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Abstract

The signal to background ratio for Higgs decaying to 2 photons is small,
therefore, powerful estimation of the background is needed to accurately mea-
sure the signal. Since the underlying physical function is unknown, various
functional parameterizations are considered for the background estimation.
When the number of events increases, the relative uncertainty decreases.
This might give rise to some previously hidden features of the distribution,
leading to the need for re-estimation of the background to avoid creating
spurious signal. The current process is lengthy and awkward, and therefore,
this study has focused on investigating Gaussian Processes (GP) as a new
method for estimating the background and signal distributions. GP is a ma-
chine learning method that does not depend on a specific parametric function
and could therefore be employed in numerous scientific areas. Herein, it has
been shown that GP manages to find the underlying function for a large
number of toy data set, and it proved to be independent of the integrated lu-
minosity. From bias tests performed, it was shown that bias generated during
fitting, does not scale with the luminosity relative to the expected signal for
a standard model Higgs boson. It was further shown that the background
component of the GP does not model a signal when this is injected into
the testing distributions. Last, it was found that a signal estimation using
the GP’s internal parameters was unsuccessful. However, using the linearity
of the GP, it proved possible to estimate the number of signal events in a
distribution.
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Chapter 1

Introduction

In the future of the Large Hadron Collider and ATLAS detector, the amount
of data that will be collected will increase by a factor of twenty or so, with a
goal of reaching at least 3000 fb=! by 2037. This increase of integrated lumi-
nosity does come with a price; the analysis of such event-rich data demand
sophisticated analysis procedures and powerful statistical techniques. Two
methods utilized in particle physics analysis for modeling the observations
are Monte Carlo simulations and data-driven parametrization of functions.
This thesis will focus on data-driven modeling, used for the property mea-
surements of the Higgs boson in the two photon final state channel. The
data-driven techniques utilized by ATLAS depend on parametric functions
to model the backgrounds and estimate possible signals [I]. When more data
is taken at ATLAS and this analysis is repeated, the choice of background
model must be redone. A function considered for the background modeling
must be tested and pass certain criteria imposed on the possible bias of a
fit. There are a set of functions that are considered for the background, but
at a point in the future these might all fail the criteria, meaning that new
functions must be constructed.

This thesis proposes using the machine learning method Gaussian Pro-
cesses for the data-driven analysis of the H — v channel. The method is
rarely used in high energy physics. Gaussian Processes are explored in an
article by Frate et. al.[2], where it is claimed that background modeling us-
ing Gaussian Processes is luminosity independent. The article uses Gaussian
Processes as a corrector to a functional fit. This thesis will study the ap-
proach proposed by the authors, and see if the luminosity independence can
be confirmed. The background modeling and signal estimation will be done
fully by Gaussian Processes (which goes slightly beyond the proposition by
Frate et. al.[2]).

The scope of this thesis is the conceptual study of applying GP to the



H — ~v channel. First, a simple introduction to the Standard Model is
given, followed by a description of the LHC and ATLAS detector, then the
method of parametric function fits is explained. An introduction to Gaus-
sian Processes and its properties, including the implementation of GP into
software, is described.

The results will thereafter be presented and discussed, followed by the
conclusions that can be drawn from this study. The work is not yet complete
to the point that the method can without reservation replace the functional
parameterization currently in use by ATLAS. Therefore, additional work is
needed to complete the study, which is sketched out in the outlook.

1.1 The Standard Model

When conducting experiments in physics, as in all other fields of science,
theory is need to describe the phenomenon that is observed. The most suc-
cessful theory in particle physics thus far is called the Standard Model (SM),
an overview is given in figure [I.I} This model is a theory that has been
able to both explain the known particles and their interactions, as well as
predicting new physics. The last piece of the puzzle, the Higgs boson, was
discovered in 2012 [3, 4]. The model separates particles by their intrinsic
property called spin, where the matter particles are called fermions and have
spin-1/2, and the force carrying particles are called bosons and have spin-1.
Spin in this quantum mechanical sense is not the same as one would think of
it in the classical sense, as for example a volleyball spinning around an axis,
because the elementary particles are in the SM considered to be pointlike
objects, i.e. no internal structure.

1.1.1 Fermions

The fermions are called the matter particles, as all matter is made of these.
There are 12 fermions which are subdivided into quarks and leptons. Actu-
ally, all matter is made of 4 of them as these are the only stable fermions.
They are called the first generation as they are the first to be discovered and
are the up (u) and down (d) quarks, and they make up the protons p(uud)
and neutrons n(udd). A nucleus consists of protons and neutrons, and, to-
gether with the electron (e~), form atoms. The electron neutrino v, is not
part of this matter composition, but plays an important role in the matter
transformation, for example [-decay where a neutron decays into a proton,
electron and anti-electron neutrino.

There are three generation of fermions in total. In the second and third
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Figure 1.1: Overview over the Standard Model. The figure is taken from [5]

generation the particles have similar properties as the 1st generation, except
the masses of the particles. 2nd generation are heavier than the 1st with
particles such as the charm (¢) and strange (s) quark, and the muon (u™)
and muon-neutrino (v,). The 3rd generation is heavier still, and contain the
top (¢) and bottom (b) quark, the tau (77), and the tau-neutrino (v, ).

Almost all fermions have an electric charge, neutrinos are electrically
neutral, and the charged leptons have integer charges (e~, u~77) : —1 while
the quarks have non-integer charges (u,c,t) : +2/3,(d, s,b) : —1/3.

In addition to the electric charge, the quarks have another quantity: color
charge. This is, like spin, an intrinsic property that must satisfy certain
criteria. There are 3 values which we identify as red, blue, and green. The
color charge gives the quarks the possibility to interact via the strong force,
in the same way as particles with electric charge experience electromagnetic
force. A property of the color charge is that it can not be free, i.e. only
bound states of quarks are allowed. And these states must be colorless.
There are two possible bound states; one is called mesons and consist of a
quark-antiquark pair with the same color (antiquark has ”anticolor”), and the
other is called baryons and contain either three quarks or three anti-quarks
each with a different color.



1.1.2 Bosons

Bosons are particles with 1-spin and mediate the forces in the SM. The forces
are the electromagnetic force, the weak force, and the strong force. Gravity
is not represented in the SM.

The photon is the boson mediating the electromagnetic interactions. It
has not mass, is electrically neutral, and is stable. This mean that the
electromagnetic range is infinite.

For the weak interactions, there are three carriers: W—, W+, and Z°.
These particles are heavy, only trumped by the top quark and the Higgs
boson, and therefore decay quickly giving the weak force a very limited range
of only ~ 10~ "°m.

In the strong interaction, gluons are the mediator. This boson only inter-
acts with particles having a color charge, like the quarks. It can also interact
with other gluons, as they have both color and anticolor, and their combi-
nations are: bg, gb, rg, g7, rb, bF, \%(7"77 —g9), (r7 + gg — 2bb). When two
color charged particles increase in distance, the strong force between them
increases as well. This is in stark contrast to the weak and electromagnetic
force which decreases for increasing distance, the weak force more rapidly
than the EM force. This gives rise to a phenomenon called asymptotic free-
dom: at short distances, less than ~ 107!® m, the quarks and gluons can
move freely. Outside this radius, the particles will be subjugated to color
confinement. L.e. if two quarks are forced apart, the energy applied will cre-
ate a quark-antiquark pair that then again confines the original quarks and
preserves the colorless state.

One of the big questions about the SM was how the mass of the particles
came to be. If the gauge bosons have mass, then the electroweak symmetry is
broken and the SM would not be a consistent theory. A solution to this was
the Brout-Englert-Higgs mechanism [6], [7]. This mechanism works though
spontaneous symmetry breaking of gauge symmetry. The mathematical de-
tails will not be discussed in this thesis. To give an example of spontaneous
symmetry breaking, consider a finite rod. The rod will be rotational sym-
metric around its axis. If a force is applied to the rod at one end, the rod
will bend and no longer be rotationally symmetric, but the symmetry is not
spontaneously broken, just broken. Spontaneously means, in this sense, that
the direction of the bending can not be known beforehand. To illustrate the
difference, the force are now applied at both ends towards the rod parallel
with the axis. The rod will then, when a critical amount of force is applied,
bend in a random direction. Then the rotational symmetry is spontaneously
broken. An illustration of this for the gauge symmetry breaking is given in

figure [1.2
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Figure 1.2: An illustration of the Higgs potential and how particles acquire mass.
The figure is taken from [§]

The Brout-Englert-Higgs field has a potential as shown in figure[1.2] and
when particles fall into the well, the energy-difference gives them mass. If
a particle does not interact with the BEH-field it will be massless like the
photon, and stronger interaction means larger mass.

An excitation of the field itself, gives rise to the Higgs boson, proposed by
Peter Higgs in 1964[6]. This particle has spin-0 meaning it is a scalar particle
and is electrically neutral. It was the last piece of the SM-puzzle, and was
discovered by ATLAS and CMS in 2012. [3] This confirmed the existence of
the BEH-field.

1.2 The LHC and the ATLAS detector

1.2.1 LHC

The accelerator

The Large Hadron Collider is the largest and most powerful particle accel-
erator in the world. With its 27 km circumference it can accelerate bunches
of 10" protons to high energies that are collided at experiment locations 40
million times per second. LHC is designed to deliver a center-of-mass energy
of /s = 14TeV at an integrated luminosity of 103*¢m=2s~1. There are four
large experiments (and a number of small ones) on the LHC ring: ATLAS,
LHCb, ALICE and CMS. ATLAS and CMS are general purpose detectors
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able to study a wide spectrum particles, LHCD specializes in the study of the
bottom-quark, and ALICE is a heavy ion collision detector.

Particle collisions

In high energy particle accelerators like the LHC, there are two quantities
that are the most important: the center-of-mass energy /s and the instan-
taneous luminosity £. Each of these properties will be discussed below.
To accelerate the particles to the energy desired they need to be charged
and stable. There are many types of accelerators, such as hadron colliders,
electron-positron colliders, and electron-proton colliders.

The center-of-mass energy in the collision is given via the invariant quan-
tity s that is the sum of the energy and momentum of the two interacting
protons:

s = (E1+ Ey)® — (p, +py)? =m” (1.1)

In the above equation natural units are used, i.e. ¢ = 1. The center-
of-mass energy determines the heaviest particles that can be produced, as
the largest mass a produced particle can have is m = /s. In the interaction
the energy is usually less than /s as the protons are composite particles of
quarks and gluons. They are the interacting components in the hard scat-
tering process and are collectively called partons. Only have a fraction of the
total proton momentum is carried by these partons, and the probability for a
parton, of a certain quark flavor, to have a certain momentum is detailed in
the Parton Distribution Functions. The highest center-of-mass energy that
current technologies can achieve is desired, to extend the range of particles
that can be produced, discovered and studied.

Reaching high enough energies is one part of the problem of discovering
new physics. Another part is the fact that all of the particles in the SM has
a certain probability to be produced. Heavier particles have less probability
to be produced in the collisions than the light ones. For example the Higgs
boson is heavier than most particles in the SM, so it is seldom created. How
can enough Higgs bosons be produced to observe them? The solution to
this is given in the instantaneous luminosity, £. This is the measure of the
number of collisions per second and per em? that can be produced. Assuming
that the beams collide head on having a Gaussian profile, the instantaneous
luminosity can be calculated as [9]
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L=Ff = 10**em 2571, (1.2)

dro,0,

where ny and ny is the number of particles in each colliding bunch, f is
the frequency of the beam crossings, and 0,0, is the root-mean-square of
the beam size in the xy-plane. Unfortunately the properties of the bunches
are not known exactly. To find the number of events for a process, the
instantaneous luminosity is integrated with respect to time. The luminosity
has the units em 257!, but for the integrated luminosity the units are the
inverse femtobarn fb~! which is a measure of the number of particle collisions
per cross-section. Multiplied with the cross-section, the probability for the
interaction to occur with, for a process gives an estimate of the number of
events for that process.

N:U/E@ﬁ (1.3)

From equation the importance of the luminosity is obvious: higher
luminosity, more interactions. The running period for the experiment also
increases the number of events accumulated. In the late fall 2018 Run 2 was
completed with a total luminosity of 189.3f0~! [10], and the LHC is now in
the process of upgrading towards Run 3 beginning in 2021. The expected
integrated luminosity for Run 3 is ~ 300fb~!. During the shut down in 2022-
24, LHC will be upgraded to the High Luminosity LHC for Run 4, which has
an expected luminosity of 100051

1.2.2 ATLAS

In this section, an overview of the ATLAS detector will be given, based
on [11I]. ATLAS is a general purpose detector constructed for studying a
large variety of particles and phenomena produced in the pp collisions from
the LHC. The detector is has a cylindrical shape and is forward-backward
symmetric. A side-cut of the detector is given in figure [I.3] The coordinate
system in the detector is a Cartesian system with origin in the collision
point, the z-axis points along the beam line, the x-axis points to the center
of the LHC ring, and the y-axis is pointing straight up. As the detector is
cylindrical, angles are also used for geometry. ¢ is the azimuthal angle around
the beam line and has the interval (0,27) and the polar angle 0, giving
the direction relative to the beam line, in the interval 0,7). A preferred
quantity is the Pseudorapidity n which is defined from the polar angle as

10



n = —In tan(6/2). And in this ¢—n-plane, the distance AR between particles
is given as AR = 1/(An)? + (A¢)2.

Tile calorimeters

LAr hadronic end-cap and
forward calorimeters

Pixel detecror

LAr electromagnetic calorimeters

Toroid magnets
Muon chambers Solenoid magnet | Transition radiation fracker
Semiconductor tracker

Figure 1.3: The ATLAS detector [11]

Inner detector

In the Inner Detector (ID) particles from the pp-collisions are tracked as
they interact with the layers of the ID, and by using these hits the particle
trajectories and the interaction vertices can be reconstructed. Figure
shows the setup of the ID. The combination of the track detection and a 2
T magnetic field is used to identify charged particles as these are bent in
the field, and the direction of the curve gives the sign on the charge. The
ID comprised of TRT, SCT, and Pixel detectors which covers the region
In| < 2.5.

The part of the ID furthest from the interaction point is the Transition
Radiation Tracker (TRT), consisting of xenon-based gas filled straw tubes.
These tubes gives higher electron identification capability.

11
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Figure 1.4: The Inner Detector of ATLAS [I1]

Calorimeters

In the calorimeters the energy of the final state particles are measured, and
the range they cover is n > 4.9. The electromagnetic calorimeter (ECal) is
located after the ID and absorbs the energy of electrons, positrons, and pho-
tons. It is divided into three parts; the barrel, and the two end-caps. The bar-
rel covers |n| < 1.475 and the end-caps cover 1.37 < |n| < 3.2. The energy is
measured using liquid argon and lead absorber plates. The ECal has high pre-
cision in the energy measurement, with resolution op/E = 10%/vE ® 0.7%.

Wrapped around the ECal is the hadronic calorimeter (HadCal), which
absorbs the energy of hadrons. It is made of steel for absorption and scin-
tillating tiles as the active material. The barrel region covers |n| < 1.0 with
the extended barrel covering 0.8 < |n| < 1.7.

The end-caps of the HadCal consist of copper plates as absorption mate-
rial and liquid Argon as the active material. The coverage of the end-caps is
1.5 < |n| < 3.2.

To get a fuller coverage the forward calorimeter is integrated into the
end-cap and is divided into three parts. One made from copper for elec-
tromagnetic measurements and two others built with tungsten for hadronic
measurements. This region covers 3.1 < || < 4.9.

12
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LAr eleciromagnetic
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LAr forward (FCal)

Figure 1.5: The Calorimeters of the ATLAS detector[11]

Muon system

The muon spectrometer is located outside the HadCal. This detector is not
meant to absorb the muons, just detect their passage through the muon
system. The system is based on magnetic deflection of muons in the toroid
magnets or in the end-cap magnets. The former has a coverage of || < 1.4
while the latter has a coverage of 1.6 < |n| < 2.7. In the so called transition
region, 1.4 < |n| < 1.6, the deflection is provided by a combination of both
the toroid and the end-cap magnets. The muon spectrometer provides a
resolution of o, /pr = 10% at p; = 1TeV, which is achieved by three layers
of precision chambers.

13
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Figure 1.6: The Muon system of the ATLAS detector[11]

Trigger system

The trigger system is required to limit the amount of data stored. This
system ensures that only interesting events containing high py particles are
selected for storage, and the Level 1 trigger is a hardware trigger that searches
for such events. When L1 triggers, the information of the event is passed to
the software based Level 2 trigger. At this level, the trigger use the full
information to select events of interest. The last stage in the trigger system,
is the event filter which use offline analysis procedures. The decision time
for each trigger is less than 2.5us for L1, ~40 ms for L2, and at the order of
4 seconds for the event filter.

14



1.3 The Higgs production and event selection

Why is the H— 77 channel used to study the Higgs boson? There are many
other channels that the Higgs boson can decay to. Figure shows the
branching ratios of different processes, giving a indication of which decay
channels are more probable. bb has the highest branching ratio at the Higgs
mass, followed by WW, gg, and 77. But the QCD interactions give these
channels huge backgrounds, and the ratio of signal to background is tiny,
therefore it is difficult to separate the signal from the background.

v 1,,1 T T T [ T T T [ T T =01 T T ]%2
o C — E&
e m 15
e * 13
o)) s i
E L 18
5 :
c -1LTT =
9 10 = e
m faer s ]
CCC il

102 =

103

Figure 1.7: This figure show Branching ratios for different decay channels vs the
Higgs mass.

In this section the photon identification in the detector is briefly dis-
cussed, and from what processes they are created. Also other factors for the
background will be touched upon.

Detecting photons in the ATLAS detector, is done via the Inner Detector
and the Electromagnetic Calorimeter. Particles moving through the ID are
tracked, but the photons do not interact with the tracking material. They
deposit all their energy in the ECal in electromagnetic cascades. In the
reconstruction of the collision event, the photons are identified as a electro-
magnetic shower exceeding some energy level that does not have a track in

15



the ID leading to the deposit. An example of this is seen in figure [I.8] where
the dashed line indicate no interaction with the material.

Muon
Spectrometer

Hadronic
Calorimeter

The dashed tracks
are invisible to
the defector

Electromagnetic
Calorimeter

Solenoid magnet
Transition
) Radiafion
Tracking Tracker

Pixel/SCT detector

Figure 1.8: This figure show the layers of the ATLAS detector and how particles
move and interact within them.
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1.3.1 The background processes

The background is the name given to non-Higgs processes that either have the
same final-state as the signal process, or where measurements in the detector
are misidentified as photons passing the identification criteria. The former is
called the irreducible background, and the latter the reducible background.
As the names suggest the reducible background can be dealt with to some
degree, and the irreducible part is where it can not be known if the pho-
tons comes from a Higgs boson decay or some other process. The irreducible
processes are the Box process, the Born process, and the Bremsstrahlung
process. The Feynman diagram for the Box process can be seen in figure|1.9
the Born diagram in figure [1.10] and Bremsstrahlung in figure [1.11] These
give a "clean” spectrum, as the distribution of m., is monotonic and de-
creasing.

1 TBOOOOO00" ;

q

Figure 1.9: This is the Feynman diagram for the Box process. Here two gluons
interact with a quark-box where the final state is two photons.

0%
)i

q

Figure 1.10: This is the Feynman diagram for the Born process of quark-antiquark
pair annihilation into two photons.

The reducible background is where the reconstruction misidentifies other
particles as photons, and consist mostly of jets and 7%s. They are y-jets, jets-
jets, and the Drell-Yan process. The DY process is when a gg-pair annihilate

17



Figure 1.11: This is the Feynman diagram for the Bremsstralhung process. A
quark radiate a photon by interacting with a gluon, then ratiates a photon.

to a photon that produce a eTe -pair. These electron are then misidentified
as photons. For the v-jet, the jet is misidentified as a photon, and the same
is the situation for jet-jet. Here both jets are identified as photons.

1.3.2 The signal process

The Higgs decay process producing two photons is through a W-boson or
top-quark loop. The Feynman diagram for this process is shown in figure

O

W/t

M,

Figure 1.12: This is the Feynman diagram for the Higgs decay process. Here a
produced Higgs boson decay through a W-boson loop to two photons. The loop
might also be top-quarks.

W/t
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Chapter 2

Analysis

2.1 Data driven methods

The most common methods for analysis utilize Monte Carlo (MC) simula-
tions of the production and decay modes for different particles in the collisions
that are based on the SM and hypothetical theories that go beyond the SM,
as well as how the particles interact with the detector. One example of MC
background simulation is shown in the bottom plot of figure 2.1 where the
data is the black dots, the background is estimated using simulated events
in red and purple and the blue is the simulated signal. The top plot of figure
is the 2012 result for the H — v channel using a data driven method
for estimating the background and signal. In the study of H — vy data
driven methods are used instead of MC to estimated the background. The
two photon final state is well populated, but the signal strength relative to
the background is very small. This means that small fluctuations can have
a large impact on the sensitivity of the signal. To model the background a
suited function must be chosen. The signal model is a double sided Crys-
tal Ball function, which is explained later. To then test which hypothesis,
background-only or signal+background, that describes the data best, a test-
statistic is used. The procedure will be described after model selection.
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Figure 2.1: This figure display two of the main results of Higgs searches in 2012
with the ATLAS detector. The top plot is the two photon final state, and the
bottom is the four leptons final state. The figures are taken from the 2012 article[3].
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2.1.1 Background model

To be able to discern the signal from the background, precise modeling of the
background distribution must be performed. The distribution for H — v in
figure seems to be following a falling exponential or polynomial function,
but the underlying functions are unknown. This presents the challenge to
choose which function should be used for the background modeling. Func-
tions from different function families will have difficulty describing one an-
other. These differences give an indication of the systematic error one makes
when choosing a particular function family. In figure an example of this
is provided. The polynomial fit function does not adequately represent the
underlying exponential function. If more freedom is added to the fit function
as parameters, the fit might approach the model but it will start to overfit,
i.e. it will start to absorb also potential signal bumps, ceasing to be a general
solution. As the amount of data increases, the ability of a previously chosen
function to correctly model the background over the full relevant spectrum is
compromised, and the procedure of selecting the function that describes the
background must be redone. The functions must then pass some criteria, to
be described below, and the one with the least degrees of freedom is chosen.
The different functions considered for the background modeling are [I]

e Exponential = Ae~¢*
e Exponential polynomial = e2i=o oz’

e Bernstein polynomial = A " | ¢;Clu'(1 —u)* !, u = ="min_ []7]

Mmaz —Mmin

There have been considered combinations of functions as well, for example
the double exponential = A(ae %"+ (1—a)e %2® and functions with a turn on
in the lower part of the invariant mass distribution, but none have been stable
in the fitting. The fits must always converge (this is most important when
studying the performances of such fits with large numbers of MC “toys”) as
there can not be any doubt that the optimization of the parameters will find
a minimum.

A method of finding these optimized parameters, is to use the method of
Least Squares

= Z (yi — J;(Ii;g))z (2.1)

2
=1 g

where f(x;6) is the predicted value in bin i given 6, and y; is the observed
value. o; is the uncertainty on the observed value. In this method the
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uncertainty for each observation is assumed to be Poisson distributed giving
o; = /yi- When the data values are large, y; > 10, the Poisson uncertainty
can be approximated as Gaussian. And it is recommended to use Pearsons
x? [13], which uses the expected number of events to specify the uncertainty.
Using the observations as errors can introduce some bias as the values are
Poisson-shifted, but the expected number from a fitted function is an average.
The 6’s that minimizes this function, are chosen as the optimized parameters.

Bias example

1.0 4 === Underlying distribution
—— Fitted function
0.8 1
==
0.6
0.4
T T T ! I I
0 2 4 6 8 10
X
o1 === Underlying distribution
. —— Fitted function
= 0.0 4
—0.1 A

Figure 2.2: This figure show how bias arise when a fitting function (a 2-degree
polynomial) does not describe the underlying distribution (an exponential of a
2-degree polynomial). The blue line is the underlying function and the red is
the best fitted function. The top plot is the distribution, and the bottom is the
residuals. The red line overestimates at the left edge and in the middle right, and
underestimates at the right edge and in the middle left. If a signal was present
at x ~ 3, the signal strength would be overestimated. If a signal was present at
x ~ 7, the signal strength would be underestimated.

2.1.2 Spurious signal

An important test of the function fits, is the test of bias. If a function
fitted to the data has some systematic deviation in the residuals, which is
the difference between the fit and the background model, then the model
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is biased. This deviation must be accounted for since such residuals in the
fits to real data could easily be mistaken as signal. A signal-+background
function is then fitted to the background-only distribution, and the signal
yield from this fit is called a Spurious signal. The lower plot in figure
displays an example of a bias in the fit. Fitting a signal+background model to
this example distribution and the fitted signal has a non-zero amplitude, this
signal is a spurious signal. The possibility of such a deviation is implemented
in the likelihood function that is used to optimize the parameters in the
function. There is certain requirements [I] of this test of which the fit need
only pass one:

e The spurious signal is not larger than 10% of the expected signal

e The spurious signal is not larger than 20% of the spurious signal un-
certainty.

Ezpected signal in this context is the expected signal under the hypothesis
of a SM Higgs boson with the mass being tested.

2.1.3 Signal model

The signal is typically modelled as a double-sided Crystal Ball (CB) function
[1]. Modelling the signal as a Gaussian peak is a simple approximation that
can be easily implemented and tested on. The CB-function on the other
hand, is used to fully model the signal as it takes into account the non-
Gaussian form in the low-(-) and high-mass(+) tails, parametrized by a3 B

and ng g 1t consist of a Gaussian peak in the center with a power law in
both tails.

e—t2/2
. "CB.i neB _|°‘53,i‘2/2 @_ -t “ncp
fiszg(mw;ANCB,mUCB,i,C%B,i»7%3,1'):Nc (\QEBJ\) c acp.i “CB,i )
( nJCrB’i )ngB,ieilagBTi‘2/2(@ —_at __t)*"Jch,i
‘aJCrB,i‘ aé’B,i CByi
(22)
My —m g —A i . . .
where t = 2 UZB‘ ECBi and N, is a normalization factor. When
K
—agp; <t < alp,, the first function is applied; when ¢t < —agp,, the

second function is applied; last, when ¢ > ofCrB’i, the third function is ap-

plied.

2.1.4 Test statistics and the likelihood function

To be able to claim a discovery of new physics, or to reject its existence,
a statistic is used to test hypotheses. These hypotheses are usually the
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background-only, meaning that the background distribution is the under-
lying function, and the signal+background hypotheses, where an excess of
events above the background is predicted by the signal being tested. The
expectation value for the numbers of events is E[n;| = ps; + b;, where s; and
b; are the mean predicted number of events in bin ¢, and p is the parameter
indicating the signal strength, with p = 0 corresponding to the background
hypothesis and o = 1 as the nominal signal hypothesis. The number of signal
and background events are found from [14]

8; = stot/fs(x;ﬁs)dx (2.3)

b; = btot/fb(fﬂ;eb)dl’ (2-4)

where fs(z;05) and fy(x;6,) are the chosen model with some parameters,
giving the probability distribution functions for the signal and background.
To test a specific value of u, the so-called profile likelithood ratio is used:

Ap) = : (2.5)

The numerator of equation [2.5]is the conditional likelihood function, con-

ditional since p is fixed and 6 is the value of this estimator which maximizes
the likelihood in this case. The denominator is the unconditional likelihood;
both the parameters 6 and p are free, and 6 and i are the fitted estimators
which maximizes the likelihood for this case.

Multiplying the Poisson probabilities for each bin, the likelihood is written
as

Lu0) = [TV expl—ties +00) ] g esplw) (20

u; is here the expectation value assuming only background. In equation
2.5| it is observed that 0 < A < 1, where ~ 1 means the tested value for pu
agrees well with the data given the model being tested. This is used to test
different signal strengths which can be compared to the prediction from the

Standard Model.
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2.1.5 ROOT and Minuit

The framework for doing analysis in particle physics, is the CERN-created
ROOT package [15]. This package is developed at CERN over many decades.
It implements the jargon used by particle physicist to present data and anal-
ysis results in a similar manner, and makes life easier for its users as there
are many elements to handle at once. ROOT utilizes MINUIT2, a package
for minimization in the analysis methods. This package is also developed
at CERN. Both of these packages are written in C++ which is the most
common language used by the different research groups. as it is quite fast
when doing iterations as well as being object-oriented. This is a vital part
of a cut-and-count analysis. Here cuts are used to remove the uninteresting
events from the analysis. For example, which particles are in the final-state
and how their properties are, might decide if they are included. There are
millions of events going through a yes/no-type algorithm, therefore speed is
desired. This is what Cc++4 excels at. PYTHON is starting to be more used
as it is more user-friendly. Declaration of variables is not needed, and how
graphics are handled is much better. It is much slower though, therefore a
combination is often used; C++ for iteration and PYTHON for data handling.

2.2 Gaussian Processes

Gaussian Processes, abbreviated GP, is a machine learning method based
on Bayesian statistics, which performs prediction of data based only on the
data and the knowledge about the data. As stated in the introduction, precise
measurements of the Higgs boson are still desired, but the methods used now
are slow and problematic. A solution proposed is using GP for background
modeling and signal estimation. In this chapter the basics of GP are first
presented, before moving onto how GP is utilized for the analysis of Higgs
boson decays to 2 photons. An introduction to Bayesian statistics is first
made and the connection to the Gaussian distribution is presented, which is
based on the more detailed derivation in the book by D.S. Sivia [16]. Then
GP regression is introduced, as outlined in the book by C. E. Rasmussen
and C. K. I. Williams [T7]. The last part specifies the background and signal
modeling.

Gaussian processes is used in many different fields, as it is diverse and

brings a broad space of usage: Geostatistics, astrophysics, climate studies,
and more.
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2.2.1 Introduction to Bayesian Statistics

The statistics used in the method described in the parametric function sec-
tion is called frequentist, while Gaussian Processes on the other hand, is
based on Bayesian statistics. The fundamental difference between the two,
is in the way they view uncertainty. Both use probability to describe this
uncertainty, so the definition of probability must then also be different. The
frequentist way handles the uncertainty probability as objective. This means
that the uncertainty is fully described from the outcome of the experiment.
An example is a coin flip; the probability for heads or tails are 50-50, so both
outcomes are equally uncertain. If the uncertainty is handled in a Bayesian
way subjective uncertainty is added, which introduces other factors: is the
coin bent in any way? Is the weight shifted one way? Maybe even the person
performing the flip is skilled in counting the rotations and can easier get a
preferred side? This is described as prior knowledge, and will be discussed
further in this chapter.

Probability

Probability is defined as how likely it is for something to occur. Looking
again at the coin flip, there are two possible outcomes and one of these are
chosen. Then the probability is deduced relative to this. The probability for
say heads, is

_ Wanted outcomes  Heads 1

P(H) = = = — 2.
(H) Possible outcomes All 2 (2.7)

Another important definition is P(H) + P(H) = 1, where the bar above
the H implies not heads, and the sum of probabilities for outcome H and not
outcome H must be 1 as one of them must happen. Also, if the coin is flipped
twice, what is the probability for one of each outcome? Assuming Heads in
the first toss then Tails, this can be written as

P(H,T) = P(T|H)P(H), (2.8)

where the probability for Heads and Tails are the product of the probability
for Heads and the probability of Tails given Heads in the first flip. This
rule holds if the outcome Tails is independent on Heads: P(T|H) = P(T).
Eq. assuming Tails then Heads is P(T,H) = P(H|T)P(T), and the
probability for both to occur in must be the same, giving P(T, H) = P(H,T)
showing that the probability for both outcomes happening is independent of
the order, P(H|T)P(T) = P(T|H)P(H). This equality can be generalized
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for some variable X and some parameter 6: P(0|X)P(X) = P(X|0)P(6).
This leads to

P(X]0)P(9)

POIX) = =55

(2.9)

which is known as Bayes’ rule, derived by Thomas Bayes [18].

A much used object in this form of statistics, are Probability Distribu-
tion Functions (PDF) describing how the probability of some quantity is
distributed. Bayes’ rule provides a posterior distribution function for the
parameter 6 given the variable X. An example where this quantity is inter-
esting, is for a dice thrown. One question is what outcome X to expect based
on #. Another, more interesting, question is: based on the observations of
the dice throws, what is the probability that the dice is fair? This is the in-
formation gained from Bayes’ rule. In the rule, P(#) is the prior probability
for the parameter derived from the known information, e.q. if the coin from
before is bent, P(X|0) is the likelihood, and P(X) is the marginal likelihood.
The likelihood modifies the prior information based on the observations, and
the marginal likelihood is the probability for the observations without the
parameters. This is written as

P(X) = / P(X|0)P(6)do (2.10)

The whole point with this derivation, is to show how some assumption for
a parameter of interest can be updated by introducing observations. This is
the main difference between bayesian and frequentist approaches; the usage
of prior information.

The probability distribution for a parameter will, according to the Central
Limit Theorem [19], converge to a Normal distribution for a large number of
observations. This is utilized for the Gaussian Processes Regression. For the

Normal distribution there are two parameters, the mean and the wvariance.
The mean is the most likely value for the parameter and is written as

m() = /9P(9)d9 (2.11)

and the variance is, given the mean value 6y,

27



V(0) = /(9 —00)*P(0)do (2.12)

What is then the mean and variance for the Gaussian distribution of the
posterior PDF? The most likely value 6 is the value that maximizes P(0|X),
therefore two requirements must be met:

dP(0]X)

B Sl el P 2.1
7, =" (2.13)

2P(0]X)

_ 2.14
|, <" (2.14)

As a Gaussian is used to approximate the value of the parameter 6, how
is the mean and variance relative to that? The mean of the Gaussian is the
most likely value, and the variance is needed to understand how uncertain
the value is. The PDF of the posterior can be Taylor expanded around the
mean value. Setting L = In(P(6|X)) for simplicity

dL 1d’L
L=1L)+ | (6—6)+ ~—
(60) + ( 0)+2d92 N

- 2
7, (0 —00)% + ... (2.15)

The first term is a constant A, and the second is zero per the assumption of
maximum probability. Ignoring higher order terms as they are much smaller
than the third term and taking the exponential to return to the posterior
function

1d*L

£(6) ~ Aexp ( o G 90)2) (2.16)

)

This equation is recognised as having a Gaussian shape. The normalized
general Gaussian distribution is written

(3 )

where the parameters p and o2 is the mean and variance respectively. To
find the mean and variance from the Taylor expansion, a comparison is made

f(x|p, 0%) = (2.17)
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between the two functions. The mean p in is identified to be #y in

and the variance o2 must then be ( — %) 1 2.

It is now established that the probability distribution for a parameter
or variable can be approximated as a Gaussian distribution, and that this
approximation can change according to observed data. But so far this is only
established for one variable. GP usually takes into account more than one
covariate where one covariate can have more than one value. Each of these
values corresponds to one observed value. What would the approximated
Gaussian look like if another variable,¢, is added?

The same conditions apply, but now for both # and ¢. The Taylor ex-
pansion of the posterior PDF around 6, and ¢q is then

dL dL
L=L(6.0) + -5 - (0~ 75 o (& — ¢o) (2.18)
L d’L 1 2L
|, 00t | (B 00)0—d) (2.19)
0,%0 0,00
1 d2L 1 dZL )
3 460, ,, (6= 00)(6 ) + 5 753 . (6— o) +...  (2.20)

The first derivative terms is zero per the conditions, and the cross-terms

for the second derivatives can be added together since % = 88; . Returning
Yy yox

to the PDF, the exponential is applied and the approximation is

1 2L 1 2L
10.9) ~Aexp (5 =5 L - 0)) -exp (5 ), O &) (221)
&L
- exp ( 2035, . (0 — o) (¢ — cbo)) (2.22)

The two first exponential terms are recognized as univariate Gaussian
distributions for # and ¢, and the third is the multivariate Gaussian distri-
bution for both variables. This long expression can be shortened by writing
the derivatives in a matrix format.

d’L  d*L
2
K=|% % (2.23)
6 AP
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which gives the approximation

F0.6)~ Aexp ((9 ~ oo () ) (220

To summarize, the posterior PDF for a variable can be approximated as
a Gaussian distribution N'(mlf], V[f]). If the distribution are multivariate,
the covariance can be calculated. This gives the covariance matrix cov(6;, 6;)
which holds all the variances and covariances.

2.2.2 Regression

Now that the relation between probability and the Gaussian distribution is
established, it is time to see how this is utilized in the Gaussian Processes
Regression (GPR). This section will first introduce (GP) in general from a
machine learning standpoint and the notation used, then exploring prior and
posterior distributions, and how functions can be drawn from this. Lastly,
the more specific usage for the thesis is described.

As discussed in the first part of this chapter, a posterior probability dis-
tribution for some value can be estimated as a Gaussian distribution where,
based on observations, the best estimate is the mean and the variance of the
distribution is 2. This is the basis for Gaussian processes. GP uses the
Gaussian distribution to predict function values.

Consider a data set consisting of an input vector x and target value y, and
that y = f(x) describing the relation between the input and output. GP is a
machine learning method, so this data is used in some way for training and
multiple input vectors and target values are needed. A n x m design matrix,
X, is usually made with n inputs and m covariates. Instead of covariates,
there can be m data sets. When the GP performs a prediction at a new
input value z,, it is over the function value at the point.

Yy = N(f(2.), V(z,)). (2.25)

As the PDF’s for a data point is a Gaussian distribution A/(u, 0?), the set
of data points will have a multivariate Gaussian distribution. A prediction
drawn from the PDF will be a vector containing the mean for each variable
and the variance is combined into the covariance matrix. Then functions are
drawn from the distribution
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Figure 2.3: This figure shows how Gaussian Processes assumes a Gaussian distri-
bution over a test value, here in red. The blue points are observed data that the
GP would be conditioned on.

[~ N(m(f), cou(f)) (2.26)

Here the covariance matrix is calculated from the covariance function,
also called kernel

cov(yi,y;) = k(xi, ;) (2.27)

meaning that the kernel value evaluating two points, will provide the
covariance between the points, i.e. how they are located relative to each
other.

2.2.3 Covariance functions

Before the data is added to this machinery, the prior information is decided.
This indicates the assumptions made on the data. Covariance functions,
kernels, are the most important part of Gaussian Processes. As the data
is unseen by the method, the covariance is unknown. But if there is some
knowledge, e.g. the data varies periodically, the distance in function value
space increases or decreases, or even if the data rapidly varies with a small
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amplitude for short distances as well as slow variations with large amplitude,
this can be added to the kernel. The kernels take two input values and calcu-
lated the covariance between them, resulting in a matrix with all covariances.
This matrix is symmetric, k(x,x’) = k(x’,x). Kernels that depend only on
the difference of the points, x — x’, are called stationary. The kernels are
also called isotropic if it only depends on the euclidean distance between the
points, r = |x — x/|.

Exponential Squared Kernel

The squared exponential kernel is written

2
ksg(x,2') = exp < — ;—l2> (2.28)
where [ is the characteristic length scale. This length scale determines how
smooth the function is. This can be thought of as how large the distance
between points must be before the predicted function can vary greatly, i.e.
the function values becomes close to uncorrelated. The SE kernel is infinitely
differentiable making it very smooth. This thesis will focus mostly on this
kernel.

Matérn Class of Covariance Kernels

The Matérn Class is given by

i EE T (T

where v and [ are positive values, I'(r) is the gamma function, and the
K, is a modified Bessel function [20]. v determines how smooth the function
is, and when this goes to infinity the SE kernel is obtained. When v is a half-
integer p + 1/2, where p is a positive integer, the kernel becomes a product
of a polynomial and an exponential function

Vovr, T(p+1) < + 1)! 8ur, p-1
ky=pi1/2(r) = exp (— l >F((2}Zo+ 1)> ZO Z,Q(Dp — 1>)|( l ) (2.30)

The most interesting cases, and most common for machine learning, are
v=3/2and v =5/2,
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ky—s2(r) = (14 @) exp (— ——) (2.31)

[
Vor  br? B @) (2.32)

ky—s/2(r) = (14 - + ﬁ) exp (

For v = 1/2 the kernel becomes a rough exponential, and for v > 7/2 the
difference between the kernels is harder to distinguish.

Local Gaussian Kernel

The Local Gaussian kernel is a non-stationary kernel. It is

E BP0l (o

kLocalGauss (.’L’, :E/) = €xXp ( - 2w

where xg is the mean of the Gaussian called the location and w is the
squared width of the distribution. This kernel is of interest for the signal
modeling of the simulated Higgs peak.

Constant kernel

The constant kernel is used when a constant number is added or multiplied
to a kernel. For example, an amplitude term multiplied to the squared expo-
nential kernel. This then makes the constant number a hyperparameter for
the overall kernel.

kConstant(-r7 x/) =cC (234)

Hyperparameters

The parameters of the kernel functions are called Hyperparameters, to em-
phasize the fact that they are parameters of a non-parametric model. They
can be varied to match the expected value, or be optimized for a data set.
In the SE and Matérn kernels, the hyperparameters are the length scale [.
In addition it is common to have a variance a]% for the intensity of the co-
variance, called the amplitude. Lastly, the noise variance o2 is also added
to the diagonal of the covariance matrix, since noise-free processes are rare
in physics. In figure 2.4], the data points are sampled from a GP prior using

the SE kernel with hyperparameters (1,07, 05) = (1,1,0.1), then the GP is
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conditioned on the data points and a new posterior prediction is made, seen
as the pink line in the figure. The gray band is the 20 error. The uncertainty
of the updated GP predicted mean increases in the regions with no data, but
updated GP does reproduce the model that was used to generate the fake
data set very well.

1.0 A

0.5

0.0 4

Output

—1.0 1

—-1.5 4

—2.04

—-254

T T T T T
2 4 6 8 10
Input

Figure 2.4: This is an example of the optimized length scale for a set of data
points. The variance band increases somewhat where there is no information.

To explore how the hyperparameters affect the predictions, a short and
a long length scale is used, in figure [2.5] and figure [2.6] respectively. In figure
the hyperparameters used is (0.1,1.08,1e — 6). This allows for more
rapid variation of the mean function. The noise has been reduced, therefore
the mean is more restricted to be closer to the data points, than in figure
This is justified from increased flexibility of the prediction. Around
x = 4.5, the mean function moves up then down seemingly without reason.
The reason for this behavior, is the lack of data between x ~ 4 and = ~ 5.5.
When there is no new information for the GP, the prediction will fall back to
the only knowledge at the point, the prior. The uncertainties in the data-less
intervals are also much larger than in figure [2.4] which has a more even band.

In figure , the hyperparameters used are (3,1.16,0.9). The mean fol-
lows the general trend of the data, but the prediction is a noisy and slow
varying function which does not describe the data well. It is easy to see why
choosing (optimizing) the hyperparameters is important and is a large part
of the analysis.
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Figure 2.5: This figure shows an example of too a short length scale, where the
predictive mean goes back to the prior where there is little information.
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Figure 2.6: This figure shows an example of a predicted mean where the length
scale is too large to describe the data points well.

Function space view

Gaussian Processes is all about doing inference in the function space, instead
of the parameter space of a particular function, as the GP describes a distri-
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bution over functions. It is completely specified by a mean function and the
covariance matrix given as[17]

m(x) = E[f(x)] (2.35)

k(x,x) = E[(f(%) = m(x))(f(x") = m(x"))] (2.36)

The mean m(x) is the expectation value for the function at location x, and
the covariance is the expected product of the difference of the function value
and the mean for two locations x and x’. Combined these provide a Gaussian
distribution for the function value with the mean and covariance given above
for each input vector. This collection of Gaussian distributed function values
is the Gaussian Processes, GP, from which a random function can be drawn,
in the same manner as a random value is drawn from a distribution. This is
written as

f(x) ~GP(m(x), k(z, ")) (2.37)

As GP is a Bayesian method, a prior is needed that will be updated on
the observations. The most natural prior is a random Gaussian vector drawn
from a normal distribution given as

f N(0, K(X, X)) (2.38)

The mean is assumed to be zero, meaning that drawing from a very large
number of functions and summing them will produce an average of zero.
And the covariance of the points is decided by the covariance function k that
generates the covariance matrix K. Random functions can be drawn from
this prior as shown in figure These functions are drawn from the same
prior information, but they are all different. The matrix X, is constructed
from the input values, of size n* x m where n* is the number of data points
each with m features.

In figure 2.8, data points are added to the GP and a posterior mean is
predicted which is the dashed black line in the plot. The other three are ran-
domly drawn samples from this posterior. The error in the points, in order,
is (0.01,0.01,0.1,0.5, 1e — 6) and are chosen for illustration. The variance is
larger where information is missing or is poor. It is observed that for the
first two points, x = 2 and = = 3, the functions lies very close to the points
as the noise-level is small. The same goes for the last point. The third point
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Figure 2.7: This figure shows an example of drawing samples from the prior. The
same information returns three different functions. The dashed line is the prior
mean, the grey band is the 20 standard deviation from the prior variance, and the
solid lines are the drawn samples.

at z = 5 has some noise and the functions are still close, but can now vary
more. And for the fourth point at x = 7, the noise-level is high. Therefore
the functions can vary greatly, and they tend to be far away from the point.
By chance the blue function is far away from the others. This is allowed by
the posterior covariance (the posterior variances are shown in the figure).

To illustrate the usage of GPR on a specific model with noise, consider
the model y = f(x) + € where € is the additive Gaussian noise with variance
o2. The noisy observations y have the prior

cov(ys, y;) = k(x;,%x;) + 072152-]- (2.39)

where £ is the kernel function and 9;; is the Kronecker delta making sure
the noise is only added to the variances, not covariances, as §;; = 1 if i = j
and zero otherwise. This can also be written as

cov(y) = K(X,X) + 01 (2.40)

K is the covariance matrix for the matrix X of the inputs. The noise is
added only to the diagonal. Introducing the test values, X, gives the joint
distribution [17]
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Figure 2.8: This figure shows drawn samples from the posterior function, where
five data points constrain the predictive mean. The dashed line is the posterior
mean, the gray band is the 20 standard deviation from the posterior variance, and
the solid lines are the drawn samples. The imporant features are commented in
detail in the text

p - (o[ SR aR]) e

Conditioning this joint distribtion on the observations, y, gives

)X, y, X, ~ N(£., cov(f,)) (2.42)

where f, is the predictive mean defined as

and the covariance is

cov(f,) = K(X., X,) — K(Xo, X)[K(X, X) + 021 'K(X, X,)  (2.44)

The equations [2.43] and [2.44] are the main equations for GPR. These
equations can be written simpler, by setting K (X, X) to K and K(X, X,)
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to K., K, — k, giving the covariance for one test point x, and the training
points. This new notation gives

fo =k (K +o2)7 'y (2.45)
V(f.) = k(x.,x.) — k] (K +021)7 'k, (2.46)

This is, again, the main equations for prediction in GPR. These are im-
plemented for this thesis in the programming language PYTHON through the
package GEORGE. The details of the package will be expanded upon later.
The algorithm used by the package is, from [17], given in algorithm

input: X (input), y (targets), k (covariance function), o2 (noise), x,
(test input)
1: L := cholesky(K + o2)

2: a:=L"/(L)y)

3 f = kza
4: v := L/k,
5: V[f] = k(x.,x.) - Vv

6: log p(y—X) := —%yTa — Yilog Ly — 5 log 27

7: return: f, (mean), V[f.] (variance), log p(y|X) (log marginal
likelihood)
Algorithm 1: This is the algorithm for conditioning the prior function,
predict a posterior mean based on the data, and return the log marginal
likelihood for the mean. This algorithm is from [17].

The algorithm [1] use Cholesky decomposition on the covariance matrix
to obtain the decomposition matrix L. This matrix is then used, together
with the targets y, to find the vector . This a is multiplied with the
test-covariance to calculate the conditional predictive mean. L is also used
to find the vector v which, combined with the test-covariance, gives the
variance of the predictive mean V[f,]. Even more, this algorithm returns
the log marginal likelihood, logp(y|X), utilized in the optimization of the
hyperparameters that is described in detail in the next section.

2.2.4 Model optimization

A crucial part of the regression is the selection of kernel and the optimization
of the hyperparameters. The hyperparameters are found by maximizing the
marginal likelihood. This marginal likelihood is the integral of the likelihood
multiplied with the prior
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p(y]X) = / P3|, X )p(F1X)df (2.47)

This is similar to equation but instead of marginalizing over the
parameter @, the likelihood is marginalized over the function values f. The
prior is Gaussian, f|X ~ N(0, K), and the likelihood is also Gaussian, y|f ~
N (f,021), only factorized. Then the following can be observed

X2

exp ( - —) (2.48)

202

1

~N(O0,K +02]) = ——u
y ~N(0,K +0,I) ot

This leads to

)= g /(glﬂ)gg oXp < B 2%;2)

Taking the logarithm of equation [2.49, the log marginal likelihood is ob-
tained [17]

p(y|X

(2.49)

log p(y|X,0) = —%yTKyly — %log |K,| — glog 27 (2.50)
0 is added to imply that the marginal likelihood is conditioned on the
hyperparameters of the kernel, and n is the number of data points. K, =
K;+ 021 is the covariance matrix for the targets y with noise, and K7 is the
covariance of the noise-free f. The first term in equation , —%yTK; ly, is
the data-fit. This is the only term containing the target points. The second
term, —% log | K|, is the complexity penalty which depends only on the kernel
and the noise of the input. The last term, —% log 27, is a normalization. The
negative complexity penalty increases for larger length scales, as the model
is more complex for short length scales than for large. And if the noise is big
this also increases the complexity term, to prevent too severe overfitting.
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2.3 Implementation

2.3.1 Simulated data and underlying function

The template used in this thesis, is a set of simulated data made to be
very similar to real data for the studied process|21]. This simulated data
corresponded to an integrated luminosity luminosity of 3.6 fb~! with a center
of mass energy of 7 TeV, so it was scaled by a factor of 10 to give a data
set with an approximate integrated luminosity of 36 fb~!. The data set was
not used directly, as there might be Poisson fluctuations added. Therefore,
a fit was performed on the simulated data to retrieve an underlying function
based on the "real” process. The chosen function was a Bernstein polynomial
of 5th order. The reasoning for using such a complicated function, was to
present a tough challenge to the GPR to test if the new method could find
this underlying function, and if the background modeling is independent on
the luminosity as claimed by Frate et. al. [2].

2.3.2 Modeling procedure

For this thesis, PYTHON is the chosen programming language, and GPR is im-
plemented from many different sources. SCIKIT-LEARN is a well-established
library for machine learning and does have a GPR part. This was used in
the beginning of the thesis to explore the basics of GPR, then the pack-
age GEORGE [22] was used since it has more options, and Frate et.al. [2] also
utilized this package. The Squared Exponential, Matérn and the Local Gaus-
sian kernels (described above in section are all readily implemented in
GEORGE. The steps for performing the fit are seen in algorithm [2| First, the
hyperparameters of the kernel must be optimized. The code snippet below
shows the built-in call of GEORGE that calculates the log marginal likelihood
discussed in the regression section and returns the value for some set of ob-
servations. The call initializes the kernel with the set of hyperparameters
currently being tested, initiates the GP object, and computes the covariance
matrix where the uncertainty is added to the diagonal of the matrix. Lastly,
the log likelihood is calculated for the observations, which is returned.

Listing 2.1: This code snippet shows how the log likelihood is calculated for
each set of hyperparameters

class log_like_gp:
def __call__(self ,Amp,length):
kernel = AmpxExpSquaredKernel (metric=length)
gp = GP(kernel ,solver=HODLRSolver)
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gp.compute(self.x,yerr=np.sqrt(self.y))
return —gp.log_likelihood (self.y)

To scan over the hyperparameters for the optimization, another package
is used. It is called IMINUIT[23], and is the PYTHON version of MINUIT2[24].
This package utilizes the MIGRAD algorithm, using Quasi-Newton method
and DFP formula 23], to search for the maximum log marginal likelihood by
scanning through parameter values. When IMINUIT has found the maximum,
the value is returned with the hyperparameters. This is done 100 times for
each fit, where the new maximum log likelihood value is compared to the last,
and then the largest one is kept with the corresponding hyperparameters.
The example code in listing returns the log likelihood is for background-
only fits. If the background kernel used for the modeling is changed or a signal
kernel is incorporated, these changed must be done in this call-function.

Inprob = log_like_gp(x,y)

MLML, BFP = fit_minuit_gp(...,Inprob)

initialize kernel

initialize GP object

compute covariance matrix

call predict; constrain on observation and predict on x-values
Algorithm 2: This is the procedure for the fitting.

When the optimization is done, the kernel is re-initialized with the opti-
mized hyperparameters and the covariance matrix is recalculated, as seen in
algorithm [2 To include as much information as possible, a mean function is
given as a part of the prior. The function is actually just the median value
of the distribution being modelled, so the prior is shifted from 0 to this new
value. Then GPR updates the prior function based on the observations, and
provides a prediction. Usually, the prediction test point, x., is some new
unseen point. In this thesis, the final prediction will be on the same input
values as the observations. Then GPR will return the conditional prior as
the predicted posterior which is used as a fitted function.

2.3.3 Background modeling

To model the background, the right kernel must be chosen. For this thesis,
the Exponential Squared and the Matérn kernels are studied. The hyper-
parameters (in fact the squares of the hyperparameters in IMINUIT) are for
both kernels the length scale and amplitude. Therefore, to interpret the hy-
perparameters, the square root must be taken.
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For the background modeling, there are tests that must be performed.
Can the GPR find the underlying function used to generate the toy data
sets? And if not, will the generated bias lead to a spurious signal that must
be accounted for? How these issues are tested, is explained here.

Is GPR is able to find the underlying function, when a background-only
fit is performed? To test this, 20000 toy data sets were generated, and fitted
using GPR. The toys are created by taking the template, looping through the
bins and setting each bin content as a value n from a Poisson generator using
the template value as expected event count. The uncertainty in each bin is
v/n. To test the goodness-of-fit, Pearson’s x? is used as the test statistic[13].
This is given as

X* = i M (2.51)

=1 O-fz

where f; is the fitted function value in bin 4, n is the number of bins, and
y; is the observed value. The uncertainty in the denominator is the uncer-
tainty of the fitted value, giving O'J%i = /fi. As the toy data are randomly
generated, it is difficult to assume that one of these can represent the actual
data distribution, it would be a very lucky strike. This is why so many toys
were generated, to get a distribution over the test statistic. If the assumption
that o, ~ N is true, the distribution of the test statistic will follow a x?
distribution.

A x? distribution has some nice properties; the mean k of the distribution
is the number of degrees of freedom for the fit and the variance is 2k. k is
given as the number of data points in the distribution to be fitted, minus
the number of parameters in the function. Therefore, dividing the x? value
for each fit by the number of degrees of freedom, a value around 1 should be
retrieved for the average. How close to one the value is, indicates how good
the fit is. This procedure is done for the 20000 toys and a x*/ndf distribu-
tion is obtained, and the mean value of this distribution converges towards a
value that characterizes how well the model explains the underlying function.

Following from the background modeling, the claim of luminosity inde-
pendence from Cranmer et. al. [2] is the most logical object of interest to
test. The result from the article are seen in figure 2.9 The green points
are the average x?/ndf for the Gaussian Processes Regression and the blue
for the parametric function. It is observed that the green is apparently con-
sistently above one. This will be discussed later. Instead of many different
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integrated luminosities, only four were tested in this thesis: 36 fb~!, 360 fb~!,
1800 fb~!, 3600 fb—!, with 20000 toys for each.

° ¢ ¢ Gaussian Process model

q_; ¢ & ad-hoc fit + + +

> L

c:uig HH*
it sy
0

o 20 40 60 80 100
Toy Data Integrated Luminosity fb™

Figure 2.9: This is the evolution of the y2/ndf for increasing luminosity, as
presented in [2].

If GPR is to be the preferred method for background modeling, then a
test for bias must be performed. The values of the parameters for a signal
estimation are affected by a potential bias. Usually an ensemble of simulated
data is used for this test, where a fit is performed with a parametric function
to each toy, and the sum of all the residuals is calculated. To save time, a
representative data set is often used, which is called an Asimov data set [14].
This is the underlying function, which the average of all toys will converge to,
with the Poisson error /n; for each bin 7. One fit is performed and residuals
are calculated, which gives an indication of bias for the best modeling of the
underlying function.

A Gaussian signal peak was used to simulate a signal at my = 125 GeV.
The width of the signal was ¢ = 2 GeV and the number of events was
2000. This number of events was chosen to be similar as the total number
of events in table 5 in [I]. The flexibility of GPR was one concern with the
fit to background-only data. If the model is too flexible, it might ”swallow”
the signal, which is not desired. Therefore, a background-only fit was made
to the signal+background data where the Gaussian peak is injected. The
residuals of this fit can then be compared to the background-only fit on the
background-only data.
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2.3.4 Signal modeling

The signal modeling was performed using a signal kernel; the Local Gaussian
Kernel. This kernel contain the hyperparameters location zj,., the mean of
the Gaussian, and the log_width, which is the width of the Gaussian. Both of
these values are fixed during the modeling procedure. The hyperparameter
log_width is actually the logarithmic value of the squared width. This is
important to know when the best fit parameters are interpreted. In addition,
an amplitude-term A is multiplied in the kernel, which is given from IMINUIT
as squared. This gives

kLocalGaussian =A- €xXp ( - ((xl - xloc)Q + ($2 - xloc)2>/<2 : log —Wldth))
(2.52)

This kernel is added to the background kernel, and fitted to the toy
data including a signal peak where the location is fixed at 125 GeV and
the log width is fixed at log(4) giving a width of 2. The test here is to
see if a signal amplitude can be extracted from the fit, with uncertainty.
As the value of the hyperparameter is the squared of the signal amplitude,
AMPHyperparameter = Ai-g, the squareroot must be taken to get the amplitude.
The uncertainty of the signal amplitude is calculated as

T Am

Alternative signal estimation method

A different method of estimating the signal over a background can be used by
... Gaussian Processes are linearly independent. A posterior mean prediction
is calculated from the covariance matrix K from the kernel, noise o2 of the
data points, and data points y

f=K(K+oI)'y (2.54)

In this thesis the predictions performed by the Gaussian Process, are on
the same input values corresponding to the target values used to constrain
the prior. The kernel used to calculate the matrix K for signal+background
estimation, is the sum of the local gaussian signal kernel and squared expo-
nential background kernel, K = K, + K;. Let S = (K + 0?I)~!. Inserting

into equation [2.54}
f=(K;+ K,)Sy = K;Sy + K;,Sy (2.55)
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The two terms are recognized as two mean calculations. Therefore, the
predicted mean can be written as

f=1f,+1 (2.56)

From equation [2.56} it is clear that the calculation of the predicted signal
mean and predicted background mean, can be calculated separately. GEORGE
has the possibility of choosing which kernel to use for the prediction. The
package will calculate the matrix S using the full kernel with added noise,
then constrain the prior on the target values y. The predicted mean is then
retrieved from the package.

The prediction from GP is an estimate on the number of events in each
input value, as the numbers in the bins are simulating counted events. The
distribution is discrete, therefore, the sum can be taken of the predicted
mean for the signal. This gives the number of estimated signal events in the
distribution being modelled,

Nsig - Z Hi sig- (257)
=1

But what about the uncertainty on this number of signal events?
Assume that X = A + B. The variance of this sum is

Var(X) = Cov(X,X) = Cov(A+ B,A+ B) (2.58)
= Cov(A,A) + Cov(A, B) + Cov(B,A) + Cov(B,B)  (2.59)
=Var(A)+ Var(B) +2Cou(A, B) (2.60)

The variance of Ny, is then

V(]JT(Nsig) = CO'U(NSZ'Q, st‘g) = CO’U<Z ,u,-&-g, Z Ni,sig) (261)
=1 =1

In equation the variances and covariances of A and B are added
together, therefore

Cov ( Z Hsigs Z F‘si9> = Z Var(ﬂi,sig) +2 Z CO'U(,Ui,sig? /Lj,sig) (2.62)
=1 =1 =1

4,J:9<J

It is easy to observe that the first term is the sum of the diagonal elements
in the posterior covariance matrix, and the second term is two times the sum
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of all off-diagonal elements in one triangle of the posterior covariance matrix.
The terms are added together, therefore

Cov ( Z Hsigs Z ,Usig) = Z Cov(fi sigs Hjsig) = Var(Nsig) (2.63)
i=1 i=1

i’j

The variance of the number of signal events is the sum of the posterior
covariance matrix for the posterior mean. Both the predicted mean and pos-
terior covariance matrix are outputs from GEORGES predict statement.

2.3.5 Number of degrees of freedom

The number of degrees of freedom is defined as the freedom to move. A
set of data with n entries has n degrees of freedom. This is because all the
data points in the set can vary on their own assuming they are independent.
The data sets in this thesis will contain a number of events for each bin,
and all of these values are independent on each other. Consider the exam-
ple: a data set contain 10 entries. The values of these can be arbitrarily
chosen, so they are free to have any value, giving this data set 10 degrees
of freedom. Now, some knowledge about the data is introduced; the mean
of the data set is 5. The mean for a set of values is found via the for-
mula mean = sum of values/number of values, therefore the sum of the data
points must be meanxn. So for the set of 10 values, the sum must be 50. This
is a constraint on the degrees of freedom, which can be shown by choosing
some values. The first value can be arbitrary, for example 4, and this can be
done for the next seven. The set is now [4,5,7,3,9,1,8, X, Y], where X and
Y are not chosen yet. The sum must be 44+54+7+3+9+14+8+X+Y = 50,
and the value for either X or Y can be chosen arbitrarily. But choosing one,
means that the other looses its ability to vary: X = 4 means that ¥ = 9,
and X = 6 means that Y = 7. When this information was introduced, the
number of degrees of freedom was reduced by one, 10 — 1 = 9. The data set
has 9 degrees of freedom. Introducing more such information, the number of
degrees of freedom will be reduced even further.

For regression problems, the concept of number of degrees of freedom
becomes more cloudy and difficult. A model with p parameters can vary in
all the parameters, giving the model p degrees of freedom, or flexibility to
vary. Consider a distribution with n data points. From the last paragraph,
this distribution has n number of degrees of freedom. If this distribution is
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fitted with a model with p parameters, the parameters are optimized using
the information in the data set, which impose restrictions on the number of
degrees of freedom. When the parameters are optimized, some of the data
points in the distribution are not free to vary anymore, reducing the number
of degrees of freedom for the fitted model by the number of parameter p.
Then the number of degrees of freedom for the distribution is n — p.

GPR is a General Additive Model, or a linear smoother [17,25], and does
not contain any parametric function. The method of counting parameters
does not work for GPR, therefore the number of degrees of freedom must be
calculated some other way. Consider the predicted mean for the input values

f=K(K+aoI)y. (2.64)

Say that K has the eigendecomposition K = Y7 \;u;u;, where )\; is
the ith eigenvalue and u; is the corresponding eigenvector. K is real and
symmetric positive semidefinite, so the eigenvalues are real and > 0. The
eigenvectors are orthogonal. Let y = >_"" |, v;u; where 7; = uy. The pre-
dicted mean can then be written

Z x +02 (2.65)

If the fraction is much less than 1 for the ¢th u, this component in y is
practically removed. This smooths out any highly varying components in y.
So for this smoother, the effective number of degrees of freedom, is defined

s [I7, 25]
— )\z +o0 2

n

=tr(K(K +o2I)"") (2.66)

where tr is the trace.
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Chapter 3

Results and discussion

The results of the different tests will be presented and discussed in this
chapter. It is divided into three parts; background modeling, bias test, and
signal estimation.

Gaussian Processes Regression requires prior information that is updated
based on data and then used for fitting. The prior used for testing was the
squared exponential kernel and a mean corresponding to the median value
of the data set being modelled.

To generate toy data sets, a 5h-order Bernstein polynomial was used as an
underlying function, with added Poisson noise. In figure an example of
such a toy data set is shown, where the red line is the underlying function
and the black dots are one toy data set.
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Figure 3.1: This figure shows an example of a toy distribution corresponding
to an integrated luminosity of 36 fb~! generated using Poisson fluctuations.

The black points are the toy data set, and the red line is the underlying
function.

3.1 Background modeling

The first test that was performed, was how well GPR could find the un-
derlying function of the data sets. For this a x? per number of degrees of
freedom was calculated (as discussed in section [2.3.3)), and the distribution
of the test statistic for 20000 toy data sets is seen in figure [3.2l The shape
of the distribution appears to follow a x?.

The distribution seems to be shifted to the left, and calculating the mean
of the distribution, ji,2/,q = 0.924, confirms this suspicion. The immediate
concern was that GPR is overfitting slightly for each toy distribution. Instead
of diving into the realm of overfitting, an easier check was performed. Are the
numbers of degrees of freedom used for the model correct? The number of
degrees of freedom for the model is assumed to be 2. One for the amplitude
and one for the length scale in the kernel. The number of degrees of freedom
for the test statistic distribution is then 40—2 = 38, where 40 is the number of
bins. To confirm this assumption, the y? distribution was calculated, as seen
in figure [3.3] The mean of this distribution should be the number of degrees
of freedom for the distribution. The mean is found to be p,2 = 35.1, which
means that the number of degrees of freedom for the model should be around
5. Two are identified, where are the missing three? The theoretical x? for 35.1
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numbers of degrees of freedom is also plotted in figure[3.3] confirming that the
test statistic distribution follows a x? and the assumption of Gaussian-like
errors holds.
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Figure 3.2: This plot show how the test statistic x?/ndf is distributed.

After some time, and discussions, the possibility of using the effective
number of degrees of freedom for calculating the freedom of the model came
to mind. The effective number of degrees of freedom were calculated, as
described in for each toy and the mean of these was found to be
feffnag = 4.65. This coincides with the mean p,2 of the x? distribution
in figure [3.3] Using the effective number of degrees of freedom, the new dis-
tribution of x? per number of degrees of freedom is shown in blue in figure
and the mean of this distribution is piy2/cfmar = 0.993. It is easy to
see the impact of using the effective vs the ”classic” (number of data points
minus the number of explicit parameters) number of degrees of freedom.

The average of the test statistic x? per effective number of degree of
freedom for 20000 toys, are 0.993. This means that thee Gaussian Process
manages to find the underlying function for an integrated luminosity of 36
fb~!, but will this still be the case when the number of events increases?
A x? distribution for each luminosity was calculated, and is found in figure
[3.5] There is no observed difference between the distributions. They overlap
quite well, and are very similar to the distribution in This indicates
that the GP manages to find the underlying function for increasing event
counts, meaning that GP is independent of the integrated luminosity. To
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Figure 3.3: This figure shows the distribution of the y? test statistic for each
fit performed by Gaussian Processes. The mean of the distribution is 35.1.

The smooth line is the theoretical x? distribution for 35.1 numbers of degrees
of freedom.

easier observe this, the means of the x2/ndf for the GP were calculated. To
check if a parametric function could find the underlying function for increas-
ing luminosity, a x?/ndf distribution was also calculated for the parametric
function. The function used is the exponential of a second degree polynomial,
exp(az?®+bx+c), called Epoly2. The results for both the GP and parametric
function are found in figure [3.6) where both the mean values of the GP test
statistic and the test statistic for Epoly2, are plotted. The performance of
the parametric function fit declines when the integrated luminosity increases.
The means of the test statistic for the GP fits lies very close to 1, confirming
that the Gaussian Process is independent of the luminosity. This modeling
technique manages to find the underlying function when the number of events
increases.
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Figure 3.4: This figure shows the x?/ndf distribution for the fits performed
with GP, using both the classical number of degrees of freedom of 2 and the
effective number of degrees of freedom. The blue line is the effective ndf
with a mean of 0.993, and the red is the classical method with a mean of
0.924. The solid blue line is the theoretical x? distribution for 35.1 numbers
of degrees of freedom.
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Figure 3.5: In this figure, the y? distribution for each integrated luminosity
value is shown.
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Test statistic evolution
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Figure 3.6: In this figure, the mean of the test statistic x?/ndf for both the
parametric fits (blue points and line) and GP fits (red points and line) is
shown. The luminosity scale factor is the value used to scale the toys to the
desired integrated luminosity. The errorbars are the 1o deviations.

3.2 Testing for bias

In this part, the results from the bias test will be presented and studied. It
is important to note that the figures in this part might contain a turquoise
colored dashed line: This represents an approximation of the expected signal
for a SM Higgs boson at a given luminosity.

To test if the background model has a bias when modeling a distribu-
tion, a background-only model is fitted to the Asimov data set (described
in section of a signal-free background distribution. The distribution
with an integrated luminosity of 36 fb~! was fitted with a GP using only a
background kernel, and the residuals are seen in figure (3.7, There is observed
some wave-like bias, but the amplitude of this bias is small, less than 3.7%
of the expected signal. The uncertainty on the residuals, are larger, around
25% of the expected signal. To see if this bias scales with the integrated
luminosity, the modeling was redone on distributions with higher number
of events. The result for 360 fb~! is seen in figure , and both the bias
and uncertainty is, relative to the expected signal, decreasing. And when
the integrated luminosity is increased even further, figure [3.9 and show
that the bias and uncertainty decreases even more, relative to the expected
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signal. The actual values of the bias and uncertainty are larger for higher
number of events, but they do not scale proportionally with the integrated
luminosity. This mean that modeling using GP does not generate a large
bias in the residuals.

Background fit on background-only
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Figure 3.7: This figure shows the residuals of a background-only GP fit on a
signal-free Asimov data set corresponding to an integrated luminosity of 36 fb—.
The dark blue line is the residuals, the turquoise dashed line is an approximation
of the expected signal for a SM Higgs boson, and the grey area are the 1o standard
deviations. The black points is the zero residual indicators.
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Background fit on background-only
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Figure 3.8: This figure shows the residuals of a background-only GP fit on a
signal-free Asimov data set corresponding to an integrated luminosity of 360 fb=!.
The dark blue line is the residuals, the turquoise dashed line is an approximation
of the expected signal for a SM Higgs boson, and the grey area are the 1o standard
deviations. The black points is the zero residual indicators.
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Figure 3.9: This figure shows the residuals of a background-only GP fit on a signal-
free Asimov data set corresponding to an integrated luminosity of 1800 fb—!. The
dark blue line is the residuals, the turquoise dashed line is an approximation of
the expected signal for a SM Higgs boson, and the grey area are the 1o standard
deviation. The black points is the zero residual indicators.
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Background fit on background-only
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Figure 3.10: This figure shows the residuals of a background-only GP fit on a
signal-free Asimov data set corresponding to an integrated luminosity of 3600 fb—!.
The dark blue line is the residuals, the turquoise dashed line is an approximation
of the expected signal for a SM Higgs boson, and the grey area are the 1o standard
deviation. The black points is the zero residual indicators.

Gaussian Processes may be very flexible, therefore it is important to check
if a signal present in the distribution is swallowed by the model, or if the
model only focuses on the background. A fit was performed using GP with
only a background kernel to a distribution containing a signal, corresponding
to an integrated luminosity of 36 fb~!. The residuals are seen in figure m
The signal peak is observed in the residuals, which means that the back-
ground model does not swallow the signal. The residuals are calculated by
subtracting the predicted mean from the Asimov data set, and the blue line
in figure does show increased bias, especially around the signal region.
The residuals on the signal do seem to follow the shape of the expected signal
with the same amplitude, only shifted down by the bias.

Will the bias seen in figure decrease relative to the expected signal,
as in the previous section, or will it scale with the integrated luminosity?
Figure shows the residuals for a fit on a distribution with 360 fb~!, and
the signal is still observed, but so is the bias. Comparing the lowest point in
the plots in figure and the residual is increased by a factor 10, just
like the integrated luminosity. So it seems this bias does scale. Inspecting
figure and [3.15] the residual of the signal is still observed, with a shape
comparable to the expected signal. The bias of the background residuals
persists, and the shape of these has changed a bit; there is more swinging,
and also the lowest point has decreased further somewhat. This decrease
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might explain why the signal residuals in the two lower luminosity plots
seems to have a larger amplitude than the ones for higher luminosities.

The reason for this bias, comes from the fact that the background model
tries to accommodate the signal without rapidly changing shape. This can
be seen in figure [3.12] where the blue is the background modeling on a distri-
bution with a signal injected. This accommodation also gives a more wiggly
shape on the residuals for the higher luminosities.

Background fit on signal plus background
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Figure 3.11: This figure shows the residuals of a background-only GP fit on
an Asimov data set where a signal is present, corresponding to an integrated
luminosity of 36 fb~!. The dark blue line is the residuals, the turquoise dashed
line is an approximation of the expected signal for a SM Higgs boson, and the
grey area are the lo standard deviations. The black points is the zero residual
indicators.
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Figure 3.12: This figure shows the distribution of an Asimov data set with a
signal present in the distribution corresponding to an integrated luminosity of 36
fb~1, and the distribution has been fitted with a background only GP as the blue
line. The errorbars are given in red for the Asimov data set, but they are small
and covered by the point.
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Figure 3.13: This figure shows the residuals of a background-only GP fit on
an Asimov data set where a signal is present, corresponding to an integrated
luminosity of 360 fb~!. The dark blue line is the residuals, the turquoise dashed
line is an approximation of the expected signal for a SM Higgs boson, and the
grey area are the 1o standard deviations. The black points and red line is the zero
residual indicators.
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Residuals

Figure 3.14: This figure shows the residuals of a background-only GP fit on
an Asimov data set where a signal is present, corresponding to an integrated
luminosity of 1800 fb~!. The dark blue line is the residuals, the turquoise dashed
line is an approximation of the expected signal for a SM Higgs boson, and the
grey area are the lo standard deviations. The black points is the zero residual

indicators.
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Figure 3.15: This figure shows the residuals of a background-only GP fit on
an Asimov data set where a signal is present, corresponding to an integrated
luminosity of 3600 fb~!. The dark blue line is the residuals, the turquoise dashed
line is an approximation of the expected signal for a SM Higgs boson, and the
grey area are the lo standard deviations. The black points is the zero residual

indicators.
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As previously observed, there is some bias in the background modeling,
so to estimate the impact on a signal extraction, a spurious signal test was
performed. A model with both background and signal kernel is fitted to the
signal-free distribution, to see if the signal amplitudes were different from
zero. In table [3.1] the results for the different luminosities are given. The
estimated amplitudes are zero. However, the plot in figure does have a
small bias in the form of a downward fluctuation. As per the construction of
the amplitude term, negative values are not taken into account, and so this
negative deviation is not estimated. Fortunately, the bias follows the same
behavior as in figure |3.7] so adding the signal kernel did not visibly affect
the residuals, and the bias is less than 3.7 % of the expected signal. Figure
shows that the bias in the residuals decrease with increasing integrated
luminosity, as seen before in figure [3.10

Table 3.1: In this table, the result of a spurious signal test is shown, with
a fixed mean at the mass point 125 GeV. The amplitudes of the signal are
zero or close to zero.

Luminosity [fb~!] | Estimated Signal
36 0
360 0
1800 0.06
3600 0.03
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Signal + background fit on signal plus background distribution
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Figure 3.16: This figure shows the residuals of a GP fit using a signal and back-
ground kernel on a signal-free Asimov data set, corresponding to an integrated
luminosity of 36 fb~!. The dark blue line is the residuals, the turquoise dashed
line is an approximation of the expected signal for a SM Higgs boson, and the
grey area are the lo standard deviations. The black points is the zero residual
indicators.
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Figure 3.17: This figure shows the residuals of a GP fit using a signal and back-
ground kernel on a signal-free Asimov data set, corresponding to an integrated
luminosity of 3600 fb~!. The dark blue line is the residuals, the turquoise dashed
line is an approximation of the expected signal for a SM Higgs boson, and the
grey area are the 1o standard deviation. The black points and red line, is the zero
residual indicators.
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3.2.1 Different underlying function

The underlying function used so far in the thesis, has been a Bernstein poly-
nomial of 5th order. What if some other function is used instead, will GP
still be able to model the background with a low bias or will there be some
radical difference? The Asimov data set is now represented by a Epoly2-
function fitted to the simulated data, in the same manner as the Bernstein
polynomial.

The residuals of a background-only kernel on a signal-free background
distribution with an integrated luminosity of 36 fb~!, is seen in figure m
Comparing these residuals with the ones in figure 3.7 the trend is very
similar. There is bias observed in the residuals, and there is a wave-structure
present. The largest non-edge deviation is shifted to the left in the plot and
is somewhat larger than in figure [3.7], while the deviations on the right side
are smaller, and the uncertainty is also of the same magnitude. The bias in
the signal region is 2.9% of the expected signal, and the spurious signal is
estimated to 0.

The integrated luminosity is increased to 360 fb™!, to see if the same evo-
lution is observed for Epoly2 as for Bernstein of 5th order. Figure shows
the residuals, and the same trend is seen; the bias and uncertainties decrease
relative to the expected signal. And increasing even further, the relative bias
and uncertainties continue to decrease. There is one difference that must be
noted; when the integrated luminosity is 3600 fb~!, the residuals in figure
3.10] is practically zero, but in figure there are still some deviation in
the signal region. This indicates that Gaussian Processes are not totally in-
dependent on the underlying function, but within the framework presented
in this thesis, this dependence is negligible.
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Background fit on background-only
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Figure 3.18: This figure shows the residuals of a background-only GP fit on a
signal-free Asimov data set where the underlying function is the Epoly2, corre-
sponding to an integrated luminosity of 36 fb~!. The dark blue line is the residu-
als, the turquoise dashed line is an approximation of the expected signal for a SM
Higgs boson, and the grey area are the 1o standard deviation. The black points
is the zero residual indicators.

Background fit on background-only

4000 - I3 —— Residuals
—-= Expected signal
Bl 1o

3000 -

|
|
|
!I [Ldt=360 !
|
2000 4 |
|

Residuals

1000 4

160 liO léO léO l‘IIO lfI)G léO 17I0 lél)
My [GeV]

Figure 3.19: This figure shows the residuals of a background-only GP fit on
a signal-free Asimov data set where the underlying function is the Epoly2, cor-
responding to an integrated luminosity of 360 fb~'. The dark blue line is the
residuals, the turquoise dashed line is an approximation of the expected signal for
a SM Higgs boson, and the grey area are the 1o standard deviation. The black
points is the zero residual indicators.
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Background fit on background-only
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Figure 3.20: This figure shows the residuals of a background-only GP fit on a
signal-free Asimov data set where the underlying function is the Epoly2, corre-
sponding to an integrated luminosity of 3600 fb~!. The dark blue line is the
residuals, the turquoise dashed line is the expected signal, and the grey area are
the 10 standard deviation. The black points is the zero residual indicators.

3.2.2 The Matérn kernel

There are other kernels that may be used for background estimation instead
of the squared exponential. The Matérn kernel (described in section
was also tested for the background modeling to see if it would perform bet-
ter than the more commonly used squared exponential. This kernel has a
parameter v which controls the complexity of the kernel, and the hyperpa-
rameter length scale [. The parameter v was fixed to 3/2, and [ was free
for optimization. A constant kernel (as described in is multiplied with
the Matérn kernel to represent the amplitude A. The result from a fit using
only the background kernel on an Asimov data set with a signal injected is
shown in figure [3.21] and figure [3.22] The signal is partly absorbed for 36
fb~! and almost completely absorbed for 3600 fb~—!. Therefore, the Matérn
class of kernels are not suited for background estimation in this problem, as
the signal is swallowed by the fit due to the flexibility of the kernel. These
kernels are actually products of an exponential function and a polynomial,
making them more adaptable for rapid deviations.
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Background fit on signal plus background, Matern
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Figure 3.21: This figure shows the residuals of a GP fit using a Matérn kernel
as the background kernel on an Asimov data set with a signal present in the
distribution, corresponding to an integrated luminosity of 36 fb—!. The dark blue
line is the residuals, the turquoise dashed line is an approximation of the expected
signal for a SM Higgs boson, and the grey area are the 1o standard deviation. The
black points is the zero residual indicators.
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Figure 3.22: This figure shows the residuals of a GP fit using a Matérn kernel
as the background kernel on an Asimov data set with a signal present in the
distribution, corresponding to an integrated luminosity of 3600 fb~!. The dark
blue line is the residuals, the turquoise dashed line is an approximation of the
expected signal for a SM Higgs boson, and the grey area are the lo standard
deviation. The black points is the zero residual indicators.
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3.3 Signal estimation and modeling

To study how well Gaussian Processes can model a distribution with a signal
present, a distribution with a signal injected was fitted using GP with both
a signal and background kernel. The function used to simulate a signal
distribution was a Gaussian distribution as described in section [2.3.3] and
the signal kernel for the GP is given in section [2.3.4]

3.3.1 Estimating a signal amplitude

When doing precise measurements of the Higgs boson properties, extracting
the estimated parameters of the fitted model with as small as possible un-
certainty is important, as these provide information about the Higgs boson
production. So, even though GP does fit the distribution very well, can the
hyperparameters serve this purpose? To study this, the signal amplitude
was retrieved from IMINUIT with the calculated uncertainty. The standard
deviation of the extracted hyperparameters are calulated as given in section

The results are displayed in table [3.2]

Table 3.2: This table shows the estimated signal amplitudes, with uncertain-
ties, for the different integrated luminosities. The fit was performed with a
GP using a signal and background kernel on an Asimov data set with a signal
present. The expected signal is the known amplitude of the injected signal.

Luminosity [fb~!] | Estimated Signal | Expected Signal
36 373.2 £271.0 398.9
360 3955.0 £2778.6 3989.4
1800 19927.8 +14096.5 19947.1
3600 39901.5 +28218.5 39894.2

The estimated signal in table is the signal amplitude from IMINUIT,
and expected is the normalized amplitude of the signal injected into the dis-
tribution. The estimated signal amplitude for a distribution at 36 fb~!, is
quite close to the actual value of the amplitude. The uncertainty of this
parameter is large, about 70 % of the estimation. Such a large uncertainty
is not desired as the measurement should be estimated with great precision.
It is observed that for increasing integrated luminosity, the estimated sig-
nal amplitude continues to be close to the actual amplitude, but the large
uncertainty persists. Therefore, this method of using a signal kernel com-
bined with a background kernel for precisely estimating the parameters of
the signal distribution, is not the optimal one. In the literature, there is no
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mention of errors on the hyperparameters themselves, only errors related to
the predictions and target values. Either the kernels that are used must be
changed or tweaked, or other ways to estimate the parameters of interest
must be used. Also, the possibility of taking negative signals into account in
the Spurious Signal fit, should be implemented.

Alternative method for signal estimation

The method for extracting the estimated number of signal events from the
sum of the posterior mean, as described in section was tested using
an Asimov data set with an injected signal. The sum of the posterior co-
variance matrix is the variance of the estimated number of signal events. To
retrieve the error on the estimated number of signal events, the square root
of the covariance-sum was taken. Table [3.3|shows the results of the modeling
for all integrated luminosities. The estimated signal is the calculated signal,

and the expected signal is the signal injected into the distribution with a bin
width of 2.

Table 3.3: This table shows the estimated number of signal events, with
uncertainties, for the different integrated luminosities. The fit was performed
with a GP using a signal and background kernel on an Asimov data set with
a signal present. The expected signal is the known number of events of the
injected signal.

Luminosity [fb~!] | Est. nr of sig. events | Exp. nr of sig. events
36 895.5 £ 198.9 1000
360 9867.3 4+ 655.0 10000
1800 49907.4 + 1482.4 50000
3600 99989.0 + 2106.2 100000

The estimated number of signal events for a distribution at 36 fb=! is
89.6% of the expected signal yield with an uncertainty of 22% on the es-
timation. This result is not optimal. However, increasing the integrated
luminosity to 360 fb~!, improved the estimation to 98.7% of the expected
signal with an uncertainty of only 6.6% of the estimated number of events.
When increasing the luminosity even further, the estimated signal yield was
99.8% of the expected signal count with an uncertainty of 2.9% on the es-
timation. The last test was for an integrated luminosity of 3600 fb=!. This
enhanced the signal estimation to 99.989% of the expected number of events
with an uncertainty of 2.1%. Therefore, this method of using the linearity
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of GP, and the sum of the predicted signal mean and covariance, is a very
promising technique for extracting the signal yield from a distribution.

3.3.2 Modeling a signal over a background distribution

The residuals from modeling a distribution corresponding to an integrated
luminosity of 36 fb™!, is seen in figure Some bias is seen in the back-
ground residuals, but this is not worse than in figure There are a small
spike in the residuals in the signal region, which is likely due to the fact
that in addition to fitting the signal, the signal kernel absorbs some of the
remaining bias in the background model. The background-bias 1.6% larger
than in figure meaning that a small part of the background tries to ac-
commodate some of the signal. The uncertainty is comparable in size as in
figure but now there is an increase in the signal region, which is added
to the residual uncertainty from the signal kernel. Figure shows the
distribution of an Asimov data set with as signal injected corresponding to
an integrated luminosity of 36 fb~!, fitted with a GP using both a signal
kernel and background kernel.
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Figure 3.23: This figure shows the residuals of a GP fit using a signal and back-
ground kernel on an Asimov data set with a signal present in the distribution,
corresponding to an integrated luminosity of 36 fb~!. The dark blue line is the
residuals, the turquoise dashed line is an approximation of the expected signal for
a SM Higgs boson, and the grey area are the 1o standard deviation. The black
points is the zero residual indicators.
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Figure 3.24: This figure shows the distribution of an Asimov data set with a
signal present in the distribution corresponding to an integrated luminosity of 36
fb=1, and the distribution has been fitted with a signal+background GP as the
blue line. The errorbars are given in red for the Asimov data set, but they are
small and covered by the point.

Increasing the integrated luminosity to 360 fb™!, the residuals in figure
have the same behavior as in [3.8, The bias in the residuals, and their
uncertainties, decrease relative to the signal. Continuing to increase the
integrated luminosity to 1800 fb=! and further to 3600 fb~! decreases the
bias and uncertainties relative to the signal even more, as seen in figures
and [3.27 GP does a very good job of fitting the representative data sets
without overfitting, and as the integrated luminosity will only increase in the
future, it seems that GP is very suitable for modeling the distribution with
and without an injected signal.
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Signal + background fit on signal plus background distribution
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Figure 3.25: This figure shows the residuals of a GP fit using a signal and back-
ground kernel on an Asimov data set with a signal present in the distribution,
corresponding to an integrated luminosity of 360 fb~!. The dark blue line is the
residuals, the turquoise dashed line isan approximation of the expected signal for
a SM Higgs boson, and the grey area are the 1o standard deviation. The black
points is the zero residual indicators.
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Figure 3.26: This figure shows the residuals of a GP fit using a signal and back-
ground kernel on an Asimov data set with a signal present in the distribution,
corresponding to an integrated luminosity of 1800 fb~!. The dark blue line is the
residuals, the turquoise dashed line is an approximation of the expected signal for
a SM Higgs boson, and the grey area are the 1o standard deviation. The black

points is the zero residual indicators.
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Signal + background fit on signal plus background distribution
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Figure 3.27: This figure shows the residuals of a GP fit using a signal and back-
ground kernel on an Asimov data set with a signal present in the distribution,
corresponding to an integrated luminosity of 3600 fb~!. The dark blue line is the
residuals, the turquoise dashed line is an approximation of the expected signal for
a SM Higgs boson, and the grey area are the 1o standard deviation. The black
points is the zero residual indicators.
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Chapter 4

Conclusion and outlook

In this thesis, the performance of the machine learning method Gaussian
Processes used to model a background distribution similar to the background
to the H — ~~y signal at LHC with and without an injected Gaussian signal
at 125 GeV, has been studied. The goal for this study, was to find out if
GP is a viable alternative to parametric background modelling (specifically
for the H — ~7 channel) and if it can be applied without modification for
ever-increasing luminosity of the data.

Gaussian Processes manages to find the underlying function used to gen-
erate the toy distributions resembling data with an integrated luminosity of
36 fb~!, with a x?/ndf = 0.993. When the integrated luminosity was in-
creased, the Gaussian Process continued to perform well, managing to find
the underlying function. The mean of the x?/ndf was shifted from 0.92 to
0.993 by using the effective number of degrees of freedom, instead of counting
the number of hyperparameters in the kernel. This shows the importance of
using the correct calculation method for finding the number of degrees of
freedom.

The modeling of a signal-free distribution using Gaussian Processes with
only a background kernel, does give rise to some bias for the 36 fb=! distribu-
tion. But this bias is less than 3.7% of the expected signal. The uncertainty
of the residuals is about 25% of this expected signal, which is too large. When
the integrated luminosity increases, however, this bias and uncertainty dimin-
ishes. When the signal-free distribution is modelled by Gaussian Processes
using both a signal and background kernel, the spurious signal is estimated
to be zero, however, the signal kernel does not take into account negative
amplitudes.

The residuals do contain the injected signal, when modeling a distribu-
tion with a signal injected with Gaussian Processes with only a background
kernel, meaning that the Gaussian Process tested with a squared exponential
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as kernel with a length scale [ above 70, does not "swallow” the signal. How-
ever, a larger bias is now present in the residuals. This is because GP tries
to accommodate the signal without varying rapidly. When a signal kernel is
used together with the background kernel for the modeling of a distribution
with a signal present, the Gaussian Process manages to fit the distribution
resulting in small residuals, which decreased with increasing integrated lumi-
nosity. For a distribution with an integrated luminosity of 36 fb~!, the bias is
5.3% of the expected signal, but this decreases relative to the expected signal
distribution for increasing luminosities. The bias seen when the background
kernel tries to accommodate for the signal is reduced by 18.7%.

Extracting an estimate of the signal amplitude using the optimized hy-
perparameter representing the signal amplitude of the signal kernel, did not
prove successful. The values of the extracted estimation did correspond well
with the known amplitudes, but the uncertainties of the estimated signal
amplitudes were large. Therefore, precise measurements of the parameters
of a signal using a signal kernel, is not the optimal approach.

Using the linearity of the GP to estimate the signal yield, proved suc-
cessful. The estimation, relative to the expected number of events, improved
from 89.6% to 99.989% when the integrated luminosity was increased from 36
fb~! to 3600 fb~!. The uncertainties were 22% and 2.1%, respectively. These
results indicate that this approach is extremely promising for estimating the
signal parameters.

The Matérn kernel did not perform well as a background kernel, as it
swallowed the signal injected into the distribution.

Comparing two fits on a signal-free distribution using only a background
kernel, where one fit is on the Bernstein polynomial of 5th order and the
other is on the Epoly2 function, proved that while there are differences,
these are negligible. Gaussian Processes, for the purpose of this analysis, is
independent of the underlying function.

This finding is in agreement with the result found by Frate et. al. [2], who
performed used the same method on a very different background distribution.

Outlook

The results from this study looks very promising, although there are still
many unresolved questions. The first approach would be to apply the method
to actual data. Then, exploring how a negative signal amplitude could be
allowed in the kernel-only method might be useful. It is also important
to continue to explore the estimation of the number of signal events (and
it’s uncertainty) in the GP-framework, using the predicted signal mean and
covariance. If these methods does not prove fruitful, another strategy could
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be to combine a background modeling GP and a parametric fit to extract
signal parameters. Last, it could be interesting to create and study different
kernels that can implement more information from the knowledge about the
H — ~7v channel.
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