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ABSTRACT 24 

Sources of prediction uncertainties in hydrologic modeling are commonly itemized and 25 

evaluated individually, while a comprehensive assessment of the effects of different sources 26 

of uncertainty on the deterministic simulation and probabilistic assessment is limited. This 27 

study focuses on a quantitative multi-source uncertainty analysis of multi-model predictions. 28 

Sources of uncertainties considered include the rainfall input uncertainty, parameter 29 

uncertainty, and model structural uncertainty. In the study, three widely used hydrological 30 

models, e.g., the Xinanjiang (XAJ), hybrid rainfall-runoff (HYB) and HYMOD (HYM) 31 

models were first calibrated by two parameter optimization algorithms, namely the Shuffled 32 

Complex Evolution (SCE-UA) method and the Shuffled Complex Evolution Metropolis 33 

(SCEM-UA) method on the Mishui River basin, south China. Then, the input uncertainty 34 

was quantified by utilizing a normally distributed error multiplier. Lastly, the ensemble 35 

simulation sets calculated from the three models were combined using the Bayesian Model 36 

Averaging (BMA) method. The results indicate that: (1) both SCE-UA and SCEM-UA 37 

resulted in good and comparable streamflow simulations that have high Nash-Sutcliffe 38 

coefficient (NSE) values and small relative bias (BIAS) values. Specifically, the SCEM-UA 39 

implied parameter uncertainty and provided the posterior distribution of the parameters. (2) 40 

In terms of the precipitation input uncertainty, the precision of streamflow simulations did not 41 

improve remarkably. (3) The BMA combination not only improved the precision of 42 

streamflow prediction, but also quantified the uncertainty bounds of the simulation. (4) The 43 

prediction interval calculated using SCEM-UA based BMA combination approach appears 44 

superior to that calculated using SCE-UA based BMA combination for both the high flows 45 

and low flows. The overall results suggest that the comprehensive uncertainty analysis 46 

concerning model parameter uncertainties and multi-model ensembles by using the 47 

SCEM-UA algorithm and BMA method is superior for streamflow predictions and flood 48 

forecasting, because this approach can collectively provide more robust streamflow series 49 

and more reliable uncertainty bounds both at calibration and validation periods. 50 

Keywords: hydrological prediction, uncertainty analysis, ensemble, parameter optimization, 51 

Bayesian Model Averaging 52 
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1 Introduction 54 

Hydrological models have been widely used in watershed hydrological processes simulation, 55 

flood forecasting and impact study of climate change and land-use change (Hailegeorgis & 56 

Alfredsen, 2015; Emam et al., 2016; Jie et al., 2016); and they play important roles in 57 

understanding of the complex hydrologic cycle and solving practical hydrologic problems 58 

(Singh et al., 2002). Since 1850s, hydrological models have experienced abundant 59 

development from empirical models through lumped conceptual models to physically-based 60 

distributed models (Todini, 2011). Nowadays, the precision of hydrological prediction has 61 

increased with the development of the model structure and improvement of the input data 62 

precision. However, in the hydrological processes simulation and flood forecasting, there still 63 

inevitably exist different modeling uncertainties, i.e. parameter uncertainty, input uncertainty 64 

and model structural uncertainty (Beven et al., 2000). Quantification and reduction of these 65 

uncertainties in hydrological modeling remain as challenges for hydrologists. 66 

Numerous studies have recently focused on the itemized analysis of uncertainties of 67 

hydrological modeling (Krzysztofowicz, 1999; Kavetski et al., 2006; Duan et al., 2007; 68 

McMillan et al., 2011; Liang et al., 2013; Dong et al., 2013; Yen et al., 2014a; Yen et al., 69 

2015a and 2015b; Zhou et al., 2016). They highlighted that input error quantification, 70 

parameter optimization, and multi-model ensemble strategies are the three most popular 71 

methods used to demonstrate the impacts of hydrological prediction uncertainties. Rainfall is 72 

the most important input data for a hydrological model; thus, adequate characterization of 73 

rainfall is fundamental for the success of rainfall-runoff modeling. The true value of the 74 

amount of watershed rainfall in practice is often unknown because of its high spatial 75 

variability and insufficient rain gauge observations. Hence, an accurate statistical 76 

representation of watershed rainfall errors is critical for the estimation of uncertainty of 77 

rainfall inputs, which affect streamflow simulations. Kavetski et al. (2006) introduced a 78 

normally-distributed error multiplier to reduce the precipitation input uncertainty. McMillan 79 

et al. (2011) evaluated the multiplicative error model of rainfall uncertainty and implied the 80 
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dependence of rainfall error structure on the time-step data. Yen et al. (2015a) assessed the 81 

effects of the latent variables on the model simulations and implied the improvement of the 82 

model results is still limited. In hydrological modeling, model parameters often need to be 83 

calibrated based on observed hydrographs. Two main parameter calibration methods are 84 

currently used. In the first method, only one optimal parameter set can be obtained for a basin 85 

and model, and the typical algorithms are Genetic Algorithm (GA, Wang et al., 1991); 86 

Shuffled Complex Evolution (SCE-UA, Duan et al., 1992) and Dynamically Dimensioned 87 

Search (DDS, Tolson and Shoemaker, 2007). In the other method, the model parameter 88 

involves one set of random variables that follow a certain joint probability distribution, and 89 

the typical algorithms are Generalised Likelihood Uncertainty Estimation (GLUE, Beven and 90 

Binley, 1992); Shuffled Complex Evolution Metropolis (SCEM-UA, Vrugt et al., 2003) and 91 

Differential Evolution Adaptive Metropolis (DREAM, Vrugt et al., 2009). Different 92 

optimization algorithms demonstrated different convergence speed and behavioral statistics 93 

in model parameter calibration and uncertainty analysis (Xu et al., 2013; Yen et al., 2014a). 94 

Among the mentioned optimization algorithms, the SCE-UA and SCEM-UA approaches 95 

have been widely used in parameter calibration and uncertainty analysis in the literature, but 96 

the effects of the two algorithms on the deterministic simulation and probability prediction 97 

still need to be evaluated and compared further. This consideration has motivated our current 98 

study.  99 

Different hydrological models have diverse foci in describing hydrological physical 100 

processes. No one model can sufficiently describe the principles of watershed rainfall-runoff 101 

in all conditions (Chen et al., 2013). Hence, an ensemble strategy based on multiple models 102 

has been considered as an effective method to reduce the uncertainty of model structures and 103 

improve the precision of hydrological predictions. Different model combination methods, 104 

such as neural network (Shamseldin et al., 1997), fuzzy system (Xiong et al., 2001), and 105 

Bayesian model averaging (BMA; Raftery et al., 2005), have emerged. In which, BMA is 106 

the representative method that can consider the weighted average of the individual 107 
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predictions from various models. It has been widely used in hydrological ensemble prediction 108 

studies. For example, Raftery et al. (2005) applied BMA to dynamic numerical weather 109 

predictions and attained valuable results. Duan et al. (2007), Liang et al. (2013), Dong et al. 110 

(2013), Yen et al. (2015b), Arsenault et al. (2015) and Zhou et al. (2016) successfully used 111 

BMA to combine multi-model/multi-method simulations to obtain more robust streamflow 112 

series and more reliable probability predictions. Jiang et al. (2012, 2014) also applied BMA 113 

to merge the multi-satellite precipitation-based streamflow simulations to improve the 114 

hydrological utility of satellite precipitation products. 115 

There are also some researches on assessment of the effects of different uncertainty 116 

sources on the hydrological modeling (Kavetski et al., 2006; Ajami et al., 2007; Yen et al., 117 

2014b). While the comprehensive assessment of the effects of different uncertainty sources 118 

on the deterministic simulation and probability prediction is still limited. Thus, the current 119 

study focuses on uncertainty analysis of multi-source and multi-model hydrological 120 

prediction. The innovations of the study include: (1) it considers rainfall input uncertainty, 121 

parameter estimation uncertainty, and model structural uncertainty by using three models, 122 

i.e., Xinanjiang (XAJ), hybrid rainfall-runoff (HYB), and HYMOD (HYM) models; (2) it 123 

compares the effects of SCE-UA and SCEM-UA algorithms on the hydrological prediction 124 

results; and (3) it investigates the superiority of the BMA multi-model ensemble strategy over 125 

the individual modelling approach. The study is conducted in a humid catchment in southern 126 

China. The remainder of this paper is organized as follows. Section 2 introduces the study 127 

area and data sets used. Section 3 describes the methodology and models. Section 4 discusses 128 

the simulation results of different simulation scenarios. Finally, Section 5 draws the 129 

conclusions. 130 

2 Methodology 131 

The flowchart for the multi-source uncertainty analysis of multi-model predictions is 132 

shown in Fig.1. We adopted three different simulation cases to systematically consider the 133 
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three sources (i.e., parameter uncertainty, input uncertainty and model structural uncertainty) 134 

of hydrological modeling uncertainties. In case I, the model parameter uncertainty 135 

(hereafter “Para”) using SCE-UA and SCEM-UA algorithms for three hydrological 136 

models, i.e., XAJ, HYB, and HYM, was determined. In case II, a normally distributed 137 

error multiplier and combined parameter optimization algorithms were introduced to 138 

consider the model input and model parameter uncertainties (hereafter “Para+input”). In 139 

case III, the simulations calculated from case II were combined using BMA to 140 

comprehensively determine the model input, model parameter, and model structure 141 

uncertainties (hereafter “Para+input+struc”). The detailed methodologies are as follows. 142 

 143 

Figure 1 144 

 145 

2.1 Hydrological models 146 

Xinanjiang model, hereinafter referred to as XAJ, is a well-known conceptual hydrological 147 

model developed by Zhao in the 1970s in China (Zhao, 1992). In the present study, a 148 

sub-basin-structured semi-distributed XAJ model for streamflow simulation was 149 

constructed. The simulation was performed by computing the runoff from each sub-basin, 150 

and the slope and river network convergence processes were then integrated to obtain the 151 

streamflow series of the hydrologic station. A hybrid rainfall-runoff model, hereinafter 152 

referred to as HYB, is a modified version of the XAJ model (Hu et al., 2005). Numerous 153 

field studies have shown that runoff within a basin is mainly generated by infiltration 154 

excess (Horton) runoff and saturation excess (Dunne) runoff (Ren et al., 2008). HYB 155 

model combines the two runoff generation mechanisms by introducing spatial distribution 156 

curves of soil tension water storage capacity and infiltration capacity. Detailed description 157 

of the mechanisms and applications of the HYB model was discussed by Hu et al. (2005). 158 

HYMOD, hereinafter referred to as HYM, is a simple conceptual lumped hydrological 159 
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model developed by Moore in the 1980s (Moore, 1985). HYM consists of a simple rainfall 160 

excess model, which is connected to two series of linear reservoirs to route surface and 161 

subsurface flow. In the present study, an evaporation reduction factor K and a river 162 

network routing Muskingum-Cunge model were added to the original HYM. These three 163 

hydrological models have different complex model structure and different runoff 164 

generation mechanisms. They have been successfully and widely used in different river 165 

basins for streamflow simulation and flood forecasting (Ajami et al., 2007; Ren et al., 166 

2008; Najafi et al., 2011; Jie et al., 2016; Xu et al., 2016). Tables 1-3 show the parameters 167 

and their prior ranges of the three models. 168 

  169 

Table 1 170 

Table 2  171 

Table 3 172 

 173 

The models were operated on daily time step within the 15 sub-basins in Mishui 174 

basin. Calibration period was from January 2000 to December 2005, and the period from 175 

January 2006 to December 2008 was used as validation period. This period of data was 176 

considered to be more representative of the current climate and landuse situation of the 177 

study region. 178 

2.2 Input error modeling 179 

The main inputs of the hydrological models are the hydro-meteorological data sets, in 180 

which precipitation is the most important one (Ajami et al., 2007). In this study, we 181 

adopted an error multiplier to determine the precipitation input uncertainty.  182 

t t tP P                                     (1) 183 

),( 2

mt mN                                   (2)                                                                                                                       184 

where tP  and tP  are the measured and modified precipitation at time step t, respectively; 185 

t  is a normal error multiplier with a mean value of m and a variance of 
2

m  at time step 186 

t. Based on the research of Ajami et al (2007), we assume that [0.9,1.1]m  and 187 
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2 5 3[10 ,10 ]m
  . 188 

2.3 Parameter optimization 189 

SCE-UA is an effective and efficient global optimization algorithm proposed by Duan et 190 

al. (1992). It has been widely used in hydrological model parameter optimization. 191 

SCE-UA combines the direction searching of deterministic, non-numerical methods and 192 

the robustness of stochastic, non-numerical methods. It adopts the competition evolution 193 

theory, concepts of controlled random search, complex shuffling method, and downhill 194 

simplex procedures to obtain a global optimal estimation. Detailed calculation steps of 195 

SCE-UA are found in the study of Duan et al. (1992). 196 

SCEM-UA was built upon the principles of SCE-UA. Vrugt et al. (2003) combined 197 

the strengths of the Monte Carlo Markov Chain sampler with the concept of complex 198 

shuffling from SCE-UA to form the SCEM-UA algorithm, which not only provides the 199 

most probable parameter set, but also estimates the uncertainty associated with estimated 200 

parameters. SCEM-UA can simultaneously identify the most likely parameter set and its 201 

associated posterior probability distribution in every model run (Ajami et al., 2007). 202 

SCEM-UA has been successfully used in hydrologic and climate applications, such as 203 

rainfall-runoff model parameter calibration and uncertainty analysis (Ajami et al., 2007; 204 

Jiang et al., 2014). Detailed calculation steps of SCEM-UA are found in the work of Vrugt 205 

et al. (2003). In the present study, initial samples were obtained and then computations 206 

using SCEM-UA were performed using datasets with 5,000 and 10,000 samples. 207 

2.4 BMA 208 

BMA is a scheme for model combination that derives consensus predictions from 209 

competing predictions using likelihood measures as model weights. BMA has been 210 

primarily used to generalize linear regression applications. Raftery et al. (2005) 211 

successfully applied BMA to dynamic numerical weather predictions. Duan et al. (2007) 212 

and Ajami et al. (2007) used the BMA scheme to combine multiple models for hydrologic 213 

ensemble prediction that can provide more skillful and reliable predictions. The advantage 214 
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of BMA is that the weights are directly bound with individual model simulation, that is, a 215 

well performing model can receive a higher weight than a poorly performing one. A more 216 

stable result can be obtained when BMA method is used to combine different simulations. 217 

In the present study, we use BMA to merge the streamflow simulations from the three 218 

different hydrological models. Detailed calculation steps of the BMA method are found in 219 

the studies of Duan et al. (2007) and Ajami et al. (2007). For the sake of completeness, a 220 

brief description of the essence of the BMA scheme is presented as follows.  221 

Consider y  is BMA prediction,  ,D X Y  are observed data sets (in which X  222 

denotes input forcing data and Y  is observed streamflow data) and 1 2[f , f , , f ]kf   is 223 

the ensemble of the K-member predictions. The posterior distribution of the BMA 224 

prediction y  is given as 225 

1

( | ) (f | ) ( | f , )
K

k k k

k

p y D p D p y D


                         (3) 226 

Where ( )kp f D
 
is the posterior probability of the prediction kf  

given the input data 227 

D , and it reflects how well model kf  
fits Y . Actually ( )kp f D  is the BMA weight 228 

kw , and better performing predictions receive higher weights than the worse performing 229 

ones, and all weights are positive and should add up to 1. ( , )k kp y f D
 
is the conditional 230 

probability density function (PDF) of the prediction y
 
conditional on kf  

and D . Thus, 231 

the posterior mean and variance of the BMA prediction could be expressed as:  232 

1

[ | ]
K

k k

k

E y D w f


                               (4) 233 

2 2

1 1 1

[ | ]
K K K

k k i i k k

k i k

Var y D w f w f w 
  

 
   

 
                     (5) 234 

Where 2

k  is the variance associated with model prediction kf  
with respect to 235 

observation D . Compared with the deterministic multi-model combination method, BMA 236 

can better describe the uncertainty of analog variable. In this study, we use the 237 
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expectation-maximization (EM) algorithm to estimate the BMA weight kw
 
and model 238 

prediction variance 2

k  (Ajami et al., 2007). 239 

2.5 Prediction uncertainty interval 240 

For SCE-UA-based simulation, the BMA weights and the variances of each model in the 241 

combination process were calculated, and then Monte Carlo Markov Chain sampling 242 

method was used to calculate the prediction uncertainty interval (Duan et al., 2007). Based 243 

on the repeated sampling experiments, we set the sampling times as 1000. For 244 

SCEM-UA-based simulation, 15000 streamflow series in the BMA combination process 245 

were simulated, and then normal population interval estimation method was used to 246 

calculate the prediction uncertainty interval (Ajami et al., 2007). 247 

2.6 Evaluation statistics 248 

The validation statistical indices Nash-Sutcliffe coefficient (NSE), relative bias (BIAS), 249 

and root mean square error (RMSE) were employed to evaluate hydrologic model 250 

performance based on the observed and simulated streamflow series. These three indices 251 

jointly measured the consistency of the simulated and observed streamflow series both in 252 

terms of temporal distribution and amount. The formulas for NSE, BIAS and RMSE are 253 

given as 254 

2

1

2

1

( )

NSE 1

( )

n

oi si

i

n

oi o

i

Q Q

Q Q







 







                             (6) 255 

%100

1

1 1 







 



 

n

i

oi

n

i

n

i

oisi

Q

QQ

BIAS                          (7) 256 





n

i

oisi QQ
n

RMSE
1

2)(
1                           (8) 257 

Where oiQ  and siQ are the observed and simulated runoff at time step i, respectively, 258 

oQ  and 
sQ are the mean values of the observed and simulated streamflow values, 259 
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respectively, and n  is the number of simulation days. 260 

Other validation statistical indices comprising containing ratio (CR), average 261 

bandwidth (B), and average deviation amplitude (D) were adopted to evaluate the 262 

prediction bounds of the hydrological models (Xiong et al., 2009). CR, expressed as 263 

percentage, denotes the ratio of the number of observed streamflows enveloped by 264 

prediction bounds to the total number of observed hydrographs. B represents the average 265 

bandwidth of the whole prediction bounds. With a certain confidence level, a lower B 266 

value indicates a better prediction bound. D denotes the actual discrepancy between the 267 

trajectories consisting of the middle points of the prediction bounds and the observed 268 

hydrograph. It also shows the symmetry with respect to the observed discharges and the 269 

middle point of the prediction bounds. The formulas for CR, B, and D are given as  270 

%100
n

n
CR c

                              (9) 271 





n
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1
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2
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                        (11) 273 

Where cn  is the number of observed streamflows enveloped by prediction bounds, 274 

n  is the total number of observed hydrographs, and uiq

 

and liq  are the upper and low 275 

boundaries of the prediction bounds at time step i, respectively. 276 

3 Study area and Data   277 

3.1 Study area 278 

Mishui basin, a tributary of the Xiangjiang River, with a drainage area of 9, 972 km2 279 

above the Ganxi hydrologic station, was selected as the study area (Figure 2). The basin is 280 

located southeast of Hunan Province in Southern China and extends from longitudes 281 

112.85°E to 114.20°E and latitudes 26.00°N to 27.20°N. The basin has a complex 282 
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topography, with elevations ranging from 49 m to 2093 m above sea level. The climate is 283 

of humid subtropical monsoon type, with annual average temperature of approximately 284 

18.0 °C and mean annual precipitation of approximately 1561.0 mm. Temporal and spatial 285 

distributions of precipitation in the study region are uneven because of atmospheric 286 

circulation and most of the annual precipitation occurs between April and September. 287 

During these months, particularly in June, basin-wide heavy rains continuously occur, 288 

thereby resulting in flash floods. This multi-model ensemble prediction method can reduce 289 

the streamflow prediction and flood forecasting uncertainties, thus it is important to decision 290 

support system for such river basins to prevent flood disasters and reduce flood damages. 291 

 292 

Figure 2 293 

 294 

3.2 Data 295 

The daily precipitation data from 2000 to 2008 were obtained from 35 rain gauge 296 

stations in the Mishui basin. For the same period, daily streamflow and potential 297 

evapotranspiration data were collected from the Ganxi hydrologic station and Wulipai 298 

evaporation station, respectively. This period of data was considered to be more 299 

representative of the current climate and landuse situation of the study region. The inverse 300 

distance weighting of the three nearest rain gauges was used to obtain the spatially 301 

distributed precipitation database of 15 sub-basins for the Mishui basin. The 30 arc-second 302 

global digital elevation model data were obtained from the U.S. Geological Survey. The 303 

vegetation-type data obtained from the International Geosphere-Biosphere Program were 304 

calculated and showed the land use distribution in the basin as forest and shrubs (54.4%), 305 

grasslands (33.5%), cropland (11.8%), and urban and water (0.3%). 306 

 307 

4 Results and Discussions 308 

4.1 Parameter uncertainty analysis 309 

The model parameters’ prior ranges are defined in Tables 1-3 according to the 310 

physical meanings of the parameters and the actual hydro-climatic conditions of the 311 
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Mishui basin. The SCE-UA algorithm gives a set of optimal solution of the model 312 

parameters, while the SCEM-UA algorithm estimates the posteriori probability density 313 

functions (PDFs) of the model parameters, which can reflect the effect of the model 314 

parameters uncertainty on simulation result. Extraction 10000 group model parameters 315 

after convergence of the SCEM-UA algorithm to plot the parameter frequency histograms, 316 

in which the peak value of the posterior PDFs of the parameters is the optimal parameter 317 

value for all samples. The marginal posterior probability distribution of the XAJ 318 

parameters estimated by SCEM-UA in case I was shown in Figure 3 and the statistical 319 

indices of the posterior probability distribution of the parameters estimated by SCEM-UA 320 

and the optimal parameters estimated by SCE-UA in case I were shown in Table 4. The 321 

histograms of XAJ parameters suggested that 12 parameters such as Kc, WDM, and so on 322 

(including all the sensitive parameters) approximately follow the normal distribution or 323 

the log-normal distribution. While the rest of the two parameters such as WLM and EX 324 

have two or more modal values, and this will increase the uncertainty of parameters 325 

optimization. Table 4 shows that the parameters WDM, EX and CS0 have large CV values, 326 

implying that the mean value of the three parameters has poor representative power and 327 

big uncertainty. Some optimal parameters estimated by SCE-UA and SCEM-UA have 328 

some differences, and the possible reason may be due to the correlation between 329 

parameters and the “equifinality concept” that different parameter sets may produce 330 

similar hydrologic behaviors (Beven and Binley, 1992). Similar to the XAJ model results, 331 

most parameters of the HYB model and all parameters of the HYM model approximately 332 

follow the normal distribution or the log-normal distribution, which explaining the 333 

effectiveness of the SCEM-UA optimization algorithm. Generally, the HYM model has 334 

less number of parameters, which are easy to obey normal distribution. The XAJ and HYB 335 

models have more parameters, for the influence of the correlation between parameters, 336 

their parameters’ uncertainty is larger than HYM model. 337 

 338 

Figure 3  339 

Table 4 340 

 341 
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In order to consider the parameter and input uncertainty together, two rain input error 342 

modeling parameters m and 2

m  are added to model parameter sets and further estimate 343 

the posterior PDFs simultaneously in case II. Figure 4 shows the marginal posterior 344 

probability distribution of the XAJ parameters estimated by SCEM-UA in case II. Table 5 345 

demonstrates the statistical indices of the posterior probability distribution of the 346 

parameters estimated by SCEM-UA and the optimal parameters estimated by SCE-UA in 347 

case II. Comparing the parameter posterior PDFs of case II with that in case I, it can be 348 

concluded that the boundary of the models’ parameters posterior distribution moves to a 349 

much more reasonable direction, and their posterior distributions are much more closer to 350 

normal distribution. The rain input parameter 2

m  is hard to concentrate to a single value, 351 

and it is difficult to optimize its value. This proved that there were rain input errors in the 352 

modeling, and the rain input error multiplier can describe the input errors at a certain 353 

extent. While the two rain input parameters may introduce some new parameter estimating 354 

uncertainty and increase the difficult of parameter optimization. 355 

 356 

Figure 4  357 

Table 5 358 

 359 

4.2 Streamflow comparison between BMA ensemble and Single model 360 

For comprehensive consideration of the model input, model parameter, and model 361 

structure uncertainties, we used the BMA to combine the three models’ simulations at case 362 

II. Figure 5 displays the weight estimates of different models calculated using the BMA 363 

method. For the SCE-UA-based simulations, the weights of the XAJ, HYB and HYM 364 

models are 0.36, 0.31 and 0.33, respectively. For the SCEM-UA-based simulations, the 365 

mean values of the weights of the XAJ, HYB and HYM models are 0.35, 0.32 and 0.33, 366 

respectively. The weight of the BMA method is directly bound to individual model 367 

simulation, that is, a well performing model can receive a higher weight than a poorly 368 

performing one in theory. In this study, the XAJ model got the highest weight value, and 369 

then followed by the HYM model and the HYB model. The HYM model got a higher 370 
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weight value than that of the HYB model, which may be due to the similar model structure 371 

of the XAJ model and the HYB model (Ren et al., 2008). By using the BMA combination, 372 

we can obtain deterministic streamflow series and probability predictions, which 373 

comprehensively considered the multi-source uncertainties. 374 

 375 

Figure 5  376 

 377 

Table 6 shows the statistical performances of the streamflow simulations based on the 378 

SCE-UA and SCEM-UA algorithms of the three simulation cases (in which the value set 379 

in boldface refers to the optimum performance in the column). Figures 6-8 show the BMA 380 

combined streamflow series from the SCE-UA-based simulations and the 381 

SCEM-UA-based simulations of the three simulation cases, respectively. From Table 6 382 

and Figures 6-7, we can see that the three models showed a good hydrologic prediction 383 

applicability in the Mishui basin, in which the XAJ model performed best, followed by the 384 

HYB model, and lastly, the HYM model. Especially for the high flow simulations, the 385 

XAJ model and the HYB model performed much better than the HYM model simulation. 386 

Generally, both parameter optimization algorithms generated good and comparative 387 

streamflow simulations. The SCEM-UA implied parameter uncertainty and provided the 388 

posterior distribution of the parameters. Using the 15000 simulation sets, SCEM-UA 389 

showed a certain advantage over the SCE-UA algorithm in the calculation of the 390 

prediction uncertainty bounds. Given the precipitation input uncertainty in case II, the 391 

precisions of the simulated streamflows using the three models were not remarkably 392 

enhanced. This phenomenon may have been caused by the relatively small precipitation 393 

input uncertainty because of the dense rain gauge observations in the Mishui basin. 394 

Moreover, in the model parameters, an evaporation reduction factor parameter K was set, 395 

and this parameter could imply some precipitation input uncertainty. Our results are quite 396 

consistent with those of Yen et al. (2015a), which reported that the use of error multiplier 397 

to incorporate input uncertainty might not be the proper alternative choice in terms of 398 
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generating better results. In case III, for both the SCE-UA and SCEM-UA algorithms, 399 

BMA combinations of the simulation sets improved the precision of streamflow 400 

predictions, especially during the validation period. This condition was indicated by the 401 

high NSE and the small BIAS and RMSE values from BMA combinations compared with 402 

those from each single model (see Table 6). The daily NSE, BIAS, and RMSE values of 403 

the SCE-UA-based BMA combination in case III for the calibration period were 0.91, 404 

0.04%, and 35.99 m3/s, respectively; and the corresponding values for the validation 405 

period were 0.88, 3.85%, and 56.32 m3/s. The daily NSE, BIAS, and RMSE values of the 406 

SCEM-UA-based BMA combination in case III for the calibration period were 0.92, 407 

0.16%, and 34.66 m3/s, respectively; and the corresponding values for the validation 408 

period were 0.87, 3.49%, and 59.93 m3/s. Using BMA in combining multiple models to 409 

conduct ensemble streamflow simulation can effectively improve the precision of 410 

streamflow simulations, especially for the validation period. 411 

 412 

Table 6 413 

Figure 6 414 

Figure 7 415 

Figure 8 416 

 417 

4.3 Prediction interval comparison between BMA ensemble and Single model 418 

Table 7 shows the reliability performance of the calculated 95% confidence interval 419 

of the three simulation cases. Figures 6-8 show the 95% confidence interval from the 420 

SCE-UA-based simulations (sampling done 1000 times) and from the SCEM-UA-based 421 

simulations of the three simulation cases, respectively. Both parameter optimization 422 

algorithms generated a certain precision of prediction uncertainty interval. However, the 423 

95% confidence interval of the SCEM-UA-based simulation was much better than that of 424 

the SCE-UA-based simulation. With higher CR and lower D values, SCEM-UA algorithm 425 

had an advantage in the estimation of prediction uncertainty bounds compared with the 426 

SCE-UA algorithm. Given the precipitation input uncertainty in case II, the performance 427 
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of the calculated 95% confidence intervals of the three models showed minimal 428 

improvement in terms of higher CR values, especially for the validation period. In case III, 429 

for both the SCE-UA and SCEM-UA algorithms, the reliability performance of the 95% 430 

confidence interval calculated from the BMA combined streamflows was much better than 431 

the performance of the interval from each signal model (see Table 6). The daily CR, B, 432 

and D values of the SCE-UA-based BMA combination for the calibration period were 433 

90.19%, 315.60 m3/s, and 56.70 m3/s, respectively; and the corresponding values for the 434 

validation period were 90.97%, 348.56 m3/s, and 69.74 m3/s. The daily NSE, BIAS, and 435 

RMSE values of the SCEM-UA-based BMA combination for the calibration period were 436 

95.62%, 271.15 m3/s, and 55.03 m3/s, respectively; and the corresponding values for the 437 

validation period were 95.17%, 303.04 m3/s, and 66.06 m3/s. The calculated 95% 438 

confidence interval from BMA combination had higher CR and better D values than those 439 

of each single model. In addition, it also had a higher B value. The increase in the 440 

uncertainty interval CR value was accompanied by the increase in B value, and which has 441 

already been discussed by Xiong et al. (2009) and Dong et al. (2013). Thus, using BMA in 442 

combining multiple models to perform the ensemble hydrologic simulations can 443 

effectively calculate more reliable uncertainty bounds.  444 

 445 

Table 7 446 

 447 

Figure 8 compares the BMA-combined streamflow mean values and the calculated 448 

95% confidence interval with the observed hydrograph at the daily time scales from the 449 

SCE-UA-based simulation and SECM-UA-based simulation for case III. Both SCE-UA- 450 

and SCEM-UA-based BMA combinations generated good streamflow simulations and 451 

reliable 95% confidence intervals. The precisions of streamflow simulations of the 452 

SCE-UA- and SCEM-UA-based simulations were comparatively good, but the reliability 453 

of SCEM-UA-calculated 95% confidence interval was much better than that of SCE-UA 454 

in terms of higher CR and lower B and D values (Table 7). Figure 6 also demonstrates that 455 
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the SCEM-UA-calculated 95% confidence interval can preferably contain the observed 456 

high flows and this is very important for the flood control decision-making. For the low 457 

flow series, the SCEM-UA-based method can give much better confidence interval than 458 

that of the SCE-UA-based method. Thus, the results suggest that determining the model 459 

parameter uncertainties using SCEM-UA algorithm can generate more reliable uncertainty 460 

bounds than that of the simulation from SCE-UA. 461 

 462 

4.4 The different performance in Calibration period and Validation period 463 

For hydrological simulation and forecast, the hydrological model must go through the 464 

model parameters calibration and validation stages. The hydrological model can be 465 

applied to practical use only on the condition that the calibrated model can also perform 466 

well in the validation period (Singh and Woolhiser, 2002). While different hydrological 467 

models have different instabilities in the calibration and validation periods for their variant 468 

climatic conditions, respectively (Yan et al., 2013; Li et al., 2015). Most models can’t 469 

have the same performance in the validation period as that in the calibration period. Figure 470 

9 compares the hydrological models simulation performances in the calibration period and 471 

validation period for the three different simulation cases. Figure 10 shows the distribution of 472 

RMSE for XAJ, HYB and HYM considering different uncertainty sources. From Figure 9 473 

and Figure 10, we can see that both at case I and case II, the three hydrological models have 474 

better simulation precision in the calibration period than that in the validation period. While, 475 

at case III, by using BMA combination of three hydrological models can effectively improve 476 

the precision of streamflow predictions in terms of high NSE value, small BIAS and RMSE 477 

values in the validation period. Normally, hydrological modelling has higher uncertainties in 478 

the validation period than in the calibration period, while the BMA multi-model ensemble 479 

strategy can effectively improve this phenomenon and give a higher skill and reliability 480 

forecasting for the future (Vel´azquez et al., 2011; Broderick et al., 2016). Thus, choosing 481 

appropriate hydrological models, considering the parameter uncertainties, and using the 482 

multi-model ensemble strategy, can improve the accuracy of the hydrological forecasting 483 
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results.  484 

 485 

Figure 9 486 

Figure 10 487 

 488 

5 Conclusions and Suggestions 489 

This study performed a multi-source uncertainty analysis of hydrological prediction by using 490 

input error quantification, parameter optimization and multi-model ensemble methods in a 491 

typical humid watershed in Southern China. The results show that both the SCE-UA and 492 

SCEM-UA parameter optimization algorithms can make the XAJ, HYB, and HYM 493 

models generate good streamflow simulations with NSE values higher than 0.80 and BIAS 494 

values smaller than 7.62%. Specifically, the SCEM-UA can imply parameter uncertainty 495 

and provide the posterior distribution of the parameters. Thus, the SCEM-UA algorithm 496 

has advantageous in the estimation of model parameter uncertainty and predicting 497 

reliable hydrological forecasts. Considering precipitation input uncertainty does not 498 

improve the precision of streamflow simulation in the selected Mishui basin, which is 499 

probably due to the availability of good quality and dense rain gauge stations. While the 500 

BMA combination of the simulation sets calculated from single models not only improves 501 

the precision of streamflow predictions in terms of NSE and BIAS values, but also 502 

quantifies the uncertainty bounds for the simulation sets in terms of CR values. The 503 

improvement of the prediction precision of BMA combination is much more evident in the 504 

validation period than in the calibration period. This finding demonstrates that the 505 

hydrological modelling has more uncertainties in the validation period, and that the BMA 506 

multi-model ensemble can effectively reduce these uncertainties. Comparison of the 507 

prediction uncertainty interval from the two different parameter optimization algorithms 508 

shows that the calculated 95% prediction interval from SCEM-UA-based BMA 509 

simulations is much better than that calculated from SCE-UA-based BMA simulations. 510 
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Hence, these results suggest that the comprehensive uncertainty analysis concerning model 511 

parameters uncertainties and multi-model ensembles by using the SCEM-UA algorithm and 512 

BMA method is advantageous and of practical importance for streamflow predictions and 513 

flood forecasting, which can collectively provide more robust streamflow series and more 514 

reliable uncertainty bounds.   515 
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Fig. 1 The flowchart of the multisource hydrological prediction uncertainty analysis. Para indicates 665 

considering model parameter uncertainty in case I, Para+input+struc means considering model input, 666 

parameter, and structure uncertainties in case III. 667 
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 684 

Fig. 2 Location of Mishui basin in South China 685 
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 695 

Fig. 3 Marginal posterior probability distribution of the XAJ parameters for case I, using 10 000 696 

samples generated after the SCEM-UA algorithm convergence 697 
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 706 

Fig. 4 Marginal posterior probability distribution of the XAJ parameters for case II, using 10 000 707 

samples generated after the SCEM-UA algorithm convergence 708 
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 725 

Fig. 5 Histogram of the BMA weights for the different models. SCE-UA value means the BMA weights 726 

for the SCE-UA based model simulations. SCEM-UA mean value indicates the BMA weights for the 727 

SCEM-UA based model simulations. 728 
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 747 

Fig. 6 The streamflow series and the 95% confidence interval of the three hydrological models, 748 

(a)-(b) from the SCE-UA-based simulations (sampling done 1000 times) and (c)-(d) from the 749 

SCEM-UA-based simulations for case I. 750 
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 754 

Fig. 7 The streamflow series and the 95% confidence interval of the three hydrological models, 755 

(a)-(b) from the SCE-UA-based simulations (sampling done 1000 times) and (c)-(d) from the 756 

SCEM-UA-based simulations for case II. 757 
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 764 

Fig. 8 BMA combined streamflow series and the 95% confidence interval, (a) from the SCE-UA-based 765 

simulations (sampling done 1000 times) and (b) from the SCEM-UA-based simulations for case III. 766 
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 775 

Fig. 9 Comparison of the hydrological model simulation performances in calibration period (CP) and 776 

validation period (VP) for the three different cases. Para indicates considering model parameter 777 

uncertainty in case I, Para+input means considering model input and parameter uncertainties in case II, 778 

Para+input+struc means considering model input, parameter, and structure uncertainties in case III. 779 
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 785 

Fig. 10 Distribution of RMSE for XAJ, HYB and HYM considering different uncertainty sources. Para 786 

indicates considering model parameter uncertainty in case I, Para+input+struc means considering 787 

model input, parameter, and structure uncertainties in case III. The mean values and PDFs of RMSE in 788 

case II are similar to that in case I (see Table 6). 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

 800 

 801 

 802 

 803 

 804 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



35 
 

LIST OF TABLES 805 

Table 1 Parameters of the XAJ model and their prior ranges 806 

Table 2 Parameters of the HYB model and their prior ranges 807 

Table 3 Parameters of the HYM model and their prior ranges 808 

Table 4 The posterior probability distribution parameters with SCEM-UA and the optimal parameters 809 

estimated by SCE-UA and SCEM-UA for the XAJ model in Case I 810 

Table 5 The posterior probability distribution parameters with SCEM-UA and the optimal parameters 811 

estimated by SCE-UA and SCEM-UA for the XAJ model in Case II 812 

Table 6 Precision performance of the streamflow simulation series at different simulation cases 813 

Table 7 Reliability performance of the calculated 95% confidence interval at different simulation cases 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



36 
 

Table 1 Parameters of the XAJ model and their prior ranges 844 

Parameter  Physical meaning Prior Range 

Kc ratio of potential evapotranspiration to pan evaporation  0.5-1.5 

WUM water capacity in the upper soil layer  10-40 

WLM water capacity in the lower soil layer  50-90 

WDM Water capacity in the deeper soil layer  10-70 

B exponent of the tension water capacity curve  0.1-0.5 

C coefficient of deep evapotranspiration  0.1-0.3 

EX exponent of the free water capacity curve  1-1.5 

SM the free water capacity of the surface soil layer  10-60 

KI0 outflow coefficients of the free water storage to interfolw  KI+KG=0.7 

KG0 outflow coefficients of the free water storage to groundwater  0.1-0.5 

CI0 recession constant of the lower interflow storage  0.1-0.9 

CG0 daily recession constant of groundwater storage  0.9-0.999 

CS0 recession constant for channel routing  0.1-0.5 

KE Slot storage coefficient 20-24 

XE Flow proportion factor 0.1-0.5 
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Table 2 Parameters of the HYB model and their prior ranges 867 

Parameter  Physical meaning Prior Range 

Kc ratio of potential evapotranspiration to pan evaporation  0.5-1.5 

WUM water capacity in the upper soil layer  10-40 

WLM water capacity in the lower soil layer  50-90 

WDM Water capacity in the deeper soil layer  10-70 

B exponent of the tension water capacity curve  0.1-0.5 

bx Infiltration capacity distribution curve index 0.1-2 

f0 The average maximum infiltration capacity 5-30 

fc The average stability infiltration capacity 0.1-10 

k Infiltration capacity attenuation coefficient 0.1-0.9 

CS recession constant for channel routing  0.1-0.5 

CG daily recession constant of groundwater storage  0.9-0.999 

C coefficient of deep evapotranspiration  0.1-0.3 

KE Slot storage coefficient 20-24 

XE Flow proportion factor 0.1-0.5 
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Table 3 Parameters of the HYM model and their prior ranges 892 

Parameter  Physical meaning Prior Range 

Kc ratio of potential evapotranspiration to pan evaporation  0.5-1.5 

Cmax Max height of soil moisture accounting tank 1-1000 

bexp Distribution function shape parameter 0.1-2 

Alpha Quick-slow split parameter 0.1-0.99 

Nq Number of quick-flow routing tanks 1-8 

Rs Slowflow routing tanks rate parameter 0.001-0.1 

Rq Quick-flow routing tanks rate parameter 0.1-0.99 

KE Slot storage coefficient 20-24 

XE Flow proportion factor 0.1-0.5 
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Table 4 The posterior probability distribution parameters with SCEM-UA and the optimal parameters 923 

estimated by SCE-UA and SCEM-UA for the XAJ model in Case I 924 

Parameter Kc WUM WLM WDM B C EX 

Mean 1.32  39.43  80.76  31.17  0.49  0.28  1.31  

SD 0.03 0.67 6.03 8.22 0.01 0.02 0.19 

CV 0.02 0.02 0.07 0.26 0.01 0.05 0.15 

SCE-UA 1.49  39.99  50.01  10.06  0.47  0.20  1.42  

SCEM-UA 1.34  39.21  86.06  40.20  0.49  0.29  1.46  

Parameter SM KG0 CI0 CG0 CS0 KE XE 

Mean 24.08  0.38  0.84  0.99  0.13  20.17  0.50  

SD 1.53 0.02 0.02 0.01 0.03 0.27 0.01 

CV 0.06 0.05 0.02 0.00 0.23 0.01 0.00 

SCE-UA 36.64  0.47  0.81 0.99  0.16  20.08  0.50  

SCEM-UA 25.22  0.35  0.85  0.99  0.10  20.01  0.50  

Notes: In the table, SD indicates standard deviation, CV means variable coefficient, SCE-UA and 925 

SCEM-UA mean the optimal parameter values of the two algorithms, respectively.  926 
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Table 5 The posterior probability distribution parameters with SCEM-UA and the optimal parameters 949 

estimated by SCE-UA and SCEM-UA for the XAJ model in Case II 950 

Parameter Kc WUM WLM WDM B C EX SM 

Mean 1.17  39.38  75.38  40.84  0.48  0.29  1.30  22.70  

SD 0.03  0.55  9.61  9.22  0.02  0.01  0.19  0.83  

CV 0.03  0.01  0.13  0.23  0.05  0.03  0.14  0.04  

SCE-UA 1.35  36.59  67.72  54.05  0.50  0.17  1.13  21.15  

SCEM-UA 1.16  39.14  85.56  28.32  0.50  0.29  1.43  22.59  

Parameter KG0 CI0 CG0 CS0 KE XE a v 

Mean 0.38 0.82 0.99 0.11 20.07 0.50 0.954 0.0004 

SD 0.04 0.05 0.00 0.01 0.07 0.00 0.004 0.0003 

CV 0.10 0.06 0.00 0.09 0.00 0.00 0.004 0.5800 

SCE-UA 0.34 0.86 0.99 0.12 20.00 0.50 0.950 0.0002 

SCEM-UA 0.35 0.86 0.99 0.11 20.02 0.50 0.951 0.0003 

Notes: In the table, SD indicates standard deviation, CV means variable coefficient, SCE-UA and 951 

SCEM-UA mean the optimal parameter values of the two algorithms, respectively.  952 
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Table 6 Precision performance of the streamflow simulation series at different simulation cases 976 

Cases 
  SCE-UA    SCEM-UA 

 

NSE BIAS (%) RMSE (m3/s) 

 

NSE BIAS (%) RMSE (m3/s) 

CP 

XAJ (Para)   0.91 -2.36 37.05 

 

0.92  3.13  34.68  

XAJ (Para+input) 

 

0.90  4.37  37.58  

 

0.92  2.23  34.05  

HYB (Para) 

 

0.88 2.50 42.49 

 

0.89  -1.08  39.41  

HYB (Para+input) 

 

0.87  -6.00  42.53  

 

0.88  -3.41  41.27  

HYM (Para) 

 

0.85 1.38 46.51 

 

0.85  1.31  46.63  

HYM (Para+input) 

 

0.85  1.17  46.79  

 

0.85  1.67  46.69  

BMA (Para+input+struc) 

 

0.91  0.04  35.99  

 

0.92  0.16  34.66  

VP 

XAJ (Para)   0.83  1.90  69.23  

 

0.81  6.14  71.95  

XAJ (Para+input) 

 

0.85  7.62  64.03  

 

0.82  5.12  70.23  

HYB (Para) 

 

0.80  6.64  74.37  

 

0.82  3.35  69.35  

HYB (Para+input) 

 

0.86  -2.50  62.26  

 

0.83  -0.70  67.04  

HYM (Para) 

 

0.83  6.25  69.10  

 

0.83  6.17  69.19  

HYM (Para+input) 

 

0.82  5.79  69.42  

 

0.83  6.26  69.08  

BMA (Para+input+struc)   0.88  3.85  56.32  

 

0.87  3.49  59.93  

Notes: In the table, Para indicates considering model parameter uncertainty in case I, Para+input 977 

means considering model input and model parameter uncertainties in case II, Para+input+struc revels 978 

considering model input, model parameter, and model structure uncertainties in case III. The value set 979 

in boldface refers to the optimum performance in the column. 980 
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Table 7 Reliability performance of the calculated 95% confidence interval at different simulation 997 

cases 998 

Cases 
  SCE-UA  (Sampling 1000 times)   SCEM-UA 

 

CR% B(m3/s) D(m3/s) 

 

CR% B(m3/s) D(m3/s) 

CP 

XAJ (Para)   59.31  152.87  58.20    78.65  169.17  52.31  

XAJ (Para+input) 

 

74.86  200.15  60.78  

 

79.06  169.78  51.79  

HYB (Para) 

 

75.05  258.66  74.08  

 

80.34  222.25  64.41  

HYB (Para+input) 

 

81.07  273.01  65.39  

 

78.97  225.23  67.60  

HYM (Para) 

 

71.40  225.70  63.08  

 

85.26  237.97  62.91  

HYM (Para+input) 

 

68.57  212.49  63.29  

 

87.68  254.06  64.01  

BMA (Para+input+struc) 

 

90.19  315.60  56.70  

 

95.62  271.15  55.03  

VP 

XAJ (Para)   62.32  183.64  71.21    80.47  188.68  64.41  

XAJ (Para+input) 

 

73.81  220.50  74.63  

 

81.48  190.31  63.07  

HYB (Para) 

 

71.99  289.95  82.84  

 

80.66  244.40  74.13  

HYB (Para+input) 

 

82.66  285.44  71.71  

 

80.38  249.24  77.14  

HYM (Para) 

 

68.61  270.26  77.88  

 

86.77  261.23  76.62  

HYM (Para+input) 

 

69.16  252.23  76.84  

 

88.96  278.24  77.31  

BMA (Para+input+struc)   90.97  348.56  69.74    95.17  303.04  66.06  

Notes: In the table, Para indicates considering model parameter uncertainty in case I, Para+input 999 

means considering model input and model parameter uncertainties in case II, Para+input+struc revels 1000 

considering model input, model parameter, and model structure uncertainties in case III. The value set 1001 

in boldface refers to the optimum performance in the column. 1002 
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Response for Reviewers: 

Reviewer #1: Quantification and reduction of model input, model parameter and 

model structural uncertainties in hydrological modeling remain as challenges for 

hydrologists. The current study focuses on uncertainty analysis of multi-source and 

multi-model hydrological prediction. The research contents are rich and the 

conclusions are reliable. Also, there are some innovations, including, comparing the 

effects of SCE-UA and SCEM-UA algorithms on the hydrological prediction results; 

and investigating the superiority of the BMA multi-model ensemble strategy over the 

individual modelling approach. Basically I enjoyed reading your paper and I think 

with some minor revisions it will be worthful published in Hydrology Research. And, 

the following comments and corrections should be made: 

Reply: thank you very much for your positive evaluation of our paper, and below is 

our point by point response to your valuable comments. 

(1) Page 4, Introduction: I suggest the authors add some comments about the recently 

research progresses of the model input, model parameter and model structural 

uncertainties analysis.  

Response: 

Thanks for your good suggestion. In the revised manuscript, we have added some 

comments about the recently research progresses of the model input, model parameter 

and model structural uncertainties analysis. To improve the description of the 

state-of-the-art of the topic, following relevant and excellent references have been 

cited and discussed. 

 

Xu, D. M., Wang, W. C., Chau, K. W. & Cheng, C. T. 2013 Comparison of three 

global optimization algorithms for calibration of the Xinanjiang model parameters. 

Journal of Hydroinformatics 15, 174-193. 

Yen, H., Jeong, J., Tseng, W. H., Kim, M. K., Records, R. M. & Arabi, M. 2014a 

Computational Procedure for Evaluating Sampling Techniques on Watershed Model 

Calibration. J. Hydrol. Eng. 20, 04014080-1. 

Yen, H., Wang, X. Y., Fontane D. G., Harmel, R. D. & Arabi, M. 2014b A framework 

for propagation of uncertainty contributed by input data, parameterization, model 

structure, and calibration/validation data in watershed modeling. Environ. Modell. 

Softw. 54, 211–221. 

Yen, H., Jeong, J., Feng, Q. Y. & Deb, D. 2015a Assessment of Input Uncertainty in 

SWAT Using Latent Variables. Water Resources Management 29, 1137-1153.  

Yen, H., White, M. J., Jeong, J., Arabi, M. & Arnold, J. G. 2015b Evaluation of 

alternative surface runoff accounting procedures using the SWAT model. Int J Agric 

& Biol Eng 8, 54-68. 
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(2) Page 6, Hydrological models: the authors should add some explanations why you 

select those three hydrological models. 

Response: 

Thanks for your good suggestion. In the revised manuscript, we have added the 

explanations why we select those three hydrological models. 

“These three hydrological models have different complex model structures and 

different runoff generation mechanisms. They have been successfully and widely used 

in different river basins for streamflow simulation and flood forecasting (Ajami et al., 

2007; Ren et al., 2008; Najafi et al., 2011; Jie et al., 2016; Xu et al., 2016). Tables 1-3 

show the parameters and their prior ranges of the three models.” 

 

(3) Page 7, Hydrological models: the data you used for calibrating and validating 

model is not very long, please give an explanation. 

Response: 

Thanks for your careful reading. We have made a mistake in the submitted manuscript, 

the data used for the study were from 2000 to 2008 instead of from 2003 to 2008 as 

was written in the original version. This period of data was considered to be more 

representative of the current climate and landuse situation of the study region. We 

have clarified it in the revised manuscript. 

 

(4) Page 15, in Figure 4 and 5: The streamflow series and the 95% confidence 

interval of the three hydrological models for case I and II. There are some differences 

for the 95% confidence intervals and the high flow simulations, the authors should 

indicate them and give some discussions in your manuscript to further support your 

research conclusions. 

Response: 

Thanks for your good suggestion. In the revised manuscript, we have demonstrated 

that: 

“From Table 6 and Figures 6-7, we can see that the three models showed a good 

hydrologic prediction applicability in Mishui basin, in which the XAJ model 

performed best, followed by the HYB model, and lastly, the HYM model. Especially 

for the high flow simulations, the XAJ model and HYB model performed much better 

than the HYM model.” 

“Given the precipitation input uncertainty in case II, the performance of the calculated 

95% confidence intervals of the three models showed a minimal improvement in 

terms of higher CR values, especially for the validation period.” 

 

(5) Page 16, Different performance in Calibration period and Validation period: this 
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part analysis is interesting, I suggest that the authors add some relevant references to 

support your conclusions. 

Response: 

Thanks for your good suggestion. In the revised manuscript, we have added the 

following relevant references to support our conclusions. 

“Li, H., Beldring, S. & Xu, C. Y. 2015 Stability of model performance and parameter 

values on two catchments facing changes in climatic conditions. Hydrological 

Sciences Journal 60, 1317-1330. 

Singh, V. P. & Woolhiser, D. A. 2002 Mathematical Modeling of Watershed 

Hydrology. Journal of Hydrologic Engineering 7, 270-292. 

Vel´azquez, J. A., Anctil, F., Ramos, M. H. & Perrin, C. 2011 Can a multi-model 

approach improve hydrological ensemble forecasting? A study on 29 French 

catchments using 16 hydrological model structures. Advances in Geosciences 29, 

33-42. 

Broderick, C., Matthews, T., Wilby, R. L., Bastola, S. & Murphy, C. 2016 

Transferability of hydrological models and ensemble averaging methods between 

contrasting climatic periods. Water Resources Research 52, 8343–8373.” 

 

(6) Finally, the English needs to be further improved. 

Response: 

Thanks for your good suggestion. In the revised manuscript, the co-author Prof. Xu 

(who is a professor in the University of Oslo) has improved the English and grammar 

of the manuscript again and we hope it is to the satisfaction of the journal. 
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Reviewer #2: In this manuscript, two sources (input and structural) of uncertainty 

were incorporated to three different models (XAJ, HYB, and HYM) on hydrological 

models. Overall, the manuscript was well-written and I'm in favor of your work. 

However, there are many significant issues before I can recommend for publication at 

this point.  

1. SCE-UA (developed in 1992) has been shown to be substantially less efficient than 

other optimization approaches (DDS, DREAM, and others) in recent years (Yen et al., 

2014a). Why authors were still using SCE-UA. It does not mean authors have to redo 

everything but proper discussion/justification is needed in the manuscript.  

- Yen, H., Jeong, J., Tseng, W., Kim, M., Records, R., and Arabi, M., 2014a. 

Computational Procedure for Evaluating Sampling Techniques on Watershed Model 

Calibration. J. Hydrol. Eng., 20(7). DOI: 10.1061/(ASCE)HE.1943-5584.0001095 , 

04014080. 

Response: 

Thanks for your positive evaluation of our paper and for your advice on the important 

issue that has been overlooked in our paper. In the introduction section of the revised 

version, we have introduced and discussed the DDS and DREAM approaches and 

their applications in accordance with your advice. The following text has been added: 

“In hydrological modeling, model parameters often need to be calibrated based on 

observed hydrographs. Two main parameter calibration methods are currently used. In 

the first method, only one optimal parameter set can be obtained for a basin and 

model, and the typical algorithms are Genetic Algorithm (GA, Wang et al., 1991); 

Shuffled Complex Evolution (SCE-UA, Duan et al., 1992) and Dynamically 

Dimensioned Search (DDS, Tolson and Shoemaker, 2007). In the other method, the 

model parameter involves one set of random variables that follow a certain joint 

probability distribution, and the typical algorithms are Generalised Likelihood 

Uncertainty Estimation (GLUE, Beven and Binley, 1992); Shuffled Complex 

Evolution Metropolis (SCEM-UA, Vrugt et al., 2003) and Differential Evolution 

Adaptive Metropolis (DREAM, Vrugt et al., 2009). Different optimization algorithms 

demonstrated different convergence speed and behavioral statistics in model 

parameter calibration and uncertainty analysis (Xu et al., 2013; Yen et al., 2014a).  

Among the mentioned optimization algorithms, the SCE-UA and SCEM-UA 

approaches have been widely used in parameter calibration and uncertainty analysis in 

the literature, but the effects of the two algorithms on the deterministic simulation and 

probability prediction still need to be evaluated and compared further. This 

consideration has motivated our current study” 

 

2. Similar work (input, structural uncertainty using BMA) has been done before. For 

example, the framework developed in this study was already developed by Yen et al. 

(2014b) (Integrated Parameter Estimation and Uncertainty Analysis Tool, IPEAT). 

More details of the BMA applications with structural uncertainty can also be found in 
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Yen et al. (2015). However, it was not mentioned/discussed or cited anywhere in the 

manuscript.  

- Yen, H., Wang, X., Fontane, D. G., Harmel, R. D., Arabi, M., 2014b. A framework 

for propagation of uncertainty contributed by parameterization, input data, model 

structure, and calibration/validation data in watershed modeling, Environmental 

Modelling and Software, 54, pp. 211-221, doi: 10.1016/j.envsoft.2014.01.004. 

- Yen H, White M J, Jeong J, Arabi M, Arnold J G. Evaluation of alternative surface 

runoff accounting procedures using the SWAT model. Int J Agric & Biol Eng, 2015; 

8(3): 54-68. doi: 10.3965/j.ijabe.20150803.833. 

Response: 

Thanks for introducing above good works which have been overlooked in our original 

version of the manuscript. In the introduction section of the revised version, we have 

added the introduction of these two works to enhance the literature review and 

knowledge gained in the research field. 

“Duan et al. (2007), Liang et al. (2013), Dong et al. (2013), Yen et al. (2015b) and 

Arsenault et al. (2015) successfully used BMA to combine multi-model/multi-method 

simulations to obtain more robust streamflow series and more reliable probability 

predictions.” 

“There also are some researches about comprehensive assessment of the effects of 

different uncertainty sources on the hydrological modeling (Ajami et al., 2007; Yen et 

al., 2014b).” 

 

3. Line 14-17 (page 3), Line 3-4 (page 5): Interestingly, there are plenty of others 

work cited in this manuscript but not as important. For example, Her et al. 2016 is not 

really serving the primary purpose in this manuscript. Not just this one, I would 

suggest removing some of them.  

Response: 

Thanks for your careful reading. In the revised manuscript, we have deleted some not 

closely related literatures (i.e., Zeng et al., 2016; Her et al., 2016) and added some 

more relevant references. 

 

4. Input uncertainty was incorporated in the hydrological model by using the approach 

proposed by Ajami et al. (2007). However, it was reported that modeling results and 

input uncertainty may not necessarily be improved accordingly (Yen et al. 2015). 

How would you compare and explain your results in the discussion? In addition, 

values of latent variables were not reported in the manuscript. I would suggest adding 

values of latent variables in an independent table.  

- Yen, H., J. Jeong, Q. Feng, D. Deb, 2015. Assessment of Input Uncertainty in 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



SWAT Using Latent Variables. Water Resources Management, 29(4), pp. 1137-1153. 

DOI: 10.1007/s11269-014-0865-y 

Response: 

Thanks for your good suggestions. In the revised manuscript, we have added a Figure 

and a Table of marginal posterior probability distribution of latent variables for the 

XAJ model. 

 

Fig. 4 Marginal posterior probability distribution of the XAJ parameters for case II, using 10 000 

samples generated after the SCEM-UA algorithm convergence 

 

Table 5 The posterior probability distribution parameters with SCEM-UA and the optimal 

parameters estimated by SCE-UA and SCEM-UA for the XAJ model in Case II 

Parameter Kc WUM WLM WDM B C EX SM 

Mean 1.17  39.38  75.38  40.84  0.48  0.29  1.30  22.70  

SD 0.03  0.55  9.61  9.22  0.02  0.01  0.19  0.83  

CV 0.03  0.01  0.13  0.23  0.05  0.03  0.14  0.04  

SCE-UA 1.35  36.59  67.72  54.05  0.50  0.17  1.13  21.15  

SCEM-UA 1.16  39.14  85.56  28.32  0.50  0.29  1.43  22.59  

Parameter KG0 CI0 CG0 CS0 KE XE a v 

Mean 0.38 0.82 0.99 0.11 20.07 0.50 0.954 0.0004 

SD 0.04 0.05 0.00 0.01 0.07 0.00 0.004 0.0003 

CV 0.10 0.06 0.00 0.09 0.00 0.00 0.004 0.5800 
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SCE-UA 0.34 0.86 0.99 0.12 20.00 0.50 0.950 0.0002 

SCEM-UA 0.35 0.86 0.99 0.11 20.02 0.50 0.951 0.0003 

Notes: In the table, SD indicates standard deviation, CV means variable coefficient, SCE-UA and 

SCEM-UA mean the optimal parameter values of the two algorithms, respectively.  

 

And added the following text: 

“Given the precipitation input uncertainty in case II, the precisions of the simulated 

streamflows using the three models were not remarkably enhanced. This phenomenon 

may have been caused by the relatively small precipitation input uncertainty because 

of the dense rain gauge observations in the Mishui basin. Moreover, in the model 

parameters, an evaporation reduction factor parameter K was set, and this parameter 

could imply some precipitation input uncertainty. Our results are quite consistent with 

those of Yen et al. (2015a), which reported that the use of error multiplier to 

incorporate input uncertainty might not be the proper alternative choice in terms of 

generating better results.” 

 

5. BMW weights were not reported/discussed in the manuscript. Please add it.  

Response: 

Thanks for your good suggestion. In the revised manuscript, we have added the report 

of the BMA weights. 

“For comprehensive consideration of the model input, model parameter, and model 

structure uncertainties, we used the BMA to combine the three models’ simulations at 

case II. Figure 5 displays the weight estimates of different models calculated using the 

BMA method. For the SCE-UA-based simulations, the weights of the XAJ, HYB and 

HYM models are 0.36, 0.31 and 0.33, respectively. For the SCEM-UA-based 

simulations, the mean values of the weights of the XAJ, HYB and HYM models are 

0.35, 0.32 and 0.33, respectively. The weight of the BMA method is directly bound to 

individual model simulation, that is, a well performing model can receive a higher 

weight than a poorly performing one in theory. In this study, the XAJ model got the 

highest weight value, and then followed by the HYM model and the HYB model. The 

HYM model got a higher weight value than that of the HYB model, which may be 

due to the similar model structure of the XAJ model and HYB model (Ren et al., 

2008). By using the BMA combination, we can obtain deterministic streamflow series 

and probability predictions, which comprehensively considered the multi-source 

uncertainties.” 
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Fig. 5 Histogram of the BMA weights for the different models. SCE-UA value means 

the BMA weights for the SCE-UA based model simulations. SCEM-UA mean value 

indicates the BMA weights for the SCEM-UA based model simulations. 

 

6. From above, I know it seems that I'm strongly encouraging you to cite and compare 

results according to my work. However, it happens that it is exactly the case I had 

very similar work done in the past few years but not being discussed at all. In addition 

to that, the novelty of the proposed work can be enhanced by highlighting some local 

concerns (for example, why do we need this work in Southern China?). I'm looking 

forward to reviewing the next round revision if you can address all the mentioned 

issues properly.  

Response:  

Thanks again for your professional comments and introducing your excellent work to 

us which not only has greatly enhanced the literature review of this paper, but also 

will broaden our horizons and beneficial to our future study. Also, based on your 

suggestions, we have highlighted some local concerns of Southern China. 

“Temporal and spatial distributions of precipitation in the study region are uneven 

because of atmospheric circulation and most of the annual precipitation occurs 

between April and September. During these months, particularly in June, basin-wide 

heavy rains continuously occur, thereby resulting in flash floods. This multi-model 

ensemble prediction method can reduce the streamflow prediction and flood 

forecasting uncertainties, thus it is important to decision support system for such river 

basins to prevent flood disasters and reduce flood damages.” 
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Reviewer #3: I think the paper provides good information about the different sources 

of uncertainty and their interactions in hydrological modelling. While there have been 

numerous studies addressing this in the past, the way the authors present this case is 

interesting nonetheless. It was enjoyable to read and very clear english, althoush some 

small errors remain. I suggest minor revision and do not recommend the paper be sent 

out for supplemental review once the modifications are brought to the paper. I think it 

could remain at the editorial board level. 

I only have a few comments that the authors should consider addressing. 

Also, a suggestion for further submissions: please use continuous line numbering 

instead of having line numbers start at 1 on each page. It is easier for the reviewers to 

pinpoint lines in the paper. 

Response: 

Thanks for your positive evaluation and encouragement. We have improved the paper 

following your suggestion. Also, in the revised manuscript, we have used continuous 

line numbering instead of having line numbers start at 1 on each page. 

 

1. General comment: The Case I, Case II and Case III are not easily followed until 

the figure captions. Perhaps add a section with clear indications of what to expect 

from each of the three cases.  

Response: 

Thanks for your careful reading. In the revised manuscript, we have introduced their 

indications in the methodology section. 

“The flowchart for the multi-source uncertainty analysis of multi-model predictions is 

shown in Fig.1. We adopted three different simulation cases to systematically 

consider the three sources (i.e., parameter uncertainty, input uncertainty and model 

structural uncertainty) of hydrological modeling uncertainties. In case I, the model 

parameter uncertainty (hereafter “Para”) using SCE-UA and SCEM-UA algorithms 

for three hydrological models, i.e., XAJ, HYB, and HYM, was determined. In case II, 

a normally distributed error multiplier and combined parameter optimization 

algorithms were introduced to consider the model input and model parameter 

uncertainties (hereafter “Para+input”). In case III, the simulations calculated from 

case II were combined using BMA to comprehensively determine the model input, 

model parameter, and model structure uncertainties (hereafter “Para+input+struc”). 

The detailed methodologies are as follows.” 

 

2. Page 2, line 15: NSCE is not defined. Usual Nash-Sutcliffe value is NSE, so 

please define NSCE to make clear. 

Response: 
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Thanks for your good suggestion. In the revised manuscript, we have defined and 

used NSE instead of NSCE. 

 

3. Page 5, line 6-10: Please itemize more clearly, with bullet-points if need be. 

Response: 

Thanks for your suggestion. In the revised manuscript, we have rewritten it following 

your suggestion. 

“The innovations of the study include: (1) it considers rainfall input uncertainty, 

parameter estimation uncertainty, and model structural uncertainty by using three 

models, i.e., Xinanjiang (XAJ), hybrid rainfall-runoff (HYB), and HYMOD (HYM) 

models; (2) it compares the effects of SCE-UA and SCEM-UA algorithms on the 

hydrological prediction results; and (3) it investigates the superiority of the BMA 

multi-model ensemble strategy over the individual modelling approach.” 

 

4. Page 5, line 18: Add a step between 1 and 2 for the hydrological modelling. 

Response: 

Thanks for your good suggestion. In the revised manuscript, combined with your first 

suggestion of Case I, Case II and Case III, we have rewritten it as: 

“The flowchart for the multi-source uncertainty analysis of multi-model predictions is 

shown in Fig.1. We adopted three different simulation cases to systematically 

consider the three sources (i.e., parameter uncertainty, input uncertainty and model 

structural uncertainty) of hydrological modeling uncertainties. In case I, the model 

parameter uncertainty (hereafter “Para”) using SCE-UA and SCEM-UA algorithms 

for three hydrological models, i.e., XAJ, HYB, and HYM, was determined. In case II, 

a normally distributed error multiplier and combined parameter optimization 

algorithms were introduced to consider the model input and model parameter 

uncertainties (hereafter “Para+input”). In case III, the simulations calculated from 

case II were combined using BMA to comprehensively determine the model input, 

model parameter, and model structure uncertainties (hereafter “Para+input+struc”). 

The detailed methodologies are as follows.” 

 

5. Page 11, lines 25-26: How was the normal error multiplier applied? On the 

station data directly or on the final, inverse-distance weighted average? 

Response: 

We have made it clearer that the normal error multiplier was applied on the 15 

sub-basins of the Mishui basin. 

“The inverse distance weighting of the three nearest rain gauges was used to obtain 
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the spatially distributed precipitation database of 15 sub-basins of the Mishui basin.” 

 

6. Page 13, lines 20-30: Please refer to appropriate figures and/or table to support 

these claims. 

Response: 

Thanks for your suggestion. In the revised manuscript, we have added appropriate 

figure and/or table to support these claims. 

“In order to consider the parameter and input uncertainty together, two rain input error 

modeling parameters m and 
2

m  were added to model parameter sets and further 

estimate the posterior PDFs simultaneously in case II. Figure 4 shows the marginal 

posterior probability distribution of the XAJ parameters estimated by SCEM-UA in 

case II. Table 5 demonstrates the statistical indices of the posterior probability 

distribution of the parameters estimated by SCEM-UA and the optimal parameters 

estimated by SCE-UA in case II.” 

 

Fig. 4 Marginal posterior probability distribution of the XAJ parameters for case II, using 10 000 

samples generated after the SCEM-UA algorithm convergence 

 

Table 5 The posterior probability distribution parameters with SCEM-UA and the optimal 

parameters estimated by SCE-UA and SCEM-UA for the XAJ model in Case II 

Parameter Kc WUM WLM WDM B C EX SM 

Mean 1.17  39.38  75.38  40.84  0.48  0.29  1.30  22.70  
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SD 0.03  0.55  9.61  9.22  0.02  0.01  0.19  0.83  

CV 0.03  0.01  0.13  0.23  0.05  0.03  0.14  0.04  

SCE-UA 1.35  36.59  67.72  54.05  0.50  0.17  1.13  21.15  

SCEM-UA 1.16  39.14  85.56  28.32  0.50  0.29  1.43  22.59  

Parameter KG0 CI0 CG0 CS0 KE XE a v 

Mean 0.38 0.82 0.99 0.11 20.07 0.50 0.954 0.0004 

SD 0.04 0.05 0.00 0.01 0.07 0.00 0.004 0.0003 

CV 0.10 0.06 0.00 0.09 0.00 0.00 0.004 0.5800 

SCE-UA 0.34 0.86 0.99 0.12 20.00 0.50 0.950 0.0002 

SCEM-UA 0.35 0.86 0.99 0.11 20.02 0.50 0.951 0.0003 

Notes: In the table, SD indicates standard deviation, CV means variable coefficient, SCE-UA and 

SCEM-UA mean the optimal parameter values of the two algorithms, respectively. 

 

7. Page 14, line 13: How does the 1000-simulation SCE-UA compare to the 

15000-simulation SCEM-UA? there is 14000 simulation difference, was the effect of 

the difference in simulation numbers explored? 

Response: 

Thanks for your question. In our manuscript, for SCE-UA-based simulation, the 

Monte Carlo Markov Chain sampling method was used to calculate the prediction 

uncertainty interval (Duan et al., 2007). We have conducted different sampling times 

test and draw the conclusion that 1000 times is the optimal. In the revised manuscript, 

we have illustrated this point. 

“Based on the repeated sampling experiments, we set the sampling times as 1000.” 

 

8. Figures 4-6: The legend for "observations" overlaps the figure data, so the legend 

looks like it is part of the figure! (the green dot). 

Response: 

Thanks for your careful reading. In the revised manuscript, we have modified the 

legend of the Figures and made them clearer. 

 

For the rest, I think the methodology is clear and concise, the figures are nice and 

required, the tables are of interest and everything looks like it is in its place. 

Thank you again for your appreciation and encouragement. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


