
European Journal of Mechanics / B Fluids 77 (2019) 162–170

Contents lists available at ScienceDirect

European Journal ofMechanics / B Fluids

journal homepage: www.elsevier.com/locate/ejmflu

Virtual wave stress and transientmean drift in spatially damped long
interfacial waves
Jan Erik H. Weber a,∗, Kai H. Christensen a,b

a Department of Geosciences/MetOs, University of Oslo, PO Box 1022, Blindern, NO-0315 Oslo, Norway
b Norwegian Meteorological Institute, PO Box 43, Blindern, NO-0313 Oslo, Norway

a r t i c l e i n f o

Article history:
Received 9 October 2018
Received in revised form 1 February 2019
Accepted 8 April 2019
Available online 14 April 2019

a b s t r a c t

The mean drift in spatially damped long gravity waves at the boundary between two layers of
immiscible viscous fluids is investigated theoretically by applying a Lagrangian description of motion.
The focus of the paper is on the development of the drift near the interface. The initial drift (inviscid
Stokes drift + viscous boundary-layer terms) associated with the instantaneously imposed wave field
does not generally fulfill the conditions at the common boundary between the layers. Hence, transient
Eulerian mean currents develop on both sides of the interface to ensure continuity of velocities and
viscous stresses. The development of strong jet-like Eulerian currents increasing with time in this
problem is related to the action of the virtual wave stress (VWS). Very soon (after a few wave periods)
the transient Eulerian part dominates in the Lagrangian mean current. This effect is similar to that
found for the drift in short gravity waves with a film-covered surface. A new relation is derived
showing that the difference between the VWS’s at the interface is given by the divergence of the total
horizontal wave momentum flux in a two-layer system. Our analysis with spatially damped waves
also yields the Lagrangian change of the mean surface level and mean interfacial level (the divergence
effect) due to periodic baroclinic wave motion.

© 2019 The Authors. Published by ElsevierMasson SAS. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

When the wave amplitude in progressive surface waves atten-
uates due to friction in the fluid, mean momentum is transferred
from the waves to Eulerian mean currents through the action
of the virtual wave stress (hereafter VWS), and denoted by τw .
The concept of VWS was first introduced by Longuet-Higgins [1]
to explain this redistribution of mean horizontal momentum in
a viscous fluid. For temporally damped waves Longuet-Higgins
showed by integrating in time that

∫
∞

0 τwdt = M0, where M0 is
the initial total wave momentum. For spatially damped surface
waves Weber [2] related the VWS to the divergence of the wave
momentum flux. His result is valid whether the surface is uncon-
taminated (clean) or covered by a thin film. For spatially damped
surface waves the action of the VWS leads to Eulerian mean
currents that grow in time, as demonstrated in [2]. In particular,
when the surface is contaminated (film covered), the VWS is
greatly enhanced, leading to Eulerian mean currents that becomes
stronger than the Stokes drift in a relatively short time interval;
see e.g. [3]. The large increase in surface drift in the presence
of an inextensible film was originally demonstrated in [4] from
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vorticity considerations. Recent high quality measurements also
reveal the effect of viscosity on the near-surface wave-induced
drift, as shown in [5].

Analogous to the situation at the surface, the VWS must act at
the boundary between two immiscible fluids of different densities
and viscosities, and the main aim of the present paper is to inves-
tigate the importance of VWS on the drift in interfacial waves.
To facilitate this task, we pose the interfacial wave problem as
simple as possible so the basic physics is not lost in mathematical
details. Particularly, in the study of long progressive interfacial
waves we assume that the density difference across the interface
is small, but the layers may have substantially different viscosi-
ties. The respective layer depths may also vary in an arbitrary
sense. The only requirement is that the wavelength must be much
larger than the depth of each layer (the shallow water approxi-
mation). We use an Eulerian framework for defining the problem,
because this approach is familiar to most readers. To obtain the
wave-induced drift, we switch to a Lagrangian description of
motion. Then we can allow for interfacial wave amplitudes that
are much larger than the thickness of the viscous boundary layers.

The study of the drift in gravity waves in a two-layer setting
with different densities and viscosities is not new. In an Eulerian
formulation this problem was analyzed by Dore [6–9] for un-
damped waves, applying a double-boundary layer method with
matched asymptotic expansions. Using Dore’s technique, Wen
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& Liu [10] extended his analysis to temporally damped waves.
Applying a direct Lagrangian approach Weber and Førland [11]
considered the drift in short temporally and spatially attenuated
waves in an air–water system. Later Piedra-Cueva [12] studied
the steady two-layer problem in the Lagrangian formulation with
emphasis on transport in a very viscous (mud) bottom layer
induced by spatially damped surface water waves. A similar prob-
lem for the steady drift in partial standing surface waves in a
two-layer viscous system was investigated in [13], also using a
direct Lagrangian approach.

We assume that our wave field attenuate in space due to
friction. This is particularly relevant to experiments in wave tanks
with a wave generator operating at a given frequency at one end
of the tank. Most studies of this problem consider the final steady
state. The exception is the transient problem studied in [10],
but because they consider temporally damped waves, their Eu-
lerian mean currents die out in time. In our case, with spatially
attenuated waves, the VWS leads to the generation of Eulerian
mean currents near the interface that always increase in time. We
will therefore pay particular attention to the early stages of the
development of the drift currents in this paper. Concerning the
relevance to wave tank experiments, this means that we consider
time scales comparable to the typical duration of a wave tank
experiment before adverse mean pressure gradients are set up,
and a steady pattern with re-circulating flow is established.

The use of the Lagrangian formalism yields directly the La-
grangian change of mean surface level and interfacial level asso-
ciated with periodic baroclinic waves. Similar Lagrangian changes
of the mean surface level for short gravity waves have been
reported in [14,15].

The rest of this paper is organized as follows: In Section 2
we formulate the problem mathematically, using the familiar
Eulerian description of motion, and applying the long-wave as-
sumption. In Section 3 we switch to a Lagrangian formulation,
deferring the trivial linear solutions to the Appendix. The La-
grangian equations for the mean drift are given in Section 4,
while the Lagrangian mean level changes due to interfacial waves
are derived in Section 5. In Section 6 we consider the particular
solutions to the wave drift problem, and in Section 7 we discuss
the wave-induced Eulerian mean flow and the action of the VWS.
In Section 8 we discuss the role of VWS in the mean momentum
balance, and in Section 9 we present case studies showing how
the Lagrangian mean drift varies with viscosity differences and
depth ratios in the two layers. In Section 10 we outline a simple
laboratory experiment for verifying the theoretical results of this
paper, and Section 11 contains a short discussion and some final
remarks.

2. Mathematical formulation

We study the wave motion in a system of two horizontal
incompressible fluid layers, denoting upper and lower layer vari-
ables by subscripts 1 and 2, respectively. When undisturbed,
the layers have constant depths H1 and H2. The corresponding
constant densities and viscosities are ρ1, ν1, and ρ2, ν2, respec-
tively. We let the horizontal x axis be situated at the undisturbed
interface, and the z axis is positive upward. To make this study as
simple as possible without losing the basic physics, we consider
two-dimensional motion in a non-rotating semi-infinite domain
x ≥ 0. The material surface is given by z = H1 + η(x, t), where
t denotes time, and the interface is given by z = ξ (x, t). The
respective unit vectors are given by (i, k), and the fluid velocity
vector is v = (u, w).

We take that the waves are so long that we can make the
hydrostatic approximation in the vertical direction. Neglecting

the presence of an external pressure at the surface, we may then
write for the pressure in the two layers

p1 = −ρ1gz + ρ1g (H1 + η) (2.1)

p2 = −ρ2gz + g (ρ2 − ρ1) ξ + ρ1g(H1 + η) (2.2)

where g is the acceleration due to gravity. The horizontal mo-
mentum equations in an Eulerian formulation then become:

Dtu1 = −gηx + ν1u1zz (2.3)

Dtu2 = −g
(ρ2 − ρ1)

ρ2
ξx − g

ρ1

ρ2
ηx + ν2u2zz . (2.4)

Here, subscripts denote partial differentiation, and Dt ≡ ∂/∂t +

v · ∇ is the material derivative following a fluid particle. In
the viscous terms we have assumed that

⏐⏐∂2/∂z2
⏐⏐ ≫

⏐⏐∂2/∂x2
⏐⏐.

Finally, from volume conservation:

u1,2x + w1,2z = 0, (2.5)

where subscripts 1,2 refer to upper and lower layer, respec-
tively. From (2.5) one finds, by applying the nonlinear kinematic
boundary conditions, the well-known exact relations

ηt − ξt = −

(∫ H1+η

ξ

u1dz
)

x

(2.6)

ξt = −

(∫ ξ

−H2

u2dz
)

x

. (2.7)

The stresses in the fluid must be continuous across the inter-
face. In the present hydrostatic formulation the pressure fulfills
this condition in the normal direction; see (2.1)–(2.2). We denote
the external horizontal stresses on both sides of the material
interface z = ξ (x, t) by τ

(x)
1,2, where

τ
(x)
1,2 = ρ1,2ν1,2

(
u1,2z + w1,2x

)
+ p1,2ξx − 2ρ1,2ν1,2u1,2xξx. (2.8)

Continuity of horizontal stresses implies that τ
(x)
1 = τ

(x)
2 at z =

ξ (x, t). Utilizing that p1 = p2 from (2.1)–(2.2), and applying the
long wave assumption

⏐⏐w1,2x
⏐⏐ ≪

⏐⏐u1,2z
⏐⏐, we find that

ρ1ν1 (u1z − 2u1xξx) = ρ2ν2 (u2z − 2u2xξx) , z = ξ (x, t). (2.9)

Furthermore, the velocities must be continuous at the interface,
i.e.

u1 = u2, w1 = w2, z = ξ (x, t). (2.10)

3. Lagrangian analysis

The Eulerian formulation in the previous section provides the
most familiar tool for studying wave problems. However, since
we here must incorporate thin viscous boundary layers at the
wavy interface, the Cartesian Eulerian approach actually requires
that the wave amplitude is smaller than the boundary-layer
thicknesses, which limits the wave amplitude quite severely; see
e.g. [4]. To remedy this one could use curvilinear coordinates,
following the wavy interface, but this is problematic since the
wave amplitude in our problem attenuates in space. A better
option is to use particle-following Lagrangian coordinates. Then
the interfacial amplitude can be arbitrary large (but small enough
for linearization to be valid).

In this description independent particle coordinates for two-
dimensional flow are denoted by (a, c), and the particle positions
can be written X = X (a, c, t) , Z = Z(a, c, t). Velocity and ac-
celeration components become (Xt , Zt ) and (Xtt , Ztt ), respectively.
One of the advantages of this formulation is that the material
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surface and material interface are given at all times by c = H1,
and c = 0.

Mass (actually volume) conservation in each layer can be
expressed as, [16]:

J(X, Z) = J(X0, Z0) (3.1)

Here X0 = X(a, c, t = 0), and Z0 = Z(a, c, t = 0) are the initial
particle positions. Furthermore,

J(F ,G) = FaGc − FcGa (3.2)

is the Jacobian operator. Formally, the positions and the pressure
P in each layer can be written as

X = a + x (a, c, t)

Z = c + z (a, c, t)

P = p0 − ρgc + p(a, c, t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.3)

where p0 is a constant. The continuity equation in each layer now
becomes from (3.1):

xa + zc + J(x, z) = x0a + z0c + J(x0, z0) (3.4)

In (3.3) x, z, and p may be expanded after the small dimensionless
parameter ε defined as

ε = A/H1, (3.5)

see e.g. [17]. Here A is the interfacial wave amplitude in the wave
generation area. Then(
x1,2, z1,2

)
= ε

[
x(1)
1,2, z

(1)
1,2

]
+ ε2

[
x(2)
1,2, z

(2)
1,2

]
+ · · ·

η = εη(1) + ε2η(2) + · · ·

ξ = εξ (1) + ε2ξ (2) + · · ·

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.6)

To O(ε) we have from (3.4) that x1,2ta + z1,2tc = 0. Hence for a
progressive wave proportional to exp(−iωt), we must have that
xa+zc = 0 in each layer. It then follows from (3.4) that x0a+z0c =

0 to this order. Accordingly, for the continuity (3.1) in each layer
we have:

J(X0, Z0) = 1 + O(ε2) (3.7)

In the transformation of the momentum equations (2.3)–(2.4)
from Eulerian to Lagrangian form, we change the Eulerian no-
tation for the independent spatial coordinates to capital letters
X, Z . In Lagrangian description, these positions are functions of
the independent Lagrangian variables a, c, t , as explained before.
For a function F the relation between the spatial Eulerian partial
derivatives and the Lagrangian derivatives is; see e.g. [18]:

FX = J(F , Z)/J(X, Z)
FZ = J(X, F )/J(X, Z)

}
(3.8)

where the Jacobian operator is defined by (3.2). From (3.1) and
(3.7) we notice that J(X, Z) = 1+O(ε2). Hence by introducing the
Lagrangian deviations x, z from (3.3), we find, correct to second
order:
FX = Fa + J(F , z)
FZ = Fc + J(x, F )
FZZ = Fcc + 2J(x, Fc) + J(xc, F )

}
(3.9)

Furthermore, in this problem we assume that the density differ-
ence between the layers is so small that we can take

ρ2 − ρ1 = ∆ρ, ρ1 ≈ ρ2 = ρ (3.10)

Utilizing (3.9), we obtain to O(ε2) for the horizontal momentum
equations (2.3)–(2.4):

x1tt = −gηa(1 + z1c) + ν1 [x1tcc + 2J(x1, x1tc) + J(x1c, x1t )] (3.11)

x2tt = − [g∗ξa + gηa] (1+z2c)+ν2 [x2tcc + 2J(x2, x2tc) + J(x2c, x2t )]
(3.12)

where g∗ is the reduced gravity defined by

g∗ = g∆ρ/ρ (3.13)

The linear (periodic) wave problem to O(ε) is trivial, and
we have deferred the details to the Appendix. Here, the linear
solutions are marked by a tilde.

4. The Lagrangian equations for the mean drift

With reference to (3.6), we define nonlinear mean quantities:

u1 = ε2x(2)
1t , u2 = ε2x(2)

2t , (4.1)

η = ε2η(2), ξ = ε2ξ (2), (4.2)

where the overbar denotes average over one wave period, and ε is
given by (3.5). The equations for mean flow to O(ε2) in the upper
and lower layer becomes from (3.11) and (3.12), respectively:

ν1u1cc − u1t = ν1

(
2x̃1tac x̃1c + x̃1cc x̃1ta − 2x̃1tcc x̃1a − x̃1ac x̃1tc

)
+

g∗H2

H1 + H2
ξ̃ax̃1a + gηa (4.3)

ν2u2cc − u2t = ν2

(
2x̃2tac x̃2c + x̃2cc x̃2ta − 2x̃2tcc x̃2a − x̃2ac x̃2tc

)
−

g∗H1

H1 + H2
ξ̃ax̃2a + g∗ξ a + gηa. (4.4)

We have here utilized that η̃ = −(∆ρ/ρ)H2ξ̃ /(H1 + H2) for
baroclinic motion; see (A.7). Furthermore, we have used (A.3) in
the pressure terms.

At the interface c = 0, the stress condition (2.9) and velocity
condition (2.10) become, respectively:

ν1u1c − ν2u2c = −ν1

(
x̃1tc x̃1a − x̃1tax̃1c − 2x̃1taξ̃a

)
+ ν2

(
x̃2tc x̃2a − x̃2tax̃2c − 2x̃2taξ̃a

)
(4.5)

u1 = u2. (4.6)

We use real values for the wave variables in (A.11)–(A.12),
(A.18)–(A.19), and take that

ξ̃ = H1δcos(ka − ωt) (4.7)

where we for simplicity have introduced the slowly-varying am-
plitude parameter δ by

δ = (A/H1) exp(−αa). (4.8)

Then (4.3) reduces to:

u1cc − u1t/ν1 = C∗Q1γ
2
1 δ2 [3Q1 exp(−2γ1c)

−4 exp(−γ1c) sin(γ1c)] + αC∗γ
2
1 δ2/k + gηa/ν1.

(4.9)

Here the interfacial phase speed C∗ from (A.22) is

C∗ = ω/k = (g∗H1H2)1/2/(H1 + H2)1/2. (4.10)

In the lower layer we find

u2cc − u2t/ν2 = h2C∗Q2γ
2
2 δ2 [3Q2 exp(2γ2c) + 4 exp(γ2c) sin(γ2c)]

+ αh2C∗γ
2
2 δ2/k + g∗ξ a/ν2 + gηa/ν2. (4.11)
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Here we have introduced the depth ratio

h = H1/H2. (4.12)

We recall that Q1 and Q2 in (4.9) and (4.11) are defined by
(A.15), and the inverse Stokes boundary-layer thicknesses γ1, γ2
by (A.13).

5. Lagrangian mean level changes

We may split the particular solutions of (4.9) and (4.11) into
c-dependent parts, and parts that do not depend on the vertical
coordinate. For an infinitely long channel we disregard any build-
up of the mean surface and mean interfacial levels due to mass
accumulation, so the only Lagrangian mean level changes are due
to the presence of waves; see e.g. [14] for surface waves.

The mean level changes in our problem are obtained from the
fact that the drift velocities cannot become infinite in time. Hence,
the parts of the right-hand sides of (4.9) and (4.11) that do not
depend on c must vanish, i.e.

αC∗γ
2
1 δ2/k + gηa/ν1 = 0, (5.1)

and

αh2C∗γ
2
2 δ2/k + g∗ξ a/ν2 + gηa/ν2 = 0, (5.2)

where δ and h are defined by (4.8) and (4.12), respectively. The
surface mean level then becomes from (5.1):

η = C2
∗
δ2/(4g) (5.3)

By inserting into (5.2), we find for the interfacial mean level

ξ = C2
∗
(h2

− 1)δ2/(4g∗) (5.4)

Since Lagrangian mean level changes basically are related to
irrotational waves with a mean forward mass transport, i.e. a
Stokes drift [19], we can introduce the Stokes momentum flux
in (5.3) and (5.4). We may obtain the Stokes drift uS in the
long-wave limit kH1 ≪ 1, kH2 ≪ 1, from the derivation
by Longuet-Higgins [20]. In Lagrangian notation we can write
Longuet-Higgins’ result to second order in wave steepness as

uS = x̃tax̃ + x̃tc z̃. (5.5)

Inserting real parts from (A.11)–(A.12) and (A.18)–(A.19), and ex-
cluding the boundary-layer terms, one obtains in the two layers,
respectively:

uS1 = C∗δ
2/2, (5.6)

uS2 = C∗h2δ2/2 (5.7)

The corresponding Stokes volume fluxes are

US1 = H1uS1,US2 = H2uS2. (5.8)

Inserting from (5.6) into (5.3) and (5.4), we obtain

η = C∗US1/(2gH1), (5.9)

and

ξ = C∗(h2
− 1)US1/(2g∗H1). (5.10)

We note from (5.9) that the surface disturbance always leads to a
positive change of surface level. This is in accordance with the
results in [14,15] for barotropic surface waves. However, from
(5.10), the mean level change at the interface can be positive
or negative depending on the ratio h = H1/H2. This is obvious,
since the mean momentum transport in the lower layer will
induce a positive change of the interfacial level, while the mean
momentum transport in the upper layer will lead to a negative
change (this is like a surface wave upside down). The difference in
density here is negligible, and since US1/US2 = H2/H1, the largest
Stokes momentum transport will occur in the upper layer when
H1 < H2. Hence, the interfacial level becomes negative in that
case, as seen from (5.10).

6. Particular solutions

The vertically-dependent parts uB1 and uB2 of (4.9) and (4.11)
yield the mean velocity in the viscous boundary layers at both
sides of the interface. We find that

uB1 = δ2C∗Q1

[
3
4
Q1 exp(−2γ1c) − 2 exp(−γ1c) cos(γ1c)

]
(6.1)

uB2 = δ2C∗Q2h2
[
3
4
Q2 exp(2γ2c) − 2 exp(γ2c) cos(γ2c)

]
(6.2)

In the shallow-water approximation the Stokes drift source term
vanishes on the right-hand sides of the Lagrangian drift equa-
tions (4.9) and (4.11); see the discussion in [21] for the viscous
one-layer case. To obtain a complete particular solution to this
problem, we therefore must add the Stokes drift (5.6) and (5.7) in
each layer, respectively. The particular solution to the Lagrangian
drift problem then becomes:

uS1 + uB1 = uS1

[
1 +

3
2
Q 2
1 exp(−2γ1c)

−4Q1 exp(−γ1c) cos(γ1c)
]

, (6.3)

uS2 + uB2 = uS1h2
[
1 +

3
2
Q 2
2 exp(2γ2c) − 4Q2 exp(γ2c) cos(γ2c)

]
.

(6.4)

Since uS + uB generally does not satisfy the boundary condition
for the mean flow at the interface; see [20] for surface waves,
an Eulerian current uE will develop, starting at the interface
and diffuse upwards and downwards in this problem. The total
Lagrangian mean drift velocity uL thus becomes

uL1,2 = uS1,2 + uB1,2 + uE1,2. (6.5)

Assuming that the Eulerian current starts from zero, the initial
Lagrangian drift is

uL1,2(t = 0) = uS1,2 + uB1,2. (6.6)

In the notion of [20], where the Lagrangian mean drift is the
Stokes drift plus the ‘‘Eulerian mean’’ velocity, the ‘‘Eulerian
mean’’ in the present formulation should be understood as

uB + uE .

7. Eulerian mean flow and VWS

The Eulerian parts of the mean velocities in (4.9) and (4.11)
are governed by

uE1cc − uE1t/ν1 = 0, (7.1)

uE2cc − uE2t/ν2 = 0. (7.2)

The boundary conditions for this case are obtained from (4.5) and
(4.6). Inserting for x̃1 and x̃2, we obtain to leading order in γ1, γ2:

ν1uL1c − ν2uL2c = 2uS1
[
Q1(1 − Q1)ν1γ1 + Q2h2(1 − Q2)ν2γ2

]
,

c = 0 (7.3)

uL1 = uL2, c = 0. (7.4)

By utilizing that uE1,2 = uL1,2 − uS1,2 − uB1,2, (7.3) and (7.4) yield
the boundary conditions for the transient mean velocities:

ν1uE1c − ν2uE2c = −ν1γ1uS1G, c = 0 (7.5)

and

uE1 − uE2 = −uS1F , c = 0. (7.6)
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The dimensionless parameters F and G are given by

F = 1 +
3
2
Q 2
1 − 4Q1 − h2

(
1 +

3
2
Q 2
2 − 4Q2

)
, (7.7)

G = Q1(2 − Q1) + Q2(2 − Q2)h2ν
1/2
2 /ν

1/2
1 , (7.8)

where Q1, Q2 are defined by (A.15). Introducing

r = ν
1/2
2 /ν

1/2
1 , (7.9)

F and G in (7.7)–(7.8) can be written

F = (1 + h) [(3 + r)h − 1 − 3r] /(2 + 2r) (7.10)

G = r(1 + h)2/(1 + r). (7.11)

In (7.5) the left-hand side represents the difference in VWS per
unit density across the interface; see e.g. [1] for surface waves. By
definition, we write for the VWS in the two layers:

τw1,2/ρ = ν1,2uE1,2c, c = 0. (7.12)

Using (7.5) and (7.10)–(7.11), we find

τw1/ρ − τw2/ρ = −ωGuS1/(2γ1). (7.13)

From (A.23) we note that the spatial attenuation rate can be
written

α = kG/[4H1γ1(1 + h)] . (7.14)

Accordingly, from (7.13):

τw1/ρ − τw2/ρ = −2αC∗H1(1 + h)uS1, (7.15)

where C∗, defined by (4.10), is the phase (and group velocity) for
long interfacial waves. By introducing the Stokes volume fluxes
(5.8) for this problem into (7.15), we finally obtain that

τw1/ρ − τw2/ρ =
[
C∗(US1 + US2)

]
a . (7.16)

This is a fundamental, novel result, relating the VWS’s to the
divergence of the total horizontal wave momentum flux in a
two-layer model. The relation (7.16) should also hold in the case
when the interface is covered by a thin film (leading to a larger
damping coefficient α of the interfacial wave). A similar result for
dispersive surface waves (one deep layer) was derived in [2].

The Eulerian part of this problem, governed by (7.1)–(7.2) and
the boundary conditions (7.5)–(7.6), is a transient one. For the
ideal case of an infinitely long channel, a final steady solution
requires a balance between the viscous bottom stress and the
VWS. However, in practice with experiments in a tank of length
L, mass will accumulate near the end of the tank due to the
wave-induced drift, generating adverse pressure gradients (inter-
facial/surface tilts) that will cause a return flow in the tank. We
have not included such mean gradients in our analysis. Since the
drift velocity is typically proportional to the Stokes drift, this puts
an upper limit tadv to the duration of the experiment of the order
tadv ∼ L/uS1,2 if comparisons with the present theory should be
made.

8. Transient solutions

In the present investigation we focus on the transient part of
the problem evolving in the vicinity of the interface, and neglect
the effects of surface and bottom friction. To illustrate the mean
wave momentum transfer to Eulerian currents, we first integrate
(7.1) and (7.2) in the vertical. The VWS, defined by (7.12), become

τw1/ρ = −

∫ H1

0
uE1tdc = −UE1t , (8.1)

τw2/ρ =

∫ 0

−H2

uE2tdc = UE2t , (8.2)

where UE1,2 are the Eulerian mean volume transports. By com-
bining (7.16) and (8.1)–(8.2), we obtain that[
UE1 + UE2

]
t +

[
C∗(US1 + US2)

]
a = 0, (8.3)

which constitutes the total horizontal mean momentum conser-
vation in the two-layer system.

To obtain specific solutions for the Eulerian mean flow, we
apply Laplace transforms. We take that uE1,2(t = 0) = 0, and
assume that the diffusive solutions have not reached the bottom
or the surface in the model, i.e. uE1 = 0 when c → ∞, and
uE2 = 0 when c → −∞. In this way we deliberately limit the
validity of our solutions in time to focus on the early develop-
ment of the drift currents near the interface. Using the boundary
conditions (7.5)–(7.6), the solutions can be written in terms of
complementary and integrated complementary error functions:

uE1 = −uS1R
[
rFerfc

(
c

2(ν1t)1/2

)
−G(2ωt)1/2ierfc

(
c

2(ν1t)1/2

)]
, c ≥ 0, (8.4)

uE2 = uS1R
[
Ferfc

(
−

c
2(ν2t)1/2

)
+G(2ωt)1/2ierfc

(
−

c
2(ν2t)1/2

)]
, c ≤ 0, (8.5)

where F and G are given by (7.10)–(7.11). Furthermore, r = ν
1/2
2 /

ν
1/2
1 = γ1/γ2, and R = 1/(1 + r).
From (7.16) we notice that the difference between the VWS’s

is independent of time, while for the ratio we obtain from (8.4)–
(8.5):

τw1/τw2 =
[
F − (π/r)(t/T )1/2G

]
/
[
F + π (t/T )1/2G

]
, (8.6)

where T is the wave period. A negative value on the right-hand
side of (8.6) less than minus one means that the time derivative
of the total horizontal Eulerian mean momentum in the upper
layer is larger than the corresponding one the lower layer. For
longer times we note that τw1/τw2 → −1/r . Hence, if r < 1,
i.e. more viscous fluid on top, the Eulerian drift velocity will
increase fastest in the upper layer. More generally, from (7.10)–
(7.11) we notice that G > 0 for all possible choice of parameters,
while F = 0 when h = (1 + 3r)/(3 + r). Accordingly, when
h < (1 + 3r)/(3 + r), we have F < 0. In this case with r < 1,
(more viscous on top) we have from (8.6) that |τw1/τw2| > 1
when t > 0. If the fluid on top is much more viscous than the
lower fluid (r ≪ 1), this will happen for all h = H1/H2 < 1/3.
We will elaborate more on the momentum transfer in the case
studies presented in Section 9. Again, we emphasize that our
approach yielding solutions which grow in time, is only valid for
relatively small times. The asymptotic solutions for long times
will equilibrate due to the effect of friction in the same manner
as the surface wave drift in a shallow single layer [20].

9. Case studies

The obvious starting point for a discussion on how viscosity
variations and layer depth ratios influence the Lagrangian drift
solution uL1,2 = uS1,2 + uB1,2 + uE1,2 is the symmetric case ν1 =

ν2 = ν, and H1 = H2, i.e. r = 1, h = 1. Then R = 1/2, F = 0,
and G = 2 in (8.4)–(8.5). In Fig. 1, we have depicted the non-
dimensional Lagrangian solution uL/uS1 = (uS + uB + uE)/uS1 in
the two layers when γ1H1 = γ2H1 = 1000.
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Fig. 1. Non-dimensional Lagrangian drift uL/uS1 when t = 0 (black line), t = 2T
(gray line), and t = 10T (dashed line) in the two layers as function of the
non-dimensional depth coordinate c/H1 . Here h = 1, and γ1H1 = γ2H1 = 1000.

The flow is symmetric about the interface. This is obvious,
since from (8.6), τw1/τw2 = −1 for all times in this problem.
Initially, the drift is negative (backward) at the interface; see the
black curve in Fig. 1. However, the induced Eulerian mean flow
very quickly changes this picture. At the surface when t > 0, we
find from (8.4)–(8.5) for this case:

uE1(c = 0) = uE2(c = 0) = uS1(4t/T )1/2. (9.1)

When this velocity is added to the initial flow, we realize that
the Lagrangian drift at the interface is quite rapidly accelerated,
and will become positive after a few wave periods, as seen in
Fig. 1. Dore, in a series of papers [6–9] was the first to show that
time-independent Eulerian mean currents in undamped interfa-
cial waves were much larger than for surface waves with a clean
surface.

It is the large VWS’s that cause the rapid growth of the Eule-
rian current in this case. We find at c = 0:

τw1/(ρν) = uE1c = −γ uS1, (9.2)

τw2/(ρν) = uE2c = γ uS1. (9.3)

These VWS’s are in fact similar to that found for short progressive
gravity waves in the presence of an inextensible surface film [2],
and shown in [3] to explain quite well the transient drift of
plastic sheets in the laboratory experiments reported in [22]. For
the pioneering work on surface wave drift in the presence of an
inextensible film, we refer to Craik [4]. It was in fact Craik that
also pointed out the similarity between the inextensible surface
film case and the interfacial wave case. We demonstrate here
explicitly that this enhancement is related to the strong VWS’s
that appear in interfacial waves with a clean interface.

A change of the viscosity in the upper (or lower) layer alters
this picture. We consider here the case when the viscosity is
increasing in the upper fluid, while keeping H1 = H2. The effect
of increasing viscosity is seen in Fig. 2a and b.

We note from the figure that the total Eulerian momentum in
the upper layer increases more than in the lower layer as r =

γ1/γ2 becomes smaller. In fact, after t = 10T (dashed lines), we
find that in (a): τw1/τw2 = −1.86, and in (b): τw1/τw2 = −6.57,
which underlines this point.

The changes of the drift currents due to depth ratio variations
are less dramatic than for viscosity changes. In Fig. 3 we have
depicted the non-dimensional Lagrangian solution uL/uS1 in the
two layers for two values of h when ν1 = ν2.

In this case, after t = 10T (dashed lines), we find that in (a):
τw1/τw2 = −1.22, and in (b): τw1/τw2 = −1.4, illustrating the
relatively slow growth in upper layer momentum compared to
lower layer momentum as H2 increases.

In a field situation one may find a very viscous thin layer above
a much deeper and less viscous layer (e.g. near-shore oil spills). In
Fig. 4 we have depicted the non-dimensional Lagrangian solution
uL/uS1 in the two layers for such a case.

In this example we find that τw1/τw2 = −19.1 after t = 10T ,
illustrating the strong growth of upper layer momentum for this
configuration. In such cases the Lagrangian drift in the deep lower
layer will be negligible, and the increase in drift velocity (above
the Stokes drift) will be observed in the growing diffusive layer
on the more viscous side of the interface.

10. Suggestion for a simple laboratory verification of the the-
ory

To test the theory developed here experimentally, one could
use olive oil and water as working fluids. At room temperature
we have for olive oil that ρ1 = 911 kg m−3 and ν1 = 9.22 ×

10−5m2 s−1, while for water ρ2 = 1000 kg m−3 and ν2 =

Fig. 2. Text as in Fig. 1 with h = 1. Here (a): γ1H1 = 500, γ2H1 = 1000, (b): γ1H1 = 100, γ2H1 = 1000.
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Fig. 3. Text as in Fig. 1, with γ1H1 = γ2H1 = 1000. Here (a): h = 1/3, (b): h = 1/10.

Fig. 4. Text as in Fig. 1. Here h = 1/10, γ1H1 = 100, and γ2H1 = 1000.

1.12 × 10−6 m2 s−1. The reduced gravity in this case becomes
g∗ = 0.87 m s−2. With H1 = H2 = 0.1 m, and a wavelength λ =

1 m, we find that C∗ = 0.21 m s−1, and T = 4.8 s. Furthermore,
in this case γ1H1 = 8.4 and γ2H2 = 76.6. The parameter values
in this example fulfill the assumptions behind our analysis quite
well, i.e. λ ≫ H1,H2 (long waves) and γ1H1, γ2H2 ≫ 1 (thin
Stokes layers). A reasonable interfacial wave amplitude in this
experiment is A = 2 cm. Then the expansion parameter becomes
ε = A/H1 = 0.2. From (A.11)–(A.12) we obtain for the inviscid
part of the wave field that the maximum horizontal velocity jump
across the interface is ∆ũ = 8.2 cm s−1. The bulk Richardson
number for the wave problem can be defined as

Ri = g∗H1/(∆ũ)2. (10.1)

With our adopted values we find that Ri = 12.9, so the basic
configuration is definitely stable. In this example the maximum
Stokes drift from (5.6)–(5.7) becomes uS = 0.42 cm s−1 in both
layers. With

⏐⏐ũ⏐⏐max = 4.1 cm s−1 and C∗ = 21 cm s−1, we
notice that the basic condition for the validity of our perturbation
analysis, i.e. |uS |max ≪

⏐⏐ũ⏐⏐max ≪ C∗, is reasonably well fulfilled.
In Fig. 5 we have depicted the dimensional Lagrangian solution

uL in the two layers for this particular case.

Fig. 5. Dimensional Lagrangian drift uL when t = 0 (black line), t = 10 s
(gray line), and t = 30 s (dashed line) in the two layers as function of the
non-dimensional depth coordinate c/H1 . Here H1 = H2 = 0.1 m, λ = 1 m,
ν1 = 9.22 × 10−5 m2 s−1 (olive oil), and ν2 = 1.12 × 10−6 m2 s−1 (water).

After about 6 wave periods we note from Fig. 5 (dashed line)
that the drift velocity near the interface in the upper layer is
about 1 cm s−1, while in the lower layer the drift velocity close
to the interface is 1.7 cm s−1. These drift velocities, and velocity
differences, should easily be detected by applying a common
Particle Image Velocimetry (PIV) flow visualization technique.

11. Discussion and concluding remarks

For long interfacial waves in a two-layer system of immiscible
fluids the inviscid Stokes drift is positive (in the direction of
the wave propagation) in both layers. However, the initial drift
(inviscid Stokes drift + viscous boundary-layer terms) associated
with the instantaneously imposed wave field does not generally
fulfill the conditions at the common boundary. Here the initial
drift may also be negative. As a consequence, transient Eulerian
mean currents develop on both sides of the interface to ensure
continuity of velocities and viscous stresses. The VWS here plays
a crucial part, transferring lost wave momentum due to damping
into Eulerian mean currents; see e.g. [1] for surface waves. In
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general, the transient Eulerian current driven by the VWS tends
to promote positive drift at the interface as time increases. It
is found that the strong VWS in interfacial waves is similar to
that enhancing the drift in short surface waves in the presence
of surface films; see e.g. [3]. A new relation is derived that shows
that the difference between the VWS’s at the interface is given by
the divergence of the total horizontal wave momentum flux in a
two-layer system.

Reduced gravity models for interfacial long waves have suc-
cessfully been applied to model the first baroclinic response in
a continuously stratified system with a pronounced pycnocline;
see e.g. [23,24]. However, by assuming a discontinuity in density
between the two layers of miscible fluids (such as warm water
above cold water), the backward Stokes drift velocity for the first
baroclinic mode near the peak of the Brunt-Väisälä frequency is
not reproduced; see [25] for constant Brunt-Väisälä frequency
N , [26] in the case of a thin thermocline with constant N , and [27]
for internal equatorial Kelvin waves with arbitrary stable strati-
fication. In the two-layer miscible case we must on theoretical
grounds postulate a delta-function type negative Stokes drift at
the interface in order to comply with the requirement of zero
horizontal Stokes volume transport for each internal mode [27].
This is definitely unphysical, and in practice, a pycnocline will
always develop between miscible layers due to instabilities and
turbulent mixing.

In the case of immiscible fluid layers treated here the ini-
tial Lagrangian transport only get small negative boundary-layer
contributions of O(1/γ1, 1/γ2) to the positive Stokes transport in
each layer. At later times the Lagrangian transport in the growing
boundary layers at both sides of the interface is entirely positive.
Hence, the total Lagrangian transport in the immiscible case is
positive.

In a laboratory experiment with a two-layer model we will
also find enhancement of the mean drift in the surface boundary
layer, and in the bottom boundary layer. These layers are much
thinner than the layer depths H1,H2, and for times related to
the duration of a wave tank experiment (before the build-up
of mean pressure gradients occurs), the drift solutions near the
surface and the bottom will not interfere with the Lagrangian
mean currents at the interface studied in this paper. The need
for time in developing friction-induced currents at the surface,
interface and at the bottom is clearly seen from the study of
large-amplitude interfacial solitons [28], where there is excellent
agreement between measurements and inviscid theory.

Apart from the obvious environmental aspects, one of the
motivations behind this theoretical research has been to inspire
keen experimentalists to work on waves in a two-layer system
with immiscible fluids. Albeit the Stokes drift is not easy to
measure in wave tanks, recent progress is very promising; see
e.g. the discussion in [29] and the experiments in [5]. Hence,
the present results of rapidly increasing drift currents near the
interface should be possible to capture in the laboratory.
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Appendix. The linear baroclinic response

We here define linear quantities (with a tilde) as x̃1,2 =

εx(1)
1,2, z̃1,2 = εz(1)

1,2, η̃ = εη(1), ξ̃ = εξ (1), and ũ1 = x̃1t , ũ2 = x̃2t .
The equations to O(ε)become from (3.9) and (3.10):

ν1ũ1cc − ũ1t = g η̃a (A.1)

ν2ũ2cc − ũ2t = g∗ξ̃a + g η̃a (A.2)

From volume conservation:

x̃1,2a + z̃1,2c = 0 (A.3)

Hence

η̃ − ξ̃ = −

∫ H1

0
x̃1adc (A.4)

ξ̃ = −

∫ 0

−H2

x̃2adc (A.5)

which is just the linearized version of (2.6)–(2.7). The focus in this
paper is on the baroclinic response, i.e. we assume that⏐⏐ξ̃ ⏐⏐ ≫ |η̃| (A.6)

Utilizing (A.6), one obtains from (A.4)–(A.5) that the volume
fluxes in each layer are equal in magnitude and oppositely di-
rected. Integrating (A.1)–(A.2) over the respective fluid layer
depths, and assuming free-slip conditions at the surface and the
bottom, one obtains by adding the linearized fluxes:

η̃ = −(∆ρ/ρ)H2ξ̃ /(H1 + H2) (A.7)

The linearized governing equations then become from (A.1)–
(A.2):

ν1ũ1cc − ũ1t = −g∗H2ξ̃a/(H1 + H2) (A.8)

ν2ũ2cc − ũ2t = g∗H1ξ̃a/(H1 + H2) (A.9)

In this problem we take that the O(ε) interfacial displacement can
be written in complex form as

ξ̃ = εH1ei(κa−ωt), (A.10)

where ω is the real frequency, and κ = k + iα. Here k is the real
wave number and α is the spatial wave attenuation coefficient
due to friction. By assuming continuity of horizontal velocities
and viscous stresses at the interface, we readily obtain from
(A.8)–(A.9):

x̃1 = −
iκg∗H1H2

ω2 (H1 + H2)
ε [1 − Q1

× exp (− (1 − i) γ1c)] exp(i (κa − ωt)), (A.11)

x̃2 =
iκg∗H2

1

ω2 (H1 + H2)
ε [1 − Q2 exp ((1 − i) γ2c)] exp(i (κa − ωt)).

(A.12)

Here

γ1 = [ω/(2ν1)]1/2 , γ2 = [ω/(2ν2)]1/2 (A.13)

are the inverse boundary-layer thicknesses on both sides of the
interface. In the literature 1/γ1 and 1/γ2 are often referred as the
Stokes boundary-layer thicknesses. The present analysis assumes
that the Stokes boundary layers are thin, i.e. that

γ1H1 ≫ 1, γ2H2 ≫ 1. (A.14)

Furthermore, in (A.11)–(A.12), we have defined

Q1 = (H1 + H2)(1 − R)/H2,Q2 = (H1 + H2)R/H1 (A.15)

where

R = ν
1/2
1 /(ν1/2

1 + ν
1/2
2 ) < 1. (A.16)

The kinematic boundary conditions at the surface and the
bottom for the baroclinic mode are:

z̃1 = −
g∗H2

g(H1 + H2)
ξ̃ , c = H1, (A.17)
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z̃2 = 0, c = −H2. (A.18)

Hence, from (A.3):

z̃1 =
κ2g∗H2

1H2

ω2(H1 + H2)
ε

[
1 − c/H1 −

(1 + i)Q1

2γ1H1
exp(−(1 − i)γ1c)

]
× exp(i(κa − ωt))

−
g∗H1H2

g (H1 + H2)
ε exp(i(κa − ωt)), (A.19)

z̃2 =
κ2g∗H2

1H2

ω2(H1 + H2)
ε

[
1 + c/H2 −

(1 + i)Q2

2γ2H2
exp((1 − i)γ2c)

]
× exp(i(κa − ωt)). (A.20)

It is easily demonstrated from the definitions (A.15) and (A.16)
that Q1/(γ1H1) = Q2/(γ2H2) in (A.19)–(A.20). Accordingly, when
we neglect the small contribution from the surface, we have that
z̃1 = z̃2 at c = 0. The remaining kinematic condition at the
interface is

ξ̃ = z̃1, c = 0. (A.21)

Utilizing (A.6) and (A.10) in (A.21), we obtain the complex dis-
persion relation

ω2
=

κ2g∗H1H2

H1 + H2

[
1 −

(1 + i)Q1

2γ1H1

]
. (A.22)

From the real part of (A.22), we find to lowest order

ω2
=

g∗H1H2

H1 + H2
k2, (A.23)

while the imaginary part yields the spatial damping rate

α =
H1 + H2

4H1H2(γ1 + γ2)
k. (A.24)

In this problem we have assumed that α/k ≪ 1.

References

[1] M.S. Longuet-Higgins, A nonlinear mechanism for the generation of sea
waves, Proc. Roy. Soc. A 311 (1969) 371–389.

[2] J.E. Weber, Virtual wave stress and mean drift in spatially damped surface
waves, J. Geophys. Res. 106 (2001) 11,653–11,657.

[3] K.H. Christensen, J.E. Weber, Drift of an inextensible sheet caused by
surface waves, Environ. Fluid Mech. 5 (2005) 492–505.

[4] A.D.D. Craik, The drift in water waves, J. Fluid Mech. 116 (1982) 187–205.
[5] J. Grue, J. Kolaas, Experimental particle paths and drift velocity in steep

waves at finite water depth, J. Fluid Mech. 810 (2017) R1, http://dx.doi.
org/10.1017/jfm.2016.726.

[6] B.D. Dore, Mass transport in a layered fluid system, J. Fluid Mech. 40 (1970)
113–126.

[7] B.D. Dore, On mass transport induced by interfacial oscillations at a single
frequency, Proc. Camb. Phil. Soc. 74 (1973) 333–347.

[8] B.D. Dore, Some effects of the air-water interface on gravity waves,
Geophys. Astrophys. Fluid Dyn. 10 (1978) 215–230.

[9] B.D. Dore, A double boundary-layer model of mass transport in progressive
interfacial waves, J. Engrg. Math. 12 (1978) 289–301.

[10] J. Wen, P.L.-F. Liu, Mass transport of interfacial waves in two-layer fluid
system, J. Fluid Mech. 297 (1995) 231–254.

[11] J.E. Weber, E. Førland, Effect of air on the drift velocity of water waves, J.
Fluid Mech. 218 (1990) 619–640.

[12] I. Piedra-Cueva, Drift velocity of spatially decaying waves in a two-layer
viscous system, J. Fluid Mech. 299 (1995) 217–239.

[13] C.-O. Ng, Mass transport and set-ups due to partial standing surface waves
in a two-layer viscous system, J. Fluid Mech. 520 (2004) 297–325.

[14] M.S. Longuet-Higgins, Eulerian and Lagrangian aspects of surface waves, J.
Fluid Mech. 173 (1986) 683–707.

[15] M.E. McIntyre, A note on the divergence effect and the Lagrangian-mean
surface elevation in periodic water waves, J. Fluid Mech. 189 (1988)
235–242.

[16] H. Lamb, Hydrodynamics, sixth ed., Cambridge University Press, Cambridge,
U.K., 1932.

[17] W.J. Pierson, Perturbation analysis of the Navier–Stokes equations in
Lagrangian form with selected solutions, J. Geophys. Res. 67 (1962)
3151–3160.

[18] D. Clamond, On the Lagrangian description of steady surface gravity waves,
J. Fluid Mech. 589 (2007) 433–454.

[19] G.G. Stokes, On the theory of oscillatory waves, Trans. Camb. Phil. Soc. 8
(1847) 441–455.

[20] M.S. Longuet-Higgins, Mass transport in water waves, Phil. Trans. Roy. Soc.
Lond. A 245 (1953) 535–581.

[21] J.E. Weber, Lagrangian studies of wave-induced flows in a viscous ocean,
Deep-Sea Res. Part II 160 (2019) 68–81.

[22] A.W.K. Law, Wave-induced surface drift of an inextensible thin film, Ocean
Eng. 26 (1999) 1145–1168.

[23] J. McCreary, Eastern tropical ocean response to changing wind systems:
With application to El Niño, J. Phys. Oceanogr. 6 (1976) 632–645.

[24] A.J. Busalacchi, J.J. O’Brien, The seasonal variability in a model of the
tropical Pacific, J. Phys. Oceanogr. 10 (1980) 1929–1951.

[25] C. Wunsch, On the mean drift in large lakes, Limnol. Oceanogr. 18 (1973)
793–795.

[26] M.A. Al-Zanaidi, B.D. Dore, Some aspects of internal wave motions, Pure
Appl. Geophys. 114 (1976) 403–414.

[27] J.E. Weber, K.H. Christensen, G. Broström, Stokes drift in internal equatorial
kelvin waves: Continuous stratification versus two-layer models, J. Phys.
Oceanogr. 44 (2014) 591–599.

[28] J. Grue, A. Jensen, P.-O. Rusås, J.K. Sveen, Properties of large-amplitude
internal waves, J. Fluid Mech. 380 (1999) 257–278.

[29] T.S. van den Bremer, Ø. Breivik, Stokes drift, Phil. Trans. R. Soc. A 376
(2017) 20170104.

http://refhub.elsevier.com/S0997-7546(18)30618-6/sb1
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb1
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb1
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb2
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb2
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb2
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb3
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb3
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb3
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb4
http://dx.doi.org/10.1017/jfm.2016.726
http://dx.doi.org/10.1017/jfm.2016.726
http://dx.doi.org/10.1017/jfm.2016.726
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb6
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb6
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb6
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb7
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb7
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb7
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb8
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb8
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb8
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb9
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb9
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb9
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb10
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb10
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb10
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb11
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb11
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb11
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb12
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb12
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb12
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb13
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb13
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb13
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb14
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb14
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb14
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb15
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb15
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb15
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb15
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb15
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb16
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb16
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb16
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb17
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb17
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb17
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb17
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb17
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb18
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb18
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb18
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb19
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb19
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb19
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb20
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb20
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb20
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb21
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb21
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb21
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb22
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb22
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb22
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb23
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb23
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb23
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb24
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb24
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb24
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb25
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb25
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb25
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb26
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb26
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb26
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb27
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb27
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb27
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb27
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb27
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb28
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb28
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb28
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb29
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb29
http://refhub.elsevier.com/S0997-7546(18)30618-6/sb29

	Virtual wave stress and transient mean drift in spatially damped long interfacial waves
	Introduction
	Mathematical formulation
	Lagrangian analysis
	The Lagrangian equations for the mean drift
	Lagrangian mean level changes
	Particular solutions
	Eulerian mean flow and VWS
	Transient solutions
	Case studies
	Suggestion for a simple laboratory verification of the theory
	Discussion and concluding remarks
	Acknowledgments
	Appendix. The linear baroclinic response
	References


