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INTRODUCTION 
Cancer is a group of diseases where normal cells in the body change and gain the ability to multiply out 

of normal control with potential for invasion of surrounding tissue and dissemination to distant organs1. 

Cancer is an ancient disease and has been described in papyrus scripts from Egypt dated to year 1500 

B.C. and even back then, cancerous tumors were surgically removed. The word cancer was presumably 

first used by Hippokrates around 400 B.C. to explain the disease’s resemblance to a crab with legs that 

spread out into the surrounding tissue2. Cancer occurring in the mammary glands is called breast cancer. 

Breast cancer has been diagnosed in excavated mummies and it is believed that also Renaissance 

paintings show women suffering from breast cancer3,4. Today, breast cancer is the most common cancer 

in women across the world5. In 2018, the number of new breast cancer cases worldwide was estimated 

to 2.08 million and there were around 626.000 breast cancer related deaths6. In Norway in 2017, 3589 

women were diagnosed with breast cancer and 623 women died of the disease. Compared to many 

other cancers, the long term survival of breast cancer is good, and in Norway from 2013-2017, the 

relative 5 year survival was 90.4%7.  

 

Cancer genomics 
The central dogma of molecular biology is the theory of 

how information flows in the cell from DNA via mRNA to 

proteins (Figure 1)8,9. The genome of a mammalian cell 

consists of all its genetic material, i.e. the DNA. It may be 

subject to a multitude of different aberrations, for 

instance single base substitutions (point mutations), 

insertions or deletions of small or large segments of DNA, 

rearrangements and copy number changes 

(amplifications and deletions)10. Genes are transcribed 

into mRNA and these molecules constitute the 

transcriptome of the cell. The mRNA then serves as a 

template for translation into proteins11. mRNA molecules 

may be subject to splicing before translation, yielding 

different isoforms of proteins based on the same original 

Figure 1. Genetic alterations may disrupt cellular 
processes at multiple different levels and contribute 
to cancer formation. Reproduced from Garraway et 
al. with permission from Elsevier13. 
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mRNA molecule. The set of all expressed proteins is called the proteome. Proteins are the executive part 

in a cell, they provide structure, serve as enzymes, and are involved in transport and many other tasks. 

Proteins are the end result of the transcription and translation, and proteomic investigation is 

undoubtedly very informative. However, studying the proteome is more challenging than studying DNA 

and mRNA; especially since there exist >100.000 different proteins due to post translational 

modifications. The correlation between gene and protein expression is, in many cases, low. This may be 

due to differences in translational efficiency, splicing events, different rate of degradation of proteins 

and mRNA molecules, or technical issues12. Genomics is a general term for the systematic studies of 

(some or all of) the genome or its products, e.g. DNA, mRNA or proteins11,13. 

Already in 1902 did the German zoologist Theodor Boveri postulate a genetic basis for cancer: “A 

malignant tumor cell is (…) a cell with a specific abnormal chromosome constitution.”14,15 He also 

presented ideas of inhibitory and stimulatory chromosomes which when perturbed could drive the cell 

into abnormal cell division. This harmonizes well with what today is known about tumor suppressor 

genes and proto-oncogenes1. Tumor suppressor genes are genes that in normal cells work to slow down 

cell division, repair DNA damage or induce apoptosis (programmed cell death), i.e. they act as cell-

proliferation “brakes”. In contrast, proto-oncogenes are genes that usually stimulate cell division. If a 

tumor suppressor gene is inactivated (e.g. by mutation or deletion), the brakes of the cell proliferation 

machinery may fail to inhibit proliferation. 

Likewise, if a proto-oncogene is activated (e.g. 

by mutation or amplification), it may turn into 

an oncogene that fuels proliferation in an 

abnormal way. Both these situations may lead 

to increased cell proliferation, a fundamental 

characteristic of cancer cells16. However, cell 

proliferation alone is not sufficient for 

development of a tumor. In two seminal 

papers, Hanahan and Weinberg proposed 

several additional key features that cancer 

cells need to overcome to “succeed” as a 

tumor, the so-called hallmarks of cancer that 

are illustrated in Figure 217,18.  
Figure 2. The hallmarks of cancer. Adapted from Hanahan et al.18 
with permission from Elsevier. 
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The discovery that mutations in normal genes may cause cells to transform to cancer cells, motivated 

researchers to start the formidable work of deriving the sequence of the whole human genome19. This 

work was initiated in 1990 and completed in 200320. During this time, the sequencing technology 

improved significantly and with the development of massive parallel sequencing technology and the 

availability of a complete human reference genome, cancer research was led into the genomic era21. 

With the human genome as reference, somatic mutations (those that arise in the tumor), could be 

identified and catalogued22. 

A common characteristic of cancer is genomic instability, which generates genetic diversity, enabling the 

cell to acquire features necessary for growth and progression18. Most human cancers arise due to only a 

few (two to eight) mutations/alterations that occur in a cell sequentially over time. Each of these driver 

mutations causes a selective growth advantage to the cell, in contrast to mutations that give no 

advantage to the cell, so-called passenger mutations13. The exact number of genes harboring driver 

mutations (driver genes) is not known. Importantly, not all mutations in a driver gene are driver 

mutations, as the specific effect of the mutation plays a role. In addition may other genomic aberrations 

such as copy number changes (amplifications or deletions) and epigenetic changes (DNA methylation, 

histone modifications etc.), play a role in carcinogenesis23. Hypermethylation of certain cytosine 

residues in gene promoters may lead to reduced gene transcription. When this occurs in tumor 

suppressor genes, it may promote cancer. Methylation also plays an important role in cellular 

differentiation24. 

The effect of genomic aberrations in cancer cells is elicited through only a dozen signaling pathway that 

regulate three core cellular processes: cell fate determination, cell survival and genome maintenance. 

Because of genomic instability and the random occurrence of aberrations in a cancer cell, each 

individual tumor exhibits its own distinct fingerprint of genetic alterations, even distinct from tumors of 

the same histopathologic or molecular subtype. This is called intertumoral heterogeneity. Also, the cells 

that make up one individual tumor may have different genetic aberrations, causing intratumoral 

heterogeneity. Tumors with different genetic aberrations may still have strikingly similar phenotypes as 

similar pathways may be affected25. 

In cancer research, the basic scientific hypothesis-testing paradigm has been a preferred method for a 

long time, presumably due to lack of high throughput assays, entailing a need for studies with very 

narrow focus and defined hypotheses26. However, the constantly increasing pool of data from omics 

high-throughput technologies, has led to a higher perception of the complexity of cancers, and insight 
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into why therapies targeting specific cancer genes are not always effective. It enables us to have a more 

holistic view of how aberrations in cancer cells alter the homeostasis of signaling networks, within the 

cancer cell and between cancer cells and the microenvironment. This approach is called systems biology 

and is a more hypothesis-generating method than traditional methods which are more hypothesis-

driven. By studying the behavior of many molecules simultaneously, systems biology may help elucidate 

the complexity of perturbations in cancer cells. Omic approaches are undoubtedly valuable for research 

purposes, however in the clinic, acquisition of whole omic data is usually not feasible since it is costly, 

time consuming and large amount of data makes interpretation difficult. Nevertheless, exploration of 

such data in a research setting is valuable to enhance the understanding of tumor biology which may 

contribute to improving personalized therapy and aid the discovery of new predictive and prognostic 

biomarkers and subtype classifications for use pre-clinically and clinically13,27. 

 

Normal breast anatomy and physiology  
Mammary glands are unique to mammals and have the important role of synthesizing, secreting and 

delivering milk to the newborn baby. The mammary gland is an organ of simple function, but has 

complex biology, and to understand breast tumor development one needs to have an understanding of 

the normal gland function, development, structure and regulation28. The anatomy of the human breast 

was thoroughly described by Sir Astley Paston Cooper already in 1840 (Figure 3A)29. The breasts rest on 

the pectoralis major muscle of the chest. They are composed of varying amounts of adipose tissue 

whose role is to support the parenchyma (the functional tissue), which is made up of tubuloalveolar 

glands. This is in turn surrounded by a loose framework of fibrous connective tissue called Cooper’s 

ligaments. The parenchyma is divided into lobes which are made up of 4-18 lobules containing 10-100 

alveoli; small sacs of lactocytes responsible for producing milk. The glands are drained by ductules that 

converge into lactiferous ducts which dilate to form the lactiferous sinuses where milk is stored 

temporarily during feeding. The ducts pass through the nipple and opens up onto its surface30.  
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The basic functional unit of the breast is the terminal ductal lobular unit (TDLU) (Figure 3B)31. This is 

comprised of an extralobular duct, an intralobular duct and the lobule itself32. The walls of the ducts are 

lined with two layers of epithelial cells: an inner (luminal) layer of cuboidal cells surrounding the lumen 

and an outer (basal) layer of myoepithelial cells (MEC). The luminal cells of the lobules are secretory 

cells that have the ability to transform to milk-producing lactocytes during lactation, while MECs are 

contractile, i.e. they resemble smooth muscle cells and serve to expulse the milk when the child is 

suckling. The basal layer lies on the basement membrane (BM) separating the epithelium from the 

surrounding stroma30. In the mammary gland, a common progenitor is thought to be the ancestor of 

both luminal and myoepithelial cells33.  

A remarkable feature of the breasts is the drastic changes in structure and function that the organ goes 

through during a woman’s lifetime. The purpose of all these changes is to prepare for and perform as 

milk-producing organ. Most organs develop to a relatively mature state in the embryonic stage. The 

mammary gland, however, is very immature at birth and reaches its mature state only during the 

pregnancy-lactation cycle (PLC). The mammary epithelium is during the PLC able to undergo cycles of 

proliferation, differentation and apoptosis due to self-renewing multipotent mammary stem cells 

(MaSC) that are capable of generating the entire epithelial architecture34,35. There is a clear link between 

the physiological processes occurring in the breasts and breast cancer risk. Lactation decreases the risk 

of developing breast cancer, especially if the first PLC takes place before the age of 30. Increased total 

duration of lactation and multiple pregnancies also decreases the risk36. It is possible that the decreased 

risk following an early pregnancy is caused by a reduction of the number of MaSC available for tumor 

Figure 3. Normal breast anatomy. A: Cross-section of a normal breast. B: Cross-section of a fully developed 
terminal ductal lobular unit (TDLU). Reproduced from McGuire with permission from Springer Nature31. 
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transformation, since it is believed that the most aggressive breast cancer subtypes originate from 

MaSCs34. Interestingly, during the PLC, a mammary gland displays transient characteristics that are also 

involved in breast cancer inititation and progression such as epithelial-to-mesenchymal transition 

(EMT)37.  

 

Ductal carcinoma in situ 
Carcinomas are tumors originating from epithelial tissues1. Mammary gland tumors are mostly 

adenocarcinomas originating from glandular epithelial cells in the TDLU, either in cells lining the ducts 

(resulting in ductal carcinomas) or in cells of the lobules (resulting in lobular carcinomas). Around 80% of 

mammary gland tumors are of ductal origin38. Ductal carcinoma in situ (DCIS) are tumors made up of 

carcinoma cells proliferating inside the ducts of the mammary gland with no evidence of cancer cell 

invasion into the surrounding stroma39. In situ means in place, which refers to the tumor cells being 

confined inside the ducts of the mammary gland without breaching the basement membrane. Similarly, 

lobular carcinomas in situ refer to carcinomas 

confined to lobuli. DCIS was first comprehensively 

described in the 1930s40,41, but management of pre-

malignant or border-line breast tumors had already 

been a topic for discussion many years earlier when 

Dr. Gibson expressed his concerns about under-

treatment of such tumors42.  

Most DCIS tumors are detected through screening mammography (low-dose X-ray imaging used to 

detect breast cancer in healthy (non-symptomatic) women)43. During the last decades, the incidence of 

DCIS has increased dramatically, predominantly due to introduction of screening. In the US, the 

incidence of DCIS in 1975 was 5.8/100.000 while in 2004 it had increased to 32.5/100.000. Now, DCIS 

constitutes around 25% of all breast cancer cases in the US44. Similar numbers are seen in Norway: from 

2006 to 2016, 17% of all screen-detected breast cancers were DCIS, while only 6% of the so-called 

interval cancers (those diagnosed between two routine screenings) are DCIS45. Notably, the incidence of 

aggressive DCIS has not risen as much as non-aggressive DCIS types after the introduction of screening44. 

The benefits of breast cancer screening programs has been debated46,47, however meta-analyses show 

protective effects of screening with 20 to 35 percent reduction in mortality from breast cancer48,49. As 

for all screening tests, there is a risk of false positive findings on mammograms that may cause anxiety 

“My plea in regard to neoplasms of the breast is, that they should all be held to be malignant until their innocence is proved; and the complement is, let no guilty tumor escape.”  
– Chas. Langdon Gibson, Ann Surg (1909)42 
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and unnecessary interventions and costs due to biopsy-taking. The rate of false positive findings has 

been reported to be around 10%. In addition comes the risk of so-called overdiagnosis, where screening 

detects small lesions (often DCIS) that may never have constituted a risk for the patient during the rest 

of her lifetime if it hadn’t been detected50,51. Autopsy studies confirm that there is a certain “reservoir” 

of DCIS in the population that would probably never progress to invasive cancer52–55.  

DCIS tumors by themselves do not pose any danger for patients as long as the tumors remain 

intraductal; thus therapy for DCIS is initiated in order to prevent subsequent invasive breast cancer. 

Standard therapy for DCIS is surgery, either mastectomy alone or breast conserving surgery (BCS) 

combined with whole breast radiation therapy (RT)56,57. A large scale study performed by Sagara et al. 

demonstrated no additional benefit of surgery on low-grade DCIS, while for DCIS of intermediate or high 

grade, surgery increased breast cancer specific survival58. Mastectomy is performed when there is 

multicentric disease, large lesions or in case of personal preference, and reduces mortality to around 1% 

while BCS reduces mortality slightly less58–60. Observational studies investigating the effect of RT 

following BCS in DCIS showed that RT reduced local recurrence (both in situ and invasive) by 

approximately 50% compared to those that did not receive RT, however no effect was seen on overall or 

breast cancer specific survival61–63. Endocrine therapy such as tamoxifen may also be initiated in 

estrogen receptor (ER) positive DCIS cases64,65. This is more common in the US, and is not standard 

therapy in Norway, however it has been shown to reduce the risk of recurrence and also the risk of 

contralateral disease66. At the current time, there is no reliable way of predicting which DCIS lesions are 

low-risk, i.e. which lesions have low probability of progressing into invasive and potentially harmful 

disease. As a consequence, women with low-risk DCIS are at risk of experiencing side-effects from 

unnecessary treatment. In addition, there has not been identified a clear reduction in mortality by DCIS 

treatment67. This suggests that there is substantial overdiagnosis and also overtreatment of DCIS. On the 

other hand, there is a risk of missing invasive foci in routine diagnostics. A major challenge in DCIS 

management is therefore to identify the potentially hazardous DCIS to initiate appropriate treatment, 

while leaving the indolent ones. 

The risk of recurrence after being treated for DCIS (i.e. the risk of being diagnosed with another breast 

malignancy) is reported to be between 10% and 24%. Even though the mortality rate for patients 

diagnosed with DCIS is only around 2%, there is still a four times higher risk of dying of breast cancer 

after a DCIS-diagnosis than for a woman in the general population44,68. Death following a DCIS diagnosis 

is either caused by recurrence of invasive disease, or undetected invasive foci at original diagnosis69. 
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Recurrences may be seen many years after an initial DCIS diagnosis, and in situ recurrences generally 

happen earlier than recurrences that are invasive70. The long time span from a DCIS-diagnosis to a 

possible recurrence complicates the study of DCIS, as studies with too short follow-up time will fail to 

identify late recurrences. Since most DCIS patients undergo treatment, there are few studies that 

explore the natural history of DCIS. However, identifying DCIS that have initially been misdiagnosed as 

benign tumors has enabled studies of untreated DCIS. These studies have estimated that only 14-53% of 

all DCIS will progress to invasive breast cancer (IBC)71–74. 

DCIS constitute a heterogeneous group of tumors that display a high degree of diversity from well-

differentiated, slow growing tumors to lower differentiated, rapidly proliferating tumors (and everything 

in between). There is therefore a need for classification systems that can help stratify tumors into 

meaningful groups with prognostic relevance75. Classification of DCIS has traditionally been performed 

based on architectural features and growth patterns (Table 1)76,77. Multiple architectural patterns may 

be present in one lesion, and the prognostic value of these features are limited, although comedo-type 

DCIS is often associated with high-grade tumors and poorer breast-cancer specific survival43.  

Since architectural pattern has shown to be insufficient as a prognostic factor, several alternative 

classification systems for histopathological assessment that correlate better with other prognostic 

markers and more precisely predict recurrence have been proposed78,79 . The different systems classify 

tumors based on cellular and nuclear appearance, growth pattern, cellular differentiation and 

polarization or presence of necrosis, and usually separate DCIS lesions into three categories: low, 

intermediate and high grade (although using different terminology and definitions)80–82.There is 

currently no universal agreement on grading of DCIS, which is a source for confusion83. The method used 

in Norway is the Van Nuy’s classification where DCIS 

tumors are classified into three groups according to 

nuclear grade and presence of necrosis (Figure 4)57,81. 

A modified system of the Van Nuys classification (the 

USC/Van Nuys prognostic index) also includes 

information about tumor size, margin width and 

patient age and aims to predict which patients with 

DCIS could benefit from radiation therapy84. 

 

Figure 4. Van Nuys DCIS histopathological classification 
system. 
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Table 1. Architectural patterns of DCIS. H&E stained sections76,77. Images reproduced with permission 
from www.webpathology.com85 

Type Characteristics Histology 
Comedo-type Prominent necrosis in the center of the lesion. 

Necrotic material frequently calcified (may be 
detected mammographically). Often large 
tumor cells with nuclear pleomorphism and 
prominent mitotic activity. More often 
associated with invasion and the degree of 
comedo necrosis is a strong predictor for 
recurrence after treatment 

 
Cribriform Tumor cells that grow in a glandular pattern 

without intercellular stroma. The cells are 
small to medium of size and have uniform 
hyperchromatic nuclei with infrequent mitosis. 
Any necrosis is limited to single cells or small 
cell clusters.  

 
Micropapillary Small club-like protrusions of cells without a 

fibrovascular core are oriented perpendicular 
to the basement membrane and project into 
the lumen. Tumor cells are usually small to 
medium of size, nuclei show diffuse 
hyperchromasia and mitoses are infrequent. 

 
Papillary Intraluminal protrusions of tumor cells that 

have fibrovascular cores, i.e. true papillations. 

Solid Tumor cells fill and distend the lumen of the 
ducts without necrosis, fenestrations or 
papillations. Tumor cells may be of various 
sizes. 

 
Other Rare DCIS variants: 

Clinging carcinoma86 
Intraductal signet ring cell carcinoma87 
Cystic hypersecretory duct 
carcinoma88 
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Breast tumor progression 
The most commonly proposed model for tumor progression of ductal carcinomas is the linear model put 

forth by Welling and colleagues which proposes that IBCs evolve through a non-obligate series of 

increasingly abnormal stages over a period of time: Changes occur in normal ductal epithelium leading 

to flat epithelial atypia (FEA), followed by atypical ductal hyperplasia (ADH), and ductal carcinoma in situ 

(DCIS), which may develop into invasive ductal carcinoma if the tumor cells break out of the ducts into 

surrounding stromal tissue (Figure 5)89,90. Before the DCIS-stage, lesions are not considered cancers; 

however, the progression should be seen as a continuum and there are no clear cut boundaries between 

the different stages. In particular, the distinction between ADH and low-grade DCIS is difficult to 

determine as the histomorphological diagnostic criteria separating ADH and DCIS are predominantly 

quantitative rather than qualitative77,91 All the described progression stages are not obligate prior to 

development of invasive ductal carcinoma, but since most breast tumor arise inside the ducts, 

intraductal cancer cells will in most cases be present at some point (for longer or shorter time) before 

any invasion occurs.  

Currently there exist no convincing molecular markers that can predict whether a DCIS will become 

invasive if left untreated. As immunohistochemistry (IHC) is a readily available method, attempts have 

been made to identify IHC markers capable of differentiating between subgroups of DCIS, especially 

related to aggressiveness. The hormone receptors estrogen receptor (ER) and progesterone receptor 

(PR) are in DCIS as in IBC, related to low aggressiveness. ER and PR positivity has been shown to 

negatively correlate with increasing tumor grade92. Over-expression of human epidermal growth factor 

receptor 2 (HER2) has shown to predict local recurrence, however there is a higher frequency of HER2 

positive tumors among DCIS compared to IBC, indicating that HER2 alone is not able to drive the process 

of invasion of tumor cells into the surrounding stroma93,94. Increased expression of KI67 (a proliferation 

marker) and TP53 (a tumor suppressor) is also correlated to higher tumor grade in DCIS93. Other markers 

Figure 5. The classic model of breast cancer progression. Neoplastic evolution initiates in normal epithelium and progresses 
to flat epithelial atypia (FEA), atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive ductal 
carcinoma (IDC). Adapted from Bombonati  & Sgroi, with permission from John Wiley and Sons89. 



INTRODUCTION 

11 
 

have also shown to have prognostic relevance; for instance, in a study by Kerlikowske et al., 

COX2+/p16+/Ki67+ DCIS tumors were significantly associated with subsequent invasive cancer95. 

Studies of genomic differences between DCIS and IBC show that DCIS often harbor similar chromosomal 

aberrations as IBC tumors. Copy number aberrations appear to arise early in breast tumor progression 

as many of these are found already at the ADH stage, supporting the belief that ADH is a precursor to 

DCIS and IBC96. No consistent differences in quantity or quality of copy number aberrations have been 

identified between DCIS and IBC, indicating that DCIS may be a precursor to IBC and also that copy 

number aberrations are not driving invasion97. Likewise has the mutational profile of DCIS shown to be 

highly similar to IBC98–100. A number of studies have compared transcriptomic profiles of DCIS and IBC, 

resulting in a multitude of gene lists attempting to differentiate between the two tumor stages. 

However, the overall results from these studies show that there are very few differences between DCIS 

and IBC also on the transcriptomic level101–104. Importantly, many of the studies comparing genomic and 

transcriptomic differences between DCIS and IBC have not performed analyses stratified by molecular 

subtype. This may have obscured important findings. In Lesurf et al., differential expression analyses 

(mRNA and miRNA) and copy number analyses comparing DCIS and IBC was carried out separately for 

each molecular subtype105. This study revealed that there exist molecular features associated with 

breast cancer progression unique to each intrinsic subtype and this opens new possibilities for studying 

breast cancer progression.  

Since histopathological evaluation provides limited prognostic information, there is a need for better 

stratification tools by integrating clinical, morphological and molecular data. To explore this, several 

studies, such as LORD, LORIS and COMET have been initiated106–108. These are all prospective open-label 

non-inferiority studies that randomize patients with low-grade DCIS into a standard treatment arm 

(surgery with or without RT) or an active surveillance arm (where patients are not treated, but are 

monitored for signs of progression). Active surveillance has been shown to be an appropriate 

management strategy for DCIS in selected patients109,110. A multigene gene expression based assay, 

Oncotype DX DCIS (Genomic Health, Redwood City, California), is a commercially available assay that 

may be used to stratify patients into low-risk and high-risk groups111,112. It estimates the 10 year risk of 

recurrence, resulting in a personalized score for each patient; however, the assay is costly and has not 

yet proven cost-beneficial113,114. For research purposes, to learn more about the biology of DCIS, it is 

important to integrate molecular data with clinical, pathological, radiological and cancer registry data115.  
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Breast cancer invasion 
Only when invasion occurs, can a ductal carcinoma be considered to have a truly malignant phenotype. 

The invasion process is therefore a crucial point in tumor progression and it is defined as one of the 

hallmarks of cancer (Figure 2)17. Invasion is defined as “cancer that has spread beyond the layer of tissue 

in which it developed and is growing into surrounding, healthy tissues”116. Cell migration and invasion 

are essential processes of normal embryonic development and organogenesis, and is also important in 

inflammation and wound healing in the adult body117. These properties are exploited by cancer cells, 

enabling them to invade surrounding tissue and metastasize118,119. In breast cancer, invasion is the 

process where tumor cells break through the myoepithelial cell layer and the basement membrane of 

the ducts and invade surrounding stromal tissue119. Invasion is diagnosed by histopathology, but 

radiological examination prior to surgery may also give indications of invasive disease. MRI may be used 

to predict invasion, however this is not used routinely120,121. Differentiation of in situ and invasive lesions 

by histopathological diagnosis is based on the presence of an intact barrier of MECs and BM between 

malignant cells and the stroma; however this task is not always straightforward. Identifying the BM by 

IHC may be challenging, so disruption of the MEC layer is often used as a surrogate marker for BM 

destruction. The immunohistochemical markers most commonly used to identify BM is Laminin and 

Collagen IV, while for MEC, smooth muscle actin (SMA), smooth muscle myosin heavy chain (SMMHC) or 

p63 are useful markers122. DCIS lesions may be associated with so-called micro-invasion which is defined 

as invasive carcinoma foci that measure less than 1mm in greatest extent59,123. DCIS with micro-invasion 

is more likely to be found in DCIS that are large, those that have been detected due to clinical symptoms 

(as opposed to those detected through mammography) and in tumors with aggressive features such as 

high grade, comedo-necrosis and ER-negativity. Furthermore, there has been identified differences in 

breast-cancer specific and overall survival between DCIS tumors with and without micro-invasion124. 

Because of the small size, studies of genomic changes in the cells at these micro-invasive foci are limited, 

but there are indications of involvement of the microenvironment at the site of micro-invasion43.  

Invasion is a dynamic process and may be influenced by both underlying genetics, signaling from 

neighboring cells and the structure of the microenvironment125. During invasion, the proliferating 

epithelium loses its two-layered arrangement, and becomes increasingly disorganized as epithelial cell 

polarization and cell-cell-adhesion is gradually lost. The fibers of the stroma become increasingly aligned 

perpendicular to the BM and there is an increase in immune cell infiltration and fibroblasts in the stroma 
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(so-called reactive stroma). After breaching the BM, tumor cells move into the stroma and intermix with 

stromal cells (Figure 6)126.  

 

Cancer cells need to acquire a motile phenotype to be able to move into surrounding tissue. Such cancer 

cell migration may happen through several different modes: Single-cell migration (single cells migrating 

separately either in an amoeboid-like or mesenchymal-like fashion), multicellular streaming (non-

adherent cells following each other rapidly along the same path) and collective migration (several 

adherent cells migrate together either as strands or sheets of cells)126,127. Brest cancer invasion typically 

happen through collective migration128. Lower differentiated tumors with less marked epithelial 

phenotype and lower cell-cell-adhesion may show a higher tendency of single-cell migration compared 

to higher differentiated tumors, and may be regarded more aggressive119. The process where epithelial 

tumor cells obtain a mesenchymal phenotype with reduced cellular adhesion and polarization, 

separation into individual cells and increased cell motility is called epithelial-to-mesenchymal transition 

(EMT)119. In addition to increasing the invasive abilities of tumor cells, EMT also contributes to loss of 

contact inhibition and altered growth control which are hallmark features of carcinomas.  

Following invasion, tumor cells may continue to disseminate throughout the body i.e. metastasize. 

Metastasis is defined as “The spread of cancer cells from the place where they first formed to another 

part of the body” 129. The cells in the metastasis are of the same type as the primary tumor. Cancer 

deaths are usually caused by the metastatic lesions, not by the primary tumor itself. The metastatic 

Figure 6. Summary of 
processes in mammary 
gland epithelium and the 
immediate tumor 
microenvironment during 
tumor progression and 
invasion. Reproduced 
from Clark et al. licensed 
under CC BY-NC-ND 4.0126. 
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process is initiated from a local (invasive) tumor from which cells detach into blood or lymph vessels118. 

Metastasis is dependent on properties of tumor and host cells and certain tumor types tend to 

metastasize to specific organs. Breast cancers have a tendency to spread to bone, lung and liver130,131. 

This non-random pattern of metastasis has been known for more than a century since Stephen Paget 

proposed his “seed and soil” hypothesis in 1889, stating that different seeds (i.e. tumor cells) have 

different requirement of the soil (i.e. the target organ for the metastasis)131,132. In DCIS, tumor cells are 

confined to a limited space, and breaching the BM has been regarded as obligate for a DCIS to develop 

into a cancer with true malignant potential. Narod et al. however, proposes the possibility that DCIS cells 

may metastasize without a preceding invasion of the stromal tissue surrounding the ducts67. They claim 

that DCIS tumor cells may spread through neovascularization (small vessels invading the ducts enabling 

hematogenous dissemination of tumor cells) and they justify this by referring to the finding of 

circulating tumor cells and tumor cells in lymph nodes in patients with DCIS without known invasion. 

However, this theory is rejected by most researchers who explain these findings by occult micro-

invasion, i.e. invasion not detected in histopathological sections67,133–135. 

 

The role of the tumor microenvironment in breast cancer progression 
When studying invasion, much emphasis has been put on the changes happening in the tumor cells 

themselves assuming that invasion is mainly a tumor cell-driven process. However, more and more 

attention has been given to the role of the microenvironment in determining cancer cell invasion, 

migration and metastasis. In our bodies, aberrations arise in cells constantly, but under physiological 

conditions, the normal microenvironment exerts suppressive forces to keep these cells from turning into 

tumors. However, sometimes, this suppression is corrupted and the microenvironment becomes 

permissive for tumor growth (Figure 7)136. 

The tumor microenvironment (TME) is the tissue immediately surrounding a tumor and consists of cells 

(e.g. fibroblasts, endothelial cells, macrophages, lymphocytes), extracellular matrix (ECM) and soluble 

molecules97,137. Several of the hallmarks of cancer include processes where TME plays a significant role: 

evading growth suppressors, avoiding immune destruction, inducing angiogenesis and tumor promoting 

inflammation (Figure 2)18. The interplay between TME and tumor cells may affect all stages of tumor 

progression from tumor initiation and invasion to metastasis119. The TME influences the tumor cells 

through paracrine signaling from normal cells and interaction between constituents of the ECM and 

cellular adhesion molecules on the surface of tumor cells. Importantly, the interplay is bidirectional, as 
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tumor cells also influence the microenvironment119,138. Tumor-adjacent normal tissue may therefore 

never be considered completely normal. Already at the DCIS stage is stroma surrounding the lesions 

altered compared to normal stroma, suggesting co-evolution of stroma and tumor cells before invasion 

occurs139. The morphology of the microenvironment is highly variable, both regarding the extent of 

collagen deposition and the number and distribution of cells140. The tumor microenvironment may be 

different from patient to patient, not only because of features of the tumor itself, but also due to 

different genetic predispositions. For instance, some women display an innate high breast tissue density 

which is a strong independent risk factor for breast cancer141,142.  

The ECM is the non-cellular component of tissues and provides a scaffold for the cells and also plays an 

important role in eliciting biochemical and biophysical signaling important for tissue morphogenesis, 

differentiation and homeostasis143. Fibroblasts are stromal cells responsible for producing molecules 

constituting the ECM such as collagen and fibronectin and they also secrete proteases such as matrix 

metalloproteinases (MMP) which contribute to stromal reorganization during branching morphogenesis 

Figure 7. The role of the 
microenvironment during 
breast tumorigenesis. In 
normal conditions the 
microenvironment exerts 
suppressive forces and acts as 
a barrier to tumorigenesis, but 
it may at some point change 
and become permissive to 
tumor growth. Reproduced 
from Bissell & Hines with 
permission from Springer 
nature136. 
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in the developing gland140,144. Fibroblasts are also able to enhance mammary stem- and progenitor cell 

function through paracrine factors145. During wound healing, fibroblasts are in an activated state in 

order to remodel tissue and restore normal function. Activated fibroblasts resemble so-called 

myofibroblasts with a phenotype similar of both fibroblasts and smooth muscle cells. When wound 

healing is completed, activation is turned off. However, in tumor tissues, a high proportion of the 

fibroblasts are in an activated state, supporting the claim by Dvorak in 1986 that tumors are “wounds 

that never heal”144,146. In tumors, cancer associated fibroblasts (CAFs) are situated in proximity of the 

tumor. They constitute a heterogeneous group of cells, originating from several cell types such as 

resident fibroblasts, epithelial cells, endothelial cells and adipocytes147. CAFs may contribute to tumor 

proliferation, invasion and metastasis through secretion of growth factors and cytokines and through 

degradation of proteins in the ECM140. Specific changes in the collagen matrix organization surrounding 

tumors are associated with increased invasiveness. In early lesions, there is increased collagen density 

around the tumor, while at later stages, the collagen fibers are oriented more perpendicular to the 

lesion along which tumor cells may migrate. This type of collagen alignment is associated with more 

aggressive tumors, and is also seen in DCIS of high grade148. CAFs have also been implicated as 

modulators of hormone responsiveness in breast tumor cells, enhancing response to estrogen and 

promoting proliferation of ER+ tumor cells as well as modulators of angiogenesis149,150.  

The immune environment in breast tumors varies considerably. Compared to normal tissue, it has been 

demonstrated an increase in the leukocyte population in DCIS and IBC involving both innate and 

adaptive immune cells, although some tumors may completely lack an immune response151. Neoplastic 

cells are usually recognized as foreign, eliciting an antitumor immune response characterized by 

infiltration of type 1 macrophages, dendritic cells, natural killer cells, CD8+ cytotoxic T-cells and CD4+ 

Th1 cells that prevents further tumor growth. Through a process called immune-editing, tumor cells may 

acquire the ability to escape immune control through expression of immune checkpoint proteins. Also, 

the immune cell composition may shift towards more immunosuppressive cell types such as myeloid-

derived suppressor cells, CD4+FOXP3+ regulatory T cells and type 2 macrophages. Tumor-associated 

immune cells may therefore have both positive and negative effects on cancer progression. There is a 

gradual increase in immune cell density throughout breast cancer progression, with the highest number 

in invasive tumors. However, already at the in situ stage there may be an extensive immune response 

surrounding the lesions152.  
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Tumor infiltrating lymphocytes (TILs) is a prognostic factor in invasive breast cancer and is associated 

with improved survival97. In DCIS, high level of TILs is also seen in high grade, ER- or HER2+ tumors or in 

tumors with a high degree of genomic imbalance. Recurring lesions tend to have lower TIL-infiltration 

than the primary tumor, suggesting that suppression of anti-tumor immune responses may be involved 

in recurrence153. TILs consist of several subsets. The CD8+ lymphocytes have cytotoxic properties and are 

associated with anti-tumor effects140. CD4+ TILs may have tumor suppressive effects when they are of 

the Th1 type (expressing tumor suppressing INFɣ), while the Th2 type (expressing IL-4) may have a 

tumor promoting role through differentiating macrophages towards a pro-tumorigenic phenotype154,155. 

Regulatory T-cells (Tregs) express FOXP3 and are involved in suppression of cytotoxic T-cells. A low 

CD8+/Treg ratio is more commonly found in ER-/high grade DCIS lesions and may be an indication of an 

immunosuppressive environment so even though the total number of TILs may be high, the effect of the 

TILs may be in favor of the tumor156,157. 

Since DCIS tumor cells are protected from their surroundings by the MEC layer and the BM, there is little 

direct contact between tumor cells and immune cells. However, immune cells still increase in numbers 

and migrate to the tumor in DCIS. T-cells surrounding DCIS foci have been shown to be of an active 

phenotype, expressing GZMB and MKI67, and the frequency of activated T-cells decrease in invasive 

disease. There is in general higher expression of checkpoint proteins CTLA4 and PD-L1 in immune cells 

invading invasive tumors compared to DCIS, and PD-L1 positive immune cells in DCIS are mainly found in 

ER-negative tumors151.  In addition, the expression of PD-L1 in the DCIS tumor cells themselves has 

shown to be low compared to IBC157. These findings indicate an increasing suppressive immune 

microenvironment during progression from DCIS to IBC and further studies could reveal useful immune 

response biomarkers to predict invasion. Immunotherapy has been discussed as a possible approach to 

treat DCIS, either by checkpoint blockade or dendritic-cell-based vaccines, however it is still unclear 

whether this would be effective and advantageous in DCIS patients since especially checkpoint inhibitors 

are associated with many side effects152,157,158.  

The myoepithelial cell layer plays an important role in the transition from DCIS to IBC. In addition to 

their role during feeding, MECs in a normal breast affect differentiation, proliferation and polarity of 

luminal cells. The MECs also contribute to synthesis and maintenance of the BM140,159. MECs are believed 

to have a tumor suppressive role, and may act as a natural barrier against invasion exhibiting anti-

angiogenic, anti-proliferative and anti-invasive properties through for instance production of protease 
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inhibitors and paracrine downregulation of MMPs in both tumor cells and fibroblasts160–162. However, 

MECs may also promote invasion in breast cancer163.  

Two non-exclusive theories have been proposed on the mechanisms of the transition from DCIS to IBC: 

The proteolytic (“escape”) theory states that tumor cells themselves secrete proteases that degrade BM 

and ECM to be able to invade the stroma, while the focal myoepithelial cell layer disruption (“release”) 

theory suggests that tumor invasion begins with disruption of the MEC layer due to genetic changes, 

inflammation, localized trauma or other mechanisms in the MEC layer itself. The death of the MECs then 

leads to localized loss of tumor suppressors which causes a focal change in the microenvironment that 

promotes tumor invasion through subsequent destruction of BM, further destruction of MECs and 

finally invasion of tumor cells into the stroma surrounding the duct159,164–166. The mechanisms involved in 

DCIS to IBC invasion are complex and heterogeneous, however there is no doubt that permissive 

changes in the tumor microenvironment play an important role in breast cancer progression.  

 

Molecular subtyping of breast tumors 
Breast cancer is not a single uniform disease, but varies extensively in biological properties, clinical 

behavior and histological features. In fact, all tumors are essentially different; however, some features 

are shared across several tumors. To be able to select appropriate treatment and estimate prognosis for 

the patients, there is a need for a robust and objective classification system. Such stratification is also 

important when performing clinical trials and when studying the underlying biology of tumor 

evolution167.  

In 2011, the consensus meeting in St. Gallen recommended using a more comprehensive multigene test 

for characterization of breast cancer tumors when feasible168,169. The background for this 

recommendation was the work performed by Perou, Sørlie and colleagues where the intrinsic subtypes 

of breast cancer were discovered170,171. They performed gene expression analyses using cDNA 

microarrays and compared transcriptomic profiles of breast cancer tumors before and after treatment. 

An intrinsic gene list was determined by identifying genes whose expression varied less between 

samples from the same patient compared to samples from different patients. Hierarchical clustering of 

the tumors based on the intrinsic gene list, revealed two main clusters (mainly separated according to 

ER status) and five sub-clusters which represent the intrinsic subtypes: luminal A, luminal B, HER2-

enriched, basal-like and normal-like. The luminal A subtype is characterized by ER positive tumors that 
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express genes normally expressed by luminal breast epithelial cells. Luminal B is similar to luminal A, but 

has higher expression of genes involved in proliferation. The cluster enriched for ER negative tumors 

consists of basal-like tumors that are mainly ER/PR/HER2-negative tumors with a gene expression 

pattern resembling myoepithelial/basal cells, HER2-enriched tumors that often show high expression of 

HER2 (ERBB2) and the normal-like with an expression pattern resembling normal breast tissue167,171. The 

intrinsic subtypes also have prognostic value as they showed statistically significant different outcomes, 

most notably poor prognosis for the basal-like subtype and significantly different outcomes between the 

two luminal subtypes170,172. Furthermore, the different subtypes show characteristics that to a certain 

degree may reflect different cells of origin173–175. 

The original intrinsic gene list consisted of several hundred genes, complicating implementation of 

intrinsic subtyping in a clinical setting. Therefore, Parker et al. aimed for making an assay to subtype 

breast tumors for use in the clinic. They used several datasets and reduced the intrinsic gene list down 

to 50 genes (PAM50)176. This subtyping method is now approved by the US Food and Drug 

Administration as the Prosigna assay for use in patients with ER-positive tumors177–179. Gene expression 

analyses are costly and not accessible for all patients. Therefore, IHC markers for ER, PR, HER2 and Ki67 

are commonly used as surrogate markers as a convenient approximation to the molecular subtypes 

(Table 2), however the overlap between the two methods is far from complete.168,180. 

 

Table 2. Surrogate definitions of intrinsic breast cancer subtypes. Adapted from St. Gallen recommendations, 2011168. 

Intrinsic subtype Surrogate subtype IHC surrogate markers

Luminal A Luminal A

ER and/or PR positive

HER2 negative

Ki67 low

Luminal B

Luminal B (HER2 negative)
ER and/or PR positive

HER2 negative

Ki67 high

Luminal B (HER2 positive)

ER and/or PR positive

HER2 overexpressed/amplified

Any Ki67

HER2-enriched HER2 positive (non-luminal)
ER and PR negative

HER2 overexpressed/amplified

Basal-like Triple-negative
ER and PR negative

HER2 negative
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Even though the PAM50 subtypes are inherently different, there is substantial heterogeneity between 

tumors of the same subtype. For instance, is there evidence that luminal A tumors may be further 

divided into two different subtypes with different prognosis181. Also, a group of core basal tumors with 

worse prognosis than other basal-like tumor has been identified. These are, in addition to being 

ER/PR/HER2 negative, positive for either EGFR or CK5/6 182–184 . In a study by Herschkowitz et al. breast 

cancer tumors that did not fit well with any of the PAM50 subtypes were identified both in human and 

in mice. These tumors had low expression of tight junction and cell-cell adhesion proteins such as 

claudins and E-cadherin, low expression of luminal genes, low degree of differentiation, a mesenchymal 

phenotype and high immune infiltration. They proposed these claudin-low tumors as a separate 

subtype, and studies have shown that 7-14% of breast cancers may have claudin-low properties, 

however, the biology and clinical significance of this proposed subtype remains to be elucidated174,185–

187.  

Ductal carcinoma in situ has not been nearly as rigorously characterized as invasive breast cancer and 

even though many studies have investigated the transition from DCIS to IBC, few have taken molecular 

subtype into consideration. However, it is not reasonable to believe that the subtypes suddenly emerge 

during invasion. Analyses of DCIS using both IHC188–190 and gene expression analyses101,191,192 confirm that 

subtypes are present also at the DCIS stage. Importantly, the molecular subtypes of IBC have vastly 

different characteristics so it could be presumed that progression from DCIS to IBC is distinct for the 

different subtypes. This has not been investigated thoroughly, however, in the study by Lesurf et al., 

they found evidence of unique molecular features associated with disease progression between the 

different subtypes105.  

 

Comparative breast cancer biology  
In cancer research, in vitro methods are invaluable tools. However, there is a huge need for in vivo 

experiments to close the translational gap between the lab bench and the patient. Research animals are 

imperative preclinical models for the development of new therapies (to test both efficacy and 

pharmacokinetics of new drugs) and to study mechanisms of diseases. Ideally, the perfect in vivo model 

should recapitulate all relevant clinical features of the human disease; however, this is generally not the 

case. It is therefore important to be aware of the limitations as well as the strengths of the different 
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relevant models, and also understand the fundamental differences between the research animal and 

humans.  

The most commonly used laboratory animal in cancer research is the house mouse (Mus musculus). It is 

of small size, easily handled, inexpensive to house, breeds rapidly and has a fairly long lifespan (up to 3 

years). The mouse genome is thoroughly characterized and may be manipulated relatively easily. It also 

shares many physiological attributes with humans193. There are several anatomical and physiological 

differences between the murine and human mammary gland that needs to be taken into consideration 

when using mouse models to study breast cancer. The human breast has a complex structure of lobes 

and lobuli with the TDLUs as the functional unit194,195. The mouse mammary gland has a simpler 

structure with a less branched network of ducts ending in stem cell enriched terminal end buds (TEBs) 

which are the functional (milk producing) units in the mouse and also responsible for driving ductal 

branching and elongation. TDLUs (in humans) and TEBs (in mouse) are built up similarly with luminal 

epithelial cells and myoepithelium and are both hormone responsive and dynamically active through the 

reproductive cycle196,197. In the mouse, the stromal tissue surrounding the ducts consists mostly of 

adipose tissue, with little ECM, while in the human, connective tissue is much more abundant with intra-

lobular stroma made up of a loose collagen matrix with many specialized stromal cells that exert 

paracrine effects upon the mammary epithelium194.  

Mice produce multiple offspring and have a correspondingly higher regenerative capacity of glandular 

tissue compared to humans. This may possibly be paralleled by different mammary stem cell 

composition and efficacy compared to human. The degree of involution after lactation is also much 

greater in mouse than in women194. Also, of relevance for the use of murine breast cancer models, is the 

endogenous plasma estrogen levels which in mice is up to ten-fold higher than in women198.  

There is an extensive repertoire of mouse models available to study breast cancer utilizing different 

approaches for tumor formation e.g. xenografts, genetically engineered mouse models (GEMM) and 

chemically induced mouse tumors199. Both in mice and humans, mammary tumors may go through 

comparable tumor progression stages. Intraductal lesions with invasive potential are comparable to 

human DCIS and are referred to as mammary intraepithelial neoplasia (MIN)200. 

Xenografts are made by transplanting human cells or tumor tissue into mice. There exist numerous 

human cell lines that represent the different subtypes of breast cancer. Cell lines also have the 

advantage that they may be genetically manipulated prior to engraftment and they grow reasonably fast 
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in mice. The drawback of immortalized cell lines is that they are heavily selected for characteristics that 

make them able to grow in an in vitro environment and they are unnaturally homogenous. An 

alternative to cell lines is patient derived xenografts (PDXs) where tumor tissue from patients is directly 

transplanted to mice. In PDXs the heterogeneous nature of breast tumors may be more conserved 

compared to cell line xenografts. PDXs have been shown to maintain genetic and molecular 

characteristics through several passages, and they retain clinical responses to drug treatment97,193. The 

major drawback of xenografts is that they require immune-compromised mice. Different humanization 

techniques (injection of human immune cells) may overcome this problem, however such techniques 

are expensive and labor-intensive and are currently not able to recapitulate a complete immune 

response201. The differences between human and murine stroma is also a limitation of xenografts 

models that need to be taken into account. Engraftment of breast tumor xenografts may be done 

subcutaneously, orthotopic (within the mammary fatpad) or intraductally97,202,203. The route of 

transplantation may be relevant for tumor development; for instance, Sflomos et al. showed that MCF7 

cells (a luminal cell line) maintained luminal characteristics when transplanted intraductally while when 

transplanted into the fat-pad, the tumors obtained a basal-like phenotype204. There exist several human 

DCIS cell lines that may be used to study the transition of DCIS, e.g. MCF10ADCIS.COM, 12NTci and 

SUM-225193,205. Another relevant model for studying DCIS is the mammary intraepithelial neoplasia 

outgrowth (MINO) model, which are murine cell lines derived from MMTV-PyV-MT (mouse mammary 

tumor virus, polyomavirus middle T) lesions. This model enables studying MIN to invasive transition in 

immune-competent mice206.  

GEMMs are usually generated using promoters such as mouse mammary tumor virus (MMTV) to over-

express genes that promote tumorigenesis in a targeted fashion to the mammary gland. In contrast to 

xenografts, GEMMs are able to model tumor initiation and stepwise tumor progression (including MIN 

stage) and the invasion process, which makes them valuable tools for studying DCIS. They also have the 

advantage that both the microenvironment and the immune system are native, which may reflect 

human disease more precisely than xenografts, however the behavior of the tumor is less random, since 

tumor initiation is caused by one specific mutation. Few mammary gland tumors from GEMMs truly 

express ER; however, they may display luminal characteristics independently of ER. GEMM models 

especially relevant for studying DCIS include MMTV-PyV-MT, WAP-T and MMTV-neu97,193,205.  

Chemical induction of tumors using carcinogens is another approach of inducing mammary tumors. One 

example of such is the MPA/DMBA model. 7,12-dimethylbenz[a]anthracene (DMBA) acts as a tumor 
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initiator by inducing DNA damage while medroxyprogesterone acetate (MPA) acts as a promoter, which 

targets tumor initiation to the mammary epithelium and drives proliferation. The DNA damage inflicted 

by DMBA is random, making this model highly heterogeneous and yielding tumors of different 

subtypes207–210.  

As seen in human mammary tumors, murine tumors also display a high degree of intertumoral 

heterogeneity, and it is therefore important to be aware of the clinical and molecular features of each 

specific model and how well they represent human disease. Human xenografts in mice may be 

characterized similarly to human tumors with regards to subtype etc, since many features are preserved 

when they are transplanted to mice. Herschkowitz and Pfefferle and colleagues have explored 

transcriptomic characteristics of multiple different murine mammary tumor models and discovered as 

many as 17 different murine subtypes across 27 models. All human subtypes were represented by a 

murine model, however many of the models were heterogeneous, i.e. the model may yield tumors of 

different subtypes. Herschkowitz and Pfefferle also explored the role of ER in murine mammary tumors 

and found that some of the models resembled luminal mammary tumors by gene expression despite of 

being negative for ER, suggesting that luminal signatures in murine mammary tumors may be driven by 

GATA3185,211. These studies have illustrated the importance of being aware of the different mammary 

tumor models characteristics and to bear in mind the potential caveats of comparative oncology in 

general and murine models for breast cancer specifically.  
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AIMS 
The overall aim of this thesis was to explore the heterogeneity of breast cancer progression by 

performing a comprehensive genomic and transcriptomic mapping of breast tissue through different 

stages of tumor development. Through this, we aspired to obtain further insight into breast tumor 

invasion mechanisms and contribute to the understanding of why many early breast tumors never 

acquire invasive properties.  

We have addressed this subject through five specific aims by: 

Identifying transcriptomic changes in normal breast tissue over time in relation to mammographic 

density. 

Exploring the heterogeneity of human and murine mammary tumors through molecular subtyping. 

Investigating the involvement of the microenvironment in breast cancer initiation and progression. 

Exploring subtype specific differences between DCIS and invasive human breast tumors. 

Mapping molecular heterogeneity in DCIS through mutational analyses. 
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RESULTS IN BRIEF 

Paper I: A longitudinal study of the association between mammographic 
density and gene expression in normal breast tissue  
Journal of Mammary Gland Biology and Neoplasia, 2019212, doi: 10.1007/s10911-018-09423-x 

This paper describes a follow-up-study of the work by Haakensen et al. from 2010 (MDG1) where 

normal breast biopsies from 65 women were subjected to gene expression analyses, and associations 

between gene expression and mammographic density (MD) were explored213. High MD is associated 

with an increased risk of developing breast cancer, however, the underlying biological mechanisms are 

not elucidated, neither is the change in gene expression of normal breast tissue over time. 

In the current study (MDG2), a selection of the women who participated in the first study were asked to 

donate new tissue biopsies and have new mammograms taken. The time between first and second 

biopsies ranged from 5 to 8 years. We calculated MD based on new mammograms, extracted mRNA 

from biopsies and performed microarray gene expression analyses on biopsies from 17 women. Eleven 

of these also had gene expression data and MD calculations available from the first study.  

We first explored those genes that in the previous study were shown to be correlated to MD. Despite of 

low number of samples, impeding the discovery of significant findings, we validated an inverse 

correlation between RBL1 gene expression and MD, indicating involvement of the transforming growth 

factor β (TGFβ) pathway. To study longitudinal changes in gene expression, we used a rank-based 

approach and correlated change in gene expression with change in MD for the 11 cases with data from 

MDG1 and 2. This revealed that breast tissue samples with a large decrease in MD from the first to the 

second time point sustained a high expression of several genes of the histone H4 family. In both cohorts, 

we assigned microenvironment subtypes and found that the active subtype had characteristics similar to 

the claudin-low breast cancer subtype. This corresponds well with a previous study performed on the 

MDG1 tissue samples214. We did not find any association between microenvironment subtypes and MD 

or RBL1 gene expression. 

This study showed that inverse correlation between mammographic density and RBL1 gene expression 

in normal breast tissue is consistent over time, and that the microenvironment subtypes are biologically 

meaningful also in normal tissue.  
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Paper II: Claudin-low-like mouse mammary tumors show distinct 

transcriptomic patterns uncoupled from genomic drivers 
Breast Cancer Research, 2019210, doi: 10.1186/s13058-019-1170-8 

In this study we performed exome sequencing and gene expression microarrays to characterize 

chemically induced mouse mammary gland tumors. We induced tumors applying a MPA/DMBA protocol 

in 14 mice, and eighteen tumors and five normal mammary glands were included in the study.  

We classified tumors and normal tissue by applying a centroid based murine subtyping method using 

gene expression data. This revealed high degree of intertumoral heterogeneity with nine subtypes 

represented. Clustering based on the murine intrinsic gene list showed that the tumors split into two 

clusters: one cluster showed a mostly homogeneous gene expression profile and consisted of tumors of 

either Claudin-low-likeEx or Squamous-likeEx subtype, the other cluster was more heterogeneous and 

consisted of tumors of seven different subtypes. The tumors in the homogeneous cluster resembled 

human claudin-low (CL) tumors with low degree of differentiation, low expression of genes involved in 

adhesion and high expression of genes involved in EMT and neoangiogenesis compared to the other 

cluster. The CL-like tumors also showed high immune scores and high expression of interferons and 

activation of immunosuppressive mechanisms. Of special note were Ptgs2 (encoding COX-2) and Cd274 

(encoding PD-L1) highly expressed in both the murine CL-like tumors and in CL breast tumors in a human 

cohort (Metabric). Both these genes are clinically targetable and the results from our study suggest 

immune checkpoints as potential therapeutic targets in CL breast cancer.  

Exome sequencing of the MPA/DMBA-induced tumors also revealed high intertumoral heterogeneity 

and marked higher mutation-rate compared to human breast cancer. We found mutations in known 

driver genes in all tumors, however we did not identify any association between specific mutations and 

murine subtype, indicating that cell of origin may play a larger role in explaining the observed gene 

expression phenotype than the specific driver mutation. We found that all tumors carried a 

characteristic mutational signature with an overweight of T>A transversion in TG dinucleotides. There 

was a tendency of lower copy number aberration burden in the CL-like tumors compared to all others.  

Even though the MPA/DMBA model yields tumors of many different subtypes, and the mutational 

signature is different from human breast cancer, the transcriptomic phenotype of the resulting CL-like 

tumors indicates that these tumors may be appropriate as a model for studying human CL breast cancer. 
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Paper III: Contrasting DCIS and invasive breast cancer by subtype suggests 
basal-like DCIS as distinct lesions 
Manuscript  

In this study, we explored differences in gene expression, DNA copy number and DNA methylation 

between ductal carcinoma in situ (DCIS, n=57) and invasive breast cancer (IBC, n = 313) in a subtype 

stratified manner. The distribution of PAM50 subtypes and ESR1 gene expression differed between DCIS 

and IBC with a higher proportion of tumors of HER2-enriched subtype and higher frequency of ESR1 

negative tumors in DCIS compared to IBC. In general, DCIS showed lower correlation to the PAM50 

subtype centroids compared to IBC. This was particularly evident for basal-like tumors where core basal 

tumors were found only in IBC and not in DCIS.  

Subtype stratified comparison of DCIS and IBC showed marked differences between the subtypes. There 

was high resemblance between Luminal A DCIS and Luminal A IBC, while for the basal-like subtype, the 

DCIS were markedly different from IBC at all genomic levels. The basal-like DCIS showed lower 

proliferation and higher differentiation characteristics compared to basal-like IBC while we did not find 

significant differences in immune, stromal or EMT scores between basal-like DCIS and IBC. Copy-number 

data revealed that basal-like DCIS showed some basal-like features (as defined for IBC), but had overall 

much fewer copy number aberrations than basal-like IBC. Genes differentially methylated between DCIS 

and IBC were identified for each subtype separately and no differentially methylated genes were 

common between the subtypes. The basal-like subtype had notably more differentially methylated 

genes between DCIS and IBC compared to the other subtypes. Most notable was hypermethylation of 19 

clustered protocadherin (cPCDH) genes in basal-like IBC compared to basal-like DCIS. These genes are 

located on chromosome 5q which is commonly deleted in core basal tumors. Hypermethylation of 

cPCDH genes has been reported to occur in breast cancer and other cancer types and is most likely the 

result of long range epigenetic silencing in which hypermethylation occurs over longer stretches of the 

genome. 

This study affirms that subtype stratification is important when studying progression from DCIS to IBC, 

and we suggest that basal-like DCIS and basal-like IBC may represent different entities. 
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Paper IV: Comparable cancer–relevant mutation profiles in synchronous 
ductal carcinoma in situ and invasive breast cancer  
Manuscript 

In this study we performed targeted sequencing of 26 mixed tumors (invasive tumors with synchronous 

DCIS) and 10 pure DCIS tumors. The mixed tumors were microdissected using laser capture 

microdissection in up to three cellular compartments pr tumor: Normal epithelium, DCIS and invasive 

tumor. After DNA isolation, we performed Ion Torrent sequencing of hotspot regions of 50 known 

cancer driver genes. In total were 44 cellular compartments from mixed tumors sequenced in addition 

to the 10 pure DCIS. 

We identified 22 hotspot variants in eight different genes across the microdissected mixed tumors. The 

genes harboring most variants were PIK3CA (four different variants in ten tumors) and TP53 (nine 

different variants in eight tumors). The most common variant was PIK3CA:p.H1047R. We sequenced 

thirteen pairs of DCIS and invasive compartments and in six of these, DCIS and invasive compartments 

harbored identical variants. In the remaining cases, some variants were found in the invasive 

compartment only, while in other cases, variants were found in the DCIS compartment while not in the 

invasive. In eight out of nine normal samples no hotspot variants were identified. One normal sample 

harbored the same variant as found in the corresponding tumor. Digital droplet polymerase chain 

reaction (PCR) was used to validate sequencing of one variant (PIK3CA:p.H1047R). We were able to 

detect this variant in comparable frequencies as identified by sequencing. Progesterone receptor (PR) 

positivity was significantly correlated with presence of PIK3CA variants. For comparison, ten pure DCIS 

were included in the study. Only three hotspot variants in three different tumors (one in TP53 and two 

in PIK3CA) were identified in total across all pure DCIS tumors. The frequency of tumors carrying variants 

was significantly different between pure DCIS and synchronous DCIS from mixed tumors 

We found few mutational differences between synchronous DCIS and IBC which is in accordance with 

previous studies. The number of samples in this study is too small to draw firm conclusions, but our 

results may indicate fewer potential driver mutations in pure DCIS compared to DCIS concurrent with 

IBC. 
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METHODOLOGICAL CONSIDERATIONS 

Material 
A major challenge in biomedical research is limited access to patient material. In all studies including 

human tissues, there is a possibility of introducing bias due to low amount of available tissue. Especially 

DCIS tumors are difficult to obtain since these lesions often are small and a large part of the tumor is 

used for routine histopathological evaluation. The tumors available for research may therefore be larger 

tumors, possibly skewed towards late stage or fast growing tumors. Tumor cell lines and murine tumor 

models are useful supplements to studies on human material as there are limited possibilities to 

perform interventions in human tumors; however such models may have artificially low variance and do 

not recapitulate the large degree of intertumoral heterogeneity observed in human breast tumors. The 

biological differences between the species also need to be taken into consideration. 

Material in paper I 

This study (Mammographic Density and Genetics 2 - MDG2) included material from seventeen normal 

breast tissue biopsies obtained from healthy women. These women had previously donated breast 

biopsies for the preceding study (MDG1)213,215. The women included in the first study were asked to 

participate because of suspicious findings on routine mammograms. Therefore, there is a possibility that 

these women had an overall higher MD than the average populations since mammograms of high 

density breasts may be more difficult to interpret50. Nevertheless, the variation of MD in the MDG1 

population was high, and there were no indications of a bias towards high MD subjects. Normal breast 

biopsies from relatively young women are hard to obtain and it would have been beneficial to include 

more subjects to improve statistical power, however this was not feasible. Even though biopsies were 

taken in an area of dense mammary tissue, there was not enough material for histological evaluation of 

the biopsies in addition to the molecular analyses. We therefore do not know whether the cellular 

composition differed between the samples and thus impacted the results. Samples with low RNA yield 

could not be included in the gene expression analysis, but since we did not observe any association 

between RNA yield and MD, excluding these samples did most likely not influence the results. 

Material in paper II 

In this study, mammary tumors from transgenic (Lgr5-creERT2-EGFP;R26R-Confetti) mice on a FVB/N 

background were studied. The transgenes themselves were not relevant for this study and are inert, so 

the specific genotype did not affect the results. Tumors were induced in mice according to an 
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established protocol including medroxyprogesterone acetate (MPA) and the carcinogen 7,12-

dimethylbenzanthracene (DMBA)207. In total, 18 mammary gland tumors from 14 mice and 6 normal 

mammary glands (from non-treated mice) were subject to genomic analyses. Histological assessment 

was performed by a trained veterinary pathologist. 

We explored the genomic and transcriptomic features of MPA/DMBA induced tumors. Previous 

transcriptomic analyses of tumors generated using the DMBA/MPA model system has shown that this 

model is heterogeneous, yielding very diverse tumors211. This was also the case in our experiment; even 

two tumors from the same mouse were highly different. In contrast to homogeneous mouse models 

where the tumors’ phenotypes are quite predictable, we needed to account for large intertumoral 

heterogeneity by increasing the number of animals to ensure statistically relevant analyses. However, 

the need for high N had to be balanced against ethical considerations of the included number of 

animals. Tumor growth in each mouse was monitored and the mice were euthanized either at a pre-

defined time point or when the maximum allowed tumor volume was reached.  

Material in paper III 

This study includes tumors from three different cohorts: “OSLO2”216, “Uppsala”192 and “Milano” 

(previously unpublished). We decided to include tumors from different cohorts since DCIS tumors are 

not readily available for research purposes and DCIS cohorts often are quite small. We also included 

invasive tumors from the same cohorts. An overview of the samples is shown in Table 3. 

Table 3. Overview of samples included in paper III 

Cohort DCIS IBC

OSLO2 7 302

Uppsala 22 6

Milano 28 5

Total 57 313
 

All tumors were subjected to RNA and DNA isolation in our laboratory, and were analyzed using the 

same microarray platform to avoid merging of data from different array types. The cohorts were run on 

microarrays at different time points, so randomization across cohorts was not possible. In total, 57 DCIS 

and 313 IBC tumors were included. All tumors were evaluated by a breast pathologist ensuring that no 

DCIS tumors had invasive foci larger than 1mm (i.e. DCIS with micro-invasion was still considered pure 

DCIS). DCIS tumors were classified according to the European Organization for Research and Treatment 
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of Cancer (EORTC) system80 while the IBC tumors were classified according to the Nottingham (Elston & 

Ellis) system217. Tumors originated from different countries, and for many of the patients clinical 

information was sparse and we lacked reliable recurrence and survival data. We also lacked IHC results 

for ER, PR and HER2 for some samples and different threshold values were used for evaluation. To be 

able to interpret these across cohorts, we therefore used genomic data (ESR1 and PGR expression and 

HER2 copy number) to determine the status of these biomarkers.  

The DCIS tumors in this study were all pure DCIS with no signs of invasion. This means that DCIS and IBC 

tumors were compared as groups, not as DCIS-IBC pairs from the same (mixed) tumor. Several studies 

have been performed on tumors with both DCIS and IBC components present, enabling comparison 

between different tumor compartments (using micro-dissection)43,218,219. In such studies, DCIS and IBC 

have been shown to be very similar. However, DCIS from mixed tumors and pure DCIS (from lesions 

without invasion) may have very different biology and it may be advantageous to consider these tumors 

as distinct groups.  All analyses were performed on bulk tumor, i.e. without micro-dissecting into cellular 

compartments (except trimming of excess adipose tissue during tumor preparation). This was done for 

two reasons: First, we wanted all tumors in the cohort to be prepared the same way, and second, we 

wanted to also include cells from the immediate microenvironment surrounding the tumor. The 

drawback of studying bulk tumor rather than micro-dissected cellular compartments is that we do not 

obtain information about the specific contribution from the different cellular compartments.  

Material in paper IV 

In this paper, we have included material from mixed tumors (i.e. synchronous DCIS and IBC) and pure 

DCIS from the Uppsala cohort (described in paper III). The mixed tumors were micro-dissected using 

laser capture micro-dissection (LCM) into three different cellular compartments: normal, DCIS and IBC. 

Initially, 76 samples from 33 patients with mixed tumors were selected. However, due to difficulties 

during DNA extraction mainly because of sample storage in Trizol, many samples were discarded. In 

total, 44 samples (19 IBC, 16 DCIS and 9 normal) from 26 different patients were successfully sequenced. 

These included three triplets (IBC, DCIS and normal from the same patient) and 10 IBC/DCIS pairs. For 

comparison, 10 pure DCIS tumors were included to explore whether there were any consistent 

distinctions in mutational profiles between DCIS from mixed tumors and pure DCIS.  
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Gene expression microarrays 
Gene expression microarrays enable detection and relative quantification of RNA levels of genes 

expressed in a sample. In this thesis, I have used gene expression microarrays in paper I, II and III. In all 

three papers, we used Agilent SureprintG3 Gene Expression 8x60K arrays with the Low Input Quick Amp 

Labeling protocol220. The human version of the array was used in paper I and III and the murine version 

in paper II.  In microarrays, gene expression is measured by hybridization of RNA from a sample to DNA 

probes immobilized on a glass surface.  The measurement of gene expression by microarrays is highly 

indirect and due to the kinetics of hybridization, the fluorescence signal that is detected is not 

proportional to RNA content for all RNA concentrations, i.e. the dynamic range of detection is limited. A 

second challenge of microarrays is the fact that probes are not 100% specific, and some cross-

hybridization with RNA molecules with similar sequence may occur. Finally, microarrays only detect 

known mRNAs, thus novel or un-annotated transcripts are not covered in this type of analyses221,222. 

At the time our study was initiated, microarray was the preferred method. Since then, RNA sequencing 

(RNAseq) has become increasingly common. Compared to microarrays, RNA sequencing is a more direct 

method of analyzing the transcriptome with a wider dynamic range than microarrays and no upper limit 

of quantification. It is also more sensitive at low expression levels and has the ability to detect short 

reads and base-level resolution. The largest drawback of RNAseq is the high cost222. Another recently 

developed technology is a digital molecular barcode counting system (Nanostring). It is limited to   800 

different transcripts, but requires no amplification, cDNA conversion or library prep resulting in clean 

and reliable data also from formalin fixed paraffin embedded (FFPE) material223,224. 

In paper I, gene expression analysis was performed on normal breast samples. We used Agilent 60K 

microarrays, while the previous project was performed using Agilent 44K arrays. It was not feasible to 

merge the two datasets without losing biological signal; therefore the datasets were analyzed 

separately. The basic question of whether or not we could validate the association between MD and 

expression of specific genes was not affected by this, however direct comparison of gene expression 

between the two time-points was more challenging. To circumvent this problem, we used a rank-based 

approach where gene-ranks were used as a proxy for gene expression and the change in gene rank from 

time point 1 to time point 2 would represent change in gene expression. In paper III, all three cohorts 

were run on the same type of array, but at different time points, by different operators and using RNA 

isolated by different methods. This could potentially create problems, hence we investigated whether 

these issues was causing batch-effects. 
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Gene expression data analyses 

Data preprocessing 
In all papers including gene expression data, preprocessing was performed similarly. Quality control was 

performed using the Agilent Feature Extraction Software and samples that failed were rerun. Since the 

distribution of raw intensity values in gene expression analyses is highly skewed, with some extremely 

high values, we log-transformed the intensity values.  

A frequent objective of gene expression microarray studies is to identify biological differences between 

samples. However differences due to technical issues may occur along virtually all steps of the 

procedure. To compensate for systematic differences between samples run on microarrays, the data are 

normalized. Normalization of arrays is made possible based on the assumption that most genes on the 

array are expressed at approximately the same level. The relatively few genes that are differently 

expressed between samples should not influence the normalization substantially, however, if the 

dataset consists of samples that are profoundly different (such as samples from normal tissue and tumor 

samples) this assumption is no longer valid and normalization of such datasets using standard methods 

may prove difficult225. The most common way of normalizing microarray gene expression data is through 

quantile normalization. This method forces the data from each sample into the same distribution 

making it possible to compare gene expression between samples. It may however also reduce true 

biological differences since extreme values are artificially reduced226,227. To normalize the data for paper 

III, including compiled data from three different cohorts, we used quantile normalization across all 

tumors in all three cohorts.  

In the gene expression arrays used in our studies, multiple probes may represent one gene. In paper II 

and III we wanted the gene expression data to be on gene level. For this, we calculated the mean of all 

probes representing the same gene. In paper I (MDG2), we wanted to compare the data to the results 

from the previous study (MDG1), and since the former study was analyzed on probe-level, we used the 

same approach on MDG2. In all papers, we performed principal component analyses (PCA) on the final 

dataset to identify outliers and inspect batch effects. This was especially important in paper III where 

gene expression arrays from three cohorts were run at different times.  

Subtyping of mammary gland tumors 
A major aim of this thesis was to identify and explore the properties and relevance of different 

molecular subtypes in breast cancer progression. Subtyping enables classification of tissue or tumors 

into groups that share molecular characteristics. This information may be valuable for e.g. treatment 
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decisions or for studying underlying biological processes. In three of the papers in this thesis (papers I, II 

and III), different subtyping methods have been performed.  

In paper I, we used microenvironment subtyping to characterize normal mammary gland tissue. The 

method is based on publications from Román-Pérez et al. and Sun et al. who analyzed tissue samples 

adjacent to breast tumors and characterized the tissue as active or inactive228,229. These subtypes had 

not previously been investigated in normal breast tissue. Microenvironment subtypes were assigned by 

calculating Pearson correlation between a vector of weights obtained from the original paper and gene 

expression values of genes in a signature gene list228. The sample was defined as active subtype if the 

correlation coefficient was positive, and inactive if negative. Neither the correlation coefficient, nor the 

P-value was taken into consideration. In retrospect, including these measures in the analyses to 

determine the strength of the association to the assigned microenvironment subtype could have been 

advantageous. 

The MPA/DMBA-induced mammary gland tumors and normal mammary gland tissue in paper II were 

subtyped using a method described by Pfefferle et al.211. This method is an example of a nearest 

centroid classifier, where a tumor’s subtype is derived by determining how well the sample fits with 

several predefined centroids representing the different subtypes230. The subtyping of our cohort 

revealed that 8/17 tumors were of the Claudin-lowEx or Squamous-likeEx subtype. Pfefferle et al. 

proposed that these subtypes resembled human claudin-low tumors and samples of these subtypes 

were the focus of our study. The remaining nine tumors were of seven different subtypes and this mixed 

group of tumors served as a basis of comparison. The high number of different subtypes identified 

illustrates what has been shown before, that the MPA/DMBA-model is a heterogeneous model yielding 

tumors of several different subtypes. Since our cohort was relatively small, we decided to compare the 

two main groups that emerged after hierarchical clustering. This approach inevitably dilutes the specific 

signal from individual tumors and subtypes, however we considered it necessary to obtain sufficient 

statistical power. We used the SigClust tool to confirm that the two tumor clusters were significantly 

different231.  

In paper III, on the cohort including human DCIS and IBC tumors we performed PAM50 subtyping: A 

simplified 50-gene subtype predictor designed to capture the original human intrinsic subtypes171,176. 

This method is also a nearest centroid classifier. All DCIS and IBC were subtyped concurrently using the 

normalized dataset. We obtained the subtype centroids from the original publication on PAM50 

subtyping by Parker et al.176. In this dataset, the fraction of ER-positive tumors was   ̴60%, while the 
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fraction was   ̴80% in our dataset. This may influence the centering of the data that is performed prior to 

subtyping, and consequently the subtyping results. To account for this difference, we calculated the 

centering of each gene separately for ER+ and ER- patients (C+ and C-). We then found the gene’s 

centering factor (C) by multiplying C+ and C- by the original fraction of ER+ and ER- tumors in the 

training set using this formula:  =  0.6 + 0.4  

After centering, we calculated spearman correlation between gene expression of the 50 genes in each 

sample and the subtype centroids, obtaining four correlation coefficients for each sample (basal-like, 

HER2-enriched, luminal A and luminal B). A sample was assigned to the subtype to which it showed 

highest correlation. Importantly, the four correlation coefficients serve as a continuous measure that 

may provide additional information about the tumor’s characteristics. 

In all centroid-based subtyping, the centering of the data is a critical step. Data sets with very few 

samples or a cohort consisting of samples with highly different biology (such as tumors and normal 

tissue) will skew the centering of the data and affect subtyping. It is also important that a dataset 

represents all subtypes. Importantly, PAM50 subtyping is a tool for subtyping of human tumors. 

Subtyping of murine tumors using this method would yield unreliable results. 

 

Creating a DCIS score using multivariate logistic regression 
In paper III, we aimed to create a score that could be used to predict the “DCISness” of a tumor, i.e. how 

much the tumor resembled a DCIS (and simultaneously differed from IBC). We postulated that this 

approach could be used to predict which DCIS patients could be spared treatment. Although we decided 

to not include this part in the current manuscript, the DCIS-score is discussed in this thesis since the 

concept is highly relevant for studying DCIS biology.  

For each of the three genomic levels (gene expression, copy number and methylation), we fitted a high 

dimensional logistic regression model with tumor stage (DCIS or IBC) as independent variable (response 

variable) and genes as dependent variables (covariates). To handle the much larger number of 

covariates (>20 000 genes) than number of samples, we used LASSO (least absolute shrinkage and 

selection operator) which is a regression analysis method that includes both variable selection and 

penalization232. It assumes that many genes are of limited importance and adds penalty to the 



METHODOLOGICAL CONSIDERATIONS 

36 
 

coefficients. Many of the coefficients will be set as 0 and thus eliminated from the model. This results in 

a sparse model with few covariates. To attempt to account for effects caused by molecular subtype, we 

included correlation coefficient to the basal-like centroid and its interactions with each gene in the 

model.  

To obtain DCIS scores, we used LASSO to predict tumor stage for each sample separately. To avoid 

overfitting, we used a leave-one-out approach. The result from this method is each sample’s probability 

of being a DCIS (the DCIS score). The range of the score is 0 to 1, where 1 means DCIS-like, while 0 

means invasive-like. The overall performance of the models was measured by the predicted mean 

square error pMSE, i.e. the mean squared difference between the DCIS score and the known tumor 

state (the histological diagnosis set by the pathologist)233. 

The model using gene expression data excelled the models using DNA copy number or DNA methylation 

data. Figure 8 shows gene expression based DCIS scores for all samples and illustrates that most IBC 

were very invasive-like, while the variance was much greater for the DCIS tumors. To uncover whether 

any specific biology was associated with the DCIS score, we defined two groups of “pure” tumors: 

Standard deviation was calculated separately for DCIS 

and IBC (sdDCIS and sdIBC). Pure DCIS was defined as DCIS 

tumors with DCIS-score > (1-sdDCIS ) while pure IBC was 

defined as IBC tumors with DCIS-score < sdIBC . We 

analyzed pure DCIS and pure IBC in a subtype-specific 

manner. However, when comparing these analyses to 

the analysis that included all tumors, we found only 

minor differences. To further develop the score to 

predict which DCIS tumors are indolent, we would need 

to include relapse or survival data for validation which 

unfortunately was not complete for this cohort. Based 

on the other results in the manuscript of paper III, we 

are convinced that studying DCIS to IBC progression 

needs to be carried out in a subtype specific manner. It 

is therefore reasonable to think that a potential DCIS 

score should be derived for each subtype separately, or 

at least separate for basal-like and non-basal-like. 

Figure 8. Gene expression based DCIS scores for DCIS 
and IBC tumors from all cohorts in paper III. Boxes 
illustrate pure tumors (determined by standard 
deviation). 
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However, this approach will inevitably reduce statistical power and we would need a larger dataset 

(most importantly, many more DCIS) to be able to perform such analyses with a sufficiently high 

statistical power. 

 

DNA copy number analyses 
Some cancer types are predominantly driven by mutations, while breast cancer is characterized by 

recurring copy number aberrations23. We have used DNA copy number analyses in paper II and III. In 

paper II, copy numbers were estimated based on exome sequencing data using EXCAVATOR 2234. The 

copy number analyses in paper III were performed using Affymetrix™ Genome-Wide Human SNP Array 

6.0 (SNP6). This array includes 1.8 million markers covering large parts of the human genome, including 

both SNP-probes and non-polymorphic probes (to increase coverage across the whole genome). The 

principle behind SNP6 arrays is the same as for gene expression arrays: Oligonucleotides immobilized on 

a glass slide bind fragmented genomic DNA in an allele specific fashion. After hybridization, a scanner 

detects emission of fluorescent signals. The data from such arrays may be exploited to calculate copy 

number of alleles at all loci represented on the array as signal will increase with increased number of 

DNA copies. The output from SNP6 arrays consist of two intensity measures, one for the major allele (A - 

the allele with highest frequency) and one for the minor allele (B). After prepossessing, the total 

intensity (logR) may be calculated as log(A+B) and the B-allele-frequency (BAF) as B/(A+B).  

Cancer genomes are commonly highly aberrant which complicates copy number analyses of tumors. 

Examples of such aberrations are aneuploidy (tumor lacks the normal diploid state of two copies at each 

locus), normal cell infiltration (the signal that comes from a tumor is altered due to contribution from 

normal cells) and tumor heterogeneity (different parts of the tumor may harbor different aberrations). 

An algorithm termed ASCAT (allele-specific copy-number analysis of tumors) may in part handle these 

complicating factors. This algorithm takes advantage of the allele specific information from the SNP6 

arrays and returns an estimate of the tumor’s aberrant cell fraction (tumor cell percentage) and tumor 

ploidy in addition to calculating adjusted allele specific copy number235,236. 

In paper III we analyzed copy number data from both DCIS and IBC tumors. Data was preprocessed using 

the PennCNV-Affy library with the HapMap samples as reference set and corrected for GC content237–239. 

GC correction reduces the impact of GC content on the results, since this may create a wavy artifact. 

Copy number data may be noisy, which complicates interpretation. To attenuate the noise, a 
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segmentation algorithm was applied to partition the intensities into regions of homogeneous mean 

intensity levels. For segmentation, we used the piecewise constant fit (PCF) algorithm in the R 

“copynumber” package240. To obtain one copy number value for each gene, we selected the segment 

with highest overlap. Finally, we applied the ASCAT algorithm to the data and obtained aberrant cell 

fraction and ploidy for all tumors. We also calculated the genomic instability index (GII) which gives a 

measure of the overall instability of a tumor’s genome.  

An alternative approach of obtaining copy number data is by whole genome DNA sequencing, which 

provides not only copy number data and SNPs, but also mutations, structural variants etc. Deriving copy 

number data from exome sequencing is also possible, but yields lower resolution since large parts of the 

genome are not covered.  

 

DNA methylation analyses 
DNA methylation is an epigenetic regulator of gene transcription and plays an important role 

coordinating biological processes in physiological conditions. DNA methylation is the covalent addition 

of a methyl group (-CH3) to the 5-carbon of the cytosine ring within a CpG dinucleotide context (a CpG is 

a cytosine immediately followed by a guanine in 5’->3’ direction). Around 60% of all mammalian genes 

harbor CpG islands (clusters of CpGs) in their promoter regions. Hypermethylation of such promoters 

often lead to decreased expression of the gene. In tumors, aberrations such as hypermethylation of 

tumor suppressor genes or hypomethylation of oncogenes may play a part in deregulating gene 

expression of these genes thus contributing to cancer development241. 

DNA methylation analyses were performed in paper III, to compare DCIS and IBC in a subtype specific 

manner. The analyses were performed using the Illumina Infinium HumanMethylation450 microarray. 

This array uses the Infinium “BeadChip” technology that quantifies methylation level at >450.000 

methylation sites across the genome. Briefly, genomic DNA was treated with bisulfite to convert 

unmethylated cytosine to uracil. This enables detection of methylated and un-methylated states of CpGs 

by measuring fluorescence of beads representing the two methylation states. The intensity ratio 

between the two beads (β) represent the methylation values (β=0: no methylation, β=1: total 

methylation). Importantly, when interpreting tumor DNA methylation, normal cell infiltration, ploidy 

and tumor heterogeneity need to be taken into consideration241,242. The BeadChip provides genome-

wide coverage of DNA methylation and is a widely used technology. Today, whole genome bisulfite 
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sequencing using next generation sequencing is considered gold standard for the most comprehensive 

and quantitative measurements of DNA methylation, but this is a costly technology243.  

Normalization of methylation data in paper III was performed using subset quantile normalization244. 

The number of CpGs associated with each gene is highly variable, from 1 up to   1200. To obtain only one 

value for each gene per sample, we collapsed the -values. By doing this, we lost specific information 

about e.g. promoter or gene body methylation, but obtained a substantial dimension reduction 

(necessary for doing e.g. differential methylation analyses on gene level) and were also able to more 

easily compare the methylation data with other gene level data (such as gene expression and copy 

number data). One way of collapsing -values to gene level would simply be by calculating the 

arithmetic mean across the -values in each gene, however, using this approach would weight all -

values equally. Instead, we used PCA including all CpGs within each gene and 50kB upstream or 

downstream from the gene. We defined the first principal component value as the gene’s methylation 

profile value. This is created so that CpGs with highest variance in -values across samples contribute 

more than CpGs with low variance. With the methylation profile values, we performed differential 

methylation analyses separately for each subtype. The p-values were corrected for multiple testing using 

false discovery rate (FDR). To obtain gene lists for functional enrichment analyses, thresholds including 

both FDR (<0.05) and effect-size was set. Effect-size threshold was included to increase probability of 

identifying not only statistically significant differences between DCIS and IBC, but also genes with 

biological relevant differences.  

 

Targeted DNA sequencing 
Although copy number aberrations are important oncogenic drivers in breast cancer, somatic mutations 

also contribute to breast cancer formation245. Next generation DNA sequencing is a valuable tool for 

assessment of the mutational status of tumors. However, whole genome sequencing or even whole 

exome sequencing is expensive and produce large amounts of data that requires complex and resource-

intensive data analysis. Using a more targeted approach, with a limited panel of genes focused towards 

known driver genes may, in many cases, be more appropriate. Targeted sequencing allows for increased 

depth of coverage which enhances sensitivity, thus increasing the chance of discovering low frequency 

variants. I addition, providers of targeted sequencing panels often offer streamlined data handling and 

analysis tools that facilitates data analyses for non-bioinformaticians.  
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In paper IV, we used the Ion Torrent sequencing platform with the Ion AmpliSeq™ Cancer Hotspot Panel 

v2 to sequence microdissected samples from mixed DCIS/IBC tumors. The Cancer Hotspot Panel includes 

primers for amplification of 207 amplicons covering  ̴2800 COSMIC mutations (Catalogue Of Somatic 

Mutations In Cancer22) in 50 oncogenes and tumor suppressor genes relevant for solid tumors246. We 

used 100pg DNA as input, lower than described in the standard protocol (10ng). Ion Torrent uses the ion 

semiconductor sequencing technology, which detects hydrogen ions released during polymerization of 

DNA. The template DNA to be sequenced was flooded with deoxyribonucleotide triphospate (dNTP), 

one species at a time, and hydrogen ions were detected as the complementary strand is built onto the 

template247. Data was analyzed using the AmpliSeq™ Variant Caller plug-in within the Ion Torrent Suite 

software. Three samples failed quality control and these were excluded from further analyses. In the 

remaining samples, the Ion Torrent Suite called a high number of variants; many with low frequency and 

low quality score. To avoid false positive variants, a strict threshold was applied and the remaining 

variants were assessed manually in Integrative Genomics Viewer248 to evaluate strand bias and possible 

technical errors. Variants demonstrating obvious PCR duplication errors were also excluded. To only 

include variants that may be of clinical significance, we included only variants present in the COSMIC 

database and since only somatic mutations were of interest, we excluded SNPs present in the variant 

database in the 1000 Genomes Project249.  

To validate the sequencing results, we used digital droplet PCR (ddPCR) on the RainDrop system 

(RainDance technologies) on one selected variant (PIK3CA:p:H1047R) in nine samples. We identified the 

variant at similar frequencies as was seen in the sequencing experiment. In a previous paper, three 

different TP53 mutations were identified using Sanger sequencing of DNA from three tumors that were 

also included in our study250. Two of these mutations were identified in our variant calling pipeline. The 

third mutation, a 10bp deletion, was not called, however; the deletion could easily be identified by 

inspecting the data in IGV. The reason that this mutation has not been called in our pipeline may be 

because of a known issue in the Ion Torrent system, where deletions in homopolymer regions (several 

equal nucleotides in a row) are systematically under-called251. The identification of called variants by 

alternative methods confirms the validity of our findings, however; the stringent filtering that we 

applied may have caused potentially important low frequency variants to pass undetected. Due to noisy 

data these would be indistinguishable from false positive calls. The Ion Torrent technology uses small 

sized amplicons (  1̴50 nucleotides) which enables the system to tackle highly degraded DNA (e.g. DNA 

from FFPE tissues). In our study, despite using low quality DNA that had been stored in sub-optimal 

conditions and a lower amount of DNA input than recommended, we still obtained reliable variant 
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callings, however we might be approaching the limits for what the Ion Torrent platform may be able to 

handle.  

In retrospect we see that the choice of gene panel for this study might not have been optimal, as the Ion 

AmpliSeq™ Cancer Hotspot panel is not specific for breast cancer. For instance are genes commonly 

mutated in breast tumors such as GATA3 and KMT2C, not included in the panel, while mutations in e.g. 

VHL and SMARCB1 (genes that are included in the Cancer Hotspot panel) are very rare in breast cancer 

according to COSMIC22. An alternative gene panel for this study would have been the Ion AmpliSeq™ 

Comprehensive Cancer Panel. This encompasses >400 genes implicated in cancer. However, this panel 

requires substantially more DNA as input than was available in our case. It also would have been 

beneficial to include more cases especially when considering the results from paper III where we found 

that molecular subtype should be taken into consideration when studying DCIS. Since RNA for these 

tumors was not available, we were unfortunately unable to compute PAM50 subtypes in this study.  

 

Statistical considerations  
A recurring issue in all the papers included in this thesis and many similar studies is the limited number 

of samples available. Especially in omic studies where the number of variables (p) is high compared to 

the number of samples (n), obtaining sufficient statistical power is a challenge. In univariate analyses of 

e.g. gene expression data, a statistical test is performed for each gene separately. In every test, there is 

a possibility that the difference identified is not a result of true biological effects, but has just occurred 

by chance, and for each additional test performed there is an increased chance that one of the tests 

might be a false positive. The P-value represents the probability of observing something more extreme 

than our data show given that the null hypothesis is true. Using the threshold α=0.05, there is a 5% 

chance that a significant difference is actually not true (i.e. the result is a false positive). When 

performing multiple tests (e.g. when analyzing whole genome expression microarrays with >20.000 

features), >1000 tests will on average be false positive at a threshold of 0.05. Hence, there is a need for 

a stricter definition of significance. Several methods are available to adjust for multiple testing252,253. In 

our papers, we have used false discovery rate (FDR). FDR controls the expected number of tests where 

the null hypothesis has been rejected falsely (false positives). An adjusted P-value (representing FDR) is 

calculated for each gene and threshold is set at the preferred level of false positives254. There is a 

tradeoff between the consequences associated with false positive results versus the benefit of 

identifying true positive results; therefore FDR thresholds must be adapted to the specific research 
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question. In addition, FDR is dependent on the number of tests performed. It could therefore be of 

benefit to reduce the number of genes to be tested i.e. by filtering out genes with low variance across 

the dataset prior to analysis, however filtering may also introduce bias255. Several statistical methods 

have been developed to deal with the p > n problem in microarrays. Examples of such are significance 

testing of microarrays (SAM)256 and limma257. 

When performing statistical tests, the goal is to assess statistical significance. However, if the result of a 

test is not significant, we cannot claim that no difference exists. There might actually be a true 

difference, however too few samples, random variation or noisy data may have interfered and obscured 

the results. In line with this follows that P-value thresholds should not be used for uncritically 

dichotomizing results into significant and non-significant. There is no fundamental difference between 

two tests that have P-values just below or just above the threshold, and important biological findings 

may be lost due to too rigid interpretations of P-values. Several scientists have been speaking up against 

uncritical use of statistical significance lately, promoting scrutiny of the data behind the P-values and 

this is important food for thought for everyone using statistical tests in data analyses258,259.  
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ETHICAL CONSIDERATIONS  
The studies in this thesis are based on material obtained from human breast cancer patients and mice. 

In all studies comprising human material, approval from regional ethics committees (REC) and patient 

consent have been obtained. The relevant REC approval numbers are listed in Table 4. 

Table 4. REC approval numbers for human cohorts included in this thesis. 

Cohort Paper number Approval number Location

MDG2 I 2009/1898 Oslo, Norway

Metabric II
07/H0308/161
12/EE/0484
07/Q0106/63

Cambridge, UK

OSLO2 III 2016/433 Oslo, Norway

Milano III PG/U-25/01/2012-00001497 Milano, Italy

Uppsala III & IV 2005/118 Uppsala, Sweden

 

Animal experiments in paper II were performed according to the regulation on the use of animals in 

research, and approval was obtained from the Norwegian Food Safety Authority (approval number: 

FOTS 4385). All mouse experiments were designed and performed according to the three R’s: Replace, 

Reduce, Refine. Replacement was not applicable as the aim of the study was to characterize the 

MPA/DMBA tumors as a model for human breast cancer. We obtained reduction in the number of 

animals by using our mouse cohort in several projects. Also, when more than one tumor arose in the 

same animal, but in different mammary glands, they were considered as independent, and this 

contributed to reducing the number of animals considerably. However, the MPA/DMBA model is 

heterogeneous and to obtain sufficient statistical power, more animals needed to be included than 

would have been necessary when studying a homogeneous tumor model. Refinement was obtained by 

conscientiously following the animal welfare guidelines provided by the animal facility and national 

regulations. All experiments were performed by trained personnel. Mice were inspected daily and were 

euthanized when the volume of a single tumor exceeded 1000mm3 or the total tumor volume exceeded 

2000mm3. Likewise, mice were euthanized if they showed signs of ill health. 

Data created in these studies are or will be made publicly available through ArrayExpress260  and the 

European Genome-Phenome Archive (EGA)261 following Minimum information about a microarray 

experiment (MIAME) guidelines262. All data storage and handling is performed in compliance with the EU 

General Data Protection Regulation (GDPR).   



 

44 
 

 



DISCUSSION 

45 
 

DISCUSSION 
This thesis encompasses studies concerning different stages along breast tumor progression, from 

normal mammary epithelium to invasive breast cancer. In paper I, we studied processes in the normal 

mammary gland with relevance for breast tumorigenesis. Paper II describes a carcinogen-induced 

mouse breast tumor model that may be used to study tumor initiation and progression of a specific 

subtype, the claudin-low breast cancer, and paper III and IV address ductal carcinoma in situ and 

invasive breast cancer. Here, I will discuss molecular subtyping of mammary gland tumors and the 

importance of subtype stratification in tumor progression studies. I will also discuss the role of the 

microenvironment in breast tumor progression.  

Molecular subtyping of breast tumors 
Cancer is an “N of 1” disease; all tumors are essentially different. Ideally, all cancer therapy should be 

tailored to each individual tumor, however this is a complex task, and requires resources and detailed 

expertise that is generally not available in a clinical setting. For many cancer types, there exist various 

predictive and prognostic biomarkers. Predictive biomarkers provide information about the effect of a 

therapeutic intervention, while prognostic biomarkers indicate the likelihood of patient outcome263. In 

some cases, single aberrations (e.g. EGFR-mutations in lung cancer264 or PML-RARα translocation in 

acute promyolytic leukemia265) may provide sufficient information about the tumor to initiate specific 

treatments. However, in many tumor types, single biomarkers are not sufficient. Molecular subtyping, 

based on multiple features in combination, provides comprehensive characterization and classification 

of tumors and may have both predictive and prognostic value. In breast cancer, the intrinsic subtypes 

(later condensed to the PAM50 predictor) are thoroughly documented to have clinical importance and 

are currently being implemented as a tool for therapeutic decisions177,179. Subtyping is also valuable in 

explorative studies where it enables grouping of tumors with similar genomic characteristics to increase 

statistical power. It is however, important to keep in mind that subtyping also may be lead to unwanted 

bias266.  

Mouse models are valuable tools for studying human breast cancer, however, due to the substantial 

differences among human breast cancer subtypes and the large heterogeneity of mouse models, it is 

important to select a mouse model that best represents the human subtype in question199. Using human 

subtyping tools on murine tumors would lead to erroneous results, especially since the role of ER in 

mammary tumors differs substantially between the two species. Therefore, a separate method for 

subtyping murine mammary tumors has been developed. Seventeen murine mammary tumor subtypes 
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have been characterized, which is noticeably more than the 4-6 subtypes seen in human breast 

cancer211. In paper II, we used the murine subtyping method on MPA/DMBA-induced invasive mammary 

tumors that arose in mice. The tumor cohort was heterogeneous and approximately half of the tumors 

demonstrated a claudin-low-like phenotype. Since human breast cancer is a heterogeneous disease, 

heterogeneous mouse models could be believed to better represent human breast cancer than 

homogeneous models. However, the chemical induction of the MPA/DMBA-model leads to much higher 

mutation frequency rate, lack of luminal-like tumors and overrepresentation of claudin-low-like tumors 

compared to human tumors. This model could therefore not be regarded as representative for the 

whole spectrum of human breast cancer, but is a valuable model for studying human claudin-low breast 

cancer. 

It is generally accepted that the molecular breast tumor subtypes are present also at the DCIS 

stage101,191,192, yet few have compared subtype characteristics of DCIS and IBC. The highly heterogeneous 

nature of breast cancer makes a subtype specific approach valuable when exploring breast tumor 

progression. In paper III we explored the relevance of molecular subtypes in DCIS. We found that DCIS 

exhibit subtype specific characteristics similar to those in IBC, but at a more moderate level. Notably, we 

did not find any significant difference in tumor cell percentage between DCIS and IBC. We appreciated in 

this study that even though tumors are categorized into different subtypes, the association to each 

subtype should be interpreted as a continuum. Furthermore, when performing PAM50 subtyping it 

would be appropriate to define tumors that correlate poorly to any of the subtype centroids as 

indeterminable and classify these as a separate group. This could reduce confounding noise and 

facilitate discovery of important biological differences between subtypes. However, in a clinical setting, 

an indeterminable category would probably not be advantageous. 

 

Subtype specific breast tumor progression  
During breast tumor progression, a tumor may go through different stages of increasing malignity89. 

DCIS is an important stage along this progression since this is usually the earliest stage where breast 

tumors are diagnosed either through mammographic screening or because of clinical symptoms. 

Furthermore, the transition of a tumor from an intraductal to an invasive state is a critical event in 

tumor progression since only invasive tumors are considered to have metastatic potential69. Breast 

cancer is highly heterogeneous and it is reasonable to believe that the mechanism and rate of 

progression from DCIS to IBC may differ considerably from tumor to tumor. Several previous studies 
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have concluded that there are few genomic differences between DCIS and IBC96,101,102. However, as we 

discuss in paper IV, pure DCIS (i.e. DCIS with no associated invasive foci) is potentially a distinct entity 

compared to DCIS from a mixed lesion (with synchronous DCIS and IBC). In paper III, we aimed to 

explore the subtype specific difference between DCIS and IBC to elucidate mechanisms of invasion. 

Here, only pure DCIS were included in the DCIS group. DCIS in mixed lesions has already proven to have 

invasive potential and considering these DCIS as representative also for pure DCIS would be misleading. 

This is supported by a study by Knudsen et al. where genes differentially expressed between pure DCIS 

and pure IBC were shown to be already deregulated in DCIS cells in mixed lesions267. 

The molecular subtypes of invasive breast tumors are highly disparate in biology, prognosis and 

response to treatment170–172. The subtypes are linked to different cells of origin, which implies that a 

tumor’s subtype is determined before the tumor becomes invasive and one can assume that tumor 

progression and tumor invasion also may differ between the subtypes. In paper III, we stratified the 

tumors by subtype before comparing DCIS and IBC. We found extensive differences between DCIS and 

IBC, especially in the basal-like subtype, while luminal A DCIS and IBC were relatively similar. This is in 

accordance with results in other studies105,268 and strongly suggests that subtypes should be taken into 

consideration when studying breast cancer progression. Previous studies concluding high resemblance 

between DCIS and IBC may have been confounded by subtype: Since there is overabundance of luminal 

A tumors of both DCIS and IBC in most breast tumor cohorts, the signal from luminal A tumors would 

dominate and could confound the results, leading to the erroneous conclusion that DCIS and IBC in 

general are very similar.  

From the point of breast tumor initiation, a lesion may follow one of several different progression paths. 

Figure 9 (inspired by a figure in Groen et al.269) illustrates this heterogeneity and depicts a model of five 

possible natural breast cancer progression paths. Path number 1 includes rapidly growing tumors that 

are in the DCIS stage only transiently and can quickly lead to metastasis and death. Invasive tumors of 

medullary type and those associated with BRCA1-mutations have been shown to lack an in situ stage, 

and may be examples of tumors following path 154. The interval cancers (those that are diagnosed 

between two regular mammographic screenings) are also likely to populate this group, as time from 

detection by mammography to aggressive disease is short. Path number 2 represents the tumors that 

have slow progression with longer time spent in the DCIS stage. They still carry potential to become 

lethal. Path 3 consists of even slower developing tumors with invasive potential, but these tumors are 

developing so slowly that even though they become invasive, they will not lead death caused by breast 
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cancer. Path number 4 and 5 are tumors that never become invasive. The tumors of path 4 lack invasive 

ability and can be thought to grow by dilatation of the ducts or along the ducts, while the tumors in path 

5 stop growing completely. There are even reports of DCIS tumors regressing spontaneously (path 5, 

stippled line)270. Patients carrying tumors in path 1 and 2 will be in need of treatment, while patients 

carrying tumors in the other paths may benefit from less extensive treatment or active surveillance. 

Most likely, the distribution of the molecular subtypes differs between the paths; it is reasonable to 

assume that basal-like and high-grade tumors are overrepresented in path 1 and 2, while low-grade 

tumors and luminal subtypes are more likely to be found in path 3, 4 or 5. This would be in accordance 

with other studies that have shown that DCIS tumors follow one of two major courses of development: 

A low grade course with overrepresentation of ER-positive tumors and a high-grade course, with ER-

negative and HER2-positive tumors54,89,271. A tumor diagnosed as DCIS can belong to any of the five 

developmental paths. Tumors of path 1 are only transiently in an intraductal stage, so the time frame for 

detecting a DCIS in this path is short. Since several studies show that many DCIS, if left alone, never 

progress to invasive disease, many DCIS probably grow according to path 4 or 5. These would not be in 

need for treatment.  Not even all invasive breast tumors will lead to death of the patient. The ultralow-

risk invasive tumors identified in a study by Esserman et al.272 may be examples of tumors belonging to 

developmental path 3 and may not require standard treatment.  

Figure 9. Heterogeneity of breast cancer progression. The black arrows represent different progression paths after tumor 
initiation.  The green line represents the point where a tumor may be detected by mammography and the blue line 
represents the point of invasion. The red lines represent death, either due to breast cancer (horizontal line) or other causes 
(vertical line). Figure modified from Groen et al269. 



DISCUSSION 

49 
 

This model gives a simplified picture of breast tumor progression and there may exist progression paths 

that are more complicated than portrayed here. For instance, some tumors may develop slowly to begin 

with and later gain aggressive features accelerating progression. HER2-enriched tumors, for instance, 

are overrepresented at the DCIS stage indicating that HER2 does not facilitate invasion. However, once 

HER2-enriched tumors have become invasive they are known to be quite aggressive which would “kink” 

the tumor progression path. Other events may also divert the path of progression, such as enhanced 

immune response (inhibiting tumor growth) or increased vascularization (promoting tumor progression). 

It is also important to acknowledge that tumors may become invasive prior to being detectable by 

mammography. 

During breast tumor progression, if the assumption that cell of origin dictates the subtype is correct, one 

would expect that the subtype to a certain extent is conserved throughout tumor progression, which 

supports a subtype specific approach when studying DCIS. In paper III, we saw that luminal A DCIS and 

IBC were largely similar, suggesting that luminal A DCIS are direct precursors to luminal A IBC. However, 

this does not imply that all luminal A DCIS will become invasive. The observed differences between 

basal-like DCIS and IBC might suggest that basal-like invasive tumors (especially those that are core 

basal) develop so rapidly that most tumors have become invasive before they are detected and 

surgically removed (i.e. they follow progression path 1 (Figure 9)). This is supported by the observation 

that basal-like IBCs are less likely to have synchronous DCIS compared to  luminal IBCs273. Other studies 

have also shown that the incidence of DCIS tumors with core basal features is low101,274. Interestingly, 

microglandular adenosis, a rare breast lesion considered as non-malignant, has been proposed as a 

precursor to high-grade IBC, possibly corresponding to the core basal tumors in our cohort275,276. The 

basal-like DCIS in our study resembled to a larger extent the non-core-basal invasive tumors, indicating 

that DCIS of basal-like subtype may belong to the same developmental path as non-core basal invasive 

tumors.  

In paper III, we found hypermethylation of clustered protocadherin genes (cPCDH) in basal-like IBC 

compared to basal-like DCIS. cPCHDs are cell-cell adhesion molecules especially important for self-

avoidance in neuronal dendrites277. During EMT, loss of the usual intraepithelial cell-cell adhesion is one 

of the changes that enable epithelial tumor cells to invade surrounding tissue278,279. Not much is known 

about the role of cPCDHs in cancer, but striking similarities have been observed between neuronal 

dendrites and the invadopodia of cancerous cells280. Repression of cPCDH expression through 

hypermethylation has been shown to occur in breast cancer and other cancer types279. It could be 
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hypothesized that silencing of protocadherin expression in basal-like IBC enables tumor cells to detach 

and migrate through either single-cell or multicellular streaming so that the DCIS architecture is rapidly 

lost after BM has been breached. This may explain why basal-like IBC less frequently exhibit 

synchronous DCIS compared to other subtypes.  

Low expression of adhesion molecules is a characteristic feature of the proposed claudin-low breast 

cancer subtype. These tumors have low expression of several claudin genes involved in cell-cell 

adhesion, and high expression of genes involved in EMT, resulting in a mesenchymal-like phenotype186. 

In paper II, half of the murine mammary tumors that occurred, were of subtypes that resemble the 

human claudin-low subtype211. Even though loss of cell-cell adhesion contributes to tumor cell 

migration, it does not explain the mechanism of BM degradation. In paper II, due to the highly 

heterogeneous nature of the tumor model and the very rapid tumor development, we were not able to 

sample tumors at the MIN stage (the stage corresponding to human DCIS) so all tumors in this cohort 

were invasive at the time of sampling. However, it would be very interesting to characterize the claudin-

low-like tumors from this model also at the MIN stage and throughout the invasion process. For this, we 

would need a predictable manner of obtaining claudin-low-like tumors. Currently, no homogeneous 

claudin-low mouse breast tumor models exist, however serially transplanting known claudin-low-like 

tumors from the MPA/DMBA model as allografts could be an option. Using the mouse mammary 

intraductal method (MIND)202 (intraductal injection of tumor cells) while sampling at several time points 

throughout tumor development, we would be able to study progression from the in situ to invasive 

stage. It would also be of interest to explore whether the claudin-low phenotype is maintained 

throughout tumor progression and through different transplant generations. We have previously shown 

that GLI1-induced transgenic mammary gland tumors maintain molecular features through serial 

transplantation281. Importantly, MPA/DMBA mammary gland tumor induction and serial transplantation 

could (and should) be performed in immunocompetent mice, since immune processes are important in 

the claudin-low subtype174.  

 

The role of the microenvironment in breast tumor progression  
During breast tumor progression, the processes in the microenvironment surrounding the tumor may 

play an equally important role to those occurring in the tumor cells140. In paper I, II and III, we have 

explored aspects of the microenvironment at different stages of tumor progression. In paper I, we 

looked at the association between mammographic density and gene expression in normal breasts over 
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time and we explored the microenvironment of normal breast tissue samples using a molecular 

subtyping method assigning each sample to an active or inactive subtype. These microenvironment 

subtypes were developed for characterization of tumor-adjacent normal tissue, and has previously not 

been explored in normal breast tissue without malignant disease228,229. The normal breast samples of the 

active subtype showed features similar to those of claudin-low breast cancer, such as low expression of 

genes involved in cell-cell adhesion and high expression of EMT-related genes. We also found that 

samples of the active subtype showed a wound-healing phenotype with higher expression of fibrosis-

related genes and higher activation of the TGFβ pathway compared to the samples of the inactive 

subtype. The significance of these findings is unclear as we did not find any association between 

mammographic density and microenvironment subtypes. Also, microenvironment subtypes were not 

consistent between time points. This may be explained by intra-mammary heterogeneity, i.e. that the 

specific location of a biopsy plays a role, or that there are dynamic changes between the subtypes over 

time, for instance due to hormonal influences (such as menopause). We could not, however, identify 

any association between microenvironment subtype and menopause status. 

The immune microenvironment is a highly important part of the tumor surroundings136, and in paper II, 

we found that the claudin-low-like tumors of both the murine and human cohort (Metabric), showed 

high degree of immune infiltration compared to other subtypes. These tumors also showed an 

immunosuppressive phenotype with high expression of genes such as Cd274 (encoding PD-L1) and Ptgs2 

(encoding COX-2) compared to the other tumors. High immune infiltration in tumors may affect tumor 

subtyping since gene expression signal from the immune cells will be mixed with the signal from the 

tumor cells themselves. This may be particularly true for the claudin-low subtype because immune cell 

contribution affects the subtyping results substantially, possibly masking the “true” claudin-low 

phenotype. Since there is high correlation between claudin-low features and immune infiltration, it 

could be of benefit to improve the claudin-low subtyping methods by disentangling the immune 

signature from the claudin-low signature. This could lead to a more accurate classification of claudin-low 

tumors and improve understanding of how this subtype relates to the PAM50 subtypes. 

In paper III, we found subtype specific differences in the immune response between DCIS and IBC. Our 

findings indicate that immune cell infiltration is similar in DCIS and IBC in ER-negative tumors, while in 

luminal A tumors, the DCIS lesions are less immunogenic than IBC. The immune scoring method used in 

this study is a crude estimate of the total immune infiltration in the tumor and does not discriminate 

between different immune responses. Immune cell composition has been shown to be different 
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between DCIS and IBC151, and future studies should be instigated to explore further the subtype specific 

differences in immune cell composition in DCIS tumors, including the dual roles of the immune system 

as both pro- and antitumorigenic.  
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CONCLUSIONS AND FUTURE PERSPECTIVES 
In a strict histopathological sense, ductal carcinoma in situ should be considered malignant; the tumor 

cells have the appearance of carcinoma cells, and they even share many genomic aberrations with 

invasive breast cancer. However, the enclosed location of the tumor cells inside the mammary ducts 

restricts the tumor cells from performing mischief until invasion occurs, so in that sense, DCIS should be 

considered a benign disease. For this reason, there is an ongoing debate whether or not DCIS should be 

called a cancer282,283 . Patients diagnosed with DCIS certainly have an increased risk of developing 

invasive breast cancer, but this risk is low. There is an unmet 

need for more personalized treatment of DCIS, and for low-

risk lesions, this would entail reducing treatment or initiating 

active surveillance instead of standard treatment109,110,284. 

Currently, treatment of DCIS is following a just-in-case 

philosophy, which most likely leads to overtreatment of low-

risk lesions. The ultimate goal for treatment of DCIS would be 

to identify those lesions that are low risk, and by active surveillance be able to detect any changes that 

instigate treatment. Decreased treatment of low-risk DCIS would have multiple benefits; physical, 

psychological and economical. In this context, semantics is important, and for a physician, it would be 

easier to convince a patient that active surveillance is the best treatment option if the word cancer was 

avoided. Even pre-invasive and precursor lesions, commonly used terms for DCIS, hold a promise of an 

imminent invasion and could be misleading. 

The main challenge when managing DCIS is to identify the low-risk lesions from high risk. Currently, no 

reliable low- or high-risk biomarkers exist. The reason for this may lie in the lack of subtype stratification 

in previous studies. In this thesis, I have explored molecular subtyping in murine and human tumors and 

explored the heterogeneity of normal and tumor tissues throughout breast tumor progression. 

Particularly intriguing was the large difference that I identified between DCIS and IBC of basal-like 

subtype in gene expression, copy number and methylation data. These findings may have significance 

for how basal-like DCIS should be interpreted and handled in the clinic.  

Future studies of subtype specific breast tumor progression should be performed in cohorts where 

clinical follow-up data such as recurrences and mortality is available. The number of tumors in the 

cohort needs to be sufficient to account for heterogeneity in tumor progression.  Since survival is 

excellent and recurrence rate is low for DCIS there is a need for long-term follow-up data. New 

“Overtreating people who are not at risk of death does not improve the lives of those at highest risk"  
– Laura Esserman, BMJ, 2019283 
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technology has made it possible to extract DNA and RNA from formalin fixed tumor tissue to generate 

genomic data. FFPE from breast cancer tumors is commonly collected and stored after routine 

histopathological assessment, and such cohorts may be very valuable for studying DCIS. In Norway, a 

well organized Cancer Registry makes such studies possible. Prospective studies examining the effect of 

active surveillance in low-risk DCIS patients would also most likely result in very valuable data as this 

would contribute with increased knowledge of the natural development of DCIS without compromising 

patient health. 
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Abstract
High mammographic density (MD) is associated with a 4–6 times increase in breast cancer risk. For post-menopausal women,
MD often decreases over time, but little is known about the underlying biological mechanisms. MD reflects breast tissue
composition, and may be associated with microenvironment subtypes previously identified in tumor-adjacent normal tissue.
Currently, these subtypes have not been explored in normal breast tissue. We obtained biopsies from breasts of healthy women at
two different time points several years apart and performedmicroarray gene expression analysis. At time point 1, 65 samples with
both MD and gene expression were available. At time point 2, gene expression and MD data were available from 17 women, of
which 11 also had gene expression data available from the first time point. We validated findings from our previous study;
negative correlation between RBL1 and MD in post-menopausal women, indicating involvement of the TGFβ pathway. We also
found that breast tissue samples from women with a large decrease in MD sustained higher expression of genes in the histone
family H4. In addition, we explored the previously defined active and inactivemicroenvironment subtypes and demonstrated that
normal breast samples of the active subtype had characteristics similar to the claudin-low breast cancer subtype. Breast biopsies
from healthy women are challenging to obtain, but despite a limited sample size, we have identified possible mechanisms
relevant for changes in breast biology and MD over time that may be of importance for breast cancer risk and tumor initiation.

Keywords Normal breast biology .Mammographic density . Gene expression . RBL1 . Microenvironment

Background

Breast cancer cells are extensively influenced by their non-
cancerous surroundings, the microenvironment. The microen-
vironment consists of cells (such as fibroblasts, immune cells,
endothelial cells and normal epithelial cells) and extracellular

matrix (ECM) including collagen, which all may influence
initiation and progression of cancer [1, 2]. Mammographic
density (MD) is a measure of radiologic density of the breast
[3]. It varies extensively between individuals and may be seen
as a radiologic reflection of breast tissue composition; epithe-
lial and non-epithelial cells as well as collagen increase MD
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whereas fatty tissue reduces MD [4]. High MD is a strong
independent risk factor for breast cancer, but the underlying
mechanisms are still unclear [5–8]. Reduction inMD has been
linked to a reduction in breast cancer incidence for women
using Tamoxifen as primary prevention [9] and for patients
receiving adjuvant hormonal therapy [10].

Normal breast tissue changes throughout life and is influ-
enced by different hormonal events such as menarche, pregnan-
cy, lactation and menopause [11]. The composition of breast
tissue is also influenced by heritability [12, 13], use of hormonal
therapy [14], nutrition [15, 16] and changes in BodyMass Index
(BMI) [17]. MD decreases with age [18] and continues to de-
crease after menopause [19, 20]. The paradox of decreasingMD
in parallel with increasing breast cancer incidence with age, can
be explained by the model proposed by Pike et al. [11] which
states that biological Bbreast tissue age^ is determined by the
cumulative exposure of damaging events to the breast tissue.
High MD can reflect such damaging exposure, and thus con-
tribute to increased breast cancer risk. It is important to note that
MD is not a single biological state by itself, but recapitulates
complex physiological and pathological conditions [2, 21].

Breast tissue from healthy women not undergoing surgery
is extremely hard to obtain. The women in this study had
previously donated tissue to research when they were exam-
ined at breast diagnostic centers. In order to allow a longitu-
dinal study, these women agreed to undergo a second invasive
procedure, which allowed us to present the first data on gene
expression changes in normal breast tissue over time.

In our previous studies of normal breast tissue [22, 23], we
identified a group of normal breast tissue samples exhibiting
upregulation of mesenchymal and stem cell genes and down-
regulation of epithelial markers and adhesion genes, a trait
identified in tumors of the claudin-low breast tumor subtype.
Furthermore, we identified 24 genes that were negatively cor-
related to MD, including RBL1 (Retinoblastoma-like protein 1,
p107) and three uridine 5′-diphospho-glucuronosyltransferase
(UGT) genes whose protein products are known to inactivate
estrogen metabolites. RBL1 is expressed at high levels in nor-
mal breast epithelium [24], and is thought to have similar tumor
suppressive effects as its cousin gene RB1. In addition to acting
as gatekeepers of the G1-S transition, the RB proteins may play
roles in preservation of chromosomal stability, induction and
maintenance of senescence, and regulation of apoptosis, cellu-
lar differentiation and angiogenesis [25].

The microenvironment is known to be crucial to cancer
initiation and progression [26, 27]. Román-Pérez et al. pro-
posed a method for extratumoral microenvironment subtyping
based on gene expression patterns, classifying tumor adjacent
normal tissue as active or inactive [28]. The active subtype is
characterized by features such as inflammatory response, fibro-
sis and cellular movement; features similar to the claudin-low
breast cancer subtype, proposed by Herschkowitz et al. [29].
The inactive subtype is characterized by maturation,

differentiation of epithelial cells, and high cell adhesion. This
subtype was later shown to correlate with highMD [21]. These
microenvironment subtypes have not been explored in individ-
uals without cancer, but if present in healthy breast tissue, they
could potentially influence breast cancer initiation differently.

The aim of this study was to investigate the changes in gene
expression that take place in normal breast tissue over a time
period of several years, especially in relation to changes in
MD and to validate correlations between gene expression
and MD identified in our previous study. We validated a neg-
ative correlation between RBL1 expression and mammo-
graphic density in postmenopausal women and found an as-
sociation between change in MD and change in expression of
histone-related genes.We also demonstrated that the previous-
ly defined active and inactivemicroenvironment subtypes are
present in normal breast tissue.

Methods

Subjects

Two separate breast biopsies from healthy volunteering
women (i.e. without cancer disease) were obtained with
5–8 years between sample times. The present study is
based on our previous study, Mammographic Density
and Genetics 1 (MDG1) [22], of women attending the
National Breast Cancer Screening Program. The includ-
ed women were referred to one of several breast diag-
nostic centers for biopsies due to suspicious findings on
mammograms or abnormal clinical findings, and biop-
sies from breasts without any malignant disease were
obtained. Only women without signs of malignant dis-
ease were included in this study and biopsies were tak-
en from the contralateral breast of the suspected lesions.
MD was determined from mammograms. A total of 120
healthy women were included. Of these, gene expres-
sion profiles were available for 79 and MD for 113,
with overlapping data for 65 women. Five to eight years
later, women who revisited the breast diagnostic center
were invited to participate in a follow-up study (MDG2)
where new biopsies were obtained, new mammograms
taken and new MD assessments performed. A total of
25 women revisited the center at the second time point.
All women agreed to participate and completed a ques-
tionnaire providing information like height, weight and
menopausal status. With regard to menopause status in
MDG1, the women were estimated to be pre-, post- or
peri-menopausal based on serum levels of FSH, LH and
estradiol as previously described [30]. All women pro-
vided a signed informed consent. The study was ap-
proved by the local ethical committee and local author-
ities (IRB approval no S-02036).
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Biopsies

In both studies, biopsies were obtained as previously de-
scribed [22]. Briefly, ultrasound guided core biopsies using a
14 gauge needle was performed in an area of some MD to
avoid biopsies consisting purely of adipose tissue. Most biop-
sies were sampled in the upper, lateral quadrant at both time
points. The biopsies were snap frozen and stored in -80 °C
until RNA isolation. Since healthy breast tissue express less
mRNA than tumor tissue, the entire biopsy was required for
mRNA extraction. Therefore, no tissue was left for histologi-
cal or immunohistochemical evaluation.

RNA Isolation and Expression Arrays

Gene expression data for the samples from the previous study
(MDG1) are deposited in NCBI’s Gene Expression Omnibus
[31] and are accessible through GEO Series accession number
GSE18672 [32]. Two additional gene expression datasets
were retrieved from GEO: GSE72644 comprises data from
breast cancer patients, where multiple biopsies from unaffect-
ed normal ducts in the same breast were retrieved for several
patients [33]. GSE4823 [34] contains data from normal breast
tissuemicrodissected into epithelium and stroma cellular com-
partments. The platform used for all three datasets was Agilent
Human Gene Expression 4x44K microarrays (G4110A, two
colors) (Agilent, Technologies, Santa Clare, USA).

From the new set of biopsies (MDG2), total RNA was
isolated using Qiagen miRNeasy Mini kit (Qiagen, Hilden,
Germany). The tissue was homogenized bymanually mincing
on ice with a scalpel followed by Mixer Mill for 40 seconds
until complete homogenization. RNA extraction including
DNAse treatment was performed according to the protocol
provided by the supplier. RNA concentrations were measured
by NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Wilmington, DE, USA) and RNA quality was an-
alyzed using Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, USA).

To obtain whole genome expression data, Agilent Sureprint
G3 Human Gene Expression 8x60K microarrays (G4851A)
(Agilent, Technologies, Santa Clare, USA) with Low Input
Quick Amp Labeling protocol were used. RNA input was
40 ng and Cy3 was used as fluorophore. Quality Control
was performed in Agilent’s Feature Extraction software. The
microarray expression data for MDG2 have been deposited in
the ArrayExpress database at EMBL-EBI under accession
number E-MTAB-5885 [35, 36].

In the current study, a total of 25 biopsies were obtained. Of
these, three samples were excluded due to too low RNA con-
centration for expression analysis, and three samples failed
Cy3-labeling. Nineteen samples were successfully run on ar-
rays and passed all quality control criteria. For controls, one
sample of commercially available normal breast RNA

(Ambion Human Breast Total RNA, Thermo Fisher
Scientific, Wilmington, DE, USA) and one tumor sample
were included throughout the whole pipeline. Two of the sam-
ples had no associatedMD data. In total, data from 17 samples
were complete with both gene expression and MD data. From
the previous study (MDG1), 65 samples were complete with
gene expression and MD data. For six women, gene expres-
sion data were obtained at time point two only. In total, paired
data were available from 11 women.

Mammographic Density

Digital craniocaudal mammograms were obtained at routine
mammographic centers using a standard protocol.
Mammographic density was estimated using the University
of Southern California Madena assessment method as de-
scribed by Ursin et al. [37]: Using the Madena computer soft-
ware, the reader (GU) outlined the total area of the breast, and
the number of pixels was counted by the software. This rep-
resents the total breast area. MD was assessed as follows:
First, a region of interest that includes all dense areas except
those representing the pectoralis muscle or scanning artifacts
was identified. Then, a yellow tint was applied to all pixels
within the region of interest shaded at or above a threshold
intensity of gray. The software then counted the tinted pixels,
which represent the area of absolute density. Percent density
was determined by dividing the absolute dense area by the
total breast area, and multiplying by 100 [5]. Test-retest reli-
ability was 0.99 for absolute density. For cases with mammo-
grams for both breasts available (14 out of 17), the correlation
of MD was very high between the right and left breast
(Pearson correlation r = 0.97, p < 0,001, n = 14), thus, for
these women the average MD was used. For the remaining
three women, MD was calculated for the breast with available
scans. As a measure of MD change, both absolute
change (MD2 −MD1) and relative change ( MD2−MD1

MD1 ) was
calculated. Since women with low MD in the first study
may potentially have a lower absolute decrease than women
with high MD, relative change was used for comparison to
gene expression and clinical parameters.

Statistical Analysis

Analysis of the relationship between MD at time point one
(MD1) and two (MD2) was performed using Pearson correla-
tion. Out of the 24 genes whose expression were identified as
significantly associated with MD1 in our first study (MDG1),
16 genes, represented by 23 probes, were present on the array
used in the second study (MDG2). To investigate the associ-
ation between gene expression of these genes and MD in the
second study, Pearson correlation was used. Different versions
of whole genome expression arrays were used for MDG1 and
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MDG2; notably Agilent Human Gene Expression 4x44K and
8x60K. To avoid introducing bias, the two expression datasets
were analyzed separately and then compared using a rank
based approach: For the 11 samples with expression data at
both time points, after collapsing to gene level using the me-
dian expression of the probes, the genes overlapping in both
datasets (n = 15,107) were extracted. For each time point sep-
arately, the genes in each sample were ranked based on their
expression value. We then calculated rank change as a proxy
for change in expression. Spearman correlation analysis was
performed to investigate the association between relative
change in MD (MD2−MD1

MD1 ) and relative change in rank of gene

expression (Rank2−Rank1Rank1 ). The top and bottom 200 genes from
this analysis were used for gene ontology analyses. As a sen-
sitivity analysis, we checked gene ontology terms associated
with the top 500 genes as well.

The breast microenvironment subtypes (active/inactive)
were calculated using the Chreighton correlation method as
described in Sun et al. [21, 28, 38], separately for the two
datasets: The signature consisting of 3194 genes was retrieved
from Sun et al. with +1 assigned to up-regulated and − 1 to
down-regulated genes. Expression values for genes overlap-
ping with the signature were extracted (for MDG1 2786
genes, for MDG2 2444 genes) and the Pearson correlation
coefficients to the signature were calculated. The samples
were classified as active if the correlation coefficient was pos-
itive, and inactive if it was negative. AWelch two sample t-test
was used to find differentially expressed genes between active
and inactive subtype in MDG1 followed by gene ontology
analyses. The association between microenvironment sub-
types and MD was tested using the non-parametric
Wilcoxon-Mann-Whitney test. This test was also used when
exploring associations between microenvironment subtypes
and relevant genes in both MDG1 and MDG2. All statistical
tests were two-sided with significance level α = 0.05.
Spearman correlation was used where associations between
ranks were explored, otherwise Pearson correlation was used
accompanied by visualization of the data. All statistical anal-
ysis were performed in Rstudio version 1.0.136 [39]. PAM50-
subtypes were estimated using the R Package Bgenefu^ [40]
and for power analyses the R Package Bpwr^ was used [41].
To be able to discover similarly strong correlations between
MD and age/BMI as previously reported (−0.56/−0.21) [42]
with a power above 0.8 and significance level α = 0.05, at
least 174/21 samples would be needed. Thus, the size of our
cohort is too small to draw any firm conclusions of an associ-
ation betweenMD, BMI and age (Online resource 1: Fig.S1 A
and B). These parameters were therefore not adjusted for in
the analyses to prevent introducing unnecessary noise. A pow-
er of 0.66 was obtained in the analyses of the association
between microenvironment subtype and MD (n1 = 28, n2 =
37, d = 0.61 (effect size as reported in Sun et al. [21]), α =

0.05). Gene Ontology (GO) analyses were performed in the
web-based functional annotation tool DAVID 6.8 [43,
44].which performs enrichment analyses on gene sets en-
abling exploration of biological systems and pathways.

Scores for epithelial-to-mesenchymal transition (EMT)
[28], proliferation [45] and fibrosis (gene signature associated
with desmoid type fibromatosis) [46] were calculated using a
standard (Z) score approach: For every gene in each signature,
a standardized expression value was calculated by subtracting
the mean across all samples, then dividing by the standard
deviation. The sample’s score was calculated by taking the
mean of the standardized expression values of all genes in
the signature (Online resource 2).

Gene Set Enrichment Analyses

Gene set enrichment analyses were carried out using the
Hallmark gene sets from the Molecular Signatures Database
(MSigDB [47, 48]) on the MDG1 dataset: For each sample,
genes were ranked by their expression values. Wilcoxon-
Mann-Whitney test was used to test difference in rank be-
tween the genes in each gene set compared to those not in
the gene set. The resulting p value was transformed using this
formula: −10 x log10(p value) and the sign was changed ac-
cording to the direction of enrichment of genes (i.e. whether
the genes were highly or lowly expressed) resulting in an
enrichment score for each sample and each gene set
(Online resource 3). This enrichment score was used for sub-
sequent statistical testing.

Results

Cohort Description

A total of 24 women included in the first MDG study accepted
participation in the second study. For 17 of these, both MD
and gene expression data was available and used for further
analyses. None of the women experienced breast cancer after
they were included in the first study. Relevant clinical infor-
mation is presented in Table 1. Age at second biopsy ranged
from 55 to 66 and all the women were at this time point
postmenopausal. Mammograms were obtained and MD was
estimated as described in Methods. As expected, MD1 and
MD2 were highly dependent (Pearson correlation r = 0.80,
p < 0.001, n = 17) (Online resource 1: Fig.S1 C). MD de-
creased from the first to the second measurement for all but
one woman. There was no difference in relative MD change
between women who had passed menopause between sam-
pling times (n = 5, mean relative MD change = −41.7%) com-
pared to those who already were postmenopausal at the first
time point (n = 8, mean relative MD change = −42.6%).
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Associations between RBL1 Expression
and Mammographic Density Were Validated
in the Second Biopsies

Probes for two of the genes identified in our previous study,were
significantly associated to MD also in our second study:
Retinoblastoma-like protein 1 (RBL1) and Leucine-rich repeat-
containing 2 (LRRC2) (Table 2). RBL1 was represented by two
probes and both confirmed the previously identified negative as-
sociation to MD, however, only one of these reached statistical
significance (Fig. 1). For the UGT genes that were found to be
negativelycorrelatedtoMDinMDG1,anegativeassociationwas
found at the second time point aswell, although statistical signif-
icance was not reached. (Online resource 1: Fig.S2).

When stratifying MDG1 based on menopause status, the
correlation between RBL1 expression and MD was evident in
post-menopausal women only (Fig. 1), indicating that processes
relevant for breast tissue composition may change with meno-
pause. To assess the effect of menopausal status on overall gene
expression, we identified differentially expressed genes between
biopsies from post- and pre/peri-menopausal women in the larg-
est cohort (MDG1), and found only five differentially expressed
genes. Next, we correlated overall gene expression with MD
separately in the twomenopausal groups, and found substantial-
ly more genes associated to MD in the postmenopausal group
than the pre−/peri-menopausal (1169 vs. 436 genes) with only
14 genes overlapping between the two groups.

Table 1 Clinical information at time point two including mammographic density at both time points

Sample BMI Menopause
change

Expression
data in both
studies

Months between
biopsies

MD1 (%) MD2 (%) MDAbsolute
difference

MD Relative
difference (%)

NORM-11 28.65 Yes Yes 74 23.16 15.29 −7.87 −33.98
NORM-17 30.46 No Yes 79 13.54 8.6 −4.94 −36.49
NORM-24 28.84 No Yes 76 17.61 9.93 −7.69 −43.64
NORM-26 23.39 Yes Yes 77 34.5 14.58 −19.92 −57.73
NORM-31 21.78 NA No 94 12.72 1.94 −10.78 −84.76
NORM-32 31.25 NA No 89 7.28 3.01 −4.27 −58.65
NORM-33 30.82 NA No 90 20.42 4.12 −16.3 −79.8
NORM-34 26.57 NA Yes 99 20.02 8.53 −11.49 −57.4
NORM-38 23.23 No No 92 32.86 40.07 7.21 21.93
NORM-39 17.99 No Yes 96 25.69 10.8 −14.88 −57.94
NORM-44 27.01 No Yes 96 41.61 22.85 −18.77 −45.1
NORM-49 19.47 Yes Yes 75 15.59 9.44 −6.15 −39.43
NORM-50 34.29 Yes No 72 28.06 10.61 −17.45 −62.17
NORM-56 22.41 No No 78 60.82 34.97 −25.85 −42.5
NORM-61 24.46 No Yes 73 17.08 4.3 −12.79 −74.85
NORM-64 19.37 Yes Yes 69 18.02 14.45 −3.57 −19.82
NORM-66 34.6 No Yes 76 9.94 4.58 −5.37 −53.99
Mean 26.15 82.65 23.47 12.83 −10.64 −48.61
Min 17.99 69 7.28 1.94 −25.85 −84.76
Max 34.60 99 60.82 40.07 7.21 21.93

BMI: Body mass index Menopause change: No = post-menopausal at both time points; Yes = pre−/peri-menopausal at time point one, post-menopausal
at time point two. NA= not available in MDG1.MD1 andMD2: Percent mammographic density at time point 1 and 2, respectively. Age is omitted from
the table as it is considered a sensitive parameter

Summary statistics are written in bold italics

Table 2 Correlation between gene expression and mammographic
density at time point 2 (MDG2, n = 17). Probes included are those
whose expression was correlated with mammographic density at time
point 1 and present on the arrays used at time point 2

Gene Name Probe name r p-value

ATG7 A_24_P944827 −0.1669 0.5220
ATG7 A_23_P143987 0.0589 0.8224
CABP7 A_33_P3348061 0.2097 0.4193
CD86 A_24_P131589 0.1967 0.4491
ESR1 A_24_P383478 0.2055 0.4288
ESR1 A_33_P3379356 0.0806 0.7584
ESR1 A_23_P309739 0.0585 0.8234
H2AFJ A_33_P3379391 0.4062 0.1057
H2AFJ A_23_P204277 0.3783 0.1343
HMBOX1 A_24_P932736 0.254 0.3252
LMOD1 A_33_P3368879 0.291 0.2572
LMOD1 A_33_P3295261 0.1755 0.5005
LRRC2 A_23_P334798 −0.6889 0.0022 *
LRRC2 A_23_P155463 0.1637 0.5302
NPY1R A_23_P69699 0.2385 0.3566
PIK3R5 A_23_P66543 0.2439 0.3454
PPP6R1 A_23_P119448 0.2639 0.3061
RBL1 A_23_P28733 −0.4909 0.0454 *
RBL1 A_24_P276102 −0.3373 0.1855
RPA4 A_23_P254212 0.3781 0.1346
UGT2B10 A_23_P7342 −0.1826 0.4829
UGT2B11 A_23_P212968 −0.1405 0.5906
UGT2B7 A_23_P136671 −0.2846 0.2682

r: Pearson correlation coefficients

* :p-value <0.05)
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Seeing that RBL1-expression showed a consistent negative
correlation to MD over time, prompted us to examine the
association between RBL1 expression and enrichment of
Hallmark gene sets from the Molecular Signature Database
(Online resource 3). We correlated expression values for
RBL1 in the MDG1 dataset with Gene Set Enrichment analy-
sis (GSEA) enrichment scores and found that the enrichment
scores of WNT/β-catenin signaling and MYC-targets were
significantly negatively correlated to RBL1 expression
(Spearman correlation, rho = −0.397, p = 0.0011/rho =
−0.259, p = 0.037). Further, we wanted to investigate whether
MD could be associated with processes relevant for cancer
development. To this end, we correlated enrichment scores
from GSEA to MD for the samples in the MDG1 dataset
and found that gene sets related to Apoptosis and Estrogen
response were significantly negatively correlated to MD
(Spearman correlation, p = 0.0268/0.0343, rho = −0.277/
−0.265), while TGFβ-signaling was marginally not signifi-
cant (Spearman correlation, p = 0.0638, rho = −0.233).

Intra-individual variation of gene expression may be a
complicating factor in all studies where only one biopsy is
analyzed. To assess the intra-individual variability of RBL1
expression, we made use of a separate dataset (GSE72644)
with gene expression data from two biopsies of normal
ductal tissue obtained from different parts of the breast
from several patients. We found low correlation between
RBL1 expression in different ducts of the same patient
(Spearman correlation, p = 0.67, rho = 0.167), indicating
some degree of intra-individual variability of RBL1 expres-
sion; however the inter-individual variability was small, as
demonstrated by a low standard deviation of RBL1 (SD for
RBL1: 0.21 vs. mean SD for all genes: 0.68).

Gene Expression in Normal Breasts Changes
over Time

From 11 of the women, tissue biopsies were obtained at both
time points. A rank-based approach (see Methods section)
was taken to overcome the challenge of analyzing gene ex-
pression data from two different platforms. To identify biolog-
ical processes changing in breast tissue over time in parallel
with changes in MD, normalized gene expression values were
ranked from lowest to highest within each sample, separately
for time point one and two. This was followed by Spearman
correlation to identify genes with positive or negative correla-
tion between relative change of MD and relative change in
gene expression ranks (Online resource 4). Gene ontology
analysis of the top 200 genes with a negative correlation be-
tween change in gene expression and relative change in MD,
revealed involvement of several genes in the histone family
H4. Sensitivity analysis using the top 500 genes confirmed
these results. In other words, breast tissue samples with a large
decrease in MD from the first to the second time point
sustained a high expression of these genes (Online resource
1: Fig.S3).

Identifying Microenvironment Subtypes in Normal
Breast Tissue

To investigate whether the microenvironment subtypes pro-
posed by Román-Pérez [28] could be identified in normal
tissue from healthy breasts, we assigned all tissue samples to
a m ic roenv i r onmen t sub type ( a c t i v e / i nac t i v e )
(Online resource 5). In the MDG1 study, 27 samples
(41.5%) were of the active subtype, while 38 samples

2GDM1GDM

Fig. 1 Expression of RBL1 as a function of mammographic density in
MDG1 (stratified by menopause status) and MDG2 (all post-
menopausal). Pearson correlation: MDG1: Post-menopausal (n = 28),

r = −0.51, p = 0.0061; pre/peri-menopausal (n = 22), r = 0.0039, p =
0.99. MDG2 (n = 17): r = −0.49, p = 0.045
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(58.5%) were assigned to the inactive subtype, whereas for the
MDG2 study, 8 samples (47.1%) were active, and 9 (52.9%)
were inactive. Of the 11 samples with data at both time points,
five kept their subtype (45.5%) (one active and four inactive),
while six samples (44.5%) changed subtype (three from active
to inactive, and three from inactive to active). There was no
difference in distribution ofmenopause status between the two
subtypes (Fisher exact test, p = 0.314).

As previously noted by Sun et al., the two microenviron-
ment subtypes may differ in characteristics such as adhesion,
stem cell features and TGFβ-signalling. We confirmed these
results in our data from normal breasts. In our largest study,
the MDG1 study, 3104 genes were significantly differentially
expressed between the two subtypes (1390 up and 1714 down
in active vs. inactive, Welch two sample t-test, FDR <1%).
Gene ontology (GO) analysis showed enrichment of GO-
terms related to cell-cell adhesion and tight junctions among
the genes that were lower expressed in the active subtype
compared to the inactive, while for genes higher expressed
in the active subtype, we found GO-terms related to stem
cell-like features such as Aldehyde dehydrogenase and Wnt-
signaling (Online resource 6). There was a clear distinction
between the subtypes in both cohorts with regard to the ex-
pression of genes relevant for the claudin-low tumor subtype
[28, 49]; the adhesion genes (e.g. CLDN3, CLDN4, CLDN7,
CDH1 andOCLN) were lower expressed in the active subtype
compared to the inactive, while the EMT-related genes (e.g.
TWIST, ZEB1 and ZEB2) were higher expressed (Fig. 2). To
consolidate these findings, we tested whether gene signatures
from the GSEA analyses were differently enriched between
active and inactive microenvironment subtypes in the MDG1
dataset. As many as 28 (out of 50) Hallmark gene sets were
differently enriched, confirming the extensive differences be-
tween the subtypes (Online resource 3). Most notably were
genes involved in Adipogenesis, TGFβ-signaling and
Epithelial to Mesenchymal Transition higher expressed in
the active subtype compared to the inactive (Mann Whitney
U tests, p < 0.001).

In contrast to the findings in Sun et al. [21], we did not find
a significant association between microenvironment subtype
and MD in any of the cohorts (Online resource 1: Fig. S4).
Neither was RBL1 differently expressed between the subtypes
(Fig. 3). However, since we found a negative correlation be-
tween RBL1 and MD, we wanted to investigate whether genes
that may be influenced by RBL1 expression (through its role
as a co-repressor together with the transcriptional repressor
E2F4) were differentially expressed between the two sub-
types. In this context, MYC is particularly interesting, as it is
highly relevant in cancer and involved in proliferation [50].
We found that MYC was significantly differently expressed
between the subtypes in both cohorts (Fig. 3). There was,
however, no significant correlation between MYC and RBL1
(Spearman correlation, MDG1: p = 0.114, rho = −0.198,

MDG2: 0,503, rho = 0.174). We therefore wanted to identify
E2F4 target genes that were both differentially expressed be-
tween the microenvironment subtypes and negatively corre-
lated to RBL1 expression. Platelet derived growth factor sub-
unit A (PDGFA) fulfilled both these criteria in MDG1 (Fig. 3,
Spearman correlation PDGFA vs. RBL1, p value = 0.007,
rho = −0.33). PDGFA was also differentially expressed be-
tween the subtypes in MDG2. In both cohorts, PDGFA was
higher expressed in the inactive compared to the active
subtype.

To further explore the differences in properties between the
microenvironment subtypes that could be relevant for mam-
mographic density, we calculated standardized z-scores for
EMT, fibrosis and proliferation (Online resource 1, Fig. S5
and Online resource 2). Both EMT- and fibrosis signatures
were significantly higher in the active compared to the
inactive subtype. In MDG2, there were significantly higher
proliferation scores in the inactive subtype and the same ten-
dency was also seen in MDG1, however not significant. In
addition, scores for EMT and fibrosis in MDG1 were signifi-
cantly positively correlated in active, but not for the inactive
samples (Fig. 4).

Since there were extensive differences between the micro-
environment subtypes in the Gene Set Enrichment Analyses,
we wanted to investigate whether the GSEA enrichment
scores were differentially associated with MD between the
two subtypes in MDG1 (Online resource 3). We found that,
in the active subtype, the enrichment scores for the pathway
MYC-targetswere significantly positively correlated withMD
(Spearman correlation, rho = 0.385, p = 0.0476). For the
inactive subtype, several gene sets involved in hormonal pro-
cesses (i.e. Estrogen response and Androgen response) were
negatively correlated with MD. In addition, TGFβ-signaling
was negatively correlated to MD in the inactive subtype, al-
though significance was not reached (p = 0.063). These results
suggest that target genes of the TGFβ pathway may be in-
volved in processes relevant for MD in both microenviron-
ment subtypes.

Spatial Distribution of RBL1 in Normal Breast Tissue

The microenvironment subtypes most likely reflect interplay
between stromal and epithelial cells. In this context, it was of
interest to investigate whether there was a spatial difference in
gene expression of relevant genes between epithelial and stro-
mal cellular compartments. As additional tissue from our co-
hort was not available for analyses, the spatial distribution of
RBL1-expression was studied in a separate dataset (GSE4823)
comprising data from normal breast tissue microdissected into
epithelial and stromal cellular compartments. These data
showed higher expression of RBL1 and a trend toward high
expression of PDGFA in the epithelial cells compared to the
stromal cells (Online resource 1, Fig. S6). ForMYC, there was
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substantial variation of expression in the epithelial cell com-
partment, with higher expression in stromal cells in general.
This difference was, however, not significant. The spatial dis-
tribution of the corresponding proteins were validated using
the Human Protein Atlas where protein expression in epithe-
lial cells were confirmed for all three proteins [51–53].

Discussion

Our study confirmed that low expression of RBL1 in normal
breast tissue in repeated measurements years apart was asso-
ciated with high MD in postmenopausal women. RBL1 close-
ly resembles RB1 and functions as a tumor suppressor gene
involved in cell cycle regulation [54, 55]. The inverse rela-
tionship between RBL1 expression and MD harmonizes with
its presumptive role as a tumor suppressor through regulation
of epithelial cell proliferation and modification of the ECM.
RBL1 acts as a co-repressor of transcription as part of the
SMAD complex downstream of TGFβ in the TGFβ-
signaling pathway [56, 57]. TGFβ has a pleiotropic role in
cancer development, contributing to regulating cell prolifera-
tion, epithelial-to-mesenchymal transition (EMT) and ECM
formation in a highly context dependent manner [58].
Increased TGFβ-signaling in the normal breast is known to
inhibit proliferation of epithelial cells [59] and TGFβ-
signaling has previously been shown to be reduced in dense
mammary tissue [60]. Paradoxically, TGFβ enhances the syn-
thesis of collagen crosslinking enzymes, which increases the
rigidity of the collagen network in the ECM [61] and

contribute to MD [62, 63]. Adding to the complexity, is the
fact that high activity of the TGFβ pathway may have a tumor
suppressive role in the initiation and early progression of can-
cer, and later switch to have a pro-tumorigenic and pro-
metastatic role [64]. Reduced TGFβ-signaling may lead to
decreased repression of several target genes involved in cell
proliferation (possibly affecting MD) and neoplastic transfor-
mation [50, 54]. We did not find a significant correlation be-
tween RBL1 and MYC expression. However, Gene Set
Enrichment Analyses (GSEA) indicated a relationship be-
tween RBL1 and MYC-related pathways as both WNT/β-ca-
tenin and MYC–target gene sets were negatively correlated to
RBL1 expression. These pathways are involved in epithelial
proliferation [50, 65].

In postmenopausal women, the estrogen-mediated cell
proliferation is lower than in pre-menopausal women [66].
In this study, we saw that low expression of RBL1 was
associated with high MD only in postmenopausal women.
The explanation for this may lie in the cross-talk between
the ERα and TGF-β signaling pathways as ERα represses
SMAD3-function in an estradiol-dependent manner [67,
68]. There was a distinct difference in the number of genes
whose expression correlated to MD in postmenopausal
breast tissue compared to the pre/peri-menopausal breast
tissue in the MDG1 cohort. This is in contrast to the low
number of differentially expressed genes between breast
biopsies from post- and pre/peri-menopausal women at a
genome-wide level which has also been reported from
other studies [60, 69]. The low number of genes whose
expression correlated to MD in pre/peri-menopausal
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women may be a reflection of more heterogeneity in genes
relevant for MD as these may fluctuate substantially due
to hormonal changes through the menstrual cycle, poten-
tially masking such associations [70].

Low expression of histones may lead to a more open chro-
matin structure which is thought to cause higher genomic
instability and inappropriate gene expression possibly contrib-
uting to carcinogenesis [71]. In accordance with this, we
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Fig. 3 RBL1, MYC and PDGFA expression in the microenvironment subtypes active and inactive in MDG1 and MDG2. P-values from Wilcoxon-
Mann-Whitney tests
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Inactive: p = 0.463, rho = -0.283

Fig. 4 Fibrosis score vs. EMT score in MDG1 and MDG2. P-values and rho from Spearman correlation tests
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found that breast tissue with a large decrease in MD over time
showed sustained or higher expression of histone proteins of
the H4 family compared to those with a smaller decrease in
MD. Interestingly, high expression of histone genes has been
shown to slow down the aging process in cells as high avail-
ability of histone proteins contributes to a tighter chromatin
structure [71].

The microenvironment subtypes proposed by Sun et al. and
Román-Pérez et al. [21, 28] were observed in the normal
breast samples in our study. The samples classified as active
subtype showed features such as high expression of EMT-
related genes, low expression of genes involved in cell-cell
adhesion and upregulation of GO-terms related to stem cell-
like characteristics similar to what is found in the claudin-low
breast tumor subtype [49, 72–74]. Although the claudin-low
subtype was initially discovered in breast tumors, we have
previously found evidence of claudin-low characteristics in
normal breast tissue from MDG1 [23]. All of these were in
the present study determined as active subtype. There was no
difference in RBL1 expression between the subtypes, but both
MYC and PDGFA were significantly higher expressed in the
inactive samples compared to the active, indicating higher
activation of the TGFβ pathway in the active compared to
the inactive subtype. The samples of the active subtype also
showed enrichment of fibrosis-related genes shown by Beck
et al. to be enriched in a subset of breast carcinomas associated
with longer survival [46]. The presence of increased EMT
features, TGFβ activation and fibrosis in the active subtype
may indicate the presence of a Bwound healing^ phenotype
even without any tumor initiation [75, 76].

In Sun et al. the inactive subtype was associated with
slightly higher MD. We could not detect the same association
between MD and microenvironment subtypes in our data.
However, this may be a question of insufficient power. The
high degree of fibrosis seen in the active subtype does not
harmonize with higher MD in the inactive samples as was
observed by Sun et al., since one would suspect that a high
degree of fibrosis would lead to higher density. However,
normal fibroblasts may inhibit proliferation of epithelial cells
[77], and as mammographic density is a product of both dif-
ferent cell types and ECM constituents, a higher content of
epithelial cells in the inactive subtype could explain this dis-
crepancy. Additionally, the samples analyzed by Sun et al.
were tumor adjacent tissue, while in our study, the biopsies
were normal breast tissue from healthy individuals. This is an
important distinction, as dynamic interactions between tumor
cells, tumor adjacent normal epithelium, and stroma may in-
fluence gene expression patterns.

Mammographic density is a comprehensive measurement
representing the whole breast and may have limited ability of
capturing local differences, whichmay further explain the lack
of association between MD and microenvironment subtype in
our study. Also, intra-breast heterogeneity, such as presence of

stem cell niches [78], may explain differences between two
biopsies from the same breast. We found, however, a low
degree of intra-individual variability of expression of relevant
genes in normal breasts using an external dataset, which
strengthens our finding of a negative association between
MD and RBL1-expression.

Conclusions

This is the first study of gene expression in two normal breasts
biopsies from the same healthy individuals taken several years
apart. We have validated a negative correlation between RBL1
expression and mammographic density in postmenopausal
women, and found that breast tissue samples from women
with a large decrease in mammographic density over time
sustained higher expression of histone family genes. We also
identified the previously defined active and inactive microen-
vironment subtypes and characterized their biological differ-
ences in normal breast tissue. Our data indicated an associa-
tion between MD and target genes in the TGFβ-signaling
pathway regardless of microenvironment subtype. This study
has identified mechanisms relevant for normal breast tissue
biology and MD over time that may be of importance for
breast cancer risk and tumor initiation.
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show distinct transcriptomic patterns
uncoupled from genomic drivers
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Abstract

Background: Claudin-low breast cancer is a molecular subtype associated with poor prognosis and without
targeted treatment options. The claudin-low subtype is defined by certain biological characteristics, some of which
may be clinically actionable, such as high immunogenicity. In mice, the medroxyprogesterone acetate (MPA) and 7,
12-dimethylbenzanthracene (DMBA)-induced mammary tumor model yields a heterogeneous set of tumors, a
subset of which display claudin-low features. Neither the genomic characteristics of MPA/DMBA-induced claudin-
low tumors nor those of human claudin-low breast tumors have been thoroughly explored.

Methods: The transcriptomic characteristics and subtypes of MPA/DMBA-induced mouse mammary tumors were
determined using gene expression microarrays. Somatic mutations and copy number aberrations in MPA/DMBA-
induced tumors were identified from whole exome sequencing data. A publicly available dataset was queried to
explore the genomic characteristics of human claudin-low breast cancer and to validate findings in the murine
tumors.

Results: Half of MPA/DMBA-induced tumors showed a claudin-low-like subtype. All tumors carried mutations in
known driver genes. While the specific genes carrying mutations varied between tumors, there was a consistent
mutational signature with an overweight of T>A transversions in TG dinucleotides. Most tumors carried copy
number aberrations with a potential oncogenic driver effect. Overall, several genomic events were observed
recurrently; however, none accurately delineated claudin-low-like tumors. Human claudin-low breast cancers
carried a distinct set of genomic characteristics, in particular a relatively low burden of mutations and copy
number aberrations. The gene expression characteristics of claudin-low-like MPA/DMBA-induced tumors accurately
reflected those of human claudin-low tumors, including epithelial-mesenchymal transition phenotype, high level of
immune activation, and low degree of differentiation. There was an elevated expression of the immunosuppressive
genes PTGS2 (encoding COX-2) and CD274 (encoding PD-L1) in human and murine claudin-low tumors.

Conclusions: Our findings show that the claudin-low breast cancer subtype is not demarcated by specific genomic
aberrations, but carries potentially targetable characteristics warranting further research.
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Background
The claudin-low subtype of breast cancer (BC) is a distinct
disease entity associated with a relatively poor prognosis,
and with an inadequately understood clinical significance
[1–3]. It is characterized by low expression of tight junction
and cell-cell adhesion genes, low degree of differentiation,
epithelial-mesenchymal transition (EMT) phenotype, and
high level of immune cell infiltration [2]. The claudin-low
subtype represents 7–14% of all breast cancers, and despite
its unique biological features, there are no therapies specif-
ically targeting the subtype [2–5]. While claudin-low tu-
mors are found in several large-scale studies, there is a
paucity of information regarding their specific genomic
characteristics [6–9]. Thus, significant gaps remain in the
understanding of the biology of claudin-low tumors, and
there is a need for further research to explore how their
unique features may be therapeutically targeted.
Accurate preclinical models are vital for research into

novel treatment options. Mouse mammary tumors may
be induced through exposure to medroxyprogesterone
acetate (MPA) and 7,12-dimethylbenzanthracene (DMBA)
[10]. The tumors generated by this protocol are diverse,
and a subset of these show similarities to the human clau-
din-low subtype [11, 12]. A homogeneous primary in vivo
model of claudin-low breast cancer does not currently
exist [11]. While the mechanisms of MPA [10, 13] and
DMBA [14–17] have been described, there is still conten-
tion regarding the suitability of a chemically induced
model of cancer for a disease that is not primarily caused
by carcinogens in humans [18]. Evaluating the claudin-
low subset of MPA/DMBA-induced tumors as a model
for human disease is therefore an important step toward
advancing preclinical research of claudin-low breast
cancer.
In this study, we identified and comprehensively char-

acterized claudin-low-like mouse mammary tumors gen-
erated by MPA/DMBA-induced carcinogenesis. Through
genomic and transcriptomic analyses, we evaluated these
tumors as a model for human claudin-low breast cancer
and showed these tumors to be phenotypically accurate
representations of their human counterparts. In parallel,
we analyzed the previously unexplored genomic features
of human claudin-low breast cancer. Our findings
highlighted several features of claudin-low breast cancer
with potential therapeutic implications, including a low
tumor mutational burden, high expression of the im-
mune checkpoint gene CD274 (encoding PD-L1), and
high expression of PTGS2 (encoding cyclooxygenase-2).

Methods
Mouse strains and tumor induction
Double transgenic mice, Lgr5-EGFP-Ires-CreERT2;R26R-
Confetti [19], were generated by crossing heterozygous
Lgr5-EGFP-Ires-CreERT2 mice with heterozygous R26R-

Confetti mice. These transgenes are considered biologic-
ally inert and all female offspring, including wild type,
single, or double transgenic mice, were used for MPA/
DMBA-treatment experiments. All mice were locally
bred and maintained within a specific pathogen-free
barrier facility according to local and national regula-
tions, with food and water ad libitum. Female mice were
treated with medroxyprogesterone acetate (MPA) and 7,
12-dimethylbenzanthracene (DMBA) in accordance with
the established protocol [10]. In brief, 90-day release
MPA pellets (50 mg/pellet, Innovative Research of
America cat.# NP-161) were implanted subcutaneously
at 6 and 19 weeks after birth. One microgram of DMBA
(Sigma Aldrich cat.# D3254) dissolved in corn oil (Sigma
Aldrich cat.# C8267) was administered by oral gavage at
9, 10, 12, and 13 weeks after birth. Tumor growth was
regularly monitored by manual palpation and measured
by a caliper. Tumor volume was estimated using the fol-
lowing formula: volume = (width2 × length)/2. When the
tumors reached the maximum allowed size of 1000
mm3, or at the age of 32 weeks, tissue was collected at
necropsy and fixed in 4% paraformaldehyde (PFA) or
snap frozen and stored at − 80 °C. Eighteen tumors from
14 mice, of which four mice carried two mammary tu-
mors, were subject to genomic and transcriptomic ana-
lyses. Six normal mammary glands collected from mice
not undergoing MPA/DMBA treatment were included
as controls. Mouse features and histopathological tumor
features can be found in Additional file 1.

Histopathology and immunohistochemistry
Mouse tissue was fixed overnight in 4% PFA, routinely proc-
essed and paraffin embedded. Formalin-fixed paraffin-em-
bedded tissue was sectioned and stained with hematoxylin
and eosin (HE). HE-stained tissue was classified by a certi-
fied veterinary pathologist. Immunohistochemical staining
was performed as previously described [20] with primary
antibodies against K5 (Covance cat.# PRB-160P), K18 (Pro-
gen cat.# 61028), Ki67 (Novocastra cat.# NCL-Ki67p), ERα
(Millipore cat.# 06-935), PR (Abcam cat.# ab131486), and
Her2/Erbb2 (Millipore cat.# 06-562).

DNA and RNA isolation
DNA isolation for exome sequencing was carried out at
Theragen Etex Bio Institute (Seoul, South Korea). DNA
was isolated using QIAamp DNA Mini Kit (Qiagen cat.#
51306) per the manufacturer’s protocol. DNA from two
samples (S159_14_11 and S176_14_11) was isolated using
CTAB Extraction Solution (Biosesang cat.# C2007) per
the manufacturer’s protocol. DNA integrity was assessed
by electrophoresis, and concentration was determined
using the Nanodrop ND-1000 spectrophotometer
(Thermo Scientific cat.# ND-1000) and Qubit fluorometer
(Thermo Scientific cat.# Q33226). Total RNA and DNA
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isolation for gene expression microarrays was carried out
using the QIAcube system (Qiagen cat.# 9001292) with
the AllPrep DNA/RNA Universal Kit (Qiagen cat.# 80224)
according to the protocol provided by the supplier, with
30-mg tissue as input. The tissue was manually minced
with a scalpel on ice followed by lysis and homogenization
using TissueLyzer LT (Qiagen cat.# 85600) and Qiashred-
der (Qiagen cat.# 79654), respectively. Nucleic acid
concentrations were measured by NanoDrop ND-1000
spectrophotometer, and RNA integrity was analyzed using
Agilent 2100 Bioanalyzer (Agilent Technologies cat.#
G2939BA).

Gene expression microarrays
Gene expression profiling was performed using RNA iso-
lated from 18 snap-frozen MPA/DMBA-induced tumors
and six normal/untreated mouse mammary gland sam-
ples. Whole genome expression data was obtained using
Agilent Sureprint G3 Mouse Gene Expression 8x60K mi-
croarrays (Agilent Technologies cat.# G4852B) with Low
Input Quick Amp Labeling protocol (Agilent Technolo-
gies cat.# 5190-2331) and the Cy3 fluorophore. Forty
nanogram RNA was used for input. Microarrays were
scanned using an Agilent SureScan Microarray Scanner
(Agilent Technologies cat.# G4900DA), and data was ex-
tracted using Agilent Feature Extraction software. One
tumor sample (S422_15_2) failed quality control and was
excluded from further gene expression analyses.

Gene expression analyses
Gene expression data was analyzed using Qlucore Omics
Explorer 3.2 (Qlucore AB) and R version 3.3.2 [21]. Gene
expression values were quantile normalized, and probes
with a standard deviation of less than 2.8% of the largest
observed standard deviation were filtered out. For genes
represented by more than one probe, mean expression
values were calculated to obtain one gene expression value
per gene. Principal component analysis was performed to
assess data quality, and one normal mammary gland sam-
ple (S178_14_2) was identified as an outlier and removed
from further analysis. Murine subtypes were determined
by first calculating centroids for each subtype using the
original data from Pfefferle et al. [11], followed by calculat-
ing Spearman correlation for every sample to each of the
subtype centroids. The subtype with the highest correl-
ation coefficient was assigned as the sample’s subtype.
Two tumor clusters were identified by hierarchical cluster-
ing using the murine intrinsic gene list [11], and SigClust
[22] was used to test the significance of the difference be-
tween the clusters.
Unsupervised hierarchical clustering was performed

using average linkage and Spearman correlation as the dis-
tance metric. Immune cell infiltration was inferred using
ESTIMATE [23]. Scores for gene signatures relevant to

the claudin-low subtype (adhesion, EMT, luminalness,
proliferation, vascular content, immunosuppression, and
interferons [2, 24–27]) were calculated using a standard
(Z) score approach: for every gene in each signature, a
standardized expression value was calculated by sub-
tracting the mean across all samples, then dividing by
the standard deviation. Calculation of the mean of the
standardized expression values across all genes in the
signature yielded the score. Gene lists included in the
different signatures are found in Additional file 2. The
degree of differentiation was calculated using a differ-
entiation predictor [2]. Two-tailed Wilcoxon rank-sum
tests were used for statistical testing of differences in
scores between two groups.

Whole exome sequencing
Whole exome sequencing was carried out at Theragen
Etex Bio Institute. Library preparation and target enrich-
ment was carried out using the SureSelect XT Mouse
All Exon Kit (Agilent cat.# 5190-4641) per the manufac-
turer’s instructions. Sequencing was performed on an
Illumina HiSeq 2500 (Illumina cat.# SY–401–2501).
DNA was sequenced to an average depth of 58. Quality
control was performed with FastQC [28].

Sequence alignment and processing
Adapter sequences were removed using CutAdapt, version
1.10 [29]. Low-quality reads were trimmed using Sickle
version 1.33 [30], in paired end mode with quality thresh-
old set to 20 and length threshold set to 50 base pairs.
Reads were aligned to the mm10 reference genome using
the Burrows-Wheeler MEM aligner (BWA-MEM), ver-
sion 0.7.12 [31]. Following alignment, duplicate reads were
marked using Picard (https://broadinstitute.github.io/pic-
ard/) version 2.0.1. Base quality scores were then recali-
brated using GATK version 3.6.0 [32–34]. Lists of known
single nucleotide polymorphisms and indels for the FVB/
N mouse strain were downloaded from the Mouse Ge-
nomes Project, dbSNP release 142, and used for base qual-
ity score recalibration and mutation filtering [35].

Mutation calling and analysis
Somatic mutations were called using the MuTect2 algo-
rithm in GATK [32–34] with a minimum allowed base
quality score of 20. Mutations were filtered against vari-
ants found in matched normal liver tissue and known
single nucleotide polymorphisms for the FVB/N mouse
strain. Candidate somatic mutations which did not pass
the standard MuTect2 filters were removed from further
analysis. Mutations not meeting the following require-
ments were also removed from further analysis: mini-
mum allele depth of 10, minimum allele frequency of
0.05, and presence of the mutation in both forward and
reverse strands. Mutations were annotated using SnpEff
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[36] and filtered for downstream analysis using SnpSift
[37]. Candidate driver mutations were defined as
moderate or high impact mutations, as defined by
SnpEff, in driver genes as identified by the COSMIC
cancer gene census [38]. To identify hotspot muta-
tions, mouse amino acid positions were aligned to the
orthologous human amino acid position using Clustal
Omega [39] through UniProtKB [40] and used to
query mutations found in the COSMIC database [38].
Mutational spectrum and signature analysis was per-
formed using the deconstructSigs framework [41]
modified to allow the use of the mm10 mouse refer-
ence genome. The COSMIC mutational signatures
were used for reference [42].

Copy number aberration analyses
Copy number aberrations were identified from exome
sequence data using EXCAVATOR2 [43] using the
mm10 reference genome. CNA calling was performed
using standard settings and a window size of 20000 bp.
Potential driver CNAs were identified by filtering for
CNAs associated with cancer in the COSMIC cancer
gene census [38].

Analyses of human breast cancer data
Processed data from the METABRIC [6, 7] and TCGA
[44] cohorts were downloaded from or analyzed directly
on the cBioportal platform [45, 46].

Plot generation
Plots were created using R version 3.3.2 [21]. Heatmaps
were created using ComplexHeatmap [47]. Mutational
spectrum histograms were created using the decon-
structSigs package [41]. All other plots were generated
using the ggplot2 package [48].

Results
Gene expression subtyping reveals two distinct tumor
clusters
We determined the murine transcriptomic subtypes of 17
MPA/DMBA-induced mammary tumors from 13 mice
(Additional file 1) by calculating each tumor’s Spearman
correlation to the murine subtype centroids [11]. This re-
vealed nine murine subtypes in the cohort (Table 1, Add-
itional file 3), which separated into two distinct clusters
upon hierarchical clustering (Fig. 1, p = 0.044, SigClust
[22]). One cluster consisted of claudin-lowEx and squa-
mous-likeEx tumors, both of which have been shown to
resemble the human claudin-low subtype [11]; this is
therefore referred to as the claudin-low-like cluster. The
other cluster contained tumors from seven different
subtypes and is referred to as the mixed cluster. In four in-
stances, two tumors from different mammary glands were
harvested from the same mouse. These were classified as

different subtypes in all cases and are presumed to be dis-
tinct primary tumors. All normal mammary gland samples
were classified as normal-likeEx and clustered separately
from the tumors.
Histopathological analysis corroborated the intertu-

mor heterogeneity that was demonstrated by subtyp-
ing (Additional file 1). Five of the eight claudin-low-
like tumors, including both squamous-likeEx tumors,
showed a squamous appearance, while no tumors in
the mixed cluster displayed this histological pheno-
type (p = 0.009, Fisher’s exact test). There was also a
higher frequency of claudin-low-like tumors showing
marked neutrophil infiltration (p = 0.002, Fisher’s exact
test) and displaying a marked or partial spindloid
appearance (p = 0.050, Fisher’s exact test) compared to
tumors in the mixed cluster.

Mutations in MPA/DMBA-induced mammary tumors are
independent of gene expression subtype
To determine the genetic characteristics of the tumors,
we performed exome sequencing to a mean depth of 58,
with 84% of bases being sequenced to a coverage of 20×
or higher. We identified a mean of 589 mutations per
tumor (range 288 to 1795), corresponding to a mean
mutation rate of 11.9 mutations per megabase (range 5.8
to 36.2) (Fig. 2a). This was substantially higher than the
average 1.3 mutations per megabase found in human
breast cancer [49]. The mutational rate in MPA/DMBA-
induced mammary tumors was also relatively high when
compared to other chemically induced murine tumors
(range 1.4 to 13.0 mutations per megabase) [50–52] and
when compared to tumors arising in genetically engi-
neered mouse models (range 0.1 to 0.7 mutations per
megabase) [52–57]. There was no significant difference
in mutational burden between the tumors in the clau-
din-low-like and the mixed cluster, and the only sub-
type-specific trend was a particularly high mutational
burden in the two squamous-likeEx tumors (Fig. 2a).

Table 1 Subtype distribution of MPA/DMBA-induced tumors
and normal mouse mammary gland tissue

No. of samples Murine subtype Cluster

6 Claudin-lowEx Claudin-low-like

2 Squamous-likeEx Claudin-low-like

3 PyMTEx Mixed

1 Class3Ex Mixed

1 Class8Ex Mixed

1 Class14Ex Mixed

1 Erbb2-likeEx Mixed

1 Wnt1-EarlyEx Mixed

1 Wnt1-LateEx Mixed

5 (normal mammary) NormalEx Normal
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All tumors carried mutations in driver genes defined
by the COSMIC cancer gene census [38], with a mean
of 13.8 driver genes carrying mutations per tumor (range
4 to 29) (Fig. 2b). Several driver genes were recurrently
mutated, including Trp53, Kras, and Kmt2c (Add-
itional file 4), but no driver genes carried mutations at a
significantly different rate between the two clusters. We
did, however, identify two notable trends which did not
reach statistical significance: an elevated rate of Trp53
mutations in the claudin-low-like cluster (50% vs. 11%,
p = 0.13, two-tailed Fisher’s exact test) and an elevated
rate of Zfhx3 mutations also in the claudin-low-like
cluster (37.5% vs. 0%, p = 0.08, two-tailed Fisher’s exact
test). No mutations were significantly associated with
histological features.

MPA/DMBA-induced tumors and human breast cancers
display disparate gene mutational profiles
To narrow down potential driver mutations in the MPA/
DMBA-induced tumors, we compared amino acid
changes caused by mutations in driver genes to known
amino acid changes in human cancers [38] (Table 2,
Additional file 5). There were hotspot amino acid

changes in all Ras genes, including Kras G12C, G13R,
Q61H, Hras Q61L, and Nras Q61L. In total, 8 of 18
tumors carried hotspot amino acid changes in Ras
genes. There was one Pik3ca mutation in the cohort
causing an H1047R amino acid change. This mutation
is frequently found in human breast cancer and has
previously been reported in DMBA-induced mouse
mammary tumors [58].
There were marked disparities between the gene muta-

tional profiles of human breast cancer [44] and MPA/
DMBA-induced tumors (Fig. 2c, Additional file 6). The
two most frequently mutated genes in breast cancer are
PIK3CA and TP53. While TP53 showed comparable mu-
tation rates between human breast cancer and MPA/
DMBA-induced tumors (34% and 28%, respectively),
PIK3CA mutation does not appear to be a common
event in MPA/DMBA-induced tumors (35% in BC, 6%
in MPA/DMBA). Several frequently mutated genes in
breast cancer, such as CDH1, GATA3, and MAP3K1,
were not mutated in any MPA/DMBA-induced tumors.
Conversely, many genes frequently mutated in MPA/
DMBA-induced tumors, such as ATR, FAT1, and KRAS,
are rarely mutated in breast cancer.

Fig. 1 Gene expression-based subtypes in the MPA/DMBA-induced tumor cohort. Using the murine intrinsic gene list [11], hierarchical clustering
of gene expression data revealed two distinct tumor clusters (p = 0.044, SigClust [22]), one containing claudin-low-like tumors and the other containing
a transcriptomically heterogeneous set of tumors. Normal mouse mammary gland samples formed a separate cluster. Genes are ordered according to
correlation to the claudin-lowEx centroid
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DMBA induces a characteristic mutational spectrum with
a high frequency of T>A transversions in TG dinucleotides
To characterize the mutagenic profile of DMBA, we ana-
lyzed the mutational spectra of the MPA/DMBA-in-
duced tumors. Mutations showed a majority of T>A
transversions, which accounted for 63% of all mutations
(Additional file 7A). In their trinucleotide context, thy-
mine mutations (T>N) were overrepresented in posi-
tions with a 3′ guanine nucleotide (Additional file 7B
and C, Additional file 8). This was statistically significant
when compared to the proportion of thymine nucleo-
tides in an NTG context in the mouse reference genome
(p < 0.001 in all cases, two-tailed Wilcoxon rank-sum
test). There was a similar overrepresentation of cytosine
mutations in positions with a 3′ adenine. This was sta-
tistically significant for C>A and C>G mutations (p <
0.001), but not for C>T mutations (p = 0.089), when
compared to the proportion of cytosine nucleotides in
an NCA context in the mouse reference genome.
Mutation signature analysis revealed evidence of sig-

natures 4, 6, 22, 24, and 25 [42] in the MPA/DMBA-in-
duced tumors (Additional file 7D). All tumors were
associated with signature 22, while signatures 4 and 25
were found in 17 and 11 of the 18 tumors, respectively.

Signatures 24 and 6 were only found in four and one
tumor(s), respectively. Notably, none of the signatures
found in MPA/DMBA-induced tumors have been asso-
ciated with human breast cancer [42].

MPA/DMBA-induced tumors have diverse copy number
profiles
Breast cancer is largely driven by copy number aberra-
tions (CNAs) [59], yet the copy number profiles of
MPA/DMBA-induced mammary tumors have not previ-
ously been described. We found a mean of 1299 genes
with CNA per tumor (range 90–3057), of which a mean
of 65% were amplifications. There was a tendency for
claudin-low-like tumors to have a lower burden of
CNAs, with a mean of 919 genes carrying CNA, com-
pared to the mixed group of tumors, with a mean of
1637 genes carrying CNA (Fig. 3a). This trend did how-
ever not reach statistical significance (p = 0.139, two-
tailed Wilcoxon rank-sum test).
To determine CNAs in the MPA/DMBA-induced

tumors with a potential oncogenic driver effect, we identi-
fied amplifications and deletions known to be associated
with cancer [38] (Fig. 3b). We found that 14 of the 18 tu-
mors carried potential driver CNAs (range 0 to 4, mean
2.6). Three of the four tumors not carrying potential
driver CNAs were claudin-low-like. There was however
no statistically significant difference in the number of po-
tential driver CNAs between the clusters. Several genes
had recurrent CNAs, but none occurred at a statistically
significant different rate in one cluster versus the other.
Only two of the CNA events identified in MPA/DMBA-

induced tumors occur at a notable rate in human breast
cancer; MDM4 is amplified in 25%, and PPM1D is ampli-
fied in 10% of human BC [6, 7].
We observed two sets of tumors carrying remarkably

similar CNA profiles (Fig. 3b). None of the tumors in
these two sets displayed the same murine subtype as any
other tumor within the same set.

The human claudin-low breast cancer genome is
characterized by a low mutational burden, frequent TP53
mutations, and a low rate of CNA
Little has been published specifically describing the
genomic characteristics of human claudin-low breast
cancer. We therefore analyzed the 218 claudin-low tu-
mors found in the METABRIC dataset, for which DNA

Table 2 Selected hotspot mutations in MPA/DMBA-induced
tumors

Sample Gene Amino acid change

S176_14_2 Ctnnb1 Asp32Asn

S416_15_2 Ctnnb1 Thr41Ile

S187_14_1 Hras Gln61Leu

S412_15_2 Hras Gln61Leu

S159_14_8 Kras Gly12Cys

S160_14_2 Kras Gly12Cys

S176_14_2 Kras Gly13Arg

S189_14_2 Kras Gln61His

S153_14_2 Nras Gln61Leu

S416_15_9 Nras Gln61Leu

S187_14_1 Pik3ca His1047Arg

S132_14_5 Trp53 His211Pro

S153_14_2 Trp53 Lys129Met

S400_15_2 Trp53 Gln141Pro

S400_15_2 Trp53 His211Pro

(See figure on previous page.)
Fig. 2 Somatic mutations in MPA/DMBA-induced mouse mammary tumors. a The MPA/DMBA-induced tumors carried between 288 and 1795
exonic mutations. No significant differences in mutational burden were found between the clusters; however, a high mutational rate was
observed in the two squamous-likeEx tumors. b Nf1, Trp53, Atr, and Fat1 were the most frequently mutated driver genes in the MPA/DMBA-
induced tumor cohort. No specific mutations accurately delineated the tumor clusters. c MPA/DMBA-induced tumors generally showed divergent
mutational rates compared to human breast cancer in the genes most frequently mutated in human breast cancer. TP53 mutations occurred at a
similar rate in MPA/DMBA-induced tumors and human breast cancer
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sequence data from 173 genes and whole genome copy
number data is available [6, 7].
Across the 173 sequenced genes, claudin-low tumors

carried a mean of 4.7 mutations per tumor, significantly
lower than the mean of 7.3 mutations per tumor for all
other tumors (p < 0.001, two-tailed Wilcoxon rank-sum
test) (Fig. 4a). Claudin-low tumors share several charac-
teristics with basal-like tumors and are often classified as
such by the PAM50 assay [2, 6, 7]; however, basal-like tu-
mors showed a significantly higher mutational burden
than claudin-low tumors (mean 8.1 mutations per tumor,
p < 0.001, two-tailed Wilcoxon rank-sum test).
There was a high degree of overlap between the genes

most frequently mutated in claudin-low breast cancers
and the genes most frequently mutated in all other
breast cancers (Fig. 4b). Most of these genes carried
mutations at similar rates between claudin-low and non-
claudin-low tumors, albeit with a tendency toward a
slightly lower rate in claudin-low tumors. There were
however two notable differences in mutational fre-
quency: a significantly higher rate of TP53 mutations
and a significantly lower rate of PIK3CA mutations in
claudin-low tumors compared to other tumors. Simi-
larly, basal-like tumors also carried a high frequency of
TP53 mutations and a low frequency of PIK3CA muta-
tions [7, 44].
Human claudin-low breast tumors carried significantly

fewer genes with copy number aberration (mean 4879)
compared to all other tumors (mean 6247; p < 0.001,
two-tailed Wilcoxon rank-sum test) (Fig. 4c). This

difference was also marked when comparing claudin-low
tumors with basal-like tumors (mean 10,175 genes per
tumor; p < 0.001, two-tailed Wilcoxon rank-sum test).
By gene, the most frequent copy number event in clau-

din-low breast cancer was MYC amplification, found in
20% of cases (Fig. 4d). In comparison, this event was
found in 26% of all other breast tumors. The ten most fre-
quently amplified genes in claudin-low breast cancer were
all located at chromosomal position 8q24, a region also
frequently amplified in basal-like breast cancers [6, 7].

Claudin-low-like MPA/DMBA-induced mammary tumors
accurately reflect the gene expression characteristics of
their human counterpart
We explored several established gene expression features
of the claudin-low subtype and found that MPA/DMBA-
induced claudin-low-like tumors accurately mirrored their
human counterpart. Specifically, claudin-low-like tumors
had low expression of genes involved in cell-cell adhesion,
low expression of luminal genes, and high expression of
genes related to EMT (Fig. 5a, Additional file 9). Claudin-
low-like tumors also showed a markedly lower degree of
differentiation compared to tumors in the mixed cluster.
In particular, the claudin-low-like cluster expressed signifi-
cantly higher and lower levels of Cd44 and Cd24a, re-
spectively, indicating a stem cell-like phenotype in these
tumors [2, 60] (Additional file 10). There was no signifi-
cant difference in the expression of proliferation-related
genes between the two clusters. Vascular content-related
genes were expressed at a significantly higher level in

A B

Fig. 3 Copy number aberrations in MPA/DMBA-induced mouse mammary tumors. a There was a trend toward a lower number of genes with copy
number aberrations in the claudin-low-like cluster. b Copy number aberrations implicated in cancer were found in 14 of 18 MPA/DMBA-induced tumors.
Two tumor sets (S422_15_2, S400_15_2, and S400_15_7, and S412_15_2, S176_14_2, S159_14_8, and S159_14_2) showed remarkably similar CNA profiles,
but displayed different gene expression subtypes. CNA status of − 2 is a homozygous deletion, CNA status of − 1 is a heterozygous deletion, CNA status of
0 is copy number neutral, CNA status of 1 is a single copy amplification, and CNA status of 2 is a multi-copy amplification
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claudin-low-like tumors compared to the tumors in the
mixed cluster (Additional file 9), indicating a higher de-
gree of neoangiogenesis in these tumors.
Immune cell admixture was significantly higher in the

claudin-low-like tumors compared to tumors in the
mixed cluster (p < 0.001, two-tailed Wilcoxon rank-sum
test) and compared to normal mammary gland samples
(p = 0.006). We also found higher expression of genes re-
lated to immunosuppression and interferons in the clau-
din-low-like cluster compared to both the mixed cluster
and normal mammary gland samples. In combination,
high immune cell infiltration and high expression of type
1 interferon-related and immunosuppressive genes are
characteristics of tumors that may respond to immuno-
therapeutics [61, 62].
We identified a significantly elevated expression of two

potentially actionable genes related to immunosuppres-
sion in the claudin-low-like tumors: the immune check-
point encoding gene Cd274 and the cyclooxygenase
encoding gene Ptgs2 (Fig. 5b). These features were also

characteristic of human claudin-low tumors in the
METABRIC cohort [6, 7], which showed significantly
higher expression levels of both PTGS2 and CD274 com-
pared to non-claudin-low breast tumors (p < 0.001 for
both, two-tailed Wilcoxon rank-sum test) and compared
specifically to basal-like tumors (p = 0.004 and p < 0.001,
respectively) (Fig. 5c). These characteristics may indicate a
susceptibility to immune checkpoint inhibitors and cyclo-
oxygenase inhibitors in human claudin-low breast cancer
[63, 64].

Discussion
In this study, we have performed a comprehensive analysis
of mutations, copy number aberrations, and gene expres-
sion characteristics of MPA/DMBA-induced mouse mam-
mary tumors. We found marked intertumor heterogeneity
and showed that half of the tumors displayed a claudin-
low-like phenotype, in line with a previous report [11].
Our findings demonstrate that these tumors provide a
transcriptomically accurate representation of human

A B

C D

Fig. 4 Somatic mutations and copy number aberrations in human claudin-low breast cancer. a Claudin-low breast cancer was the subtype with
the lowest mutational burden. Number of mutations displayed as log2(mutations + 1). b TP53 and PIK3CA were the most frequently mutated
genes in human breast cancer. Claudin-low tumors carried TP53 and PIK3CA mutations at significantly higher and lower rates, respectively, compared
to non-claudin-low breast tumors. ***p < 0.001. c Claudin-low tumors carried relatively few CNAs compared to non-claudin-low tumors. d The ten
genes which were most frequently affected by CNA in claudin-low tumors were all found to be copy number aberrant at a higher frequency in non-
claudin-low tumors. MYC amplification is the most common CNA event in claudin-low breast cancer
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claudin-low breast tumors, reflecting key features such as
an EMT phenotype, high level of immune infiltration, and
a low degree of differentiation.
MPA/DMBA-induced tumors carried a mutational

burden multiple times that of human breast cancer, a
high frequency of activating Ras-mutations, and a char-
acteristic mutational spectrum. The specific genes carry-
ing mutations varied widely between tumors; however,
all tumors had a consistent mutational signature. This
indicates that the dominant mutational process in these
tumors is DMBA-induced mutagenesis, and not aberra-
tions occurring after tumor initiation, as a result of, e.g.,
disrupted DNA repair. Copy number aberrations in
MPA/DMBA-induced tumors have not previously been
explored, and we show here that most tumors carry po-
tential driver CNAs. However, while we noted several
genomic trends, such as a higher rate of Trp53 mutation
and a lower burden of CNA in MPA/DMBA-induced
claudin-low-like tumors, no individual genomic features
accurately delineated the two gene expression-based
tumor clusters. Further, several tumors carried similar
sets of mutations and/or CNAs but displayed different

subtypes. This suggests that no specific genomic event
determines tumor subtype and that other etiological
models may be more appropriate, such as different cells-
of-origin [65] or microenvironmental factors [66]. This
finding concurs with recent reports showing that trans-
genic mouse mammary tumors display histological and
transcriptomic phenotypes largely uncoupled from their
underlying driver mutations [67–69]. One possible
model for MPA/DMBA-induced tumorigenesis is there-
fore as follows: first, MPA induces a RANK-l-mediated
mammary gland proliferation [10, 13]. DMBA then in-
duces mutations in mammary cells in a pattern as eluci-
dated by our mutation signature analysis, predominantly
in TG and CA dinucleotides, stochastically distributed
throughout the genome. The tumor is initiated when
one or more driver mutations occur, for example, Trp53
or Ras-mutation, with the tumor phenotype, however,
determined by non-genomic factors. The biochemical
mechanism of DMBA-induced mutagenesis has been
described [14, 15], whereas no causal mechanism for
DMBA-induced copy number aberration is known; it is
therefore likely that CNAs arise after tumor initiation.

A

B C

Fig. 5 Gene expression characteristics of claudin-low-like MPA/DMBA-induced tumors and human claudin-low breast cancers. a MPA/DMBA-induced
claudin-low-like tumors recapitulated the gene expression characteristics of the claudin-low subtype as evidenced by the expression levels of relevant
gene signatures. p values are calculated for the claudin-low-like tumors versus tumors in the mixed cluster. b Cd274 and Ptgs2 are expressed at significantly
higher levels in the claudin-low-like tumors than in the mixed cluster tumors. c Claudin-low is the breast cancer subtype with the highest expression of
CD274 and PTGS2
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Previous genomic analyses which included human
claudin-low breast tumors have either not included spe-
cific analyses of the subtype [6, 7], included few samples
[3], or have been restricted to the triple-negative [70, 71]
or metaplastic [72] subsets of claudin-low tumors. We
show here that human claudin-low tumors are charac-
terized by a low number of mutations and a low burden
of CNAs. This finding is surprising, given the apparent
inverse correlation between CNA and mutational burden
in cancer [59], and indicates that the claudin-low sub-
type is relatively genomically stable compared to other
breast cancers. We also find similarities in genomic
characteristics between claudin-low tumors and basal-
like tumors, in particular a high frequency of TP53 mu-
tations, a low frequency of PIK3CA mutations, and 8q24
amplifications as a common event. While the transcrip-
tomic similarity between these two subtypes is estab-
lished [2], these findings illustrate that there are also
marked genomic similarities between claudin-low and
basal breast cancer, albeit with a lower burden of gen-
omic aberrations in claudin-low tumors.
Claudin-low tumors show high expression of immune-

related genes and a high level of immune cell infiltration
[2, 3, 73]. However, claudin-low tumors also express high
levels of immunosuppressive genes. In MPA/DMBA-in-
duced claudin-low-like tumors, we observed an elevated
expression of two particularly notable genes involved in
immunosuppression: Ptgs2 (encoding COX-2) and Cd274
(encoding PD-L1). This observation was consistent in hu-
man claudin-low breast cancer. COX-2 may be implicated
in cancer development through several mechanisms: redu-
cing apoptosis, increasing epithelial cell proliferation, pro-
moting angiogenesis, and increasing invasiveness of tumor
cells and immunosuppression [74–76]. COX-2 may also
be involved in vasculogenic mimicry, a process in which
epithelial tumor cells form vascular channel-like struc-
tures without participation of endothelial cells, allowing
nutrients to reach tumor cells without the need for neoan-
giogenesis [77]. Vasculogenic mimicry has previously been
shown to occur in claudin-low tumors [24]. COX-2 and
PD-L1 are clinically actionable through the use of COX
inhibitors [63] and checkpoint inhibitors [78], respectively.
Further research into the potential use of checkpoint in-
hibitors and COX inhibitors in claudin-low breast cancer
is warranted, with promising future avenues including
combinatorial Treg depletion [73].

Conclusions
In summary, we have found that claudin-low-like MPA/
DMBA-induced mouse mammary tumors are a transcrip-
tomically accurate model for human claudin-low breast
cancer. We did not find strong evidence that claudin-low-
like MPA/DMBA-induced tumors are delineated by any
specific genomic features; however, the relatively small

number of samples included in this study may have ob-
scured possible associations. By analyzing publicly avail-
able data, we showed that human claudin-low breast
cancer is a relatively genomically stable subtype. There is
a high expression of genes related to immunosuppression
in claudin-low breast cancers, a feature which is evident in
claudin-low-like MPA/DMBA-induced tumors. Our ob-
servations suggest immunosuppression as a potential
therapeutic target in claudin-low breast cancer and indi-
cate MPA/DMBA-induced claudin-low-like tumors as an
appropriate model for continued research.
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Ductal carcinoma in situ (DCIS) is a non-invasive type of breast
cancer with highly variable potential of becoming invasive and
affecting mortality. Currently, many DCIS are overtreated due
to lack of specific biomarkers that distinguish low risk lesions
from those that are of higher risk of progression. In this study,
we present data from 57 DCIS and 313 invasive breast cancers
(IBC) on three genomic levels; gene expression, DNA methyla-
tion and DNA copy number. We performed subtype stratified
analyses and identified differences between DCIS and IBC that
suggest subtype specific progression. The most prominent dif-
ferences were found in tumors of the basal-like subtype: Basal-
like DCIS were less proliferative and had a higher degree of dif-
ferentiation than basal-like IBC. Also, core basal tumors (char-
acterized by high correlation to the basal-like centroid) were not
identified amongst DCIS as opposed to IBC. At the copy number
level, the basal-like DCIS exhibited fewer copy number aberra-
tions compared to basal-like IBC. An intriguing finding through
analysis of DNA methylation was hyper-methylation of multi-
ple protocadherin genes in basal-like IBC compared to basal-
like DCIS, possibly caused by long range epigenetic silencing.
This points to silencing of cell adhesion-related genes specifically
in IBC of the basal-like subtype. Our work affirms that sub-
type stratification is important when studying progression from
DCIS to IBC, and we provide the first evidence that basal-like
DCIS show less aggressive characteristics and may be a differ-
ent entity than basal-like IBC.

DCIS | breast cancer | molecular subtypes | breast tumor progression| gene
expression | copy number | methylation

Correspondence: therese.sorlie@rr-research.no

Introduction

Ductal carcinoma in situ (DCIS) is a non-invasive, non-

obligate precursor to invasive breast cancer (IBC) with low

risk of progression (1) As breast cancer screening has be-

come widespread, more DCIS lesions are being detected (2–

4). Autopsy studies and studies of DCIS from non-treated

patients show that many lesions, if left alone, would never

progress to invasive disease (5–9). However, there is cur-

rently no robust method to distinguish DCIS with invasive

potential from those that may be left untreated. DCIS is a het-

erogeneous disease and may at time of diagnosis vary from

indolent lesions to tumors on the verge of becoming invasive.

Clinical, histopathological and molecular characteristics may

also vary extensively (10, 11). As a consequence of this un-

certainty, treatment for DCIS is often extensive, resulting in

substantial overtreatment (12–15).

Knowledge on the underlying mechanisms of progression

from DCIS to IBC is still limited. In order to balance risk

and benefit for each patient, it is important to determine the

tumor’s invasive potential. Several studies have observed few

genomic differences between DCIS and IBC (16–18). How-

ever, most breast cancer progression studies have not taken

into account the significance of molecular subtype in DCIS.

In IBC, molecular subtypes have distinct characteristics and

also provide valuable prognostic and predictive information

(19). In a previous study, we found evidence of subtype

specific progression from DCIS to IBC suggesting that each

molecular subtype undergoes a distinct evolutionary disease

course (20). In DCIS, grade and growth pattern provide some

information on risk of recurrence, yet, there is still a need for

more precise risk prediction (21–23). For this purpose, On-

cotype DX Breast DCIS score has been developed to predict

individual risk of recurrence after breast conserving surgery

(BCS) (24). This assay, however, does not take into account

the vast heterogeneity of DCIS and the low risk group still

experienced a relatively high risk of recurrence of 10% after

10 years (25). Nevertheless, this illustrates the potential of

molecular-based assays for risk prediction in DCIS.

In this study, we explore the differences between DCIS and

IBC in a subtype specific manner using data from three ge-

nomic levels: gene expression, DNA copy number and DNA

methylation. We observed disparate associations between

DCIS and IBC across the subtypes and found that basal-like

DCIS might represent a different molecular entity than their

invasive counterpart. We hypothesize that tumors of different

molecular subtypes may have different modes of progression,

and by comparing DCIS and IBC for each subtype separately,

we aspire to obtain insight that may be used to elucidate fur-

ther the mechanisms of breast cancer invasion and progres-

sion.



Results
Diverging subtype characteristics between ductal car-
cinoma in situ and invasive breast cancer. Gene expres-

sion data were available from 57 DCIS and 313 IBC. Number

of samples for each type of data and clinical information is

presented in table 1 and suppl. file 1.

DCIS IBC
Number of tumors 57 313

Number of expression arrays 57 313

Number of SNP arrays 48 290

Number of Methylation arrays 41 273

Age in years, median (range) 54 (26-82) 54 (26-83)

Size in mm, median (range) 28 (7-90) 18 (2-130)

ELSTON grade (1/2/3/NA) - 44/115/122/32

EORTC grade (1/2/3/NA) 0/8/21/28 -

Table 1. Summary of available data for analysis including age, size and grade.
ELSTON grading applies to invasive tumors (IBC), EORTC grading applies to DCIS
tumors.

We determined the PAM50 intrinsic subtypes using the near-

est centroid classification method (26) and found signifi-

cantly different distribution of the subtypes between DCIS

and IBC (P=0.0016, Fisher exact test, Fig. 1a). Most notably

was there a higher frequency of the HER2-enriched subtype

and a lower frequency of Luminal B tumors in DCIS com-

pared to IBC. This was also reflected by a significantly dif-

ferent distribution of ESR1 gene expression between the two

stages (P=0.0012 Fisher exact test, Fig. 1b). Centroid based

subtyping tools such as the PAM50 method, provide each tu-

mor’s correlation to all centroids and the tumor is assigned to

the subtype with the highest correlation coefficient. In gen-

eral, we observed that DCIS tumors showed lower correla-

tion coefficients to the subtype centroids compared to IBC;

this was particularly evident for DCIS of the basal-like sub-

type (Table 2). To investigate whether differences in tumor

cell content between DCIS and IBC influenced the subtype

distribution, we used the ASCAT algorithm (27) to calculate

tumor purity based on copy number data. We found no signif-

icant difference in tumor cell content between DCIS and IBC

(Basal-like: P=0.86, HER2: P=0.2, LumA: P=0.88, LumB:

P=0.19, Mann Whitney U tests, Suppl. Fig. 1a).

DCIS IBC
Median Range Median Range

Basal 0.26 (0.12-0.46) 0.76 (0.03-0.88)

HER2 0.35 (0.14-0.64) 0.55 (0.15-0.72)

LumA 0.50 (0.20-0.71) 0.56 (0.13-0.82)

LumB 0.33 (0.15-0.39) 0.45 (0.13-0.69)

Table 2. Median subtype correlation coefficients to corresponding PAM50 subtypes
and range for DCIS and IBC.

The overall lower correlation to the PAM50 centroids in

DCIS compared to IBC prompted us to explore the expres-

sion of the PAM50 genes in each subtype and tumor stage to

identify the contribution of each gene to the subtyping out-

put (Suppl. Fig. 1b). Only one gene (Matrix metallopro-

teinase 11, MMP11, also named stromelysin) clearly delin-

eated DCIS and IBC. MMP11 is expressed in stromal cells

p-value: 
0.0012 

p-value: 
0.0016 

a 

b 

Fig. 1. Distribution of PAM50 subtypes (a) and ESR1 gene expression (b) in
DCIS and IBC. The difference between DCIS and IBC is significant for both PAM50
subtypes (p=0.0016) and ESR1 gene expression (p=0.0012, Fisher exact tests)

and favors cancer cell survival and tumor progression through

cleavage of collagen VI (28). MMP11 was markedly lower

expressed in DCIS of all subtypes compared to IBC, in ac-

cordance with its non-invasive state. All other PAM50 genes

showed expression patterns characteristic of the subtypes, in-

dependent of tumor stage. Luminal genes (e.g. ESR1, PGR,

NAT1, BCL2, SLC39A6) were higher expressed in luminal

tumors of both DCIS and IBC compared to tumors of basal-

like and HER2-enriched subtypes. Basal-like IBC showed

markedly higher expression of genes associated with pro-

liferation compared to all other subtypes (including basal-

like DCIS). Both DCIS and IBC of the HER2-enriched sub-

type showed elevated expression of genes typically highly ex-

pressed in this subtype (ERBB2, GRB7 and TMEM45B). Of

note were keratins associated with basal epithelium (KRT5,

KRT14 and KRT17) markedly higher expressed in DCIS of

non-basal subtypes compared to their invasive counterpart

while for the basal-like subtype, these keratins were highly

expressed both in DCIS and IBC. This observation may be

explained by gene expression contribution from a retained

myoepithelial cell layer at the DCIS stage.

Interestingly, we identified a distinct group of basal-like IBCs

with high correlation to the basal-like centroid and corre-

spondingly low correlation to the luminal A centroid (Fig.

2a), which was not found among basal-like DCIS (Fig. 2b).

These invasive tumors may correspond to so-called “core

basal” tumors, characterized by deletions on chromosome 5q

and high expression of specific genes associated “in trans”

with such deletions (29, 30). In accordance with this, we
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Fig. 2. Core basal characteristics. (a) and (b): Association between correlation coefficient to basal-like centroid on the x-axis vs. correlation coefficient to luminal A centroid
on the y-axis for IBC and DCIS. (c): Frequencyplot of copy number data on chromosome 5. Genomic position is shown on x-axis. Y-axis show frequency of losses (downward
in green) or amplifications (upward in red) in DCIS and IBC separately. (d): Gene expression of core basal genes in DCIS and IBC tumors of basal-like subtype. The heatmap
shows genes whose expression previously has been shown to be correlated “in trans” with deletion of 5q in core basal samples.

found 5q deletions at high frequency in basal-like IBC, while

only in a minority of basal-like DCIS (Fig. 2c). Clustering

gene expression values of the core basal-defining genes re-

vealed two distinct clusters: one consisting of mostly IBC

tumors with high correlation to basal-like subtype (i.e. the

core basal tumors), and a second cluster including most of the

DCIS tumors and IBC tumors with low correlation to basal-

like subtype (Fig. 2d). The absence of core basal tumors in

DCIS suggests that basal-like DCIS may be a different bio-

logical entity than most basal-like IBC.

Extensive genomic differences between basal-like
DCIS and basal-like IBC. We found few gene expres-

sion differences between DCIS and IBC when performing

genome wide principal component analysis (PCA) across all

subtypes (Suppl. Fig. 2a). This is in accordance with pre-

vious studies (17, 18). However, PCA after subtype strati-

fication clearly separated IBC from DCIS in the basal-like

and HER2-enriched subtypes, while not in the luminal sub-

types (Suppl. Fig. 2b). Also with respect to copy number

aberrations, differences between DCIS and IBC varied be-

tween subtypes. DCIS exhibited overall fewer copy number

changes compared to IBC as demonstrated by overall lower

genomic instability index (GII) in all subtypes, and the differ-

ence was significant for all subtypes except luminal B (Suppl.

Fig. 3a and Suppl. File 1). Nevertheless, the specific copy

number changes in DCIS are reminiscent of invasive tumors,

including 17q12 amplification in the HER2-enriched subtype

and deletions of 16q in luminal A DCIS (Suppl. Fig. 4).

Again, the largest difference between DCIS and IBC was

found for basal-like tumors with DCIS showing substantially

fewer copy number aberrations compared to basal-like IBC

To further explore subtype specific differences between DCIS

and IBC, we included information on the strength of the

correlation to all other subtype centroids (Fig. 3, Suppl.

File 1). We found that basal-like IBC correlated highly to

the basal-like centroid, and next, to the HER2-enriched cen-

troid, while basal-like DCIS showed overall lower correla-

tion to the basal-like centroid and more often had luminal

subtypes as their second subtype (Fig. 3). On the con-

trary, luminal A tumors, both DCIS and IBC, showed rela-

tively high correlation to the luminal A centroid and a sim-

ilar distribution of the second best subtype (mostly basal-

like and luminal B). Next, we calculated gene expression-

based proliferation-, differentiation-, immune-, stromal-, and

epithelial-to-mesenchymal transition (EMT)-scores, as well

as HER2-copy number status (Fig. 3, Suppl. Fig. 3 and

Suppl. File 1). All tumors at both disease stages showed

subtype specific characteristics such as higher proliferation

and lower differentiation in basal-like and HER2-enriched

subtypes when compared to luminal A. In general, DCIS re-

ceived lower stromal and EMT scores compared to IBC. The

differences between DCIS and IBC were most pronounced

in basal-like tumors: Basal-like DCIS displayed significantly

lower median proliferation score compared to basal-like IBC

(Suppl. Fig. 3b), while the median differentiation score

was significantly higher in basal-like DCIS compared to IBC

(Suppl. Fig. 3c), although still lower than in DCIS of any

other subtype. There was no statistically significant differ-

ence in median immune score, median stromal score or me-

dian EMT score between basal-like DCIS and IBC (Suppl.
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Fig. 3. Genomic characteristics of DCIS and IBC tumors. Each column represents one tumor and are sorted according to PAM50 subtype and ordered by correlation
coefficient to the tumor’s subtype. Relevant characteristics that commonly differ between molecular subtypes are selected and revealed great variation between subtypes
with regards to the difference between DCIS and IBC, with most pronounced differences in the basal-like subtype. PAM50: the sample’s subtype, PAM50 2nd: the subtype
with second highest correlation, Tumor stage: DCIS (green), IBC (yellow), ESR1: Estrogen receptor 1 gene expression, PGR: Progesterone receptor gene expression,
Cor.Basal/Cor.Her2/Cor.LumA/Cor.LumB: correlation coefficients to the four PAM50 subtypes, Proliferation: gene expression based proliferation score, Differentiation: gene
expression based differentiation score, GII: Genomic Instability Index based on copy number data, HER2 CN: Erb-B2 Receptor Tyrosine Kinase 2 copy number.

Fig. 3d, e and f). Overall, these findings show that subtype

profiles of DCIS are comparable to those found in IBC, ex-

cept in the basal-like subtype where DCIS appears to be as-

sociated with less aggressive gene expression characteristics.

Long Range Epigenetic Silencing of cPCDH genes oc-
curs in basal-like IBC . We identified numerous genes with

significantly different methylation profile between DCIS and

IBC (Suppl. file 2). For the basal-like subtype, 1053 genes

showed statistically significant different methylation profile

between DCIS and IBC, while for the HER2-enriched and

luminal A subtypes, only 144 and 172 genes, respectively,

showed significantly different methylation profiles (Fig. 4a).

Due to low sample size, no genes with statistically signifi-

cant different methylation signatures were identified for the

luminal B subtype. No differentially methylated genes were

common between the other three subtypes. Functional en-

richment analysis of genes with significant different methyla-

tion profile between DCIS and IBC revealed that cell junction

processes were prominent for the basal-like subtype (Suppl.

file 3); most notable were nineteen clustered protocadherin

genes (cPCDHs, 18 PCDHγ and 1 PCDH β genes) hyper-

methylated in basal-like IBC compared to DCIS (figure 4b).

These genes are located close together on chromosome 5q31

and are involved in cell-cell adhesion (31, 32). Long Range

Epigenetic Silencing (LRES) has previously been shown to

occur in cancer across the cPCDH gene clusters (33–35). To

explore whether LRES could explain the observed hyperme-

thylation in basal-like IBC, we clustered all basal-like tumors

based on the actual methylation status of each CpG in the

800kb window spanning the clustered protocadherin genes

(Suppl. Fig. 5). This revealed two distinct clusters of tu-

mors: One group characterized by hypermethylation of CpGs

located in the cPCHD genes, including most of the IBC tu-

mors with high correlation to the basal-like centroid, and a

second group characterized by lower methylation, consisting

of most of the DCIS tumors and the IBC tumors with lower

correlation to the basal-like centroid. These findings indicate

that LRES of cPCDHs may be a trait of basal-like IBC, but

not of basal-like DCIS.

When compiling methylation, copy number and gene ex-

pression data of the cPCDHs for the basal-like tumors, it

appeared that invasive tumors with hypermethylation of the

cPCDH genes often exhibited deletions of the same genes,

and that these changes corresponded well with correlation to

the basal-like centroid (Fig. 4c). Importantly, the cluster of

tumors with concurrent hypermethylation and deletion of the

cPCDH genes consisted mainly of aneuploid tumors, while

the sub-cluster containing most DCIS consisted of diploid tu-

mors only. In summary, the notable differences in cPCDH

methylation between basal-like DCIS and IBC support our

previous results that basal-like DCIS may be a different en-

tity than basal-like IBC.

Discussion
In this study, we have explored differences between DCIS

and IBC in a subtype specific manner using gene expression,

copy number and DNA-methylation data derived from fresh

frozen tumor material. The study was instigated by findings

from our previous study where we hypothesized that progres-

sion of DCIS to invasive cancer differ between molecular

subtypes (20). The indolent nature of many in situ tumors and

the fact that many of these tumors never progress to invasive

or metastatic disease harmonize poorly with the results from

several studies showing remarkably few genomic differences

between DCIS and IBC (16–18). This lack of genomic dis-

similarity may be explained by inherent differences between

the molecular subtypes: In most breast cancer cohorts, the

majority of tumors are of luminal subtypes; hence, charac-

teristics that differentiate disease stages in unstratified anal-

yses are confounded by subtypes. The different distribution

of molecular subtypes observed between IBC and DCIS may

in part be explained by underrepresentation of small DCIS

lesions included in the cohort. However, the frequency of tu-

mors of the least aggressive subtype (luminal A) is similar

in DCIS and IBC, indicating that the observed difference in
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Fig. 4. Methylation differences between DCIS and IBC. (a): Genes with significantly different methylation profiles between DCIS and IBC in basal-like, HER2-enriched and
Luminal A subtypes. Luminal B is not shown since no genes showed significantly differentially methylated profiles between DCIS and IBC in this subtype. (Mann Whitney
U test, FDR<0.05, effect size >0.127), (b): Volcanoplot showing the results from Mann Whitney U test comparing methylation profiles in basal-like DCIS vs. basal-like IBC.
Difference in median (IBC-DCIS) is shown on the x-axis and False Discovery Rate is shown on the y-axis. Genes colored in red are clustered protocadherins (cPCDHs)
(hypermethylated in basal-like IBC compared to basal-like DCIS), (c): Copy number, methylation and gene expression of the 19 cPCDHs signficant differentially methylated
between basal-like DCIS and basal-like IBC. cPCDHs are plotted in the same order in all three panels.

subtype distribution between the two tumor stages represents

a true distinction.

Interestingly, the most pronounced stage differences were

found for the basal-like subtype. Basal-like DCIS showed

lower correlation to the basal-like centroid (i.e. low “basal-

ness”) compared to basal-like IBC, and there were no “core

basal” DCIS in our data. This is in accordance with a previ-

ous integrative clustering analysis that showed genomic iso-

lation of basal-like IBC, and not basal-like DCIS (36). In

the present study we showed that the basal-like DCIS tumors

exhibited higher correlation to Luminal A subtype, higher

degree of differentiation, lower proliferation and lower ge-

nomic instability than basal-like IBC. Also with respect to

alterations of DNA methylation did basal-like tumors show

prominently more differences between DCIS and IBC com-

pared to all other subtypes. Most notable was the marked

hypermethylation of CpGs mapping to the clustered pro-

tocadherin genes (cPCDHs) in basal-like IBC compared to

DCIS and a positive association between hypermethylation

of cPCDHs and degree of “basalness”. Hypermethylation of

DNA in the genomic location spanning the cPCDH genes

through long range epigenetic silencing (LRES) (37) has

been shown to increase with progression of cervical cancer

(35) and has also been seen in breast cancer (34), colorectal

cancer (33) and Wilm’s tumor (38). Interestingly, the chro-

mosomal region of the cPCDH genes (5q31) is frequently

deleted in basal-like IBCs and is a defining feature of core

basal IBC tumors (39, 40). Clustered protocadherins are

molecules involved in cell-cell adhesion and have also been

shown to inhibit cell growth and suppress oncogenic path-

ways, features consistent with a role as tumor suppressors

(41). Loss of intraepithelial cell-cell adhesion is a key fea-

ture during tumor cell invasion (42, 43) and it is tempting

to speculate that loss of cPCDH tumor suppressor function

through LRES may contribute to driving the invasion process

specifically in basal-like cancer.

We have shown that the difference between DCIS and IBC is

greater for the basal-like subtype compared to all other sub-

types. Despite that the intrinsic subtypes were defined in in-

vasive breast cancer, we believe that basal-like DCIS are truly

basal-like since firstly, the PAM50 subtyping showed that

they correlate the most to the basal-like centroid, albeit to a

lower degree than IBC. Secondly, several genomic features of

basal-like tumors are also present in basal-like DCIS, includ-

ing low degree of differentiation, high expression of basal

keratins, low expression of luminal genes and immune cell

infiltration. Despite these similarities, basal-like DCIS may

not be true precursors to basal-like IBC. Basal-like breast

cancer is an aggressive disease that develops rapidly. Espe-

cially the core basal tumors have an aggressive phenotype

with poorer prognosis than non-core basal tumors (30, 44).

Although all core basal invasive tumors at some point must
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have had an intraductal stage, the transition from DCIS to an

invasive stage may occur so rapidly that the probability of

“capturing” such a tumor at the DCIS stage is very small as

also proposed by Kurbel (45). This hypothesis is supported

by the fact that basal-like invasive tumors have fewer con-

current DCIS lesions compared to other subtypes (46). By

this follows a hypothesis that those DCIS that are identified

as basal-like may be indolent or precursors to the less aggres-

sive non-core basal tumors.

A limitation of this study is the lack of follow-up information

on recurrence or survival. Hence, our results need to be val-

idated in a DCIS cohort with more extensive clinical follow-

up information. Nevertheless, our study has reaffirmed the

necessity of taking a subtype specific approach when study-

ing progression of DCIS and we have demonstrated that there

are substantial differences between basal-like DCIS and IBC

that may question basal-like DCIS as precursor lesions to in-

vasive breast carcinoma.

Material and Methods
Tumor samples. This study includes data from 57 DCIS

and 313 IBC obtained from three different patient cohorts, of

which two (“Uppsala” and “Oslo2”) are previously published

(47, 48). Data from the third cohort, (“Milano”) is not previ-

ously published and was generated from fresh frozen tissue

from a total of 34 breast tumors. Histopathological evaluation

of H&E stained tissue sections was performed by a trained

pathologist.

DNA and RNA isolation. Total RNA and DNA was isolated

using the QIAcube system with the AllPrep DNA/RNA Uni-

versal Kit (cat.no. 80224, Qiagen, Hilden, Germany) with

30mg tissue as input. The tissue was manually minced with

a scalpel on ice followed by homogenization using Tissue-

Lyzer LT and Qiashredder (Qiagen). RNA and DNA extrac-

tion was performed according to the protocol provided by the

supplier. Nucleic acid concentrations were measured on a

NanoDrop ND-1000 spectrophotometer (Thermo Scientific,

Wilmington, DE, USA) and RNA integrity was analyzed us-

ing Agilent 2100 Bioanalyzer (Agilent Technologies, Santa

Clara, USA).

Gene expression analysis. To obtain whole genome ex-

pression data, Agilent Sureprint G3 Human Gene Expression

8x60K microarrays (G4851A) (Agilent, Technologies, Santa

Clare, USA) with the Low Input Quick Amp Labeling proto-

col were used. RNA input was 40ng and Cy3 was used as flu-

orophore. Quality Control (QC) was performed in Agilent’s

Feature Extraction software. From the Milano cohort, five

invasive breast carcinomas and 28 DCIS were successfully

analyzed and passed all quality control criteria while one

DCIS failed QC. As a control, one sample of commercially

available normal breast RNA (Ambion Human Breast Total

RNA, Thermo Fisher Scientific, Wilmington, DE, USA) was

included throughout the whole experimental pipeline. The

same microarray platform had been used for the two other

patient cohorts. Data from all three cohorts were normalized

together using quantile normalization. For genes represented

with more than one probe, mean expression was calculated to

obtain one gene expression value per gene.

Whole genome methylation. DNA-methylation data was

obtained using the Illumina Infinium HumanMethylation450

microarray (Illumina, Inc. CA, USA) following the manu-

facturer’s instructions. Data was preprocessed using subset

quantile normalization (49). The resulting β value represents

the fraction of methylated DNA molecules at a specific CpG.

Quality control of β values was performed as presented in

Wilhelm Benartzi et al. (50): β-values with detection p-

values higher than 0.05 (0.225% of the β-values) were re-

placed by NA. CpG sites where more than 25% of the β val-

ues failed quality control, were removed from the analysis

resulting in 436 162 reliable CpGs in the final dataset. NA

values were imputed using the R-function impute.knn with

default parameters. To obtain one value per gene, principal

component analysis was performed on all CpGs within, or

50kB upstream or downstream from the gene for each sam-

ple. The value of the first principal component represents the

gene’s methylation profile.

Copy number aberrations analysis. Copy number data

was obtained using Affymetrix SNP 6.0 arrays (Affymetrix,

Santa Clara, CA, USA) at Aros Applied Biotechnology

(Aarhus, Denmark) following the manufacturer’s instruc-

tions. CEL-files were processed using the PennCNV-Affy li-

brary (51) with the HapMap samples as reference set (52) and

corrected for GC content (53). The data was segmented us-

ing the PCF algorithm with arguments kmin=5, gamma=100

in the R copynumber package (54). The copy number of the

segment overlapping the gene the most was set as a gene’s

copy number. Ploidy and tumor percentage were calculated

using the ASCAT algorithm (27). Genome instability index

(GII) was derived by calculating the fraction of the genome

affected by copy number change.

PAM50 subtyping. The tumors were assigned a PAM50

gene expression subtype using the centroid based method

from Parker et al. (26) with four subtypes: Basal-like, HER2-

Enriched, Luminal A and Luminal B. DCIS and IBC tumors

were subtyped together after data normalization. To account

for different fractions of estrogen receptor (ER) positive tu-

mors between the training set (from which the centroids were

calculated) and test set, the mean values were weighted by the

proportion of ER+ tumors. ER-status by IHC was unavail-

able for some tumors, thus ER-status was determined using

the ESR1 gene expression value. ESR1 expression showed a

distinct bimodal distribution enabling a reliable cut-off to be

set. Progesterone receptor (PR) status was derived by PGR-

expression the same way as for ER. Consistency between ER

status derived by IHC and expression was high, with 98% of

the tumors (320/327) concurring. After gene centering, we

calculated spearman correlation between expression of the

PAM50 genes and each of the four subtype centroids and

assigned each tumor to a subtype by its highest correlation

(Suppl. file 1).
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Gene expression based tumor scores. Proliferation

scores were calculated using an 11-gene proliferation signa-

ture (55) and EMT scores were calculated using an EMT sig-

nature based on four adhesion genes (weighted negatively)

and seven EMT-genes (weighted positively) (Suppl. file 1):

For each gene and sample, a standard (Z) score was calcu-

lated, then the proliferation/EMT-scores were obtained for

every tumor by calculating the mean of all Z-scores across

all genes in the signature. Differentiation scores were de-

rived using the differentiation predictor described in Prat et

al. (56) and immune and stromal infiltration scores were cal-

culated using ESTIMATE (57).

Differential methylation. Genes differentially methylated

between DCIS and IBC where identified using Mann-

Whitney U tests separately for each subtype. False discovery

rate was used to correct for multiple testing. To identify gene

lists for functional enrichment analyses, cut-offs were set at

both FDR and effect size (defined as the absolute difference

in median between DCIS and IBC) to increase the likelihood

of finding the biological relevant differences between the two

groups. We included genes with FDR<0.05 and effect size

within the top 20% (corresponds to a cut-off > 0.127). Func-

tional enrichment analyses of differentially methylated genes

were performed using WebGestalt 2019 (WEB-based GEne

SeT AnaLysis Toolkit) (58).

Statistical and bioinformatic analyses. All statistical

analyses were conducted in R (59) unless otherwise speci-

fied. Heatmaps were created using the R package Complex

Heatmaps (60) and other plots were created using the pack-

age ggplot2 (61). Fisher exact tests were used to compare

distribution of subtype and ER-status between the two tumor

stages. Mann Whitney U-tests were used to compare tumor

content, GII, proliferation scores, differentiation scores, im-

mune scores, stromal scores and EMT scores between DCIS

and IBC separately for each subtype.
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Supplementary Figures

a b 

Fig. S1. (a): Tumor content boxplot separated by tumor stage and PAM50 subtype. P-values obtained by Mann Whitney U tests, DCIS
vs. IBC in each subtype separately. (b): Heatmap showing median gene expression value for genes included in the PAM50 centroid for
each subtype and tumor stage separately.

a b 

DCIS 
IBC 

Fig. S2. Principal Component Analyses plots based on genome wide gene expression data of all samples together (a) and separately
for the PAM50 subtypes (b). Principal component 1 is shown on the x-axis and principal component 2 on the y-axis. The explained
variance in each PCA analyses is indicated.
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Position chromosome 5 140100’ 140900’

Fig. S5. Heatmap showing methylation status (β-values) of all CpGs in the 800kb window spanning the cPCDH genes on chromosome
5q. CpGs (columns) are ordered according to genomic position (indicated below). Rows (tumors) are clustered.
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Supplementary file 3 

Gene set analyses using WEB-based GEne SeT AnaLysis Toolkit (http://www.webgestalt.org/) Input 
are genes with significant different DNA methylation profile between DCIS and IBC (FDR<0.05 and 
effect size within top 20%). Analyses are performed separately for each PAM50 subtype (LumB not 
included since no genes had significantly different methylation profiles in this analyses). 
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BACKGROUND Ductal carcinoma in situ (DCIS) comprises a
diverse group of pre-invasive lesions in the breast and poses a
considerable clinical challenge due to lack of markers of pro-
gression. Genomic alterations are to a large extent similar in
DCIS and invasive carcinomas, although differences in copy
number aberrations, gene expression patterns and mutations
have been found. In mixed tumors with synchronous invasive
breast cancer (IBC) and DCIS, it is still unclear whether inva-
sive tumor cells are directly derived from the DCIS cells.

AIMS Our aim was to compare cancer-relevant mutation pro-
files of different cellular compartments in mixed DCIS/IBC and
pure DCIS tumors.

METHODS AND RESULTS We performed targeted sequenc-
ing of 50 oncogenes in microdissected tissue from three differ-
ent epithelial cell compartments (in situ, invasive and normal
adjacent epithelium) from 26 mixed breast carcinomas. In to-
tal, 44 tissue samples (19 invasive, 16 in situ, 9 normal) were
subjected to sequencing using the Ion Torrent platform and the
AmpliSeq™ Cancer Hotspot Panel v2. For comparison, 10 ad-
ditional, pure DCIS lesions were sequenced. Across all mixed
samples, we detected 22 variants that previously have been de-
scribed in cancer and are present in the COSMIC database. The
most commonly affected genes were TP53, PIK3CA and ERBB2.
The PIK3CA:p.H1047R variant was found in 9 samples from
six patients. Most variants detected in the invasive compart-
ment of a tumor were also found in the corresponding in situ
cell compartment indicating a clonal relationship between the
tumor stages. Across 10 pure DCIS lesions, only three variants
were identified.

CONCLUSION Similar mutation profiles between in situ and
invasive cell compartments indicate a similar origin of the two
tumor stages in mixed breast tumors. The low number of po-
tential driver variants found in pure DCIS compared to the in
situ cell compartments of mixed tumors implies that these two
in situ lesion types may be different entities.

DCIS | invasive breast cancer | mutations | targeted sequencing | breast tumor
progression
Correspondence: therese.sorlie@rr-research.no

Introduction
Ductal carcinoma in situ (DCIS) is a non-invasive breast can-

cer. In DCIS, abnormal cells are contained within the milk

ducts while the basement membrane is intact, and there is

no invasion of surrounding stroma (1). Today, DCIS com-

prises about 20% of all breast carcinoma diagnoses, usually

detected in the context of mammography screening (2). In

situ lesions are generally accepted as non-obligate precursors

to invasive breast cancer (IBC), but importantly, not all in situ

lesions progress to become invasive. There is however, an in-

creased risk of developing invasive breast cancer subsequent

to an in situ carcinoma if left untreated (3, 4). The clinical

challenge is therefore to distinguish high risk from low risk

lesions in order to offer optimal treatment to these patients

(5). Much remains to be learned about the pathogenesis of

DCIS to be able to predict disease progression of these non-

obligate breast cancer precursors.

Many cases of breast cancer present as mixed lesions, i.e.

synchronous invasive ductal carcinoma and ductal carcinoma

in situ. In such cases, the in situ lesion is thought to be the

precursor of the invasive tumor and studies have reported an

overall high degree of similarity of genetic aberrations be-

tween DCIS and IBC (6–10). Nevertheless, differences in

type and frequency of mutations have also been reported(11).

It has been hypothesized that DCIS and IBC originate from

the same ancestor cell, but have deviated prior to the in situ

stage following separate tumor progression paths (12). In tu-

mors without an in situ compartment the invasive carcinoma

may have arisen de novo (13), or the pre-invasive stage has

been a brief, transient phase along the progression to invasive

breast carcinoma (14). More, in-depth sequencing studies are

required to investigate the intra-lesion heterogeneity in DCIS

and whether progression to IBC is a result of clonal selection

(6, 15).

In this study we have sequenced microdissected cell com-

partments from 26 mixed breast tumors using the Ion Am-

pliSeq™ Cancer Hotspot Panel v2. The mutation spectrum

across forty-four samples of carcinoma in situ, invasive car-

cinoma and adjacent normal tissue showed a high degree of

similarity between synchronous DCIS and IBC and a higher

mutation frequency in the in situ cell compartment in mixed

tumors compared to pure DCIS.



Material and Methods
Tumor tissue samples. Fresh frozen tissue from patients

with mixed tumors (i.e. invasive ductal carcinoma with syn-

chronous in situ lesion) or pure DCIS was collected at the

Fresh Tissue Biobank, Department of Pathology, Uppsala

University Hospital, Sweden. Histopathological evaluation

of all cases was performed by a pathologist.

Laser capture microdissection. Invasive, in situ and nor-

mal cell areas were microdissected using laser capture mi-

crodissection (LCM) on a Zeiss inverted microscope PALM

Laser Micro-Beam System (Carl Zeiss, Germany) as pre-

viously described (8). Frozen 14 μm-thick sections were

mounted on polyethylene membrane (PALM) covered slides

and stained with hematoxylin (60 μl) mixed with RNasin for

1 min, incubated in Zincfix (60 μl) for 30 sec, followed by

a series of 30-sec incubation steps in 75%, 95% and 100%

ethanol, respectively. Adjacent 4 μm-thick sections were cut

and stained by a routine hematoxilin and eosin protocol to

locate the areas to be microdissected. Cells were captured

into collecting caps and preserved in 50 μl Trizol at -80°C for

DNA extraction. The number of cells obtained was estimated

by the operator during microdissection and between 100 and

4000 cells were obtained for each sample. Pure DCIS sam-

ples were not microdissected; for these samples, whole FFPE

tumor sections were used for DNA isolation.

DNA purification. DNA was isolated using Qiagen (Hilden,

Germany) DNeasy Blood and Tissue Mini Kit. Samples

were thawed and centrifuged at 16,000 x g for 15 min to

precipitate DNA. After complete removal of Trizol, 180 μl

buffer ATL and 20 μl protease was added and the tubes in-

cubated at 56°C overnight before addition of 200 μl buffer

AL. Samples were mixed well by vortexing before 200 μl

ethanol was added and the samples were again mixed well

by vortexing. The samples were then transferred to DNeasy

Mini spin columns and further processed as per the manufac-

turer’s instructions before DNA was eluted in 100 μl buffer

AE. To improve recovery of the DNA, the elution buffer was

left on the columns for 5 minutes before a final centrifuga-

tion step. For quantification and quality assessment of the

DNA, quantitative polymerase chain reaction (qPCR) was

performed with the KAPA hgDNA Quantification and QC

Kit (KAPA Biosystems, Wilmington, MA) as per the man-

ufacturer’s instructions. Isolation of DNA from pure DCIS

tumors were performed using the QIAcube system with the

AllPrep DNA/RNA Universal Kit (cat.no. 80224, Qiagen,

Hilden, Germany) according to protocol provided by the sup-

plier.

Library preparation. Sequencing libraries for Ion Torrent

sequencing were prepared using the Ion Torrent AmpliSeq™

Library Kit 2.0 (Thermo Fisher Scientific, Waltham, MA),

and the Ion AmpliSeq™ Sample ID Panel as per the man-

ufacturer’s instructions. Briefly, approx. 100 pg DNA was

mixed with Ion AmpliSeq™ HiFi Master Mix and the two

primer pools and amplified for 27 cycles followed by partial

digestion of the primer sequences and ligation of barcoded

adapters. The libraries were purified using Agencourt AM-

Pure XP beads (Beckman Coulter, Brea, CA) and amplified

by polymerase chain reaction (PCR) for 5 cycles followed

by a two-round purification process with AMPure XP beads.

The final libraries were quantified on Agilent Bioanalyzer

instrument (Agilent Technologies, Santa Clara, CA) with

the Agilent High Sensitivity DNA Kit and stored at -20°C.

The AmpliSeq™ Cancer Hotspot Panel yields 207 amplicons

covering hotspot regions of 50 relevant cancer genes (Suppl.

file 1).

Template preparation and sequencing. Libraries were

normalized to 100 pM in Low TE and equal amounts of each

library were pooled. Each pool was diluted 10 times and 20

μl were clonally amplified on the Ion OneTouch system us-

ing the Ion OneTouch 200 Template Kit v2 DL and enriched

with the Ion OneTouch ES as per the manufacturer’s instruc-

tions. Sequencing was carried out on the Ion Torrent Personal

Genome Machine (PGM) using the Ion PGM 200 Sequenc-

ing Kit and Ion 314 or Ion 316 Chips for 400 cycles accord-

ing to the manufacturer’s instructions. For the microdissected

samples, mean number of mapped reads was 395584 (range

126272-933608), mean read length 108bp (range 73-115bp)

while mean depth was 1655 (range 411-3922). For the pure

DCIS samples mean number of mapped reads was 273769

(range 227290-345207), mean read length 113 (range 112-

116bp) and mean depth 1262 (range 1046-1585).

Variant calling. Data was analyzed using the AmpliSeq™

Variant Caller plug-in within the Ion Torrent Suite software

(version 5.0.4, Thermo Fisher Scientific). Forty-seven sam-

ples were sequenced in total. Three samples were excluded

from further analysis after quality assessment and in all, 44

microdissected samples from 26 mixed tumors and 10 pure

DCIS were successfully sequenced. Due to low input and

varying sample quality for the microdissected samples, a

strict cut-off was applied; only variants with maximum al-

lele frequency >10% and quality >100 across all microdis-

sected samples were included. Variants were manually as-

sessed in Integrative Genomics Viewer (16) to evaluate strand

bias and potential technically induced artifacts. Finally, to in-

clude only variants that affect function and which may be of

clinical significance, variants were filtered by including only

those present in Catalogue of Somatic Mutations in Cancer

(COSMIC, version 77 accessed may 2016) (17), and exclud-

ing SNPs present in the variant database in the 1000 Genomes

Project(accessed May 2016) (18).

Validation by digital droplet PCR. Digital droplet PCR

was performed using the RainDrop system (RainDance tech-

nologies) to validate the PIK3CA:H1047R variant found in

nine samples on the IonTorrent platform. DNA was isolated

from separate FFPE tumor sections using DNeasy Mini spin

columns as described above. An assay with two color flu-

orescent TaqMan probes was used to discriminate between

droplets containing mutant and wild type alleles. A 50 μl

2



reaction mix containing 2x KAPA Probe Force qPCR Mas-

ter Mix (Sigma Aldrich, St. Louis, MO), 25x Droplet Stabi-

lizer (RainDance Technologies), 13,3 μl nuclease free H2O,

9 μl DNA sample, and 0,7 μl primer/probe mix with 500 nM

fwd/rev primer and 200 nM WT/mutant probe was made for

each sample. The total reaction mix was loaded onto the

RainDance Source chip for partitioning of the mix into mil-

lions of single droplets. Each droplet contains a PCR mix

– oil emulsion and a single DNA fragment (positive) or no

target molecule (negative). After partitioning, a PCR ampli-

fication was performed, where each droplet acts as an indi-

vidual PCR reaction. The PCR conditions were as follows:

98°C (3 min), 55 cycles of 95°C (10 sec) and 60°C (1 min)

with ramp speed of 0,5°C /second, 72°C (10 min), 98°C (10

min), 12°C (10 min), and keep at 12°C . The samples were

transferred to the RainDrop Sense instrument for automatic

counting of positive and negative droplets depending on the

presence or absence of a fluorescent signal enabling calcula-

tion of the absolute number of targets present in the original

sample.

Statistical analysis. Fisher’s exact tests were performed to

test whether there was any statistically significant association

between variants in genes and estrogen receptor (ER) or pro-

gesterone receptor (PR) status and to test the difference in

frequency of samples carrying variants between synchronous

and pure DCIS.

Results and discussion
In total, 19 invasive carcinoma, 16 DCIS and nine normal,

microdissected tissue samples from 26 patients with mixed

tumors, were subjected to targeted sequencing of 50 onco-

genes and tumor suppressor genes. Amongst the samples

were three triplets (i.e. in situ, invasive and normal epithe-

lial cells from the same tumor), and thirteen in situ/invasive

pairs. In addition, we sequenced 10 pure DCIS samples. An

overview of relevant clinical information is shown in Suppl.

file 2. Mean age at time of diagnosis was 52 years (min/max:

30/81) and mean tumor size 23.7 mm (min/max: 1/80). Of

all tumors were 28/36 (78%) ER positive and 23/36 (64%)

PR positive. All PR-positive tumors were ER-positive.

Across all mixed tumor samples we identified twenty-two

different, potentially pathogenic variants in eight genes

(AKT1, CDH1, CDKN2A, ERBB2, MET, PIK3CA, STK11
and TP53) (Suppl. file 3). PIK3CA and TP53 were the most

commonly mutated genes in our cohort. Most variants were

present in only one patient; but for two of the genes (AKT1
and PIK3CA) identical variants were identified in more than

one patient. The number of variants in each in situ or in-

vasive cell compartment ranged from zero to four, and most

tumors carried only one variant (11/16 in situ, 12/19 inva-

sive). The most common variant (PIK3CA:p.H1047R) was

found in nine samples from six patients. Across the mixed

tumors, four different PIK3CA variants were detected in 12

patients. In contrast, no TP53 variant was found in more than

one patient. Among the thirteen cases of pairs, for which both

Fig. 1. Overview of genes with pathogenic variants identified in the 13 available
DCIS/IBC sample pairs. DCIS (blue), IBC (red).

in situ and invasive samples were available from the same

patient, we found nineteen variants in seven different genes

(Figure 1). In six of the cases, the variant(s) were identical

in both compartments. Interestingly, we found four differ-

ent ERBB2 variants; two variants (p.D769H and p.V777L)

resided in both the in situ and invasive tumor compartments

of the same tumor. The other two ERBB2 variants were found

in a second tumor. One of these (p.D769Y) was found in both

the in situ and invasive tumor compartments and the other

(p.L755S) was found only in the in situ compartment. Alto-

gether, these findings demonstrate large inter-tumor hetero-

geneity in mutation pattern in synchronous DCIS and IBC

and indicate that ERBB2 variants also are present early in tu-

morigenesis.
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Fig. 2. Relative frequency of samples with pathogenic variants in the different cell compartmens in mixed tumors compared to pure DCIS. Dark color represents samples
carrying at least one potentially pathogenic variant, light color represent samples without any identified pathogenic variant. There was a statistically significant difference
between synchronous DCIS and pure DCIS (P=0.0013, Fisher’s exact test).

In three tumors (UPP027, UPP208 and UPP244), normal ep-

ithelium was successfully sequenced in addition to invasive

and in situ tumor tissue. Two of these tumors (UPP027 and

UPP208) carried only one variant each (PIK3CA:p.H1047R

and TP53:p.A84fs, respectively) and none of the corre-

sponding normal compartments carried these variants. The

last tumor with three samples (UPP244) carried two differ-

ent variants; one of these (TP53:p.R175H) was found in

both the in situ and invasive compartments, while the other

(PIK3CA:H1047R) was found in the normal compartment at

a frequency of 30%, absent in the in situ compartment and

present at a very low frequency (3%) in the invasive com-

partment. Across the cohort, nine normal breast epithelium

samples were sequenced, and amongst these, only the one

case described above (UPP244), carried any of the variants.

We found a significant association between PIK3CA variants

and positive PR status (P=0.039, Fisher’s exact test), which

has been previously noted (19–21). A similar association was

not seen for ER (P=0.44), however; the low number of sam-

ples in this study may have prevented the identification of any

such association.

In addition to microdissected tissue from mixed tumors,

we sequenced ten pure (non-microdissected) DCIS. Only

three variants in three different tumors were detected;

PIK3CA:p.C420R, PIK3CA:p.E542K, and TP53:p.R213X

(Suppl. file 3). Two of these were not detected in

any of the microdissected samples, while the third variant

(PIK3CA:p.C420R) was found in one of the invasive tumor

cell compartments, but was filtered out due to low sequenc-

ing depth. Interestingly, there was a notable difference in the

number of variants across the 50 genes between in situ cell

compartments from mixed tumors compared with pure DCIS.

Almost all in situ cell compartments from the mixed tumors,

15/16 (94%), carried at least one variant while only 3 out of

10 (30%) of the pure DCIS tumors carried any of the vari-

ants. This difference is significant (P = 0.0013, Fisher’s exact

test, Figure 2). Noticeably, targeted sequencing as performed

here includes only a limited number of genes and therefore

we cannot exclude the possibility that mutation spectra across

other putative driver genes might be similar between the two

different types of in situ cancers. Nevertheless, our findings

indicate that in situ cells from a tumor with synchronous IBC

have a more invasive-like mutational phenotype compared

to pure DCIS and consequently that synchronous DCIS and

pure DCIS could be different entities. These findings confirm

those of other studies (22, 23) and highlight the importance

of being conscious about distinguishing synchronous DCIS

from pure DCIS lesions when studying tumor progression.

When DCIS presents synchronous with invasive disease, it is

unclear whether these multiple stage-specific cell populations

have a common ancestor or develop from multiple clones.

Previous sequencing studies have reported similar mutation

profiles in DCIS and IBC, with PIK3CA, TP53 and GATA3 as

the most commonly affected genes(8–10, 22, 24–28). How-

ever, different prevalence of PIK3CA variants has been ob-

served between DCIS and IBC. One study reported PIK3CA
variants restricted to the in situ compartment in two cases of

synchronous DCIS and IBC, while in a third case, a reduced

frequency of a specific PIK3CA variant was found in invasive

cells relative to the cells from the in situ compartment (9). In

one tumor in our study, we found a PIK3CA variant in the

in situ cells, and not in the invasive cell compartment, while

in two tumors, we found a PIK3CA variant in the invasive

cells while not in the corresponding in situ cell compartment.

In our study, the sequencing panel did not include GATA3,

so the high frequency of GATA3 variants previously found in

DCIS could not be confirmed (26).

Ion semiconductor sequencing is a “sequencing by synthe-

sis” method based upon detection of hydrogen ions that are

released during polymerization of DNA. The technology is

well suited for targeted sequencing of samples with minute

amounts of DNA which is often the challenge with microdis-

sected tissue. This has allowed us to sequence a panel of

the most frequently mutated genes in cancer, in relatively

few cells from stored Trizol cell fractions after microdissec-

tion. To validate our findings, we used digital droplet PCR

to quantify the most frequently detected variant in this study,

PIK3CA:p.H1047R and found similar frequencies as by se-

quencing (Suppl. file 4). Three of the TP53 mutated samples

in this study were included in a previous study of TP53 mu-
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tations in synchronous DCIS and IBC (8). We detected two

of these variants in this study, while the third, a 10bp deletion

of codons 106-109, was not called by the Ion Torrent analysis

pipeline. However, we identified the deletion in our data by

manual inspection. This discrepancy could be due to inaccu-

rate flow-calls, a known artifact of PGM, which may cause

homopolymers to be under-called (29).

Conclusions
In this study we performed targeted sequencing of microdis-

sected tissue from in situ and invasive tumor cell compart-

ments from 26 patients with mixed DCIS/IBC tumors, in ad-

dition to 10 pure DCIS tumors. Across the 50 cancer-relevant

genes included in the panel, we found that the spectrum of

variants was similar between synchronous DCIS and IBC in-

dicating clonal relationship between the two tumor stages and

selection of subclones during tumor progression. PIK3CA
and TP53 were the most frequently mutated genes and al-

terations occured at the DCIS stage or earlier. Pure DCIS

showed significantly lower number of variants compared to

synchronous DCIS.
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Supplementary file 1. Overview of genes included in Ion AmpliSeqTM Hotspot Cancer Panel v2. 
Shaded grey are genes where potentially pathogenic variants are identified in this cohort

ABL1  EGFR GNAS KRAS PTPN11 
AKT1  ERBB2 GNAQ MET RB1 
ALK    ERBB4 HNF1A MLH1 RET 
APC EZH2 HRAS MPL SMAD4 
ATM FBXW7 IDH1 NOTCH1 SMARCB1 
BRAF FGFR1 JAK2 NPM1 SMO 
CDH1 FGFR2 JAK3 NRAS SRC 

CDKN2A FGFR3 IDH2 PDGFRA STK11 
CSF1R FLT3 KDR PIK3CA TP53 

CTNNB1 GNA11 KIT PTEN VHL 



Supplementary file 2 - Clinical information all patients

Mixed DCIS and IBC tumors
Patient Age SIZE ER PR EORTC grade ELSTON grade HER2 (IHC) P53 (IHC) Norm DCIS Inv
UPP059 44 20 pos pos 3 3 pos neg x
UPP077 65 18 pos pos 2 1 pos neg x
UPP078 57 13 pos neg 2 1 pos neg x
UPP081 60 15 pos pos 2 1 pos neg x
UPP117 57 13 pos neg 2 1 pos neg x
UPP124 44 60 neg neg 3 3 neg NA x
UPP136 54 16 pos pos 2 2 pos neg x
UPP150 51 11 pos neg 1 1 NA NA x
UPP152 39 1 neg neg 2 1 NA NA x
UPP202 53 13 pos pos 3 2 NA NA x
UPP233 52 30 pos pos 3 3 NA NA x
UPP038 48 9 neg neg 2 2 pos pos x x
UPP047 81 13 pos pos 2 2 neg pos x x
UPP050 49 10 pos pos 2 1 neg neg x x
UPP058 52 NA neg neg 3 2 neg pos x x
UPP065 46 10 pos pos 2 1 pos neg x x
UPP087 81 NA pos pos 1 1 neg neg x x
UPP110 31 NA pos pos 3 3 NA NA x x
UPP126 80 5 pos pos NA 1 NA NA x x
UPP147 54 16 pos neg 3 3 NA NA x x
UPP158 41 30 pos pos LCIS 2 NA NA x x
UPP216 42 NA pos pos LCIS 2 NA NA x x
UPP224 44 15 pos pos 2 1 NA NA x x
UPP027 51 26 pos pos 2 2 pos neg x x x
UPP208 56 14 pos neg 3 3 NA neg x x x
UPP244 55 80 neg neg 3 3 NA NA x x x

9 16 19

Pure DCIS tumors
Patient Age SIZE ER PR EORTC grade ELSTON grade HER2 (IHC) P53 (IHC) Norm DCIS Inv
UPP001 47 NA pos pos 2 not appl. neg neg x
UPP008 55 20 neg neg 3 not appl. pos pos x
UPP116 30 20 pos pos 3 not appl. pos pos x
UPP123 48 50 pos pos 2 not appl. neg pos x
UPP142 44 17 neg neg 3 not appl. pos neg x
UPP143 49 35 pos pos 2 not appl. neg pos x
UPP177 30 25 pos pos 2 not appl. neg neg x
UPP210 60 30 neg neg 3 not appl. neg pos x
UPP220 45 60 pos pos 3 not appl. neg pos x
UPP250 81 40 pos pos 2 not appl. neg NA x
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Supplementary file 3 (cont.) - Allele frequency of variants in pure tumors

Gene Name TP53 PIK3CA PIK3CA
Accession number NM 000546 NM 006218 NM 006218

Chromosome chr17 chr3 chr3
Position 7578212 178936082 178927980

DNA change c.C637T c. G1624A C.T1258C
Protein change P.R213X P.E542K P.C420R

Mutation type stopgain
non-synonymous 

SNV
non-synonymous 

SNV

UPP001
UPP008 0.21
UPP116
UPP123
UPP142 0.12
UPP143
UPP177 0.29
UPP210
UPP220
UPP250

No of samples with variant 1 1 1
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Supplementary file 4 - Validation results ddPCR. PIK3CA :p.H1047R

SampleID Input (ng DNA) WT droplets mut droplets
Mut.frequency 

ddPCR
Mut. frequency 

IonTorrent Comments
UPP027 Normal 0.054 66 0 0% 0%
UPP027 DCIS 0.297 108 50 32% 33%
UPP027 Invasive 0.01 58 20 26% 30%
UPP050 Normal NA 10187 2 0.02% NA Ion Torrent sequencing failed
UPP050 DCIS 0.021 2639 1279 33% 43%
UPP050 Invasive 0.058 7330 20 0.27% 0%
UPP087 Normal NA 10957 567 5% NA Ion Torrent sequencing failed
UPP087 DCIS 0.016 0 0 NA 0% ddPCR Failed
UPP087 Invasive 0.062 1102 272 20% 40%
UPP158 DCIS 0.085 169 88 34% 41%
UPP158 Invasive 0.156 288 184 39% 18%
UPP233 Invasive 0.144 14 6 30% 27%
UPP244 Normal 0.063 1 0 NA 29% ddPCR Failed
UPP244 DCIS 0.144 2115 0 0% 0%
UPP244 Invasive 0.081 43281 1 0.002% 3%

WT-PIK3CA_ctr 10 7596 0 0% not applicable Negative control
PIK3CA_5%_ctr 50 40733 3091 7% not applicable Positive control
PIK3CA_5%_ctr 50 43064 3139 7% not applicable Positive control
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