```
Signatures of human-commensalism in the house sparrow genome
Mark Ravinet}\mp@subsup{}{}{1},\mathrm{ Tore Oldeide Elgvin 1,2, Cassandra Trier }\mp@subsup{}{}{1}\mathrm{ , Mansour Aliabadian }\mp@subsup{}{}{3}\mathrm{ Andrey
Gavrilov }\mp@subsup{}{}{4}& Glenn-Peter Sætre 1 $
1Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
2Natural History Museum, University of Oslo, Norway
3}\mathrm{ 3Ferdowsi University of Mashad, Iran
4
Kazakhstan
```

Corresponding author: mark.ravinet@ibv.uio.no
Running head: Genomic signature of commensalism in house sparrows
Keywords: Passer, anthrodependency, selective sweeps, amylase genes, Neolithic
revolution
Word count: (limit = approx 6000 words)
Number of figures: 4

Number of tables: 1

Abstract

House sparrows (Passer domesticus) are a hugely successful anthrodependent species; occurring on nearly every continent. Yet, despite their ubiquity and familiarity to humans, surprisingly little is known about their origins. We sought to investigate the evolutionary history of the house sparrow and to identify the processes involved in its transition to a human-commensal niche.

We used a whole genome resequencing dataset of 120 individuals from three Eurasian species, including three populations of Bactrianus sparrows, a non-commensal, divergent house sparrow lineage occurring in the Near East. Coalescent modelling supports a split between house and Bactrianus sparrow 11 Kya and an expansion in the house sparrow

6 Kya, consistent with the spread of agriculture following the Neolithic revolution. Commensal house sparrows therefore likely moved into Europe with the spread of agriculture following this period.

Using the Bactrianus sparrow as a proxy for a pre-commensal, ancestral house population, we performed a comparative genome scan to identify genes potentially involved with adaptation to an anthropogenic niche. We identified clear signatures of recent, positive selection in the genome of the commensal house sparrow that are absent in Bactrianus populations. The strongest selected region encompasses two major candidate genes; COL11A - which regulates craniofacial and skull development and AMY2A, part of the amylase gene family which has previously been linked to adaptation to high-starch diets in humans and dogs.

Our work examines human-commensalism in an evolutionary framework, identifies genomic regions likely involved in rapid adaptation to this new niche and ties the evolution of this species to the development of modern human civilization.

Introduction

Human activity has had a dramatic impact on life on earth, both negatively and positively with respect to biodiversity. With the advent of agriculture and establishment of more permanent settlements following the Neolithic revolution, came the creation of novel niches that a number of species have been able to utilise. Species that have adapted to a life in anthropogenic surroundings, ranging from pests such as bedbugs or head lice to the precursors to domesticated animals, have in turn had a profound impact on our own societies. However, in many cases the ecological context and evolutionary dynamics of adaptation to a human niche are poorly understood [1].

Anthrodependent or human-commensal taxa differ from domesticated species in that humans do not play a direct role their reproduction, i.e. they do not experience artificial selection $[2,3]$. Nonetheless, these taxa likely benefit from a close relationship with humans. Archetypal examples include our most common rodents such as the house mouse, black and brown rats that have spread with agriculture, colonialism and urbanisation [4-6]. Such species were likely predisposed to utilise human resources as opportunistic scavengers and subsequently adapted to a dependant relationship with humans [7].The evolutionary origins of several domesticated species - i.e. dogs, cats and cattle - are now reasonably well understood [8]; however, relatively little is known about several charismatic and familiar species which may have had a long association with human civilisation.

Understanding the origins of anthrodependent species is of particular interest since they may act as bioproxies for our own history [9]. The distributions of human-commensals are largely linked to human activity and so their evolutionary history should reflect large-scale human movements. House mice populations of the Northern and Western British Isles harbour an mtDNA lineage that is also present in Norway, suggesting mice were likely transported to the regions as stowaways on Norwegian Viking ships [5]. Analysis of some pest species has also shed light on human evolution; divergence in lice lineages reflect splits in the Homo genus [10] and genetic diversity in Heliobacter pylori reflects human migrations from prehistory to the modern era [11].

The house sparrow (Passer domesticus) is a ubiquitous human-commensal bird species occupying cities and farmland where it feeds on food waste and crops. Its native range covers Western and Central Eurasia; however, due to deliberate and accidental introductions by humans, its current distribution also encompasses Southern Africa, Australia, New Zealand and the Americas. It is strongly associated with human settlements with a clearly human associated ecology; the species is known to go locally extinct in abandoned settlements $[12,13]$. The house sparrow is a well-studied model for quantitative genetics $[14,15]$ and also for adaptation to urban environments [16,17]. However, we know surprisingly little about the evolutionary history of this charismatic companion species.

House sparrow human-commensalism is thought to have arisen once in the Middle and Near East with the Neolithic revolution [18]. The species likely spread with the subsequent introduction of agriculture and establishment of fixed settlements in Europe [12]. This is also thought to have played an instrumental role in the hybrid origin of the Italian sparrow (P. italiae) in the Mediterranean region as a result of admixture with the Spanish sparrow (P. hispaniolensis), which was probably already present in Southern Europe ([19-23], Fig 1A). Furthermore, genomic evidence suggesting multiple, independent hybrid speciation events is consistent with a stepwise introduction of agriculture via Mediterranean islands [24,25].

Intriguingly, a house sparrow subspecies - P. d. bactrianus (hereafter Bactrianus sparrow) - occurs in the Middle East and Central Asian steppes (Fig 1A). Bactrianus sparrows are quite unlike European house sparrows - they migrate, are less bold, and are not associated with human settlements [12,18]. Furthermore, Bactrianus skull and beak morphology are less robust compared to the more human-associated house sparrow [26]. This difference is consistent with divergent foraging- i.e. Bactrianus sparrows mainly feed on natural grass seeds, whereas the house sparrow is expected to have adapted to feeding on tougher seeds from domesticated crops [26]. Taken together, this suggests the Bactrianus sparrow represent a branch of the house sparrow lineage that diverged prior to the evolution of human-commensalism. If this is the case, a
comparative approach using both European house and Bactrianus sparrows may shed light on how the ubiquitous house sparrow became associated with humans.

Here we examine population genomic variation in three Eurasian Passer sparrow species, the Spanish, Italian and house sparrow; we also include non-commensal house sparrow lineage, the Bactrianus sparrow. We first investigate population genomic structuring and evolutionary relationships among species, testing for evidence of admixture across the European distribution. We then use coalescent modelling to infer demographic history of the house and Spanish lineages, testing the split date between the house and Bactrianus sparrow, when the house sparrow underwent a population size expansion and whether this occurred in the face of gene flow from the Spanish sparrow. Finally, we perform a comparative genome scan between the house and Bactrianus sparrow, revealing strong signatures of divergent selection between these two P. domesticus lineages that points to several intriguing candidate genes that may underlie adaptation to a human niche.

Methods

Sample collection

We collected house ($n=46$), Spanish $(n=43)$, Italian $(n=31)$ and Bactrianus ($n=19$) sparrows from across Eurasia (Fig 1A) using mist nets at each sampling location. Captured individuals were recorded and measured (data not presented here) before a blood sample was taken. See Table S1 for a breakdown of all samples and sampling locations. Blood was immediately stored in Queen's Lysis Buffer for preservation and individuals were released quickly, without harm, to minimise stress. In all cases, sparrows were collected under appropriate permissions and guidelines.

DNA extraction and sequencing

High quality genomic DNA was extracted from blood samples using a Qiagen Blood \& Tissue DNEasy kit (Qiagen, California, USA). Extracted DNA was prepared for sequencing using an Illumina TruSeq gDNA 180 bp kit (Illumina, California, USA). Sequencing was conducted on Illumina Hi-Seq 2000 and Illumina Hi-Seq X machines at Genome Quebec, McGill University, Canada.

Read alignment, variant calling and filtering

Raw reads were trimmed and filtered for Illumina adapters using Trimmomatic 0.36. [27]. Base calls at the start and end of reads with a phred quality score of less than 5 were removed and any reads with an average quality of less than 10 across 5 bp sliding windows were thrown out. Trimmed and filtered reads were then aligned to the house sparrow reference genome [19] using bwa 0.7.10 [28]; both paired and unpaired reads were mapped separately and then merged to produce a final bam for each individual. Bams were then sorted, marked for duplicates and indexed using Picard 2.7.1 (https://github.com/broadinstitute/picard).

Bams were realigned around indels to prevent false positive variant detection; calls were then made for all sites (variant and invariant) using the GATK (2.7.1) HaplotypeCaller [29]. The raw vcf created by this pipeline was then filtered to remove all indels and annotated with filter thresholds (see supplementary methods). Additional filters were applied to create two, high-quality datasets for different downstream analyses. The first dataset (hereafter 'variant only') included only polymorphic, biallelic SNPs occurring in at least 80% of individuals, with minimum site and genotype quality scores of 20, a mean site depth of between $10-40 \mathrm{X}$. We additionally masked all genotypes with a depth below $5 x$ and above 60x. We applied three different minor allele thresholds - no threshold (for demographic analyses), 0.02 and 0.05 . The second dataset was filtered for the same criteria but included calls at all sites - i.e. variant and invariant - and with no MAF thresholds (hereafter 'all sites'). All filtering was conducted using vcftools 0.1.13 [30] and bcftools 1.1 [31] and scripts are available at www.github.com/markravinet.

Population structure analysis

To investigate population structure, we performed linkage pruning on the MAF 0.05 filtered variant only dataset using PLINK 1.9 [32], filtering for all loci within 100 Kb windows with an r^{2} exceeding 0.1, the baseline for genome wide LD [19]. PCA was then performed for autosomal SNPs only using PLINK 1.9. For a model-based analysis of population structure on autosomal SNPs, we used admixture 1.3 [33], setting the number of assumed populations (K) between 1-6 and using leave-one-out cross-
validation in order to determine the best supported value. Scripts for population structure analyses are available at www.github.com/markravinet.

Genome scans for signatures of selection and introgression

In order to identify genomic regions under selection, we first estimated $F_{S T}$, a relative measure of differentiation in 100 Kb sliding windows with a 25 Kb step using vcftools from our MAF 0.02 filtered variant only dataset. We additionally estimated d_{XY}, an absolute measure of divergence for the same windows using popgenWindows.py (https://github.com/simonhmartin/genomics_general), [34] on our all sites dataset.

Since both $F_{S T}$ and d_{XY} are prone to biases, particularly with regard to genome-wide recombination rate variation, we also calculated long-range haplotype (LRH) estimates that incorporate such information [35]. This approach requires phased haplotypes, so we statistically phased the MAF $=0.02$ threshold variant-only dataset. Bactrianus, house and Spanish sparrow individuals were all phased individually with ShapeIt2 [36]. For all autosomes, a previously published linkage map [19] was used to inform phasing - we did not include the Z chromosome. LRH and extended haplotype homozygosity statistics (specifically iHS, xpEHH and EHHS) were calculated using the R package rehh [37]; scripts for genome scans, phasing and file conversion are available at www.github.com/markravinet.

Our initial population structure analyses revealed evidence of admixture between house and Spanish lineages in Europe. We therefore investigated fine-scale patterns of introgression within the house genome using a four population test to calculate f_{d}-i.e. the proportion of introgressed sites within a genome window [34]. Using the test tree toplogy (((Bactrianus, house), Spanish), Tree)), high levels of f_{d} therefore represent an enrichment of shared sites between house and Spanish sparrows (see Fig 1D). We calculated f_{d} three separate times using all Spanish sparrows, using 'pure' Spanish sparrows and using Spanish sparrows showing evidence of admixture with European house sparrows. Analyses were performed on 100 Kb sliding windows with a 25 Kb step using ABBABABAwindows.py (https://github.com/simonhmartin/genomics_general) [34] on our all sites dataset.

Candidate gene identification and gene ontology analysis

To identify candidate genes for adaptation to a human-commensal lifestyle, we first identified outliers SNPs with a log10 P-value of 6 for xpEHH - i.e. SNPs exhibiting clear divergent selection between house and Bactrianus sparrows. Using a custom R script (available at www.github.com/markravinet) we then clustered outlier SNPs occurring within 100 Kb of one another to produce a dataset of outlier regions occurring across the genome. We then identified all known genes within 250 Kb of the peaks of these outlier regions. Retaining only unique gene ids we then performed gene ontology analysis using clueGO in Cytoscape 3.6.0 [38] using a human gene set, medium network specificity, a right-sided hypergeometric test, Benjamani \& Hochberg FDR correction and a $\mathrm{P}<0.05$. In addition to GO analysis, we examined the identity of genes in outlier regions manually.

Demographic inference

To shed light on the evolutionary origins of Eurasian Passer sparrow lineages, we performed maximum likelihood based demographic inference using the site-frequency spectrum with fastsimcoal2 [39]. Because of the complexities of modelling hybrid origin and also the possibility that Italian sparrows have arisen from several independent hybridisation events [24], we focused only on the house, Bactrianus and Spanish populations. Spanish sparrows were split into two further subsets - one with evidence of admixture with the house (Spanish admix) and one without (Spanish pure). We derived the folded four-population multidimensional observed SFS using easySFS.py (https://github.com/isaacovercast/easySFS) from a set of high quality autosomal SNPs present in $>95 \%$ of individuals with no MAF filtering. Since sample sizes varied between each of the populations, we projected the SFS down to 30 chromosomes - i.e. 15 diploid individuals per population.

We tested three main models of divergence between sparrow species - isolation, migration and admixture (see Fig S5). For the isolation model, all species/populations diverged in the absence of gene flow (Fig S5). Under this model, contemporary evidence of admixture is due to incomplete lineage sorting. For the migration model, species/populations diverged in the face of interspecific gene flow throughout their divergence history (Fig S5). In the admixture model, interspecific gene flow occurs as a
result of a pulse of admixture following divergence. Since more realistic models of gene flow can improve model performance [40], we also ran versions of the models with intraspecific gene flow included (Fig S5).

For all models, we drew priors from a loguniform distribution (see Table S2 for a full description of priors). Since we were not interested in divergence time between admixed and pure Spanish lineages, we fixed this to 10000 generations, assuming population structuring as a result of postglacial range expansion; this also allowed us to constrain admixture and population expansion events to having occurred within this time. The split between P. domesticus and P. hispaniolensis was allowed to vary between 100000 and 2 million generations. We also set priors so that house/Bactrianus divergence occurred 10000 to 100000 generations in the past (see Table S2).

For each model, we performed 100 independent runs of 100,000 coalescent simulations to estimate the maximum likelihood. We then performed model selection using the run with the highest likelihood for each of the models. Following Meier et al., [40] we first used AIC for model selection but we additionally assessed the likelihood distribution for each model by calculating the likelihoods of 100 expected site frequency spectra, derived from 1,000,000 coalescent simulations. We also derived 95\% confidence intervals for parameters estimated from our models using non-parametric block bootstrapping [40]. To achieve this, we split the genome into $3,2041 \mathrm{Mb}$ windows and resampled windows with replacement until the bootstrapped SFS was the same size as the observed. We created 100 bootstrapped site-frequency spectra and then performed 10 independent runs of likelihood estimation on them. Estimates from each of the best runs were then used to derive the 95% confidence intervals around all parameter estimates from our focal model.

Results

Population structure and differentiation

After mapping to the house sparrow reference genome, calling and filtering variants, we retained $21,930,880$ SNPs. We used a subset of LD pruned 178,268 biallelic SNPs with an MAF >0.05 for parametric (ADMIXTURE) and non-parametric (PCA) inference of population structure.

Species are clearly separated along the first principal component (38.3\% PVE) with the Italian sparrow occurring intermediate between Spanish sparrows and house sparrow, consistent with hybrid origin (Fig 1B). Intriguingly, the Bactrianus sparrow is displaced on both PC1 and PC2 (9.1\% PVE), forming a separate cluster from European house populations (Fig 1B). For Spanish, house and Italian sparrows, within species population structure is also apparent from the PCA (Fig S1).

ADMIXTURE analysis strongly supported K values of 2 and 3 (Fig 1C, Fig S2). For $K=2$, Bactrianus and Spanish sparrows form clear, separate 'pure' clusters and the Italian sparrow is clearly admixed, as expected for a hybrid species. However, European populations of both house and Spanish sparrows show evidence of introgression, which is also apparent from PC1 (Fig S1). For $K=3$, house sparrows form a separate third cluster but retain a signature of Spanish and Bactrianus ancestry (Fig 1C).

Mean genome-wide $F_{\text {ST }}(\pm$ sd) estimates also support a Bactrianus lineage divergent from both the house (0.103 ± 0.075) and Spanish sparrow (0.326 ± 0.213; see also Fig S3). Furthermore, differentiation was lower between European house and putatively admixed Spanish sparrows (0.166 ± 0.171) than pure Spanish populations from Italy and Kazahkstan ($0.234 \pm 0.208 ; P<2.2 \times 10^{-16}$, permutation test: Fig S3). Absolute genomic divergence between species, measured using d_{XY}, was similarly higher between house/Bactrianus and the pure Spanish populations compared to the admixed ($P<2.2 \mathrm{x}$ 10^{-16}, permutation tests; see Fig S4A). Finally, $f_{\mathrm{d}}(\pm$ sd) was higher when P3 was set to the Spanish admixed populations (0.38 ± 0.17; see Fig 1D) compared to the Spanish pure (0.35 ± 0.16; see Fig S4B) - supporting admixture between Spanish and house sparrows in Europe.

Demographic inference

Our demographic analysis clearly rejected scenarios where no gene flow has occurred between the house and Spanish sparrow (Figs S5 \& S6). The best-supported demographic model using log-likelihood and AIC was one of divergence with migration via secondary contact between the house and Spanish sparrow (Fig 2A, Table 1, Fig S6). Under this model the two Passer species diverged 0.83 million years BP (0.69-0.93 mya

95\% confidence intervals), assuming a single year for sparrow generation time. Divergence between the Bactrianus and house sparrow was much more recent, occurring 11.1 K years ago, whereas an expansion in the house lineage occurred 5657 generations (4292-6308 85\% CI; Fig 2A \& 2B) in the past. Migration rate estimates also indicated introgression from the Spanish into the house was greater than gene flow in the opposite direction or within species (Fig 2B).

Divergent selection between house and Bactrianus sparrows

Divergence between house and Bactrianus sparrows is consistent with the onset of the Holocene; suggesting the latter is potentially a relict of the pre-human commensal house ancestor. A comparative genome scan between these species will help identify selected regions that may have played a role in adaptation to a human niche by the house sparrow. The house sparrow genome shows clear signatures of strong selection on the majority of autosomes (Fig S7). However, cross-population long-range haplotype statistics also point to several regions throughout the genome that exhibit signatures of divergent selection between the house and Bactrianus sparrow, including strikingly high peaks on chromosomes 1 and 8 (Fig 3A, 3B \& Fig 4).

To further investigate these signatures of selection, we identified 705 outlier SNPs (0.06% of $1,033,861$ total SNPs analysed) where the $\log 10 P$-value of xpEHH between house and Bactrianus was greater than 7 (i.e. points coloured red in Fig 4 and Fig S8). We grouped outlier SNPs occurring within 100 Kb of one another together to identify the peaks outlier regions across the genome (i.e. Fig 4). The majority of these peaks fell on chromosomes $1,2,3 \& 8$; the last of which also harboured the SNPs with the highest signatures of divergent selection (see Tables S3 \& S4). Using the highest outlier SNPs on each of these chromosomes, EHHS values show a clear pattern of increased extended haplotype homozygosity in the house but not the Bactrianus sparrow (Fig 3B). This suggests positive selective sweeps have occurred at these regions in the house sparrow genome only.

Closer inspection of co-variation of other population genomic estimates alongside xpEHH peaks showed little evidence of selection or introgression (Fig 4 and Fig S8).

However, in some cases, regions of increased $F_{\text {ST }}$ corresponded to extended haplotype homozygosity and slight peaks of f_{d} (Fig 4).

Candidate gene and gene ontology analysis

We identified 153 unique genes falling within 250 Kb of xpEHH outlier peaks from across the genome. GO analysis identified 20 gene pathways with evidence of enrichment among the outlier gene set (see Table S5). These included cartilage condensation ($P=0.01$) and regulation of circadian rhythm ($P=0.085$ after FDR correction). A gene of interest from the cartilage condensation pathway is wnt7a on chromosome 12; this has previously been linked to feather development and melanogenesis in birds [41,42]. Additionally, a PARL transcript (presenilin associated rhomboid-like) on chromosome 9 is upregulated during migration in white-crowned sparrows (Zonotrichia leucophyrs) [43].

One of the highest xpEHH peaks in the genome occurred on chromosome 8 between 19.01-19.27 Mb (Fig 3B, Fig 4). This peak contains two known genes, COL11A and AMY2A, Fig 4). COL11A - collagen type XII alpha - is associated with craniofacial development; mutations in this gene for humans result in Marshall's Syndrome which is characterised by increased skull thickness and altered facial structure [44]. AMY2A amylase alpha2 is part of the amylase gene family associated with adaptation to a higher starch diet in both humans and dogs [45,46].

Discussion

Our findings show that a high level of genomic divergence matches the phenotypic, behavioural and ecological differences between the European house and Bactrianus sparrows. Pairwise mean $F_{\text {ST }}$ between the house and Bactrianus subspecies is half of that between the house and Spanish sparrow (Fig S3). High differentiation is unlikely to be a factor of distance between the house and Bactrianus; Spanish sparrow populations are similarly spatially isolated but show no evidence of population structuring. Instead, high divergence between the house lineages is likely due to the fact that they split some time ago. Our coalescent analyses show that while this was not ancient, occurring 11

Kya, divergence may have occurred prior to the widespread dissemination of agriculture and the evolution of commensalism in the house sparrow.

Reanalysis of Eurasian sparrow genomic data alongside the Bactrianus has developed our understanding of population genomic structuring among these species. Admixture between the house and Spanish sparrow has played an important role in the hybrid origin of the Italian sparrow. We show that European house populations have experienced some level of Spanish admixture and that conversely, certain Spanish populations harbour house introgression, albeit at a lower level. What has driven gene exchange between these two species remains unclear. Our demographic inference suggests that gene flow has been ongoing since secondary contact, and since Spanish sparrows were already likely present in Southern Europe at the time the house sparrow was introduced with agriculture, this is a likely explanation. However, gene flow is still on-going and there are several parts of the present-day distribution where house x Spanish hybrids occur. This is also consistent with the tentative observation that the proportion of Spanish ancestry in the house appears to be lower in more northerly populations sampled in Norway, compared to those in France ($K=3$, Fig 1C). Nonetheless, it is also possible that introgression is in fact quite old and that it largely occurred in the native range, where the Spanish sparrow is also present, prior to the expansion of the house into Europe. Concordance between signatures of divergent selection between the house and Bactrianus and measures of Spanish introgression into the house is consistent this explanation. Most likely, Spanish ancestry in the house genome is due to both mechanisms, but more work is now necessary to distinguish them and quantify their relative importance.

The Bactrianus sparrow may have diverged from the main house lineage prior to, or as a result of the evolution of human-commensalism during the Neolithic revolution. The subspecies migrates, does not associate with human settlements and is less bold [12] all traits which are common to non-human commensal sparrow species such as the Spanish. Bactrianus sparrows can therefore be considered a proxy for the ancestral, precommensal house sparrow. With the rapid expansion and spread of house sparrow populations following the invention of agriculture, it is likely the Bactrianus has remained a relict lineage confined to the Central Asian steppes. This is also supported by
evidence of limited interbreeding between co-occuring house and Bactrianus sparrows in Kazahkstan $[47,48]$. This offers us a unique opportunity to look for signatures of strong selection that have occurred in the house lineage and are absent from the Bactrianus - i.e. a comparative genome scan for adaptation to a human niche.

Our comparative approach does indeed reveal multiple regions throughout the sparrow genome that show signatures of house-specific positive selective sweeps. Importantly, our use of long-range haplotype tests that incorporate information on linkage disequilibrium and haplotype homozygosity are able to identify strong patterns of selection that are not apparent using more standard measures such as $F_{\text {ST }}$ or d_{XY} [35,37,49]. The sweep regions we detected harbour a number of candidate genes consistent with many of the phenotypic traits that are known to be divergent between house and non-commensal Bactrianus sparrows, such as plumage, migratory behaviour, dietary differences and skull morphology. An xpEHH peak on chromosome 12 is in close proximity to wnt7a, a gene that has previously shown to be involved in feather development and melanogenesis in birds [41,42]. This gene is also under apparent divergent selection between island populations of the Italian sparrow which differ in the darkness of their plumage [24]. Bactrianus sparrows too have a darker plumage than the house. A further peak on chromosome 9 harbours the PARL gene, which shows increased expression in the brains of white-crowned sparrows (Zonotrichia leucophyrs) during the migratory season[43]. This is also bolstered by our finding of regulation of circadian rhythm as an enriched GO pathway; importantly, Bactrianus sparrows migrate whereas house sparrows do not [12,18].

One of the most striking peaks of divergent selection sits on chromosome 8 and contains the COL11A and AMY2A genes (Fig 4). COL11A is closely associated with craniofacial development in humans and is linked to Marshall's Syndrome, a genetic disorder which leads to increased skull thickness and abnormal facial structure [44]. This is particularly interesting as skull morphology and craniofacial structure has be shown to differ between Bactrianus and house sparrows, with the latter exhibiting a more robust skull morphology and larger beak [26]. Craniofacial differences are further supported by an enrichment of cartilage condensation in our GO analysis. The shift in skull and beak morphology between sparrow lineages is commonly attributed to the dietary shift from
natural seeds to agricultural food waste during the development of commensalism [26]. Intriguingly, $A M Y 2 A$, is part of a family of amylase genes that have been linked to the transition to starch-based diets both humans and dogs during the Neolithic revolution [45,50]. In dogs, increased copy number of the closely related $A M Y 2 B$ gene is consistent with the spread of agriculture during this period [46,51]. Among human populations, AMY1 copy number is associated with dietary starch content and the frequency of AMY2A deletions is higher in groups with a low starch diet [45,52]. Our findings therefore add to the emerging picture that the Neolithic revolution introduced a common selective pressure that has resulted in parallel adaptations in similar genes for three very different taxa - humans, dogs and potentially, house sparrows.

At present, it is not clear whether AMY2A or COL11A or both genes are the target of selection at this region of the genome. However, since both genes occur just 154 Kb from one another, there is a strong possibility they remain in linkage disequilibrium as a coadapted gene complex for a human-commensal diet. It is now necessary to investigate whether this is the case and to clearly link these genes to their putative role as adaptations to a human niche in house sparrows. Furthermore, determining the age of the selective sweep and testing whether selection is also apparent in the Italian sparrow is now necessary to conclusively link this adaptation to the onset of the Neolithic revolution. Nonetheless, our current findings place the origins of commensalism in house sparrows in an evolutionary context and show that understanding how this species came to be is informative for our understanding of our own recent evolutionary history.

References

1. Hulme-Beaman, A., Dobney, K., Cucchi, T. \& Searle, J. B. 2016 An Ecological and Evolutionary Framework for Commensalism in Anthropogenic Environments. 31, 1-13. (doi:10.1016/j.tree.2016.05.001)
2. Vigne, J.-D. 2015 Early domestication and farming: what should we know or do for a better understanding? Anthropozoologica 50, 123-150.
(doi:10.5252/az2015n2a5)
3. Zeder, M. A. 2015 Core questions in domestication research. Proc Natl Acad Sci USA 112, 3191-3198. (doi:10.1073/pnas.1501711112)
4. Combs, M., Puckett, E. E., Richardson, J., Mims, D. \& Munshi-South, J. 2017 Spatial population genomics of the brown rat (Rattus norvegicus) in New York City. 224, 335-16. (doi:10.1111/mec.14437)
5. Searle, J. B. et al. 2009 Of mice and (Viking?) men: phylogeography of British and Irish house mice. Proceedings of the Royal Society B: Biological Sciences 276, 201207. (doi:10.1098/rspb.2008.0958)
6. Gray, M. M., Wegmann, D., Haasl, R. J., White, M. A., Gabriel, S. I., Searle, J. B., Cuthbert, R. J., Ryan, P. G. \& Payseur, B. A. 2014 Demographic history of a recent invasion of house mice on the isolated Island of Gough. Mol Ecol 23, 1923-1939. (doi:10.1111/mec.12715)
7. Johnson, M. T. J. \& Munshi-South, J. 2017 Evolution of life in urban environments. Science 358, eaam8327. (doi:10.1126/science.aam8327)
8. Larson, G. \& Fuller, D. Q. 2014 The Evolution of Animal Domestication. Annu. Rev. Ecol. Evol. Syst. 45, 115-136. (doi:10.1146/annurev-ecolsys-110512-135813)
9. Jones, E. P., Eager, H. M., Gabriel, S. I., Jóhannesdóttir, F. \& Searle, J. B. 2013 Genetic tracking of mice and other bioproxies to infer human history. Trends in Genetics 29, 298-308. (doi:10.1016/j.tig.2012.11.011)
10. Reed, D. L., Smith, V. S., Hammond, S. L., Rogers, A. R. \& Clayton, D. H. 2004 Genetic Analysis of Lice Supports Direct Contact between Modern and Archaic Humans. PLoS Biol 2, e340-12. (doi:10.1371/journal.pbio.0020340)
11. Falush, D. et al. 2003 Traces of Human Migrations in Helicobacter pylori Populations. Science 299, 1582-1585. (doi:10.1126/science.1080857)
12. Summers-Smith, D. 1988 The Sparrows. Calton, UK: T \& AD Poyser.
13. Anderson, T. R. 2006 Biology of the Ubiquitous House Sparrow. Oxford University Press.
14. Jensen, H., Sæther, B. E., Ringsby, T. H., Tufto, J., Griffith, S. C. \& Ellegren, H. 2003 Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus). J. Evol. Biol. 16, 1296-1307. (doi:10.1046/j.1420-9101.2003.00614.x)
15. Ben Cohen, S. \& Dor, R. 2018 Phenotypic divergence despite low genetic differentiation in house sparrow populations. Sci Rep 8, 394.
(doi:10.1038/s41598-017-18718-8)
16. Shaw, L. M., Chamberlain, D. \& Evans, M. 2008 The House Sparrow Passer domesticus in urban areas: reviewing a possible link between post-decline distribution and human socioeconomic status. J Ornithol 149, 293-299.
(doi:10.1007/s10336-008-0285-y)
17. Swaileh, K. M. \& Sansur, R. 2006 Monitoring urban heavy metal pollution using the House Sparrow (Passer domesticus). Journal of Environmental Monitoring 8, 209213. (doi:10.1039/B510635D)
18. Saetre, G. P. et al. 2012 Single origin of human commensalism in the house sparrow. J. Evol. Biol. 25, 788-796. (doi:10.1111/j.1420-9101.2012.02470.x)
19. Elvin, T. O., Trier, C. N., Tørresen, O. K., Hagen, I. J., Lien, S., Nederbragt, A. J., Ravinet, M., Jensen, H. \& Sætre, G.-P. 2017 The genomic mosaicism of hybrid speciation. Science Advances 3, e1602996. (doi:10.1126/sciadv.1602996)
20. Elgvin, T. O., Hermansen, J. S., Fijarczyk, A., Bonnet, T., Norge, T., Saether, S. A., Voje, E, K. L. \& Sætre, G. P. 2011 Hybrid speciation in sparrows II: a role for sex chromosomes? 20, 3823-3837. (doi:10.1111/j.1365-294X.2011.05182.x)
21. Hermansen, J. S., Saether, S. A., Elgvin, T. O., Borge, T., Hjelle, E. \& Sætre, G.-P. 2011 Hybrid speciation in sparrows I: phenotypic intermediacy, genetic admixture and barriers to gene flow. Mol Ecol 20, 3812-3822. (doi:10.1111/j.1365294X.2011.05183.x)
22. Hermansen, J. S., Haas, F., Trier, C. N., Bailey, R. I., Nederbragt, A. J., Marzal, A. \& Sætre, G.-P. 2014 Hybrid speciation through sorting of parental incompatibilities in Italian sparrows. 23, 5831-5842. (doi:10.1111/mec.12910)
23. Trier, C. N., Hermansen, J. S., Sætre, G.-P. \& Bailey, R. I. 2014 Evidence for MitoNuclear and Sex-Linked Reproductive Barriers between the Hybrid Italian Sparrow and Its Parent Species. PLoS Genet 10, e1004075-10. (doi:10.1371/journal.pgen.1004075)
24. Runemark, A., Trier, C. N., Eroukhmanoff, F., Hermansen, J. S., Matschiner, M., Ravinet, M., Elgvin, T. O. \& Sætre, G.-P. 2018 Variation and constraints in hybrid genome formation. Nat. ecol. evol. 20, 229. (doi:10.1038/s41559-017-0437-7)
25. Paschou, P. et al. 2014 Maritime route of colonization of Europe. Proc Natl Acad Sci USA 111, 9211-9216. (doi:10.1073/pnas.1320811111)
26. Riyahi, S., Hammer, Ø., Arbabi, T., Sánchez, A., Roselaar, C. S. \& Aliabadian, M. 2013 Beak and skull shapes of human commensal and non-commensal house sparrows Passer domesticus. BMC Evolutionary Biology 13, 200. (doi:10.1186/1471-2148-13-200)
27. Bolger, A. M., Lohse, M. \& Usadel, B. 2014 Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
(doi:10.1093/bioinformatics/btu170)
28. Li, H. \& Durbin, R. 2009 Fast and accurate short read alignment with BurrowsWheeler transform. Bioinformatics 25, 1754-1760.
(doi:10.1093/bioinformatics/btp324)
29. DePristo, M. A. et al. 2011 A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43, 491-498.
(doi:10.1038/ng.806)
30. Danecek, P. et al. 2011 The variant call format and VCFtools. Bioinformatics 27, 2156-2158. (doi:10.1093/bioinformatics/btr330)
31. Danecek, P. \& McCarthy, S. A. 2017 BCFtools/csq: haplotype-aware variant consequences. Bioinformatics 33, 2037-2039. (doi:10.1093/bioinformatics/btx100)
32. Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M. \& Lee, J. J. 2015 Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 2015 4:1 4, 7. (doi:10.1186/s13742-015-0047-8)
33. Alexander, D. H., Novembre, J. \& Lange, K. 2009 Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19, 1655-1664.
(doi:10.1101/gr.094052.109)
34. Martin, S. H., Davey, J. W. \& Jiggins, C. D. 2014 Evaluating the Use of ABBA-BABA Statistics to Locate Introgressed Loci. Molecular Biology and Evolution 32, 244257. (doi:10.1093/molbev/msu269)
35. Vitti, J. J., Grossman, S. R. \& Sabeti, P. C. 2013. Detecting natural selection in genomic data. Annu. Rev. Genet. 47, 97-120. (doi:10.1146/annurev-ge-47-120213200001)
36. O'Connell, J. et al. 2014 A General Approach for Haplotype Phasing across the Full Spectrum of Relatedness. PLoS Genet 10, e1004234-21.
(doi:10.1371/journal.pgen.1004234)
37. Gautier, M., Klassmann, A. \& Vitalis, R. 2016 rehh2.0: a reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol Ecol Resour 17, 78-90. (doi:10.1111/1755-0998.12634)
38. Bindea, G. et al. 2009 ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093. (doi:10.1093/bioinformatics/btp101)
39. Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. \& Foll, M. 2013 Robust Demographic Inference from Genomic and SNP Data. PLoS Genet 9, e1003905-17. (doi:10.1371/journal.pgen.1003905)
40. Meier, J. I., Sousa, V. C., Marques, D. A., Selz, O. M., Wagner, C. E., Excoffier, L. \& Seehausen, O. 2016 Demographic modelling with whole-genome data reveals parallel origin of similar Pundamilia cichlid species after hybridization. Mol Ecol 26, 123-141. (doi:10.1111/mec.13838)
41. Guo, H., Xing, Y., Liu, Y., Luo, Y., Deng, F., Yang, T., Yang, K. \& Li, Y. 2016 Wnt/Î²catenin signaling pathway activates melanocyte stem cells in vitro and in vivo.

Journal of Dermatological Science 83, 45-51.
(doi:10.1016/j.jdermsci.2016.04.005)
42. S Noramly, A. F. A. B. A. M. 1999 -catenin signaling can initiate feather bud development. Development 126, 3509-3521.
43. Jones, S., Pfister-Genskow, M., Cirelli, C. \& Benca, R. M. 2008 Changes in brain gene expression during migration in the white-crowned sparrow. Brain Research Bulletin 76, 536-544. (doi:10.1016/j.brainresbull.2008.03.008)
44. Griffith, A. J., Sprunger, L. K., Sirko-Osadsa, D. A., Tiller, G. E., Meisler, M. H. \& Warman, M. L. 1998 Marshall Syndrome Associated with a Splicing Defect at the COL11A1 Locus. The American Journal of Human Genetics 62, 816-823. (doi:10.1086/301789)
45. Perry, G. H. et al. 2007 Diet and the evolution of human amylase gene copy number variation. Nat Genet 39, 1256-1260. (doi:10.1038/ng2123)
46. Reiter, T., Jagoda, E. \& Capellini, T. D. 2016 Dietary Variation and Evolution of Gene Copy Number among Dog Breeds. PLoS ONE 11, e0148899-19. (doi:10.1371/journal.pone.0148899)
47. Gavrilov, E. I. \& Korelov, M. N. 1968 The Indian sparrow as a distinct good species. Byulleten Moskovskogo Obshchestva Ispytateleley Prirody Otdel Biologicheskiy 73, 115-122.
48. Yakobi, V. E. 1978 On the species independence of the Indian sparrow. Zoological Zhurnal 58, 136-137.
49. Vatsiou, A. I., Bazin, E. \& Gaggiotti, O. E. 2015 Detection of selective sweeps in structured populations: a comparison of recent methods. Mol Ecol 25, 89-103. (doi:10.1111/mec.13360)
50. Axelsson, E. et al. 2013 The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495, 360-364.
(doi:10.1038/nature11837)
51. Arendt, M., Cairns, K. M. \& Ballard, J. W. O. 2016 Diet adaptation in dog reflects spread of prehistoric agriculture. Heredity 117, 301-306.
(doi:10.1038/hdy.2016.48)
52. Inchley, C. E. et al. 2016 Selective sweep on human amylase genes postdates the split with Neanderthals. Sci Rep 6, 1-10. (doi:10.1038/srep37198)

Tables

Table 1: Model selection for SFS based demographic analyses.

Model	Gene flow	LogLikelihood Narams	AIC	Δ AIC	$\Delta \operatorname{logLik}$

Migration	intraspecific	$-80571,91$	15	161173,81	0,00	9604,36
Admixture	intraspecific	$-83288,77$	17	166611,54	5437,72	12321,22
Isolation	intraspecific	$-86388,44$	13	172802,88	11629,07	15420,90
Migration	none	$-80730,16$	13	161486,32	312,51	9762,62
Admixture	none	$-82412,51$	15	164855,01	3681,20	11444,96
Isolation	none	$-85949,12$	11	171920,24	10746,42	14981,57

Figures

Figure 1: A) Sample sites for Eurasian sparrow species, point colours correspond to species shown in B. B) principle component analysis of high-quality, linkage pruned SNPs separate species along PC1. C) Population clustering using ADMIXTURE for two best supported values of K. D) Schematic of the four-population test used in order to calculate genome-window measures of introgression $\left(f_{d}\right)$ between the house and Spanish sparrow.

Figure 2: Site-frequency-spectrum based coalescent analyses best support a model of divergence in isolation and then migration between the house and Spanish sparrow upon secondary contact (A). Parameter estimates and their 95\% CI, derived from nonparametric block bootstraps.

Figure 3: Signatures of divergent selection between house and bactrianus sparrows. (A) Manhattan plot of xpEHH shows clear peaks of divergent haplotype homozygosity occurring throughout the genome. N.B: the full dataset has been downsampled to 20% of the original data to aid visualisation. (B) Examination of the four snps with highest xpEHH scores shows a clear signature of extended haplotype homozygosity in the house but not the bactrianus sparrow.

Figure 4: A closer look at genomic divergence between house and bactrianus sparrows along chromosome 8; top panel $-\log 10(p)$ xpEHH (blue $=$ background, red $=$ outliers where $\mathrm{P}<0.0001$); second panel - mean absolute nucleotide divergence (d_{XY}); third panel - relative differentiation $\left(F_{S T}\right)$; fourth panel - proportion of putatively introgressed per 100 Kb window $\left(f_{\mathrm{d}}\right)$.

Supplementary material

Table S1: Breakdown of samples used.
Table S2: Priors for demographic inference.
Table S3: Number of xpEHH outlier regions per chromosome.
Table S4: Table of highest xpEHH outlier peaks per chromosome.
Table S5: Enriched GO terms for genes within 250 Kb of xpEHH peaks between the house and Bactrianus sparrow.

Figure S1: PCA showing within-species population structuring.
Figure S2: Cross-validation of ADMIXTURE runs showing highest support for $\mathrm{K}=2$ \& 3 .
Figure S3: Boxplots of pairwise genome-wide $F_{\text {ST }}$ estimates from 100 Kb sliding windows with a 25 Kb step.

Figure S4: Boxplots of pairwise genome-wide $d_{X Y}(\mathrm{a})$ and $f_{\mathrm{d}}(\mathrm{b})$ estimates from 100 Kb sliding windows with a 25 Kb step.
Figure S5: Demographic models tested using site-frequency spectrum methods.
Figure S6: Log-likelihood distributions for demographic models.
Figure S7: Manhattan plot of iHS across the house sparrow genome. The full dataset has been downsampled to 20% (176,701 SNPs) in order to aid visualisation.
Figure S8: Closer examination of genomic divergence between house and Bactrianus sparrows for chromosomes $1,2,3 \& 8$.

Acknowledgments

We are grateful to Daniel Wegmann for his advice on designing demographic models and Joana Meier for her assistance with running SFS analysis. We thank Camilla Sætre, Juan Carlos Illera Cobo, Sonia Ramos, Caroline Øien Guldvog, Jo Skeie Hermansen, Stein Are Sæther, Richard Bailey, Fabrice Eroukhmanhoff, Anna Runemark, Sepand Riyahi, Almat Abayev and Syrymgul Zaripova for assistance with fieldwork. We are grateful to Fabrice Eroukhmanhoff for his comments on a draft version of this manuscript. Data analysis was conducted on the UiO Abel cluster [Norwegian Metacenter for High Performance Computing (NOTUR) and the University of Oslo] operated by the Research Computing Services group at The University Center for Information Technology
(www.hpc.uio.no/)and the DDBJ Supercomputer at the National Institute of Genetics, Mishima, Japan.

Data availability statement

Scripts for analyses are available at www.github.com/markravinet and Dryad. Datasets for manuscript will be deposited on Dryad following manuscript decision. Sequence data will be deposited on the European Nucleotide archive.

Author contributions

MR, TOE and GPS designed the study. TOE, CNT and MR conducted fieldwork and prepared samples for sequencing. GPS, MA \& AG organised sampling and conducted fieldwork. MR analysed the data. MR \& TOE wrote the manuscript. All authors commented on the manuscript and gave final approval for publication.

Funding information

This study was supported grant to GPS from the Research Council of Norway.

PAge 23 of 26

Figure 3: Signatures of divergent selection between house and bactrianus sparrows. (A) Manhattan plot of xpEHH shows clear peaks of divergent haplotype homozygosity occurring throughout the genome. N.B: the full dataset has been downsampled to 20% of the original data to aid visualisation. (B) Examination of the four snps with highest xpEHH scores shows a clear signature of extended haplotype homozygosity in the house but not the bactrianus sparrow.

```
302x257mm (300 x 300 DPI)
```


Figure S1: PCA showing within-species population structuring.

Figure S2: Cross-validation of ADMIXTURE runs showing highest support for $\mathrm{K}=2$ \& 3 .

Figure S3: Boxplots of pairwise genome-wide $F_{\text {ST }}$ estimates from 100 Kb sliding windows with a 25 Kb step.

Figure S4: Boxplots of pairwise genome-wide $d_{\mathrm{XY}}(\mathrm{a})$ and $f_{\mathrm{d}}(\mathrm{b})$ estimates from 100 Kb sliding windows with a 25 Kb step.

Figure S5: Demographic models tested using site-frequency spectrum methods.

Figure S6: Log-likelihood distributions for demographic models.

Figure S7: Manhattan plot of iHS across the house sparrow genome. The full dataset has been downsampled to 20% (176,701 SNPs) in order to aid visualisation.

