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ABSTRACT

We present a formalism to study screening mechanisms in modified theories of gravity through perturbative methods in different
cosmological scenarios. We consider Einstein-frame posed theories that are recast as Jordan-frame theories, where a known formalism
is employed, although the resulting nonlinearities of the Klein–Gordon equation acquire an explicit coupling between matter and the
scalar field, which is absent in Jordan-frame theories. The obtained growth functions are then separated into screening and non-
screened contributions to facilitate their analysis. This allows us to compare several theoretical models and to recognize patterns that
can be used to distinguish models and their screening mechanisms. In particular, we find anti-screening features in the symmetron
model. In contrast, chameleon-type theories in both the Jordan and Einstein frames always present a screening behaviour. Up to third
order in perturbation, we find no anti-screening behaviour in theories with a Vainshtein mechanism, such as the Dvali Gabadadze
Porrati braneworld model and the cubic Galileon.

Key words. gravitation – large-scale structure of Universe – cosmology: theory – cosmology: miscellaneous –
cosmology: observations – dark energy

1. Introduction

Two decades have passed since the discovery of the present-day
acceleration of the Universe (Riess et al. 1998; Perlmutter et al.
1999). Its physical origin, however, is still a mystery. The sim-
plest choice is that this acceleration is the result of the vacuum
energy, in the form of a cosmological constant, in Einstein’s
equations. This model is in agreement with current observa-
tions, but is plagued by the fine-tuning problem. Another simple
option is that dark energy is a dynamical field, as in quintessence
models. This field may also interact with the dark matter sec-
tor, giving rise to interacting dark energy models (Amendola &
Tsujikawa 2010).

Instead of modifying the particle content of the Universe, an
alternative solution is extending Einstein gravity in such a way that
the current acceleration of the Universe is accounted for. How-
ever, precise measurements on Earth, in the solar system, in binary
pulsars, and of gravitational waves (LIGO Collaboration & Virgo
Collaboration 2016; Bertotti et al. 2003; Will 2006; Williams et al.
2004) strongly constrain deviations from general relativity (GR)
at these scales (Will 2014). This is a challenge to theories of grav-
ity beyond Einstein GR, which claim to be an explanation of the
present-day acceleration (Clifton et al. 2012; Joyce et al. 2015;
Bull et al. 2016).

We note, however, that all these tests probe extensions to GR
in astrophysical systems that reside in dense galactic environ-
ments. Conditions are therefore far from the cosmological back-
ground density, curvature, and even the gravitational potential
differs from that of the background by several orders of magni-
tude (Baker et al. 2015).

A way of evading the high-density environmental constraints
while still allowing deviations from GR on cosmological scales
is to hide modifications to Einstein’s gravity in these environ-
ments. The idea is that the geometry is modified by introducing
a new degree of freedom that drives the acceleration of the Uni-
verse. This degree of freedom, in the simplest case a scalar field,
would be suppressed in high-density or curvature environments,
however.

Several screening mechanisms have been proposed in the lit-
erature, and they can be classified in several ways (Joyce et al.
2015; Brax 2013; Brax & Davis 2015; Koyama 2016). We here
investigate screening mechanisms that result from one of the fol-
lowing three properties: i) Weak coupling, in which the cou-
pling to matter fields becomes weak in regions of high den-
sity, hence suppressing the fifth force. At large scales, where the
density is low, the coupling becomes large and the fifth force
acts strongly. Examples of theories of this type are symmetron
models (Hinterbichler & Khoury 2010; Pietroni 2005; Olive &
Pospelov 2008) and varying dilaton (Damour & Polyakov 1994;
Brax et al. 2011). ii) Large mass, when the mass of the field
becomes large in regions of high density, suppressing the range
of the fifth force. At low densities, the scalar field mass is small
and mediates a long range fifth force. Examples of this type
are chameleons (Khoury & Weltman 2004a,b). Finally, iii) large
inertia, when the scalar field kinetic function depends on the
environment, being large in high dense regions (and then the
Yukawa potential is suppressed) and small in low dense regions.
Examples of the former are K-mouflage models (Babichev et al.
2009, 2011), and examples of the latter are Vainshtein models
(Vainshtein 1972).
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Screening mechanisms are a relatively generic prediction of
viable modified gravity (MG) theories (Brax et al. 2012). Detect-
ing them would therefore be a signature of physics beyond GR.
Observational tests of screening focus on the transition between
the fully screened and unscreened regimes, where deviations
from GR are expected to be most pronounced. For viable cosmo-
logical models, this transition occurs in regions where the mat-
ter density and gravitational potential are nonlinear and start to
approach their linear or background values: this can be observed
in the outskirts of dark matter halos and their properties (e.g.
Shirata et al. 2005; Davis et al. 2012; Oyaizu et al. 2008; Schmidt
et al. 2009; Barreira et al. 2013; Wyman et al. 2013; Zhao 2014;
Clifton et al. 2005; Lombriser et al. 2015, 2012; Martino & Sheth
2009; Clampitt et al. 2013; Llinares & Mota 2013; Hellwing
et al. 2013; Gronke et al. 2014, 2015; Stark et al. 2016).

Screening mechanisms are in fact a nonlinear effect. There-
fore, predictions of their signatures in astrophysical systems are
computed by integrating the fully nonlinear equations of motion
for the extra-degree of freedom of gravity and also using N-body
simulations in order to simulate nonlinear structure formation.
These computations are extremely time-consuming, however. It
is therefore not viable to use them for a parameter estimation or
even to place constraints on the parameter space of such the-
ories using nonlinear codes of structure formation. It is then
imperative to find other methods to describe and probe screen-
ing mechanisms in faster and accurate ways. Although screen-
ings are more commonly studied in the highly nonlinear regime,
they leave imprints on quasi-linear scales that can be captured by
cosmological perturbation theory (PT) and should be considered
in the low-density regions of large-scale structure formation; see
for example (Koyama et al. 2009).

On the other hand, PT has experienced many develop-
ments in recent years (Matsubara 2008a; Baumann et al. 2012;
Carlson et al. 2013), in part because it can be useful to ana-
lytically understand different effects in the power spectrum
and correlation function for the dark matter clustering. These
effects can be confirmed or refuted, and further explored with
simulations to ultimately understand the outcomes of present
and future galaxy surveys, such as eBOSS (Zhao 2016), DESI
(Aghamousa et al. 2016), EUCLID (Amendola et al. 2013), and
LSST (LSST Dark Energy Science Collaboration 2012). Two
approaches have been used to study PT: the Eulerian standard
PT (SPT) and Lagrangian PT (LPT), which both have advan-
tages and drawbacks, but they are complementary in the end
(Tassev 2014). The nonlinear PT for MG was developed initially
in (Koyama et al. 2009), and has been further studied in sev-
eral other works (Taruya et al. 2014a,b; Brax & Valageas 2013;
Bellini & Zumalacarregui 2015; Taruya 2016; Bose & Koyama
2016, 2017; Barrow & Mota 2003; Akrami et al. 2013; Fasiello
& Vlah 2017; Aviles & Cervantes-Cota 2017; Hirano et al. 2018;
Bose et al. 2018; Bose & Taruya 2018; Aviles et al. 2018). The
LPT for dark matter fluctuations in MG was developed in Aviles
& Cervantes-Cota (2017), and further studies for biased tracers
in Aviles et al. (2018). The PT for MG has the advantage that
it allows us to understand the role that these physical param-
eters play in the screening features of dark matter statistics.
We here study some of these effects through screening mecha-
nisms by examining them at second- and third-order perturba-
tion levels using PT for some MG models. To this end, we build
on the LPT formalism developed in Aviles & Cervantes-Cota
(2017), which was initially posited for MG theories in the Jor-
dan frame, in order to apply it to theories in the Einstein frame.
Because of the direct coupling of the scalar field and the dark
matter in the Klein–Gordon equation, the equations that govern

the screening can differ substantially from those in Jordan-frame
MG theories. In general, screening effects depend on the type
of nonlinearities that are introduced in the Lagrangian density.
We present a detailed analysis of screening features and iden-
tify the theoretical roots of their origin. Our results show that
screenings possess peculiar features that depend on the scalar
field effective mass and couplings, and that may in particular
cases cause anti-screening effects in the power spectrum, such as
in the symmetron model. We perform this analysis by separating
the growth functions into screening and non-screened parts. We
note, however, that we do not compare the perturbative approach
with a fully nonlinear simulation. We refer to (Koyama et al.
2009), for instance, for investigations like this at the level of the
power spectrum.

This work is organized as follows: in Sect. 2 we set up the
formalism for perturbation theory in both the Einstein and Jordan
frames; in Sect. 3 we apply these methods to the specific gravity
models investigated here; in Sect. 4 we show the matter power
spectra and in Sect. 5 the screening growth function analysis.
We conclude in Sect. 6 with a discussion of our results. Some
formulae are displayed in Appendix A.

2. Perturbation theory in the Einstein frame

In this section we are interested in MG theories defined in the
Einstein frame with action

S =

∫
d4x
√
−g

 M2
Pl

2
R − (∇ϕ)2 − V(ϕ)

 + S m[g̃µν], (1)

with the conformal metric

g̃µν = (C(ϕ))2gµν, (2)

where C(ϕ) is a conformal factor (in the literature it is more com-
mon to find A(ϕ); we use C instead because A is used below to
characterize the strength of the gravitational force). By taking
variations of action Eq. (1) with respect to the scalar field, we
obtain the Klein–Gordon equation

�ϕ =
dVeff

dϕ
, Veff = V(ϕ) − T (C(ϕ) − 1), (3)

where T is the trace of the energy momentum tensor of matter.
In PT we split the scalar field into background ϕ̄ and perturbed
δϕ parts,

ϕ(x, t) = ϕ̄(t) + δϕ(x, t). (4)

Hereafter, a bar over a dynamical quantity means that we refer
to its homogeneous and isotropic background value; we also
assume a dark matter perfect fluid with T = − ρ. In the follow-
ing we adopt the quasi-static limit for the perturbed piece, which
relies on neglecting temporal derivatives in the Klein–Gordon
equation, thus Eq. (3) becomes

1
a2∇

2
xδϕ =

∞∑
n=1

1
n!

[
V (n+1)(ϕ̄) + ρ̄C(n+1)(ϕ̄)

]
(δϕ)n

+ ρ̄δ

∞∑
n=0

1
n!

C(n+1)(ϕ̄)(δϕ)n

=
β

MPl
ρ̄δ + m2(ϕ̄)δϕ +

∞∑
n=2

1
n!

M1−n
Pl κn+1(δϕ)n

+ ρ̄δ

∞∑
n=1

1
n!

M−1−n
Pl βn+1(δϕ)n, (5)
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where we have subtracted the background evolution. Here
V (n)(ϕ̄) and C(n)(ϕ̄) denote the n-ésime derivative of V and C
functions evaluated at background values. In the above equa-
tion we also introduced the matter overdensity δ, defined through
ρ(x, t) = ρ̄(t)(1 + δ(x, t)). We also introduce following (Brax &
Valageas 2013)

κn(ϕ̄) = Mn−2
Pl (V (n)(ϕ̄) + ρ̄C(n)(ϕ̄)), m2 = κ2. (6)

βn(ϕ̄) = Mn
PlC

(n)(ϕ̄), β = β1. (7)

We work in Lagrangian space, where the position x of a dark
matter particle or fluid element with initial Lagrangian coordi-
nate q is given by

x(q, t) = q +Ψ(q, t), (8)

where Ψ is the Lagrangian displacement vector field. We further
assume thatΨ is longitudinal and that it is a Gaussian-distributed
variable at linear order. Dark matter particles follow geodesics of
the conformal metric g̃,

Ψ̈ + 2HΨ̇ = −
1
a2∇xψN −

1
a2∇x log C(ϕ), (9)

where ψN denotes the Newtonian potential, which obeys the
Poisson equation1

∇2
xψN = 4πGa2ρ̄δ(x). (10)

A noticeable difference between MG theories defined in the
Einstein and Jordan frames is that in the latter case, the new
scalar degree-of-freedom is a source of the Poisson equation
instead of the geodesic equation.

Equation (8) can be regarded as a coordinate transforma-
tion between Lagrangian and Eulerian coordinates, with Jaco-
bian matrix Ji j = (∂xi/∂q j) = δi j +Ψi, j and Jacobian determinant
J = det(Ji j). From mass conservation, a relation between mat-
ter overdensities and Lagrangian displacement can be obtained
(Bouchet et al. 1995),

δ(x, t) =
1 − J(q, t)

J(q, t)
· (11)

The set of Eqs. (3), (9), and (10) is treated perturbatively in order
to solve for the displacement field. Instead of working with the
field δϕ, however, we choose to define the rescaled field

χ(q, t) ≡ −
2β
C
δϕ(q, t)

MPl
, (12)

hereafter, we denote C ≡ C(ϕ̄) unless otherwise explicitly stated.
We note that Eq. (12) is not a conformal transformation since the
functions β and C are not free functions, but are evaluated at the
background. By taking the divergence of Eq. (9), we have

∇x ·
(
Ψ̈ + 2HΨ̇

)
= −4πGρ̄δ(x) +

1
2a2∇

2
xχ, (13)

which has the structure of an MG theory in the Jordan frame, and
the PT formalism developed in Aviles & Cervantes-Cota (2017)
applies directly. In Lagrangian space, we work in q-Fourier
space, in which the transformation is taken with respect to

1 We use the notation ∇x = ∂/∂x for derivatives with respect to Eule-
rian coordinates. For spatial Lagrangian coordinate derivatives, we use
∇ = ∂/∂q.

q-coordinates, thus when transforming gradients with respect to
x-coordinates, frame-lagging terms are introduced,
∇2

xχ = ∇2χ + (∇2
xχ − ∇

2χ). (14)
These frame-lagging terms are necessary to obtain the correct
limit of the theory at large scales, particularly for the theories in
which the associated fifth force is short-ranged and the ΛCDM
limit at large scales should be recovered. Since at linear order
spatial derivatives with respect to Eulerian and Lagrangian coor-
dinates coincide, the frame-lagging contributes nonlinearly to
the theory. For comparison with other works, it is worthwhile
to introduce the quantities

A(k, a) = A0

(
1 +

2β2

C
k2/a2

k2/a2 + m2

)
, (15)

A0(a) = 4πGρ̄, (16)

Π(k, a) =
C

6a2β2

(
k2 + m2a2

)
, (17)

3 + 2ωBD(a) =
C

2β2 , (18)

M1(a) =
C

2β2 m2. (19)

These equations can be used as a translation table for differ-
ent PT works in MG. Particularly in Aviles & Cervantes-Cota
(2017), the M1 and ωBD functions are used extensively instead
of β and m.

We return to the Klein–Gordon equation, which in q-Fourier
space for a field χ is

−
k2

2a2 χ(k) = − (A(k) − A0)δ̃(k) +
k2/a2

6Π(k)
δI(χ)−

−
C

2β2

k2/a2

3Π(k)
1

2a2 [(∇2
xχ − ∇

2χ)](k), (20)

where [(· · · )](k) means the q-Fourier transform of (· · · )(q), and
we also note that δ̃(k) ≡

∫
d3qe−ik·qδ(x). To avoid confusion

with the q-Fourier transform of δ(q) or the x-Fourier transform
of δ(x), we write a tilde over this overdensity. Equation (20) is
derived directly using Eq. (12), the second term on the right-
hand side (RHS) encodes all nonlinear terms of Eq. (5), while the
last term arises when derivatives are transformed from Eulerian
to Lagrangian coordinates. Specifically, the contribution from
screenings is given by

δI(k) =

∞∑
n=2

(−1)n+1

2nn!
Cnκn+1

βn+1 [χn](k)

+

∞∑
n=1

(−1)n+1

2nn!
2A0Cnβn+1

βn+1 [χnδ](k). (21)

We formally expand quantities as2

δI(k) =
1
2

∫
k12=k

M2(k1,k2)χ(k1)χ(k2)+

+
1
6

∫
k123=k

M3(k1,k2,k3)χ(k1)χ(k2)χ(k3) + · · · , (23)

2 We adopt the shorthand notations∫
k1···n=k

=

∫
d3k1

(2π)3 · · ·
d3kn

(2π)3 (2π)3δD(k − k1···n), (22)

and k1···n = k1 + · · · + kn.
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−
1

2a2 [(∇2
xχ − ∇

2χ)](k) =
1
2

∫
k12=k

K
(2)
FL (k1,k2)δL(k1)δL(k2)

+
1
6

∫
k123=k

K
(3)
FL (k1,k2,k3)δL(k1)δL(k2)δL(k3) + · · · . (24)

Expressions for the frame-lagging kernels are derived in Aviles
& Cervantes-Cota (2017). For example, to second order, we have

K
(2)
FL (k1,k2) = 2x2(A(k1) + A(k2) − 2A0) + x

k2

k1
(A(k1) − A0)

+ x
k1

k2
(A(k2) − A0), (25)

with x = k̂1 · k̂2.
There is a crucial difference between theories in the Jordan

and Einstein frames. In the latter there is a direct coupling χδ
between the scalar field and the matter density, as can be seen
from Eq. (3) or from Eq. (21). This leads us to expand the over-
density in terms of the scalar field as

δ̃(k) =

∞∑
n=1

1
n!

∫
k1···n=k

K
(n)
χδ (k1, · · · ,kn)χ(k1) · · · χ(kn). (26)

After some iterative manipulations of Eqs. (5), (20), (21), (23),
and (26), we arrive at

M2(k1,k2) =
2Cβ2A0

β2 K
(1)
χδ (k1) −

C2κ3

4β3 , (27)

M3(k1,k2,k3) =
3Cβ2A0

β2 K
(2)
χδ (k1,k2)

−
3C2β3A0

2β3 K
(1)
χδ (k1) +

C3κ4

8β4 , (28)

with the kernels given by

K
(1)
χδ (k1) =

3
2A0

Π(k1), (29)

K
(2)
χδ (k1,k2) =

1
2A0

MFL
2 (k1,k2), (30)

where the frame-lagged M2 function is defined in Eq. (A.3). It
is convenient to symmetrize these M functions over their argu-
ments, as we do below.

In theories of gravity defined in the Jordan frame, M2 and M3
are k-dependent if non-canonical kinetic terms or higher deriva-
tives of the scalar field are present in the Lagrangian; a known
case with such scale dependencies is the Dvali Gabadadze
Porrati (DGP) braneworld model, whereas no scale depen-
dencies in the Ms is found in f (R) Hu-Sawicki gravity; see
Koyama et al. (2009). For theories in the Einstein frame, the
k-dependence arises through the couplings χδ in the Klein–
Gordon equation, even if no derivatives other than the standard
kinetic term appear in their defining action.

It is worth mentioning that functions M2 and M3 encode the
physics of particular theories, and they determine the screening
properties as well; these are the coefficients of Taylor-expanding
the nonlinearities of the Klein–Gordon in Fourier space. As we
note, these functions can be positive or negative, which will be
responsible for the screening properties of a model. Moreover, if

β2 and β3 are zero, as happens for theories with a conformal fac-
tor that is linear in the scalar field, both M2 and M3 become scale
independent. This is, for example, the case of the first proposed
chameleon model (Khoury & Weltman 2004b).

We define the linear differential operator (Matsubara 2015)

T̂ =
∂2

∂t2 + 2H
∂

∂t
, (31)

and the equation of motion for the displacement field divergence
(Eq. (13)) becomes (Aviles & Cervantes-Cota 2017)3

[(J−1) jiT̂Ψi, j](k) = −A(k)δ̃(k) +
k2/a2

6Π(k)
δI(k)

+
M1

3Π(k)
1

2a2 [(∇2
xχ − ∇

2χ)](k). (32)

We perturb the displacement field as Ψ = λΨ(1) + λ2Ψ(2) +
λ3Ψ(3) + O(λ4), and solve the above equation order by order.
Stopping at third order allows us to calculate the first correc-
tions to the linear power spectrum. Hereafter, we absorb the con-
trol parameter λ into the definition of Ψ. To first order, Eq. (32)
yields(
T̂ − A(k)

)
(ikiΨ

(1)
i (k)) = 0. (33)

This equation has the same form as the linear equation for the
matter overdensity δ(k, t). Therefore, we obtain

Ψ
(1)
i (k, t) = i

ki

k2 D+(k, t)δ̃L(k, t0), (34)

with D+(k) the fastest growing solution of equation(
T̂ − A(k)

)
D(k) = 0 normalized to unity as D+(k = 0, t0) = 1.

This normalization is useful for theories that reduce to ΛCDM
at very large scales, which is the case when the fifth-force range
is finite. The initial condition δ̃L(k, t0) is fixed by noting that by
linearizing the RHS of Eq. (11), we have δ(1)(x) = −Ψ

(1)
i,i (q).

Because we study linear fields, we can safely drop the tilde over
the overdensity in Eq. (34). To second order, Eq. (32) leads to
the solution

Ψi(2)(k) =
iki

2k2

∫
k12=k

3
7

(
D̄(2)

NS(k1,k2) − D̄(2)
S (k1,k2)

)
δ1δ2, (35)

where we denote δ1,2 ≡ δL(k1,2). Momentum conservation
implies k = k1 + k2, as is explicit in the Dirac delta function,
cf. Eq. (22). We split the second-order growth into non-screened
(NS) and screening (S) parts. These growth functions D(2) are
solutions, with the appropriate initial conditions, to the equations

(
T̂ − A(k)

)
D(2)

NS(k1,k2) =

(
A(k) − (A(k1) + A(k2) − A(k))

(k1 · k2)2

k2
1k2

2

+ (A(k) − A(k1))
k1 · k2

k2
2

+(A(k) − A(k2))
k1 · k2

k2
1

)
D+(k1)D+(k2)

(36)(
T̂ − A(k)

)
D(2)

S (k1,k2) =

(
2A0

3

)2 k2

a2

M2(k1,k2)D+(k1)D+(k2)
6Π(k)Π(k1)Π(k2)

≡ S
(2)
S , (37)

3 Starting from Eq. (13), we use ∇x i(T̂Ψi) = (J−1) ji∇ j(T̂Ψi). After-
ward, we can expand (J−1)i j = δi j − Ψi, j + Ψi,kΨk, j + · · · .
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and the normalized growth functions are defined as

D̄(2)
S,NS(k1,k2, t) =

7
3

D(2)
S,NS(k1,k2, t)

D+(k1)D+(k2)
· (38)

In an EdS universe, we obtain the well-known result D̄(2)
NS =

1 − (k̂1 · k̂2)2, while in ΛCDM, we obtain the same result multi-
plied by a function that varies slowly with time, such that today,
D̄(2)ΛCDM

NS ' 1.01D̄(2)EdS
NS . The screening second-order growth,

D̄(2)
S , is zero in both EdS and ΛCDM models.

The function D̄(2)
S is important for our discussion. It encodes

the nonlinearities of the “potential” of the scalar field, and it
yields the second-order screening effects that drive the theory
to GR at small scales. The total second-order growth function,
as can be read from Eq. (35), is given by D(2) = D(2)

NS − D(2)
S ,

such that negative values of D(2)
S enhance the growth of pertur-

bations (anti-screening effects), while positive values of it yield
the standard suppression of the fifth force.

Analogously, each higher perturbative order carries its own
screening and is efficient over a certain k interval. The third-order
Lagrangian displacement field can be computed to give

Ψ
(3)
i (k) =

iki

6k2

∫
k123=k

D̄(3)(k1,k2k3)δ1δ2δ3, (39)

with normalized growth

D̄(3)(k1,k2k3) =
D(3)(k1,k2k3)

D+(k1)D+(k2)D+(k3)
· (40)

The complete expression for the third-order growth function
D(3), equivalent to Eq. (35), is large and can be found in Aviles
& Cervantes-Cota (2017), although in Eq. (69) below we show
this function for a particular configuration of wave vectors. In
Sect. 5 we split the growth into non-screened and screening
parts. Unlike the second-order case, at third order, the decompo-
sition cannot be performed directly through the linear differential
equations that govern the growth. In this case, D̄(3)

NS is therefore
obtained by setting M2 and M3 equal to zero,

D̄(3)
NS ≡ D̄(3)|M2=M3=0, (41)

while D̄(3)
S is obtained through the relation

D̄(3) = D̄(3)
NS − D̄(3)

S . (42)

In this way, third-order screenings are realized by having D̄(3)
S >

0, while anti-screening is realized by D̄(3)
S < 0.

3. Modified gravity theories with different screening
mechanisms

As shown above, expressions M2(k1,k2) and M3(k1,k2) depend
upon the explicit form of the Klein–Gordon equation, which in
turn depends on the frame that is posed. The formalism devel-
oped here applies to the Einstein frame in which the coupling
function C(ϕ) is nontrivial, but applies also to the Jordan frame
by setting C(ϕ̄) ≡ 1, as explicitly done in Aviles & Cervantes-
Cota (2017).

In the following we treat examples of models with different
screening properties. We start with symmetron models that are
posed in the Einstein frame and follow with f (R) Hu-Sawicki
and DGP models posed in the Jordan frame.

3.1. Symmetron model

The symmetron model can be introduced with the action of
Eq. (1) with a self-interacting potential

V(ϕ) = V0 −
1
2
µ2ϕ2 +

1
4
λϕ4, (43)

and the conformal factor

C(ϕ) = 1 +
1
4

(
ϕ

M

)2
. (44)

Assuming that the background piece of the scalar field always
sits in the minimum of the effective potential Veff = V + ρ̄C, we
obtain

ϕ̄ = ϕ̄0

√
1 −

(assb

a

)3
, (45)

where assb is the scale factor at which the Z2 symmetry is broken.
The scalar field effective mass and the strength β of the fifth force
are

m(a) = m0

√
1 −

(assb

a

)3
, β(a) = β0

√
1 −

(assb

a

)3
. (46)

These functions are commonly generalized to

m(a) = m0

[
1 −

(assb

a

)3
]m̂

, β(a) = β0

[
1 −

(assb

a

)3
]n̂

. (47)

In this way, a symmetron model can be characterized by the
set of parameters (assb,m0, β0, n̂, m̂), although other equivalent
parameters are also used in the literature; for example, in order
to contain the parameters µ, λ, and M, instead. Since variations
of fermion masses cannot vary too much over the Universe life-
time, we simply set C(ϕ̄) = 1.

The function M1 plays an important role in the upcoming
discussion. It is given by

M1(a) =
Cm(a)2

2β(a)2 =
Cm2

0

2β2
0

[
1 −

(assb

a

)3
]2(m̂−n̂)

. (48)

We soon realize that if m̂ = n̂, M1 becomes a constant. Expres-
sions for M2 and M3, given by Eqs. (27) and (28), depend on the
conformal coupling, βn, κn, and K (n)

χδ . In the present case, these
formulae are cumbersome and we do not show them here, but
we solved them numerically when we integrated the differen-
tial equations for the growth functions and to construct power
spectra. M2 and M3 are indeed important to determine the fate
of nonlinearities. Cosmological screenings are encoded in these
functions, and they therefore serve to distinguish among differ-
ent screening types. In the present case, M2 and M3 are nega-
tive for a certain cosmological epoch and specific wave numbers
that are reflected in an anti-screening effect in the power spectra
shown in the next section.

3.2. f(R) Hu-Sawicki model: chameleon mechanism

Here we consider a Lagrangian density given by L =
1
2 M2

Pl
√
−g(R + f (R)), in contrast to Eq. (1). As is known, f (R)

models can be brought to a Jordan-frame description, and our
perturbation formalism (Aviles & Cervantes-Cota 2017) can
then be applied. We analyze the Hu-Sawicki model with param-
eter n = 1. We can define the scalar degree of freedom to be
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χ = δ fR, with fR = d f /dR, for which we find a Klein–Gordon
equation that in the quasi-static limit is

3
a2∇

2
xχ = −2A0δ + δR, (49)

where δR = R( fR) − R( f̄R) = M1χ + 1
2 M2χ

2 + 1
6 M3χ

3 + · · · .
By developing Eq. (49) in terms of the scalar field χ, and setting
C = 1, we arrive at Eq. (20) with 2β2 = 1/3. The M functions are
obtained by using R( fR) ' R̄( fR0/ fR)1/2 and R̄ = 3H2

0(Ωm0a−3 +
4ΩΛ):

M1(a) =
3
2

H2
0

| fR0|

(Ωm0a−3 + 4ΩΛ)3

(Ωm0 + 4ΩΛ)2 , (50)

M2(a) =
9
4

H2
0

| fR0|
2

(Ωm0a−3 + 4ΩΛ)5

(Ωm0 + 4ΩΛ)4 , (51)

M3(a) =
45
8

H2
0

| fR0|
3

(Ωm0a−3 + 4ΩΛ)7

(Ωm0 + 4ΩΛ)6 , (52)

while the scalar field mass is given by m =
√

M1/3. We use val-
ues fR0 = −10−4,−10−8, and − 10−12 that correspond to models
F4, F8, and F12, respectively. For these values of fR0, the expan-
sion history is indistinguishable from that in ΛCDM, as we have
assumed. This has been studied in Hu & Sawicki (2007).

We note that M2 and M3, which determine the screening
properties, are independent of k and positive. This is a non-trivial
feature since Eqs. (27) and (28) may also be negative, as we saw
for the symmetron model. In the f (R) case the functions Ms are
positive, implying a normal screening (in contrast to what we
found in the symmetron case: anti-screening).

3.3. Cubic Galileons and DGP models: Vainshtein
mechanism

Cubic Galileons (Nicolis et al. 2009) and DGP (Dvali et al. 2000)
models stem from different physical motivations, with different
background dynamics, but they share a similar structure. Both
are theories defined in the Jordan frame with the Klein–Gordon
equation in the quasi-static limit given by

1
a2∇

2
xχ = −Z1(a)

(
(∇2

xχ)2 − (∇x i∇x jχ)2
)
− Z2(a)ρ, (53)

where Z1 and Z2 are model-dependent functions of time. We note
that the scalar field becomes mass-less, such that M1 = 0, and
therefore the linear growth D+ is scale independent. The screen-
ing on these models is provided by the Vainshtein mechanism,
which arises from the nonlinear derivative terms in the Klein–
Gordon equation. The functions M2 and M3 become (Aviles
et al. 2018)

M2(k1,k2) =
Z1(a)
β2

[
k2

1k2
2 − (k1 · k2)2

]
(54)

M3(k1,k2,k3) =
3Z1(a)

2a2β4A0

[
2(k1 · k2)2k2

3 + (k1 · k2)k2
1k2

3

−(k1 · k2)(k1 · k3)2 − 2(k1 · k2)(k2 · k3)(k3 · k1)
]
. (55)

The function M3 appears when we transform from Eulerian
to Lagrangian derivatives in Eq. (53). Given this structure, the

screenings in both cubic Galileon and DGP are similar. Func-
tions β, Z1, and Z2 depend on the specific model. For definite-
ness, we consider here DGP:

β2 =
1
6

[
1 − 2εHrc

(
1 +

Ḣ
3H2

)]−1

, (56)

Z1 =
2β2r2

c

a4 , (57)

Z2 = 4A0β
2, (58)

where ε = +1 for the self-acceleration branch and −1 for the
normal branch. rc is the crossover scale below which the theory
behaves as a scalar tensor theory. For a side-by-side comparison
of both models and for the expression of the functions β, Z1, and
Z2 in cubic Galileons, see Barreira et al. (2013).

4. Matter power spectrum

For MG models with an early EdS phase, as we posit here, the
linear matter power spectrum is given by

PL(k, t) = (D+(k, t))2PΛCDM
L (k, t0). (59)

The building blocks for loop matter statistics are the functions

Q1(k) =

∫
d3 p

(2π)3

(
D̄(2)

NS − D̄(2)
S

)2
PL(p)PL(|k − p|), (60)

Q2(k) =

∫
d3 p

(2π)3

k · p
p2

k · (k − p)
|k − p|2

(
D̄(2)

NS − D̄(2)
S

)
PL(p)PL(|k − p|), (61)

Q3(k) =

∫
d3 p

(2π)3

(k · p)2

p4

(k · (k − p))2

|k − p|4
PL(p)PL(|k − p|), (62)

R1(k) =

∫
d3 p

(2π)3

21
10

D(3)s(k,−p,p)
D+(k)D2

+(p)
PL(p)PL(k), (63)

R2(k) =

∫
d3 p

(2π)3

k · p
p2

k · (k − p)
|k − p|2

(
D̄(2)

NS − D̄(2)
S

)
PL(p)PL(k), (64)

where the normalized growth functions in Eqs. (60) and (61) are
evaluated as D(2)(p,k − p), while in Eq. (64), they are evaluated
as D(2)(k,−p). These functions were introduced in (Matsubara
2008b) for EdS evolution and extended in (Aviles & Cervantes-
Cota 2017) for MG. From them, power spectra and correlation
functions in different resummation schemes can be obtained; see,
for example (Carlson et al. 2013; Matsubara 2008c; Vlah et al.
2015b). In particular, the SPT power spectrum is defined as

PSPT(k) = PL + P22 + P13, (65)

and it can be shown that for ΛCDM (Matsubara 2008b; Vlah
et al. 2015a) and for MG (Aviles et al. 2018), the following
expressions hold:

P22(k) =
9
98

Q1(k) +
3
7

Q2(k) +
1
2

Q3(k) (66)

P13(k) =
10
21

R1(k) +
6
7

R2(k) − σ2
Lk2PL(k), (67)

where the one-dimensional variance of the linear displacement
fields is

σ2
L =

1
3
δi j〈Ψi(0)Ψ j(0)〉 =

1
6π2

∫ ∞

0
dpPL(p). (68)

In Eq. (63) the third-order growth function D(3)s is the solution
to

D(3)s(k,−p,p) = (T̂ − A(k))−1 (S1 + S2 + S3) , (69)
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Fig. 1. SPT power spectra for the symmetron model (left panels) with assb = 0.33, m0 = 1 h/Mpc and β0 = 1, and for the F4 model (right
panels), evaluated at redshift z = 0. We plot the linear theory, the full SPT, the SPT without screenings, and the SPT considering only S 1 (source1)
screenings (see text for details). In the lower panels we take their ratios to the one-loop SPT power spectrum for the ΛCDM model.

where the label“s” means that D(3)(k1,k2,k3) is symmetrized
over its arguments; afterward, it is evaluated in the double-
squeezed configuration given by k3 = −k2 = p and k1 = k. We
note from Eq. (63) that these are the only quadrilateral configu-
rations –subject to momentum conservation: k = k1 + k2 + k3–
that survive in the one-loop computations. Expressions for the
sources Si are written in Appendix A. We have split the sources
since in ΛCDM only S1 is present, and in general, it is the domi-
nant contribution. Source S2 is a mix of frame-lagging and terms
coming from the scale-dependent gravitational strength, which
yields a small contribution. Meanwhile, S3 is only composed
by screenings; indeed, this is the only source containing the
function M3.

In the left panel of Fig. 1 we plot power spectra for a sym-
metron model with assb = 0.33, m0 = 1 h Mpc−1, and β0 = 1,
and n̂ = m̂ = 0.5. We plot this for the following cases: full-
loop SPT (solid red curves); without screenings (dashed black
curves); considering only source S1 in Eq. (69) (dot-dashed gray
curves); and the linear power spectrum (dotted blue curves). The
lower panel in this figure shows the ratios of the different power
spectra to the one-loop ΛCDM power spectra, for which we
assumed the reference cosmology as given by WMAP 2009 best
fits (Ωm = 0.281, Ωb = 0.046, h = 0.697, and σ8 = 0.82).
An interesting observation from these plots is that the perturba-
tive screenings do not always act in the “screening direction”;
that is, although the power spectrum with only source S1 has a
lower screening contributions than the full loop curves, it is actu-
ally closer to the GR power spectrum. Only S1 is equivalent (up
to frame-lagging terms) to keep only the γ2 term in the expres-
sion of δI of Bose & Koyama (2016), who Fourier-expanded it in
powers of matter overdensities, instead of in powers of the scalar
field, as we do in Eq. (23). We interpret this fact to mean that the
nonlinearities of the Klein–Gordon equation that are due to the
couplings χδ also provide anti-screening effects. This behavior

can be observed in the figures for symmetron models in Brax
& Valageas (2013), but unfortunately, it is not discussed in that
paper. An analogous plot for the F4 chameleon model is shown
in the right panel of Fig. 1. We note that the different screen-
ing contributions always act in the same “direction”, driving the
theory to GR; we furthermore note that in this case, the contri-
butions due to sources S2 and S3 are almost negligible. In the
following section we discuss these effects in more detail by con-
sidering the functions D̄(2)

S and D̄(3)
S for the symmetron model,

defined in the Einstein frame, and for the DGP and f (R) models
that are defined in the Jordan frame.

5. Screening growth functions

In this section we study the main features of the normal-
ized second- and third-order growth functions D̄(2)

S (k1,k2) and
D̄(3)

S (k1,k2,k3). Since a Dirac delta function accompanies the
second-order growth functions and ensures that k = k1 +
k2, these three wave vectors form a triangle. Therefore, by
assuming statistical homogeneity and isotropy, the growth func-
tions depend only on three positive numbers, for example, the
lengths of the sides of the triangles. We can therefore write
D̄(2)

S (k1,k2) = D̄(2)
S (k, k1, k2). Three triangle configurations are

considered: equilateral, k = k1 = k2; orthogonal, k1 = k2 =
√

2k;
and squeezed, k ' k1, k2 ' 0. There is a second squeezed con-
figuration with k ' 0 and k1 ' k2 corresponding to very large
scales, where the fifth force vanishes for mass-less theories and
the screenings are zero. Analogously, we consider third-order
screening growths given by Eq. (42) in the doubled-squeezed
configuration explained above.

We stress that D̄(2)
S and D̄(3)

S with positive values will screen
the fifth force, while negative values will act anti-screening it
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Fig. 2. D̄(2)
S : contributions to the second-order normalized growth func-

tions due to screenings for the F4, F8, and F12 models (upper panel),
considering different triangle configurations. The vertical lines are
located at k = a

√
M1, showing the characteristic scale at which the

screenings are present. The lower panel shows the third-order growth
D̄(3)

S for different angles x = k̂ · p̂ and with k = p.

instead. Given this, the M functions of each model will deter-
mine their screening properties.

5.1. Chameleon screening in the Jordan frame: the f (R)
case

First, we consider the f (R) Hu-Sawicki model for different
fR0 = −10−4,−10−8,−10−12 corresponding to the F4, F8, and
F12 models. In the upper panel of Fig. 2 we show plots for the
second-order screening growth functions, D̄(2)

S , evaluated at red-
shift z = 0 and for different triangular configurations. The verti-
cal lines correspond to the screening wave number

kM1 ≡ a
√

M1(a), (70)

which provides us with a rough estimate to characterize the scale
at which the screening is present; it is close to the maximum
screening growth of the largest triangular contribution (squeezed
modes). We note that in f (R), the screening scale has a simple
dependence kM1 ∝

√
1/| fR0|, as can be seen from Eq. (50). The

lower panel of Fig. 2 shows the growth D(3)
S (k,−p,p) for the

double-squeezed configuration with additionally |k| = |p| and
for different values of the cosine angle x = k̂ · p̂.

kM1 should be understood as a phenomenological scale that
does not show where the screening effects start to be present, but
its usefulness is that it characterizes the screening for the mod-
els considered in this work. To show this at different redshifts,
we study the effects of the background evolution on the screen-
ing growth. In Fig. 3 we show this for the F4 model at different
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Fig. 3. D̄(2)
S functions for the F4 model for redshifts z = 0, 3, and10,

and considering different triangle configurations. The vertical lines are
located at k = a

√
M1, showing the characteristic scale at which the

screenings are present. The upper panel shows a ΛCDM background
evolution, and the bottom panel presents an EdS background evolution.

redshifts z = 0, 3, and 10. The upper panel uses a ΛCDM back-
ground cosmology and the lower panel an EdS background evo-
lution. In ΛCDM the screening curves are narrower and reach
smaller maxima. This is expected because the cosmic accelera-
tion attenuates the clustering of dark matter, and hence the non-
linear effects. Instead, in an EdS background, the growth pattern
is preserved and only shifted by the scale kM1 (denoted again
by the vertical lines). Although this scale is useful, we note that
it does not provide the range over which the screening growth
is present. This will be more evident in the following section,
where we study the symmetron model and show that the behav-
ior of the growth is very different below and above kM1 .

It is worthwhile to observe that in f (R), the nonlineari-
ties of the Klein–Gordon equation lead to screening for any
configuration. This is manifested in Figs. 2 and 3 because the
screening growth functions always take positive values. To show
this behavior, we show in Fig. 4 the second-order normalized
growth functions D̄(2) and D̄(2)

S (upper panel) and their ratios
(bottom panel) for the equilateral and orthogonal configurations.
Because the ratios always take values lower than unity, the stan-
dard screening behavior always occurs. This a consequence of
Eq. (51), which shows that M2 is always positive. Below we
show that this is not necessarily the case for models defined in
the Einstein frame.

5.2. Symmetron screening

We consider the case of symmetron models. In Fig. 5 we show
the second-order screening growth functions for models with
n̂ = m̂ = 1/2, assb = 0.33, and different values of m0 and β0. The
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Fig. 4. Normalized second-order growth functions D̄(2) (solid curves)
and D̄(2)

NS (dashed curves) for the F4 model at redshift z = 0, and consid-
ering different equilateral (brown) and orthogonal (red) configurations.
The bottom panel shows the ratio between them. Since these take values
lower than 1, the growth is always suppressed in the screened D̄(2) case.

vertical lines correspond again to the characteristic scale kM1 .
We are interested in also studying the growth functions at dif-
ferent redshifts, but since for n̂ = m̂ the function M1 becomes a
constant, the corresponding kM1 values are only rescaled by the
scale factor. For this reason, we do it with a model with n̂ = 0.25
and m̂ = 0.5. The other parameters are fixed to assb = 0.33,
m0 = 1 h Mpc−1, and β0 = 1. For this case, we show plots in
Fig. 7.

Unlike in f (R) theories, the nonlinear terms in the Klein–
Gordon equation for symmetron models lead to anti-screening
effects (negative regions of the plots, cf. Figs. 5 and 7), or more
precisely, there are configurations of interacting wave modes
that instead of driving the theory toward GR drive the the-
ory away from it. From Eq. (37), all triangular configurations
with

k2
1 + k2

2 < k2
AS(a), (71)

where the anti-screening wave number is defined as

k2
AS(a) ≡

κ3βa2

β2
− 2m2a2, (72)

will contribute with a negative source to the second-order screen-
ing as long as the RHS of the above equation is positive. We note
that for the symmetron model, the anti-screening effects appear
at scales below kM1 , although there is no a priori evident reason
for this to happen, and it might be the case that other Einstein-
frame posited theories show anti-screening effects above kM1 as
well.

In Fig. 6 we show an equivalent plot to Fig. 4, where in the
upper panel we show the growth functions D̄(2) and D̄(2)

S , and
in the lower panel we present their ratio. Regions where the
ratios are greater than 1 correspond to wave-number configura-
tions that act as anti-screening, that is, that enhance the MG fifth
force.
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Fig. 5. D̄(2)
S functions for symmetron models with assb = 0.33, and con-

sidering different triangle configurations. The vertical lines are located
at k = a

√
M1, showing the characteristic scale at which the screenings

are present. The upper panel shows the model with β0 = 1 and differ-
ent values of m0, while the bottom panel shows the specific model with
m0 = 1 h Mpc−1 and different values of β0.
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Fig. 6. Normalized second-order growth functions D̄(2) (solid curves)
and D̄(2)

NS (dashed curves) for a symmetron model with assb = 0.33,
m0 = 1 h Mpc−1 and β = 1 at redshift z = 0. We consider equilat-
eral (brown) and orthogonal (red) triangle configurations. The bottom
panel shows their ratio. Regions with values greater than 1 correspond
to wave numbers for which the growth is enhanced by the screening
contributions.
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Fig. 7. D̄(2)
S functions for symmetron models with assb = 0.33, m0 =

1 h Mpc−1, β0 = 1, n̂ = 0.25 and m̂ = 0.5, and considering equilateral
and orthogonal triangle configurations. The vertical lines are located at
k = a

√
M1, showing the characteristic scale at which the screenings are

present.
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Fig. 8. Third-order growth function D̄(3)
S (k,−p,p) for symmetron mod-

els with β = 1 and assb = 0.33 and two different masses m0 =
0.1, 10 h Mpc−1. The vertical lines are located at kM1 for each model,
showing the characteristic scale at which the screenings are present.

The situation is similar when we consider third-order screen-
ing growth functions D(3)

S (k,−p,p), as shown in Fig. 8. We again
note that while f (R) models always lead to positive screenings,
symmetron models pose configurations that enhance the MG
fifth force.

We may think of the case of the (original) chameleons
(Khoury & Weltman 2004b) defined in the Einstein frame. Here
we have a conformal factor C(ϕ) = eϕ/M ' 1 +ϕ/M and a poten-
tial V(ϕ) that decays with the scalar field. The linear conformal
coupling implies that functions βn vanish for n ≥ 2 (or at least,
if we consider the full coupling eϕ/M , they are quite small com-
pared to β) and by virtue of Eqs. (27) and (28), the functions M2
and M3 become scale independent. Moreover, the effective mass
in these models decays with time, implying that function κ3(a) is
negative, while function κ4(a) is positive. Then M2 and M3 are
always positive. Hence, the growth functions will have the same
kind of behavior as we observe in f (R). Equivalently, this can
be observed at second order from the anti-screening wavenum-
ber in Eq. (72), which is always negative, and hence no scale
contributes to anti-screening configurations. In contrast to this,
in symmetron models the effective mass grows with time and
therefore κ3 is positive, but β2 is different from zero because the
conformal coupling is quadratic in the scalar field. Henceforth,
we observe this mix of screening and anti-screenings effects
in PT.
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D
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DGP

Fig. 9. D̄(2)
S and D̄(3)

S functions as a function of cosine angle x = p̂ · k̂
for a DGP model with a cross-over scale rc = 1/H0. We state that the
behavior is qualitatively the same as for cubic Galileons.

5.3. Vainshtein screening: the DGP case

The source S (2)
S in Eq. (37) for the DGP and cubic Galileons

depends only on the angle x = k̂ · p̂ of the triangle configuration,
and not on the scales k and p. This is because the mass of the
scalar field is zero in these cases. By combining Eqs. (37) and
(54), we obtain

S
(2)
S =

Z1(a)D2
+(a)

β2(a)
(1 − x2), (73)

where we note that the linear growth D+(a) is also scale inde-
pendent.

In Fig. 9 we show D̄(2)
S for the normal branch DGP with a

cross-over scale equal to the Hubble size, rc = H−1
0 . For both

cubic Galileons and DGP, it is a function depending only on x
and time.

On the other hand, the symmetrized M3 function, again in
the double-squeezed configuration, becomes

M3(k,−p,p) =
Z1(a)

2a2β4(a)A0
[k2 p4(1 − x2) − k3 p3x(1 − x2)]. (74)

Because the second term on the RHS of the above equation is
odd in x, it does not contribute when D(3) is integrated in Eq. (63)
to obtain loop statistics. Hence we do not consider it here. The
third-order screening growth D̄(3)

S does depend on the scale, but
only through the ratio p/k. In Fig. 9 we show this dependence
for p = k and the limiting cases p � k and p � k.

We observe that the second- and third-order screening
growths always act to attenuate the fifth force that modifies New-
tonian gravity.

Recently, Ogawa et al. (2018) found matter configurations
that yielded anti-screening responses in the cubic Galileon
model. In PT we found that these are absent, at least up to third
order in matter fluctuations.

6. Conclusions

We presented a formalism for studying screening mechanisms in
modified theories of gravity through perturbative methods. We
redefinedthescalardegreeoffreedom,whichpermittedustorecast
the Einstein frame perturbation equations to the Jordan frame, for
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which we have at hand a previously developed theory for matter
clustering in MG, which we were then able to apply. Although
screening mechanisms are nonlinear phenomena, our perturbative
approach gave us an analytical tool to probe and understand fea-
tures in screening mechanisms. This allowed us to compare sev-
eral theoretical models and to identify features that can be used to
distinguish among them through their screening mechanisms.

An interesting result we obtained is that the perturbative
screenings do not always act in the “screening direction”; that is,
although the symmetron power spectrum, when considering only
the source S1 in Eq. (69), contributes less to the screening than
the full-loop curves, they are actually closer to the GR power
spectrum, as shown in Fig. 1. The reason for this behavior lies
in the nonlinearities of the Klein–Gordon equation in which the
couplings provide anti-screening effects, among other effects.

We identified the emergence of a natural screening wave
number, kM1 = a

√
M1(a), for weak coupling and high-mass

screening models that served us to identify a scale of appear-
ance of the screenings effects, as shown in Figs. (2–7). Although
this represents only an approximate number, it could be useful
for a rapid identification of screening occurrence.

Our computations show that in f (R) theories, the nonlinear-
ities of the Klein–Gordon equation lead to screening for any
configuration because the screening growing functions always
take positive values. Unlike f (R) theories, the nonlinear terms in
the Klein–Gordon equation for symmetron models lead to anti-
screening effects. That is, there are configurations of interacting
wave modes that instead of driving the theory toward General
Relativity, drive the theory away from it. We traced this behav-
ior back to both the quadratic conformal coupling and the effec-
tive mass of the theory that grows with time. In contrast, for the
standard chameleon defined in the Einstein frame, the confor-
mal factor is linear in the scalar field and its mass decays with
time; as a result, the screening features of this model are qual-
itatively the same as those in f (R) theories. On the other hand,
for the DGP and cubic Galileon models, we find no signatures
of anti-screening up to third order in perturbation theory. More-
over, their second-order growth functions become trivial as they
do not depend on the size of the triangle configurations, but only
on one of the angles that define them. That is, they become scale
independent, which we note is a consequence of the vanishing
mass in these models.

Screening mechanisms leave imprints on the quasi-nonlinear
matter power spectra that may represent a way to distinguish dif-
ferent gravity theories that otherwise behave in a very similar
way at background and linear cosmological levels. Our present
study indicates where to find the most probable of the differ-
ent screening models within MG theories. This is especially
important for validating MG N-body simulations with theory to
later compare with forthcoming precision data from large-scale
galaxy surveys such as eBOSS, DESI, EUCLID, and LSST.
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Appendix A: Third-order growth functions

In this appendix we display the sources of the third-order
growth function D(3)s(k,−p,k) differential equation of Eq. (69).
First we define the normalized second-order growth of matter
fluctuations

D(2)(k1,k2) = D(2)
NS(k1,k2) − D(2)

S (k1,k2) (A.1)

with D(2)
NS and D(2)

S solutions to Eqs. (36) and (37). We also use
the growth function for the scalar field χ,

D(2)
χ (k1,k2) = D(2)(k1,k2) + (1 + (k̂1 · k̂2)2)D+(k1)D+(k1)

−
2A0

3
MFL

2 (k1,k2)
3Π(k1)Π(k2)

, (A.2)

with the frame-lagged MFL
2 function

MFL
2 (k1,k2) = M2(k1,k2)+

9C
4β2A2

0

KFL(k1,k2)Π(k1)Π(k2). (A.3)

The sources of Eq. (69) are given by

S1 = D+(p)
(
A(p) + T̂ − A(k)

)
D(2)(p,k)

(
1 −

(p · (k + p))2

p2|p + k|2

)
∗ + (p→ −p), (A.4)

S2 = −D+(p) (A(p) + A(|k + p|) − 2A(k)) D(2)(p,k)

∗ + (2A(k) − A(p) − A(|k + p|)) D+(k)D2
+(p)

(k · p)2

k2 p2

− (A(|k + p|) − A(k)) D+(k)D2
+(p) −

[
M1(k + p)
3Π(|k + p|)

K
(2)
FL (p,k)

−

(
2A0

3

)2 M2(p,k)|k + p|2/a2

6Π(|k + p|)Π(k)Π(p)

 D+(k)D2
+(p) (A.5)

+
M1(k)
3Π(k)

[(
2

(p · (k + p))2

p2|p + k|2
−

p · (k + p)
p2

)
(A(p) − A0)D(2)(p,k)D+(p) +

(
2

(p · (k + p))2

p2|p + k|2
−

p · (k + p)
|k + p|2

)
× (A(|k + p|) − A0)D(2)

χ (p,k)D+(p)+

3
(k · p)2

k2 p2 (A(k) + A(p) − 2A0) D+(k)D2
+(p)

]
+ (p→ −p),

(A.6)

S3 = −
k2/a2

6Π(k)
K

(3)s
δI (k,−p,p)D+(k)D2

+(p), (A.7)

with the third-order kernel of screenings

K
(3)s
δI (k,−p,p) = 2

(
2A0

3

)2 M2(k, 0)
Π(k)Π(0)

+
(2A0/3)3

3Π2(p)Π(k)

M3(k,−p,p) −
M2(k, 0)MFL

2 (−p,p)
Π(0)


+

(
2A0

3

)2 M2(−p,k + p)
Π(k)Π(|k + p|)

(
1 + (k̂ · p̂)2 +

D(2)(p,k)
D+(p)D+(k)

)
+

(2A0/3)3

3Π2(p)Π(k)

M3(k,−p,p) −
M2(−p,k + p)MFL

2 (k,p)
Π(|k + p|)


+

(
2A0

3

)2 M2(p,k − p)
Π(k)Π(|k − p|)

(
1 + (k̂ · p̂)2 +

D(2)(−p,k)
D+(p)D+(k)

)
+

(2A0/3)3

3Π2(p)Π(k)

M3(k,−p,p) −
M2(p,k − p)MFL

2 (k,−p)
Π(|k − p|)

 .
(A.8)

We note that these functions are valid for symmetrized M2 and
M3 functions.
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