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Abstract 

Unequal probability sampling (UPS) is a sampling method for observing a phenomenon, 
where the drawing observation units are not equal, but vary e.g according to predicted 
probability of presence. UPS can in theory work well in situations where the targeted 
phenomenon is rare. This study aims to test UPS as a sampling method for observing a group 
of species that are all connected to the same rare, environment conditions. Specifically, to 
compare the UPS data with a data set sampled in a different way (stratified random sampled), 
with respect to the prevalence, and for gaining response variable data when building 
distribution models. In addition, I also tested how the size of the response variable data, the 
inclusion of indirect variables and the specification of the model selection criteria can affect 
which variables are chosen when building distribution models. 

The study were conducted in Oslo and the surrounding area. There were in total 200 ten by 
ten meters plots that were surveyed as a part of the study design. Observation of 29 species 
were registered, all of which are associated with the presence of limestone in the substrate. 
The the probability of drawing a particular 10x10 m cell as a survey plot were weighted on 
the predicted probability of the 29 species studied. Predicted probability were calculated using 
a poisson regression distribution model based on citizen science data. The UPS data were then 
compared with a stratified random sampled data (SRS). The SRS data are observation of the 
same targeted species, within the same geographical. The prevalence between these data were 
compared and the difference were tested for significance. The UPS and the SRS data were 
also used to build distribution models using the same statistical tool. Twelve models were 
made in total. The models differed in three ways: The sampling method, if indirect variables 
were included or not and the variable selection criteria, i.e alpha value in the variable 
selection part that produced the model. The subsequent models were then compared, with 
emphasis on the difference in selected variables.  

The prevalence of the UPS data were significantly higher than the SRS data. In addition, the 
distribution models made with the UPS data were all able to identify variables that were 
directly associated with limestone, while the models made from the SRS data did not identify 
such variables. All the models with no a priori modification on the model selection process 
chose elevation in the first round of the forward selection process. The models with a more 
conservative forward selection process had fewer significant explanatory variables. This 
demonstrates the effect of the different choices one have to make during a model building 
process. Additionally, the results shows the importance of adapting the sampling based on the 
prevalence of the targeted phenomenon.  

This study have shown that UPS can work as a sampling method if the goal is to observe rare 
phenomenon more frequently. It is reasonable to assume that the SRS data are affected by 
bias because of autocorrelation. In addition, the data had comparably few observation units 
where limestone were present. More research are therefore needed here. A more conclusive 
result could be obtained if one could compare the UPS data with an equal random sampled 
data set.  Several of the UPS models identified the presence of exposed limestone as an 
important predictor, which may make UPS a good choice for modelling rare species. 
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1. Introduction 
When searching for any species, especially if the species is rare, it is then of particular interest 
to try to predict where the species will be present. This was solved for a long time by so-
called site-based sampling, a method that involves going to locations (often called sentinels 
sites) where the targeted species has already been observed (Yoccoz, Nichols, & Boulinier, 
2001). Many also used so-called judgment sampling, which is sampling on location where it is 
assumed to be presences of the target species based on expert knowledge (Olsen et al., 1999). 
However, both these sampling methods are based heavily on subjective assumption about the 
underlying causes of the species’ distribution, which in most cases can lead to biases, 
meaning the potential observation with these methods cannot be considered independent 
(Smith, 1983). The reasons for choosing such “subjective” sampling methods are not directly 
tied to any assertion about the underlying causes of the distribution of the target species. 
Because of this, site-based and judgement sampling methods can be inadequate when one 
infers or tests the hypothesis about the causes of its distribution. In general, it is preferred to 
make inferences from the observation about the whole population (in the statistical sense) for 
a given area (R. Halvorsen, 2012), which becomes problematic in the presence of dependency 
in the data (Lohr, 2019).  

It is reasonable to assume that in many cases, one of the more important variables that 
influence the distribution of a species is one (or several) variables, which is often treated as a 
gradient in which the species have an optimum on a specific point along this variable (Austin 
& Gaywood, 1994). In many cases, this assertion forms the basis for distribution modelling. 
This is the science on predicting the distribution of in theory any observable natural 
phenomenon by knowing the distribution of the explanatory variables that conditions the 
phenomena in question (R. Halvorsen, 2012), often by designing statistical models made with 
a model selection tool and a response variable data. Distribution modelling is now a popular 
branch in biology (particularly in ecology) and with better software and more readily 
available environmental data, it will presumably become more relevant over time, especially 
with respect to finding rare species and/or interesting location in a conservation effort context.  

I assert that distribution modelling will in most cases serve better than the aforementioned 
“subjective” sampling methods if the goal is to predict where a natural phenomenon will be. 
This approach is less vulnerable to the formation of false conclusion about the species-
environment relationships because of bias.  However, the interpretation of the prediction 
calculated from such distribution models will depend on several factors of the response 
variable data.  
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The size of N, the model selection criteria and the environment variables 

The effect of sample size N (total number of observation units) can be important. By not 
adapting the model selection criteria to the data, a large N can cause model overfitting. By 
overfitting, I mean the case in which the model is overly complex by including parameters 
that reflects qualities of the data, rather than generalization of the species-environment 
relationships. One can account for this by being more conservative in the model selection 
process (Aho, Derryberry, & Peterson, 2014).  

Environmental variables (EV) included in the model selection process and how they interact 
with each other can be important for the interpretation of the distribution models. Both in 
terms of correlation between the different environment variables (Yoccoz et al., 2001), and 
the response variable single-effect response curve for each of selected EV in a given 
distribution model (Irvine, Rodhouse, Wright, & Olsen, 2018). If two or several environment 
variables are correlated, and one of them are deemed significant in the model selection 
process, a confounding effect can occur (Yoccoz et al., 2001). Such variables are often called 
indirect variables (Austin, 1980). Elevation is often an example of an indirect variable 
(Austin, 1980). Indirect variables or gradients can often be strong predictors for explaining the 
variation in species distribution (Whittaker & Peet, 1985). Nevertheless, if one wishes to 
produce a distribution model that are more widely applicable, then the exclusion of such 
proxy variables is a more desired setup for the model selection process.   

Sampling method 

One of the first things the modeler have to consider is what the response variable should 
consist of, and how it should be sampled. This is mainly decided by the purpose of the 
modelling, as both the study design and the methods used in the analysis must be adapted 
based on the eventual goal with the study (Irvine et al., 2018). 

Maybe the most straight forward sampling method is simple random sampling, which places a 
certain number of observation units randomly on the study area as a whole (Meng, 2013). 
This method will sample any possible observation unit with the same probability, and as such 
will in most cases ensure independency between the observation units. Simple random 
sampling can be suitable if one does not have any prior knowledge and/or hypothesis about 
the causes of the distribution of the species (Gravetter & Forzano, 2009).  

There are also more deliberate sampling approaches, which are still for the most part 
unbiased. For instance, stratified random sampling, or SRS, which divide the data or 
population into sub-groups where each group share a specific trait. For each group, a 
predefined number of observation units are sampled randomly (White, 2020). In ecology, 
such methods are often used to test hypothesis about the importance of a specific environment 
variable (J. B. Halvorsen, 2019). The gradsect sampling method is similar to stratified random 
sampling, as it is a sampling methods that seeks to capture the variation of the species along 
the whole range of the gradient (Guisan & Zimmermann, 2000) (Austin & Heyligers, 1989).  
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There are also examples of study design using several sampling methods (where the methods 
used was among the abovementioned), where the goal is to capture most of the relevant EV 
variation, while still retaining independency between the observation units (Wollan, 2011).  

Whether one seeks to find specific areas that are interesting in a conservation effort setting 
(Yoccoz et al., 2001) or one attempts to test environment-species relationship (Wollan, 2011), 
the problem of getting too few observations of the species in question can often occur 
especially if the species in question are rare (Skarpaas O, 2019). By too few, I mean in the 
sense that accurate inferences about the population as a whole become difficult.  

Arguably the most common type of response variable consists of a single species (called 
single species distribution model (Henderson, Ohmann, Gregory, Roberts, & Zald, 2014)). 
However, if one wishes to predict the distribution of a specific nature type or community, one 
could achieve this by combining several species which one suspects are connected to the same 
environment conditions (Wollan, 2011). The benefit of this approach is that several rare 
species that all have low prevalence, can “share” their distribution with each other, which 
ensures that the total number of observations is high enough for a meaningful relationship 
between the response variable and the environment variable can be recognized (Ovaskainen & 
Soininen, 2011).  

In addition to combining several species to one response variable, the modeler can also use 
unequal probability sampling or UPS (Yoccoz et al., 2001) to account for rarity. This method 
does not directly violate the assumption of independence, while obtaining more observation of 
a rare phenomenon by oversampling, compared to the other randomized sampling methods 
(Olsen et al., 1999). A prerequisite for using an UPS method is knowledge about the 
conditions that influence the distribution of the target phenomena. In essence, an UPS method 
weights the distribution of the observation units based on this a priori knowledge. A higher 
concentration of plots are placed on areas with higher predicted probability of observed 
presence (Olsen et al., 1999; Skarpaas O, 2019).  

Comparing unequal random sampling with other sampling methods 

The proposition up to this point has mainly been that UPS is a suitable method for acquiring a 
response variable data set for the specific purpose of building a distribution model. However, 
one could also use UPS method to infer the distribution of a rare species or a rare community 
in a conservation efforts context (Edvardsen, Bakkestuen, & Halvorsen, 2011). And as (R. 
Halvorsen, 2012) points out, there is a difference between observation data in itself versus 
observation data that are used in analysis. I will argue that this is especially true for the UPS, 
given the nature of the data. 

One does not have to make many assumption if the data is used as it is, without any specific 
analytic treatment (R. Halvorsen, 2012). Examples of this could be inferring the population 
size from the sampled data, or comparing an unequal probability sampled data set with a 
stratified random sampled data set in terms of the prevalence. However, if one uses the data 
for distribution modelling, the assumption of no bias is important, as the more direct 
consequence of sampling bias is uneven distribution of the observation units with respect to 
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the range of the environment variables. The resulting distribution model will in most cases not 
be able to infer the actual relationship between the response variable and the environment 
variable if sufficient amount of environment data are missing along the environment variable. 
This can be explored further by using frequency of observed presence plots (FOP-plots) (Støa, 
Halvorsen, Mazzoni, & Gusarov, 2018). 

Oslo is an area where a lot of research on the ecology and natural variation already has been 
conducted (J. B. Halvorsen, 2019; Wollan, 2011). There have also been observed several rare 
species here that are adapted to high concentration of calcium in the soil (Wollan, 2011). 
Despite all the research that already exist on Oslo and on the more rare species that have been 
observed within this study area, how unequal probability sampled data on these species 
compares to data sampled in  another way are yet to be tested. Additionally, how the size of 
the data set, the model selection criteria, and the variation included (if they are indirect 
variables or not) in the model selection process are questions that can be interesting to be 
highlighted within a distribution modelling context.  

An interesting question then is how a DM made with a UPS response variable data set would 
compare with a distribution model made with response variable sampled with different 
methods, assuming the study design, study area and the statistical analysis are all the same. In 
addition, is UPS truly a better sampling method compared to other sampling methods if the 
goal is simply to infer the total population? 

I assert that if one wish to test this comparison, then the access to two data sets sampled with 
two different sampling methods within the same study area where the same rare target 
phenomenon were registered. This study therefore aim to test UPS as a method to observe and 
model a collection of rare species that all are connected to the same environmental conditions, 
in this case, species that are adapted to a substrate high in limestone. The inner Oslo selected 
as a suitable study area. To achieve this, I will compare different sampling methods, i.e 
compare an unequal random sampled data set with a stratified random sampled data set that 
were sampled within the same geographical area and within the same field season (inner Oslo 
and the surrounding forests, summer of 2018). I will also adapt the model selection process to 
emphasize how the size of the response variable data, the model selection criteria and the 
inclusion of indirect environment variables can affect the outcome of a model selection. 
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Aims 

1. How does an unequal probability sampled data and stratified random sampled data differ in 
terms of prevalence, i.e the proportion of presences in the data? Or, how do they differ in 
terms of finding rare phenomenon?  

2. When using the same distribution modelling tool on both the data sets, how do the resulting 
distribution models differ in terms of selected variables, variation explained and  
predictability?  

More specifically, how is the outcome of a model selection affected by;  

3. The population size N, or total number of observation units?  

4.  Different variable selection criteria? In this case, different alpha values? 

5. A priori decision about which variables to include in the model selection, specifically the 
inclusion of proxy variables that are known to be not directly linked to the investigated 
species?  
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2. Materials and method 
2.1 Study area 
Oslo is the capital of Norway, and lies in the southeastern part of the country. The bedrock in 
large areas contain a lot of limestone (Pedersen, Nyhuus, Blindheim, & Krog, 2004). More 
specifically, the geology of the islands in the inner fjord and the northern part of Oslo consist 
mainly of late Palaezoic sediments, while the southern parts of Oslo are made by Precambrian 
basement (W, 2009). The annual mean temperature for the study area is 6 ℃, which is based 
on measurements from 1961 to 1990 (Aune, 1993). Oslo lies within the boreonemoral 
vegetation zone (Moen, 1998). 

The surrounding area is quite divers in regards to both animal and plant species (Pedersen et 
al., 2004). The coastline and the many islands in the inner part of the fjord in particular are 
considered bio diversity hot spots. This is assumed to be caused mainly by the presence of the 
limestone in the substrate (Pedersen et al., 2004). However, it has been recorded more 
pressure on these high diversity area in recent years, mainly in the form of human activity 
(Wollan, 2011). Some forms of activity is not as devastating as others, but the sum has still 
caused a reduction of the nature type that these rare species are adapted to (Wollan, 2011). As 
such, many of the species that is highly connected to these hot spots has been classified as 
endangered by the red list (Pedersen et al., 2004). 

Oslo was chosen as the study area for this project because a lot of research has already been 
done in this area with regards to species distribution and the effect on human activity on the 
natural environment (Wollan, 2011). Furthermore, Oslo is also the study area for the URBAN 
EEA-project (Barton et al., 2017) where the supporting data material that is used in this study 
(J. B. Halvorsen, 2019), and the DM model that the UPS data set derives from is a part of 
(Skarpaas, et al. in prep). 
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Figure 2.1: The extent of the study area, which mainly consists of Oslo city and the 
surrounding forests. The map is obtained from the QGIS 3.2 QuickMapServices (QGIS 
development Q. D. Team, 2009) with the ESRI Satellite layer (ESRI, 2017).  
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2.2 Supporting material 
The poisson regression model 
The DM that the UPS data derives from were made with poisson regression (Skarpaas, et al. 
in prep). The RV consists of observation of the targeted species and observation of other 
species. Total frequency of species observation are used as the offset.  

The stratified random sampled data 
I used a stratified random sampled data to compare with the data I have gathered. The 
stratified random data consist of  a primary stratum based on an urbanization gradient, and a 
secondary stratum based on area of coverage (J. B. Halvorsen, 2019).  

The environment variables 
I used the following variables in the model selection. The same ones were used when making 
the poisson model, except for traffic and surface temperature (Skarpaas, et al. in prep).  

Table 2.1: The environmental variables that were a part of the model selection process in the 
analysis. 
Name in the 
analysis 

Variable Definition and sources 

aspect Aspect Terrain aspect calculated from DEM 
building_AW Building 

density 
Area-weighted density of buildings, calculated from building 
map (kartverk, 2017a) 

curvature Curvature Terrain curvature calculated from DEM 
elevation DEM Digital elevation model (DEM) in meters (kartverk, 2018) 
road_distance Distance to 

road 
Distance to nearest road (m), calculated from road map 
(kartverk, 2017b) 

slope Slope Terrain slope calculated from DEM 
sun_exposure Sun 

exposure 
Exposure to sunlight, based on topography and latitude 

temp_surface Surface 
temperature  

Surface temperature 2nd Jul 2015, based on air temperature 
measurements and urban heat island effect (Blumentrath, 
2016)   
 

TPI TPI Terrain position index (difference in elevation between focal 
pixel and mean of surrounding pixels), calculated from DEM 

traffic Traffic Road traffic: cars per day (Statens vegvesen, 2017) 
geo_substrate Bedrock & 

soil 
Combination of geology (Limestone) and substrate (Soil 
cover): (1) exposed nutrient-poor bedrock, (2) exposed 
limestone, (3) soil cover  

landcover_sat Land cover 
 

Land cover classification based on Sentinel 2 satelite images: 
(1) agriculture edge, (2) grass, (3) built-up, (4) tree canopy, 
(5) water edge (Nowell, 2017) 

limestone Limestone 
 

Indicator variable for calcareous bedrock (1) or not (0), 
based on the presence of the word "kalk" in the discriptor 
field of the national geological map (NGU, 2016) 

substrate Soil cover 
 

Simplified soil cover map in two classes: (1) no or little soil, 
(2) deep soil cover, made by merging classes in the national 
soil cover map (NGU, 2017) 
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2.3 Study design 
I conducted the field work during the summer of 2018, and partly during the summer of 2019. 
It should be mentioned that the summer season of 2018 were unusually hot. 

Investigated species 
All the investigated species have some attributes in common; the most important one in this 
case is that they all are adapted to soil/substrate with relative high calcium content. Most of 
them are quite small, and all of them with three exceptions are herbs. A more detailed table 
showing additional information for each species can be found in Appendix 3. 

Table 2.2: The Norwegian and latin name of the targeted species.  
Norwegian name Latin name 
Blodstorkenebb Geranium sanguineum 
Knollmjødurt Filipendula vulgaris 
Bergskrinneblom Arabis hirsute 
Flatrapp Poa compressa 
Bakketimian Thymus pulegiodes 
Nakkebær Fragaria viridis 
Aksveronika Veronica spicata 
Krattalant Inula salicina 
Hundetunge Cynoglossum officinale 
Flekkgrisøre Hypochaeris maculata 
Berggull Erysimum strictum 
Fagerknoppurt Centaurea scabiosa 
Nikkesmelle Silene nutans 
Dvergmispel Cotoneaster intergerrimus. 
Liguster Ligustrum vulgare 
Smaltimotei Phleum phleoides 
Stjernetistel Carlina vulgaris 
Vårrublom Draba verna 
Ormehode Echium vulgare 
Fjellrapp Poa alpine 
Nyresildre Saxifraga granulate 
Vårstarr Carex caryophyllea 
Dragehode Dracocephalum ruyschiana 
Oslosildre Saxifraga osloensis 
Kanelrose Rosa majalis 
Trefingersildre Saxifraga tridactylites 
Flerårsknavel Scleranthus perenni 
Legesteinfrø Lithospermum officinale 
Vill-lin Linum catharticum 
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Sampling design 
I were to survey in total 200 plots. They were drawn randomly weighted on the probabilities 
calculated from a distribution model (Skarpaas, et al. in prep), thus obtaining an unequal 
random sampled data.  The size of all the observation units used in the analysis were 10x10 
meters, meaning that I recorded the species in fine to medium local scale (R. Halvorsen, 
2012). The surveyed plots were each 30x30 meters divided into nine 10x10 meter zones. The 
observation units used in the analysis were in the middle, surrounded by eight 10x10 meter 
zones. In these zones, I only registered the presence for each target species. The purpose for 
this setup were to (in situations were no observation were registered in the observation unit) 
improve the ability to evaluate the cause of why no observation were made in the observation 
unit itself. For instance, if no observation were registered in the observation unit, but 
observation of one or several of the targeted species were registered in one of the surrounding 
zones, then the absence in the observation unit may be because of some random coincidence.  

To speed up the field work, I first evaluated the plots based on the surrounding ecology. I 
were not as thorough if the surrounding area implied a low to no probability of presence of 
one of the target species. I first did a fast sweep of the whole plot (30x30 meter). I also 
registered some things that I deemed relevant for the interpretation of the results:  

- Species outside of the species list. These species were never deliberately searched for, 
and I only registered species that I knew and that could tell something about the nature 
of the plot.  

- Decide the potential reasons for the absence of the species. This included signs of 
human influence. 

When I evaluated the surrounding area as ideal (primarily if limestone were present or not) for 
the target species, I did these following things: 

- Ascertain the corner points of the plot, and for each point place a pin to delineate the 
survey area.   

- First do a quick but deliberate search of the whole plot, record all the species that were 
most obvious.  

- Then do a more thorough search, in an attempt to record the more inconspicuous 
plants. This search was done in a more systematic way, in which I trailed back and 
forth between the opposite sides of the plot. 

- Register only the presences of the targeted species in the buffer zone.   
- The species that was so abundant that to count them by individual was not expedient 

in regards to the time needed was instead noted as coverage in square metres.  

In my field protocol I noted the coverage as intervals using this system: 

- Less than 1 square meter; meaning that there were so many individual plants that to 
count them would take too long, but the coverage still consisted of less than 1 square 
meter (approximately). 

- Between 1 and 2 square metres. 
- Between 2 and 3 square metres, and so on. 
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Processing of the field data 

I recorded the binary presence of at least one of the targeted species (or absence of all the 
species) for each observation unit. The resulting data were used as response variable in the 
distribution modelling. I did the same with the stratified random sampled data set (J. B. 
Halvorsen, 2019).  

See Appendix 1 for details on the processing of some of the NA plots and absence plots.  

 

2.4 The analysis 
I did all the statistical analysis in R, version 3.6.0 (R Core Team, 2019b). 

2.4.1 Correlation between the variables 
I tested correlation between the numerical environmental variables for the UPS and SRS (and 
UPS+SRS) using the spearman correlation test (Hollander & Wolfe, 1973. Pages 185--194). I 
also tested for dependency between the numerical variables and the categorical variables 
using the kruskal wallis test (Hollander & Wolfe, 1973. Pages 115--120). To test for 
dependency between the categorical variables, I used Pearson’s qhi-square test (Agresti, 
2007).  

2.4.2 Testing the prevalence difference 
I used the Pearson’s qhi-sqaure statistical test (Agresti, 2007) to check if the proportion of 
presence points (known as prevalence) between the UPS dataset and the SRS were 
significantly different. Specifically, I used the prop.test function ( R core Team, 2019a, 
prop.test, 20.12.19).  

2.4.3 Logistic regression with MIAmaxent  
I chose to use the R-package MIAmaxent in the analysis of the presence-absence datasets, i.e 
the UPS and SRS data (Vollering, Halvorsen, & Mazzoni, 2019). This tool in particular is 
adapted for distribution modelling, as it gives the modeler the ability to both test the qualities 
of the RV-data and test the predictive ability of the designed models. If the data for many 
environmental data are provided, it can also handle the selection of the best model quite 
efficiently by using the stepwise forward selection (R. Halvorsen, 2013). MIAmaxent can 
handle presence/only-data (PO), which is the type of RV that is used in maxent (Mazzoni, 
Halvorsen, & Bakkestuen, 2015). It can also handle presence/absence-data (PA) using logistic 
regression, which is why I chose this method for building the distribution models for this 
study. Logistic regression was carried out by specifying “algorithm = LR” whenever 
necessary.   

I made Twelve models with MIAmaxent, four for each data set (UPS, SRS and UPS+SRS, 
see part Combining the data sets), six with elevation included and six with elevation excluded 
(see part Exclusion of the elevation variable), six with alpha value = 0.05 and 6 with alpha 
value = 0.001 (see part Alpha value).     
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Four R-commands from MIAmaxent were used in the analysis of the presence/absence-data: 

- readData(), which takes provided presence/absence (or presence-only) data with the 
coordinates and the EV data in the form of raster stacks, and makes a table shoving the 
OUs and all their corresponding EV value. This table are used in the subsequent 
commands.  

- deriveVars(), that makes transformation of each EV. There are in total seven different 
transformations that are subjected on the EVs, six of them only relevant for numerical 
variables (linear (L), monotonous (M), deviation (D), forward hinge (HF), reverse 
hinge (HR), threshold (T)) and one of them only relevant for categorical variables 
(binary (B)). All variable transformation are applied by default. However, an endless 
number of different transformation are possible for the spline types (forward hinge, 
reverse hinge and threshold). That is why the function produces 20 of each, and 
chooses the one that explains the most variation (Vollering, 2019). The numbers of 
DVs for each EV that are included in the output will depend on the preselection of 
threshold and hinge transformation of the numerical variables and the numbers of 
types in the categorical variables (Vollering et al., 2019).  

- selectDVforEV, subjects a stepwise forward selection for each group of DV from a 
single EV, and selects DVs that explains a significant amount of variation. This is 
achieved by using a likelihood ratio test that accounts for sample size (R. Halvorsen, 
2013; Vollering et al., 2019). EVs that have no significant DVs are rejected from the 
selection.    

- selectEV, subjects a stepwise forward selection for each significant DV, and in this 
case selects the model with only EV (which now consist of one or several significant 
DVs) that explains a significant amount of variation, using the same likelihood-ratio 
test from selectDVforEV. The interaction argument were specified as “true” for all the 
models shown in this study, to test the hypothesis that limestone in combination with 
other variables can comparably explain more variation.  

In addition, I used four commands to visualize the results: 

- FOPplot(), which makes a frequency of observed presence for a specified EV. This is 
usually done a priori, to look for trends in the RV data within an EV. The command 
gives a plot where the x-axis shows the range of the specified EV, and the y-axis 
shows the expected probability of presence. The numerical EVs includes black dots on 
the plot that represents the binned presence frequency, and a red line that is a local 
regression following the binned frequencies. The FOP-plot for the categorical 
variables is a bar-plot, where the grey bars represents the background data density and 
the transparent bars represents the occurrence frequencies. Since the FOP-plots shown 
in the results are made from P/A-data, they are instead called frequency of empirical 
presence. The number of intervals into which the continuous EV is divided is 
determined by the argument intervals. Irrelevant for categorical variables.  

- plotResp(), which plots the output from a selected EV in a model across the range of 
said EV. The response plot for one specific EV is called a single-effect response plot.   
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- testAUC(), plots the ROC-curve and the corresponding AUC-value. All the ROC-
curves for the logistic regression models (model 1-12) were obtained with this 
command. 

- projectModel(), which determines the prediction of the model for any spot where the 
EV is known. With this command one can make a predicted distribution map. Such a 
map is shown for each model made in the analysis in the results. 

Table 2.3: All the models shown in this study.  
Model name Type of RV data (all 

are PA) 
Elevation included Alpha value for 

selectEVforEV() 
and selectEV() 

Model 1 UPS yes 0.05 
Model 2 UPS no 0.05 
Model 3 SRS yes 0.05 
Model 4 SRS no 0.05 
Model 5 UPS+SRS yes 0.05 
Model 6 UPS+SRS no 0.05 
Model 7 UPS yes 0.001 
Model 8 UPS no 0.001 
Model 9 SRS yes 0.001 
Model 10 SRS no 0.001 
Model 11 UPS+SRS  yes 0.001 
Model 12 UPS+SRS no 0.001 

 

Alpha value 
The goal here was to test the effect of different threshold for how much variation a variable 
must explain for it to be retained. Alpha is in the case for the selectDVforEV()-command the 
p-value threshold in which the derived variables are treated as significant (id erst captures a 
significant amount of the variation in the RV), using the likelihood-ratio test (R. Halvorsen, 
2013; Nordhausen, 2009). In the case for the selectEV(), the alpha is the p-value threshold in 
which the explanatory variable (which is now described by the DV of the EV) are treated as 
significant (id erst explains a significant amount of variation in the RV) using the same 
likelihood-ratio test.  

I placed the alpha value at 0.05 for model 1-6, in accordance with (Fisher, 1925). For model 
7-12, I placed the alpha value at 0.001, in accordance with (Vollering, 2019). 

Exclusion of the elevation variable 
The elevation variable correlates a lot with actual important environmental variables, while 
one can assume the variable itself is ecologically meaningless concerning these particular 
species and this particular study area, i.e it is an indirect variable.   

As such, I decided to include both models with elevation in the model selection process and 
models without elevation. This gives the opportunity to demonstrate the differences between 
models made with MIAmaxent that were subjected to some a priori adjustments (meaning not 
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to include the elevation variable in the stepwise forward selection) and models also made with 
MIAmaxent where no a priori modifications were done.  

Combining the data sets 
I made distribution models with the combination of the UPS and the SRS data, to test the 
effect of the total number of observation unit on the model selection process in MIAmaxent. 
The combined data is denoted as UPS+SRS. 

ROC-plots and AUC-values 
As part of the model evaluation and comparison, I decided to plot the receiver operating 
characteristic curve (ROC) and show the corresponding AUC-value (area under the curve) for 
all the models made in the analysis and the poisson regression model. ROC-curve with 
corresponding AUC-values can be a suitable tool when checking the model for how widely 
applicably it is, as it test the models ability to extinguish false positives from true positives 
and false negatives from true negatives (Fawcett, 2006). In the case of SPD, a ROC-curve will 
tell if the SPD are able to adequately predict the presence or absence for a given test data set.  

A ROC-curve shows (in this case) the distribution models ability to distinguish between a 
presence OU and an absence OU, using (ideally) independent test data. The sensitivity are 
plotted against 1-sensitivity, where the line shows the sensitivity vs 1-sensitivity (which is the 
inverse of the specificity) for each possible cutoff. The AUC-value shows the area under the 
line, which gives a value of how able the model is to distinguish true positives from false 
positives and true negatives from false negatives. The value can go from 0 to 1, where 1 is a 
perfect model (interpret all OUs correctly), 0 is a model that treats all presence observations 
as absence observations and vice versa for absence observations. An AUC-value of 0.5 means 
that the model cannot extinguish presence from absence points at all. This will give the 
opportunity to compare the DM models concerning their ability to accurately predict the 
presences of the targeted species (Fawcett, 2006). 

I used the GBIF data that were used as response variable data for the poisson regression 
model (Skarpaas, in prep.) as the test data for all the ROC-curves.  
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3. Results 
I surveyed 187 of the 200 plots that were drawn for this study. By plots, I mean the 30 by 30 
meters units. Of all the observation units that were surveyd, 28 contained at least one of the 
species, meaning that I observed none of the targeted species in 157 observation units. By 
observation units, I mean the 10 by 10 meter units placed in the middle of the plots. Geranium 
sanguineum, Fragalia viridis and Filipindula vulgaris where the three most common species 
(figure 2a). Thirteen of the 29 investigated species had no registered observation. The two 
most abundant plots were 76 and 97, where I observed ten of the 29 investigated species. Both 
plots were placed at Gressholmen (figure 2b). 
 

 
 
Figure 3.1: a) geo.substrate, b) elevation, c) traffic, d) limestone, e) building.AW, f) 
landcover.sat, g) sun.exposure, h) slope. 
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Figure 3.2: a) Barplot showing the numbers of independent observation for each investigated 
species.  b) Barplot of the occurence observation units that show the numbers of distinct 
species observed for all the presence plots, in which at least one species was found. 

Figure 3.3: a) The distribution of geo.substrate with the UPS PA-points. b) The distribution 
of geo.substrate with the SRS PA-points. c) The distribution of limestone with the UPS PA-
points. d) The distribution of limestone with the SRS PA-points. Blue dots represents 
presences, while red dots represents absences.  
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3.1 Characteristics of the data sets 
Comparing the unequal probability sampled data with the random stratified sampled 
data in terms of prevalence and frequency of empirical presence 
The proportion of presence points for the UPS data set (0.1497) were higher than the 
proportion of presence points for the SRS data set (0.0462), and they differed significantly 
([Chi-sq.test: χ2 = 18.101, p-value < 0.0001]). 

There are high similarity for each variable when comparing the FOP-plots between the UPS 
data and the UPS+SRS data, while the FOP-plots for the SRS data deviates. Here I show the 
FOP-plots for the significant variables for UPS and SRS. The FOP-plots for UPS+SRS are 
shown in Appendix 4. 

The interval argument in the FOP plots is not the same for all the variables. The interval 
argument is relevant only for numerical variables 

Table 3.1: The interval value for all the FOP-plots for the UPS data and the SRS data 

 UPS SRS 

Elevation 50 30 

Traffic 20 25 

Building.AW 50 28 

Sun.exposure 30 25 

Slope 28 21 
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Figure 3.4: The FOP-plots for elevation, traffic, building.AW and sun exposure for the UPS 
and the SRS data.  
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Figure 3.5: The FOP-plots for slope, geo.substrate, limestone and landcover saturation for the 
UPS and the SRS data.  
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The elevation FOP smoothed line for the UPS data a negative exponential form (figure 2a and 
2c). The SRS data shows a quite different form (figure 2b). 

The smoothed line for the traffic variable in the UPS data have a quite sharp unimodal shape 
that are a bit skewed to the left. The traffic variable for the SRS data (figure 2e) does also 
have an approximate unimodal shape. However, it is more skewed to the right and also have a 
smaller “peak” on the left side. The UPS data set FOP for the building.AW (figure 2g) has an 
unimodal shape. The EV range for the UPS data are shorter compared to the range of the SRS 
data. 

The FOP for sun.exposure in both the UPS increases with higher sun.exposure unit values. 
The FOP for SRS-data (figure 2k) shows a quite different form where the shape is not as 
obvious. 

The FOP slope for the UPS data starts with around 35 % of predicted empirical presence and 
drops unevenly with increasing slope values, while the FOP for the SRS data (figure 2n) have 
an intimation of an unimodal shape. 

The UPS data has a high frequency of empirical presence in the goe.substrate category 2 
(exposed limestone) and the limestone category 1 (limestone present). The SRS data has the 
highest frequency in category 1 (exposed nutrient poor bedrock) in the geo.substrate variable 
and category 2 in the limestone variable (limestone absent). 

Category 5 in the landcover.sat (water edge) variable have the highest frequency of empirical 
presence compared to the other categories in the SRS data, while frequency in category 2, 3 
and 4 are high in the UPS plot. 

The shape of the FOP plots for both the UPS data and the SRS data were inconsistent when 
changing the interval value. 
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Correlation between the environmental variables 

Table 3.2: Correlation table of the numerical variables for the UPS data. The lower triangle 
shows the spearman’s tau coefficients and the upper triangle shows the p-values. The same is 
true for all the numerical vs numerical correlation tables. 

 Aspect B.AW Curv Elevation Road.dis Slope Sun.exp Temp TPI traffic 

Aspect 1 0.1051 0.0557 0.7368 0.0002 0.2496 0.1327 0.1561 0.0586 0.1905 

b.AW 0.1188 1 0.9594 <0.0001 <0.0001 0.01791 <0.0001 <0.0001 0.9731 <0.0001 

Curv 0.1402 0.0037 1 0.4485 0.1182 0.0075 0.6266 0.5715 <0.0001 0.7061 

Elev 0.0247 -0.5237 0.0558 1 0.2610 0.0018 0.0001 <0.0001 0.4638 <0.0001 

Road - 0.2681 -0.3130 -0.1146 0.0826 1 0.5695 0.4216 0.0252 0.1193 <0.0001 

Slope 0.0846 -0.1730 0.1950 0.2262 -0.0419 1 0.0789 0.0025 0.0603 0.8257 

Sun.e -0.12 0.3848 0.0358 -0.2798 -0.0591 -0.1288 1 0.0002 0.2187 0.5925 

Temp -0.1041 0.4412 -0.0416 -0.5523 -0.1636 -0.2191 0.2706 1 0.5461 <0.0001 

TPI 0.1385 -0.0025 0.3320 0.0539 -0.1143 0.1376 -0.0904 0.0444 1 0.7579 

Traffic -0.0962 -0.2974 -0.0277 0.5089 0.3809 0.0162 -0.0394 -0.4558 0.0227 1 

 

Table 3.3: Correlation table of the numerical variables for the SRS data. 
 Aspect B.AW Curv Elevation Road.dis Slope Sun.exp Temp TPI traffic 

Aspect 1 0.7849 0.8308 0.0962 0.0800 0.0090 <0.0001 0.1573 0.6767 0.6514 

b.AW -0.0190 1 0.0306 0.0157 0.0002 <0.0001 0.1893 <0.0001 0.1805 0.0002 

Curv -0.0149 0.1496 1 0.2773 0.6272 0.9061 0.4275 0.1036 <0.0001 0.2221 

Elev -0.1154 -0.1670 0.0755 1 <0.0001 0.9654 0.5534 0.4923 0.0062 0.0006 

Road -0.1214 -0.2544 -0.0338 0.2846 1 0.5968 0.2233 <0.0001 0.1276 <0.0001 

Slope 0.1803 -0.3804 -0.0082 -0.0030 0.0368 1 0.0271 <0.0001 0.9982 0.0776 

Sun.e -0.2690 0.0912 0.0552 0.0412 -0.0846 -0.1528 1 <0.0001 0.5636 0.2236 

Temp -0.0982 0.6972 0.1129 -0.0477 0.2984 0.4208 0.2664 1 0.0902 <0.0001 

TPI -0.0290 0.0923 0.3526 0.1887 0.1057 0.0001 0.0402 0.1175 1 0.5921 

Traffic -0.0314 -0.2581 -0.0848 0.2370 0.3604 0.1223 0.0845 -0.2667 0.0373 1 
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Table 3.4: Correlation table of the numerical variables for the UPS+SRS data. 
 Aspect B.AW Curv Elevation Road.dis Slope Sun.exp Temp TPI traffic 

Aspect 1 0.1872 0.1959 0.2675 0.0009 0.0362 0.0031 0.7759 0.2646 0.03326 

b.AW 0.0664 1 0.1065 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0680 <0.0001 

Curv 0.0651 -0.0812 1 0.0075 0.1421 0.0058 0.4774 0.0901 <0.0001 0.1608 

Elev -0.0559 -0.6050 0.1342 1 <0.0001 <0.0001 <0.0001 <0.0001 0.0001 <0.0001 

Road -0.1655 -0.6936 0.0739 0.5087 1 <0.0001 <0.0001 <0.0001 0.0310 <0.0001 

Slope 0.1053 -0.4660 0.13825 0.3373 0.2780 1 <0.0001 <0.0001 0.01937 <0.0001 

Sun.e -0.1485 0.4480 -0.0358 -0.3876 -0.3555 -0.2889 1 0.0001 0.0686 <0.0001 

Temp -0.0143 0.8386 -0.0853 -0.5540 -0.6950 -0.4785 0.4668 1 0.2039 <0.0001 

TPI 0.0562 -0.0918 0.3460 0.1899 0.1085 0.1175 -0.0916 -0.0640 1 0.0047 

traffic -0.107 -0.6819 0.0706 0.6067 0.7472 0.3210 -0.2973 -0.7379 0.1419 1 

 

Table 3.5: Reported test H statistics and p-values from kruskal wallis rank sum test between 
the categorical variables and the numerical variables in the UPS data. 

 Geo.substrate Landcover.sat Limestone substrate 

H p-value H p-value H p-value H p-value 

Aspect 0.6286 0.7303 3.955 0.4121 0.3454 0.5567 0.1185 0.7307 

Building.AW 67.96 <0.0001 46.31 <0.0001 67.96 <0.0001 5.845 0.0156 

Curvature 6.648 0.0360 4.440 0.3498 0.479 0.4888 4.7805 0.0288 

Elevation 70.77 <0.0001 55.69 <0.0001 70.312 <0.0001 2.967 0.085 

Road.distance 4.8854 0.08693 8.1369 0.08669 0.0065 0.9358 4.585 0.0322 

Slope 21.27 <0.0001 19.57 0.0006 13.67 0.0002 2.553 0.1101 

Sun.exposure 20.11 <0.0001 44.59 <0.0001 19.769 <0.0001 3.312 0.0688 

Temp.surface 16.81 0.0002 23.0 0.0001 16.80 <0.0001 1.135 0.2868 

TPI 3.039 0.2189 4.0195 0.4034 0.6963 0.404 1.517 0.218 

Traffic 12.21 0.0022 12.91 0.0117 11.86 0.0006 0.1665 0.6833 
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Table 3.6: Reported test H statistics and p-values from kruskal wallis rank sum test between 
the categorical variables and the numerical variables in the SRS data. 

 Geo.substrate Landcover.sat Limestone substrate 

H p-value H p-value H p-value H p-value 

Aspect 1.179 0.5545 19.01 0.0008 1.24 0.2655 0.9944 0.3187 

Building.AW 46.69 <0.0001 23.68 <0.0001 2.453 0.1173 21.67 <0.0001 

Curvature 0.1234 0.9402 12.71 0.0128 0.0402 0.841 0.0034 0.9535 

Elevation 11.82 0.0027 9.853 0.0430 0.2754 0.5997 9.814 0.0017 

Road.distance 5.299 0.0707 23.26 0.0001 1.775 0.1827 0.1329 0.7154 

Slope 20.16 <0.0001 4.532 0.3388 0.0950 0.7579 12.23 0.0005 

Sun.exposure 9.624 0.0081 40.78 <0.0001 1.567 0.2106 9.432 0.0021 

Temp.surface 22.72 <0.0001 38.75 <0.0001 4.013 0.0451 20.42 <0.0001 

TPI 1.223 0.5426 25.16 <0.0001 0.0062 0.9374 1.164 0.2807 

Traffic 3.588 0.1663 13.13 0.0107 0.4395 0.5074 1.453 0.2281 

 

Table 3.7: Reported test H statistics and p-values from kruskal wallis rank sum test between 
the categorical variables and the numerical variables for the UPS+SRS data. 

 Geo.substrate Landcover.sat Limestone substrate 

H p-value H p-value H p-value H p-value 

Aspect 1.196 0.5498 12.56 0.0136 1.826 0.1766 0.0331 0.8555 

Building.AW 97.87 <0.0001 169.9 <0.0001 20.39 <0.0001 62.60 <0.0001 

Curvature 7.622 0.0211 22.57 0.0001 0.2417 0.623 6.834 0.0089 

Elevation 81.82 <0.0001 134.8 <0.0001 51.58 <0.0001 1.701 0.1922 

Road.distance 52.02 <0.0001 121.4 <0.0001 1.865 0.172 49.19 <0.0001 

Slope 62.13 <0.0001 61.40 <0.0001 6.724 0.0095 36.33 <0.0001 

Sun.exposure 33.39 <0.0001 130.7 <0.0001 7.461 0.0063 17.57 <0.0001 

Temp.surface 70.65 <0.0001 157.6 <0.0001 2.312 0.1283 62.11 <0.0001 

TPI 8.797 0.0123 29.62 <0.0001 0.1823 0.6694 7.765 0.0053 

Traffic 36.57 <0.0001 109.7 <0.0001 1.731 0.1883 31.48 <0.0001 
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Table 3.8: Reported test-statistic from χ2-test between categorical variables in the lower 
triangle, with the p-values in the upper triangle, for the UPS data. 

 Geo.substrate Landover.sat Limestone substrate 

Geo.substrate 1 <0.0001 <0.0001 <0.0001 

Landcover.sat 56.13 1 <0.0001 0.8855 

Limestone 187 53.65 1 0.0002 

substrate 187 1.1545 13.36 1 

 

Table 3.9: Reported test-statistic from χ2-test between categorical variables in the lower 
triangle, with the p-values in the upper triangle, for the SRS data. 

 Geo.substrate Landover.sat Limestone substrate 

Geo.substrate 1 0.0002 <0.0001 <0.0001 

Landcover.sat 30.58 1 0.0005 0.0011 

Limestone 76.30 19.82 1 0.6284 

substrate 209 18.30 0.2342 1 

 

Table 3.10: Reported test-statistic from χ2-test between categorical variables in the lower 
triangle, with the p-values in the upper triangle, for the UPS+SRS data. 

 Geo.substrate Landover.sat Limestone substrate 

Geo.substrate 1 <0.0001 <0.0001 <0.0001 

Landcover.sat 79.68 1 <0.0001 <0.0001 

Limestone 256.3 23.83 1 0.0079 

substrate 396 58.33 7.051 1 

 

The UPS+SRS data sets have more significant correlation compared to the other data sets. We 
see a strong correlation between geo.substrate and elevation in both the UPS data and the 
UPS+SRS data. 
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3.4 The MIAmaxent logistic regression models 
 

Table 3.11: The formula and variation explained for all the models made in the analysis.  
 Mod 1 Mod 2  Mod 3 Mod 4 Mod 5 Mod 6 
Model 
formula 

RV ~ 
elevation
_D05 + 
geo.subst
rate_BX
2 

RV ~ 
geo.substr
ate_BX2 
+ 
traffic_H
F8 + 
traffic_L 

RV ~ 
elevation_
HR3 + 
geo.substra
te_BX1 
 

RV ~ 
building.
AW_T4 
+ 
landcov
er.sat_B
X5 
 

RV ~ elevation_HR4 
+ traffic_D05 + 
traffic_HF9 + 
limestone_BX0 + 
traffic_D05:limeston
e_BX0+traffic_HF9:l
imestone_BX0 

RV ~ geo.substrate_BX2 + 
traffic_D05 + traffic_HF9 + 
building.AW_D05 + 
landcover.sat_BX5 + 
sun.exposure_D05 + 
sun.exposure_M + slope_HF13 + 
geo.substrate_BX2:trafficD05 + 
geo.substrate_BX2:traffic_HF9 

Null 
deviance 

157.9 157.9 122.7 122.7 284.5 284.5 

Residual 
deviance 

43.98 53.58 107.9 110.4 157.5 167.4 

Variation 
explained 

0.721 0.66 0.121 0.100 0.446 0.411 

See table 2.3 .for further details on what the difference is between the models. 

In the first round of the subset selection for model 1, the model with elevation was selected. In 
the second round, the model with geo.substrate included explained significantly more than the 
other possible models. Additional variables in the third round did not produce any models that 
explained significantly more variation. As such, model 1 ended up with elevation and 
geo.substrate as the only significant explanatory variables. 

For model 2, the model with geo.substrate got selected in the first round, while in the second 
round the model with geo.substrate and traffic got selected.  

Subset selection for model 3: Elevation in the first round, geo.substrate in second round. The 
selection steps for model 4: building.AW in the first round followed by landcover.sat in the 
second round. 

The subset selection for model 5: Elevation in the first round, traffic in the second round, 
limestone in the third round and an interaction term between traffic and geo.substrate in the 
fourth round. Including additional variables did not produce models that explained 
significantly more variation. 

The subset selection that produced model 6 consisted of seven steps: Geo.substrate in the first 
round, traffic in  second, building.AW in third, landcover.sat in fourth, sun.exposure in fifth, 
slope in sixth and an interaction term between traffic and geo.substrate in seven. 
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Table 3.12: The model formula and variation explained for the models made in MIAmaxent 
where the alpha value were specified at 0.001. Note that the model formula for model 9 and 
10 could not be obtained. Variation explained are determined by the null deviance and the 
residual value ((Null-residual)/Null deviance). 

 Mod 7 Mod 8 Mod 
9 

Mod 
10 

Mod 11 Mod 12 

Model 
formula 

RV ~ 
elevation_D
05 

RV ~ 
geo.substrate_B
X2 

 NA NA RV ~ 
elevation_H
R4 + 
trafficD05 

geo.substrate_BX2 + 
traffic_D05 + 
geo.substrate_BX2:tra
ffic_D05 
 

Null 
devianc
e 

157.9 157.9 NA NA 284.5 284.5 

Residua
l 
devianc
e 

52.12 63.81 NA NA 174 190.8 

Variatio
n 
explaine
d 

0.67 0.596 NA NA 0.39 0.33 

 
There were no significant DV from the selectDVforEV()-function for model 9 and 10, which 
is the reason why model formula and variation explained could not be acquired for these 
models. 
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Single-effect response plots 
For the models with elevation as an explanatory variable do we see that the highest 
probability along elevation gradient is around 5 meters. From 5 meters, the probability drops 
substantially. The same pattern is true also for mod 5. The peak of the increase in predicted 
probability of presence for model 1 were around 80 %, for model 3 the increase peaked at 
around 25 % while for model 5 the increase peaked at around 45 %.  

For the four models with geo.substrate as one of the significant explanatory variables, 
category two (exposed limestone) were the category that gave significant increase in predicted 
presence. Geo.substrate were also a significant predictor in model 5. However, category 1 
(exposed nutrient-poor bedrock) were the category that gave an significant increase in 
predicted probability.  

Traffic, which were chosen as a significant explanatory variable in model 2,3 and 4 does also 
share a similar shape in the response curve. For all the models that included traffic as a 
predictor, the relative increase in predicted presence peaked with around 40 % increase.  

For model 3, which has limestone instead of geo.substrate as the significant variable that 
accounts for calcium, we see that the presence of limestone increased the predicted 
probability of presence with around 35 %.   

Model 4 was the only model that chose both slope and sun.exposure as significant explanatory 
variables. Sun.exposure peaks at 70 % increased relative predicted presence. The slope 
variable gives 12 % increased predicted presence up to a certain point.  

Only model 4 and 6 has building.AW and landcover..sat as one of their predictors. The 
response gradient for building.AW peaks at around 35 % relative increased predicted 
probability of success. The shape of the response for model 6 are similar. For the 
landcover.sat variable, category 5 (water edge) gives a 20 % increased relative predicted 
probability of presence compared to the other categories, while the same category for model 6 
gives around 25 % relative increased probability of presence.   
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Figure 3.6: The single effect response plots for model 1 (elevation and traffic). 

Figure 3.7: The single-effect response plots for model 2 (traffic and geo.substrate).  
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Figure 3.8: The single-effect response plots for model 3 and 4 (model with the SRS data as 
response variable). a) The response for elevation in model 3. b) The response for 
geo.substrate in model 3. c) Response for building.AW selected in model 4. d) The response 
for landcover.sat selected in model 4. 
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Figure 3.9: The single-effect response plots for model 5 (elevation, traffic and limestone). 
Model 5 and 6 had the UPS+SRS as the response variable. 

 

 

Figure 3.10: The single-effect response plots for model 6 (traffic, geo.substrate, 
sun.exposure, slope, building.AW, landcover.sat).  
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Both elevation response curves from model 7 and model 11 (3.11a) and 3.11c) respectively) 
have an approximately negative deviation form. However, 3.11b) does start off with a 
considerably higher predicted probability of presence (around 80 % increased predicted 
probability of presence at its highest) compared to 3.11c) (around 40 % increase in predicted 
probability of presence at its highest). The two response plots for geo.substrate are also quite 
similar; Presence of either category one or three does not give any increase in predicted 
probability while category two gives around 70 % increase in predicted probability, according 
to model 8. In model 12 both category two gives around 45 % relative increase in predicted 
probability. The response curve for traffic in both model 11 and 12 have an identical shape; A 
quite sharp almost uni-modal shape, with a peak around 2000 cars per day at which the model 
assumes a 40 % increase in predicted probability of presence. 
 
 

 
Figure 3.11: a) The response plot for the selected variable in model 7, which in this case is 
only elevation. b) The response curve for the selected variable in model 8, which is only 
geo.substrate. c) The response curve for elevation in model 11. d) The response curve for 
traffic in model 11. e) The response curve for traffic in model 12. f) The response plot for 
geo.substrate in model 12. 
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ROC plots and AUC values 
Model 1,2 and 3 have quite similar AUC-value (around 0.75), while model 3 and 4 are the 
least predictive ones with an AUC around 0.7.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: The ROC-curve and corrisponding AUC-value for model 1-8 and mod 11-12.  
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Predicted distribution maps 

Figure 3.13: The predicted distribution for model 1, 2, 3, 4, 5 and 6.  

We see the presence of the elevation variable for model 1 and 5, as there is a clear gradient of 
probability of presence from the ocean to the forests. The islands in the inner fjord, Fornebu, 
and Bygdøy are all location where the probability of observing one of the targeted species  
according to model 1 and 5. We can also observe that model 1-4 considers the forests around 
the main city as low to 0 % probability of presence zones. 
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We see that the predicted distribution for the models with alpha value 0.001 “mirror” the 
predicted distribution of their equivalent models with alpha value 0.05. The main difference is 
that these have a more restricted distribution of high predicted probability. 
 
The map for both model 2 and 3 shows large areas that are low to moderate probability of 
presence. They do not treat the islands, Bygdøy and Fornebu as high probability areas in the 
same manner as the other models. For model 1, 2, 5 and 6 the scale of predicted probability 
are from zero percentage to around 90 % (0.8-0.9), whereas the scale for model 3 and 4 goes 
from zero to only around 30 % (0.3). 

Figure 3.14: The predicted distribution for model 7, 8, 11 and 12. 
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Both model 7 and 8 ended up with only one significant variable (elevation and geo.substrate 
respectively). Model 11 ended up with elevation and traffic as significant EVs, elevation first 
followed by traffic. Model 12 ended up with geo.substrate, traffic and an interaction term 
between those two, geo.substrate in the first round, traffic in the second and the interaction 
term in the third round. Model 9 and 10 had no significant derived variables. 
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4. Discussion 
Unequal probability sampling as a method to find rare species 
The non-parametric proportion test showed a significant difference in the proportion of 
presence point between the UPS data set and the SRS data set. I will therefore argue that 
using UPS to find rare species is a more appropriate sampling method than stratified random 
sampled method. I do think that this comparison is not an ideal situation when inferring which 
sampling method suits best for finding rare species. As we can see from figure 3.2b, the SRS 
data does not have many observation units on the part of study area where geo.substrate 
category 2 (exposed limestone) were present. Presumably, this means that the SRS data does 
not include many observation units with limestone present and ragged substrate, which is 
already established as the most important EV for the targeted species.  

This is further exemplified by the FOP-plot for geo.substrate. The background data for 
category two is less than the background data density for category one and three. We can also 
observe that the background density for category two in the FOP-plot for the UPS data are 
comparably higher. In other words, the UPS data have more observation units where exposed 
limestone is present. I think two factors are at play here; Firstly that the UPS data drew more 
observation units on areas with exposed limestone because of the nature of the sampling 
method, secondly that the SRS data, indirectly because how the sampling scheme is 
structured, drew fewer observation units with exposed limestone than it otherwise would.  

I assert that the main problem in this situation is that the SRS data were gathered specifically 
for a different purpose (J. B. Halvorsen, 2019). I therefore argue more research is needed 
before one can be confident in the conclusion that UPS as a method for finding rare species is 
the preferred sampling method. Specifically, I think the most preferred scenario is the 
comparison of an unequal probability sampled data with an equal or simple random sampled 
data collected in the same scale with the same number of observation units (Meng, 2013). 
However, the results of this study at least partly demonstrates that unequal probability 
sampling method in case of this study area and these investigated species will be able to over-
sample observation units that have environment conditions (exposed limestone) that favors 
the species in question.  

The data set size and variable selection criteria  
The effect of the total number of observation units was demonstrated with the UPS+SRS 
models (model 5, 6, 11 and 12). Model 5 and 6 (table 2.3) were the two models with the most 
significant variables. However, we can see from model 11 and 12 that a more conservative 
model selection criterion, i.e lower alpha value, did produce models with only two significant 
variables. I think this shows how important it is to adapt the alpha value in these situations, as 
that will directly affect which variables are chosen. I think in the case for the models made 
with the UPS+SRS data sets, the selection process for model 4 and 5 (UPS+SRS with alpha = 
0.05) could have been more conservative.   

Model 6 had in total six significant explanatory variables, which for me seems excessive. I do 
think it is reasonable to assume that some of the significant EVs in the final version of model 
6 got selected because they accidently had a non-random pattern with regards to the 
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UPS+SRS data set. If we compare model 6 with model 12, we can see that fewer EVs were 
deemed significant in the model selection process. No derived variables for the SRS data were 
identified as significant when alpha were specified as 0.001. This further supports the notion 
that there were weak to no environment-species pattern in the SRS data.  

Indirect variables 
As we see from this study; EVs can be selected and deemed significant and yet still be 
ecologically meaningless. Elevation is an example of this. It was the most significant variable 
in model 1, and second most significant in model (see table 3.11). Yet, for these particular 
targeted species, I will argue that elevation is not an ecologically important variable, as the 
range (i.e the size of the study area) of the elevation difference is so small that the usual 
effects from this variable are not present (atmospheric pressure and temperature).  

I found it challenging to infer which variable actually describes the distribution of the targeted 
species elevation. We can see from the models without elevation included (model 2, 4, 8 and 
12) that elevation were often “replaced” with traffic, i.e traffic was the variable that explained 
the most variation among the variables that significantly correlated with elevation. I think the 
traffic is an indirect variable, as it is a manmade phenomenon. This variable is defined as cars 
per day (The environment variables), which for me makes the interpretation of this variable 
challenging. I suspect that traffic is somehow tied with the substrate, all though I find it hard 
to prove it directly.     

Using unequal probability sampling in distribution modelling 
It was not clear which of the twelve models were the most predictive one. As we can see from 
the AUC-value and the corresponding ROC-curve, they all had near the same prediction 
ability. This can mean that the test data used was not optimal. It is therefore not straight 
forward to evaluate which model is the best one in predicting the presence or absence of the 
targeted species. It is not obvious to compare the variation explained, as it is a measure that 
tells more about the data itself rather than how general the model is. I think the test data were 
insufficient here, as it is not a true PA-data set and is based on the same study area. The ROC-
curves and the AUC-values may have been different if the test data were better (Vollering et 
al., 2019). A test data from another study area  is desired if one wishes to test how general the 
model is (Araújo et al., 2019). 

In this case I will argue that it is better to look at the selected EV within each model, as they 
can tell (as long as one has an idea of which EVs are the most important) how widely 
applicable the model is with regard to the species ecology. One can therefore disregard model 
1 and 3, as they both included elevation as one of their significant EVs (since elevation is in 
fact does not predict the species’ distribution directly). With model 1 and 3 excluded, we can 
then compare model 2 and 4. Of the two models, model 2 has fewer explanatory variables 
than model 4.  

 

From the predictive distribution map, we see that both model 2 and model 4 has correctly 
identified the islands, Fornebu and Bygdøy as high probability areas. However, we see that 
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model 4 has a lot more moderate to low probability areas compared to model 2. This is not 
that surprising, as model 4 has more significant EVs compared to model 2. Based on the UPS 
data set and prior study, one can argue that model 4 is too generous with regard to what it 
deems as moderate to high probability areas. It may be right to assume that among the models 
presented in this study, model 2 is the best one for predicting the investigated species’ 
distribution. If we compare model 2 and 12 with (Wollan, 2011), we can see that exposed 
limestone is important. This means that the procedure presented here, will indeed produce 
models that at least in part reflects the actual species-environment relationship.  

In addition, there is a potential problem with the distance of the observation units themselves. 
If the study area is relatively constrictive with respect to location with moderate to high 
probability of success, then a situation where there are many OUs grouped together can arise. 
This can lead to bias caused by autocorrelation, i.e observed patterns in the data that are due 
to dispersion mechanics and/or historic events as opposed to environmental factors (Irvine et 
al., 2018). A few of the observation units from the UPS data may be affected by 
autocorrelation. For instance observation unit 97 and 76; in both these observation units, a 
total of 10 distinct species were observed, which is the highest number among all observation 
units visited. Both of these observation units were on the same island (Gressholmen).  

The degree of autocorrelation is potentially higher in the SRS data. We can see from figure 
figure 3.3  that the SRS observation units have a more clustered distribution. This is not that 
surprising, given the nature of the sampling method. However, I think that this clustering is 
probably causing autocorrelation. This means that some (if not all for model 3 and 4) of the 
selected variables in model 3, 4, 5, 6, 11 and 12 (the models where the SRS data were a part 
of the response variable data) represents qualities of the data rather than species-environment 
relationship.    

What this means for the species, the study area and distribution modelling 
Overall I will argue that the UPS data captured a better representation of the environment-
species relationship. The proportion test (henvise til den delen av resultater som viser 
prop.testen), and the comparison of model 1,2 with 3,4, do support this claim. However, as 
we have seen, there are problems with the SRS when using it for this particular comparison. If 
the UPS data were compared with a data sampled equally across the whole study area, one 
could probably infer more conclusively the relative performance of the unequal probability 
sampling method for species adapted to exposed limestone substrate in Oslo and surrounding 
area.  

Yet, I do think unequal probability sampling is a good approach if one wishes to find the 
species studied here. UPS could also be combined with a gradsect style sampling approach 
(Guisan & Zimmermann, 2000), to capture variation along what one might suspect is the most 
important environment gradients (for instance how much calcium is available in the soil, and 
how rugged it is). This all depends on what information is already available for the area one 
wishes to study, but for Oslo at least, this approach seems better suited than the sampling 
scheme for the stratified random sampled data.  
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Conclusion  
The UPS data and the SRS data differed significantly in terms of the prevalence, where the 
UPS data had a higher proportion of presences of the investigated species than the SRS data. 
This implies that UPS as a sampling method is better suited to finding rare species. However, 
because the category exposed limestone were comparably poorly represented in the SRS data 
the results are not as conclusive as one could hope for. In addition, the potential presence of 
autocorrelation in both data sets makes the interpretation of the results somewhat challenging. 
The conclusion could maybe be more robust if the UPS data was compared to a simple 
random sampled data set.  

There were clear differences between the models made with the UPS data and the models 
made with the SRS data. All the models associated with this data set had variables connected 
to limestone. Even when the model selection criteria were more conservative, three of the four 
models made with the UPS data (model 8, 11, 12) selected exposed limestone as a significant 
predictor for the presences of the investigated species. The models made from the SRS data 
did not select any variables associated with limestone, which indicates that the UPS data 
captured a better representation of the environment-response relationship for the investigated 
species.  

The effect of larger population size were strongest when not adapting the model selection 
criteria, as model 6 had the most significant variables. I suspect some of those variables 
represent qualities of the data rather than actual responses from the targeted species.  

The models with elevation captured more variation in the response variable than the other 
models. Nevertheless, correlation and statistic tests showed that the variable was associated 
with many of the other variables included in the model selection. This mean that if one wishes 
to predict the presences of the targeted species in this study, using a distribution model where 
elevation is included might not be a bad idea. However, the same models might not be 
applicable for other study areas 

There are still some questions that remain unanswered. For instance, what does the traffic 
variable actually represent in the models where it was present? Is it an indirect variable, like 
elevation, or does numbers of cars per day actually have an impact on the distribution of the 
investigated species? I suspect that traffic is an indirect variable, but more research may be 
needed to understand the relationship between the traffic variable and the investigated species.  
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https://cran.r-project.org/web/packages/MIAmaxent/vignettes/a-modeling-example.html#references
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Appendices 
 

Appendix 1 
Re-registration of The NA- and absence observation units 

Some of the plots were not surveyed during the first field trip. There were several reasons for 
this. For instance, some were placed on water, and to minimize the problem of these (at first) 
NA-plots, a new field trip was planned in the summer of 2019. The decision was made to 
move them to nearest landmass, under the assumption that the plots on the water were placed 
there because of the probability-based distribution.  

Furthermore, some plots were placed on steep cliffs, and as such were unavailable through 
normal means. These plots were therefore treated as absence points. There were also some 
plots that were not directly unavailable, but were still not accessible because they were placed 
within private grounds. In addition to the above-mentioned plots that were unavailable, there 
were several plots were placed on islands or islets that were only accessible by boat. Lastly, 
Fragaria viridis, one of the targeted species and can be confused with a close relative, 
Fragaria vesca, as they are quite similar with regards to the vegetative parts. Since all the 
targeted species in the analysis are treated as one RV, then the case of viridis and vesca being 
almost identical could be a source of error.  

Four reasons in total that some of the plots were not visited: 

- Some plots were placed on water 
- Some plots were placed along steep cliffs 
- The area in which the plot were placed was within private property 
- Some plots were placed on unavailable islands 

Plots on water 

To minimize the problem of NA-plots, a new field trip was planned in the summer of 2019. 
The decision was made to move them to nearest landmass, under the assumption that the plots 
on the water were placed there because of the probability-based distribution.  

The reason for the misplacements of these plots is still currently unknown. It might have 
something to do with the transfer of coordinates between different devices. It should be noted 
that the placements of the plots both within the qgis-software and the handheld gps were the 
same.   

The observation units that were originally on water, but due to being moved were re-
registered as presence: 2, 31, 39, 102, 166, 189 and 193. 

The observation units that was re-registered to absence that was originally on water: 7, 45, 90, 
111, 117, 125, 147 and 194. 

Plots on or along cliffs 
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The steepness was so extreme that they were unavailable through normal means. It was then 
decided to write these as NA These plots were primarily in the forest area around the main 
city area. They were then treated as presence points, as there were every indication that none 
of the targeted species would be present if visited. The plots that were re-registered from NA 
to absence using this argument: 16, 89 and 122. 

Plots on private property 

Some of the plots were unavailable due to being placed within private property.The plot 171 
was at first registered as NA, because it was mostly within a private lawn. However, a small 
part was available because of a nearby road. Both bergskrinneblom and viridis/vesca were 
present on that part of the plot. This plot was therefore treated as a presence plot, although the 
abundance of each species was not decided for this plot.  

Plot 86 was also unavailable for the same reason as 171, but one of its buffer zone were 
placed on an open field in between several houses. A lot of the targeted species were present 
in this particular buffer zone, and as such the decision to move the plot to that spot were 
made.  

The plots that are still registered as NA: 6, (50), 71, 81, 112, 120, 145, 177 

Plots on islands or islets 

Several plots were placed on islands or islets that were only accessible by boat. Only two 
plots that were on an island was surveyed. The rest of the plots in this category were on 
islands or islets that were so remote, that a bigger boat with all the appropriate equipment was 
necessary to make the trip. These were registered as NA. The plots in question are: 7, 36, 160, 
173 and 188.  

Fragaria viridis and Fragaria vesca 

Fragaria viridis, one of the targeted species and can be confused with a close relative, 
Fragaria vesca, as they are quite similar with regards to the vegetative parts. The main 
difference is in the fruit/berry. Fragaria vesca is quite common in Norway and is associated 
with rich soil.  

Since all the targeted species in the analysis are treated as one RV, then the case of viridis and 
vesca being almost identical could be a source of error. There were a total of 5 presence 
points that inly had Fragaria viridis as observation. For all the registration of Fragaria viridis 
only the vegetative parts of the plant were present, or more importantly the fruit were absent. 
Because of this, it is not 100 % certain that these observation units should be regarded as 
present points.  

Several of these 5 present points had observation of some of the other targeted species in the 
buffer zone. But the main reason for labeling these plots as presence points were their 
surroundings, as all either had presence points close to them or were placed on areas that was 
considered to be high probability regions.  
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Specifically, the 5 plots are: 

- Plot 4. This is one of the plots placed on Bygdøy, which can be considered a high 
probability region. There were several individuals of Fragaria viridis/Fragaria vesca 
present.  

- Plot 20. This is also one of the Bygdøy plots. There were no species other than 
Fragaria viridis/vesca that were registered in the plot itself. But both Geranium 
sanguineum and Conoeaster intergerrimus were present in the buffer zone.  

- Plot 79. Both Geranium sanguineum and Filipendula vulgaris were present in the 
buffer zone.  

- Plot 85. There were registered no observations in the buffer zone. Mainly registered as 
a present point because of the location, as it was placed on a high probability region 
(Lindøya). 

- Plot 95. Both Filipendula vulgaris and Veronica spicata were registered in the buffer 
zone.   

Fragaria viridis vs Fragaria vesca 

Assuming that observation of vegetative parts of either Fragaria viridis or Fragaria vesca are 
all observation of Fragaria viridis in certain areas where the environmental conditions 
“favors” Fragaria viridis could lead to false conclusion about the investigated plot. Especially 
when one consider the possibility of an ecological condition that causes the observed absence 
of the investigated species (beside Fragaria viridis/Fragaria vesca).  

By stating that these particular observation units were presence points, their values concerning 
the environmental variables could potentially skew the forward selection process on 
environmental variables. This consequence gives emphasis on variables that are in fact 
irrelevant to the targeted species. 
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Appendix 2 
The distribution maps for the rest of the tested environmental variables are shown here. 

 
Figure A.1: a)Distribution of aspect variable. b)Distribution of curvature variable. 
c)Distribution of TPI variable. d) Distribution of surface temperature variable. e)Distribution 
of road distance variable. f) Distribution of substrate variable. 
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Appendix 3 
 

A more detailed overview of the investigated species are shown here. 

Table A.1: Table showing the name of the targeted species and other relevant information 
about the individual species (Mossberg, Båtvik, Stenberg, & Moen, 2010; SNL, 2019). 

Latin name Length of life 
cycle and 
type 

Size Reproductive Vegetative Comments 

Gernaium 
sanguineum 

Perennial 15 – 60 cm 
tall. 

The flowers are radial and 
bright purple, making the 
plant quite noticeable when 
flowering. 

The leaves are lobed 
and narrow. 

Arguably the least rare 
species among the 
investigated species, 
and can be found both 
in open terrain and near 
forest. 

Filipendula 
vulgaris 

This species 
is herbaceous 
and perennial.  

They can 
grow up to 
50 cm. 

The flowers are numerous, 
white with a purple hue 
underneath. 

The leaves are lobed 
and are arranged in a 
rosette near the ground. 

 

Arabis hirsute An 
herbaceous 
plant that is 
both biennial 
and perennial.  

They can 
be between 
20 and 60 
cm tall. 

 The plant has whole, 
narrow leaves both near 
the ground in the form 
of a rosette, and along 
the stalk. 

They are typically 
found on bare rocks, 
hence the Norwegian 
name (berg=rock). 

Poa compressa Perennial 
grass.  

Can be 10 
to 40 cm 
tall. 

 The straw is blue green 
with narrow leaves that 
are flattened. 

They are often found on 
dry, ragged places. 

Thymus 
pulegiodes 

A small 
subshrub.  

Can be 5 to 
25 cm tall. 

The leaves are small, and 
quite aromatic. 

Flowers are pink.  

Fragaria viridis A perennial 
herb 

 Flowers are round and white. 
Fruit similar to vesca, only 
“wraps around” more. 

Leaves similar to 
vesca, but the tip are 
more blunted. 

Can be confused with 
Fragaria 
vesca(Markjordbær) 

Veronica 
spicata 

Perennial 
herb 

Can be 5 to 
40 cm tall. 

They have many small purple 
flowers placed quite densely 
on a long spike 

 This species is 
considered endangered 
in Norway, but mainly 
because of the nature 
type (T2-C8) is rare and 
declining in prevalence. 

Inula salicina Perennial 
herb 

Can be 20 
to 70 cm 
tall. 

Two to four cm wide, yellow 
flowers on the top. 

The leaves are placed 
quite densely along the 
stem. 

 

Cynoglossum 
officinale 

Biennial herb They can 
be 30 to 80 
cm tall. 

 Have leaves formed 
like tongues. 

The leaves have hair 
glands that produces a 
foul-smelling odour. 

Hypochaeris 
maculata 

 They can 
be 20 to 60 
cm tall.  

The flowers are yellow and 
forming a capitula. 

The leaves are arranged 
in a rosette, with big 
black spots.     

 

Erysimum 
strictum 

Biennial herb Can be 30-
90 cm tall. 

Bright yellow flowers. Silique 
fruits. 

Lancelet shaped leaves.  Mainly found on dry 
places.  

Centaurea 
scabiosa 

Perennial 
herb 

Can be 30-
100 cm 
tall.  

Sphere shaped capitula. Lobed leaves. Found on dry places 
with high calcium-
content. 

Silene nutans A perennial 
herb 

They can 
be 20 to 40 
cm tall. 

The flowers are white, with 
the cap leaning towards the 
side. 

The leaves are arranged 
in a rosette near the 
bottom of the plant. 

 

Cotoneaster 
intergerrimus. 

Shrub can grow 
up to 2 
meters tall 

The flowers are small and 
bright red. 

The leaves are oblong 
shaped, the inferior 
side covered in white 
hairs. 

The second largest one 
of the targeted species, 
and are relatively 
common in forests.  

Ligustrum 
vulgare 

Deciduos 
shrub 

Up to 3 
meters 

Flowers are white and 
arranged in panicles that are 
3-6 cm long. 

Leaves are opposite in 
pairs along the stem, 
whit a shiny green 
coloration and an oval 
shape 

The largest one of the 
targeted species. The 
stem is brown-grey and 
stiff.  

Phleum 
phleoides 

Perennial 
herb 

Up to 60 
cm tall 

The axis is quite dense and 
“splits apart” when bent.  

The straw has a violet 
hue. 

Considered endangered 
in Norway 

Carlina 
vulgaris 

Herb Can grow 
between 10 
to 60 cm. 

The flowers (or the crown) 
are yellow woth a red tint, 
while the outer support 
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structures are pointing 
outwards. 

Draba verna Annual herb Can be 1 to 
10 cm tall.  

White flowers  Flowers early in the 
spring, and whiter 
shortly afterwards.  

Echium 
vulgare 

Biennial herb Can be 20 
to 80 cm 
tall 

Bright blue flowers, and the 
stamens have a red-pink 
coloration.  

  

Poa alpine Perennial 
herb 

Can be 15 
to 40 cm 
tall 

The axis are broad and have a 
red-violet hue. 

Dark green leaves. They can reproduce 
sexually (with flowers), 
or with gemmae. 

Saxifraga 
granulate 

Perennial 
herb 

Up to 40 
cm. 

Many white flowers, arranged 
in tassels. 

The leaves are near the 
bottom of the stem, in 
the form of a rosette. 

 

Carex 
caryophyllea 

Herb Can be 10 
to 30 cm 
tall 

Male axis at the top with two 
female axis right below. 

Stiff leaves.  

Dracocephalum 
ruyschiana 

Perennial 
herb 

Can be 5 to 
15 cm tall 

The flowers are 
bisymmetrical and around 3 
cm long. The color can differ 
between dark blue, blue-violet 
and deep blue. 

Leaves are lancet 
shaped and are placed 
in paired opposite of 
each other along the 
stem. 

 

Saxifraga 
osloensis 

Annual herb  The flowers are white and are 
6 to 10 mm wide. 

The stem is erect and 
the leaves consist of 
three leaflets, where the 
middle one is the 
largest. 

The stem have 
glandular hair  

Rosa majalis Shrub Grow up to 
1 meter 
tall. 

The flowers are relatively 
small with pink coloration.  

The bark is red-brown.   

Saxifraga 
tridactylites 

Annual herb Can be 3 to 
15 cm tall. 

 Fleshy leaves, with 
three distinct leaflets. 
Stem is red. 

The whole plant (beside 
the flowers) are 
covered in adherent 
glands.  

Scleranthus 
perenni 

Perennial 
herb 

Can be 5 to 
15 cm tall. 

They have no pedals, but the 
sepals are white and function 
as pedals.  

The whole plant has a 
blue green hue, while 
the leaves have ha 
pointy end.  

They flowers early in 
the summer.  

Lithospermum 
officinale 

Herb Can be up 
to 80 cm. 

The flowers consist of large 
bract around green or white 
pedals. 

The leaves have an 
oval shape, while the 
stem is erect and 
branching at the top.  

 

Linum 
catharticum 

Annual herb Can be 5 to 
20 cm tall. 

The flowers are white, with 
glands on the sepals.  

The leaves are opposite 
with one nerve.  
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Appendix 4 
 

The FOP-plots for the non-selected variables are shown here, in addition to the FOP-plots for 
selected variables in the UPS+SRS models.  

 

Figure A.2: The frequency of empirical presence for the apsect variable ( for UPS, SRS and 
UPS+SRS, i.e combined). The black dots represents the proportion of points for their 
respective interval that contains presences. The red line represents a local regression line that 
gives a representation of the patterns in the frequency of presence for the investigated EV. The 
grey field represents an approximation of the data density along the EV range. The interval = 
20 for all three FOP of aspect. 

Figure A.3: The frequency of the empirical presence for the curvature variable. The interval 
equals 20 for all the FOP plots (UPS, SRS and UPS+SRS).    
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Figure A.4: The frequency of empirical presence for the road distance variable. Interval = 20 
for all the data sets (UPS, SRS and UPS+SRS). 

Figure A.5: The frequency of the empirical presence for the substrate variable. The striped 
bar represent the proportion of presences for its respective category. Similarly to the FOP for 
numerical variables, the gray represents the data density for its respective category. 
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Figure A.6: The frequency of the empirical presence for the temperature surface variable. For 
the UPS FOP-plot the interval = 26. For the SRS FOP-plot the interval = 17. For the 
combined FOP-plot the interval = 17. 

Figure A.7: The frequency of the empirical presence for the TPI variable. For the UPS FOP-
plot the interval = 19. For the SRS FOP-plot the interval = 20. For the combined FOP-plot the 
interval = 17. 
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Figure A.8: The FOP-plots for elevation (int = 40), traffic (int = 15), building.AW (int = 20) 
and sun.exposure (int = 25) for the UPS+SRS data.  
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Figure A.9: The FOP-plots for slope (int = 15), geo.substrate , limestone and landcover.sat 
for the UPS+SRS data.  
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Appendix 5 
A more detailed description of the models themselves are shown here. Specifically, the output 
from the selectEV$selectedmodel are shown for model 1-12 (see table 2.3 for the model 
discriptions). 
 
Model 1: 

 
Model 2: 

 
Model 3: 

 
Model 4: 
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Model 5: 

 
Model 6: 

 
Model 7: 
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Model 8: 

 
Model 11: 

 
Model 12: 
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Appendix 6 
 

Abundance data and coordinates for the UPS data set 

Plot id, coordinates and abundances (for each targeted species) for all the presence points: 

plot_id P/A POINT_X POINT_Y Ger sang Filip vul Arab hirs Poa com Thym pule
2 1 596574 6639955 1 0 0 0 0.2
4 1 594175 6642375 0 0 0 0 0
5 1 597755 6637595 0 1 0 0 0

14 1 597015 6640215 2 1 0.1 1 0
18 1 596415 6639285 1 1 0 0 0
20 1 594215 6643255 0 0 0 0 0
31 1 597988 6632248 1 0 0.1 0 0
39 1 596547 6639935 2 0 0 0 0
44 1 590385 6640815 0 0 0 0 0
51 1 596035 6640555 0 2 0.1 0 2
76 1 596525 6639915 5 1 0 0 0.4
79 1 593105 6642385 0 0 0 0 0
85 1 595835 6640535 0 0 0 0 0
86 1 594874 6640427 1 1 0 0 1
93 1 598015 6637455 3 0.3 0 1 0
95 1 595715 6640555 0 0 0 0 0
97 1 595945 6639715 3 2 0.1 1 1

102 1 591098 6639868 5 0.2 0 0 0
109 1 596115 6640395 0.1 0 0 0 0
114 1 594925 6640605 1 1 0 0 0
129 1 596045 6640815 0 2 0 0 0
148 1 597295 6640885 2 0 0 2 0
153 1 596705 6641335 1 0.2 0 0 0
165 1 596255 6639785 1 0 0 0 0
166 1 598213 6637313 2 0 0 0 0
171 1 593246 6645661 0 0 0.3 0 0
189 1 597656 6637432 0 1 0 0 1
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plot_id Frag vir Ver spic Inula sali Cyno of fic Hypo mac Erys stric Cent scab Silen nut
2 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0
5 2 0.2 0 0 0 0 0 0

14 0 0.4 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
20 1 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0
51 0 1 0 0 0 0 0.1 0
76 0 0.4 0 0 0 0.1 0 0
79 1 0 0 0 0 0 0 0
85 1 0 0 0 0 0 0 0
86 1 1 0 0 0 0 0 0
93 1 0 0 0 0 0 0 0
95 1 0 0 0 0 0 0 0
97 1 1 0 0 0 0 0 0

102 0 0 0 0 0 0 0.1 0
109 0 0.1 0 0 0 0 0 0
114 2 1 0 0 0 0 0 0
129 0 1 0 0 0 0 0 0
148 0 0.4 0 0 0 0 2 0
153 1 0 0 0 0 0 0 0
165 1 0 0 0 0 0 0 0
166 0 0 0 0 0 0 0 0
171 1 0 0 0 0 0 0 0
189 0 0 0 0 0 0 0 0
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plot_id Coton inteLigus vul Phl phle Car vul Draba ver Echi vul Poa alp Saxi gran
2 0.1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0.1 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0
18 0.1 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0
39 0 0 0 0 0 1 0 0
44 0 0 0 0 0 0.2 0 0
51 0.1 0 0.1 0 0 0 0 0
76 2 1 1 0.2 0 0 0 0
79 0 0 0 0 0 0 0 0
85 0 0 0 0 0 0 0 0
86 0.1 0 0 0 0 0 0 0
93 1 0 0 0 0 0 0 0
95 0 0 0 0 0 0 0 0
97 2 0 1 0 0 0 0 0

102 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0
148 0 0 0 0 0 0 0 0
153 0.1 0 0 0 0 0 0 0
165 0.2 0 0 0 0 0 0 0
166 0 0 0 0.1 0 0 0 0
171 0 0 0 0 0 0 0 0
189 0 0 0 0 0 0 0 0
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plot_id Car caryo Draco ruy Saxi oslo Rosa maja Saxi trida Scler per Lithos of fiLinum cath
2 0 0 0 0 0 0 0 0.1
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 1
79 0 0 0 0 0 0 0 0
85 0 0 0 0 0 0 0 0
86 0 0 0 0 0 0 0 0
93 0 0 0 0 0 0 0 0
95 0 0 0 0 0 0 0 0
97 0 0 0 0 0 0 0 1

102 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0
148 0 0 0 0 0 0 0 1
153 0 0 0 0 0 0 0 0
165 0 0 0 0 0 0 0 0
166 0 0 0 0 0 0 0 0.3
171 0 0 0 0 0 0 0 0
189 0 0 0 0 0 0 0 0.1
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Plot id and coordinates for all the absence points: 

plot_id POINT_X POINT_Y plot_id POINT_X POINT_Y plot_id POINT_X POINT_Y
0 603565 6648335 57 596805 6650915 111 596514 6639745
1 607805 6648645 58 606805 6633665 113 596745 6651115
3 606345 6642125 59 606055 6634335 115 588505 6650325
8 603245 6649995 60 594065 6651345 116 605795 6643175
9 604895 6643696 61 588655 6651365 117 594853 6642334

10 604535 6637125 62 591465 6653445 118 599465 6635265
11 605325 6633647 63 605755 6642835 119 597775 6630575
12 602865 6630265 64 594405 6649025 121 604775 6635955
13 590105 6651924 65 605555 6637705 122 605475 6641705
15 600485 6647905 66 589485 6652045 123 605715 6644375
16 600465 6647975 67 593215 6653605 124 604905 6637035
17 605465 6641435 68 604895 6640135 125 605355 6648875
19 604195 6649715 69 607465 6635885 126 605435 6641235
21 592215 6653725 70 602525 6652255 127 595285 6651265
22 605645 6633975 72 599095 6630975 128 595255 6648985
23 595735 6651895 73 606755 6635705 130 589085 6649465
24 603075 6648835 74 606615 6642905 131 603775 6638425
25 593897 6640952 75 603375 6636835 132 604425 6638405
26 605215 6643215 77 591615 6652745 133 604145 6633475
27 603805 6638805 78 598605 6640735 134 605285 6640975
28 591305 6651915 80 605265 6642305 135 605635 6639735
29 594855 6650485 82 606495 6635865 136 594865 6652145
30 594495 6649715 83 589385 6649165 137 605665 6639045
32 589625 6651845 84 605715 6633795 138 589845 6649095
33 592345 6652995 87 601455 6648075 139 592105 6653835
34 598445 6638405 88 597545 6649975 140 604515 6637895
35 605775 6634035 89 605485 6641595 141 606655 6639995
37 591195 6648635 90 593431 6643636 142 595085 6650675
38 593395 6653535 91 606425 6636985 143 603175 6652485
40 603685 6636085 92 602085 6650785 144 606305 6644505
41 604445 6640105 94 597985 6648055 146 604625 6636045
42 605115 6642795 96 606075 6637495 147 606625 6639556
43 593645 6644075 98 589475 6651845 149 592225 6651365
45 606246 6636774 99 602305 6650955 150 599245 6632745
46 606345 6636455 100 592325 6651015 151 602995 6648765
47 602505 6647035 101 602095 6633475 152 591215 6645805
48 606105 6634315 103 592685 6652525 154 598505 6631325
49 606055 6637275 104 600445 6630345 155 595385 6649425
52 604765 6642555 105 606045 6634945 156 601215 6647885
53 594115 6643115 106 599765 6634585 157 590715 6647645
54 600425 6630405 107 605805 6633935 158 598455 6631195
55 592375 6651155 108 607795 6634785 159 608335 6634435
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plot_id POINT_X POINT_Y plot_id POINT_X POINT_Y plot_id POINT_X POINT_Y
162 606135 6637455 176 607905 6633865 187 603755 6651025
163 589555 6648455 178 606085 6635945 190 606595 6641405
164 606555 6635775 179 606145 6641785 191 605365 6639335
167 601905 6648525 180 606815 6650215 192 602445 6652005
168 599135 6632515 181 602285 6632045 194 601010 6649530
169 595685 6648765 182 603615 6637255 195 601935 6648635
170 606675 6638255 183 604785 6643465 196 603285 6649735
172 606955 6644985 184 604585 6639345 197 590885 6650845
174 606425 6638905 185 604785 6642745 198 601855 6632045
175 589525 6651895 186 602075 6649325 199 594275 6642705

 

Plot id and coordinates for all the NA points:  

plot_id POINT_X POINT_Y plot_id POINT_X POINT_Y
6 591026 6639360 120 593435 6642475
7 599103 6638788 145 593735 6642855

36 590825 6638425 160 598625 6638365
50 602955 6632675 173 598335 6638955
71 599115 6641765 177 597935 6650835
81 596565 6646525 188 592745 6642625

112 602065 6647335  

 

 

 

 

 

 

 

 

 

 

 

 



69 
 

Appendix 7 
 

A general R-script for making distribution models in MIAmaxent 

install.packages(“MIAmaxent”) 

library(MIAmaxent) 

#First I did were to make a table showing the PA-points and their corresponding EV-value, using the 
#readData()-command. 

readData_table <- readData( 

occurrence=”C:/ occurrence_data_csv”, 

contEV=”C:/folder_with_numeric_var”, 

catEV=”C:/folder_with_categoric_var”, 

maxbkg=20000, PA=TRUE) 

#The occurrence argument must be specified as a destination to a csv file with the occurence data. The data need 
#to consist of three columns: First column should consist of PA (denoted 1 or 0), second and third should consist 
#of the x and y coordinates respectively.  

#Argument contEV and catEV should both lead to a target folder. The contEV folder should contain the 
#numerical variables; while the catEV folder should contain the categorical variables. All variables should have 
#the asci file type.  

#The maxbkg arguments specifies the maximum number of grid cells randomly selected as unknown 
#background points for the response variable. Irrelevant for PA data. 

#PA argument affects how the occurrence data is interpreted. For this case (PA=TRUE), the 0 in the first row of 
#the occurrence data are treated as absence points, 1 are treated as presence while NAs are excluded. 

 

#The FOP-plots were obtained with the plotFOP-function: 

FOP_variable <- plotFOP(readData_table, “variable_name”, span=0.4, interval=20) 

#readData_table (data frame that usually are obtained from the readData()function, but not necessarily) must 
#contain the variable one wish to plot.   

#”variable_name” must correspond to the name or column index of the variable in the “readData_table”. 

#The span-argument specifies the the neighborhood of the smoother.  

#The interval-argument specifies the number of intervals one uses to calculate the FOP-plot. 

#Note that the FOP-plot for categorical variables are a bit different. Neither span nor interval are relevant for 
#categorical variables.  

#Frequency of observed presence are in the case for presence/absence-data called frequency of empirical 
#presence. 
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#The transformation were obtained with the deriveVars()-function: 

transformed_data <- deriveVars(readData_table, algorithm = “LR”) 

#See part 2.4.4 MIAmaxent.  

#The algorithm specifies how the variables are transformed (the transformations  

#are data-dependant). The algorithm = “LR” for PA-data (default is “maxent”).  

# transformed_data consists of two parts: data frames of the DVs for each EV (named “dvdata”), the 
#transformation functions used to produce each DV (named “transformations”)  

 

#The selection of the most explanatory derived variables (DVs) were achieved with the selectDVforEV-function. 

selectedDVs <- selectDVforEV (transformed_data$dvdata, alpha = 0.05,  

algorithm = «LR», quiet = TRUE) 

#The alpha argument sets the threshold for how much variation a DV must explain to be retained. The algorithm 

#argument must equal “LR” when using PA-data.  The quiet argument, if true, suppresses the progress bar 

#(henivse til hjelpesiden for selectDVforEV). The selectedDVs object consist of two part: The dvs that were 

#selected for each EV (named “dvdata”), and the trails of nested models that were build and compared for each 

#EV during the selection process (named “selection”).  

 

#The selection of the most explanatory environmental variables (EVs) were obtained with the selectEV-function: 

selectedEVs <- selectEV(selectedDVs$dvdata, alpha = 0.05, interaction = TRUE, algorithm = “LR”) 

#This function uses the selected DVs from the selectDVforEV-object. Alpha argument specifies the threshold for 

#how much the EVs (now consisting of DVs) need to explain for it to be retained. Interaction, if true, performs 

#testing of interaction terms between selected EVs. Only first –order interaction are tested. Algorithm specifies 

#the fitting algorithm. Algorithm = “LR” for the case where one uses PA-data. The selectedEVs object consist of 

#three parts: the EVs that were selected (“dvdata”), the trail of nested models that were build and compared 

#during the selection process (“selection”) and the selected full model under the specified alpha value 

#(“selectedmodel”). 

#The response plots of the selected EV from each model were obtained with the plotResp()-function: 
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plotResp (selectedEVs$selectedmodel, transformed_data$transformations, “variable_name”)                          

#The selectedEVs$selectedmodel represents the final model. The transformed_data$transformations gives 

#access to the relevant transformed EV values. The “variable_name” specifies which selected variable one wish 

#to plot.  

 

#The prediction distribution maps were obtained with the projectModel()-function: 

projectModel(model = selectedEV$selectedmodel, transformations = transformed_data$transformations,        

data = predictors)                                                                                                                                                     

#The model argument specifies which model one wish to predict the distribution. For this case, only selected 

#models form the selectEV object were explored. The transformations argument specifies the transformation 

#functions. For the models shown here, I used only the transformations from the deriveVars object. The data 

#argument specifies the variable information needed to make the prediction. If the provided data is in the form of 

#a RasterStack or RasterBrick (for this study, the provided data were in the form of a raster stack), the 

#projectModel function automatically plots a predicted distribution map.  

 

#To obtain the ROC curves and the AUC values for each model, I used the testAUC()-function: 

testAUC(model = selectedEV$selectedmodel, transformations = transformed_data$transformations, 

data=test_data, plot=TRUE) 

#The model argument specifies the model one wish to plot the ROC-curve for. In this case, I used the final 
#selected model from the selectedEV object. The transformation argument provides the relevant transformation 
#functions to create the derived variables. In this case, I used the transformations obtained with the deriveVars()-
#function. The data argument specifies the test data, which should consist of PA in the first column and 
#corresponding EV values in the following columns (in the same form as a readData table in other words). 
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