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Abstract
Medical ultrasound (US) imaging is a non-invasive imaging modality. Smaller
and cheaper US systems make US imaging available to more people, leading to a
democratization of medical US imaging. The improvements of general processing
hardware allow the reconstruction of US images to be done in software. These
implementations are known as software beamforming and provide access to the
US data earlier in the processing chain. Adaptive beamforming exploits the early
access to the full US data with algorithms adapting the processing to the data.
Adaptive beamforming claims improved image quality. The improved image will
potentially result in an improved diagnosis.

Adaptive beamformers have seen enormous popularity in the research com-
munity with exponential growth in the number of papers published. However,
the complexity of the algorithms makes them hard to re-implement, making
a thorough comparison of the algorithms difficult. The UltraSound ToolBox
(USTB https://www.USTB.no) is an open source processing framework facilitating
the comparison of imaging techniques and the dissemination of research results.
The USTB, including the implementation of several state-of-the-art adaptive
beamformers, has partly been developed in this thesis and used to produce most
of the results presented. The results show that some of the contrast improve-
ments reported in the literature turn out to be from secondary effects of adaptive
processing. More specifically, we show that many state-of-the-art algorithms
alter the dynamic range. These dynamic range alterations are invalidating the
conventional contrast metrics. Said differently; many adaptive algorithms are so
flexible that they instead of improving the image quality are merely optimizing
the metrics used to evaluate the image quality. We suggest a dynamic range test,
compromising data, and code, to assess whether an algorithm alters the dynamic
range. A thorough review of the contrast metrics used in US imaging shows there
is no consensus on the metrics used in the research literature. Therefore, our
introduction of the generalized contrast to noise ratio (GCNR) is essential since
this is a contrast metric immune to dynamic range alterations. The GCNR is a
remedy for the curse of the metric breaking abilities of software beamforming.

Software beamforming also has its blessings. The flexible implementations
made possible by software beamforming does lead to improved image quality.
The improved resolution of the minimum variance adaptive beamformer does
lead to enhanced visualization of the interventricular septum in the human heart.
The ability to do beamforming in software allows the implementation of the full
reconstruction chain from raw data to the final rendered images on an iPhone.

As well as the results presented in the published papers, this thesis does a
thorough review of the software beamforming processing chain as implemented
in the USTB.
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Chapter 1

Introduction
The possibility to do medical ultrasound image reconstruction in software, known
as software beamforming, has revolutionized the flexibility of the methods used
to create an ultrasound image. Software beamforming is possible due to the
improvements in the processing power of available hardware, especially in GPUs
(Graphical Processing Units). GPUs allow the latest high-end medical ultrasound
systems to utilize software beamforming. Within the research field, software
beamforming has, for some time, received increased attention, especially within
the more specific topic of adaptive beamforming. According to the Scopus
database (Scopus 2018), the number of publications on adaptive beamforming
in ultrasound has doubled in the last five years, as shown in Figure 1.1. Many
of the published papers are claiming unprecedented improvements of the image
quality, reporting contrast improvements of 78% (Nguyen and Prager 2018),
81% (Zhao et al. 2017), 85% (Zhuang, Rohling, and Abolmaesumi 2018), 91%
(Shin and Huang 2017), 110% (Ozkan, Vishnevsky, and Goksel 2018) and 183%
(Szasz, Basarab, and Kouamé 2016a) with respect to the conventional non-
adaptive delay-and-sum algorithm. Such unprecedented improvements need to
be thoroughly examined, raising some relevant research questions.
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Figure 1.1: Number of publications in (Scopus 2018) presenting adaptive beam-
forming techniques in ultrasound. Credits to Alfonso Rodriguez-Molares for
creating this figure intended for Paper VII.
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1. Introduction

1.1 Research questions

• Can beamforming implemented in software, in comparison to in hardware,
improve the image quality of medical ultrasound images?

• Is there a fair and thorough comparison between adaptive beamforming
algorithms in the research literature?

• Can adaptive beamforming introduce unwanted artifacts?

• Is there a consensus on metrics used to evaluate image quality in medical
ultrasound imaging?

• Is adaptive beamforming clinically relevant?

1.2 Claims

With a foundation in the research questions above, this thesis explores various
aspects of the medical ultrasound processing chain, from a software beamforming
perspective, with the overall aim of improving the quality of the ultrasound
images. Software beamforming is a blessing for the image quality since it provides
access to the raw data early in the processing chain. Early access to the data
means that it can be better exploited in the image reconstruction through, for
example, adaptive beamforming. Many adaptive methods are compared and
evaluated thoroughly in this thesis, exploring some of the benefits. Perhaps
the main benefit of software beamforming is that image reconstruction can
be implemented on general processing devices. We demonstrate that iPhones
have the processing power to implement the full ultrasound software processing
chain. However, software beamforming can also be considered a curse. A
curse since the flexibility leads to algorithms that invalidate the metrics used to
evaluate the image quality quantitatively. Much of this thesis is, therefore, spent
evaluating the effects modern beamformers have on the ultrasound images. With
an emphasis on how adaptive beamformers influences, and actually invalidates
the conventional contrast metrics. An improved contrast metric, the Generalized
Contrast-to-Noise Ratio, which is immune to some of the unwanted effects, is
suggested. Clinical relevance is hypothesized through an investigation on how
the improved resolution of one adaptive beamformer, Capon’s minimum variance,
improves the visualization of the interventricular septum in the heart.

1.3 Scope

The scope of the published work in this thesis is within the medical ultrasound
processing chain. The publications are ranging from the fundamental delay
calculations of the time of flight of ultrasound signals to the evaluation of
contrast metrics. A graphical illustration of the major parts of the medical
ultrasound processing chain, from a software perspective, is shown in Figure 1.2.

2



Thesis outline

The figure highlights which part of the processing chain the publications in this
thesis relate.

Figure 1.2: Graphical illustration of the software beamforming processing chain,
also illustrating which area of the processing chain the publications in this thesis
relate.

1.4 Thesis outline

The background chapter, Chapter 2, briefly presents the reader to the ultra-
sound processing chain from a software beamforming perspective as well as tying
together the published papers. Chapter 3 is a summary of the publications,
while Chapter 4 is a discussion based on the results presented in the publica-
tions, and Chapter 5 presents some concluding remarks and some suggestion
for further studies. Paper I presents an open source framework, the UltraSound
ToolBox, for processing of ultrasound signals, to facilitate the comparison of
imaging techniques and the dissemination of research results. Paper II presents
a novel delay model for retrospective and multiple line acquisition beamforming,
removing an unwanted artifact created by the conventional delay model. Paper
III shows one of the major benefits of software beamforming; that the ultrasound
processing chain, from raw channel data to final rendered image, can be imple-
mented on an off the shelf device such as an iPad or iPhone. Paper IV shows
the flexibility of software beamforming, allowing a double adaptive beamformer
first applying adaptive weights over the receive channels, followed by an adaptive
weighting in the coherent compounding of plane-wave images. Paper V does
a thorough statistical analysis of a popular adaptive beamforming technique,
the filtered delay multiply and sum, and shows that this beamformer is actually
dependent on the coherence of the signal. Paper VI identifies an unwanted
artifact present in many adaptive beamformers and coins the term dark region
artifact. Paper VII shows that some of the claimed benefits of many adaptive
beamformers, increased contrast, is highly correlated with an alternation of the
dynamic range. It also shows that this dynamic range alteration means that some

3



1. Introduction

of the adaptive beamformers are invalidating the conventional contrast metrics,
and calls for an improved contrast metric immune to dynamic range alterations.
The paper also introduces a dynamic range test compromising data and code to
test whether a beamformer is alternating the dynamic range. Paper VIII shows
that many adaptive beamformers alter the statistical distributions of speckle
and noise and discuss how this influences the conventional contrast metrics.
Paper IX is an answer to the call for an improved contrast metrics in paper
VII, and presents the generalized contrast to noise ratio (GCNR), a contrast
metric immune to dynamic range alterations and alternated speckle statistics.
The GCNR is a quantitative measure of contrast indicating the proportion of
pixels inside a cyst correctly classified. Paper X presents an in-vivo study of
the adaptive minimum variance beamformer, hypothesizing how the improved
resolution improves the visualization of the interventricular septum in the heart.

4



Chapter 2

Scientific Background: Software
Beamforming Methodology

2.1 A brief history of medical ultrasound imaging

Prototype systems

According to (Szabo 2013) ”the imaginative leap to” ultrasound imaging came
with an ultrasound image of the brain. The image was created by the Austrian
psychiatrist and neurologist Dr Karl Dussik in 1942. During the pioneering work
done in the 1940s and 1950s most of the systems must be considered research
prototypes. Worth mentioning are the systems created by Dr. John J. Wild,
who modified radar equipment to produce ultrasound images (Szabo 2013). As
well as the ”somascope”, an immersion water tank ultrasound system, created
by Douglass Howry and Joseph Holmes (Szabo 2013). A full immersion into a
water thank must have been an interesting experience for, hopefully volunteering,
patients.

The pioneering work from Inge Edler and Carl Hellmuth Hertz on echocar-
diography, done at the Lund University in Sweden, also needs to be credited.
Through Hertz’s contacts at Siemens (Munich, Germany) they got hold of a
modified Siemens reflectoscope, originally created to do material testing (Siemens
Healthineers 2019). They quickly adapted the reflectoscope and applied it to
obtain echoes moving synchronously with the heart. The first ultrasound image
of a beating heart credited Edler and Hertz was taken on October 1st, 1953.
The further development of medical ultrasound scanners accompanied the devel-
opments of microelectronics, primarily the breakthrough of integrated circuits
and transistors in the late 1940s and 1950s (Szabo 2013). The improvements
in electronics allowed a shift from prototype systems to commercially available
systems.

Commercial systems

The first real-time mechanical commercial scanner, the Vidoson from Siemens
shown in Figure 2.1, became available in 1964. This scanner quickly became a
standard component of assessing pregnant women (Soni, Arntfield, and Kory
2014). Further improvements of the image quality were perhaps, first and fore-
most, driven by improvements of the transducer arrays such as the introduction
of a 16-channel phased array, the Thaumascan, developed by Von Ramm and
Thurstone from Duke University in 1975.
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2. Scientific Background: Software Beamforming Methodology

Figure 2.1: The Siemens Vidoson, press image from Siemens AG, all rights
reserved © www.siemens.com/press.

Digital systems

Early array systems used analog delay lines to apply the delays to the received
signals. However, in the 1990s more powerful microprocessors as well as low-cost
analog to digital converters lead the way to replace the complex analog circuitry
with digital beamformers. Digital implementations allowed the discovery and
development of tissue harmonic imaging which, in some cases, provide superior
contrast and detail (Szabo 2013).

Hand-held systems

The introduction of digital beamformers and general miniaturization of sophis-
ticated electronics paved the way for hand-held systems, now provided by all
major ultrasound manufacturers. An exciting development is the introduction of
capacitive micromachined ultrasonic transducer (CMUT). CMUT can be printed
in silicon together with the electronics to process the signals. The flexibility of
CMUT makes a recent manufacturer (Butterfly Technologies, Guildford, CT,
USA) claim that one probe can provide ”full body ultrasound”. The images
are reconstructed in specialized electronics in the probe, while an iPhone is
used to display the final images. The ability to do large scale production of
CMUT transducers on the same ship as the processing, allows Butterfly to
sell their hand-held systems at a very low price. Cheaper and more accessible
ultrasound systems are aiding in the democratization of ultrasound imaging
(McNeil Jr. 2019).

Software systems

Today, we are at the brink of what can be claimed is another revolution to
the ultrasound processing chain: software beamforming. High-end medical

6



A brief history of medical ultrasound imaging

ultrasound systems are now utilizing the improvements in the processing power
of general hardware and have incorporated software beamforming. To the
author’s knowledge, only two clinical medical ultrasound vendors utilize software
beamforming today; namely the GE Vingmed Ultrasound Vivid systems using
the cSound software based beamforming reconstruction platform (Kulina et
al. 2016), and the Supersonic Imagine Aixplorer systems (SuperSonic Imagine
2019). However, extensive publications and many research ultrasound systems
are doing software beamforming (Boni et al. 2018) – but only recently has it
been brought to the clinic.

2.1.1 The motivation behind the UltraSound ToolBox

The flexibility of software beamforming provides unprecedented freedom when
creating medical ultrasound images. This can be viewed as a blessing for
the image quality, but a curse to the research community. A curse since
the comparison of methods and research results are becoming more and more
challenging with more complex methods published in the literature. The growing
number of complex methods makes it hard to make a fair comparison between
methods since the re-implementation of a method can be quite challenging.
There is no guarantee that the re-implemented method performs as well as the
original. To remedy this curse we presented, in Paper I the UltraSound ToolBox
(USTB)1 which is

“
”

a processing framework for ultrasound signals. USTB aims to facilitate the
comparison of imaging techniques and the dissemination of research results.
It fills the void of tools for algorithm sharing and verification, and enables a
solid assessment of the correctness and relevance of new approaches. It also
aims to boost research productivity by cutting down implementation time
and code maintenance. USTB is a MATLAB toolbox for processing 2D and
3D ultrasound data, supporting both MATLAB and C++ implementations.
Channel data from any origin, simulated and experimental, and using any
kind of sequence, e.g. synthetic transmit aperture imaging (STAI) or coherent
plane-wave compounding (CPWC), can be processed with USTB.

Most of the work in this thesis was implemented using USTB. The data and
implementations to reproduce the results in the publications are presented
through www.USTB.no. More specifically;

Paper II at http://www.ustb.no/publications/paper_II,

Paper V at http://www.ustb.no/publications/paper_V,

Paper VI at http://www.ustb.no/publications/paper_VI,

Paper VII at http://www.ustb.no/publications/paper_VII.
1Alfonso Rodriquez-Molares deserves credits for most of the heavy lifting in the development

of USTB.
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2. Scientific Background: Software Beamforming Methodology

In the current chapter, the medical ultrasound processing chain will be presented,
from a software beamforming point of view, as well as pointing to the published
work in this thesis where suitable. USTB is used to generate all examples. First,
however, we will have a brief look at the physics behind medical ultrasound
imaging.
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The physics behind an ultrasound image

2.2 The physics behind an ultrasound image

Ultrasound waves are longitudinal pressure waves that, by definition, are above
the hearable range, meaning higher than ≈ 20 kHz. Medical ultrasound imaging
is most often done using frequencies in the range of 2 to 18 MHz. Very shallow
imaging, for example, imaging of small animals, is done using higher frequency
probes up to ≈ 30 MHz. Higher frequency results in lower penetration depth
because of the frequency-dependent attenuation of tissue. The benefit of higher
frequency is improved resolution. Thus, ultrasound imaging results in a trade-off
between penetration depth and resolution.

The wave equation describes the propagation of a wave. The lossless wave
equation is, see e.g. (Holm 2019)

Δ2u − 1
c2

∂2u

∂t2 =
∂2u

∂x
+

∂2u

∂y
+

∂2u

∂z
− 1

c2
∂2u

∂t2 = 0 (2.1)

where Δ is the Laplacian operator, c is the speed of sound, x, y, z is the spatial
coordinates, t is time, u is the displacement vector. The displacement vector u
can also be replaced with the scalar pressure p.

The wave equation comes in many adaptations. One of them is the vis-
cous wave equation which includes a term to model the frequency-dependent
attenuation, see e.g. (Holm 2019)

Δ2u − 1
c2

∂2u

∂t2 + τc2 ∂

∂t
Δ2u = 0. (2.2)

Here τ = η
E , with E being the elastic modulus and η the viscosity. The frequency

dependence of the absorption can be derived from the last term. The frequency-
dependent absorption results in limitations on which frequency can be used to
image deeper parts and organs in the body.

The high-frequency wave transmitted into the body will propagate according
to the wave equation as long as the medium has similar acoustic properties. If
the properties change, a part of the wave will be reflected, while another part will
continue to propagate through the medium. The pressure reflection coefficient is
given by

R =
Z1 − Z2

Z1 + Z2
=

ρ1c1 − ρ2c2

ρ1c1 + ρ2c2
, (2.3)

where Z is the acoustic impedance of the medium, ρ is the medium density, and
c is the speed of sound. The transmitted wave’s direction is given by the angle
θt dependent on the angle of incidence angle θi. Snell’s law gives both angles,

c1

c2
=

sin θt

sin θi
. (2.4)

Snell’s law describes the reflections happening at distinct boundaries between two
mediums with different acoustic properties. The reflections governed by Snell’s
law is known as geometrical scattering and results in specular reflections. This is
one of three types of scattering. The three types are dependent on the size of the
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2. Scientific Background: Software Beamforming Methodology

object scattering the sound - the scatterer. When the scatterer is much larger
than the wavelength of the transmitted wave, we have geometrical scattering
with specular reflections. Rayleigh scattering, also known as diffuse scattering,
occurs when the scatterer is much smaller than the transmitted wavelength. If
enough small scatterers are present, we get multiple scattering, resulting in the
well-known speckle pattern in ultrasound imaging. The statistical distribution
of speckle in ultrasound is well known (see Section 2.9). . The third type
of scattering is when the scattering structure is comparable to the size of the
transmitted wavelength.

In summary, some of the signals transmitted into the body will be reflected
or scattered back and recorded by the ultrasound probe, which transmitted the
signal. In all, only 1 % of the sound waves transmitted into the body return to
the probe (Soni, Arntfield, and Kory 2014).
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2.3 The ultrasound probe

In medical ultrasound imaging, the waves are transmitted into the body using a
probe consisting of an array of elements. A two-dimensional array is used for 3D
imaging. We will restrict ourselves to 2D imaging and consider two variants of
one-dimensional ultrasound probes: a linear and a phased array. Conventionally
the elements of a probe are made from piezoelectric ceramics, exploiting the
piezoelectric effect to create the ultrasound signal.

2.3.1 Linear array

We will use the L7-4 (Philips, Amsterdam, NL) probe shown in Figure 2.2 to
describe a conventional linear array. The array consists of 128 elements with a
pitch, the distance between the center of the elements, of 0.2980 mm. The height
of the elements is 7 mm. Using a center frequency of 5.2 MHz results in ≈ λ
pitch, where λ = c/f is the wavelength. To characterize the probe we make some
assumptions. We assume that the response in focus is similar to the far-field
response (Steinberg 1976), and assume point sources. The beampattern can then
be calculated by the discrete aperture smoothing function, the discrete Fourier
transform, of an array along the x-axis as, see e.g., (Johnson and Dugdeon 1993)

W (kx)one way =
M−1∑
m=0

wmejkxxm . (2.5)

Here wm is the element weight, kx is the x component of the wavenumber vector,
and xm is the element position. The relation between kx and the incidence angle
θ of the wave is, kx = −k sin θ = − 2π

λ sin θ (Johnson and Dugdeon 1993). Using
(2.5) and assuming a narrow band with a center frequency of fc = 5.2 MHz we
get the beampattern for the L7-4 probe as plotted in the top plot of Figure 2.2b.
The x-axis in the plot is expressed as the lateral axis in the image, relating the
angular resolution to the x-axis through a small angle approximation. The small
angle approximation means it is only valid around the focus center, around the
main-lobe, which is what we are mostly interested in.

In ultrasound imaging, we are first transmitting and then receiving the signal.
When using a focused transmit and receive, and assuming we use the full array
for both, the final response of the probe is given by the two way beampattern,
which can be calculated by (Johnson and Dugdeon 1993)

Wtwo way = WtxWrx = W 2
one way. (2.6)

The two way beampattern for the L7-4 probe is plotted in the lower plot of
Figure 2.2b. The beampattern is often used to characterize the resolution of a
system. There exist many definitions of the resolution but perhaps the most
used is the -6 dB width of the mainlobe, also known as the full width half
maximum (FWHM). For a linear array, the angular resolution at -6 dB can be
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Figure 2.2: The Philips L7-4 linear array probe imaged in (a) with the geometry
and corresponding beampatterns calculated from (2.5) in (b). The vertical
lines indicates the -6dB resolution (FWHM) calculated from the approximation
formulas in (2.8) and (2.9) and estimated from the beampattern. The x-axis in
the plot of the beampatterns is expressed as the lateral axis in the image, relating
the angular resolution to the x-axis through a small angle approximation.

approximated by (Harris 1978)

θ6dB ≈ 1.21λ

D
, (2.7)

where D is the size of the full array aperture. Notice how the resolution is inverse
proportional to the size of the array, and proportional to the signal frequency
through the wavelength λ. The spatial lateral resolution at a certain depth, z,
can be found using a small angle approximation

xres = zθ6dB = z
1.21λ

D
= 1.21λf#. (2.8)

Here we defined the f-number f# = z
D as the ratio between the depth and the

size of the aperture D. We will later, in Section 2.6.2.1 see how we can use
receive apodization to reconstruct a constant f# giving uniform resolution in
the final image. For the x-axis in Figure 2.2b we have used this small angle
approximation and assumed that z = D, thus that the f# = 1.

An approximation for the two-way resolution, see derivation in Appendix A,
assuming the same array has been used for both transmit and receive is

xres two way ≈ 1.21λz√
2D

. (2.9)

In Figure 2.2b we have estimated the -6 dB resolution found from the beam-
pattern, and by using the approximation formulas in (2.8) and (2.9). From the
figure, we see that the approximation fits pretty good.
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2.3.2 Phased array

To demonstrate a typical phased array, we will use the P4-2 probe from Verasonics
(Kirkland, Washington, USA) shown in Figure 2.3a. The P4-2 array has 64
elements with a pitch of 0.3 mm. Assuming a center frequency of 2.9 MHz, we
get the beampatterns, using the same assumptions as earlier, calculated with
(2.5) in Figure 2.3b.
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Figure 2.3: The Verasonics P4-2 phased array probe imaged in (a) with the
geometry and corresponding beampatterns calculated with (2.5) in (b). The
vertical lines indicates the -6dB resolution (FWHM) calculated from the ap-
proximation formulas in (2.8) and (2.9) and estimated from the beampattern.
The x-axis in the plot of the beampatterns is expressed as the lateral axis in
the image, relating the angular resolution to the x-axis through a small angle
approximation.

Notice that the resolution of the P4-2 array is significantly lower than for
the L7-4 probe. The resolution is lower because of the smaller array and the
lower frequency used for cardiography. To be able to image between the ribs, the
array must be smaller, and the lower frequency is necessary to penetrate deep
enough to image the full heart. The phased array gets its name from the fact
that most cardiac applications use transmits beams at steered angles, resulting
in a sector scan. While a linear array usually transmits straight forward-focused
beams in front of the transducer resulting in a linear scan. However, in Section
2.4, we will see that the flexibility of software beamforming allows many kinds
of transmit beams.

2.3.3 Elevation resolution

The resolution in the elevation dimension can be derived using the same analysis
as we did for the axial dimension. However, the elevation resolution is dependent
on the element height or for a 2D array, the array of elements in the elevation
dimension.
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2.3.4 Axial resolution

For completeness, we will add that the axial resolution is independent of the
probe geometry but dependent on the transmit pulse. A rule of thumb for the
axial resolution is (Franceschetti and Lanari 1999)

zres =
c

2B
, (2.10)

where c is the speed of sound, and B is the transmitted pulse bandwidth.
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2.4 Transmission of ultrasound waves

Ultrasound imaging uses the pulse-echo principle. Meaning that the ultrasound
wave is transmitted from the probe, and after the wave is transmitted, the same
probe starts to receive the ultrasound signal reflected, echoed, from the body.
The ultrasound wave travels with the speed of sound, typically assumed to be
1540 m/s for the body. The next wave cannot be transmitted before the two-way
travel time from the deepest point in the image to be reconstructed, have been
reached. Several, up to hundreds, of transmits are used per image effectively
limiting the imaging frame rate. The best image quality is obtained if there is a
focused transmit and a focused receive. Conventionally, this was done using a
focused transmission, with a dynamic focusing applied on receive through the
beamforming process, see Section 2.6. However, a focused transmission is illumi-
nating only a small region of the image, and thus, a large number of transmits
are needed resulting in a relatively low frame rate. Modern beamforming tech-
niques utilize variously unfocused transmit waveforms. These unfocused transmit
waveforms can synthetically be combined to recreate a focused transmission by
a technique knows as coherent compounding, see Section 2.6.3. We will now
consider the three most typical types of transmit waveforms: planar, diverging,
and converging. These three transmit waveforms can be used to create the four
most used types of imaging modalities known as plane wave imaging, diverging
wave imaging, synthetic transmit aperture imaging, and focused imaging.

2.4.1 Plane Waves (PW)

The breakthrough of coherent plane wave compounding (CPWC) imaging came
with the paper published by Montaldo et al. 2009. They showed that very high
frame rate imaging is possible by utilizing planar transmits. Higher quality
images can be achieved by coherently compounding multiple plane wave images.
The high frame rate is possible because a plane wave illuminates a large, or the
full, region one wants to image. This greatly reduces the number of transmits
necessary to form an image. To illustrate this, we allow ourselves to make a
leap forward in our understanding of ultrasound imaging and assume that we
know how to recreate an ultrasound image. Thus, in Figure 2.4, three resulting
images from single plane wave transmissions are shown. The time each element
transmitted the ultrasound pulse, the transmit waveform delay, is plotted. The
transmit waveform delay illustrates how we can steer the plane waves at different
transmit angles. Notice how the plane waves steered at an angle in Figure 2.4 (a)
and (c) only illuminates a part of the image, while the plane wave transmitted
straight forward (b) is illuminating the entire image. An individual plane wave
image has quite low quality in terms of contrast and resolution. However, for
some applications such as Doppler imaging of the blood, the benefits of high
frame rate outweigh the low image quality. Higher image quality, comparable
to a fully focused image, can be obtained if enough plane waves transmitted at
different angles are coherently compounded (Montaldo et al. 2009). However,
coherent compounding is sensitive to targets moving between transmits, and
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(a) PW at −16◦
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(b) PW at 0◦
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(c) PW at 16◦

Figure 2.4: Illustration of three single plane wave images with the top plot
showing the transmit waveform delay and the bottom showing the resulting
images after beamforming. Note how the steered plane waves (a) and (c) are
only illuminating a part of the image, while the plane wave transmitted straight
forward (b) is illuminating the entire image. Data from (Liebgott et al. 2016).

the assumption of a plane wave is only valid in a certain region along with
the propagating wave. Outside the region, ”edge waves” not following a plane
propagation degrades the image quality since the plane wave assumption does
not hold.
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2.4.2 Diverging Waves (DW)

To have an even broader illumination of a region, one can transmit diverging
waves. As illustrated in Figure 2.5 these images is illuminating a sector growing
with depth, making it suitable for a sector scan used in, for example, cardiac
imaging. Cardiac imaging uses a sector scan since it is restricted to a narrow
acoustical window between the ribs. And thus, diverging waves are mostly
applied for cardiac applications as described in (Papadacci et al. 2014). The
same discussion on the pros and cons of PWs applies to DWs, where higher
image quality can be obtained by coherently compounding multiple low-quality
images.

(a) DW at −30◦ (b) DW at 30◦

Figure 2.5: Two single transmit images, bottom, created from a DW transmitted
at two different transmit angles reconstructed in a sector scan. The transmit
waveform delay is plotted in the top. The DW in (a) had a virtual source
at x = 4.8mm, z = −8.3mm and the DW in (b) had a virtual source at
x = −4.8mm, z = −8.3mm.

2.4.3 Synthetic Transmit Aperture Imaging (STAI)

The images with the highest image quality are created by synthetic transmit
aperture imaging (STAI). With STAI imaging, we mean transmitting on every
single consecutive element but receiving on the full array, see for example (Jensen
et al. 2006). STAI has some obvious drawbacks such as penetration depth, and
as with DWs and PWs the coherent compounding is sensitive to imaging moving
targets. The limited penetration depth has been, slightly, improved by instead
of firing a single element firing on a group of elements. In both cases, a diverging
wave originating from the center of the firing element(s) is formed. The high
image quality is obtained because we create a synthetic focus in the reconstruction.
Compared to PW and DW imaging, the assumption of a diverging wave from
each element holds for the entire propagation of the wave. Figure 2.6 shows three
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images created from single element transmission; the top plot now indicates the
transmitting element.

20 40 60 80 100 120
Elements

0

0.5

1

Transmit Weighting

Single transmit b-mode image

-10 0 10
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(a) Firing from
element 10

20 40 60 80 100 120
Elements

0

0.5

1

Transmit Weighting

Single transmit b-mode image

-10 0 10
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(b) Firing from
element 64

20 40 60 80 100 120
Elements

0

0.5

1

Transmit Weighting

Single transmit b-mode image

-10 0 10
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(c) Firing from
element 118

Figure 2.6: Three single transmit images resulting from a single element transmit,
as used in STAI imaging. The top plot indicates the firing element, the bottom
image is the resulting image. Data from (Paper VII).

2.4.4 Focused Imaging (FI)

Historically ultrasound transmissions where focused transmission meaning a first
converging, towards a focus point, and then diverging wave front. This is still,
to the authors knowledge the most used type of transmit in modern ultrasound
systems. Conventionally, one transmit results in one scan-line in the final image.
Typically tens to hundreds of transmits are used per image. With the flexibility of
software beamforming we can, as with the previous imaging modalities, recreate
the full image from a single transmit. This can be exploited in more sophisticated
imaging techniques such as in multi line acquisitions (MLA, see Section 2.6.5)
and retrospective beamforming (RTB, see Section 2.6.6). RTB, and to a certain
degree MLA, recreates a synthetic focus in the overlapping regions between
transmits, generating a synthetic focus through coherent compounding resulting
in a fully focused image. To illustrate the waveform resulting from FI imaging,
we have reconstructed the full image from single focused transmits in Figure 2.7,
with the transmit element waveform delays plotted in the top.

It is worth to mention, without going two deep into non-linear acoustics,
that FI images have benefits over PW, DW, and STAI imaging regarding second
harmonics imaging. FI obtains higher peak pressure in the body, which generates
more non-linearity resulting in more second harmonics generated.
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(a) Focus
x = −16, z = 30
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(b) Focus at
x = 0, z = 30
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(c) Focus at
x = 8, z = 30

Figure 2.7: Three single transmit images from a FI transmission in the bottom,
with the transmit waveform delay in the top. Data from (Paper II)
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2.5 Representing the channel data

The ultrasound waveforms are transmitted into the body. The reflected signals are
recorded with the array of elements in the ultrasound probe. Signals originating
from deeper inside the body will be more attenuated than signals from shallow
reflections. The signals are time gain compensated (TGC) to compensate for this
attenuation. We will, from now on, assume that all signals have gone through
appropriate TGC. Now, we will look at three different ways of representing the
received channel data, as RF (radio frequency) data, as the analytical signal or
as (In-phase Quadrature) IQ data.

2.5.1 RF-channel data

If we know our signal processing, including the Nyquist sampling criteria, we
should sample the data at twice the highest frequency. Theoretically, this should
be fine, however practically sampling at a higher frequency makes designing
receiving filters easier. We will denote as the RF-channel data the channel data
sampled according to the Nyquist sampling criteria.
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Figure 2.8: Part of a RF signal from a single element in the received data used
to reconstruct the image in Figure 2.7. The averaged Fourier power spectrum
of the full received dataset.

As an example, we will consider the RF-channel data as generated by the
Verasonics Vantage 256 system. Here, the default sampling rate is four times the
transmitted center frequency. The channel data used to recreate the FI images
in Section 2.4.4 were transmitted using a center frequency fc = 5.208 MHz and
sampled with a sampling frequency of fs = 4fc = 20.83 MHz. In Figure 2.8a, we
have plotted a part of the signal received on element 10 for one of the transmits.
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Representing the channel data

In Figure 2.8b, we have plotted the averaged Fourier power spectrum of the full
data set.

2.5.1.1 The analytical signal

In medical ultrasound imaging, our result is an image of the received signal
envelope. A convenient way of detecting the envelope is to use the analytical
signal, which is defined as

xa(n) = x(n) + j(x̂(n)), (2.11)

where x is the RF signal, while x̂ is the Hilbert transform of x.
The envelope can be detected by simply taking the magnitude of the analytical

signal a(n) = |xa[n]| =
√

x(n)2 + x̂(n)2. Figure 2.9a shows the analytical signal
from the same FI data set from Section 2.4.4, and Figure 2.9b is it’s Fourier
power spectrum. Notice, from the power spectrum, that the analytical signal is
a one-sided complex signal.
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Figure 2.9: The real, imaginary and the envelope of the analytical signal from a
single element in the received data used to reconstruct the image in Figure 2.7.
The averaged Fourier power spectrum of the full received analytical dataset in
(b). Notice that the analytical signal is a one-sided complex signal.

The benefit of using the analytical signal, as we do in the USTB, is that it
makes it easier to do envelope detection after beamforming. Using the analytical
signal throughout the beamforming relaxes the number of axially reconstructed
pixels. It also facilitates some adaptive beamforming techniques, that we will get
back to in Section 2.7, such as Capon’s minimum variance beamforming. The
Capons minimum variance technique needs to create complex weights and needs
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to be able to create unsymmetric, in frequency space, weight sets. Complex data
also facilitates some Doppler-techniques.

2.5.2 IQ-channel data

The received ultrasound signal is bandlimited. Therefore, one can obtain more
compact forms of storing the bandlimited signal through the In-phase Quadrature
(IQ) signal. There are multiple definitions and variations of the IQ-signal. We
will, however, briefly look into two ways the IQ-signal can be obtained. The
first approach is to demodulate the RF signal into the IQ-signal. The second
approach is to undersample the signal.

2.5 3 3.5 4 4.5 5
time [ s]

-2000

-1000

0

1000

2000

A
m

pl
itu

de

real
imag
envelope

(a) Part of the IQ signal, the real, the
imaginary and the envelope from a

single element.

-2 -1 0 1 2
Frequency [MHz]

-15

-10

-5

0

A
m

pl
itu

de
 [d

B
]

(b) Fourier power spectrum of a full IQ
data set.

Figure 2.10: The real, imaginary and the envelope of the IQ signal from a single
element in the received data used to reconstruct the image in Figure 2.7. The
averaged Fourier power spectrum of the full IQ dataset in (b). Notice that the
spectrum of the IQ signal is complex and centered around 0 MHz.

2.5.2.1 Demodulation

To describe demodulation, let’s reuse a slightly modified text from (Palmer
et al. 2016)

“
”

The concept of In-phase Quadrature (IQ) data sampling is worth a brief
explanation, for a more thorough description, see (Proakis and Manolakis 2007).
When we have a bandlimited RF-signal centered around a center frequency,
the IQ-signal can be obtained by down-mixing the signal. Down-mixing means
multiplying the signal with a complex sinusoid signal given by a demodulation
frequency fdemod “moving down” the signal in the frequency spectrum by
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“
”

using a negative demodulation frequency. This gives an asymmetrical and
thus complex signal. This signal can then be low-pass filtered removing the
frequencies and noise outside the desired bandwidth. This lowpass-filtered
signal can then be decimated reducing the number of samples by a integer
factor, in our case 4 compared to the default Verasonics RF-sampling frequency.
However, we need to keep in mind that the IQ-sample is complex, thus having
both a real and an imaginary part.

If we take the same signal as earlier and do this demodulation process, we
end up with the complex IQ-signal plotted in Figure 2.10a with the frequency
spectrum in Figure 2.10b. Notice that the spectrum of the IQ signal is complex
and centered around 0 MHz, since a demodulation frequency equal to the center
frequency was used.

The benefit of using the IQ signal is that it reduces the number of samples,
allows easy detection of the envelope, and that it facilitates beamforming and
Doppler-techniques that need complex data. An illustration of the reduction
of samples, but not losing information, can be seen by comparing the envelope
from the analytical signal with the envelope of the IQ-signal plotted in Figure
2.11. Note that a better interpolator than linear interpolations should have been
used.
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Figure 2.11: The envelope detected from the analytical signal (from Figure 2.9a)
and the IQ signal (from Figure 2.10a). Notice that the signal are equal, but
that the IQ signal should have used a better interpolator than a linear one.

2.5.2.2 Bandwidth sampling (Undersampling)

A second way of obtaining a variant of an IQ-signal is to do bandwidth sampling,
or undersampling, of the signal directly. An intuitive explanation of this can be
found in a whitepaper from Verasonics (Kaczkowski 2016). Here one sets the
Nyquist sampling rate below the transducers frequency response and samples
the aliased or a down-folded version of the bandlimited signal. However, to be
able to do this, one needs to be able to filter out the ”unwanted” signal, which
might already be present in the band the desired signal aliases into. Verasonics
solves this by having programmable analog low-and highpass filters filtering out
the signals before they allow the wanted signal to be folded down.
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2.6 Beamforming

Beamforming denotes the process of going from the recorded channel data to
a combined estimate of the reflection coefficient displayed in the final image.
This section will describe the individual steps namely the waves travel time
delay calculations (Section 2.6.1), the combination of the delayed signals with
the delay and sum algorithm (Section 2.6.2), a closer look at the coherent
compounding (Section 2.6.3) as well as going through the differences between
scan-line beamforming (Section 2.6.4), multiple line acquisitions (MLA, Section
2.6.5) beamforming, and retrospective beamforming (RTB, Section 2.6.6). We
will, for simplicity, only consider a linear scan in the rest of this chapter. Even
though modifying the calculations to using polar coordinates facilitates the same
techniques for a sector scan. However, let us first introduce beamforming by
reusing some notation, definitions, and a figure from Paper VII.

“

”

Without loss of generality let us assume a linear array of M elements, laying on
the x-axis, pointing towards the positive direction of the z-axis, as illustrated
in Fig. 2.12. The domain, with characteristic sound speed c0, is illuminated by
a generic transmit beam, either planar, converging or diverging. Let us denote
the signal received by element m as hm(t). Let us denote as T the distance
from the origin of the transmitted wave to the point (x, z), and as R the
distance from (x, z) to the location of element m. If we apply the propagation
delay,

Δt = (T + R)/c0, (2.12)

we obtain the signal value at (x, z) received by element m,

sm = hm(t)|t=Δt , (2.13)

also referred to as pixel value. Note that we drop the spatial coordinates (x, z).
The symbol sm refers to the pixel value at an arbitrary location (x, z), unless
otherwise specified.

x

z

(x, z)

T
R

0 · · · m · · · M − 1

Figure 2.12: Geometrical illustration of the posed scenario. Figure from (Paper
VII). Credits to Alfonso Rodriguez-Molares for creating the figure.
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2.6.1 Delay Calculation

Beamforming can be view as a geometrical problem. Let us, therefore, have
a look at the delay calculations involved in software beamforming. We will
calculate the delays assuming the general beamformer as used in the USTB
(Paper I)

“
”

[...] around the concept of the general beamformer. The wavefronts in most
ultrasound sequences can be fully defined using a single point source P : in
focused imaging (FI) and retrospective transmit beamforming (RTB) P is on
the transmit focal point in front of the probe, in diverging wave imaging (DWI)
P is at the wave origin behind the probe, in synthetic transmit aperture imaging
(STAI) P lies on the active element, in coherent plane-wave compounding
(CPWC) P is at an infinite distance but in a given direction. Using point
sources to define all those waves it is possible to beamform all sequences with
a single algorithm.

To further comply with the general beamformer, we assume that the channel
data have been compensated to fulfill the time zero convention used in the USTB.
In the USTB we have defined ”that time zero corresponds to the moment the
transmitted wave passes through the origin of coordinates (0,0,0)” (Paper I).
We will, for simplicity, restrict ourselves to 2D imaging and have a closer look
at how the receive distance R and the transmit distance T from (2.12) can be
calculated.

2.6.1.1 Receive delay

The receive distance R from (x, z) to the location of element m is independent
of the type of transmit and can be calculated as

R(x, z, m) =
√

z2 + (x − m)2. (2.14)

If we assume that we are imaging with the 128 elements L7-4 probe as defined
in Section 2.3.1, and define a linear scan of pixels with 512 pixels from x = −19
to x = 19 mm and 512 pixels from z = 0 to z = 50 mm the receive delays can
be visualized, four three of the elements, as in Figure 2.13.

25



2. Scientific Background: Software Beamforming Methodology

-10 0 10
x [mm]

0

5

10

15

20

25

30

35

40

45

50

z 
[m

m
]

0

5

10

15

20

25

30

35

40

s

(a) Receive delay for
element 1

-10 0 10
x [mm]

0

5

10

15

20

25

30

35

40

45

50

z 
[m

m
]

5

10

15

20

25

30

s

(b) Receive delay for
element 64

-10 0 10
x [mm]

0

5

10

15

20

25

30

35

40

45

50

z 
[m

m
]

0

5

10

15

20

25

30

35

40

s
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Figure 2.13: Receive delay for three different elements (a) the first element, (b)
the 64th element and (c) the 128th element.

The transmit distance T is dependent on the type of transmit wave, and we
will consider the four different types of transmit waves, as described in Section 2.4.

2.6.1.2 Transmit delay for Plane Waves (PW)

When one or multiple planar transmit beams are transmitted into the body at
different transmit angles α, we are doing PW imaging (Montaldo et al. 2009).
Then the transmit distance, T , becomes

TPW(z, x, α) = (z cos(α) + x sin(α)). (2.15)

If we use the same scan and probe as earlier, the transmit delay for three
different plane waves transmitted at −30◦, 0◦ and 30◦ are visualized in Figure
2.14 using the same geometry as in Figure 2.13.
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Figure 2.14: PW transmit delay for the full image scan for (a) a PW transmitted
at −30◦, (b) a PW transmitted at 0◦, and (c) a PW transmitted at 30◦.

2.6.1.3 Transmit delay for Diverging Waves (DW)

A diverging wave is formed by creating a virtual source behind the transducer
at (xs, zs) with zs < 0. The transmit distance, T , then becomes

TDW(z, x, xs, zs) =
√

(x − xs)2 + (z − zs)2. (2.16)

In Figure 2.13 we have plotted the transmit delay for three DWs using the same
linear scan as earlier. Even though a diverging transmit wave is usually used
with a sector scan, a linear scan was used for comparison to the earlier figures.
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Figure 2.15: DW transmit delay for virtual source at (a) xs = 4.8, zs = −8.3
mm, (b) xs = 0, zs = −9.6mm and (c) xs = −4.8, zs = −8.3mm.
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Transmit delay for Synthetic Transmit Aperture Imaging (STAI)

The transmit delay for STAI images is the same as for a DW, but you place
the source in the element firing. We can then assume zs = 0 and that xs = xm

where xm is the firing element. Thus, the transmit delay for STAI single firing
element simplifies to the same as the receive delay in Figure 2.14.

2.6.1.4 Transmit delay for Focused Imaging (FI)

The transmit delay for software beamforming using Focused Imaging (FI) is
actually a bit tricky. This is covered in detail in (Paper II). We will again
borrow some text, with some slight modifications to the notation. Compared
to (Paper II), we are changing from calculating the transmit time τ to the
transmit distance T . The three different delay models for FI imaging; namely
the spherical, the unified, and the hybrid delay model which we introduced in
(Paper II), then becomes.

“

”

Spherical delay model

Using a simple spherical model (Nikolov, Kortbek, and Jensen 2010) the
transmit distance is calculated as

TFI spherical = |	vk − 	xk| + |	p − 	vk|, (2.17)

where 	vk denotes the location of the virtual source, 	xk is the center of the
transmitting aperture, and 	p = (x, z) is the location of the pixel in the image.

The transmit distance has two terms: the travel distance from 	xk to 	vk,
and the travel distance from 	vk to 	p. If the reconstructed point, 	p, is in front
of the focal point, the second term will be negative, and otherwise positive.
This scenario is illustrated by Figure 2.16.

By looking at the two terms we can see that at the focal depth, where the
second term flips from negative to positive, we will get a discontinuity in the
spherical transmit delay model.
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Figure 2.16: Delay geometry for a spherical virtual source as depicted in (Nikolov,
Kortbek, and Jensen 2010). The blue and red indicate the insonified region
from two individual transmits. Notice how they overlap in front of, and after
the focal point at F . Figure credits to Andreas Austeng creating this figure
from Paper II.

“

”

Unified delay model

In (Nguyen and Prager 2016) they analyzed and divided the transmitted wave
field into four regions (I, II, III and IV) as seen in Fig. 2.17.

Their analysis showed that the transmitted signal is not a single pulse in
regions II, and IV, but that it consists of two pulses that are comparable in
strength. This violates the spherical wave assumption in regions II and IV,
and the spherical transmit delay model is no longer valid.

As regions II and IV are not intensively insonified, the backscattered signal
from these regions do not contribute significantly to the total beamformed
energy. To correct the artifact (Nguyen and Prager 2016) suggested to linearly
interpolate the transmit distance between regions I and III, across regions II
and IV, and weighting down the amplitude of the data from regions II and IV.

The unified delay model (Nguyen and Prager 2016) then becomes

TFI unified =
|	xb − 	p|
|	xb − 	xa|TFI spherical,b +

|	xa − 	p|
|	xa − 	xb|TFI spherical,a, (2.18)

where 	xa and 	xb are vector positions of points A, B and 	p is the reconstructed
point as seen in Fig. 2.17. TFI spherical,a and TFI spherical,b are the distance
calculated as in (2.17) for positions A and B.
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Figure 2.17: Delay geometry for the unified transmit delay model as described
in (Nguyen and Prager 2016). The wavefield is divided into four regions I, II, III
and IV. Region I and III follows the spherical model, while the delay for a point
�p in region II and IV is an interpolated value of the delay values in point A and
point B. Figure credits to Andreas Austeng creating this figure for Paper II.

“
”

Hybrid delay model

We present a hybrid transmit delay model combining features of spherical
and plane waves. In essence, we assume that the transmit wave propagates
as a plane-wave in a small region m around the transmit focus, yielding the
transmit distance

TFI hybrid =

{
z, if z >Fz −m and z <Fz +m

TFI spherical, otherwise.
(2.19)

where Fz is the focal depth.

The transmit delay, using a slightly deeper scan than earlier, for a focused
transmission from the center of the array is, for all three models, plotted in
Figure 2.18.

We see that the spherical model has a discontinuity at the focus, z = 29.6
mm. The unified delay model does not have this discontinuity. The hybrid
model ”pushes” this discontinuity out of the focal zone in the lateral direction
(x-direction). The discontinuity of the spherical model results in an artifact in
the final image. Both the unified and hybrid model resolves this artifact - but
the hybrid model is much less computationally expensive. Please see (Paper
II) for more details, examples and in-depth discussion of this artifact. In the FI
images in this chapter, such as in Section 2.4.4, we used the hybrid model.
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(b) Unified FI
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(c) Hybrid FI
transmit delay

Figure 2.18: Transmit delays for a FI transmission from the center of the array
using the (a) spherical, (b) the unified and (c) the hybrid transmit delay model.
Figures from (Paper II).

2.6.2 The general beamformer – delay and sum

The conventional delay-and-sum (DAS) can be implemented using the general
beamformer. The general beamformer makes ”it [...] possible to beamform all
sequences with a single algorithm” (Paper I). The general beamformer can also,
as we define it, reconstruct the image using channel data as either RF, IQ or as
the analytical signal as described in Section 2.5. The DAS image is the coherent
combination of the pixel values as received by all elements M from all transmits
Na. The subscript a denotes signal from each individual transmit, yielding

bDAS(x, z) =
Na−1∑
a=0

M−1∑
m=0

wtx
a (x, z)wrx

m (x, z)sm,a(x, z)ei2πfdemodΔt/fs . (2.20)

Here wrx
m is the receive apodization, see the details below, with dimensions

[Nz, Nx, M ] while wtx
a is the transmit apodization, see details in Section 2.6.3.1,

with dimensions [Nz, Nx, Na].
If the channel data sm,a is the demodulated IQ-signal, we need to up-mix

the signal by multiplying with ei2πfdemodΔt/fs . The demodulation frequency is
fdemod, Δt is the delay from equation (2.12), and fs is the sampling frequency.
If we are beamforming using the RF signal or the analytical signal we can simply
set the fdemod = 0 so that ei2πfdemodΔt/fs = 1.

For notational simplicity, let’s rewrite (2.20). We will assume that we are
using the analytical signal, and drop the spatial pixel coordinates (x, z), such
that

bDAS =
Na−1∑
a=0

M−1∑
m=0

wtx
a wrx

m sm,a =
∑
tx

wtx
a

∑
rx

wrx
m sm,a. (2.21)
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Note also that we can define that the inner sum over the elements is the sum
over the receive (rx) dimension, while the sum over the a transmits are the sum
over the transmit (tx) dimension, and that we can move the transmit weights
wtx

a out of the inner sum. If we have a closer look on the delayed channel data
in sm,a we can visualize the data from each transmit a as a three dimensional
cube where the first dimension is the z’s, thus the depth pixels, the second
dimension is the x’s and the third dimension is the receive elements m. Thus,
sm,1 have dimensions [Nz, Nx, M ] and we will have Na of these cubes, one from
each transmit a.

2.6.2.1 Receive Apodization

The receive apodization, using a uniform rectangular window, can be calculated
as

wrx
m (z, x, xm) =

{
1, if |x − xm| ≤ z

2f#
0, otherwise.

(2.22)

Here (x, z) is the pixel position, xm is the position of the receiving element
and f# is the f-number. The f-number is defined as f# = z

D , the ratio between
the pixel depth z and the size of the aperture D. This results in an expanding
aperture with a constant f-number, as shown when we, in Figure 2.19a, plot the
apodization for the L7-4 probe with depth for the center pixel line, x ≈ 0 mm,
when using f# = 1. Other apodization window functions can be applied. One
can use the expression in (2.22) to find the ”active” elements and calculate the
window based on the number of active elements. This is done for the Hamming
window in Figure 2.19b. The choice of window function will, as is well known,
influence the resolution and side lobe suppression.
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Figure 2.19: Receive apodization for the center pixel x ≈ 0 mm for the L7-4
probe with depth when using f# = 1. A uniform window is used in (a), while
a Hamming window is used in (b).

2.6.3 Coherent compounding

We can split up the sum in equation (2.21) into two

bRxDAS
a =

∑
rx

wrx
m sm,a (2.23)

bDAS = bTxDAS RxDAS =
∑
tx

wtx
a bRxDAS

a . (2.24)

Here bRxDAS
a is the result from the sum over the receive elements M , where we

with the superscript RxDAS denote that we have used a coherent combination of
the signals over the receive dimensions, and equivalently that TxDAS denotes a
coherent combination over the transmit dimension. This is what is known as
coherent compounding, extensively used with plane waves (Montaldo et al. 2009)
and diverging waves (Papadacci et al. 2014). All techniques dependent on
coherent compounding are affected by object movement between transmissions.
If the object move between transmission this will degrade the synthetic focusing
mechanism of compounding (Denarie et al. 2013). There exist many studies
trying to compensate for this effect, however, we will for simplicity assume
stationary targets.
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2.6.3.1 Transmit Apodization

The transmit apodization needs some explanation, since we in the USTB denote
transmit apodization for the apodization applied over the transmit dimension of
the received data, as defined in equation (2.21). The apodization applied over
the elements when transmitting the ultrasound wave, we will denote transmit
waveform apodization.

Transmit Angular Apodization

In (Rodriguez-Molares et al. 2015) the term angular apodization was coined
to the apodization weights applied to the different single transmit low-quality
plane wave images before coherent compounding. It was shown that CPWC
imaging with angular apodization obtains the same image quality as STAI
with apodization applied in the coherent compounding of the single transmit
images and as FI with transmit waveform apodization. Thus, the results in
(Rodriguez-Molares et al. 2015) shows that the transmit waveform apodization
for FI imaging is connected with the angular transmit apodization applied to the
receive data when synthetically creating a focus through coherent compounding.

Transmit Masking Apodization

A second type of transmit apodization is a masking apodization. Again, we are
talking about transmit apodization as the apodization over the TX dimension of
the received data as in equation (2.21). The masking apodization can be thought
of as masking out the region insonified by the transmit beam. A good way of
illustrating the region insonified is to view the single transmit B-mode image of
a FI transmit. Three of these are shown in Figure 2.7.

We will consider three different imaging modalities for focused imaging which
can all be viewed as a variant of transmit masking apodization. Namely, scan-line
beamforming, multiple line aqusition (MLA) and retrospective beamforming
(RTB).
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2.6.4 Scan-line beamforming

Conventional scan-line beamforming, meaning one transmit beam resulting in
one axial line in the image can be viewed as a transmit masking apodization.
The masking apodization is then to mask out everything except the single line
in the single transmit B-mode image. This is demonstrated in Figure 2.20 (a)
to (c), where we have plotted three of the 128 scan-lines constituting the final
image in (d).
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Figure 2.20: Conventional scan-line beamforming as implemented in the USTB
software beamforming using apodization to make one beam from each transmit.

2.6.5 Multiple Line Acquisition

To increase the image quality, a common strategy is to acquire multiple re-
ceive lines for every line transmitted - resulting in what is known as a multiple
line acquisition (MLA). Alternatively, one can reconstruct an image with fewer
transmits using MLA. Conventionally, this has been known as parallel beam-
forming (Shattuck et al. 1984), or multiline beamforming. In the PW and DW
case, thus broad transmit beams, MLA can easily be implemented in software
beamforming by simply defining a suitable image scan of pixels. However, with
focused transmissions the narrow insonified region around focus might lead to
some unwanted effects known as beam warping and skewing. These effects have
been described and discussed in detail in (Hergum et al. 2007). We will not
touch the details here, but the unwanted effects result in amplitude variations
in the image since the receive lines do not line up with the transmit beams.
One solution is the Synthetic Transmit Beams (STB) technique introduced in
(Hergum et al. 2007). The STB technique introduces ”shift invariance through
coherent interpolation”. In our USTB software beamforming framework this
means that we can implement the STB technique using coherent compounding
of single transmit images. By using appropriate transmit apodization masking
we can decide the number of synthetic lines and how much they should overlap
between transmits. First, let us demonstrate extra parallel receive beams, but
without doing any coherent compounding between the transmits. Figure 2.21
illustrates in the two left plots the masking apodization used for tx = 100 and
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Figure 2.21: MLA beamforming with no overlap between the beams. Using 4
MLAs per beam with the transmit masking apodization in the left images, and
the resulting single transmit images with the masking applied to the right.

tx = 101 respectively, and the corresponding single transmit images to the t
using 4 MLAs.

To do coherent compounding, there needs to be some overlap between the
single transmit images. Figure 2.22 demonstrates an example where we have
used a total of 8 MLAs with two MLAs overlapping between each transmit.
Again, the two left plots are the masking apodization used for tx = 100 and
tx = 101 respectively, and the corresponding single transmit images to the right.
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Figure 2.22: Transmit delays for a FI transmission from the center of the array
using the (a) spherical, (b) the unified and (c) the hybrid transmit delay model.
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From Figure 2.22 we can see how the two single transmit images now overlap
and how the masking is created so that the amplitude in the overlapping region
sums to 1.
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Figure 2.23: Final images created with MLAS with no overlap to the left, and
with overlap to the right. Notice how the image with no overlap have some
striping artifacts.

The final images are shown in Figure 2.23 from the MLAs with no overlap to
the left, and the MLAs with overlap to the right. Notice the striping artifacts in
the left image, which is the image without overlap, and notice how the overlap
between the transmit events smooths these striping artifacts out in the image to
the right.

2.6.6 Retrospective Beamforming

By comparing the images with MLAs (Figure 2.23) to the conventional scan-line
based image, we can see a clear improvement in the image quality. However,
from the single focused transmit images in Figure 2.7, we can see that there is
more than just a wide stripe that is insonified. The transmitted beam results in
a converging shape before the focus, and a diverging shape after the focus. Thus,
there is more than the ”stripe” exploited in the MLA technique that overlaps
between transmits. This brings us to, to the author’s knowledge, the state of the
art in terms of image quality; retrospective beamforming (RTB). The concept
have been known for some time, and already in 1995 Freeman, Li, and Odonnell
published the paper titled Retrospective Dynamic Transmit Focusing. RTB has
further been refined and is today considered a technique that uses a ”virtual
source” in focus (Frazier and O’Brien 1998)(Bae 2000)(Nikolov, Kortbek, and
Jensen 2010). RTB imaging can also be implemented, as is done in the USTB,
using the general beamformer and a transmit masking apodization. Figure 2.24
shows to the left a full FI single transmit image, and to the right, the same
image but with a suitable transmit masking apodization applied. The transmit
masking is masking out the part of the image that is insonified. We will not
touch the details here. However, the calculation is based on the transmit foci
and the number of active elements in the transmission.

The advantage of RTB imaging is that it combines the benefits from a focused
transmission and the synthetic focusing achieved from coherent compounding.
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Figure 2.24: Transmit delays for a FI transmission from the center of the array
using the (a) spherical, (b) the unified and (c) the hybrid transmit delay model.

Figure 2.25 shows three single transmit apodized images from transmit 47,
52, and 57, respectively. Notice, for example, how the point scatter at z = 20mm,
x = −2mm is visible in all three images, and thus is for all ten single transmit
images between tx = 47 and tx = 57. The point scatterers deeper in the image
will be insonified in even more transmits as the overlap region is largest away
from the foci. Thus, there is a nice correlation between the number of overlapping
transmits and how unfocused the transmit is.
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Figure 2.25: Transmit delays for a FI transmission from the center of the array
using the (a) spherical, (b) the unified and (c) the hybrid transmit delay model.

Figure 2.26a is the resulting image from the coherent compounding of the
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masked single transmit RTB images. The lower amplitude in the focal region
is because this region had the least number of overlaps. To compensate for the
difference in amplitude, we apply an apodization based on the single transmit
apodization masks. The final image is displayed in Figure 2.26b.
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Figure 2.26: Transmit delays for a FI transmission from the center of the array
using the (a) spherical, (b) the unified and (c) the hybrid transmit delay model.

A comparison between the conventional scan-line beamforming, MLA beam-
forming and RTB beamforming is made in Figure 2.27. The images are created
from the same channel data with the same number of transmits. For complete-
ness, we also included an interpolated version of the scan-line beamformer to
have the same number of pixels as for the MLA and RTB images. In Figure 2.27,
we have zoomed in on the group of scatterers in the focal region. The B-mode
image is shown in the top, while the lateral line through the scatterers is plotted
below.

As expected, the MLA and RTB have some improved resolution, in terms
of increased separability between the two leftmost scatterers. The difference
between MLA and RTB is minimal. This is as expected, since these scatteres
are located close to the foci where the MLA is already quite optimal.

However, in Figure 2.28 we investigate a point scatterer further away from
the foci. From the B-mode images, and especially the plot of the axial line,
we can observe that RTB resulted in an improved resolution. The improved
resolution is because the coherent compounding in the overlapping regions of
RTB resulted in an improved synthetic resolution for the RTB. Also, notice the
improved side-lobe levels.
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Figure 2.27: The conventional scan-line image in the top left, followed by an
interpolated version of the scan-line image, the MLA image and the RTB image.
The plot below is the axial line through the group of scatterers close to the foci.
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Figure 2.28: The conventional scan-line image in the top left, followed by an
interpolated version of the scan-line image, the MLA image and the RTB image.
The plot below is the axial line through the single scatterer almost 30 mm below
the foci.
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2.7 Adaptive beamforming

Most of the work in this thesis regards the image quality resulting from adaptive
beamfoming (Paper IV, V, VI, VII, VIII, IX and X). We will reuse a
compact definition and introduction to adaptive beamforming from Paper VII:

“

”

The popularization of software beamforming has brought numerous techniques
that, by clever manipulation of channel data, are able to exceed the contrast
and resolution provided by conventional delay-and-sum (DAS) beamforming.
We refer as adaptive beamforming to any technique where the signal values
alter the way the beamformed signal is constructed, for instance when the
element weights are determined from the variance of the signal.

Seminal work on adaptive beamforming dates back to the 1960s, where
optimal element weights were derived for a given signal direction to minimize
the influence of jamming signals in radio communication systems (Applebaum
1976; Bryn 1962; Capon 1964; Widrow et al. 1967).

Adaptive beamforming was first applied to medical ultrasound at the end
of the 1980s to compensate for phase aberration artifacts produced by tissue
inhomogeneities (Flax and O’Donnell 1988; Nock, Trahey, and Smith 1989),
and about a decade later to reduce the contribution of off-axis targets (Mann
and Walker 2002; Sasso and Cohen-Bacrie 2005; Synnevåg, Austeng, and Holm
2005; Viola and Walker 2005; Wang, Li, and Wu 2005).

There is a myriad of techniques that are published within the field of adaptive
beamforming for medical ultrasound imaging. We have implemented some of
the most popular ones in the USTB. Quite some effort was spent in Paper VII
to formulate a compact description of these adaptive beamformers. Will will,
therefore, reuse the formulation here. For simplicity, compared to (2.20), we will
assume only one transmit and drop the subscript a when defining the adaptive
beamformers, so that sm(x, z) means the signal received on element m for pixel
location (x, z).

“
”

2.7.1 Capon’s Minimum Variance (MV)

Capon’s Minimum Variance (MV) technique calculates a data dependent set
of weights www while maintaining unity gain in the steering direction (Synnevåg,
Austeng, and Holm 2009). This is posed as a minimization problem by

minwww E
{|b DAS|2}

= wwwHRRRwww
subject to wHwHwHaaa = 111,

(2.25)

where R ≡ E
{
ssssssH

}
is the spatial covariance matrix, E is the expected value

operator, and the steering vector aaa = 111 because it is assumed that all signals
are already delayed. The solution to (2.25) can by found by the method of
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Lagrange multipliers, yielding

wwwMV =
RRR−1aaa

aaaHRRR−1aaa
. (2.26)

The spatial covariance matrix is unknown, but it can be estimated for point
(x, z), assuming a linear array, by (Synnevåg, Austeng, and Holm 2009)

R̂RR(x, z) =

K∑
k=−K

M−L∑
l=0

sssl(x, z − k)sssl
H(x, z − k)

(2K+1)(M−L+1)
, (2.27)

where (2K + 1) is the number of axial samples, L is the length of the subarray,
and

sssl(x, z) =
[
sl(x, z) sl+1(x, z) . . . sl+L−1(x, z)

]T
. (2.28)

The subarray averaging improves robustness. To further improve robustness,
and numerical stability, diagonal loading is added to the estimated covariance
matrix by R̃RR(x, z) = R̂RR(x, z) + εI, where I is the identity matrix, and

ε =
Δ
L

tr{R̂RR(x, z)},

where tr{} is the trace operator.
The beamformed image is then computed as

b MV =
1

M − L + 1

M−L∑
l=0

wwwH
MV sssl. (2.29)

2.7.2 Eigenspace-Based Minimum Variance (EBMV)

The MV can be extended into EBMV. Asl and Mahloojifar 2010 was the first to
apply it to beamforming for medical ultrasound. They utilized the eigenstruc-
ture of the covariance matrix aiming to obtain a better suppression of off-axis
signals. The covariance matrix is estimated with (2.27) and eigendecomposed
as

R̂̂R̂RDL = VVV ΛΛΛ−1VVV H , (2.30)

where ΛΛΛ = [λ1, λ2, ..., λL]T are the eigenvalues in descending order, and VVV =
[vvv1, vvv2, ...vvvL] are the corresponding eigenvectors. The signal subspace EEEs can
be constructed using the eigenvectors corresponding to the largest eigenvalues,

EEEs = [vvv1, ..., vvvE ], (2.31)

where E is the number of eigenvectors creating the signal subspace. Finally,
the EBMV weight is obtained by projecting the conventional MV weights onto
the constructed signal subspace

wwwEBMV = EEEsEEE
H
s www MV. (2.32)
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The beamformed image is then computed as

b EBMV =
1

M − L + 1

M−L∑
l=0

wwwH
EBMV sssl, (2.33)

with sssl defined as in (2.28).

2.7.3 Filtered-delay-multiply-and-sum (F-DMAS)

F-DMAS for medical ultrasound beamforming was introduced in (Matrone,
Savoia, and Magenes 2015). The technique aims to increase image quality by
multiplying the RF signals before summation. Namely, the signed square root
signal is defined as

gij = sign (sisj)
√

|sisj |, (2.34)

where sign(·) denotes the sign function. The beamformed signal b F-DMAS is
then computed as

b F-DMAS =

⎡
⎣M−2∑

i=0

M−1∑
j=i+1

gij .

⎤
⎦

BPF

, (2.35)

where [·]BPF denotes the band pass filtering of the signal inside the brackets.
Note that (2.34) is the multiplication of two signals with identical center
frequency fc, and hence it will have two frequency components: one at 0, and
one at 2fc. Band pass filtering is applied to remove the DC component.

2.7.4 Coherence Factor (CF)

The CF was first introduced in (Mallart and Fink 1994), as the ratio between
the coherent and incoherent energy across the aperture:

CF =

∣∣∣∣M−1∑
m=0

sm

∣∣∣∣
2

M
M−1∑
m=0

|sm|2
. (2.36)

The CF has been used as an adaptive weight to increase image quality (Li
and Li 2003) as;

b CF = CF b DAS. (2.37)
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2.7.5 Generalized Coherence Factor (GCF)

In (Li and Li 2003) they generalized the coherence factor as

GCF =

∑
n<M0

|Sn|2

M
2 −1∑

n=− M
2

|Sn|2
, (2.38)

where S is the M -point Fourier spectra over the aperture of the delayed channel
data,

Sn =
M−1∑
m=0

sme−j2π(m−M/2)d n
Md , (2.39)

where n ∈ [− M
2 , M

2 −1] is the spatial frequency index where M is assumed to
be even, d is the pitch of the array, and M0 is an arbitrary constant within
[0, M

2 −1] that specifies the low spatial frequency region, thus going from −M0
to M0. Note that if M0 = 0 the GCF simplifies to the CF.

The beamformed image is computed by multiplying the DAS image with
GCF

b GCF = GCF b DAS. (2.40)

2.7.6 Phase Coherence Factor (PCF)

The PCF was introduced in (Camacho, Parrilla, and Fritsch 2009) as

PCF = max
{

0, 1 − γ

σ0
p

}
, (2.41)

where γ is a parameter to adjust the sensitivity of PCF to out-of-focus signals,
σ0 = π/

√
3 is the nominal standard deviation of a uniform distribution between

−π and π, and p is given by

p = min
{

σ (φφφ) , σ
(
φφφA

)}
, (2.42)

where φφφ = [φ1 φ2 . . . φM ] is the instantaneous phase across the aperture, and
σ(φφφ) is its standard deviation. To avoid phase wrapping discontinuity a set of
auxiliary phases φφφA = [φA

1 φA
2 . . . φA

M ] is computed as

φA
m =

{
φm + π if φm < 0,

φm − π otherwise.
(2.43)

The beamformed image is computed using PCF as an adaptive weight

b PCF = PCF b DAS. (2.44)
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2.7.7 Short Lag Spatial Coherence (SLSC)

In addition to the adaptive beamformers mentioned so far, this thesis includes a
study including the Short Lag Spatial Coherence (SLSC) in (Paper IX). For
completeness, we will, therefore, include a definition here. The short lag spatial
coherence (SLSC) algorithm was introduced in (Lediju et al. 2011). The spatial
correlation can be calculated as

R̂(m) =
1

M − m

M−m∑
i=1

∑n2
n=n1

pi(n)pi+m(n)√∑n2
n=n1

p2
i (n)p2

i+m(n)
, (2.45)

where p is the delayed signal, n is the depth sample index, m is the distance, or
lag, in number of elements between two point on the aperture. The sum over n
results in a correlation over a given kernel size, n2 − n1 of pixels. The short lag
spatial coherence, is calculated as the sum over the first M lags,

bSLSC =
M∑
M

R̂(m). (2.46)

Thus, notice that bSLSC is an image of the coherence and not the backscattered
signal amplitude as with DAS and MV. The SLSC is a visualization of the spatial
coherence of backscattered ultrasound waves, building upon the theoretical
prediction of the van Cittert-Zernike (VCZ) theorem . The implications of the
VCZ theorem for pulse-echo ultrasonic imaging was discussed by Mallart and
Fink 1994, 1991.

Some of the adaptive methods have user settable parameters. For the results
presented in this chapter we used the same parameteres as in Paper VI.

“
”

For MV, L was set to 50% of the active receive channels, K = 1.5λ, and a
diagonal loading factor of Δ = 1/100 was used as suggested in (Synnevåg,
Austeng, and Holm 2009). The number of eigenvectors used in EBMV was
selected adaptively using the eigenvectors with eigenvalues larger than δ = 0.5
times the maximum eigenvalue as suggested in (Asl and Mahloojifar 2010).
For GCF the value M0 = 2 was used as suggested in (Li and Li 2003). For
PCF γ = 1 was chosen as suggested in (Camacho, Parrilla, and Fritsch 2009).

2.7.8 Categorizing adaptive beamformers

With the myriad of adaptive techniques, a way of categorizing them could be
useful. We will suggest two different categorizations.

Categorization I : Coherence and non-coherence adaptive beamforming

Coherence F-DMAS, CF, GCF, PCF and SLSC
Non-coherence MV and EBMV.
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The first categorization is based on if the beamformers exploit the coherence, or in
a more general term similarity, of the wavefront received over the aperture. The
connection between F-DMAS and coherence is not obvious. However, in (Paper
V) we studied this in detail and concluded that ”Being largely influenced by the
signal coherence, the F-DMAS beamformer appears as an intermediate between
the DAS beamformer and beamformers using coherence factor weighting”. The
CF, GCF, and PCF all weight the DAS image with a weight directly dependent
on the signal coherence. In CF this is calculated from the signal directly. In
GCF as a generalization of the CF through the Fourier spectra over the aperture.
In PCF the coherence is measured as similarity based on the standard deviation
of the phase over the aperture. The SLSC calculates the coherence based on a
normalized correlation of the signal over the aperture. The MV and EBMV, on
the other hand, are calculating an adaptive weight set that is trying to suppress
unwanted off-axis signals based on the minimization problem posed. Thus, they
are not ”measuring” the coherence as the other beamformers, and we categorize
them as non-coherence beamformers.

Categorization II : Adaptive element vs adaptive image weights

Element weights MV, EBMV, and F-DMAS

Image weights CF, GCF and PCF.

The second categorization is based on where the ”adaptiveness” is applied. Both
the MV and EBMV calculate an adaptive weight set that is applied in the
summation of the signal. The F-DMAS does not calculate a weight set directly,
but we will consider weighting the element signals with each other as some kind
of element weighting.

The CF, GCF, and PCF are all weighting the DAS image with an image
weight based on some coherence estimate, and thus, the adaptiveness is applied
as an image weighting. The issue with categorization II is that the SLSC does
not fit within this definition of categories since it displays the coherence directly
and not multiplied with the image.

There do exist publications where adaptive methods are combined across
these categories. For example, when coherence image weights are applied as a
weighting to MV images (Chau, Lavarello, and Dahl 2016), thus there truly is a
myriad of adaptive beamformers.

2.8 Post processing

Whether we have the image bDAS created by the conventional DAS image as in
equation (2.20). Or we have an image created by an adaptive beamformer such
as the b MV from the minimum variance beamformer equation (2.29), there are
some final stages before the image is displayed on the screen.
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2.8.1 Detecting the envelope

From Section 2.5, we know that if we have the analytical signal or the IQ-signal
we can simply detect the envelope A of the signal by taking the absolute value
A = |b|, where b for example is bDAS from equation (2.20). If we have used
the RF signal through the beamforming chain, the envelope can be detected
by generating the analytical signal of the beamformed data, b. Thus, creating
a complex signal by using the Hilbert transform of the data as the imaginary
component. However, the number of pixels in the axial (z) direction is then very
important. The signal in the axial direction needs to be well sampled to avoid
artifacts in the image introduced from the Hilbert transform. The number of
samples in the axial direction (z) can be reduced if one use the analytical signal
through the processing chain, since the Hilbert transform is then taken on the
well sampled RF channel data. The number of axial pixels can also be reduced
if one use the IQ-signal.

2.8.2 Log compression

Ultrasound images are, at least in the research literature, usually shown in a
logarithmic scale. Thus, the final stage is to do a logarithmic compression of, for
example, the DAS signal so that

BDAS = 20 log10(ADAS) = 20 log10(|bDAS|), (2.47)

where ADAS is the signal envelope and bDAS (assuming IQ or analytical signal) is
the coherent combination of the delayed signals as described in equation (2.20).
The exception from the log compression is for example SLSC images that are
for some applications shown in the natural scale (Lediju Bell et al. 2013). The
SLSC image is an image of the coherence directly.

2.8.3 The dynamic range

The logarithmically compressed images are often normalized so that the maximum
value in the image is displayed as 0 dB. The dynamic range of the image is then
the lowest value displayed in the image. A common dynamic range is from 0 dB
to -60 dB, resulting in an image as displayed in Figure 2.29a. In Figure 2.29b,
we have displayed the same image but using a dynamic range of 0 dB to -40 dB.
The two images are an illustration of how simply changing the dynamic range
can result in an image where the apparent contrast, in terms of the hypoechoic
cyst, seems to be improved. (Paper VII) is an in-depth investigation into the
effects adaptive beamforming has on the dynamic range with emphasis on how
this affects the estimated contrast.
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Figure 2.29: Two images illustration how changing the dynamic range can result
in an image where the apparent contrast, in terms of the hypoechoic cyst, seems
to be improved. (a) have 60 dB dynamic range, while (b) have 40 dB dynamic
range. Data from Paper VII.

2.8.4 Further post processing

In a clinical scanner, the final stages of the processing chain of a B-mode
ultrasound image would now contain different image processing algorithms, such
as speckle reduction. We will, however, stop our description of the medical
ultrasound processing chain here.
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2.9 Speckle statistics

If we are imaging a scene of enough randomly distributed small scatterers
reflecting the transmitted ultrasound wave, see Section 2.2, the resulting image
is of a speckle pattern. The speckle pattern is considered to be well developed if
the number of scatterers per resolution cell is larger than 10 (Wagner et al. 1983).
An image simulated in Field II (Jensen 1996; Jensen and Svendsen 1992) of such
a scenario is shown in Figure 2.30, with a few tricks to obtain a uniform field of
view detailed in (Rindal 2018).
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Figure 2.30: A STAI image of well developed speckle simulated in Field II.

According to (Wagner et al. 1983), well developed speckle results in an
ultrasound pressure field that are circular Gaussian or more precisely a circularly-
symmetric Normal distribution. This means that e.g. the analytical signal, both
the real and imaginary parts, will follow a normal Gaussian distribution. This
is confirmed in Figure 2.31, where we see that the estimated PDF for both the
real and imaginary parts of the signal follows the theoretical normal Gaussian
distribution.
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Figure 2.31: Estimated PDF of the real and imaginary part of the analytical
signal plotted together with the theoretical normal Gaussian distribution.
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The amplitude of the envelope follows a Rayleigh distribution with the
theoretical probability function (Wagner et al. 1983)

fRayleigh =
A

β2 e
−A2
2β2 , (2.48)

where A is the envelope amplitude and β is the scaling parameter than can be
found from the variance of a Rayleigh distribution σ2 = 4−π

2 β2. The signal to
noise ratio, SNR = μ

σ = 1.91, where μ is the mean of the envelope, and σ is
the standard deviation. The estimated SNR of the image in Figure 2.30 was
1.91 fitting the theoretical distribution very well, as we can see from Figure
2.32. Here we have plotted the estimated PDF together with the theoretical
Rayleigh distribution. The Rayleigh distribution belongs to the family of Rician
distributions.
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Figure 2.32: The estimated PDF of the envelope together with the theoretical
Rayleigh distribution.

It is worth to mention that it is seldom large enough uniform areas in the
body to create the well developed speckle. Often stronger targes or specular
reflections will occur and result in different statistical distributions. However, for
example the thyroid and the blood is known for having well developed speckle
patterns.

The image in Figure 2.30 was created by the conventional DAS beamformer.
In (Paper VIII), we investigated the speckle statistics of several adaptive
beamformers and the influence on conventional contrast metrics. We showed
that most adaptive beamformers do not follow the same speckle statistics as
DAS. In (Paper V) the image amplitude and speckle statistics of the F-DMAS
beamformer were investigated in detail. In (Paper IX), we argue that the
alteration of the speckle statistics by adaptive beamformers is invalidating the
conventional contrast metrics. We also use the known speckle statistics of DAS
to derive analytical expressions of the contrast metrics for DAS.
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2.10 Evaluation of image quality – metrics

By being introduced to the myriad of adaptive beamformers, we might have
gained some insight into the author’s motivations for using the word curse in
the title of this thesis. The curse, in the author’s opinion, is that software
beamforming is so flexible that algorithms mostly optimizing the evaluation
metrics, may be developed. More specifically, we, quite baldly, claim in (Paper
VII) that ”The results presented here expose a dangerous weakness of our
image quality metrics. This weakness must be remediated. We must lay the
groundwork upon which we build the new techniques. A new metric for contrast
must be sought, one that is immune to dynamic range transformations, and help
us assess the relevance of present and future beamforming techniques.”

To understand how we got there, let’s first have a look at the contrast metrics
commonly used in ultrasound imaging.

2.10.1 Contrast

In (Paper VII), we summarized the current status of contrast measurements
in ultrasound images:

“

”

No clear consensus exists yet on how to measure the contrast of ultrasound
images. Perhaps the most widespread definition (Lediju et al. 2011; Matrone,
Savoia, and Magenes 2015; Zhao et al. 2017) is the one in (Smith, Lopez, and
Bodine 1985),

CR =
μROI

μB
, (2.49)

where μ = E
{|b|2}

is the expected value of the power of the beamformed
signal, in linear scale, over a certain region; and where ROI and B denote,
respectively, a region of interest and a background region. If the signal power
is proportional to the back-scattering coefficient, which is the case for speckle
signals beamformed with DAS, then CR is proportional to the ratio of the
particle concentration in both regions. CR, often referred to as contrast ratio,
can be expressed in logarithmic scale as,

CR[dB] = 10 log10 CR. (2.50)

Detection probability not only depends on the mean value of the signal
power but also on its variance. An alternative measure of contrast can be
found in (Patterson and Foster 1983), a measure that became later known as
the contrast-to-noise ratio

CNR =
|μROI − μB|√

σ2
ROI + σ2

B
, (2.51)

where σ =
√

E {(|b|2 − μ)2} is the standard deviation of the power of the
beamformed signal, in linear scale. CNR is an estimate of the detection
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probability of a lesion. In particular for the case of circularly-symmetric
Gaussian distributed signals, which is the case of speckle signals beamformed
with DAS, CNR is bounded to the interval [0, 1]. This metric has been used by
many authors (Lediju et al. 2011; Matrone, Savoia, and Magenes 2015; Shin
and Huang 2017; Zhao et al. 2017).

Even though the expressions (2.49) and (2.51) were originally proposed to
be applied to signal power in natural units, many authors have chosen to insert
log-compressed values in them, effectively defining the alternative metrics:

CRLC[dB] = |μ̃ROI − μ̃B|, (2.52)

where μ̃ = E {20 log10(|b|)} is the expected value of the log-compressed values
within the ROI and B region, and

CNRLC[dB] =
|μ̃ROI − μ̃B|√

σ̃2
ROI + σ̃2

B
, (2.53)

where σ̃ =
√

E {(20 log10(|b|) − μ̃)2} is the standard deviation of the log-
compressed signal within the ROI and B region. We include the subindex LC
to denote the metrics computed on log-compressed values.

Although (2.52) is similar to (2.50), they are not identical since
10 log10

(
E

{|b|2}) �= E {20 log10(|b|)}. CNR and CNRLC take completely
different values, and cannot be directly compared. Although both are thought
to be estimates of the lesion detection probability, CRLC can take values larger
than 1, even for speckle signal beamformed with DAS. Several authors (Asl
and Mahloojifar 2010; Krishnan, Rigby, and O’Donnell 1997; Mehdizadeh
et al. 2012; Nguyen and Prager 2018; Shin and Huang 2017) have chosen (2.52)
and (2.53) to quantify contrast.

In some articles (Camacho, Parrilla, and Fritsch 2009; Li and Li 2003;
Ozkan, Vishnevsky, and Goksel 2018; Szasz, Basarab, and Kouamé 2016b;
Zhao et al. 2017; Zhuang, Rohling, and Abolmaesumi 2018) it is not explicit
whether logarithmic or natural units have been used. In some others variations
of the classical definitions are used (Asl and Mahloojifar 2010; Krishnan, Rigby,
and O’Donnell 1997; Ozkan, Vishnevsky, and Goksel 2018).

The consequences of the lack of consensus on how to measure ultrasound
images are discussed in detail in (Paper VI, VII, VIII) and Paper IX.
Where we claim that adaptive beamformers are invalidating the conventional
contrast metrics, which can be seen as one of the curses of software beamforming.
Fortunately, a remedy to the curse is presented in Paper IX where we present
an improved contrast metric immune to the unwanted effects from adaptive
beamformers, namely the generalized contrast-to-noise ratio (GCNR).
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2.10.2 Resolution

For completeness, we will have a brief look at how the resolution is evaluated
in the medical ultrasound research literature. There exist multiple definitions
of resolution ranging from the −3dB Rayleigh resolution criteria (Rayleigh
1879), to the Sparrow resolution defined as where the saddle point between
the two peaks first develops - thus being a measure on separability. A brief
review shows that many authors tend to use the FWHM (-6 dB) (Liebgott
et al. 2016; Matrone, Savoia, and Magenes 2015), while others use some measure
of separability (Camacho, Parrilla, and Fritsch 2009; Jensen and Austeng 2014)
while some use both (Diamantis et al. 2019). We will have a brief look at both.

2.10.3 Resolution as the width of the point spread function

To measure resolution the convention is to image a single scatterer, resulting
in an image of the point spread function (PSF) of the system and measure the
full with half maximum (FWHM). The FWHM is equivalent to measuring the
mainlobe width of the PSF at ≈-6 dB. In Section 2.3, we saw how the FWHM
made perfect sense when comparing the resolution between a wide linear array
and a narrower phased array. However, the FWHM is often used to evaluate the
resolution of adaptive beamformers, and we will look into some consequences.

In Figure 2.33, we have plotted the mainlobe of the PSF resulting from all
the adaptive beamformers mentioned in Section 2.7, except SLSC. We have
simulated a single point scatterer in Field II (Jensen 1996; Jensen and Svendsen
1992) illuminated by a single plane wave. The measured FWHM is indicated
above the plot of the mainlobe, and in the bars below.
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Figure 2.33: Full Width Half Maximum (FWHM) measured from a single point
scatterer imaged by a plane wave transmission and reconstructed using the DAS,
CF, PCF, GCF, MV, EBMV and F-DMAS beamformer.

Smaller FWHM means improved resolution if we define resolution to be an
improved (narrower) reconstruction of the small point scatterer imaged. Judging
by the results in Figure 2.33, all the adaptive beamformers tested, except GCF,
have improved resolution compared to DAS.
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2.10.4 Resolution as separability

Improved resolution should result in improved separation of closely located
targets. Let us now, instead of using the FWHM as a measure of resolution,
define resolution to be the ability to resolve two scatterers. In Figure 2.34, we
show in (a) the resulting images using the adaptive beamformers imaging two
point scatteres separated by 1 mm. The plot below the B-mode images is the
lateral line through the center of the points. The red dashed line is indicating
-6 dB. When the scatteres are separated by 1 mm, all the beamformers expect
GCF are able to detect both. Where detection is defined as a local minimum
between the peaks of more than -6 dB.
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(a) Point scatterers separated by 1 mm
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(b) Point scatterers separated by 0.5
mm
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(c) Point scatterers separated by 0.4
mm

Figure 2.34: Images of two point scatteres separated by 1, 0.5 and 0.4 mm in
(a), (b) and (c) respectively. The plot below the B-mode images are the lateral
line through the center of the points. The red dashed line is indicating -6dB.

In Figure 2.34b only 0.5 mm is separating the point scatterers. Notice then
that only the MV and EBMV are able to separate the two point scatterers. At
0.4 mm separation, in Figure 2.34c only the MV beamformer is able to separate
the two points. When doing this study on more images with separation between
the two point scatterers at 4, 2, 1, 0.5, 0.44 and 0.4 mm, we get the results in
2.35. In the top, we see the separability, measured as the lowest point between
the point scatterers for all beamformers with the dashed red line indicating the
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-6 dB limit.
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Figure 2.35: The measured separability, measured as the lowest point between
the point scatterers, of two point scatteres separated by 4, 2, 1, 0.5, 0.44 and
0.4 mm in (a). The dashed red line indicate the 6dB separation. In (b) we have
thresholded on the 6 dB limit, into separated or not separated.

In the bottom plot, we have, based on the -6 dB limit, divided the result from
the beamformers into separated or not separated for all distances. Interestingly,
only the MV and EBMV beamformer have better separability than DAS. Even
though when we used the FWHM as the definition of resolution, all beamformers
except GCF improved the FWHM compared to DAS. This short investigation
shows some interesting results regarding the claimed improved resolution resulting
from some adaptive beamformers. If the improved resolution, as measured by
the FWHM does not result in improved separability, it is relevant to review the
relevance of FWHM as a metric for resolution. Also, if we tie our preliminary
results on resolution improvement with our previous categorization of the adaptive
beamformers we can hypothesize an interesting connection. The beamformers
categorized to the image weight category, according to categorization II in Section
2.7.8, have an improved FWHM. But they do not have an improved separability
compared to DAS. This makes, of course, sense since the adaptive beamformers
belonging to the image weight category is taking the DAS image and multiplying
it with an adaptive weight. This will, of course, result in narrower FWHM, in
the same way as simply raising the DAS image to a power > 1. However, simply
raising the image to a power does not yield new information. Interestingly, this
did not apply to the GCF in our tested scenario. Whether multiplying an image
with an adaptive weight yields improved information in terms of resolutions
remains to be investigated in depth. But our brief investigation here shows that
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one can question the ability to resolve scatterers. Thus, we have identified that
as with contrast, there seems to be no consensus on how to measure resolution in
medical ultrasound imaging. Similar to the thorough investigation into contrast
and contrast metrics of adaptive beamformers, as we have done in the published
papers, needs to be done for resolution. However, such an investigation into
resolution is not done in this thesis and remains to be further studied.
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Chapter 3

Summary of Publications
This chapter provides a brief motivation and the outcome of the published papers
included in this thesis. For convenience, the figure presented in the introduction
chapter is included to highlight which part of the software beamforming processing
chain the publications in this thesis relate.

Figure 3.1: Graphical illustration of the software beamforming reconstruction
chain in medical ultrasound imaging, also illustrating which area of the processing
chain the papers in this thesis relate.

Paper I: The UltraSound ToolBox
Rodriguez-Molares*, A., Rindal*, O. M. H., Bernard, O., Nair, A., Lediju Bell, M. A., Liebgott, H.,
Austeng, A., and Løvstakken, L. 2017. ”The UltraSound ToolBox” IEEE International Ultrasonics
Symposium, IUS: 1–4. doi: 10.1109/ULTSYM.2017.8092389 *These authors are shared first authors
with equal contributions.

The UltraSound ToolBox (USTB) is an open source processing framework for
ultrasound signals implemented in MATLAB and C++. The motivation behind
the USTB is to provide tools to compare ultrasound processing techniques and
share data to aid the dissemination of research results. The USTB consists of
two main parts; an ultrasound file format (UFF) and a framework for processing
of ultrasound signals (processing classes). The UFF has later developed into a
UFF initiative defining a common file format agreed upon by multiple research
groups (Bernard et al. 2018). The USTB is an implementation of the entire
software beamforming processing chain including implementations of many state
of the art adaptive beamforming algorithms. The USTB was used to create the
results for most of the papers in this thesis with the implementations and data
available through the website http://www.ustb.no.
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Paper II: A simple, artifact-free, virtual source model
Rindal, O. M. H., Rodriguez-Molares, A., and Austeng, A. 2018. “A simple, artifact-free, virtual
source model”. IEEE International Ultrasonics Symposium, IUS: 1–4. doi:10.1109/ULTSYM.2018.
8579944

Retrospective beamforming is a technique that exploits the full overlap be-
tween transmit beams. This results in images with higher image quality, both
in terms of contrast and resolution, since a syntethic focus is reconstructed in
the overlapping region. Alternatively, one can use retrospective beamforming to
obtain the same quality as conventional scan line imaging but with fewer trans-
mits, thus getting a higher frame rate. Retrospective beamforming is a relatively
new imaging technique, which can be implemented using software beamforming.
The spherical delay model is conventionally used in the research literature. The
spherical model places a virtual source in the foci of the transmitted beam.
However, the spherical model results in a discontinuity to the side of the foci.
This discontinuity results in an artifact in the final images. One solution to this
artifact was published in (Nguyen and Prager 2016), where a unified delay model
was presented. Nguyen and Prager did a thorough analysis of the wave propa-
gation and presented a delay model that interpolates the delay values between
the converging and diverging regions occurring before and after the foci. The
unified delay model resolves the discontinuity and removes the resulting artifact.
However, the unified model is cumbersome to implement and quite resource
demanding. In this paper, we presented a hybrid delay model that combines the
propagation of spherical and plane waves. We assume that the wave propagates
as a plane wave in a small region around the foci, and outside this region we
use the conventional spherical delay model. The presented model is fast, easy to
implement, and removes the unwanted artifact. The presented delay model is
now used in the USTB. The implementations and data used in this publication
are available through the USTB at http://www.ustb.no/publications/paper_II.

Paper III: Wireless, Real-Time Plane-Wave Coherent
Compounding on an iPhone - a feasibility study
Palmer*, C. L. and Rindal*, O. M. H. 2019. ”Wireless, Real-Time Plane-Wave Coherent Com-
pounding on an iPhone - a feasibility study” IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control (PP): 1–11. doi: 10.1109/TUFFC.2019.2914555 *These authors are shared
first authors with equal contributions.

This paper demonstrates one of the main benefits of software beamform-
ing; that any high-performance processing device can do medical ultrasound
reconstruction. In this paper, we show that a range of the newer generation
iPhones and iPads have the processing power to implement the full software
beamforming processing chain. We demonstrated this by transferring channel
data wirelessly to an iPhone or an iPad and process in the GPU with real-time
frame rates of 60 FPS for the iPhones and 90 FPS for the iPad for a single
PW transmission. A frame rate of e.g 13 FPS was achieved when coherently
compounding 7 PW transmissions. PW transmissions were chosen since a full
image can be reconstructed from a single transmission, while higher image quality
is achieved when coherently compounding more transmissions. Thus, a tradeoff
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between image quality and frame rate is achieved. The channel data was recorded
and transmitted wirelessly in real-time using a Verasonics Vantage 256 scanner
transmitting through a wireless access point. Interestingly, the bottleneck was
not the processing power of the iPad/iPhone. The bottleneck in the system
was the serialization of the channel data into the protobuf transmitted over the
network. The main limitation was the serialization library implemented in Java
that had to be called from MATLAB. Real-time Access to the channel data
in a lower-level language than MATLAB could speed up the serialization. A
demo video of the results is available at https://youtu.be/oN8cwysGxyM. The
results hypothesize that hand-held systems will move to software beamforming,
potentially lowering the price of the system since off-the-shelf devices can be
used.

Paper IV: Double Adaptive Plane-Wave Imaging
Rindal, O. M. H. and Austeng, A. 2016. “Double Adaptive Plane-Wave Imaging”. IEEE Interna-
tional Ultrasonics Symposium, IUS: 1–4. doi:10.1109/ULTSYM.2016.7728906

The flexibility of software beamforming can be exploited as we show in
this paper where we presented an implementation of double adaptive plane
wave beamforming. Meaning, that we first do conventional minimum variance
beamforming applied to the receive channels of each plane wave image as in
(Holfort, Gran, and Jensen 2008). The first adaptive step is followed by a
minimum variance weighting of the coherent compounding as suggested in
(Austeng et al. 2011). This paper was a contribution to Plane-wave Imaging
Challenge in Medical UltraSound (PICMUS) arranged at the IEEE IUS 2016.
The presented method showed a significant improvement to the FWHM and
CNR compared to conventional DAS.

Paper V: Signal Coherence and Image Amplitude With the
Filtered Delay Multiply and Sum Beamformer
Prieur, F., Rindal, O. M. H., and Austeng, A. 2018. “Signal Coherence and Image Amplitude
With the Filtered Delay Multiply and Sum Beamformer”. IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control 65 (7): 1133–1140. doi:10.1109/TUFFC.2018.2831789

The Filtered-Delay-Multiply-And-Sum (F-DMAS) adaptive algorithm is a
somewhat recent adaptive beamforming algorithm. Despite the popularity and
numerous publications using the beamformer, an understanding of why this
method reports improved contrast and resolution compared to conventional DAS
was missing. In this paper we presented a theoretical study of the amplitude
statistics of the F-DMAS compared to the DAS beamformer backed up with
numerical simulations and experimental data. The difference between the DAS
and F-DMAS can partly be explained by our results showing that F-DMAS
is more dependent on the coherence of the signal than DAS. This was, to the
author’s knowledge, the first time it was shown that the F-DMAS algorithm is
exploiting the coherence in the ultrasound signal, and can thus be categorized as
a coherence beamformer. The implementations and data used in this publication
are available through the USTB at http://www.ustb.no/publications/paper_V.
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Paper VI: The Dark Region Artifact in Adaptive Ultrasound
Beamforming
Rindal, O. M. H., Rodriguez-Molares, A., and Austeng, A. 2017. “The Dark Region Artifact
in Adaptive Ultrasound Beamforming”. IEEE International Ultrasonics Symposium, IUS: 1–4.
doi:10.1109/ULTSYM.2017.8092255

The dark region artifact (DRA) is an unwanted artifact created by some
adaptive beamforming methods. The artifact occurs because some adaptive
beamformers fail to estimate which signals originate in the mainlobe, and which
signals originate from sidelobes. If a target, for example, a point scatterer or
hypoechoic cyst, is sufficiently stronger than the surrounding area the dark region
artifact occurs. Among the beamformers tested in the paper, only the DAS and
MV beamformers are not affected by the DRA. The CF, GCF, PCF, and F-DMAS
are affected by the DRA. This is because a strong signal received by a sidelobe
dominates the signal received in the mainlobe resulting in wave-fronts that are
non-parallel to the receiving aperture. This, therefore, creates low coherence.
The EBMV algorithm aims at estimating and dividing the spatial covariance
matrix into a signal and a noise subspace. However, when the delayed wave-field
have wave-fronts that are not parallel to the receiving aperture, the signal space
estimated might not contain the steering vector a = 1 entirely. Therefore, the
projected weights will not fulfill the distortionless response constraint completely,
with the consequence of a reduced output amplitude, resulting in the DRA. The
DRA results in wrongly measured contrast and black holes in the speckle. The
implementations and data used in this publication are available through the
USTB at http://www.ustb.no/publications/paper_VI.

Paper VII: The Effect of Dynamic Range Alterations in the
Estimation of Contrast
Rindal, O. M. H., Austeng, A., Fatemi, A., and Rodriguez-Molares, A. 2019. “The Effect of Dy-
namic Range Alterations in the Estimation of Contrast”. IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control PP:1–11. doi:10.1109/TUFFC.2019.2911267

Within the published literature of medical ultrasound beamforming a myriad
of publications exists on adaptive beamformers claiming improved contrast.
Contrast is conventionally measured by the contrast ratio (CR) and the contrast-
to-noise-ratio (CNR). In the paper, we present a literature search showing
that there is no consensus on how to measure contrast in ultrasound images.
Many different metrics and variations of CR and CNR have been used. Also,
contrast has been measuring on the image signals both before and after log
compression yielding quite different results. Further, by introducing a "gray level
transform" beamformer we claim and show in the paper that the estimation of
CR and CNR is affected by dynamic range alterations. A main contribution
in the paper is to introduce gradients to investigate whether a beamformer is
alternating the dynamic range. For the simulated data, both an axial and a
lateral gradient were used, but for the experimental data only a lateral gradient
was used. The gradients allowed us to introduce the dynamic range test, giving
a quantitative measure on how much a beamformer is alternating the dynamic
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range. We show that the amount of dynamic range stretching correlates very
well, R2

adj = 0.88 for the simulated and R2
adj = 0.96 for the experimental data,

with the CF improvements. The study tested the DAS, MV, EBMV, F-DMAS,
CF, GCF and, PCF beamformer, and only the DAS and MV were found not
to alternate the dynamic range notably. The F-DMAS was slightly alternating
the dynamic range. While EBMV, F-DMAS, CF, GCF, and PCF had quite
large alterations. We claim, based on the results that the classical contrast
metrics C and CNR are invalidated by modern adaptive beamformers, and that
a new improved metric immune to dynamic range alterations are needed. The
implementations and data used in this publication are available through the
USTB at http://www.ustb.no/publications/paper_VII.

Paper VIII: The Influence of Speckle Statistics on Contrast
Metrics in Ultrasound Imaging
Hverven, S. M., Rindal, O. M. H., Rodriguez-Molares, A., and Austeng, A. 2017b. “The Influence
of Speckle Statistics on Contrast Metrics in Ultrasound Imaging”. IEEE International Ultrasonics
Symposium, IUS: 1–4. doi:10.1109/ULTSYM.2017.8091875

It is well known that conventional DAS imaging well developed speckle
results in Rayleigh distributed speckle statistics. In this publication, we show
that some adaptive beamformers alter the speckle statistics. Since the statistical
distribution affects the contrast metrics used to evaluate the beamformers, it is
important to be aware of how the beamformer is altering the speckle statistics.
If not, the alterations of the speckle statistics open up to cherry picking contrast
metrics.

Paper IX: The Generalized Contrast-to-Noise ratio
Rodriguez-Molares, A., Rindal, O. M. H., D’hooge, J., Måsøy, S.-E., Austeng, A., Lediju Bell, M. A.,
and Torp, H. 2019. “The Generalized Contrast-to-Noise ratio”. Prepared for submission to IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control: 1–12

This paper answers the call for an improved contrast metric that is immune
to the dynamic range alterations, and the alteration of speckle statistics. In this
paper, we present the Generalized-Contrast-to-Noise-Ratio (GCNR) which is
a quantitative measure on the probability of detecting a region with different
intensity by an ideal observer. For example the GCNR of a hypoechoic cyst is the
percentage of pixels that are correctly classified as the cyst. The GCNR of several
state-of-the-art adaptive beamforming methods are tested for different signal-to-
noise ratios. Even though many of the methods improve the conventional CR
and CNR metrics, our results reveal that some methods (CF, PCF) actually
worsen the probability of lesion detection with an absolute decrease in GCNR.
While other methods (GCF, F-DMAS) only improve it slightly. Only one of the
tested methods (SLSC) produced a relevant increase in detection probability
with an absolute increase in GCNR. It is important to point out that this paper,
first and foremost, presents a new metric and is not aiming at benchmarking
the methods. The results are based on both simulated and experimental data
with good correlation in the simulated and experimental results. The paper
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presents the theoretical derivation of the GCNR. Analytical expressions for the
DAS beamformer for both CR and CNR are also derived.

Paper X: Hypothesis of Improved Visualization of
Microstructures in the Interventricular Septum with
Ultrasound and Adaptive Beamforming
Rindal, O. M. H., Aakhus, S., Holm, S., and Austeng, A. 2017. “Hypothesis of Improved Visualiza-
tion of Microstructures in the Interventricular Septum with Ultrasound and Adaptive Beamforming”.
Ultrasound in Medicine and Biology 43 (10): 2494–2499. doi:10.1016/j.ultrasmedbio.2017.05.023

This paper explores applications of the improved resolution of Capon’s min-
imum variance beamformer. We used the MV beamforming technique on in
vivo cardiac ultrasound data creating images from three different views of a
heart: the parasternal short-axis, parasternal long-axis and apical four- chamber
views. The images reveal that the improved resolution of the MV beamforming
technique produces images with an improved lateral resolution, resulting in
a better-resolved speckle structure compared with that of conventional DAS
beamforming. Myocardial microstructure, that is, the architecture of cardiomy-
ocytes, connective tissue fibers, blood vessels and neural tissue, contributes to the
reflected ultrasound data. Further studies are needed to identify the efficiency
of MV compared with DAS in terms of identifying pathological alterations in
this microstructure.

62



Chapter 4

Discussion
The main contributions in this thesis are

• The UltraSound ToolBox (USTB, http://www.USTB.no), which is an open
source implementation of the software beamforming processing chain in
medical ultrasound imaging. The USTB includes many of the state-of-the-
art beamforming techniques and algorithms facilitating the comparison of
techniques and dissemination of research results. The USTB is a shared
project between several research institutions. However, in practice, most
of the development is done by Alfonso Rodriguez-Molares at NTNU (The
Norwegian University of Science and Technology) and I. The two of us are
also administering the project.

• The hybrid delay model is a simple artifact-free virtual source model that
removes an unwanted artifact from retrospective beamforming (RTB) and
multiple line acquisition (MLA) images. Compared to other published
solutions, our hybrid model is less computationally expensive and easier to
implement.

• The demonstration of the perhaps most significant benefit of software beam-
forming: Medical image reconstruction, beamforming, can be implemented
on off-the-shelf devices such as an iPhone.

• The double adaptive plane-wave imaging algorithm successfully demon-
strating the flexibility of software beamforming.

• Insight into the state of the art algorithms such as the Filtered Delay
and Sum Beamformer (F-DMAS). Demonstrating that F-DMAS can be
considered a coherence based beamformer.

• Identified and coined the term dark region artifact for an unwanted ar-
tifact appearing next to acoustically strong targets for some adaptive
beamforming algorithms.

• Showed that some state of the art adaptive algorithms alter the dynamic
range of the image. The alteration effectively invalidates the conventional
contrast metrics contrast ratio (CR) and contrast to noise ratio (CNR).

• Pointed out that there is no clear consensus on how to measure contrast
in ultrasound images. Multiple definitions of CR and CNR are used in the
research literature.
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• Provided the dynamic range test, comprising data and code publicly avail-
able through the USTB. The dynamic range test allows anyone to check if
their algorithm alters the dynamic range of the image.

• Investigation of the speckle statistics of adaptive beamformers and how
this influences the conventional contrast metrics in ultrasound imaging.

• Introduced an improved contrast metric, the Generalized Contrast-to-Noise
ration (GCNR), which is immune to dynamic range alterations, that can
be used on any type of data regardless of signal nature and units and
results in a value that has physical meaning. The GCNR measures the
percentage of pixels that are correctly classified by an ideal observer.

• Investigated benefits from adaptive beamforming in in-vivo images. Specif-
ically hypothesizing that the minimum variance beamformer improves the
visualization of microstructures in the interventricular septum of the heart.

As seen from the main contributions, this thesis has investigated various
aspects of the software beamforming processing chain in medical ultrasound
imaging. Especially the in-depth evaluation and comparison of adaptive beam-
forming techniques as well as suggesting methods and metrics to evaluate the
resulting image quality of adaptive beamformers. This can be summarized into
the blessing and the curse of software beamforming.

4.1 The blessing

The published results in (Paper I, II, III and IV) demonstrate some of the
benefits, the blessings, of software beamforming: the flexibility. The ultrasound
signals received are better exploited through techniques such as retrospective
beamforming and various adaptive beamforming methods. Software beamforming
allows flexible delay models, flexible combinations of the received signals and
generally improved beamforming resulting in higher image quality. Perhaps the
main benefit of software beamforming is that the entire 2D image reconstruction,
from raw channel data to final rendered images, may be done on any device
with sufficient processing power such as an iPhone. The ability to do software
beamforming on off-the-shelf devices will most likely drive down the price of
ultrasound equipment since expensive specialized hardware for beamforming is
obsolete. Cheaper ultrasound systems will aid the democratization of ultrasound
imaging, making it available to more people, potentially leading to better and
earlier diagnosis of medical conditions.

4.2 The curse

The issues with software beamforming, the curse, is that it allows implementations
so flexible that they invalidate the metrics used to evaluate the image quality
(Paper VII and IX). The complexity can also make it hard to gain insight
into why the image quality is improved (Paper V). The methods can alternate
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the speckle statistics (Paper VIII), again affecting the conventional contrast
metrics. An alternated speckle pattern will also look unfamiliar to a physician
who has years of experience viewing conventional ultrasound images. Also, there
is a potential that unwanted artifacts occur from the adaptive methods as we
showed in (Paper VI).

4.3 Testing scenarios

It is important to be aware that the results we have obtained are limited to
the cases we have tested. Even though, most of the adaptive beamformers
investigated in this thesis, except the SLSC, does not seem to significantly
improve the probability of detecting a hypoechoic cyst in speckle (Paper IX).
With a reservation that the algorithms and implementations could potentially be
better tuned for lesion detection. However, it might be that some of the methods
do suppress other types of noise that occur in in-vivo imaging. The author’s
opinion is, therefore, that the scenarios used to test and evaluate new techniques
need to be more complex than what typically has been used in the research
literature. The conventional hypoechoic cyst in speckle to evaluate contrast, and
the single point scatterer to evaluate resolution are not complex enough scenarios
to truly evaluate the image quality and clinical relevance of a method. As a
minimum, when evaluating contrast - gradients should be studied in combination
with the dynamic range test, as suggested in (Paper VII) to evaluate whether
a method is alternating the dynamic range. Metrics immune to both dynamic
range alterations and alterations of the speckle statistics should be used to
evaluate contrast. The suggested metric, the generalized contrast-to-noise-ratio
(Paper VII), is such a metric. Also, as we saw in Section 2.10.2, perhaps single
point scatterers to evaluate resolution is not good enough. Perhaps a measure
of separability is more relevant than a measure of mainlobe width. However,
further studies need to investigate this more in-depth.

4.4 In-vivo imaging

Research on medical ultrasound imaging is very much applied research. Thus,
we should always aim towards actually improving clinical images to assist a
physician in diagnosing a patient. Methods should be tested on in-vivo cases
together with the knowledge of experienced physicians. We did so in (Paper
X) where

“
”

we used the MV beamforming technique on in vivo cardiac ultrasound data
creating images from three different views of a heart: the parasternal short-
axis, parasternal long-axis, and apical four-chamber views. The images reveal
that the improved resolution of the MV beamforming technique produces
images with improved lateral resolution, resulting in a better resolved speckle
structure compared with that of conventional DAS beamforming. Myocardial
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“ ”
microstructure, that is, the architecture of cardiomyocytes, connective tissue
fibers, blood vessels and neural tissue, contributes to the reflected ultrasound
data. Further studies are needed to identify the efficiency of MV compared
with DAS in terms of identifying pathological alterations in this microstructure.

We were careful not to conclude too boldly since, as is the problem with in-vivo
data, it is hard to know what is the actual underlying structures.

Another interesting publication using in-vivo data is the paper Robust Short-
Lag Spatial Coherence Imaging of Breast Ultrasound Data: Initial Clinical
Results by Wiacek, Rindal, Falomo, et al. We showed that the novelty of
adaptive beamforming is not limited to simply improving the image quality in
terms of contrast and resolution. Adaptive beamforming can improve diagnostics
by displaying novel clinical information different from the conventional B-mode
image. More specifically, we showed that SLSC could ”improve the fluid vs.
solid classification of hypoechoic breast masses and improve the detectability of
fluid-filled masses, thereby improving the diagnostic power of breast ultrasound
imaging.” (Wiacek et al. 2018b). Three images from the publication is included in
Figure 4.1, where (a) is a simple fluid-filled cyst, (b) is a fibroadenoma (a benign
mass) while (c) is a hematoma (a collection of blood). The findings in (Wiacek

(a) Simple fluid filled cyst (b) A fibroadenoma

(c) A hematoma

Figure 4.1: Three images from (Wiacek et al. 2018b) where (a) is a simple fluid
filled cyst, (b) is a fibroadenoma which is a benign mass while (c) is a hematoma
which is a collection of blood. IEEE holds all copyrights ©.
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et al. 2018b) can be illustrated with the images in Figure 4.1. All three masses
appear hypoechoic in the B-mode image. However, in the coherence images the
masses that are fluid-filled (a) and (c) have low coherence - thus appearing dark
in the SLSC images while the solid mass in (b) has high coherence.
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Chapter 5

Concluding Remarks

5.1 This thesis in a holistic view

This thesis started showing that the number of papers on adaptive beamforming
has grown exponentially over the last two decades. Some of these papers could
claim unprecedented improvements with more than 100% improvement of the
contrast. We raised some research questions based on this observation. Among
the questions was whether the results obtained provided a fair comparison
between methods, and further if there is a consensus in the literature on what
metrics should be used to evaluate the image quality.

We believe the work done in this thesis has brought our research community
forward in terms of open and reproducible research through the development of
the UltraSound ToolBox (USTB). We believe the USTB is a valuable tool since
it provides reference implementations of several state-of-the-art beamforming
algorithms as well as sharing benchmarking datasets to evaluate methods. The
USTB is open source, meaning that any author can share, or correct, the
implementation of their method. The USTB was a valuable and productive tool
in this thesis resulting in thorough comparisons of the state-of-the-art adaptive
beamformers, revealing that some do alter the speckle statistics compared to
the conventional delay-and-sum. We also revealed that unwanted artifacts such
as the dark region artifact could occur from adaptive beamforming.

The review of the contrast metrics used in the literature is very important.
The review revealed that there is no consensus on contrast metrics used in
ultrasound imaging. Perhaps more important is the identification of the effect
of dynamic range alterations in the estimation of contrast. We identified that
several state-of-the-art adaptive beamformers alternate the dynamic range and
that these dynamic range alterations invalidate the conventional contrast metrics.
These findings left, in the author’s opinions, the community in distress. We did
provide a tool, the dynamic range test, to investigate whether an algorithm alters
the dynamic range. Luckily, we provided an answer to our call for a new metric
when we introduced the generalized contrast-to-noise ratio (GCNR). The GCNR
is immune to both dynamic range alterations and alterations of the speckle
statistics, and we believe it is a very valuable tool in the comparison of adaptive
beamforming techniques.

This thesis also presented results showing some of the benefits of both software
and adaptive beamforming. Answering our first research question and confirming
that software beamforming does have benefits in terms of improving the image
quality of medical ultrasound images. The improved image quality is achieved
through flexible implementations accessing, and better exploiting the full channel
data set earlier in the processing chain.
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Our last research question was simply a question on whether adaptive beam-
forming is clinically relevant. We believe our results from imaging the interven-
tricular septum of the heart with the minimum variance beamformer displays
interesting findings based on the improved resolution. This leads to a hypothesis
that adaptive beamforming may improve the visualization of the interventricular
septum of the heart. We would also like to point to the results mentioned in
Section 4.4 from (Wiacek et al. 2018b), where we showed that the novelty and
clinical relevance of adaptive beamforming is not limited to merely improving the
image quality in terms of contrast and resolution. Adaptive beamforming can
improve diagnostics by displaying novel clinical information different from the
conventional B-mode image. Thus, even though some of the results published
among the exponentially growing number of papers on adaptive beamforming
might be questionable – there are still methods and algorithms that achieve what
should be the goal of research on medical ultrasound imaging: clinical relevance.

5.2 Further aspects

Based on the results presented in this thesis, the author believes that the research
community would benefit from complying to the following:

• If more publications were using a shared processing framework, such as the
UltraSound ToolBox (USTB, http://www.USTB.no), research would be more
open and reproducible. The USTB would also cut down implementation
time, boosting research productivity. A common framework and standard
datasets would also make the revision of research much easier, more efficient,
and more correct.

• When evaluating the contrast of adaptive beamformers, gradients should be
studied to evaluate whether the dynamic range is alternated. The dynamic
range test, with shared implementations and data available through https:
//www.ustb.no/publications/paper_VII, facilitates such investigations.

• Contrast metrics immune to dynamic range alterations, and alternated
speckle statistics should be used. The suggested generalized contrast-to-
noise-ration is such a metric.

• The resolution of adaptive beamformers should, possibly, be measured
using separability instead of mainlobe width. More thorough investigations
than the one in Section 2.10.2 needs to be done.

• The adaptive beamformers performance on more complex scenarios than
cysts in speckle and point targets should be investigated. However, effects
should be studied separately to be sure that the results obtained are
not originating because of unwanted side effects, such as alternating the
dynamic range. One such interesting scenario is the investigation of
coherence based beamforming on, for example, reverberation noise.
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• Further development of the USTB with an overall goal of reaching image
quality comparable to clinical systems. Today, the image quality of the
images in the research literature is significantly lower than the quality of
the images in clinical scanners. There are, of course, many reasons for this,
but the lack of the full processing pipeline, including proper post-processing
such as e.g., speckle reduction. Having a state of the art implementation
of the full processing chain is, of course, difficult for a single researcher
or a single research group. However, with a joint effort, an open source
implementation comparable to the quality of clinical scanners could be
achieved.

• To evaluate the true impact of adaptive beamforming studies on in-vivo
data in cooperation with skilled physicians should be sought. After all, the
physicians and their preferences are the final metrics of image quality.
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The effect of dynamic range alterations
in the estimation of contrast

Ole Marius Hoel Rindal, Student Member IEEE, Andreas Austeng, Member IEEE,

Ali Fatemi, Student Member IEEE and Alfonso Rodriguez-Molares, Member IEEE

Abstract—Many adaptive beamformers claim to produce im-
ages with increased contrast, a feature that could enable a better
detection of lesions and anatomical structures.

Contrast is often quantified using the contrast ratio (CR), and
the contrast to noise ratio (CNR). The estimation of CR and CNR
can be affected by dynamic range alterations (DRA), such as those
produced by a trivial gray-level transformation. Thus, we can
form the hypothesis that contrast improvements from adaptive
beamformers can, partly, be due to dynamic range alterations.

In this paper we confirm this hypothesis. We show evidence
on the influence of DRA on the estimation of CR and CNR, and
on the fact that several methods in the state-of-the-art do alter
the dynamic range.

To study this phenomenon, we propose a dynamic range test
(DRT) to estimate the degree of DRA and we apply it to 7
beamforming methods. We show that CR improvements correlate
with DRT with R2-adj=0.88 in simulated data and R2-adj=0.98
in experiments. We also show that DRA may lead to increased
CNR values, under some circumstances.

These results suggest that claims on lesion detectability, based
on CR and CNR values, should be revised.

Keywords—Adaptive beamforming, Dynamic range, Contrast
Metrics, Capon’s Minimum Variance, Eigenspace Based Mini-
mum Variance, Filtered-Delay-Multiply-And-Sum, Coherence Fac-
tor, Generalized Coherence Factor, Phase Coherence Factor.

I. INTRODUCTION

THE popularization of software beamforming has brought
numerous techniques that, by clever manipulation of

channel data, are able to exceed the contrast and resolution
provided by conventional delay-and-sum (DAS) beamforming.
We refer as adaptive beamforming to any technique where
the signal values alter the way the beamformed signal is con-
structed, for instance when the element weights are determined
from the variance of the signal.

Seminal work on adaptive beamforming dates back to the
1960s, where optimal element weights were derived for a given
signal direction to minimize the influence of jamming signals
in radio communication systems [1]–[4].

Adaptive beamforming was first applied to medical ul-
trasound at the end of the 1980s to compensate for phase

Rindal and Austeng are affiliated with the Research Group for Digital
Signal Processing and Image Analysis, Department of Informatics, University
of Oslo, Oslo, Norway (e-mail: omrindal@ifi.uio.no).

Fatemi and Rodriguez-Molares are affiliated with the Department of Circu-
lation and Medical Imaging, Norwegian University of Science and Technology,
Trondheim, Norway.

Manuscript received June 12th, 2018; revised January 8th and March 13th,
2019.

aberration artifacts produced by tissue inhomogeneities [5],
[6], and about a decade later to reduce the contribution of
off-axis targets [7]–[11]. Since then, the number of articles on
adaptive beamforming has increased exponentially [12].

Among the alleged benefits of adaptive techniques is that of
producing increased contrast, a feature that is often associated
with higher lesion detectability. Extraordinary increases in
contrast ratio (CR), and in contrast to noise ratio (CNR), with
respect to DAS, are reported in the literature [13]–[18].

Another way of increasing image contrast is by altering
the dynamic range (DR) of the beamformed images. This is
achieved, for instance, by applying a gray-level transformation
of the image intensity values which can stretch or compress
the dynamic range. Gray-level-transforms have traditionally
been used in commercial scanners to emphasize certain char-
acteristics of the investigated tissues. This operation does not
provide new information or better lesion detection, but it can
increase the apparent contrast of the image. This has been
known for some time, and it has previously been stated that
”any nonlinear postprocessing [...] would be merely cosmetic”,
and that it ”does not affect the intrinsic detectability of low
contrast lesions, [...] at least for the ideal observer” and only
”slight gains for real observers” [19]. However, these findings
seems to be forgotten in the modern ultrasound community.
And the question then arises on whether some of the alleged
benefits of adaptive beamforming could be explained by a DR
transformation that is unaccounted for. If that is the case, then
some of the reported values for CR and CNR in the literature
should be revised.

In [20] we proposed a phantom to measure the output dy-
namic range produced by any beamforming algorithm. Using
synthetic data, we showed that some adaptive algorithms seem
to transform the DR, which in turn affected the estimated
CR values. Here we extend the analysis to CNR, include 4
additional adaptive beamforming techniques, include the effect
on vertical gradients, and validate the result with experimental
data. We also define a dynamic range test (DRT) that makes
it possible to quantify the degree of DR alterations.

In Section II we present the algorithms under study. In Sec-
tion III we review the current contrast quality metrics, present
the DR phantoms used both in simulation and in experiments,
describe data processing, and introduce the dynamic range test.
Results are presented in Section IV and discussed in Section
V. Conclusions and further work are included in Section VI.

II. THEORY

Without loss of generality let us assume a linear array of M
elements, laying on the x-axis, pointing towards the positive
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Fig. 1: Geometrical illustration of the posed scenario.

direction of the z-axis, as illustrated in Fig. 1. The domain,
with characteristic sound speed c0, is illuminated by a generic
transmit beam, either planar, converging or diverging. Let us
denote the signal received by element m as hm(t). Let us
denote as T the distance from the origin of the transmitted
wave to the point (x, z), and as R the distance from (x, z) to
the location of element m. If we apply the propagation delay,
Δt = (T+R)/c0, we obtain the signal value at (x, z) received
by element m,

sm = hm(t)|t=Δt , (1)

also referred to as pixel value. Note that we drop the spatial
coordinates (x, z). The symbol sm refers to the pixel value at
an arbitrary location (x, z), unless otherwise specified.

A. Delay-and-sum (DAS)
The conventional DAS implementation is the coherent com-

bination of the pixel values as received by all elements,
yielding

bDAS =
M−1∑
m=0

wmsm, (2)

where wm is the receive apodization, a static term often
determined from the F-number and the pixel depth z. Equation
(2) can be written in algebraic form as

bDAS = wwwHsss, (3)

where sss = [s0 s1 . . . sM−1] is a vector containing the pixel
value for every channel in the system.

B. Capon’s Minimum Variance (MV)
Capon’s Minimum Variance (MV) technique calculates a

data dependent set of weights www while maintaining unity gain
in the steering direction [21]. This is posed as a minimization
problem by

minwww E
{|bDAS|2

}
= wwwHRRRwww

subject to wHwHwHaaa = 111,
(4)

where R ≡ E
{
ssssssH

}
is the spatial covariance matrix, E is the

expected value operator, and the steering vector aaa = 111 because
it is assumed that all signals are already delayed. The solution
to (4) can by found by the method of Lagrange multipliers,
yielding

wwwMV =
RRR−1aaa

aaaHRRR−1aaa
. (5)

The spatial covariance matrix is unknown, but it can be
estimated for point (x, z), assuming a linear array, by [21]

R̂RR(x, z) =

K∑
k=−K

M−L∑
l=0

sssl(x, z − k)sssl
H(x, z − k)

(2K+1)(M−L+1)
, (6)

where (2K+1) is the number of axial samples, L is the length
of the subarray, and

sssl(x, z) = [sl(x, z) sl+1(x, z) . . . sl+L−1(x, z)]
T
. (7)

The subarray averaging improves robustness. To further
improve robustness, and numerical stability, diagonal loading
is added to the estimated covariance matrix by R̃RR(x, z) =
R̂RR(x, z) + εI, where I is the identity matrix, and

ε =
Δ

L
tr{R̂RR(x, z)},

where tr{} is the trace operator.
The beamformed image is then computed as

bMV =
1

M − L+ 1

M−L∑
l=0

wwwH
MV sssl. (8)

C. Eigenspace-Based Minimum Variance (EBMV)
The MV can be extended into EBMV. In 2010, Asl et al. [22]

was the first to apply it to beamforming for medical ultrasound.
They utilized the eigenstructure of the covariance matrix
aiming to obtain a better suppression of off-axis signals. The
covariance matrix is estimated with (6) and eigendecomposed
as

R̂̂R̂RDL = VVVΛΛΛ−1VVV H , (9)

where ΛΛΛ = [λ1, λ2, ..., λL]
T are the eigenvalues in descending

order, and VVV = [vvv1, vvv2, ...vvvL] are the corresponding eigen-
vectors. The signal subspace EEEs can be constructed using the
eigenvectors corresponding to the largest eigenvalues,

EEEs = [vvv1, ..., vvvE ], (10)

where E is the number of eigenvectors creating the signal
subspace. Finally, the EBMV weight is obtained by projecting
the conventional MV weights onto the constructed signal
subspace

wwwEBMV = EEEsEEE
H
s wwwMV. (11)

The beamformed image is then computed as

bEBMV =
1

M − L+ 1

M−L∑
l=0

wwwH
EBMV sssl, (12)

with sssl defined as in (7).

134



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2019.2911267, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, PREPRINT VERSION 3

D. Filtered-delay-multiply-and-sum (F-DMAS)
F-DMAS for medical ultrasound beamforming was intro-

duced by Matrone et al. in 2015 [23]. The technique aims to
increase image quality by multiplying the RF signals before
summation. Namely, the signed square root signal is defined
as

gij = sign (sisj)
√
|sisj |, (13)

where sign(·) denotes the sign function. The beamformed
signal b F-DMAS is then computed as

b F-DMAS =

⎡
⎣M−2∑

i=0

M−1∑
j=i+1

gij .

⎤
⎦

BPF

, (14)

where [·]BPF denotes the band pass filtering of the signal inside
the brackets. Note that (13) is the multiplication of two signals
with identical center frequency fc, and hence it will have two
frequency components: one at 0, and one at 2fc. Band pass
filtering is applied to remove the DC component.

E. Coherence Factor (CF)
The CF was first introduced by Mallart and Fink in 1994

[24], as the ratio between the coherent and incoherent energy
across the aperture:

CF =

∣∣∣∣M−1∑
m=0

sm

∣∣∣∣
2

M
M−1∑
m=0

|sm|2
. (15)

The CF has been used as an adaptive weight to increase
image quality [25] as;

bCF = CF bDAS. (16)

F. Generalized Coherence Factor (GCF)
In 2003 Li et al. generalized the coherence factor as [25]

GCF =

∑
n<M0

|Sn|2

M
2 −1∑

n=−M
2

|Sn|2
, (17)

where S is the M -point Fourier spectra over the aperture of
the delayed channel data,

Sn =

M−1∑
m=0

sme−j2π(m−M/2)d n
Md , (18)

where n ∈ [−M
2 , M

2 −1] is the spatial frequency index where
M is assumed to be even, d is the pitch of the array, and M0

is an arbitrary constant within [0, M
2 −1] that specifies the low

spatial frequency region, thus going from −M0 to M0. Note
that if M0 = 0 the GCF simplifies to the CF.

The beamformed image is computed by multiplying the
DAS image with GCF

bGCF = GCF bDAS. (19)

G. Phase Coherence Factor (PCF)
The PCF was introduced by Camacho et al. in 2009 [26] as

PCF = max

{
0, 1− γ

σ0
p

}
, (20)

where γ is a parameter to adjust the sensitivity of PCF to out-
of-focus signals, σ0 = π/

√
3 is the nominal standard deviation

of a uniform distribution between −π and π, and p is given
by

p = min
{
σ (φφφ) , σ

(
φφφA

)}
, (21)

where φφφ = [φ1 φ2 . . . φM ] is the instantaneous phase across
the aperture, and σ(φφφ) is its standard deviation. To avoid
phase wrapping discontinuity a set of auxiliary phases φφφA =
[φA

1 φA
2 . . . φA

M ] is computed as

φA
m =

{
φm + π if φm < 0,

φm − π otherwise.
(22)

The beamformed image is computed using PCF as an adaptive
weight

b PCF = PCF bDAS. (23)

H. Gray level transformation (GLT)
For completeness we include a gray level transformation

(GLT) to illustrate how a trivial transformation of the DR can
affect the estimation of contrast. In particular, beamformed
images are transformed using a sigmoid function (S-curve):

p̂(B) =
1

1 + e−α(B−β)
(24)

p(B) =
p̂(B)−max (p̂(B))

ε
, (25)

where the coefficients α, β and ε are defined in Section III-D,
and where B = 20 log10(|bDAS|). The plot of the S-curve is
shown in Fig. 2.

Notice that the suggested S-curve compresses the signal
intensity in the [-30, 0] dB interval, effectively making the
light regions more uniform, and stretches the DR from -30
dB and downwards, effectively making the dark regions even
darker.

III. MATERIALS AND METHODS

A. Image quality metrics
No clear consensus exists yet on how to measure the contrast

of ultrasound images. Perhaps the most widespread definition
[14], [23], [27] is the one in [28],

CR =
μROI

μB

, (26)

where μ = E
{|b|2} is the expected value of the power of

the beamformed signal, in linear scale, over a certain region;
and where ROI and B denote, respectively, a region of interest
and a background region. If the signal power is proportional
to the back-scattering coefficient, which is the case for speckle
signals beamformed with DAS, then CR is proportional to the
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Fig. 2: Gray-level-transform (GLT) S-curve (24) in log space.

ratio of the particle concentration in both regions. CR, often
referred to as contrast ratio, can be expressed in logarithmic
scale as,

CR[dB] = 10 log10 CR. (27)

Detection probability not only depends on the mean value
of the signal power but also on its variance. An alternative
measure of contrast can be found in [29], a measure that
became later known as the contrast-to-noise ratio

CNR =
|μROI − μB|√
σ2

ROI + σ2
B

, (28)

where σ =
√
E {(|b|2 − μ)2} is the standard deviation of the

power of the beamformed signal, in linear scale. CNR is an
estimate of the detection probability of a lesion. In particular
for the case of circularly-symmetric Gaussian distributed sig-
nals, which is the case of speckle signals beamformed with
DAS, CNR is bounded to the interval [0, 1]. This metric has
been used by many authors [14], [16], [23], [27].

Even though the expressions (26) and (28) were originally
proposed to be applied to signal power in natural units, many
authors have chosen to insert log-compressed values in them,
effectively defining the alternative metrics:

CRLC[dB] = |μ̃ROI − μ̃B|, (29)

where μ̃ = E {20 log10(|b|)} is the expected value of the log-
compressed values within the ROI and B region, and

CNRLC[dB] =
|μ̃ROI − μ̃B|√
σ̃2

ROI + σ̃2
B

, (30)

where σ̃ =
√
E {(20 log10(|b|)− μ̃)2} is the standard devia-

tion of the log-compressed signal within the ROI and B region.
We include the subindex LC to denote the metrics computed
on log-compressed values.

Although (29) is similar to (27), they are not identical since
10 log10

(
E
{|b|2}) �= E {20 log10(|b|)}. CNR and CNRLC

(a) Experimental (b) Simulated

Fig. 3: Experimental and simulated dynamic range phantoms
shown with 60 dB dynamic range.

take completely different values, and cannot be directly com-
pared. Although both are thought to be estimates of the lesion
detection probability, CRLC can take values larger than 1, even
for speckle signal beamformed with DAS. Several authors [13],
[16], [22], [30], [31] have chosen (29) and (30) to quantify
contrast.

In some articles [14], [15], [17], [25], [26], [32] it is not
explicit whether logarithmic or natural units have been used.
In some others variations of the classical definitions are used
[17], [22], [31].

B. Experimental data
One element synthetic transmit aperture imaging (STAI)

datasets are used. 204 STAI dataset were recorded with a
Verasonics Vantage 256 system (Verasonics, Kirkland, WA,
USA) and an L-11 linear array (128 element, 300 μm-pitch)
transmitting at 5.28 MHz. The probe was mounted on a
3D position system Physik Instrumente (Physik Instrumente
(PI) GmbH Co. KG, Karlsruhe, Germany) with a minimum
incremental motion of 0.1 μm.

Several tissue mimicking targets were made following the
instructions in Annex II of IEC60601-2-37 [33] and cut into
the following shapes

1) T1: A 20 × 17 mm block with a 8.5 mm diameter
circular hole,

2) T2: a 2 × 10 mm block.

In addition a 200 μm nylon line was used as wire target.
The targets were placed in a water tank at 23◦C. The 3D

positioning system allowed us to control the target relative
position respect to the probe. Multiple datasets were recorded
separately, in particular

1) A dataset was recorded with T1 centered at (-5.5, 17.5)
mm;

2) 200 datasets were recorded with T2 placed at z = 44
mm depth with x raging from -20 to 20 mm to be
combined into the lateral gradient;

136



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2019.2911267, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, PREPRINT VERSION 5

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(a) Simulated DAS

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(b) Simulated MV

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(c) Simulated EBMV

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(d) Simulated F-DMAS

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(e) Simulated CF

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(f) Simulated GCF

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(g) Simulated PCF

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(h) Simulated GLT

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(i) Experimental DAS

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(j) Experimental MV

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(k) Experimental EBMV

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(l) Experimental F-DMAS

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(m) Experimental CF

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(n) Experimental GCF

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(o) Experimental PCF

-20 -10 0 10 20
x [mm]

10

15

20

25

30

35

40

45

50

z 
[m

m
]

(p) Experimental GLT

Fig. 4: Images of the simulated phantom (a-h) and the experimental phantom (i-p) for all beamformers under study. The images
are shown with 60 dB dynamic range.
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Fig. 5: Measured contrast of the simulated and the experimental hypoechoic cyst at (-5.5, 17.5) mm using all contrast metrics
as defined in Section III-A.

3) 3 additional datasets were recorded with the wire target
at x = 12 mm and depth z = [10, 20, 30] mm.

The 204 datasets were normalized in amplitude and com-
bined into a single dataset via weighted addition of RF channel
data. Weights were selected so as to produce a final gradient
of 1.8 dB/mm, covering the normalized range [0,−50] dB
from -14 to 14 mm. Note that this operation is done on RF
channel data, and hence before any beamforming operation.
The gradient from [0,−50] dB, -14 to 14 mm was selected
to avoid unwanted effects from the edges of the image, and
ensure that the gradient was linear. The ROI used for contrast
estimation is shown in Fig. 3a circumscribed by the red circle,
while the background area is shown between the two blue
circles. The experimental dataset is available for download
from http://www.USTB.no/publications/dynamic range/.

C. Simulated data

A dataset was generated using Field II [34], [35]. A 128
element, 300 μm-pitch linear probe was simulated transmitting
a 2.5 cycle Gaussian-modulated sinusoidal pulse with a center
frequency of 5.13 MHz. Element height was set to λ/2 to
produce a uniform field of view and rule out the effect of
elevation focusing [36].

A phantom was designed to match the experimental dataset
as close as possible. The simulated phantom is shown in Fig.
3b, consisting of point targets, a hypoechoic cystic region, and
two bands with monotonically decreasing speckle intensity:

1) a 10 mm wide lateral gradient at z = 44 mm depth, of
1.8 dB/mm covering a normalized scattering intensity
range of [0,−50] dB from x = -14 mm to x = 14 mm;
and

2) a 5 mm wide axial gradient at x = 16.5 mm in the
azimuth direction, of 1.8 dB/mm covering a normalized
scattering intensity range of [0,−50] dB from z = 10

to z = 39 mm. The axial gradient is not present in the
experimental data.

In addition, and different from the experimental dataset, four
rectangular speckle regions are placed at z = 30 mm depth
with intensities 0, -10, 0, and -35 dB to help the discussion of
the results. We ensure well developed speckle [37] using 650
scatterers per mm3. The scatters are placed on a 2D plane using
Gaussian random amplitude to mimic positions in elevation.
The ROI used for the contrast estimation is circumscribed by
the red circle in Fig. 3b, while the background region is that
between the two blue circles. The simulated dataset can be
downloaded from http://www.USTB.no/publications/dynamic
range/.

D. Data processing
Both the simulated and experimental datasets were beam-

formed with the UltraSound ToolBox (USTB) [38] using
a dynamic expanding aperture with F-number 1.75 and a
rectangular window, both in transmit and receive.

All the transmit signals were delayed and combined, to
produce globally focused images. The beamformers described
in Section II were applied only on the receive channels.

Some of the algorithms have user-settable parameters. For
MV, L was set to 50% of the active receive channels,
K = 1.5λ, and a diagonal loading factor of Δ = 1/100
was used as suggested in [21]. The number of eigenvectors
used in EBMV was selected adaptively using the eigenvectors
with eigenvalues larger than δ = 0.5 times the maximum
eigenvalue as suggested in [22]. For GCF the value M0 = 2
was used as suggested in [25]. For PCF γ = 1 was chosen
as suggested in [26]. For the S-curve in the GLT algoritm we
used α = 0.12, β = −40 and ε = 0.008.

The sound speed in the simulation was 1540 m/s, while
for the experimental dataset 1470 m/s was used. All im-
ages were compensated to obtain uniform speckle intensity
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Fig. 6: The normalized average response of both the axial and lateral gradient for the simulation and the lateral gradient for the
experimental data plotted against the theoretical response. The simulated axial gradient is measured between z = 10 to z = 38
mm, while the simulated and experimental lateral gradient is measured between x = -14 to x = 14 mm.

in the whole field of view. This was done differently in
the simulated and experimental data. In the simulation an
analytical compensation was used that accounted for the focal
depth and element directivity. Details on this compensation are
given in [36] together with data and code. In the experiment,
the compensation was carried out empirically. An uniform
block of Agar was imaged, with fully developed speckle,
and the estimated intensity field was spacially averaged and
inverted. Both processes could be seen as a software time gain
compensation performed on a uniform reference.

The beamforming grid was 1024 × 2048 pixels to cover
the demands of F-DMAS in the axial direction, since F-
DMAS produce a frequency component at 2fc, and of MV
in the lateral direction [39]. The code used to beamform the
images and reproduce all the results in this manuscript is
available at http://www.USTB.no/publications/dynamic range/
for MATLAB (The MathWorks, Natick, MA, USA).

E. Dynamic Range Test (DRT)

With gradients in both the simulated and experimental
dataset, we can define a dynamic range test (DRT) as

DRT =
Δ

Δ0
, (31)

where Δ denotes the gradient of a given beamforming method,
estimated via linear regression, and Δ0 denotes the theoretical
gradient, as fixed in the simulated and experimental data. DRT
measures how many dB the output dynamic range deviates
from the theoretical, for each dB of the input dynamic range.

For the simulated dataset we have both an axial and a lateral
gradient and DRT can be estimated for both. For simplicity,
the reported DRT value will be the average of the DRT in the
axial and lateral direction. For the experimental dataset DRT
is estimated in the lateral gradient.

The datasets and code to perform the test are available at
http://www.USTB.no/publications/dynamic range/.
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Fig. 7: Enlarged images of part of the simulated image containing speckle regions with two smaller speckle regions with a
difference in echogenicity of 10 dB, left, and 35 dB, right. The images are shown with 60 dB dynamic range. Notice, that the
speckle region between x = -0.5 to x = 2 mm is present in the DAS and MV image, partly visible in the F-DMAS, GCF and
GLT image but completely gone for EBMV, CF, and PCF image.
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Fig. 8: The average lateral response through the speckle
regions shown in Fig. 7

IV. RESULTS

The images produced by all the methods in Section II
are shown in Fig. 4, for both simulated (Fig. 4a-4h), and
experimental (Fig. 4i-4p) data.

Fig. 5 shows the contrast of the hypoechoic cyst, for both
simulated and experimental data, using the metrics in Section
III-A and for all methods under study. As expected we observe
a good correlation between CR and CRLC for all methods and
data type, while CNR and CNRLC are not obviously correlated.

The method showing the highest CR and CRLC is GLT
followed by EBMV, CF, or PCF. GLT also shows the best
CNR, followed by DAS and GCF. GLT has the highest CNRLC

followed by EBMV, and MV.
To study how each of the studied methods altered the DR,

the mean intensity profile along the gradients was computed,
and it is shown in Fig. 6. Simulated and experimental data are
plotted in the same figure against the ground truth.

In general we see a good agreement between simulated and
experimental results. As expected DAS follows the ground
truth closely. MV shows also a good agreement, while EBMV
abruptly drops at -30 dB. F-DMAS shows a slight compression
of the DR within 0 and -25 dB, and DR stretching from -25 dB
and downwards. The other adaptive beamformers (CF, GCF,
and PCF) show a similar output dynamic range that stretches
the dynamic range from -20 dB and downwards.

To illustrate how DR transformations can affect the visibility
of clinically relevant structures we included four speckle
regions in the simulated phantom, with backscattering intensity
of 0, -10, 0, and -35 dB, shown in Figs. 7a-7h in a 60
dB dynamic range. The average lateral response through the
speckle regions are shown in Fig. 8. The four speckle regions
are easily observed in the DAS, and MV images. The visibility
of the -35 dB region is significantly reduced in the F-DMAS,
GCF, and GLT images; while the region is completely removed
in the EBMV, CF, and PCF images.

For completeness we have included examples of the full
dynamic range test defined in Section III-E for DAS, EBMV
and CF for the simulated dataset in Fig. 9a-9c and the
experimental dataset in Fig. 9d-9f. The region used to estimate
the gradient is indicated with the dashed color in the B-mode
image, and plotted in the subplot with the corresponding color.
The theoretical and estimated gradient are in the subplot. In
Fig. 9g the DRT values, the ratio between the estimated and
the theoretical gradient, is plotted for all beamformers.

V. DISCUSSION

All the studied adaptive beamformers produce higher con-
trast ratio than DAS as measured by (26) or (29), with the
exception of MV which only improves the contrast in the
simulated case. However, one can get an arbitrarily high
contrast using the trivial GLT, as shown in Figs. 5a and 5b.
This proves that higher CR does not necessarily mean better
image quality or better lesion detection.

Using the classical definition of contrast to noise ratio given
in (28), we observe that GLT holds the highest value. Again
this proves the point that a trivial transformation of DR can
lead to increased CNR values.

If the definition in (30) is used, GLT have a slightly higher
value than EBMV. This proves that DR transformations can
alter the estimation of CNR, and that a higher CNR does not
necessarily mean better lesion detectability.
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(b) Simulated EBMV
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Fig. 9: Examples of the dynamic range test (DRT) defined in
Section III-E. (a) to (c) show DAS, EBMV and CF on the
simulated dataset, while (d) to (f) are on experimental data.
(g) shows the resulting DRT value for all beamformers.

Using the suggested DRT we observe that EBMV, F-DMAS,
CF, GCF, PCF and GLT all produce DR stretching. This is
evident from Fig. 6 where we observe that only the DAS and
MV follow the linear drop of the horizontal intensity gradient.
The test reveals the DR transformation curves associated with
each technique: EBMV has an abrupt drop between -30 and
-35 dB; while F-DMAS, CF, GCF, PCF and GLT have a
parabolic curve that stretches the region below -20 dB. We
observe that the gradient of the curve is notably smaller for
F-DMAS, which fits the findings in [40]. From the examples
of the DRT in Fig. 9, and the resulting gradients in Fig. 6,
we can observe that the resulting gradients for most of the
beamformers seems to be of higher orders than a linear line.
However, a linear line is suitable as an intuitive indicator to
determine if a beamformer is alternating the DR. And thus,
the DRT values, plotted in Fig. 9g, provides a quantitative
indication of the DR alteration of the beamformer. It should
also be mentioned that the selected dynamic range of the
gradient will affect the resulting DRT values, and that we chose
the largest dynamic range possible while still maintaining a
linear gradient in the experimental data.
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Fig. 10: The improvement in CRLC compared to DAS plotted
against the dynamic range test value which is the ratio between
the estimated and the theoretical gradient. The results from the
simulated data in (a) and the experimental in (b).
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We observe that the increase in CRLC with respect to that of
DAS seems to be correlated with the amount of DR stretching
as measured by the DRT. Fig. 10 shows the DRT value, for
all the methods except GLT, versus the CRLC improvement
compared to DAS. We observe that R2-adj=0.88 (0.72 when
including the GLT) for simulated data and R2-adj=0.98 (0.98
when including the GLT) for experimental data. That indicates
that CR enhancement in the tested algorithms may be merely
due to DR stretching. The GLT curve was chosen to fit the
experimental results, and this choice probably explains the
lower R2-adj for the simulated data.
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Fig. 11: The simulated lateral gradient after calibration is
plotted in (a), (b) is the response through the speckle regions
as in Fig. 8 but after calibration.

In [20] we suggested that DR transformations could be
compensated by a calibration of the beamformed images, using
the gradient response. In [20] we tested this approach on
several algorithms and observed a dramatic reduction in CR
improvement. However, even though known phantoms can be
calibrated, adaptive beamformers can produce DR transforma-
tions that are dependent on the structures in the image. In other
words, the DR transformation curve of an adaptive beamformer
is often image-dependent: it can differ from patient to patient,
from organ to organ, or even between areas of the same image.
This is illustrated in Fig. 11. In Fig. 11a, the estimated gradient
is shown for all methods after compensation, producing perfect
linear slopes as expected. However, if we observe the intensity
of the block along the depth z = 30 mm, in Fig. 11b, we see
that the calibrated signals still differ from the theoretical for
some of the methods.

This can be explained. The pixel intensity produced by
coherent-based methods, such as CF, PCF, and GCF is highly
dependant on the ratio of coherent to incoherent energy, which
in turn depends on the slope of the gradient. In gradients that
change slowly, along the lateral direction, this ratio will be
larger than in gradients that change more abruptly. And hence,
it becomes then impossible to find a single calibration curve
for the whole image, and for the whole algorithm.
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Fig. 12: The DAS image of the simulated phantom with all
other elements of the phantom removed but the axial gradient
in (a). In (b) the average response of the axial gradient, when
only the axial gradient is present in the image, is plotted for
all beamformers.

Consider the phantom in Fig. 12a where only the axial
gradient is included. Fig. 12b shows the DR transformation
curves for DAS, CF, GCF, F-DMAS, MV, EBMV, and PCF.
Notice that, in this case, all beamformers leave the output
DR almost unaltered. We must then conclude that it is the
presence of the other structures, in the lateral direction, that
induces DR stretching. Based on these two results we now
believe, contrary to in [20], that compensating for that effect
is extremely difficult, if not impossible.

Even though we cannot correct DR transformations it is
important to be aware of its consequences. The images in
Fig. 7 and 8 illustrated that DR stretching can lead to some
information not being displayed, an information that could be
clinically relevant. In most cases that information could be
recovered if the image is displayed using a different dynamic
scale, but that will also reduce the apparent visual contrast that
seems to correlate with the increase in C and CNR values.

We showed that DR transformation makes any estimation
of CR and CNR questionable, and given that some adaptive
beamformers transform the output DR, it follows that claims
on lesion detectability based on CR and CNR estimates should
be revised. We have introduced datasets and code making it
possible to investigate whether and how much a beamforming
method is alternating the DR.

The results presented here expose a dangerous weakness of
our image quality metrics. This weakness must be remediated.
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We must lay the groundwork upon which we build the new
techniques. A new metric for contrast must be sought, one
that is immune to dynamic range transformations, and help
us assess the relevance of present and future beamforming
techniques.

VI. CONCLUSION

We propose a dynamic range test to estimate the output
dynamic range of any beamforming algorithm. This test, com-
prising data and code, is made publicly available through the
UltraSound ToolBox (USTB, http://www.USTB.no/dynamic
range test/), allowing anyone to check if an algorithm trans-
forms the output DR of the beamformed images.

We applied the proposed test to several state-of-the-art
algorithms: DAS, MV, EBMV, F-DMAS, CF, GCF and PCF.
We show that some state-of-the-art beamformers alter the DR
either by compressing it, by stretching it, or by a combination
of both. The amount of dynamic range alteration, as measured
by the dynamic range test, correlates the CR improvement with
R2-adj=0.88 for the simulated data and R2-adj=0.98 for the
experimental data.

Our results show that improvements in CR and CNR can,
for some beamformers, be explained by a stretching of the
dynamic range. Thus, claims on lesion detectability based
on the CR and CNR metrics should be revised, and metrics
immune to dynamic range alterations should be sought.
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HYPOTHESIS OF IMPROVED VISUALIZATION OF MICROSTRUCTURES IN THE
INTERVENTRICULAR SEPTUM WITH ULTRASOUND AND ADAPTIVE

BEAMFORMING

OLE MARIUS HOEL RINDAL,* SVEND AAKHUS,y SVERRE HOLM,* and ANDREAS AUSTENG*
*University of Oslo, Oslo, Norway; and yNorwegian University of Science and Technology, Trondheim, Norway
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Abstract—In this work, in vivo ultrasound cardiac images created with Capon’s minimum variance adaptive
beamformer are compared with images acquired with the conventional delay-and-sum beamformer. Specifically,
we provide three views of a human heart imaged through the parasternal short-axis, the parasternal long-axis and
the apical four-chamber views. The minimum variance beamformer produced images with improved lateral res-
olution, resulting in better resolved speckle structure and improved edges, especially on close investigation of the
interventricular septum. These improvements in image quality might possibly improve the visualization of micro-
structures in the human heart. (E-mail: omrindal@ifi.uio.no) � 2017 World Federation for Ultrasound in Med-
icine & Biology.

Key Words: Minimum variance beamforming, Capon beamforming, Ultrasound imaging, Cardiac imaging.

INTRODUCTION

B-Mode ultrasound imaging has seen significant im-
provements in image quality over the years. A major
step up was the shift from analog to digital beamform-
ing. A similar improvement was due to better trans-
ducers resulting in higher frequencies and larger
bandwidths (Szabo 2014). More bandwidth led the
way to yet another improvement with the introduction
of tissue harmonic imaging (Kornbluth et al. 1998;
Spencer et al. 1998).

Today, we are witnessing yet another step up in
image quality resulting from increased computer po-
wer. It allows beamforming to be performed in flexible
software implementations. Software beamforming has
led to the breakthrough of ultrafast imaging
(Montaldo et al. 2009). It also allows much more flex-
ibility leading to manifold of new methods. Adaptive
beamformers, in which the processing of the data
adapts to the data recorded, have received much of
the attention. Capon’s minimum variance (MV) beam-
forming (Capon 1969) was one of the first such tech-
niques to be applied to medical ultrasound by Mann
and Walker (2002). The benefits of the MV beam-

former are first and foremost improved lateral resolu-
tion (Synnev�ag et al. 2009) and somewhat increased
contrast (Rindal et al. 2014).

The computational load of the MV beamformer is
orders of magnitude higher than that for conventional
delay-and-sum (DAS) beamforming. However, �Asen
et al. (2014) successfully demonstrated that the MV
beamformer satisfies real-time processing requirements
for a cardiac application when implemented on a graph-
ical processing unit. The focus of their work was mainly
on the implementation details; the image quality of the
cardiac image was only briefly investigated.

In this work, our hypothesis is that the MV beam-
former improves lateral resolution with possible im-
provements in visualization of microstructures in the
human heart. We illustrate this by comparing in vivo im-
ages of a human heart obtained with MVand DAS beam-
forming. Different heart diseases alter the myocardial
microstructures differently. For example, the microstruc-
ture of fibrosis in cardiomyopathies will differ from that
in ischemic heart disease. Therefore, better visualization
of cardiac microstructure may help the clinician to reach
the correct diagnosis for a given patient.

In this article, we give a short introduction to the data
acquisition and beamforming algorithms and then present
three different views of the interventricular septum and
discuss our findings.
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METHOD

Data acquisition
Channel data were acquired using the Verasonics

Vantage 256 system (Verasonics, Kirkland, WA, USA)
with the Verasonics P4-2v 64-element, 0.3-mm pitch,
phased array probe transmitting with a center frequency
at 3 MHz and sampled at four times the center frequency.
Each image is created from 101 focused transmit beams,
covering a sector scan from 237.5� to 37.5�. We recon-
structed the images using the fundamental frequency.
The transmit focus was placed at 52 mm for parasternal
views and at 67 mm for the apical four-chamber view.
We imaged the heart of a healthy volunteer from our lab-
oratory, after written consent had been acquired.1 The ul-
trasound images were acquired by a trained professional
using the transthoracic technique with the subject posi-
tioned in left decubitus position. Images on the paraster-
nal and apical imaging planes were obtained. The channel
data were stored and the images were made with the
beamforming in MATLAB (The MathWorks, Natick,
MA, USA).

Delay-and-sum beamforming
In conventional DAS beamforming, every sample

along a depth line sums up the delayed received signals
from every element:

SDAS½z�5
XM21

m5 0

wmym½z�5wHY½z� (1)

Here, M is the number of elements, z is every depth
sample, ym is the correctly delayed signal from element
m, and wm is a pre-defined weight. The delays are calcu-
lated as in von Ramm and Smith (1983). The matrix Y is a
matrix consisting of the correctly delayed channel data,
and w is the apodization. In this study, we used uniform
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Fig. 1. Parasternal short-axis views obtained with delay-and-sum beamforming (DAS) and minimum variance beam-
forming (MV). The increased resolution in the MV image results in a better resolved speckle pattern, especially in the
interventricular septum. Also, note the improved edge between the left ventricle and the interventricular septum. The

red box denotes the zoomed-in region of the interventricular septum shown in Figure 2.
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Fig. 2. Zoom of the interventricular septum in the parasternal
short-axis view. The small (yellow) circle indicates a good
example of improved lateral resolution in theminimum variance
beamforming (MV) image compared to the delay-and-sum
beamforming (DAS) image, whereas the larger (green) circle in-
dicates an example of where the edge between the left ventricle

and the interventricular septum has been improved.

1This study received a Letter of Exemption from the Regional
Committee for Medical & Health Research Ethics in Norway with
Institutional Review Board Reference No. IRB00001870 REK
because they ‘‘found the Research Project to be outside the remit of
the Act on Medical and Health Research (2008).’’
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apodization for DAS because this gives the best
resolution.

Minimum variance beamforming
In Capon’s MV beamforming technique (Capon

1969), we calculate a data-dependent weight set to use
in the summation. The weight set is the one that mini-
mizes the output power, but maintains gain equal to one
in the steering direction;

minwE
�jS½z�j2�5wHRw (2)

subject to wHa5 1 (3)

The solution is

w5
R21a

aHR21a
; (4)

with steering vector a 5 1 because the data are already
delayed. One weight set is calculated for every sample
of every line in the image. The challenge is to estimate
the spatial covariance matrix RhEfYYHg. We use a
robust implementation of Capon’s MV beamformer as

described by Synnev�ag et al. (2009) with the following
parameters: subarray size of L5 32, 9 (K5 4) depth sam-
ples for estimating the spatial covariance matrix R, and a
diagonal loading factor of D 5 1/100.

Image creation
The beamforming is followed by magnitude squared

envelope detection. Then we normalize the image to the
maximum value from one of the frames in the same re-
corded view before the final logarithmic compression
and scan conversion. The dynamic range is indicated
next to the displayed image.

RESULTS

The results are presented as images made with both
the DAS and the MV beamformers. Figure 1 and
Supplementary Video S1 (online only, all supplementary
videos available at http://dx.doi.org/10.1016/j.
ultrasmedbio.2017.05.023) depict the parasternal short-
axis view, with Figure 2 and Supplementary Video S2
zoomed in on the interventricular septum. The lateral
line at 51-mm depth, at the center of the smallest (yellow)
circle in Figure 2, is plotted in Figure 3. Figure 4 and
Supplementary Video S3 depict the parasternal long-
axis view, with Figure 5 and Supplementary Video S4
zoomed in on the interventricular septum. Figure 6 and
Supplementary Video S5 are from the apical four-
chamber view, with Figure 7 and Supplementary Video S6
zoomed in on the interventricular septum. Figure 8 and
Supplementary Video S7 are zoomed in on the mitral
valve. Note that the image of the mitral valve is from a
different frame than that from which the images in
Figures 6 and 7 are taken. Two different frames were cho-
sen because one highlighted the difference in speckle
structure in the interventricular septum, and the second
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Fig. 3. Lateral line at 51-mm depth through the smaller (yellow)
circle plotted in Figure 2. The plot illustrates the improved
lateral resolution achieved by minimum variance beamforming
(MV). The speckle blob in the delay-and-sum beamforming

(DAS) image is clearly resolved into two scatterers.

DAS, frame=19/50

-50 0 50
Lateral [mm]

30

40

50

60

70

80

90

100

110

120

D
ep

th
 [m

m
]

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

A
m

pl
itu

de
 [d

B
]

MV, frame=19/50

-50
Lateral [mm]

30

40

50

60

70

80

90

100

110

120

D
ep

th
 [m

m
]

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

A
m

pl
itu

de
 [d

B
]

500

Fig. 4. Parasternal long-axis views obtained with delay-and-sum (DAS) and minimum variance (MV) beamforming, also
illustrating improved resolution in the MV image by a better resolved speckle pattern. The red box denotes the zoomed-in

region of the interventricular septum shown in Figure 5.
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highlighted themitral valve’s shape. The general observa-
tion from all the images shown, also indicated by the
plotted lateral line in Figure 3, is that theMV beamformer
exhibits superior lateral resolution compared with the

DAS beamformer. These results are discussed in detail
in the next section.

DISCUSSION

Our claim is that the MV beamformer produces im-
ages with improved lateral resolution resulting in a better
resolved speckle structure and better defined edges. We
support this claim by discussing and comparing images
produced with both the DAS beamformer and the MV
beamformer from three different views of a heart: para-
sternal short-axis, parasternal long-axis and apical four-
chamber views.

When comparing the DAS and MV images from the
parasternal short-axis view in Figure 1, we observe that
the increased resolution of the MV beamformer results
in a better resolved speckle structure, especially when
closely investigating the zoomed in image of the interven-
tricular septum in Figure 2. An example is highlighted
with the smallest (yellow) circle at 51-mm depth and
approximately 3-mm lateral position. When looking at
the DAS image for this particular region, we see one large
speckle blob. However, when looking at the MV image,
we see that this large blob has been resolved into two
separate scatterers. This is also illustrated by plotting
the lateral line through this specific point in Figure 3.
When comparing the DAS and MV lateral lines, we see
that the MV beamformer has a dip of approximately
10 dB at a lateral position equal to 3 mm, resulting in
the two separate scatterers shown in the image.

We also observe that the edge between the interven-
tricular septum and the left ventricle, especially at depths
from 62 to 72 mm and lateral positions from 217 to
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Fig. 5. Zoom of the interventricular septum in the parasternal
long-axis view. The better resolved speckle pattern obtained
with minimum variance beamforming (MV) compared to
delay-and-sum beamforming (DAS) is especially seen in the

interventricular septum.
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Fig. 6. Apical four-chamber view for both delay-and-sum (DAS) and minimum variance (MV) beamforming, where the
improved lateral resolution of the MV beamformer is reflected by the better resolved speckle pattern and narrower mitral
valve. The red box denotes the zoomed-in region of the interventricular septum shown in Figure 7, and the green box

denotes the zoomed-in region of the mitral valve in Figure 8.
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27 mm, indicated by the largest (green) circle in
Figure 2, is better resolved because the larger speckle
blobs on the edge are resolved into smaller scatterers in
the MV image. The improved edge is in agreement with
the findings of Rindal et al. (2014). However, it is worth
pointing out that the edge between the interventricular
septum and the left ventricle does not seem to be
improved in the MV image compared with the DAS im-
age in Figure 8.

From the images of the parasternal long-axis view in
Figure 4, we also observe that the MV beamformer gives
a better resolved speckle structure. This is particularly
clear when we investigate the speckle pattern in the inter-
ventricular septum, which is zoomed on in Figure 5.

Our final example is the apical four-chamber view in
Figure 6, with the zoomed-in image of the interventric-
ular septum in Figure 7. In the image, we once again
observe that the MV beamformer gives a better resolved
speckle structure in the interventricular septum. In
Figure 8 is a zoomed-in image of the mitral valve.
When investigating the valve, we see that both the valve
and the septum are much narrower because of the
improved lateral resolution. We also see the better
resolved speckle structure, for example, resolving the
large speckle blob in the DAS image at depth 106 mm
and lateral position 220 mm into two scatterers in the
MV image.

CONCLUSIONS

We used the MV beamforming technique on
in vivo cardiac ultrasound data creating images from
three different views of a heart: the parasternal
short-axis, parasternal long-axis and apical four-
chamber views. The images reveal that the improved
resolution of the MV beamforming technique pro-
duces images with improved lateral resolution, result-
ing in a better resolved speckle structure compared
with that of conventional DAS beamforming. Myocar-
dial microstructure, that is, the architecture of cardio-
myocytes, connective tissue fibers, blood vessels and
neural tissue, contributes to the reflected ultrasound
data. Further studies are needed to identify the
efficiency of MV compared with DAS in terms of
identifying pathological alterations in this
microstructure.
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Fig. 7. Zoom of the interventricular septum in the apical four-
chamber view highlighting the better resolved speckle structure
obtained with minimum variance beamforming (MV) compared

to delay-and-sum beamforming (DAS).
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Fig. 8. Zoom of the mitral valve in the apical four-chamber view. Note that this is from a frame different from that for
Figures 6 and 7. Both the valve and septum are narrower in the minimum-variance beamforming (MV) image because of
the improved lateral resolution. Note also that the speckle blob in the delay-and-sum beamforming (DAS) image at depth

106 mm and lateral position 220 mm is resolved into two scatterers in the MV image.
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Supplementary data related to this article can be found at http://
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Appendices





Appendix A

Deriving the two-way resolution

The one way angular resolution at -6dB can be approximated by (Harris 1978)

θ6dB ≈ 1.21λ

D
, (A.1)

where D is the size of the full array aperture and λ is the wavelength.
We will now derive an expression for the two-way resolution. Assuming point

sources and that the same sized array is used on both transmit (tx) and receive
(rx). We know that the two-way beampattern can be calculated by taking the
square of the one way beampattern (Johnson and Dugdeon 1993)

Wtwo way = WtxWrx = W 2
one way. (A.2)

Figure A.1: The beampattern, a sinc, for some array with size D for some
wavelength λ together with a Gaussian with zero mean and some standard
variation σ. In the top we have plotted the beampattern and the Gaussian in
linear scale, while we in the bottom have plotted them in dB scale. We have also
indicated 1/2 and 1/

√
2 in the linear scale, resulting at ≈ −6dB and ≈ −3dB

in the dB scale.

From Figure A.1, we see that the central part of the mainlobe of the beampat-
tern can be approximated by a Gaussian curve. In Figure A.1 we have plotted the
beampattern, a sinc, for some array with size D for some wavelength λ together
with a normalized Gaussian with zero mean and some standard variation σ.
In the top of Figure A.1 we have plotted the beampattern and the Gaussian
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A. Deriving the two-way resolution

curve in linear scale, while we in the bottom have plotted them in dB scale. We
have also indicated 1/2 and 1/

√
2 in the linear scale, resulting at ≈ −6dB and

≈ −3dB in the dB scale.
Using a normalized Gaussian curve we can find the half width, h, of the

mainlobe at 1
2 in linear scale (corresponding to −6dB) by

1
2

= e
−h2
2σ2

ln
(

1
2

)
=

−h2

2σ2

⇓

h2 = −2 ln
(

1
2

)
σ2 = 2 ln(2)σ2.

While at the 1√
2

(corresponding to −3dB) we find the half width, g, of the
mainlobe by

1√
2

= e
−g2
2σ2 (A.3)

ln
(

1√
2

)
=

−g2

2σ2 (A.4)

⇓ (A.5)

g2 = −2 ln
(

1√
2

)
σ2 = ln(2)σ2. (A.6)

The g and h is only half the width of the mainlobe, and thus to get the full width
we need to multiply with 2. The relationship between the θ−3dB and θ−6dB , but
in linear scale, is then

2g

2h
=

2
√

ln(2)σ2

2
√

2 ln(2)σ2
=

1√
2

. (A.7)

Finally, using that Wtwo way = W 2
one way, then Wtwo way 6dB = Wone way 3dB as

illustrated in Figure A.2.
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Figure A.2: The one-way and two-way beampattern plotted indicating that
Wtwo way 6dB = Wone way 3dB .

We get

θ6dB two way =
1√
2

θ3dB one way =
1√
2

1.21λ

D
, (A.8)

and if we use a small angle approximation at depth z

xres two way =
1√
2

xres one way =
1.21λz√

2D
. (A.9)
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