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Sets of presence records used to model species’ distributions typically consist of 
observations collected opportunistically rather than systematically. As a result, 
sampling probability is geographically uneven, which may confound the model’s 
characterization of the species’ distribution. Modelers frequently address sampling 
bias by manipulating training data: either subsampling presence data or creating 
a similar spatial bias in non-presence background data. We tested a new method, 
which we call ‘background thickening’, in the latter category. Background thickening 
entails concentrating background locations around presence locations in proportion 
to presence location density. We compared background thickening to two established 
sampling bias correction methods – target group background selection and presence 
thinning – using simulated data and data from a case study. In the case study, background 
thickening and presence thinning performed similarly well, both producing better 
model discrimination than target group background selection, and better model 
calibration than models without correction. In the simulation, background thickening 
performed better than presence thinning when the number of simulated presence 
locations was low, and vice versa. We discuss drawbacks to target group background 
selection, why background thickening and presence thinning are conservative but 
robust sampling bias correction methods, and why background thickening is better 
than presence thinning for small sample sizes. Particularly, background thickening 
is advantageous for treating sampling bias when data are scarce because it avoids 
discarding presence records.

Keywords: bias correction, Maxent, presence-background modeling, presence 
thinning, sampling bias, species distribution model, target group background 
selection, virtual species

Introduction

Opportunistically collected presence data harbor vast information about species’ 
distributions, but distribution models based on these data risk mischaracterizing 
occurrence–environment relationships (Guisan and Zimmermann 2000, Ponder et al. 
2001). In particular, georeferenced presence records available from museum collections 
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and other compiled sources come with the important caveat 
that they are sampled nonrandomly – from well-known 
hotspots, protected areas, and easily accessible locations near 
cities and roads (Hijmans et al. 2008, Loiselle et al. 2008). 
Therefore, presence data typically used for distribution mod-
eling are the product of two probability distributions: the true 
presence probability of the species, and the conditional prob-
ability of the species having been sampled (surveyed, detected 
and recorded) given its presence (Merow et al. 2013). As a 
result, any covariation between sampling probability and 
explanatory variables used to model presence probability may 
give rise to effects of sampling bias in models (Yackulic et al. 
2013). At the same time, alternatives to using only biased 
presence data, such as collecting occurrence data under an 
appropriate sampling design (Guisan and Zimmermann 
2000) or incorporating expert-drawn range maps into the 
model (Merow et al. 2017), are often unfeasible.

Presence-background distribution models estimate 
relative presence probability by comparing presence loca-
tions (hereafter: ‘presences’) to a background that consists 
of all locations in the study area: locations where the spe-
cies is present as well as ‘uninformed background’ locations 
where its occurrence is unknown (Phillips and Elith 2013, 
Halvorsen et al. 2015). These models are especially vulner-
able to the effects of sampling bias, and usually require cor-
rection (Phillips  et  al. 2009). One correction strategy is to 
unconfound model predictions formally, by factoring out an 
approximation of the sampling probability distribution, esti-
mated either from presences of the species itself (Warton et al. 
2013), from presences of other species (Stolar and Nielsen 
2015, Merow  et  al. 2016), or from surveyed presence and 
absence of other species (Fithian et al. 2015). For example, 
estimated sampling probabilities supplied to the popular 
Maxent software as a ‘bias file’ are factored out of predictions 
formally (Phillips et al. 2006, Merow et al. 2013 Appendix 
5, Merow et al. 2016). Another frequently employed strategy 
is to reduce the effects of sampling bias informally, by adjust-
ing the training data (e.g. selecting presences or uninformed 
background locations under a specific scheme). Adjusting 
training data unconfounds model predictions indirectly, 
through changed parameter estimates and selected variables.

Two informal bias correction methods prevalent in pres-
ence-background models are target group background selec-
tion (Ponder et al. 2001) and presence thinning (Pearson et al. 
2007, Veloz 2009). Target group background selection 
restricts the background to locations with recorded pres-
ence of a particular group, usually a higher-rank taxon, that 
includes the modeled species. This method is motivated by 
the assumption that the presence records of the target group 
reflect the sampling probability distribution that led to the 
presence records of the modeled species. If this holds true, the 
comparison of presences against the target group background 
nullifies the effect of sampling bias, such that the resulting 
distribution model yields true relative presence probability 
(Phillips et al. 2009). Presence thinning (aka ‘filtering’) sub-
samples presences to obtain a reduced set more uniformly 

distributed in space. A more uniform distribution can be 
achieved by spatially stratified subsampling or by setting a 
minimum nearest-neighbor distance (Aiello-Lammens et al. 
2015). In effect, presence thinning reduces the amount of 
clustering in the presence data, under the assumption that 
the clustering is due more to uneven sampling probability 
than to uneven presence probability. It should be noted that 
thinning of presences in environmental space rather than 
geographic space has also been explored, but less commonly 
(Varela et al. 2014). We use the term ‘presence thinning’ for 
its geographic variant only.

Theoretically, another approach to informal bias cor-
rection – which, to our knowledge, has never been tried 
– is to increase the density of uninformed background loca-
tions around presences. We refer to this proposed method 
as ‘background thickening,’ since the operation can be 
thought of as inverse to presence thinning; instead of reduc-
ing the clustering of presences, the clustering of the unin-
formed background is increased. Background thickening is 
similar to target group background selection insomuch as 
it aims to nullify bias in the presences by creating a simi-
lar bias in the background (Phillips et al. 2009). The ratio-
nale is more similar to presence thinning though, since the 
training data are manipulated based only on spatial proxim-
ity. For models that capture ratios of explanatory variable 
probability density between presence and background loca-
tions (Aarts  et  al. 2012, Merow  et  al. 2013), the effect of 
background thickening is expected to be similar to that of 
presence thinning; presence thinning decreases the numera-
tor of the ratio, while background thickening increases the 
denominator. A key difference between these two approaches 
is that, by omitting a fraction of presences, presence thin-
ning discards potentially useful occurrence information. In 
principle, the information content of a larger sample should 
allow more accurate estimation of environment–occurrence 
relationships, given that the effects of sampling bias are 
accounted for (Fourcade et al. 2014).

Procedurally, background thickening could be imple-
mented by sampling an equal number of uninformed 
background locations from a discrete area around each pres-
ence, or by sampling all uninformed background locations 
in proportion to a continuous distribution of interpolated 
presence density. We note that previous studies have used 
presence density as an estimate of the sampling probabil-
ity distribution (Elith  et  al. 2010, Clements  et  al. 2012, 
Kramer-Schadt  et  al. 2013, Fourcade  et  al. 2014), but all 
of these studies factored this distribution out of predictions 
formally, using Maxent’s bias file, rather than using it to 
guide background selection. We return to this important 
distinction between formal bias correction and background 
thickening in our discussion.

The aim of this paper is to explore background thick-
ening as a new, informal sampling bias correction method 
for presence-background distribution models. We exam-
ine the effects of background thickening compared to no  
bias correction and two established bias correction  
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methods: target group background selection and presence 
thinning. We do not provide a comprehensive evaluation of 
the strictly predictive performance of these different meth-
ods, but rather utilize evidence from simulated and real 
data, together with a priori rationale, to make our assess-
ment. Simulation is an important and powerful strategy for 
evaluating distribution modeling methods because it allows 
rigorous assessment against a known truth (Zurell  et  al. 
2010, Guisan  et  al. 2017). On the other hand, simulated 
patterns and processes are by definition less realistic than 
real ones, so we complement our simulation with a case 
study of bias correction methods in distribution models of 
Sitka spruce Picea sitchensis. Sitka spruce occurs natively in 
a narrow coastal band along the northern Pacific coast of 
North America, with its broadest range and strongest devel-
opment in British Columbia and southeast Alaska (Fig. 1; 
Harris 1984, Peterson et al. 1997). Sitka spruce is a good 
test case for sampling bias correction for two reasons. First, 
because of its economic importance and high detectability, 
Sitka spruce’s native distribution is relatively well known 
(Peterson et al. 1997), and can serve as a point of reference 
for model predictions. Second, Sitka spruce’s strong gradi-
ent in occurrence probability from coast to inland (Harris 
1984, Peterson et al. 1997) runs perpendicular in space to 
what we expect is a strong gradient in collection intensity 
from California to Alaska. Therefore, we can ask how well 
correction methods reproduce the distribution along the 
north–south gradient of uneven sampling, without blotting 
out the coastal–inland gradient that represents true differ-
ences in presence probability.

Using scenarios that simulate modeling a species’ distri-
bution from a spatially biased sample, and a case study of 
distribution modeling with real occurrence data, we ask: 
1) whether background thickening is effective compared to 
other commonly employed sampling bias correction meth-
ods, and 2) which circumstances affect the applicability of 
these methods.

Methods

Virtual species simulation

Simulation inputs
We defined the true presence probability of a virtual species 
as a logistic function of four BIOCLIM variables, across an 
area spanning the northern Pacific coast of North America 
(Supplementary material Appendix A). By sampling the 
Bernoulli distribution, we transformed this probability dis-
tribution into a binary, realized occurrence distribution. We 
also defined a distribution of relative sampling probability 
across the same area, based on real human population den-
sity and proximity to major roads. Explanatory variables 
comprised 15 BIOCLIM variables not used to define true 
presence probability, because we consider it unlikely to have 
the exact drivers of a distribution available in real modeling 
applications.

Modeling scenarios
We modeled the relative presence probability of the virtual 
species under six modeling scenarios, crossing two sam-
ple sizes (250 or 25 presences) with three sampling bias 
approaches (no correction, presence thinning or background 
thickening). The fourth sampling bias approach in this study, 
target group background selection, was not included in the 
simulation because there exists no target group for a truly 
virtual species (but see Ranc et al. 2017). We varied sample 
size to test our hypothesis that presence thinning would be 
less effective with smaller sample sizes, since this method 
works by discarding records. Presence samples were drawn 

Figure 1. The 243 presences used for modeling the distribution of 
Sitka spruce (red dots), and an estimate of Sitka spruce’s true native 
distribution (black) adapted from Harris (1984). The study area 
used for modeling (grey) is plotted underneath the estimated 
distribution. Note that presences which are close together show as 
partially overlapping at this scale of representation.
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from the realized occurrence distribution with relative prob-
ability equal to their sampling probability. Both sample sizes 
were replicated 50 times to overcome idiosyncrasies of single 
samples, and all three sampling bias approaches were applied 
in parallel to each sample. Thus, a total of 300 (2 × 50 × 3) 
models were built for the virtual species.

In scenarios without bias correction, training data com-
prised unmodified presence locations and 10 000 uniformly 
sampled, uninformed background locations. In scenarios with 
presence thinning, we employed the ‘spThin’ R package (ver. 
0.1.0; Aiello-Lammens et al. 2015) to retain the maximum 
number of presences possible under a minimum separation 
distance of 50 km, and also used 10 000 uniformly sampled, 
uninformed background locations. Although subjective, we 
chose 50 km as the minimum separation distance to pro-
duce an appreciable thinning effect in the smaller samples, 
which had more scattered records. In scenarios with back-
ground thickening, we left presences unmodified, but con-
centrated 10 000 uninformed background locations within a 
discrete thickening radius around presences. Specifically, we 
sampled the study area with relative probability equal to the 
number of presences within a radius length of each location; 
for example, a location within a radius length of two pres-
ences was twice as likely to be included in the uninformed 
background as a location within a radius length of only one 
presence. For each sample, we set the length of the thicken-
ing radius equal to the mean spatial autocorrelation range of 
explanatory variables selected in the uncorrected model. The 
spatial autocorrelation ranges of individual explanatory vari-
ables were determined from variograms built using the ‘gstat’ 
R package (ver. 1.1-6; Pebesma 2004, Gräler  et  al. 2016), 
and set equal to the maximum distance in the variogram if 
the curve showed no sill. In other words, we concentrated 
uninformed background locations within an area expected 
to be environmentally similar to presences, among relevant 
explanatory variables. Different choices of minimum sepa-
ration distance and thickening radius might have improved 
the efficacy of respectively presence thinning and back-
ground thickening, but since we did not use additional data 
to optimize either choice, we believe our comparison is fair.

Model building
We built models identically from all 300 training data sets, 
using the default workflow and settings in the ‘MIAmaxent’ 
R package (ver. 1.0.0; Vollering et al. 2018). MIAmaxent cre-
ates models in much the same way as the popular Maxent 
software (Phillips  et  al. 2006), but replaces lasso regular-
ization with forward stepwise selection to produce simpler 
models (Halvorsen  et  al. 2016). Like Maxent, MIAmaxent 
transforms each explanatory variable into a number of 
‘derived variables’ (Halvorsen 2013, Halvorsen et  al. 2015) 
and parameterizes models following the principle of maxi-
mum entropy (Fithian and Hastie 2013). Forward stepwise 
selection in MIAmaxent proceeds in two hierarchical stages, 
following Halvorsen  et  al. (2015): first, a parsimonious set 
of derived variables is selected from those created for each 

explanatory variable; second, these sets of derived variables are 
treated as inseparable units and a second round of selection 
picks among them.

Model evaluation
We evaluated predictions from each model by two metrics. 
First, we quantified similarity to the true presence probabil-
ity distribution using Warren’s I, which measures similar-
ity between probability distributions (Warren  et  al. 2008, 
including erratum). Second, we quantified agreement with 
the realized occurrence distribution using the area under the 
curve (AUC) of the receiver operating characteristic (ROC) 
curve, which measures discrimination (Fielding and Bell 
1997). Both metrics were calculated using all locations in the 
simulation area, and with both we employed Student’s t-test 
for paired observations to infer differences between the three 
sampling bias approaches.

Sitka spruce case study

Presence records and explanatory variables
We obtained Sitka spruce presence records georeferenced 
to the United States or Canada from the global biodiver-
sity information facility (GBIF; < http://doi.org/10.15468/
dl.bsgw6c >) and reviewed the precision of their coordi-
nates manually (Supplementary material Appendix B). Our 
explanatory variables comprised the first 19 BIOCLIM vari-
ables (Nix 1986, Booth 2018). We accessed two different 
data products that supply these 19 variables – WorldClim 
(ver. 2.0; Fick and Hijmans 2017) and CHELSA (ver. 1.2; 
Karger et al. 2017) – and employed both in parallel, to assess 
the effect of climate data uncertainty in the models (Beale 
and Lennon 2012, Morales-Barbero and Vega-Álvarez 2018). 
Explanatory variables were reprojected to equal-area grid cells 
with 1 km2-resolution, and the study area was delineated with 
a 200-km buffer around presences.

Sampling bias correction methods
Models of Sitka spruce took one of four sampling bias 
approaches: 1) no correction, 2) target group background 
selection, 3) presence thinning or 4) background thickening. 
Models without bias correction were trained with presences 
and 10 000 uniformly sampled, uninformed background 
locations. The three remaining approaches operated with 
either alternative presences or alternative uninformed back-
ground locations. We implemented target group background 
selection using the pine family, Pinaceae, as the target group. 
Study area locations where GBIF recorded Pinaceae present 
(< https://doi.org/10.15468/dl.j6g0ip >) were used as unin-
formed background locations (unless they belonged to the 
background as Sitka spruce presences). We implemented 
presence thinning using the ‘spThin’ R package (ver. 0.1.0; 
Aiello-Lammens et al. 2015) with a minimum separation dis-
tance of 25 km. Without additional information, choosing a 
minimum separation distance is necessarily subjective, owing 
to the confounding nature of sampling probability (Aiello-
Lammens et al. 2015). We chose 25 km, which was the longest 
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distance that appeared to maintain coverage of the full extent 
of the species’ range. We implemented background thicken-
ing by the procedure used in the virtual species simulation. 
Specifically, uninformed background data were selected in 
proportion to the number of presences within a radius length 
of their location, with the radius defined as the mean spatial 
autocorrelation range of relevant explanatory variables.

Model building
We built eight distribution models of Sitka spruce, com-
bining two climate data products and four sampling bias 
approaches. The model building procedure was identical for 
all eight training data sets, so we can attribute differences 
between models using the same climate data product entirely 
to differences in sampling bias approach. We built models 
using the ‘MIAmaxent’ package, like in the simulation (ver. 
1.0.0; Vollering et al. 2018). However, in the case study, if a 
selected set of derived variables resulted in an unreasonable 
model response to a particular explanatory variable – defined 
as a response with one or more local minima – we repeated the 
first stage of derived variable selection under a stricter selec-
tion criterion (Supplementary material Appendix B). If the 
response remained unreasonable, we excluded the offending 
explanatory variable and repeated the full selection process. 
These adjustments were motivated by insights from gradient 
analysis of vegetation, which suggest that species responses 
to complex gradients are generally unimodal (Austin 2007, 
Halvorsen 2012).

Model evaluation
The presence-only data used to train the models are inap-
propriate for evaluating the results of bias correction, because 
they themselves are the source of bias (Veloz 2009, Halvorsen 
2012). Spatially stratified cross validation does not solve this 
problem, because it neutralizes the effect of biases that are 
specific to data partitions, but not the effect of biases that 
are uniformly distributed across all data (Radosavljevic and 
Anderson 2014). Lacking surveyed presence–absence data, 
we evaluated models first by comparing their mapped pre-
dictions to documented estimates of Sitka spruce’s distribu-
tion (Harris 1984, Peterson et al. 1997), assessing how well 
the models discriminated between estimated presence and 
absence. Second, we used systematically collected plot data 
from the United States’ Forest Inventory and Analysis (FIA) 
program to assess how well model predictions were calibrated. 
Specifically, we measured how closely model predictions cor-
responded to relative presence probability in the FIA survey. 
FIA survey plots are spaced on average 5 km apart, and pro-
vide reliable observations of Sitka spruce presence (Bechtold 
and Patterson 2005). However, in the publicly available 
data, plot georeferences are intentionally inaccurate by up 
to 1.6 km, and up to 20% of georeferences are also swapped 
between plots in the same county (Burill et al. 2018). To keep 
this spatial muddling from impairing our analysis, we quanti-
fied relative presence probability at the county level. We dis-
carded counties whose plot density in the database deviated 

from the norm, because estimating relative presence prob-
ability from presences alone requires that sampling intensity 
is uniform. Among the remaining counties in the study area, 
1831 plots recorded Sitka spruce presence. We used the rela-
tive sums of model predictions within each of these counties 
to calculate how many of the 1831 presences the model pre-
dicted to occur there, and compared these predicted frequen-
cies with the empirical frequencies to assess overprediction 
and underprediction in space.

Software and data deposition

Analyses were performed in R, ver. 3.5.1 (<www.r-project.
org>), unless stated otherwise. All data and code neces-
sary to reproduce results is deposited in the Dryad Digital 
Repository: <https://doi.org/10.5061/dryad.bb6f284> 
(Vollering et al. 2019).

Results

Virtual species simulation

The mean number of presences remaining after presence 
thinning was 76 for samples of 250, and 18 for samples of 25. 
The lengths of the background thickening radii ranged from 
600 to 1300 km, but the effect of background thickening 
did not covary strongly with radius length (Supplementary 
material Appendix C).

With samples comprising 250 presences, both metrics of 
performance were highest for models employing presence 
thinning, followed by models using background thicken-
ing, and then models without bias correction (Fig. 2). With 
samples comprising 25 presences, predictions from models 
using background thickening clearly outperformed the other 
two sampling bias approaches, whose results were similar.

Sitka spruce distribution models

Background thickening radii (800, 850 km) were longer than 
the buffer radius used to delineate the study area (200 km), 
so background thickening altered the density of uninformed 
background locations but did not restrict their spatial extent 
(Fig. 3, Supplementary material Appendix D). The four sam-
pling bias approaches resulted in conspicuously different 
variable selections; among directly comparable models (those 
using the same climate data), only one explanatory variable 
was selected in all four cases, and a number of explanatory 
variables were selected under a single sampling bias approach 
only (Table 1).

Models using target group background selection deviated 
strongly from the rest by predicting high relative presence 
probability for inland parts of the northern half of the study 
area (Fig. 4). Predictions from the other models were high 
predominantly in coastal regions. Models without bias cor-
rection differed from those applying presence thinning or 
background thickening by predicting much higher relative 
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presence probability in the southernmost part of the range 
than in any other part. Accordingly, models without bias 
correction showed stronger overprediction in the south and 
stronger underprediction in the north than those apply-
ing presence thinning or background thickening (Fig. 5). 
Whether the models used WorldClim or CHELSA data 
made no difference to these patterns (Supplementary material 
Appendix E).

Discussion

Does background thickening work?

Our results show that background thickening improves the 
predictive performance of distribution models trained on 
biased samples. Background thickening causes models to 
recover a simulated distribution with greater fidelity and 

reproduce occurrence patterns of Sitka spruce with greater 
realism, compared to models without correction. Particularly, 
Sitka spruce models were better calibrated across regions of 
varying collection intensity than models without correction. 
The fact that AUC calculated from the biased presence sample 
was higher for models without correction than models using 
background thickening (Table 1) reinforces the argument 
that without unbiased, independent data, AUC is a mislead-
ing metric of model quality (Veloz 2009, Jiménez-Valverde 
2012, Fourcade et al. 2018).

Background thickening is superior to target group back-
ground selection for models of Sitka spruce, because the lat-
ter results in predictions that accord very poorly with Sitka 
spruce’s known distribution. These correction methods both 
aim to neutralize bias in presences by reproducing the same 
bias in the background, but target group background selec-
tion will usually represent a much stronger departure from 
uniform background sampling than background thickening, 
because the environmental bias of target group presences can 
be arbitrarily strong (Støa  et  al. 2018), while the environ-
mental bias of a thickened background is constrained by the 
strength of spatial autocorrelation. Therefore, target group 

Figure  2. Similarity of model predictions to the true probability 
distribution (Warren’s I; top panel), and their ability to discriminate 
between realized presences and absences (AUC; bottom panel), 
under different combinations of sampling bias approach (no correc-
tion, presence thinning, background thickening) and sample size 
(250 presences, 25 presences). Each bar represents the mean of fifty 
samples and error bars show the standard error of the mean. Brackets 
show the p-value for the null hypothesis that two population means 
are equal, from Student’s t-test for paired samples.

Figure  3. The study area’s relative probability of inclusion in the 
thickened background, for the model of Sitka spruce using 
CHELSA climate data. The 850 km background thickening radius 
(grey ellipse) around each Sitka spruce presence (red dot) is shown.
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background selection may be a better counterweight to very 
strong environmental bias, but it is also more likely to over-
correct. Indeed, in our case study, target group background 
selection eliminated overprediction in the south compared to 
no correction, but simultaneously obliterated the pattern of 
coastal affinity in the northern part of the range.

Several authors have attributed the shortcomings of target 
group background selection to spatially uneven species rich-
ness in the target group – species-poor environmental condi-
tions are underrepresented in the background, so presence 
probability tends to be overestimated there, and vice versa 
(Warton et al. 2013, Ranc et al. 2017). But the confounding 

Table 1. Comparison of Sitka spruce distribution models, differing in sampling bias approach and climate data product. ‘Derived variable 
selection threshold’ refers to the p-value used as the threshold for selection during forward stepwise selection of derived variables. ‘Excluded 
explanatory variables’ refers to sets of derived variables that were eliminated during variable selection because they resulted in unreason-
able model responses. ‘No. derived variables’ shows the total number of derived variables in the model, while ‘Explanatory variables’ shows 
which explanatory variables these derived variables represent. ‘Training AUC’ measures threshold-independent discrimination, and was 
calculated using all 243 cleaned presences and all uninformed locations in the study area, to allow direct comparison between models 
(Lobo et al. 2008).

Sampling bias approach
Climate 

data product
No. 

presences
No. 

background

Derived variable 
selection 
threshold

Excluded 
explanatory 

variables
No. derived 

variables
Explanatory 

variables
Training 

AUC

No correction WorldClim 243 10 243 0.01 – 8 bio04 bio15 
bio08 bio10

0.918

No correction CHELSA 243 10 243 0.01 bio03 bio15 
bio08

12 bio06 bio02 
bio10 bio12 
bio05

0.931

Target group background 
selection

WorldClim 243 3983 0.001 bio03 6 bio07 bio15 
bio08 bio10

0.807

Target group background 
selection

CHELSA 243 4155 0.001 – 6 bio02 bio15 
bio06 bio13

0.794

Presence thinning WorldClim 97 10 097 0.01 – 5 bio07 bio10 
bio19

0.919

Presence thinning CHELSA 97 10 097 0.01 – 5 bio07 bio10 
bio02

0.925

Background thickening WorldClim 243 10 243 0.001 – 7 bio07 bio08 
bio15 bio10

0.904

Background thickening CHELSA 243 10 243 0.01 bio03 bio15 10 bio06 bio02 
bio04 bio08 
bio12

0.918

Figure 4. Relative presence probability of Sitka spruce, predicted by models using CHELSA climate data and four different sampling bias 
approaches. Predictions are given in probability ratio output (PRO) units, which means the value of one is the expected relative presence 
probability in a randomly drawn training data location – i.e. an ‘average’ training data location has PRO = 1 (Halvorsen 2013). To visualize 
differences between large or small values, the color scale represents log2(PRO + 1). The dark green lines show the 5% omission threshold in 
model predictions – i.e. the value above which 95% of presences occur.
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effect of species richness actually indicates a more general 
problem: that the target group as a whole has an environ-
mental tendency. Unless the combined presence probability 
of the target group is uniform across conditions, the target 
group’s presence records will reflect presence probability as 
well as sampling probability, rather than sampling probabil-
ity alone. Under these circumstances, the target group back-
ground introduces bias. For example, if the target group as a 
whole has an affiliation for continental climate, but the mod-
eled species is neutral with respect to continentality, the tar-
get group background will cause the modeled species to show 
an affiliation for oceanic climate (Støa et al. 2018). Moreover, 
even if target group occurrence is environmentally neutral, 
there is another potential drawback: the restricted number of 
background observations might result in too coarse charac-
terization of the background (Renner et al. 2015, Støa et al. 
2018) or unwanted extrapolation beyond training data 
(Elith et al. 2010; Supplementary material Appendix F).

The performance of background thickening compared to 
presence thinning varies importantly depending on the data 
at hand; background thickening is better for small samples of 
the virtual species while presence thinning is better for large 
samples of the virtual species. Both methods result in simi-
larly realistic predictions of Sitka spruce’s distribution. These 
results support our hypothesis that retaining all presences gives 
background thickening an advantage over presence thinning 
in certain modeling situations. Specifically, when the number 
of presences is sufficiently small, the bias correction benefit 
obtained by discarding presences is apparently outweighed by 
an accompanying decline in the accuracy of parameter esti-
mation. This tradeoff is implicit in all applications of presence 
thinning, regardless of the strength of the subsampling; that 
is, stronger thinning of presences may counteract bias more 

effectively, but it simultaneously increases model variance. 
At some point along the gradient towards fewer presences, 
the net effect becomes detrimental. Among studies that dem-
onstrate improvement to model accuracy by presence thin-
ning (Kramer-Schadt  et  al. 2013, Verbruggen  et  al. 2013, 
Beck  et  al. 2014, Boria  et  al. 2014), those with compara-
tively fewer available records show only small improvements 
(Verbruggen  et  al. 2013, Boria  et  al. 2014). Having tested 
only two sample sizes here, it might be tempting in future 
work to search for the tipping point in sample size below 
which background thickening surpasses presence thinning. 
However, other factors such as sample redundancy or niche 
breadth likely affect this balance, so aiming for a universal 
recommendation for choosing between these two methods 
based on sample size is probably misguided. Notably, in our 
case study, the choice between WorldClim and CHELSA cli-
mate data caused greater variation in model predictions than 
the choice between background thickening and presence 
thinning (Supplementary material Appendix G), which sug-
gests that these two correction methods sometimes have quite 
similar effects, compared to other sources of model variation.

To build on our proof of concept, further research should 
1) evaluate the performance of background thickening across 
a more comprehensive range of real and simulated modeling 
scenarios and 2) compare different implementations of back-
ground thickening.

How does background thickening work?

Ostensibly, background thickening resembles using presence 
density to correct bias formally – as others have done with 
Maxent’s bias file (Elith  et  al. 2010, Clements  et  al. 2012, 
Kramer-Schadt  et  al. 2013, Fourcade  et  al. 2014). Indeed, 

Figure 5. Overprediction and underprediction of relative presence probability of Sitka spruce, compared to surveyed presence in the forest 
inventory and analysis (FIA) program. Predictions are from models using CHELSA climate data and four different sampling bias approaches. 
Plotted values represent the difference between the actual number of surveyed Sitka spruce presences in each county (sum = 1831), and the 
fraction of 1831 presences expected to occur in each county based on model predictions (red shows overprediction while blue shows 
underprediction). The number of surveyed presences is considered only in U.S. counties with equal plot density in the FIA database.
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background thickening is like sampling background loca-
tions from an estimate of sampling probability based exclu-
sively on density of training presences. However, background 
thickening is actually fundamentally different from Maxent’s 
bias file method. Merow et al. (2013) clarify the distinction 
as ‘biased background’ versus ‘biased prior’ methods. The bias 
file prompts Maxent to find the distribution most similar to 
the sampling probability distribution (the prior), subject to 
constraints dictated by presences, and then to divide by the 
sampling probability distribution (Merow et al. 2016). Thus, 
model predictions indicate how much the presence pattern 
deviates from the estimated sampling probability distribu-
tion. Because sampling probability is factored out formally 
by division, model predictions are directly dependent on this 
estimate, and very high or low values can lead to illogical 
results. For example, if their estimated sampling probabil-
ity is sufficiently low, conditions entirely without presence 
may be assigned larger presence probability than conditions 
saturated with presence (Merow  et  al. 2013 Appendix 5). 
The same outcome is unlikely to occur with background 
thickening, because informal methods avoid dividing by an 
estimate of sampling probability. Under background thicken-
ing, conditions without presence could be assigned high pres-
ence probability only if the ratio of presences to uninformed 
background were high at similar conditions. Conversely, 
conditions saturated with presence could be assigned low 
presence probability only if similar conditions were overrep-
resented in the uninformed background. In either case, the 
modeled outcome is easily justified.

Essentially, background thickening emphasizes the com-
parison between a presence and its surroundings; a presence 
with conditions which are exceptional compared to its sur-
roundings will inform model predictions more than a pres-
ence with conditions which are commonplace compared to 
its surroundings. This emphasis matches our intuition: with-
out additional information, finding a species on the only 
mountain in a lowland area does more to convince us that 
its presence probability is high on mountains than finding 
it on a single peak surrounded by many other mountains. In 
the former case we know the empirical presence probability 
on mountains to be one, while in the latter it could easily be 
much lower than one. The stronger emphasis on proximal 
comparison under background thickening means that a dif-
ference in the number of presences between two geographi-
cally and environmentally distinct regions will have relatively 
little effect on a model, unless the characteristics that differen-
tiate the regions also differentiate presences from background 
within both regions. It is worth noting that such regional dif-
ferences may arise not only from sampling bias but also from 
disequilibrium in the species’ distribution (Elith et al. 2010).

When does background thickening work?

Correcting sampling bias in opportunistically collected pres-
ence data is inherently heuristic, because the true sampling 
probability distribution is unknown. Without added, reliable 
information about the true sampling or presence probability 

distributions, the extent to which a correction reduces exist-
ing bias or introduces new bias always remains ambiguous 
(Yackulic et al. 2013). Target group background selection and 
formal methods like Maxent’s bias file make strong assump-
tions about the true sampling probability distribution. If 
these assumptions are not underpinned by strong justifica-
tions – such as surveyed presence–absence data from similar 
species (Fithian et al. 2015), or a mechanistic understanding 
of the sampling process (Ponder et al. 2001) – we contend 
that background thickening and presence thinning are pref-
erable methods, since they treat the presences themselves as 
the only reliable information. Presence thinning and back-
ground thickening are blunt instruments, but they are less 
likely than target group background selection and formal cor-
rection methods to overcorrect. Applying these two methods 
in parallel, given the heuristic nature of bias correction, can 
improve confidence (Fourcade et al. 2014).

The limitations of presence thinning and background 
thickening may be understood by considering our working 
definition of sampling bias as covariation between sampling 
probability and explanatory variables (Yackulic et al. 2013). 
Covariation may stem from sampling probability being: 1) 
spatially clustered (i.e. positively spatially autocorrelated), 2) 
unclustered but correlated to explanatory variables or 3) a 
combination of the two. Background thickening and pres-
ence thinning are expected to counteract effects of bias aris-
ing by spatial clustering only, because they operate on spatial 
proximity, while bias of the second kind is inherently difficult 
to tease out without additional information (Fithian  et  al. 
2015). To illustrate: suppose presences are evenly spaced 
along a uniform road network, roads track low elevations, 
and true presence probability is independent of elevation. If 
elevation is used as an explanatory variable, the resultant low-
elevation bias is remedied neither by presence thinning nor 
by background thickening. In fact, any correction method 
not dependent on additional occurrence data will struggle to 
alleviate this type of bias. The difficulty is that as the strength 
of the bias increases with the strength of the road-elevation 
correlation, so too does the number of presences necessary 
to disentangle the effect of roads from the effect of elevation 
(Fithian and Hastie 2013, Fithian  et  al. 2015). Thus, only 
correction methods using additional occurrence data are able 
to address this kind of bias, to the extent that the additional 
data characterize sampling probability accurately.

Conclusions

We find that ‘background thickening’ – selecting background 
locations to mirror the density of presence locations – is a 
suitable and potentially valuable option for correcting sam-
pling bias in presence-background models. Furthermore, we 
find that background thickening may be preferable to other 
sampling bias correction methods in data-poor modeling cir-
cumstances, when the sampling probability distribution is 
hard to infer and the presence sample is small. Thus, back-
ground thickening helps extract knowledge about species’ 
distributions and occurrence–environment relationships 
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from confounded presence data, especially for species that 
we know little about. Since background thickening mitigates 
the negative effects of spatially autocorrelated sampling, we 
wonder whether it might also help presence-background 
models address challenges associated with endogenous 
spatial autocorrelation in presence records (Dormann 2007) 
– including spatial autocorrelation brought about by range 
shifts (Elith et al. 2010).

Acknowledgements – Thank you to members of the Geo-Ecology 
research group at the Natural History Museum, Univ. of Oslo, for 
comments on early results of this work.
Funding – This work was funded through a PhD grant to JV 
from Sogn og Fjordane University College (now Western Norway 
University of Applied Sciences).
Author contributions – All authors conceived and designed the study. 
JV carried out the analyses, JV and RH interpreted the results, JV 
drafted the manuscript and all authors revised the manuscript 
critically.

References

Aarts, G.  et  al. 2012. Comparative interpretation of count, 
presence-absence and point methods for species distribution 
models. – Methods Ecol. Evol. 3: 177–187.

Aiello-Lammens, M. E. et al. 2015. spThin: an R package for spatial 
thinning of species occurrence records for use in ecological 
niche models. – Ecography 38: 541–545.

Austin, M. 2007. Species distribution models and ecological theory: 
a critical assessment and some possible new approaches. – Ecol. 
Model. 200: 1–19.

Beale, C. M. and Lennon, J. J. 2012. Incorporating uncertainty in 
predictive species distribution modelling. – Phil. Trans. R. Soc. 
B 367: 247–258.

Bechtold, W. A. and Patterson, P. L. 2005. The enhanced forest 
inventory and analysis program – national sampling design and 
estimation procedures. – Gen. Tech. Rep. <www.fs.usda.gov/
treesearch/pubs/20371>.

Beck, J. et al. 2014. Spatial bias in the GBIF database and its effect 
on modeling species’ geographic distributions. – Ecol. Inform. 
19: 10–15.

Booth, T. H. 2018. Why understanding the pioneering and 
continuing contributions of BIOCLIM to species distribution 
modelling is important. – Austral Ecol. 43: 852–860.

Boria, R. A.  et  al. 2014. Spatial filtering to reduce sampling bias 
can improve the performance of ecological niche models.  
– Ecol. Model. 275: 73–77.

Burill, E. A. et al. 2018. The forest inventory and analysis database: 
database description and user guide ver. 8.0 for phase 2.  
– United States Forest Service.

Clements, G. R. et al. 2012. Predicting the distribution of the Asian 
tapir in Peninsular Malaysia using maximum entropy modeling. 
– Integr. Zool. 7: 400–406.

Dormann, C. F. 2007. Effects of incorporating spatial autocorrela-
tion into the analysis of species distribution data. – Global Ecol. 
Biogeogr. 16: 129–138.

Elith, J.  et  al. 2010. The art of modelling range-shifting species.  
– Methods Ecol. Evol. 1: 330–342.

Fick, S. E. and Hijmans, R. J. 2017. Worldclim 2: new 1-km spatial 
resolution climate surfaces for global land areas. – Int. J. 
Climatol. 37: 4302–4315.

Fielding, A. H. and Bell, J. F. 1997. A review of methods for the 
assessment of prediction errors in conservation presence/absence 
models. – Environ. Conserv. 24: 38–49.

Fithian, W. and Hastie, T. 2013. Finite-sample equivalence in 
statistical models for presence-only data. – Ann. Appl. Stat. 7: 
1917–1939.

Fithian, W.  et  al. 2015. Bias correction in species distribution 
models: pooling survey and collection data for multiple species. 
– Methods Ecol. Evol. 6: 424–438.

Fourcade, Y.  et  al. 2014. Mapping species distributions with 
MAXENT using a geographically biased sample of presence 
data: a performance assessment of methods for correcting 
sampling bias. – PLoS One 9: e97122.

Fourcade, Y.  et  al. 2018. Paintings predict the distribution of 
species, or the challenge of selecting environmental predictors 
and evaluation statistics. – Global Ecol. Biogeogr. 27: 245–256.

Gräler, B.  et  al. 2016. Spatio-temporal interpolation using gstat. 
– R J. 8: 204–218.

Guisan, A. and Zimmermann, N. E. 2000. Predictive  
habitat distribution models in ecology. – Ecol. Model. 135: 
147–186.

Guisan, A. et al. 2017. Habitat suitability and distribution models: 
with applications in R. – Cambridge Univ. Press.

Halvorsen, R. 2012. A gradient analytic perspective on distribution 
modelling. – Sommerfeltia 35: 1–165.

Halvorsen, R. 2013. A strict maximum likelihood explanation of 
MaxEnt, and some implications for distribution modelling.  
– Sommerfeltia 36: 1–132.

Halvorsen, R. et al. 2015. Opportunities for improved distribution 
modelling practice via a strict maximum likelihood interpretation 
of MaxEnt. – Ecography 38: 172–183.

Halvorsen, R.  et  al. 2016. How important are choice of model 
selection method and spatial autocorrelation of presence data 
for distribution modelling by MaxEnt? – Ecol. Model. 328: 
108–118.

Harris, A. S. 1984. Sitka spruce: an American wood. – United 
States Dept of Agriculture.

Hijmans, R. J. et al. 2008. Assessing the geographic representative-
ness of genebank collections: the case of Bolivian wild potatoes. 
– Conserv. Biol. 14: 1755–1765.

Jiménez-Valverde, A. 2012. Insights into the area under the receiver 
operating characteristic curve (AUC) as a discrimination 
measure in species distribution modelling. – Global Ecol. 
Biogeogr. 21: 498–507.

Karger, D. N. et al. 2017. Climatologies at high resolution for the 
earth’s land surface areas. – Sci. Data 4: 170122.

Kramer-Schadt, S.  et  al. 2013. The importance of correcting for 
sampling bias in MaxEnt species distribution models. – Divers. 
Distrib. 19: 1366–1379.

Lobo, J. M.  et  al. 2008. AUC: a misleading measure of the 
performance of predictive distribution models. – Global Ecol. 
Biogeogr. 17: 145–151.

Loiselle, B. A.  et  al. 2008. Predicting species distributions from 
herbarium collections: does climate bias in collection sampling 
influence model outcomes? – J. Biogeogr. 35: 105–116.

Merow, C. et al. 2013. A practical guide to MaxEnt for modeling 
species’ distributions: what it does, and why inputs and settings 
matter. – Ecography 36: 1058–1069.



11

Merow, C. et al. 2016. Improving niche and range estimates with 
Maxent and point process models by integrating spatially 
explicit information. – Global Ecol. Biogeogr. 25: 1022–1036.

Merow, C. et al. 2017. Integrating occurrence data and expert maps 
for improved species range predictions. – Global Ecol. Biogeogr. 
26: 243–258.

Morales-Barbero, J. and Vega-Álvarez, J. 2018. Input matters 
matter: bioclimatic consistency to map more reliable species 
distribution models. – Methods Ecol. Evol. 10: 212–224.

Nix, H. A. 1986. A biogeographic analysis of Australian elapid 
snakes. – In: Longmore, R. (ed.), Atlas of elapid snakes of 
Australia: Australian flora and fauna series 7. Bureau of Flora 
and Fauna, pp. 4–15.

Pearson, R. G.  et  al. 2007. Predicting species distributions from 
small numbers of occurrence records: a test case using cryptic 
geckos in Madagascar. – J. Biogeogr. 34: 102–117.

Pebesma, E. J. 2004. Multivariable geostatistics in S: the gstat 
package. – Comput. Geosci. 30: 683–691.

Peterson, E. B. et al. 1997. Ecology and management of Sitka spruce, 
emphasizing its natural range in British Colombia. – UBC Press.

Phillips, S. J. and Elith, J. 2013. On estimating presence probability 
from use-availability or presence-background data. – Ecology 
94: 1409–1419.

Phillips, S. J. et al. 2006. Maximum entropy modeling of species 
geographic distributions. – Ecol. Model. 190: 231–259.

Phillips, S. J. et al. 2009. Sample selection bias and presence-only 
distribution models: implications for background and pseudo-
absence data. – Ecol. Appl. 19: 181–197.

Ponder, W. F. et al. 2001. Evaluation of museum collection data for 
use in biodiversity assessment. – Conserv. Biol. 15: 648–657.

Radosavljevic, A. and Anderson, R. P. 2014. Making better Maxent 
models of species distributions: complexity, overfitting and 
evaluation. – J. Biogeogr. 41: 629–643.

Ranc, N.  et  al. 2017. Performance tradeoffs in target-group bias 
correction for species distribution models. – Ecography 40: 
1076–1087.

Renner, I. W. et al. 2015. Point process models for presence-only 
analysis. – Methods Ecol. Evol. 6: 366–379.

Støa, B.  et  al. 2018. Sampling bias in presence-only data used  
for species distribution modelling: theory and methods for 
detecting sample bias and its effects on models. – Sommerfeltia 
38: 1–53.

Stolar, J. and Nielsen, S. E. 2015. Accounting for spatially biased 
sampling effort in presence-only species distribution modelling. 
– Divers. Distrib. 21: 595–608.

Varela, S.  et  al. 2014. Environmental filters reduce the effects of 
sampling bias and improve predictions of ecological niche 
models. – Ecography 37: 1084–1091.

Veloz, S. D. 2009. Spatially autocorrelated sampling falsely inflates 
measures of accuracy for presence-only niche models. – J. 
Biogeogr. 36: 2290–2299.

Verbruggen, H. et al. 2013. Improving transferability of introduced 
species’ distribution models: new tools to forecast the spread of 
a highly invasive seaweed. – PLoS One 8: e68337.

Vollering, J.  et  al. 2018. MIAmaxent: a modular, integrated 
approach to maximum entropy distribution modeling.  
– <https://CRAN.R-project.org/package=MIAmaxent>.

Vollering, J.  et  al. 2019. Data from: Bunching up the  
background betters bias in species distribution models. – 
Dryad Digital Repository, <http://dx.doi.org/10.5061/
dryad.bb6f284>.

Warren, D. L. et al. 2008. Environmental niche equivalency versus 
conservatism: quantitative approaches to niche evolution.  
– Evolution 62: 2868–2883.

Warton, D. I. et al. 2013. Model-based control of observer bias for 
the analysis of presence-only data in ecology. – PLoS One 8: 
e79168.

Yackulic, C. B.  et  al. 2013. Presence-only modelling using 
MAXENT: when can we trust the inferences? – Methods Ecol. 
Evol. 4: 236–243.

Zurell, D. et al. 2010. The virtual ecologist approach: simulating 
data and observers. – Oikos 119: 622–635.

Supplementary material (available online as Appendix ecog-
04503 at < www.ecography.org/appendix/ecog-04503 >). 
Appendix A–G.


