Impact of hyperinsulinemia and hyperglycemia on valvular interstitial cells – A link between aortic heart valve degeneration and type 2 diabetes

Jessica I. Seliga, D. Margriet Ouwens, Silja Raschke, G. Hege Thoresen, Jens W. Fischer, Artur Lichtenberg, Payam Akhyari, Mareike Barth

ARTICLE INFO

Keywords:
Valvular interstitial cells
Insulin sensitivity
Hyperglycemia
Diabetes

ABSTRACT

Type 2 diabetes is a known risk factor for cardiovascular diseases and is associated with an increased risk to develop aortic heart valve degeneration. Nevertheless, molecular mechanisms leading to the pathogenesis of valve degeneration in the context of diabetes are still not clear. Hence, we hypothesized that classical key factors of type 2 diabetes, hyperinsulinemia and hyperglycemia, may affect signaling, metabolism and degenerative processes of valvular interstitial cells (VIC), the main cell type of heart valves. Therefore, VIC were derived from sheep and were treated with hyperinsulinemia, hyperglycemia and the combination of both. The presence of insulin receptors was shown and insulin led to increased proliferation of the cells, whereas hyperglycemia alone showed no effect. Disturbed insulin response was shown by impaired insulin signaling, i.e. by decreased phosphorylation of Akt/GSK-3α/β pathway. Analysis of glucose transporter expression revealed absence of glucose transporter 4 with glucose transporter 1 being the predominantly expressed transporter. Glucose uptake was not impaired by disturbed insulin response, but was increased by hyperinsulinemia and was decreased by hyperglycemia. Analyses of glycolysis and mitochondrial respiration revealed that VIC react with increased activity to hyperinsulinemia or hyperglycemia, but not to the combination of both. VIC do not show morphological changes and do not acquire an osteogenic phenotype by hyperinsulinemia or hyperglycemia. However, the treatment leads to increased collagen type 1 and decreased α-smooth muscle actin expression. This work implicates a possible role of diabetes in early phases of the degeneration of aortic heart valves.

1. Introduction

Type 2 diabetes is a growing epidemic with an estimated doubling of its prevalence until 2030 [1]. Cardiovascular complications represent a major cause for morbidity and mortality in patients with type 2 diabetes [2,3]. Impaired insulin sensitivity in combination with hyperglycemia represents an important trigger that underlies degenerative processes in the cardiovascular system of patients with type 2 diabetes [4–6]. For example, diabetic cardiomyopathy is a well-known complication of type 2 diabetes, and is characterized by functional and structural alterations in the myocardium often accompanied by metabolic dysfunction [7–13]. Besides myocardial injury, animal models also suggest a link between diabetes and degeneration of the aortic valve [14]. Retrospective and prospective clinical studies provide some evidence for an association of diabetes with an increased risk of developing severe aortic valve stenosis [15,16] and indicate that diabetes may represent a predicting factor for the development of aortic valve stenosis [17]. Here, diabetes has been shown to be significantly and independently associated with the risk of developing severe aortic valve stenosis. This clinical association is alarming on the socioeconomic
level considering the increasing prevalence of diabetes. Moreover, published meta-analyses have shown that ‘pre-diabetes’, a status associated with disturbances in insulin action before clinically relevant diabetes becomes evident, is associated with an increased risk for cardiovascular diseases [18]. Despite the close associations between diabetes and cardiovascular damage, little is known concerning the molecular impact of diabetes on hemostasis and remodeling of the aortic valve. Thus, insulin action and the impact of hyperglycemia on the aortic valve are of vital interest for a better understanding of the underlying mechanisms and the pathology in the onset of degeneration of the aortic valve.

The aortic heart valve is composed of extracellular matrix components and is covered with endothelial cells [19,20]. Valvar interstitial cells (VIC) are loosely interspersed in the valve interior and represent the main cell type of the aortic valve. VIC display phenotypic changes under the pathologic conditions of aortic valve stenosis and calcification. Accordingly, VIC are considered as a representative model for the study of the pathophysiological mechanisms contributing to aortic valve disorders [21]. The aim of this study was to detail the impact of diabetes on these cells with emphasis on the question whether and how VIC react to hyperglycemia and hyperinsulinemia. Therefore, we exposed primary ovine VIC to chronic hyperglycemia with or without hyperinsulinemia and examined the impact of these pathophysiological stimuli on determinants of metabolic (dys)function, such as insulin sensitivity, cell proliferation, glucose metabolism, mitochondrial function and degenerative processes.

2. Materials and methods

2.1. Isolation and culture of primary ovine VIC

Hearts of 6–8 months old male sheep (n = 6) were obtained from a local abattoir and the individual leaflets of the aortic valve were freshly excised. After rinsing in PBS, the leaflets were minced in small pieces and incubated in Dulbecco’s modified Eagle’s medium with GlutaMAX supplement (DMEM; Invitrogen, Carlsbad, CA, USA) including 10% fetal calf serum (FCS; Sigma-Aldrich, St. Louis, MO, USA), 1% penicillin/streptomycin (Invitrogen) and 1% non-essential amino acids (FCS; Sigma-Aldrich) and stored at −20°C until staining.

2.2. Acute insulin stimulus

Supernatant was aspirated and cells were washed twice with PBS. Then, cells were starved for 4 h in DMEM w/o FCS. After starvation, cells were treated with 100 nM insulin for 1 h. Afterwards, the supernatant was discarded and the cells were incubated with 500 μM 2-deoxyglucose for 12 min. Reaction was stopped and the cells were washed twice with PBS followed by an acute insulin stimulus with 100 nM insulin for 1 h. After washings steps with ice-cold PBS, Cells were lysed in 50 mM HEPES (pH 7.4) containing 1% TX100 and PhosSTOP/cOmplete Protease Inhibitor Cocktail (Roche, Basel, Switzerland).

2.3. SDS-PAGE and Western blot analysis

All experiments were conducted after five days of treatment. Lysates were mixed with Roti-Load (Roth, Karlsruhe, Germany). Proteins were separated on a 10% reducing SDS-polyacrylamide gel and blotted on nitrocellulose. Detection of protein signals was performed with primary antibodies against Akt (cat. no.: C67E7/4691; Cell Signaling, Danvers, MA, USA), phospho-Akt(Ser273) (cat. no.: 4060; Cell Signaling), GSK-3α/β (cat. no.: 5676; Cell Signaling) and phospho-GSK-3α/β (Ser21/ Ser27) (cat. no.: C7154; LifeSpanBiosciences, Seattle, WA, USA), GLUT1 (cat. no.: ab14683; Abcam, Cambridge, UK) and GLUT4 (cat. no.: ab6654; Abcam). For normalization, detection of housekeeper protein GAPDH was performed on the according nitrocellulose membranes with primary antibodies against β-tubulin (cat. no.: T7816; Sigma-Aldrich) or β-actin (cat. no.: A5316; Sigma-Aldrich). For detection of primary antibody signals the following secondary antibodies were used: IRDye 800 CW goat anti rabbit (cat. no.: 926-32211), IRDye 680 LT goat anti mouse (cat. no.: 926-68020, LI-COR biosciences, Lincoln, NE, USA), PageRuler Prestained Protein ladder (cat. no.: 26616; Thermo Fisher Scientific, Waltham, MA, USA) was used for determination of molecular weight. Analysis was performed by using an Odyssey scanner (LI-COR biosciences) and intensity of protein bands was expressed as arbitrary units (AU). Depicted representative Western blots were cropped for clarity reasons since there have been other treatments tested, which showed no regulation and which are shown in total in the supplemental materials part.

2.4. Glucose measurements

Measurements of glucose concentrations in the cell culture supernatants were performed in duplicates every day using a GLUCO Smart Swing blood glucose meter and test strips (MSP Bodmann, Bobingen, Germany).

2.5. Glucose uptake assay

Glucose uptake measurements were performed using the Glucose Uptake-Glo Assay (cat. no.: J1341, Promega, Madison, WI, USA) according to the manufacturer’s instructions. Therefore, VIC were cultured until day 5 under normo- or hyperglycemic conditions with or w/o chronic insulin stimulus as described above. After starvation for 18 h in DMEM w/o FCS, VIC were washed twice with PBS followed by an acute insulin stimulus with 100 nM insulin for 1 h. Afterwards, the supernatant was discarded and the cells were incubated with 500 μM 2-deoxyglucose for 12 min. Reaction was stopped and the cells were lysed. Detection Reagent was added and incubated for 30 min. Then, bioluminescence was measured for 750 ms after 4 h at a microplate reader (Infinite M1000 Pro, Tecan, Männedorf, Switzerland). Obtained values were corrected for background signal (PBS w/o 2-deoxyglucose) and normalized to the appropriate condition.

2.6. mRNA isolation and semi-quantitative real-time PCR analysis

Myocardium, liver and aortic valve leaflets were obtained from a local abattoir. The tissues were freshly cryo-preserved by snap-freezing in 2-methylbutan (Sigma-Aldrich) cooled to the temperature of liquid nitrogen and stored at −80 °C upon usage. Total RNA of tissues was isolated by TRIzol reagent according to the manufacturer’s instructions and subsequent RNA purification using the QIAGEN RNeasy mini kit (QIAGEN, Venlo, Netherlands). Total RNA of VIC was isolated by using directly the QIAGEN RNeasy mini kit. cDNA synthesis was performed with QIAGEN Reverse transcription kit. Semi-quantitative real-time PCR was performed with a StepOnePlus Real-Time PCR System (Applied Biosystems, Waltham, MA, USA) by using the Platinum SYBR Green qPCR SuperMix-UDG/ROX kit (Invitrogen). PCR protocol was as follows: starting with an initial step for 2 min at 50 °C, followed by 25 cycles of 30 s at 95 °C, 30 s at 60 °C and 1 min at 72 °C.
by 2 min at 95 °C. 40 cycles were performed with 15 s at 95 °C and 30 s
at 60 °C followed by single steps for 15 s at 95 °C, 1 min at 60 °C and 15 s
by 2 min at 95°C. 40 cycles were performed with 15 s at 95°C and 30 s
of glycolysis and mitochondrial function in the various assays using the
reader (Infinite M1000 Pro, Tecan) at 612nm.

2.7. Glycolytic rate analysis and mitochondrial stress assay

Determinants of glycolysis and mitochondrial function were ex-
amined in living cells using a Seahorse XF96 extracellular flux ana-
lyzer (Agilent Technologies, Santa Clara, CA, USA), which measures
extracellular acidification rates (ECAR) and oxygen consumption rates
(OCR) during the oxidation of energy substrates. For each assay, cells
were plated at a density of 750 cells per well in XFe96-well microplates
(Agilent Technologies), and cultured for five days under normo-
or hyperglycemic conditions with or without hyperinsulinemia as de-
scribed above (see Section 2.1). Before each assay, the cultures were
washed twice with glycolytic rate assay medium consisting of Dulbec-
co’s modified eagle’s base medium (cat. no.: D5030, Sigma-Aldrich),
and supplemented with 5 mM glucose, 2 mM glutamine, 1 mM sodium
pyruvate, and 5 mM HEPES (pH7.4 at 37 °C). Then, 180 μL glycolytic
rate assay medium was added to each well, and cells were placed for 4 h
at 37 °C in a CO2-free incubator. Mitochondrial function was examined
from OCRs under basal conditions and in response to consecutive in-
jections with 1 μM oligomycin A, 0.7 μM carbonyl cyanide-4-(tri-
fluoromethoxy)phenylhydrazone (FCCP), and 0.5 μM rotenone/anti-
mycin A (Seahorse XF Cell Mito Stress Test Kit, Agilent Technologies).
The cell density as well as the optimal FCCP concentration was de-
termined in a pilot experiment and judged on the basis of the increase
in OCR after injection with FCCP. For the analysis of glycolysis, ECAR
and OCR were recorded under basal conditions and in response to consecutive injections with 100 nM insulin, 0.5 μM rotenone/antimycin
A and 50 mM 2-deoxyglucose (Seahorse XF Glycolytic Rate Assay Kit,
Agilent Technologies). All data were analyzed with WAVE software
(version 2.6.0.31, Agilent Technologies) to calculate the determinants
of glycolysis and mitochondrial function in the various assays using the
following formulas:

2.7.1. Glycolysis

Prior to analysis, the ECAR recordings were converted in proton
exchange rates (PER), a metric for extracellular acidification that ac-
counts for buffer capacity of the medium and plate geometry [22]. The
obtained PER values were used to calculate determinants of glycolysis
as follows:

Mitochondrial PER = CO2 conversion factor * (OCR − minimum
OCR after rotenone/antimycin A injection), in which the CO2 conver-
version factor for XFe96 well plates is defined as 0.61 [22].

Glycolytic PER = total PER − mitochondrial PER

Basal glycolysis = last glycoPER before injection with insulin
Basal PER = last PER before injection with insulin

% PER from glycolysis = (basal glycolysis/basal PER) + 100%

Compensatory glycolysis = maximum glycoPER after rotenone/

antimycin A injection

MitoOCR/glycoPER = (last OCR before the first injec-
tion − minimum OCR after rotenone/antimycin A injection)/basal
glycolysis

Post 2-deoxyglucose acidification = minimum glycoPER after
injection with 2-deoxyglucose

Insulin-stimulated glycolysis = average glycoPER after insulin
injection and before rotenone/antimycin A injection

Insulin-stimulated PER = after insulin injection and
before rotenone/antimycin A injection

2.7.2. Mitochondrial function

Non-mitochondrial respiration = minimum OCR after rotenone/
antimycin A injection

Basal respiration = last OCR before injection of oligomycin −
non-mitochondrial respiration

Maximal respiration = maximum OCR after FCCP injec-
tion − non-mitochondrial respiration

Spare respiratory capacity = maximal respiration − basal re-
spiration

Proton leak = minimum OCR after oligomycin injection − non-
mitochondrial respiration

ATP production = last OCR before injection of oligo-
mycin − minimum OCR after injection of oligomycin

Coupling efficiency = (ATP production × 100)/basal respiration

2.8. Calcium assay

Calcium content of VIC was measured using a colorimetric calcium
assay kit (cat. no.: KA1644, Abnova, Taipei, Taiwan) based on the
complex formation of phenolsulphonephthalein with free calcium ions.
Therefore, cells were washed in PBS and lysed in 100 mM Tris-HCl
buffer (pH7.5) containing 0.1% Triton-X-100. Lysates were incubated
under rotation for 2 h at 4 °C and centrifuged at 13,000 rpm for 15 min
at 4 °C. Extinctions of supernatants were measured at a microplate
reader (Infinite M1000 Pro, Tecan) at 612 nm.

2.9. Immunohistochemistry

Fixed cells were incubated for 5 min in 0.1% Triton-X-100 in PBS,
followed by three washing steps in PBS. Primary antibodies against
vimentin (cat. no.: GP53, Progen, Heidelberg, Germany) and smooth
muscle alpha actin (α-SMA; cat. no.: ab5694, Abcam) were incubated
for 60 min, followed by three washing steps with PBS. Afterwards, cells
were incubated with secondary fluorescent antibodies (Alexa488 and
Alexa546; Dianova, Hamburg, Germany) for 30 min and 4′,6-diami-
no-2-phenylindole (DAPI; cat. no.: 6335, Carl Roth) for 5 min and
were incubated with secondary fluorescent antibodies (Alexa488 and
Alexa546; Dianova, Hamburg, Germany) for 60 min, followed by three washing steps with PBS. Afterwards, cells
were incubated with secondary fluorescent antibodies (Alexa488 and
Alexa546; Dianova, Hamburg, Germany) for 30 min and 4′,6-diami-
no-2-phenylindole (DAPI; cat. no.: 6335, Carl Roth) for 5 min and
were incubated with secondary fluorescent antibodies (Alexa488 and
Alexa546; Dianova, Hamburg, Germany) for 60 min, followed by three washing steps with PBS.
Hyperinsulinemia led to significantly increased cell numbers at day six compared to untreated VIC under normoglycemic conditions (A), whereas the combination of hyperglycemia and hyperinsulinemia had no impact on cell proliferation (B). Gene expression analysis revealed expression of INSR (C) and IGF1R (D) in VIC. Neither hyperglycemia nor hyperinsulinemia had an influence on gene expression of INSR or IGF1R. Experiments were performed with VIC derived from n = 6 individual sheep. **: p-values < 0.01; †: p-values < 0.0001 compared to day 0; ns: not significant; NG: normoglycemia; HG: hyperglycemia; HI: hyperinsulinemia.

(GraphPad Software, San Diego, CA, USA) was used. Reported data are represented as mean with 95% confidence interval, except for proliferation and mRNA expression data in Figs. 1 and 7, where data are represented as mean ± standard error of mean. Statistical analysis was performed using 2way ANOVA with Sidak’s multiple comparisons test.

3. Results

3.1. Impact of chronic insulin on proliferation of VIC

To investigate the proliferative influence of hyperinsulinemia, cell count was determined. Under normoglycemic conditions VIC were highly proliferative from day 2 to 6. On day 6 hyperinsulinemia led to a significantly higher cell count compared to untreated VIC (Fig. 1 A). Under hyperglycemic conditions VIC also show high proliferation rates, although there were no significant differences with addition of hyperinsulinemia (Fig. 1 B). Overall, the proliferative effect of insulin in the end-point was more pronounced under normoglycemic conditions (20% more cells) compared to hyperglycemia.

3.2. Expression of insulin receptors is not influenced by hyperinsulinemia or hyperglycemia

Gene expression analyses revealed the presence of insulin receptor and insulin-like growth factor 1 (IGF1) receptor. Treatment of cells with hyperinsulinemia and hyperglycemia showed no regulation of mRNA expression neither of the insulin receptor nor of the IGF1 receptor (Fig. 1C/D).

3.3. Effect of hyperinsulinemia and hyperglycemia on insulin action in VIC

Here we examined the effects of hyperinsulinemia and hyperglycemia on insulin sensitivity in VIC by examining the phosphorylation of Akt, a key component of signaling pathways controlling the metabolic actions of insulin [23]. In VIC cultured under normoglycemic conditions, acute insulin treatment (10 min, 100 nM) led to a 41-fold increase (p < 0.0001) in the phosphorylation of Akt(Ser473) (Fig. 2 A/B). Although chronic hyperinsulinemia did not affect basal phosphorylation of Akt(Ser473), upon acute insulin stimulation the levels of phosphorylated Akt(Ser473) were reduced by 52% (p < 0.001; Fig. 2 A/B). In VIC cultured under hyperglycemia, acute insulin treatment led to a 36-fold increase in the phosphorylation of Akt(Ser473) (p < 0.001; Fig. 2 C/D). Additional chronic hyperinsulinemia reduced Akt(Ser473) phosphorylation induced by acute insulin stimulation by 54% (p < 0.001; Fig. 2 C/D). Under normoglycemia, none of experimental conditions affected the protein abundance of total Akt (Fig. 2B right graph). Under hyperglycemic conditions, the addition of chronic hyperinsulinemia led to a minor decrease (6%) in total Akt abundance in the absence of acute insulin stimulation (p < 0.05; Fig. 2D right graph). Yet, the maximal levels achieved by chronic insulin treatment in cells cultured under hyperglycemia with acute insulin treatment were 27% lower as compared cells cultured under normoglycemic conditions (p < 0.01; Fig. 2 E). These data suggest a disturbed insulin response in VIC as indicated by lower levels of Akt phosphorylation.

To substantiate the data on insulin-mediated Akt(Ser473) phosphorylation, we examined the effects of hyperinsulinemia and hyperglycemia on GSK phosphorylation (GSK-3α(Ser21) and GSK-3β(Ser9)), a downstream target of Akt (Fig. 3). Under normoglycemic conditions, acute insulin stimulation promoted a 3.6- and 2.1-fold increase in the phosphorylation of GSK-3α(Ser21) and GSK-3β(Ser9), respectively (both p < 0.001). Chronic hyperinsulinemia had no effect on the basal phosphorylation state of GSK-3α/β (Ser21/9) (Fig. 3 A-C). Although hyperinsulinemia impaired the phosphorylation of GSK-3α(Ser21) induced by acute insulin stimulation by 20% (p < 0.001; Fig. 3 B), the insulin-mediated increase in phosphorylation of its isoform GSK-3β(Ser9) was not impaired by hyperinsulinemia (Fig. 3 C). In VIC cultured under hyperglycemia, acute insulin treatment induced a 4.2- and 1.8-fold increase in the phosphorylation of GSK-3α(Ser21) and GSK-3β(Ser9), respectively (both p < 0.001). Combining hyperglycemia with chronic hyperinsulinemia not only further impaired the insulin-induced phosphorylation of GSK-3α(Ser21) by 35% (p < 0.001; Fig. 3 E), but also impaired the insulin-induced phosphorylation of GSK-3β(Ser9) by 18% (p < 0.05; fig. 3 F). None of the experimental conditions affected the protein abundances of total GSK-3α and GSK-3β.

3.4. Effect of hyperinsulinemia and hyperglycemia on glucose transport in VIC

The Akt pathway is a key regulator of insulin-regulated glucose metabolism [23]. To assess glucose uptake in VIC, we first examined the expression of glucose transporters in ovine aortic valve tissue. Using real-time PCR and Western blot analysis, it was found that aortic valve tissue expressed GLUT1, whereas GLUT2 and GLUT4 were not detectable. It should be noted that GLUT2 and GLUT4 were detected in ovine liver and myocardial samples, respectively (Fig. 4 A). Yet, the protein abundance of GLUT1 was not affected upon culturing the cells under conditions of hyperinsulinemia, hyperglycemia, or both versus normoglycemia (Fig. 4 B/C).
3.5. Glucose uptake assay

Glucose uptake assay (Fig. 4 D) showed that hyperinsulinemia leads to a nearly significantly higher glucose uptake under normoglycemic conditions (22%; \(p = 0.053 \)), whereas the effect of hyperinsulinemia is abrogated under hyperglycemic conditions. Nevertheless, basal glucose uptake as well as glucose uptake under hyperinsulinemia was decreased under hyperglycemic conditions compared to normoglycemic treatment by 34% \((p < 0.05) \) and by 35% \((p < 0.01) \), respectively.

3.6. Effect of hyperinsulinemia and hyperglycemia on glycolysis and mitochondrial function

Using a Seahorse Analyzer, determinants of glycolysis and
mitochondrial function were examined in living cells. In VIC cultured under hyperinsulinemia with normoglycemic conditions, basal and glycolytic proton exchange rates increased by 57% (p < 0.001), and 50% (p < 0.001), respectively. Furthermore, hyperglycemia caused an increase in these parameters by 40% (p < 0.01), and 32% (p < 0.05), respectively. There was no additional effect of hyperinsulinemia in cells cultured under hyperglycemia (Fig. 5A/B). The injection of insulin during the glycolytic rate assay further enhanced the glycolytic proton exchange rates by 1.3-fold, both in cells cultured under normoglycemia (p < 0.05) and hyperglycemia (p < 0.01; Fig. 5 C). There was no effect of acute insulin treatment when hyperinsulinemia was present, indicating resistance to the effects of insulin on glucose oxidation. After
assessing basal glycolytic rates, the cells were injected with rotenone and antimycin A to inhibit the respiratory chain (Fig. 5 D). Consequently, the cultures become fully dependent on glycolysis for ATP production. As seen in Fig. 5 D, compensatory glycolysis in VIC cultured under hyperinsulinemia was increased by 65% (p < 0.001). Hyperglycemia led to an increase under normoinsulinemia by 36% (p < 0.01), respectively versus normoglycemia. Hyperinsulinemia in cells cultured under hyperglycemia decreased compensatory glycolysis by 20% (Fig. 5 D).

Mitochondrial function was measured using the Seahorse XF Cell Mito Stress Test Kit. When VIC were cultured under hyperinsulinemia with normoglycemic conditions, basal mitochondrial respiration was increased by 2.0-fold (p < 0.001). A comparable 2.1-fold increase in basal mitochondrial respiration was observed under hyperglycemic conditions (p < 0.001) versus cells kept under normoglycemia. Culture conditions combining hyperglycemia with chronic hyperinsulinemia led to a decrease in basal respiration by 21% (p < 0.05; Fig. 5 D). Subsequently, ATP production was calculated from the change in oxygen consumption rates after the injection of the ATP synthase/complex V inhibitor oligomycin. In line with the data obtained for basal mitochondrial respiration, ATP production was increased by 2.0- and 2.2-fold in cells cultured under hyperinsulinemia or hyperglycemia, respectively versus cells kept under normoglycemia. Culture conditions combining hyperglycemia with chronic hyperinsulinemia led to a decrease in basal respiration by 21% (p < 0.05; Fig. 5 D). There was no additional effect on ATP production when hyperinsulinemia was combined with hyperglycemia (Fig. 5 B).

Maximal respiration was determined from the changes in oxygen consumption rates after injection of the uncoupling agent carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP). VIC cultured under hyperinsulinemia or hyperglycemia displayed a 3.1- and 2.2-fold higher maximal respiration, respectively versus cells kept under normoglycemia (both p < 0.001). The combination of hyperinsulinemia and hyperglycemia had no additional effect as compared to hyperinsulinemia or hyperglycemia alone (Fig. 5 C). The spare respiratory capacity compares maximal respiration with basal mitochondrial respiration. As shown in Fig. 5 D, both hyperinsulinemia and hyperglycemia promote a 25-fold (p < 0.001) and an 18-fold (p < 0.05) increase in spare respiratory capacity versus VIC cultured under normoglycemia. The combination of hyperglycemia and hyperinsulinemia did not elicit a statistically significant change in spare respiratory capacity.

3.7. Impact of hyperinsulinemia and hyperglycemia on key biological features of VIC in vitro

Finally we analyzed the impact of hyperinsulinemia and hyperglycemia on differentiation of VIC, extracellular matrix remodeling and osteogenic transformation of the cells. Upon phase contrast imaging an analysis of cultured VIC showed no obvious morphological difference by the applied treatments (Fig. 7 A). VIC grown on glass cover slips in lower cell count were stained with antibodies against vimentin and α-smooth muscle actin to visualize the activation state of cells due to the treatments (Fig. 7 B). Here, VIC expressed variable amounts of α-smooth muscle actin with no apparent difference in the amount of activated cells. However, on the level of gene expression hyperinsulinemia with or without additional hyperglycemia led to significant changes of α-smooth muscle actin (ACTA2) and collagen type 1 (COL1A1). ACTA2 expression was significantly downregulated by hyperinsulinemia (p < 0.01) as well as by the combination of hyperinsulinemia and hyperglycemia (p < 0.05; Fig. 7 C), whereas COL1A1 expression was significantly upregulated by the combination of both stimuli (p < 0.05; Fig. 7 C). Osteopontin (SPP1) gene expression, in contrast, was not influenced by the treatments (Fig. 7 C). Further detection of calcium content also showed no effect (Fig. 7 D).

4. Discussion

4.1. Insulin sensitivity in VIC

It is known that endothelial cells are able to transport insulin into subendothelial tissue [24] and that diabetes leads to endothelial dysfunction in cardiovascular diseases (reviewed in [25]). Valvular endothelial cells and VIC are known to communicate with each other in the context of aortic valve degeneration [26]. Nevertheless, knowledge about cell type specific impact of diabetes in valvular diseases is scarce.
In this work we focused on VIC as the quantitatively major cell type of the aortic valve. In detail, we concentrated on the impact of hyperinsulinemia and hyperglycemia on VIC. Our study shows that VIC are sensitive to insulin and hyperglycemia, respectively, indicating a direct impact of diabetes on the heart valve itself.

We analyzed the impact of insulin on VIC proliferation, since it has been shown that vascular smooth muscle cells and pericytes have increased proliferative properties when exposed to chronic insulin stimulation [27,28]. In the present study VIC showed an increase in proliferation under hyperinsulinemia in normoglycemic conditions. Increase of proliferation by hyperglycemia alone or in combination with chronic insulin was previously described for vascular smooth muscle cells [29,30] was not present in VIC. The opposite effect, i.e. decreased proliferation has been described for skin fibroblasts treated with high glucose or derived from diabetic patients [31,32]. However, our findings suggest that hyperinsulinemia and not hyperglycemia is the main trigger for proliferation of VIC. It has been shown that VIC in sclerotic valves demonstrate a greater proliferative activity than cells in already calcified, i.e. stenotic valves [33]. In front of this background, increased proliferation due to hyperinsulinemia might be an early step towards heart valve sclerosis in pre-diabetes.

4.2. Insulin receptors in VIC

Insulin receptors are known to be expressed in vascular tissues and in vascular smooth muscle cells [34,35]. Our data provide further evidence on the mRNA expression of both insulin receptor and IGF1-receptor in VIC. However, expression of these receptors in VIC was not influenced by hyperinsulinemia, by hyperglycemia or by the combination of both. Reports on insulin-induced changes in the amount of the insulin receptor are controversial and seem to be cell type dependent [36,37]. Nevertheless, expression of IGF1-receptor has been shown to be increased in aortas from obesity-induced diabetic db/db mice [38], indicating that not isolated hyperinsulinemia or hyperglycemia but rather the complex interplay of a metabolic phenotype might be the driving force.

4.3. Impaired Akt- and GSK-3α/β-phosphorylation in VIC under hyperinsulinemia and hyperglycemia

Increased Akt phosphorylation after acute insulin stimulation shows insulin sensitivity of VIC. A study on cardiac fibroblasts also reported...
Akt phosphorylation by acute insulin, but with remarkably lower phosphorylation levels as compared to those levels observed herein [39]. Impaired insulin signaling in cardiomyocytes has been previously shown [40–42]. However, the impact of diabetes on classical insulin signaling in cardiac valvular cells remains unknown to date. Our analyses of insulin receptor signaling show that even short time incubation of VIC for five days under hyperinsulinemia and hyperglycemia is sufficient to evoke a considerably impaired insulin response in these cells as indicated by decreased phosphorylation of Akt and GSK-3α/β. Interestingly, isolated hyperinsulinemia under normoglycemia already leads to an impaired insulin action. Phosphorylation of Akt induced by hyperglycemia alone as we have seen in VIC has also been reported for cardiomyocytes in a recent publication [43]. In contrast, cardiac fibroblasts from patients with type 2 diabetes showed no regulation in Akt phosphorylation at all when compared with cardiac fibroblasts from non-diabetics [44], which might be due to the cultivation of the isolated cells under non-diabetic conditions after isolation. This might be indicative for the reversible capacities of cardiovascular cells.

4.4. Glucose transporters

Our analyses show that VIC solely express GLUT1, whereas GLUT4, which has been described to be expressed in cardiomyocytes already in the 1990s [45,46], is not present in VIC. Besides numerous reports on GLUT4 expression in cardiac muscle (reviewed in [47]) or in fibroblasts differentiating into adipocytes (reviewed in [48]), reports on GLUT4 expression in undifferentiated fibroblasts or cardiac fibroblasts are rare [49,50]. Since we have shown that VIC are highly responsive to insulin but do not express GLUT4, we also analyzed whether the expression of GLUT1 is altered by hyperinsulinemia or hyperglycemia. Changes in GLUT1 expression due to hyperinsulinemia have been reported in vivo and in vitro before [45,51,52]. However, in VIC GLUT1 was not altered by hyperglycemia or hyperinsulinemia. This effect in the above mentioned reports might be attributed to a regulation of GLUT1 expression in dependence of the concurrent interference of GLUT4 which is non-existent in VIC. Alternatively, unchanged GLUT1 expression in VIC might be due to the lack of additional stimulators, e.g. such as changes in hormone balance [53] or disturbed fatty acid metabolism [54], which are present in other diabetic tissues or cells therefrom. Finally, it cannot be excluded that there are other GLUT forms present in VIC which are not yet characterized in detail and which might act in a compensatory way thus leading to an unchanged GLUT1 expression. Although GLUT have high sequence identity and are highly conserved amongst different species [55], e.g. GLUT11 has been shown to be absent in rats and mice [56].

4.5. Glucose uptake in VIC

In VIC, hyperglycemia alone led to a decreased glucose uptake, which has also been reported for smooth muscle cells and...
cardiomyocytes before [57,58]. The combination of hyperinsulinemia and hyperglycemia did not show a significant decrease in glucose uptake in VIC, which is contrary to previous findings in other tissues, i.e. in lymphatic muscle cells. Here, the combination of these both stimuli leads to a decreased glucose uptake of the cells [59]. Interestingly, cardiac fibroblasts also do not show an effect regarding glucose uptake under such a combined treatment or under hyperglycemia alone [39]. Analyses of kinetics show that GLUT1 has a high affinity to glucose and a low Km value in comparison to GLUT2 and 4 (reviewed by [60]). Moreover, glucose uptake by GLUT1 has been shown to reach a maximum, or a plateau phase, respectively [61]. Although such detailed analysis of glucose uptake for individual GLUT has not been reported for myocardial or valvular cells, the aforementioned observations might explain the unchanged glucose uptake even with higher concentrations of glucose. Surprisingly, hyperinsulinemia under normoglycemic conditions led to a nearly significant increase in glucose uptake in VIC. This cannot be explained by an increase of GLUT1 expression which remains unaltered in VIC under either treatment. Our data thus may provide the first evidence that VIC are susceptible to hyperinsulinemia alone in developing a disturbed insulin signaling. However, this stimulus appears to be not strong enough to disturb glucose uptake under additional hyperglycemic conditions.

4.6. Glycolysis and mitochondrial respiration in VIC

Hyperinsulinemia in front of a normoglycemic background or hyperglycemia alone led to increased basal proton exchange rates and therefore to enhanced basal glycolysis as well as to increased compensatory glycolysis. The combination of hyperglycemia and hyperinsulinemia abolished this effect. Induced glycolysis showed that only VIC without prior chronic exposure to insulin reacted with an increase to an acute insulin stimulus. Analysis of mitochondrial respiration showed that similarly to results of glycolytic function, VIC showed an increase in basal and maximal respiration under normoglycemic hyperinsulinemia and under hyperglycemia alone. Moreover, these conditions also led to an increased ATP production and to an increased spare respiratory capacity.

Our Seahorse data suggest that in contrast to energy-dependent or classical insulin-dependent tissue, VIC are not impaired in their glycolytic and thus mitochondrial function when the cells are exposed to diabetic conditions. Direct correlation between insulin-resistance and impaired metabolism in this context has been shown in several tissues and cells like lymphatic muscle cells [59], vascular cells [62] as well as in skeletal muscle [63] and adipose tissue [64].

VIC do not express GLUT4 and thus do not follow the classical insulin pathway beginning at impaired insulin sensitivity leading necessarily to impaired glucose uptake and finally resulting in disturbed bioenergetics. Enhanced metabolic activities by conditions which co-incidently lead to impaired insulin sensitivity are a mechanism by which VIC may be directed towards unregulated proliferation and differentiation. This in turn may then promote fibrotic changes and trigger early pathogenesis of heart valve degeneration.

4.7. Impact of hyperinsulinemia and hyperglycemia on degenerative processes in VIC

Degenerative processes in aortic heart valves are accompanied by disturbed extra cellular matrix assembly, inflammation, lipid accumulation and finally calcification [65,66]. Early phases of degenerative processes in aortic valves are characterized by thickening of the valve leaflet due to increased extracellular matrix synthesis [67], as we have recently shown for the proteoglycan biglycan [68]. Moreover, differentiation of quiescent VIC towards a myofibroblastoid phenotype in degenerative processes has been reported [69], whereas the appearance of α-smooth muscle actin-positive cells in early lesions of valves was rare [70]. Nevertheless, knowledge about the impact of diabetes on early phases of aortic valve degeneration is limited, whereas it is known that fibrosis and changes in extracellular matrix components like collagen is aggravated in cardiovascular tissues of diabetics [71–73].

Our studies demonstrate that hyperinsulinemia and hyperglycemia do not alter the macroscopic phenotype of VIC. Moreover, osteopontin expression and in vitro calcium deposition is not altered, indicating that our treatment was not yet sufficient to provoke hallmarks of late stage degeneration, i.e. calcification, whereas further observations may point to early stages of degenerative changes.

Hyperglycemia alone did not alter α-smooth muscle actin or collagen type 1 gene expression. This is somewhat surprising, since in other cell types (i.e. cardiac fibroblasts) several publications have reported an enhanced proliferation, together with increased α-smooth muscle actin and collagen expression [74–77]. However, a recent study of Gorski and colleagues [39] has shown no upregulation of collagen and α-smooth muscle actin in cardiac fibroblasts by hyperglycemia alone [39].

Nevertheless, our study shows that a combination of hyperinsulinemia and hyperglycemia leads to an upregulation of collagen type 1 gene expression, resembling the findings of Gorski et al. on cardiac fibroblasts derived from diabetic mice. This indicates that hyperinsulinemia rather than hyperglycemia may be the driving force for early fibrotic changes in VIC. Surprisingly, hyperinsulinemia generally led to a decrease in α-smooth muscle actin gene expression in VIC. Cardiac fibroblasts derived from diabetic mice treated with hyperglycemia subsequently, in contrast display an increase in α-smooth muscle actin gene expression [39]. We speculate that these differences between our observations and findings of the latter study may be related to the lack of further diabetic characteristics such as inflammation and the involvement of the immune system in our VIC in vitro system.

4.8. Conclusion

VIC are susceptible to insulin by expressing insulin receptors and increasing proliferation activity under hyperinsulinemia. Under the conditions of hyperinsulinemia or hyperglycemia VIC develop an impaired insulin response. Simultaneously, glucose uptake of VIC was increased under hyperinsulinemia, while it was impaired under hyperglycemia. Glycolytic capacity and mitochondrial function are not decreased but in contrast are activated by these stimuli, indicating that diabetic conditions lead to impaired insulin signaling in combination with exaggerated metabolic activity. Hyperinsulinemia in combination with hyperglycemia leads to pro-fibrotic changes in VIC, though yet without features of late stage disease, e.g. osteogenic differentiation or calcification. These findings suggest hyperinsulinemia and hyperglycemia as possible factors in early phases of the development of heart valve degeneration.

Funding

This work was supported by the German Heart Foundation/German Foundation of Heart Research to M.B. (Dr. Rusche Research Project 2016).

Data statement

Primary data and datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Transparency document

The Transparency document associated with this article can be found, in online version.
Declaration of Competing Interest

Parts of the herein presented data have been demonstrated on the occasion of the annual meeting of the German Society of Thoracic- and Cardiovascular Surgery (DGTHG) and European Association for the Study of Diabetes (EASD).

Acknowledgements

The authors thank Neslihan Odabasi for excellent technical assistance. The generous support of the S. Bunnenberg Foundation to the Study of Diabetes (EASD).

References

