stopping
and waiting for a clear opening instead of interacting
with it and opgggging the vehicle and human drivers.
To encounter this, researchers at Beijing Institute of

Technology, propose a design method for a scien-
tific and comprehensive test and evaluation system for
autonomous ground vehicles competitions, to better
guide and regulate the development of autonomous
ground vehicles. The evaluation method proposed
by Sun et al. 2014, Sun et al. 2011 aims to evalu-
ate the quality of completion with a cost function-
oriented quantitative evaluation method. This evalua-
tion method can presumably evaluate the overall tech-
nical performance and individual technical perfor-
mance of autonomous ground vehicles. A complete
test system that includes the test contents, the test en-
vironment, and the test methods to meet the demands
of testing for autonomous ground vehicles is devel-
oped, and a fuzzy evaluation method is combined with
an analytic hierarchy process to solve fuzzy and hard-
to-quantify problems (Sun et al. 2014).

2.6  Elimination of uneventful data

Recently, a new approach to testing autonomous cars
was proposed by researchers affiliated with the Uni-
versity of Michigans Mcity connected and automated
vehicle center. Zhao and Peng 2017 presents an ac-
celerated evaluation process which aims to eliminate
the uneventful driving activity, and filter out only the
potentially dangerous driving situations where an au-
tomated vehicle needs to respond, creating a faster,
less expensive testing program. It is claimed that this
approach can reduce the amount of testing needed by
a factor of 300 to 100,000.

Four methodologies that form the basis of the ac-
celerated evaluation process are listed (Zhao and Peng
2017):

1. Evaluate how frequently a significant driving
event happens on the road, and stripe out the
more common, uneventful safe driving situa-
tions.

2. Use importance sampling to statistically increase
the number of critical driving events in a way that
still accurately reflects real-world driving situa-
tions.

3. Construct a formula that accurately distils those
critical events, tests the formula, and apply it to
further reduce the amount of testing required.

4. Analyse interactions between human-driven ve-
hicles and robotic vehicles and optimize the ran-
dom occurrences of significant driving events in
the most complex scenarios.

2.7 Exploring corner cases in deep learning
systems

In Pei et al. 2017a, Tian et al. 2017, Pei et al.
2017b prepared by researchers at Colombia Univer-
sity, Lehigh University and University of Virginia,
a method for automated whitebox testing of deep
learning systems is proposed. Deep Learning (DL)



has made tremendous progress, achieving or sur-
passing human-level performance for a diverse set
of tasks including image classification (He et al.
2016, Simonyan and Zisserman 2014), which has
led to widespread adoption and deployment of DL
in security- and safety-critical systems such as self-
driving cars (Bojarski et al. 2016). Unfortunately, DL
systems, despite their impressive capabilities, often
demonstrate unexpected or incorrect behaviours in
corner cases for several reasons such as biased train-
ing data, overfitting, and underfitting of the models
(Pei et al. 2017a).

The proposed method aims to identify erroneous
behaviours of a DL system without manual la-
belling/checking, by jointly maximizing a joint objec-
tive function combining a metric called neural cov-
erage, and differential behaviour between multiple
tested methods. The objective function is maximized
by changing the input variable x, under some phys-
ical constraints. For example, an input image can be
rotated or scaled differently, brightness and contrast
can be changed, and rain and fog can be added to the
input image.

With differential behaviour we mean that when dif-
ferent deep neural networks (DNNs) are tested, the
same input will be classified into different classes by
the different DNNSs. The aim is to maximize the prob-
ability that a randomly selected DNN provides an out-
put that differs from the output of the other DNNGs.
Suppose we have N different DNNs, then each DNN
has its own function model F}, : v — yforke1... N,
where = and y are the input and output values respec-
tively. If F}[c] is the class probability that the output
of the k-th neural network is ¢, and the j-th neural
network is randomly chosen, the objective function
(which will be maximized) is formulated as

obji(z) =Y Fi(x)[c] — Ay - Fy(x)[d] (1)
oy,

where )\; is a parameter to balance the objective terms
between the DNNs that maintain the same class out-
puts as before (£},.;) and the DNN that produce dif-
ferent class outputs (F}).

Neural coverage is a measure of how many rules in
a DNN are exercised by a set of inputs. The neuron
coverage of a set of test inputs is defined as the ratio
of the number of unique activated neurons for all test
inputs and the total number of neurons in the DNN.

To maximize the neural coverage, Pei et al. 2017a
and Tian et al. 2017 propose to iteratively pick inac-
tivated neurons and modify the input such that output
of that neuron goes above a predefined threshold .
Hence, for a given neuron n, we maximize the fol-
lowing function

obja(x) = G, () such that G,,(z) >t (2)

where (5, is the output value of neural n.

Sensors and
information
sources

Methods

Decision

Figure 2: Illustrating how we invoke differential behaviour by
repeatedly excluding one information source from the sensor fu-
sion machinery.

The neural coverage and the differential behaviour
is jointly maximized, by slightly changing the input
values using gradient ascent. The joint objective func-
tion is

0bjjoint(T) = ]%;Fk(x)[c] — A1 Fy(@)[d] + Ga(z) (3)

By changing the input variables x to maximize this
joint objective function, the paper claims that the
method finds thousands of erroneous behaviours in
fifteen state-of-the-art DNNs trained on five real-
world datasets. Hence, new corner cases are explored
and different types of erroneous behaviours are un-
covered. In addition, test inputs generated by the pro-
posed method can be used to retrain the correspond-
ing deep learning model to improve classification ac-
curacy, and also identify potentially polluted training
data (Pei et al. 2017a).

2.8 Demonstrate need for sensor redundancy

Inpired by Pei et al. 2017a, as introduced above, we
propose to invoke differential behaviour by repeatedly
exclude one information source from the sensor fu-
sion machinery. In addition to revealing differential
behaviour, we believe this method will be useful to
demonstrate the importance of sensor redundancy. If
differential behaviour often occurs when a specific in-
formation source is removed from the set of explana-
tory variables, it can indicate that redundancy of this
information is needed to achieve adequate robustness.

To illustrate the idea, we consider a method which
fuses four information sources: S; a day-light cam-
era; S an IR camera; S; a radar; and S; AIS (Au-
tomatic Identification System). F{ is the standard
method which uses all information sources, while the
methods F}, for &£ > 0 cannot use the information from
information source Sj. The goal is to change the in-
put variable z in way to invoke differential behaviour
as illustrated in Figure 2, where the output of method
F;, which does not take information source S}, into
account, diverges from the other methods.

In the same way as in section 2.7, we let F[c| be
the class probability that the output of the k-th method
is c. Now the k-th method is the mgthgd where infor-
mation source k is excluded as an explanatory vari-



able. In addition, we propose to include method Fj
which includes all variables. Now the objective func-
tion (which will be maximized) is formulated as

objs(x) = ;Fk(iﬁ)[c] — Az - Fy(z)[d] “)

where j is randomly chosen, and A3 is a parameter to
balance the objective terms between the method that
maintain the same class outputs as before (F}.;) and
the method that produce different class outputs (/7).

3 ASSURANCE IN THE MARITIME DOMAIN

The assurance of systems which safety is dependent
on the accuracy and reliability of data driven mod-
els needs to be thoroughly tested. In this chapter, we
present challenges related to machine perception that
are unique or particularly pronounced in the maritime
domain. We describe potential requirements, and dis-
cuss how the recommended practices and tools should
be used and possibly adapted to form a framework for
assurance in the maritime domain.

3.1 Important technical challenges in the maritime
domain

One of the major differences, relevant for autonomous
navigation, between the automotive and the maritime
industry is machine perception. Machine perception,
also referred to as artificial or digital perception, is
the process where information from sensing, maps,
satellite data and the vessel condition, are transformed
into situation awareness (see Fig. 3).

The requirements of a machine perception system
in the maritime industry will most likely concern
both what should be detected, such as object types,
sizes, distances, reflexibilities, etc.; and what should
be classified, such as ship types, number of ships, sea-
marks, complexity, etc. The requirements should be
evaluated under various external conditions such as
weather and daylight.

Several technical challenges, particularly promi-
nent in the maritime domain, remain open as de-
scribed by for example (Prasad et al. 2016, Prasad
et al. 2017):

Sensing

“
Weather and
Compass
wave forecast
Perception and sensor fusion

Situation awareness

Figure 3: Key compgpents in autonomous navigation in the mar-
itime industry.

— Vessel movements effect on sensors: For sensors
like video cameras which are mounted on-board
ships, the unpredictable motion of the ship compli-
cates the object detection.

— Background subtraction: The water background is
dynamic due to waves. Hence, background learn-
ing methods which recognizes background when a
pixel stays constant for at least some time, fails.
Also, waves and foam are often misinterpreted as
foreground objects when using standard methods.

— Weather and illumination conditions: The maritime
environment is exposed to a variety of different
weather and illumination conditions such as fog,
rainfall, clouds, bright sunlight, twilight and night.
The different solar angles pose significant chal-
lenges with speckle and glint which makes it dif-
ficult to distinguish background and foreground.

— Insufficient training data from the maritime do-
main: Very limited work has been carried out to
develop object classification algorithms for ob-
jects relevant to the maritime environment. The ob-
jects of interest include other ships, leisure boats,
kayaks, land marks, buoys, ice bergs, etc.

— Uneventful sailing: On ocean going ships espe-
cially, a very large fraction of the collected data
from a voyage are uneventful, hence a very large
portion of the corner cases are left unproven.

3.2 Operational specific requirements

Operational specific requirements are not considered
in current class rules. We foresee that this might
change in the future, especially for ships with au-
tonomous navigation systems, as the operation will
be embedded into the technology rather than being
the responsibility of the human operator. For exam-
ple, if the ships perception is limited due to fog, the
permitted speed might be lowered, or the ship might
be denied access to specific geographical areas, until
the weather conditions improve. This decision might
also be based on ship type, cargo, manoeuvring capa-
bilities, etc.

3.3 Triple modular redundancy

The tools presented in 2.7 and 2.8 above, both search
for differential behaviour from multiple algorithms or
sensor selections, using a majority organ (or voting
circuit). This concept was first described by Von Neu-
mann 1956. Today, the concept is often referred to
as triple modular redundancy and is perhaps most
widely used in space and aeronautics applications
(Wu et al. 2017, Yeh 1996), where reliability require-
ments sometimes are very high. Using the majority
vote out of three (or more) methods ensures that a sin-
gle failure will not cause a system failure. We believe
this concept is highly relevant for autonomous naviga-
tion, as well as other black box Al algorithms, and be-
lieve the use of this should be required, in some form,



to ensure sufficient system reliability and robustness.

3.4 Approval of alternatives and equivalents

According to the International Maritime Organiza-
tions guidelines for the approval of alternatives and
equivalents (IMO Maritime Safety Committee 2013),
the approval of an alternative and/or equivalent de-
sign can be performed by comparing the alternative
design to existing designs to demonstrate that the de-
sign has an equivalent level of safety. Hence, the ap-
proval of autonomous systems used in shipping, in-
cluding everything from smaller automated tasks to
fully autonomously navigated ships, will be based on
the equivalence principle: The autonomous function-
ality must make the operation safer or at least as safe
as the conventional operation.

3.5 Automatic assessment of human perception
ability

To enable the comparison of human and autonomous
perception, evaluation metrics and measures, and per-
formance thresholds should be identified. To achieve
this, the human perception in representative real ship
operations has to be studied. Research in the field of
human errors have shown that a large number of in-
vestigated maritime accidents are related to loss of sit-
uation awareness (Grech et al. 2002).

It should be noted that the perception ability is not
necessarily the ambition. We know that the perception
performance can be influenced by many factors such
as for example stress, distractions, monotony, bore-
dom, etc. (Horrey et al. 2017, Brodsky and Slor 2013,
Schwebel et al. 2012), but our aim is to measure the
perception performance in practice.

Simulation tools might be applied to provide more
extensive data sets, to complement the data collected
from real operation. In addition to increasing the
data set, the simulation tool offers the possibilities to
create controlled situations, and explore changes in
weather, rotated objects, etc. as well as the possibility
to explore potentially dangerous situations. Another
advantage with the simulated data is that it is pre-
labelled, and one will therefore avoid spending time
and effort to establish the ground truth on the simu-
lated datasets.

4 CONCLUSIONS

A framework and tentative guidelines for assurance
of autonomous systems in the maritime industry are
proposed and discussed, with additional focus on the
perception and situation awareness functionality. Be-
cause vital parts of the autonomous systems, such as
the machine perception and situational awareness al-
gorithms, are expected to be partly or fully based on
machine learning algorithms, including deep learning,

whose functional reasoning is challenging or even im-
possible to understand and predict, we believe the as-
surance of such systems are fundamentally different
from a traditional assurance process based on physi-
cal understanding and theory. Hence, we believe new
guidelines, framework and methodologies are needed.

We propose and describe a range of recommended
practices and tools that can be applied to test and
validate the ability, performance and robustness of
safety critical systems which decisions are based on
data-driven methods. We discuss challenges related
to machine perception that are unique or particu-
larly pronounced in the maritime domain, and sug-
gest how the recommended practices and tools should
be used and possibly adapted to constitute an assur-
ance framework for autonomous navigation in the
maritime domain. Furthermore, we discuss potential
implications of autonomy such as for example oper-
ational dependent requirements. We also discuss the
assurance framework for autonomous systems rela-
tive to the IMO guidelines for approval of alternatives
and equivalents.
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