Silicic acid mediated formation of tannic acid nanocoatings

Florian Weber†, Alejandro Barrantes†, Hanna Tiainen†+

†Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, 0317 Oslo, Norway

ABSTRACT: Tannic acid (TA) adheres to a broad variety of different materials and forms versatile surface coatings for technical and biological applications. In mild alkaline conditions, auto-oxidation processes occur and a firm monolayer is formed. Up to now, thicker coatings are only obtained in cross-linked multilayer fashion. This study presents an alternative method to form continuous TA coatings using ortho-silicic acid (Si\textsubscript{aq}). Adsorption kinetics and physical properties of TA coatings in the presence of Si\textsubscript{aq} were determined using a quartz crystal microbalance (QCM-D) and nanoplasmonic spectroscopy (NPS). An in situ TA layer thickness of 200 nm was obtained after 24 h in solutions supplemented with 80 μM Si\textsubscript{aq}. Dry state measurements indicated a highly hydrated layer in situ. Furthermore, chemical analysis by FTIR spectroscopy revealed possible complexation of TA by Si\textsubscript{aq}, whereas UV-vis spectroscopy did not indicate an interaction of Si\textsubscript{aq} in the auto-oxidation process of TA. Investigation of additional metalloid ions showed that germanic acid was also able to initiate a continuous coating formation of TA, whereas boric acid prevented the polymerization process. In comparison to TA, the coating formation of pyrogallol (PG) and gallic acid (GA) was not affected by Si\textsubscript{aq}. PG formed continuous coatings also without Si\textsubscript{aq}, while GA only formed a monolayer in presence of Si\textsubscript{aq}. However, Si\textsubscript{aq} induced a continuous layer formation of ellagic acid (EA). These results indicate the specific importance of ortho-silicic acid in the coating formation of polyphenolic molecules with multiple ortho-dihydroxy groups and open new possibilities to deposit TA on interfaces.

INTRODUCTION

Surface modification using polyphenolic molecules have gained increasing interest during the last decade.1-4 After a thorough screening of different polyphenolic molecules by Sileika et al. and Barret et al., which identified several polyphenols capable of forming coatings,5-6 polyphenolic coatings have been studied to create antifouling surfaces,7-10 antibacterial surfaces,5,11 and for subsequent immobilization of functional molecules.3,12-13

The interaction of polyphenolic molecules with various surfaces has been extensively studied for catechols, such as polydopamine.14-16 These studies have shown that polyphenolic groups are able to interact via several mechanisms. Amongst the proposed pathways are hydrogen bonding, cation-π-interactions, coordination chemistry, and covalent bonding.17 However, the coating formation beyond the nature of a monolayer does not always correlate with the initial mode of interaction. Commonly, the subsequent layer is formed via crosslinking mechanisms, which are based on the capacity of the vicinal diol groups to complex metal ions.18 These so-called metal phenolic networks (MPN) are usually prepared using transition metal ions, such as Fe3+, Al3+, Cu2+, and Mn2+ cations.19-22

In addition, the intrinsic auto-oxidation in aqueous solution can initiate the polymerization of polyphenolic molecules that enables the coating formation.23-24 The oxidation of phenolic hydroxyl groups by dissolved oxygen forms quinones and semi-quinones,25 which couple via secondary interactions, such as hydrogen bonding,26 interaction of electron donor-acceptor systems (π-stacking),27 or proceed to form primary bonds.28 In the latter case, new inter- and intramolecular C-C and C-O bonds are formed via a cascade of radical reactions.29-30

The first kinetic study of TA deposition using quartz-crystal microbalance with dissipation monitoring (QCM-D) revealed a monolayer formation of tannic acid on gold and silica sensors.31 These results have later been contrasted in a study by Geißler et al., who reported coating thicknesses of tannic acid up to 60 nm.32 Their report further included XPS data, which indicated silicon in their coatings. While the coating formation was shown to be dependent on pH and ionic strength, the authors did not address the role of silicon. It has however been reported that silicic acid is able to catalyze catechol degradation and to complex ortho-diphenolic compounds.33-36

In the present study, we investigate this controversial finding by means of QCM-D and NPS and elucidate the significant importance of ortho-silicic acid on the formation of tannic acid nanocoatings. Additionally, we support our results by studying the influence of germanic acid and boric acid on the deposition process of TA and further compare the coating formation of TA to the
polyphenolic molecules gallic acid, pyrogallol, and ellagic acid.

EXPERIMENTAL SECTION

Materials. Tannic acid (ACS grade, Sigma Aldrich, MW = 1701.2, LOT#MKBN9606V), gallic acid (97.5 – 102.5%, Sigma Aldrich, MW = 170.1, LOT#SLBS0048V), and pyrogallol (ACS grade, Sigma Aldrich, MW = 126.1, LOT#MKBS3610V) were dissolved at a concentration of 1 mg/ml in aqueous buffer. Ellagic acid solutions (295%, Sigma Aldrich; MW = 302.2, LOT#BCBX0568) were prepared by stirring 0.5 mg/ml in buffer overnight and filtering off undissolved residue using a 0.22 µm nitrocellulose membrane. Unless stated, other chemicals were purchased from Sigma Aldrich or VWR in ACS grade.

Buffer solutions consisted of 100 mM bicine supplemented with 600 mM NaCl and were adjusted with 10 M NaOH to pH 7.8. All solutions were stored in plastic bottles to avoid dissolution of silica ions from glassware. Ortho-silicic acid (sodium metasilicate pentahydrate, 295%, Sigma Aldrich), boric acid (≥99.5%, Sigma Aldrich), and germanic acid (germanium (IV) oxide, 299.90%, Sigma Aldrich) stock solutions were prepared in milliQ water.

QCM-D. To monitor the kinetics of the in situ coating formation, a quartz crystal microbalance with dissipation monitoring (QSense E4, BiolinScientific) was used. Unless stated, measurements were performed with Ti coated sensors (QSX 310, BiolinScientific). Prior to use, the sensors were sonicated for 15 min in 2% sodium dodecyl sulfonate (SDS), rinsed with water and ethanol, and treated for 15 min in a UV-ozone cleaner (Novascan PSD-UV4). After equilibration of the sensor in buffer and recording a baseline at 21°C, polyphenolic solutions were flown through the cells at a rate of 100 µl/min. During the measurement, the solutions were stirred at 100 rpm to supply a sufficient amount of oxygen for the reaction. After the measurement, the cells and sensors were cleaned with 0.1 M HCl for 5 min followed by intensive flushing with 2% SDS and milliQ water.

NPS. The dry mass of adsorbed polyphenolic molecules was determined using nanoplasmonic spectroscopy (Acoulyte, Insplorion AB). The instrument uses the QCM-D setup with modified QSense sensors and an add-on for window module QCM-D chambers. Sensors supplied by Insplorion feature gold nanodics that create surface plasmons upon irradiation by a white light source. To correlate the change in refractive index to other QCM-D measurements, sensors with a TiO2 top layer were used. Prior to experiments, sensors were immersed in 2% SDS solution for 15 min, rinsed with water and ethanol, and UV-ozone treated for 15 min to remove contaminations. The sensors were then equilibrated in buffer until a stable baseline was obtained. Subsequently, the adsorption of polyphenolic molecules was monitored under the same conditions as in the QCM-D setup described above (21°C, 100 µl/min, 100 rpm).

Ellipsometry. Commercial silicon wafers (Sigma Aldrich, (100), n-type) were cut to a format of 1 cm x 1 cm and used as optically flat substrates. Prior to the coating process, the substrates were UV-ozone treated for 15 min and boiled in a 5/1/1 solution of water, ammonia (25%), and H2O2 (30%) for 10 min to remove any organic contaminants. Subsequently, the wafers were treated with 10% hydrofluoric acid for 10 min to yield hydrophobic surfaces. The substrates were vertically positioned in a custom-made holder and immersed in 200 ml tannic acid solution. During the coating deposition, the solution was stirred with a magnetic stirrer at 100 rpm.

The film thickness of TA was determined three times across the area of three individual substrates with a Rudolf Auto EL III (Rudolf Research) null ellipsometer. The calculation model assumed a single layer with the same refractive index of the polyphenolic film as SiO2 (nE = 1.46). The native oxide layer of silicon was initially determined and subtracted from all results.

AFM. Dry state layer thickness and topographical analysis was evaluated with an atomic force microscope (MFP 3D, Asylum Research). Using the cantilever (ACS240TS) an area of 10 µm x 10 µm was scratched and subsequently scanned in contact mode. The height differences were obtained from the line profiles across the scratched edge for three randomly distributed spots across the substrate surface.

FTIR. Tannic acid precipitates were collected by filtration of the reaction solution through a 0.22 µm nitrocellulose membrane. The filtrate was washed with milliQ water to remove excess buffer salts, dried, and scanned using a universal ATR sampler (Spectrum 400, Perkin Elmer). Spectra were recorded at a resolution of 1 cm⁻¹ and averaged over 16 measurements to improve the signal to noise ratio. The data was processed by correction for ATR features and baseline subtraction.

UV-Vis. The degree of oxidation of dissolved polyphenolic molecules was assessed using UV-vis spectroscopy (Lambda 25, PerkinElmer). Spectra from 250 – 800 nm were recorded with a resolution of 1 nm. Solutions were filtered through a 0.2 µm polyether sulfone syringe filter prior to measurements to remove any particles. Due to strong absorbance in the UV range, the polyphenolic solutions were diluted at a ratio of 1:100 for measurements between 250 – 400 nm.

EDS. The atomic composition of filtered and dried phenolic precipitate was analyzed by energy dispersive x-ray spectroscopy (EDS). Measurements were performed on an analytical benchtop SEM (TM3030, Hitachi High-Technologies Corporation) coupled with an EDS system (Quantax 70, Bruker). EDS spectra were obtained in EDS (high current, 15 kV) and charge reduction mode.

RESULTS AND DISCUSSION
Tannic acid solutions were prepared in bicine buffer at pH 7.8 and deposited onto QCM-D sensors under constant flow to comply with previously reported conditions by Geißler et al.32 We observed that adsorption of TA onto titanium surfaces from buffer without silicic acid formed a stable layer after 5 min (Figure 1A). A decrease of \(-19\) Hz in the oscillation frequency corresponds to a Sauerbrey mass of \(377 \pm 21 \text{ng/cm}^2\). This is equivalent to a thickness of \(1.8 \pm 0.1\) nm assuming a density of a firm initial layer of \(2120 \text{kg/m}^3\). Although the theoretical dimension of TA is \(28\) Å, the naturally derived product might consist of less than ten gallic acid groups. Further, taking into consideration the uncertainties in the surface coverage and the sensitivity of the Sauerbrey equation, a monolayer of TA adsorbed in an orthogonal position on the surface can be assumed. Similar monolayer formation has previously been reported by Ball et al. However, their experiments were conducted in non-oxidizing conditions at pH 5.0.33 Hence, our result complements their findings in oxidizing conditions. After 2 h, the auto-oxidation process led to polymerization of TA and an exponential decrease in the frequency was observed. Simultaneously the dissipation increased, indicating that oscillation energy is lost. This effect is caused by particles formed by the oxidation mediated polymerization of TA.29 These particles sediment onto the sensor surface and once they loosely attach, they slip and dissipate energy.37 Since the shear wave penetration depth is inversely proportional to the oscillation frequency, higher overtones have higher sensitivity close to the surface. Thus, the observed split of the overtones in the frequency signal also indicates the inhomogeneous layer structure.

This result was contrary to the TA deposition reported by Geißler et al. and their coating formation might originate from their determined Si contamination.32 Therefore, the effect of ortho-silicic acid (Si\textsubscript{aq}) on the layer formation was explored by screening through a deliberately added concentration between 1 µM and 1000 µM (Figure S1). A minimum amount of 10 µM Si\textsubscript{aq} \((n_{\text{TA}}/n_{\text{Si}} = 58.8)\) was found necessary to initiate TA layer formation. Concentrations above 90 µM Si\textsubscript{aq} led to increased turbidity of the solution (Figure S2) and the precipitation reduces the concentration of surface-reactive TA. We chose a concentration of 80 µM \((n_{\text{TA}}/n_{\text{Si}} = 7.3)\) as reference for subsequent experiments to best mimic the deposition kinetics previously reported by Geißler et al.32 Additionally, we observed that both Si\textsubscript{aq} and NaCl have a synergistic effect under oxidizing conditions. Supplementing only one of both molecules did not lead to the deposition of TA films. (Figure S3). Possible reasons for the need of NaCl might be a charge screening effect38 or radical anion stabilization,39 which enables the interaction with silicic acid.

The layer formation of TA in bicine buffer with 80 µM Si\textsubscript{aq} showed that after the initial adsorption, the frequency continued to decrease during the first 8 h until it leveled out at approximately \(-1180\) Hz (Figure 1B). The dissipation increased from \(-0.4 \times 10^6\) after 15 min to \(-25 \times 10^6\) after 2 h. At this point, the overtones started to split due to particle formation in the solution. After 8 h, the adsorbed layer did not gain mass, but became more dissipative. This may be an effect of the layer of sedimented particles on the surface of the sensor, which became thicker with time and limited additional reactions at the surface.35 This is an inherent problem of the used QCM-D system that can be prevented by an upside-down setup as shown in Figure S4. Preventing sedimentation on the sensor, led to a stable dissipation below \(-30 \times 10^6\) after 8 h. In this setup, the negative shift in frequency was significantly higher \(-1600\) Hz, however still leveled off after 8 h, suggesting that most of the molecules have reacted.

The obtained TA coatings were also tested towards their stability in different environments. While both strong acidic and strong alkaline conditions disintegrated the coatings, we observed good stability in water containing 600 mM NaCl (Figure S3).
Surface dependent adsorption of TA. The conformation TA adopts on the surface might influence the subsequent interaction with other molecules. To exclude that the continuous layer formation is determined by the initial mode of interaction of TA, different types of sensors were tested (SiO$_2$, Au, hydroxyapatite (HA), and Ti). On inorganic surfaces, the main interactions of polyphenolic molecules are based on hydrogen bonding and coordination chemistry. On titanium surfaces, the vicinal hydroxyl groups of polyphenolic molecules have been reported to form coordination complexes with Ti. As shown in Figure S5, slight variations in the initial adsorption processes on different surfaces were observed. Especially silica surfaces exhibited significantly lower adsorption of TA from buffer without Si$_{aq}$. Only half the frequency and dissipation shift was obtained compared to Ti sensors. This might be due to the higher negative surface charge of silica and its highly hydrophilic character compared to TiO$_2$.

QCM-D verification and TA layer characterization. To get further insight on the physical properties of the coating, we complemented the QCM-D data with nanoplasmonic spectroscopy. Since NPS senses changes in the refractive index close to the surface, it was used to verify that the initial change in frequency in the QCM-D experiments originates from adsorption of a monolayer and is not caused by a change of physical properties of the solution, such as viscosity and density. In Figure 2, the relative change of the plasmon peak upon adsorption of TA is plotted against time, which shows that the NPS signal for the adsorption from buffer without Si$_{aq}$ was similar to the QCM-D signal. After an initial increase, the signal leveled out giving a plasmon peak shift of ~6.2 nm. This confirmed the adsorption of TA monolayer. Adding 80 µM Si$_{aq}$ to the solution caused a continuous rise during the first 0.5 h. Subsequently, ∆λ leveled out once a peak shift of ~23.9 nm was reached after 2.5 h. At this point, the frequency signal in the QCM-D was still decreasing. Surface plasmons have a penetration depth of 100 nm, but since they decay exponentially, the effective penetration depth is 30 nm. The NPS probing depth is thus three times lower than the penetration depth of the acoustic shear wave of the 7th overtone for QCM-D in liquid environment. Hence, the difference in both signals indicates that the layer thickness reached the penetration depth of NPS. It is worth mentioning that after 2 h, the presence of particles...
in suspension influenced the intensity of the plasmon signal, even though the signal was still detectable.

Once the limit of the penetration depth was reached, the TA layer density was estimated with Equation S5 to be 1046 ± 80 kg/m³. This layer density is very close to the density of the surrounding liquid, which might be caused by a change of the refractive index upon oxidation of TA. However, it indicates that the density of the film in liquid environment is lower than the literature value of TA of 2120 kg/m³. A comparison of the differences in adsorbed mass sensed by QCM-D and NPS allowed an estimation of the film hydration (Table 1). For the firm initial monolayer, both techniques gave similar results indicating a low hydration and validity of the used NPS parameters. The subsequent determination of the mass in the range of the NPS.

Table 1: Estimation of adsorbed mass and correlated thickness of TA in QCM-D and NPS setup.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>QCM-D</th>
<th>NPS</th>
<th>Hydration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_{monolayer} [ng/cm²]</td>
<td>420 ± 36</td>
<td>390 ± 58</td>
<td>7 ± 5 %</td>
</tr>
<tr>
<td>d_{monolayer} [nm]</td>
<td>2.0 ± 0.2</td>
<td>1.8 ± 3</td>
<td></td>
</tr>
<tr>
<td>Γ_{r=0,5h} [ng/cm²]</td>
<td>3020 ± 260</td>
<td>2029 ± 63</td>
<td>32 ± 11 %</td>
</tr>
<tr>
<td>d_{r=0,5h} [nm]</td>
<td>30.3 ± 0.3</td>
<td>19.4 ± 0.6</td>
<td></td>
</tr>
</tbody>
</table>

*calculated with a density of 2120 kg/m³; *b* calculated with a density of 1046 kg/m³; Values are given as mean (n = 2) and error of the mean.

penetration depth using Equation S6 pointed out a higher mass in QCM-D. This was attributed to coupled water sensed in QCM-D, which corresponds to a hydration of ~32%.

Adsorbed mass and layer thickness in dry state. Although NPS measures the influence from adsorbed molecules, and thus results in a dry-mass, the thickness of the layer must be known by other means. For QCM-D, the layer density has to be assumed to determine its thickness. To avoid a cross relation between both techniques we additionally measured the TA coating thickness by ellipsometry. The progress of the dry thickness over time is graphed in Figure 3, showing a gradual increase in thickness, which leveled off after 8 h.

The logarithmic order reaching a plateau is characteristic of batch reactions in which the concentration of the reactant is decreasing. However, compared to the QCM-D data, a slight increase in the thickness was still noticeable after 8 h. This may be an effect of the different experimental setup during coating of the Si substrates and its reduced limitation in mass transport. In the presence of 80 μM Si_{aq}, TA was deposited up to a thickness of 160 ± 4 nm after 24 h. Without adding Si_{aq}, a TA monolayer thickness of 1.9 ± 0.1 nm was confirmed. Due to the assumed refractive index n_{Si} = 1.46 in the calculation model, the ellipsometric values are only valid for comparison within the dataset and the absolute value is not accurate. Therefore, we refined the ellipsometric measurements by AFM to obtain an estimation about the deviation of the modeled thickness from the actual thickness. On average, the thickness obtained by AFM was ~25% lower than the values obtained with the ellipsometer, which suggests that ellipsometrically measured 160 nm would correspond to a coating thickness of 120 nm. The coating had a clear visual effect that could be used to estimate the coating thickness. The Si wafer changed color from golden in the range of 30 – 70 nm, to dark blue (70 – 90 nm), and became light blue from 90 – 120 nm due to light interference similar to SiO2 layers.46 As mentioned in the QCM-D measurements, the coating kinetic depended on the concentration of silicic acid. Under low concentration of 10 μM Si_{aq} a constant, but slow buildup process reached 25 nm (AFM) after 24 h (Figure S6). In case the concentration of Si_{aq} was increased to 1000 μM, TA initially built up faster. Compared to 100 μM Si_{aq}, the process reached its final thickness of 117 ± 10 nm (AFM) after 8 h due to the increased precipitation of TA (Figure S2). The general topography was found to be in line with previous reported AFM images.31 A roughness of approximately 27 nm was found, which was largely governed by small particles adhering to the surface (Figure S7).

Comparing the obtained TA coating thicknesses in dry and wet state attested that water was lost upon drying, which caused the phenolic layer to condense. To estimate the density in dry state, we used the QCM-D to obtain the Sauerbrey mass of a dried TA coating and measured the thickness on the same sensor with AFM. After 0.5 h a layer density of ~2830 kg/m³ was obtained, which then gradually decreased from ~2550 kg/m³ after 1 h to ~2060 kg/m³ after 2 h. This effect is probably caused by the deposition of larger aggregates, which form with proceeding time, onto the surface.33 On average, the density was 2481 ± 371 kg/m³, which is close to the literature value of 2120 kg/m³. The slight increase might be caused by bound ions (Figure S8) and rehydration after drying.

![Figure 3: Characterization of layer thickness of tannic acid](Image)
coatings deposited on silicon wafers under supplement of 80 μM Si$_{aq}$. Markers show averaged (n = 9) ellipsometric measurements, the gray area represents min./max. AFM values (n = 3), and the line represents the average (n = 3) of the Voigt modeled QCM-D thickness.Insets depict the silicon wafers changing in color with increasing coating thickness.

It is worth mentioning, that the obtained thickness in dry state is ~60% below the obtained values in QCM-D. Thus, a difference between the dry thickness and the estimated thickness obtained by NPS remains. We suspect this error is due to our applied average densities, and changes in refractive index upon oxidation.

Analysis of TA oxidation and oxidation products. Since TA was continuously deposited only in the presence of silicic acid, regardless of the substrate, the major interest is the molecular influence of Si$_{aq}$ and its mode of interaction. Since TA only formed a monolayer in absence of and Si$_{aq}$ pre-adsorption of Si$_{aq}$ did not change the coating behavior (data not shown), it can be concluded that Si$_{aq}$ is not acting as a bridge between the surface and TA. More likely, Si$_{aq}$ interacts with adsorbed TA and dissolved TA in solution. Silicic acid has been shown to act as catalyst in breaking down catechols and promoting the oxidation with dissolved O$_2$. Following the oxidation of TA by UV-vis spectroscopy initially shows two peaks centered at 280 nm and 320 nm originating from π-π* transitions in the conjugated electron system (Figure 4). Until 2 h after the oxidation process started, an increase in intensity was observed followed by a gradual decline. Upon oxidation, the relative height of both 280 nm and 320 nm peaks changed and turned opposite. At the same time, TA started to adsorb light in the visible range at ~625 nm. This indicates that the initially delocalized π-electron system was restructured to form a larger resonance system. However, the general intensity reduction in the UV region might also be caused by a reduced concentration after the formation of larger polymers that were filtered off from the measured samples. The oxidation of TA can thus be followed more precisely based on the peak intensity at 625 nm that correlates to the darkening of the solution due to oxidation. Comparing the spectra upon addition of 80 μM Si$_{aq}$ did not show significant differences, which concludes that silicic acid did not influence the oxidation of TA.

In addition to characterizing the oxidation in solution, we analyzed the TA polymerization product by FTIR spectroscopy (Figure 5). For a detailed description and peak assignment, the reader is referred to Table S1 of the supporting information. In general, oxidation of phenolic compounds transforms the phenolic hydroxyl groups into quinones, which induces a change in molecular structure and leads to several differences in the FTIR spectrum of TA polymerization products. The FTIR spectrum of TA precipitates obtained in the presence of 80 μM Si$_{aq}$ did not show significant differences compared to the bare oxidation product. However, once the Si$_{aq}$ concentration was increased to 1000 μM, solutions became instantly turbid before significant oxidation occurred. The filtered precipitate after 24 h reaction time showed similarities to in the FTIR spectra unoxidized TA, while subtle differences manifested in the O-H stretching vibration at 3200 cm$^{-1}$. The reduced intensity and broadened signal might be an indication that the number of O-H groups is reduced and more hydrogen bonding occurred. Further, in the range between 1300 cm$^{-1}$ to 1400 cm$^{-1}$ the precipitate is identical to unoxidized TA besides the ring skeletal vibrations at 1504 cm$^{-1}$, which appeared in the spectrum of oxidized TA. Also the peak shift from 1180 cm$^{-1}$ to 1190 cm$^{-1}$ indicated slight oxidation, whereas the following peaks at lower wavenumber are closer resembling unoxidized TA.

![Figure 4](image_url)
Figure 4: Progress of tannic acid oxidation in bicine buffer at pH 7.8 followed by UV-vis spectroscopy. Oxidation in buffer without Si$_{aq}$ (A) compared to oxidation in buffer supplemented with 80 μM Si$_{aq}$ (B). The graphs are composed of a 1/100 diluted TA solution in buffer (UV region) and an undiluted TA solution (visible region) merged at 400 nm.
may be more suitable. For this purpose, we tested the two elements B and Ge that exist in liquid as the acidic solvated structures, boric acid (H_3BO_3), and germanic acid (H_4GeO_4).

Boric acid did not induce any coating formation. Even at a concentration of 10 mM ($n_0/n_{TA} = 17.2$) no continuous coating formation was observed besides the adsorption of a TA monolayer (Figure S5). Boric acid rather prevented any particle formation, even though TA still oxidized. The failure to crosslink TA might originate from the molecular structure of boric acid, which might not be available as tetra coordinated borate anion at pH 7.8. Crosslinking via coordination requires two binding sites. The lack of more than one active coordination site in boric acid may prevent further crosslinking of TA.5

Alternatively, dissolved germanic acid has coordination numbers IV and VI.52 Thus a substitution of silicic acid with germanic acid as a crosslinker is plausible and complexes of germanium with ortho-diphenols have been previously reported.53 As shown in Figure S10, germanic acid induced coating build-up only for a short time. According to literature germanic acid is a very strong complex former,54 which led to rapid precipitation of TA under our experimental conditions. This depleted reactive molecules from the solution and reduced the amount of molecules available to form a surface coating.

Influence of silicic acid in the coating formation of other polyphenolic molecules. Although our result suggested that Si-TA complexes are formed, no effective crosslinking was observed, as reported for Fe$^{3+}$ systems,55 when alternately supplying Si$_{aq}$ and TA in a layer by layer fashion (Figure S11). Thus, it might be possible that catalytic humification of TA by Si$_{aq}$ yields lower molecular weight compounds, which react further in the coating formation.50 TA is classified as a hydrolysable polyphenolic compound consisting of several gallic acid units esterfied on a glucose unit. Although silicates are rather inefficient catalysts,$^{50-53}$ silicic acid might promote the hydrolysis of the ester bond creating gallic acid fragments.

Therefore, the interaction of silicic acid with gallic acid (GA) and pyrogallol (PG) was studied. GA has previously been found to be unable to form a coating, whereas PG is able to form a coating.6 However, impurities of silica in the studies were not addressed and might have influenced the results. Our results confirmed that GA is not able to form a continuous coating at pH 7.8 under various Si$_{aq}$ concentrations (Figure S12). The analysis with combined NPS and QCM-D showed that the adsorption of GA from a solution supplemented with 80 µM Si$_{aq}$ led to a frequency shift of approximately -2.5 Hz and a plasmon peak shift of ~1.5 nm (Figure 6 A). This correlates to an adsorbed mass density of 59 ± 1 ng/cm2 in the QCM-D setup and 91 ± 12 ng/cm2 in NPS. The higher value determined by NPS may be caused by a change of the refractive index upon oxidation, compared to the measured refractive index increment of 0.173 in solution. Assuming a low hydrated layer, the NPS mass
could be matched to QCM-D by adjusting dn/dc to 0.26. This value is comparable to reported refractive index increments for condensed polyphenolic molecules. Using the QCM-D mass and an estimated density of $1.730\ \text{kg/m}^3$, the GA layer thickness resulted in 3.5 ± 0.8 Å. Compared to the distance of 6.8 Å between the phenolic hydroxyl group and the carboxylic hydroxyl group of GA, we suspect that the surface might not be fully covered, or the density is lower due to hydration effects.

This excludes the hypothesis of silicic acid breaking down TA to its main hydrolysis product. However, it supports the assumption of a crosslinking mechanism. Phenolic compounds interact with oxide surfaces by coordination of the phenolic hydroxyl groups, hence GA exposes only its carboxylic acid group towards the bulk solution. This functional group is not forming coordination complexes with silicic acid. In addition, GA solutions did not become turbid within 24 h reaction time and no precipitates could be collected. This result is expected to originate from the molecular structure of GA, since there is no second ortho-diphenolic group allowing further crosslinking. Furthermore, influence of Si_{aq} on the oxidation of GA was not detected (Figure S13).

PG is a low molecular weight polyphenol closely related to GA. Although its deposition process has been characterized and compared to TA, mechanistic studies are not available. PG formed a continuous coating under all studied experimental conditions (Figure S12), while no acceleration of the oxidation or interaction in solution by Si_{aq} was observed (Figure S13). In the absence of any silicic acid, the NPS displayed a plasmon peak shift of approximately 35 nm after 14 h, associated with a QCM-D frequency shift of -150 Hz (Figure 6 B). Since the dry thickness of PG coatings is close to the thickness obtained in liquid, Geißler et al. estimated a low hydration of PG films. Therefore, the literature density of PG (1453 kg/m3) was used to correlate the adsorbed mass to the layer thickness.

After 14 h, the QCM-D determined 2885 ± 344 ng/cm2 adsorbed onto the surface, which corresponds to a thickness of 20 ± 2 nm. Similarly to GA, we observed increased NPS values of 3902 ± 10 ng/cm2 (27 ± 0.1 nm) for PG using the determined refractive index increment of 0.173. With the assumption of a low hydration, matching NPS and QCM-D values were obtained by adjusting the refractive index increment to 0.24.

The difference in dn/dc may originate from a change in the refractive index upon oxidation and polymerization on the surface. Interestingly, the NPS data showed an unexpected negative peak once PG adsorbs onto the surface (Figure 6 B). Since the surface plasmons are very sensitive to the dielectric environment near the sensor surface, this might be an effect of the displacement of ions and water molecules close to the surface. Further, defects in the TiO$_2$ layer of the sensors may allow direct interaction of PG with the dielectric layer causing this adverse effect.

![Figure 6](image-url)
Figure 6: Averaged ($n=2$) shift of surface plasmon resonance and normalized frequency of the 3rd overtone as a function of time during deposition of gallic acid (A) and pyrogallol (B) onto TiO$_2$ surfaces followed by NPS and QCM-D. Addition of Si_{aq} did not enable a continuous coating built-up of GA in bicine buffer at pH 7.8, whereas PG formed a continuous coating even in absence of Si_{aq}. Inset in panel B shows a negative peak shift upon PG adsorption.
These results suggest that the mechanism of the PG coating formation is fundamentally different compared to TA. For small molecular weight polyphenols, intermolecular interactions such as π-stacking and hydrogen bonding might be possible reaction pathways. Besides these secondary interactions, polyphenols polymerize via coupling of quinone intermediates and Michael addition type reactions. Although the oxidation reaction of PG to purpurogallin has been reported, purpurogallin could not be obtained from carboxylic acid substituted pyrogallols. Critchlow et al. argued that the carboxyl group reduces the necessary nucleophilic character, which could also explain the difference in the coating formation between PG and GA.

Because the coating characteristics of GA and PG were different, we additionally studied the deposition of ellagic acid (EA). EA overcomes the structural limitations of GA and PG as it features two ortho-diphenolic groups, which might enable crosslinks between the phenolic molecules and Si\textsubscript{aq}. Unfortunately, its solubility in bicarbonate buffer at pH 7.8 is limited and even 0.5 mg/ml EA did not fully dissolve. As a compromise, we used filtered 0.5 mg/ml EA solutions with unknown concentration, from which EA adsorbed onto titanium surfaces similarly to TA. In buffer without Si\textsubscript{aq}, EA led to a decrease of approximately 8 Hz after 1 h, which corresponds to an adsorbed mass of 126 ± 10 ng/cm2. This translates to a layer thickness of 7.5 ± 0.6 Å, assuming a density of 1667 kg/m3 (Figure 7). The modeled thickness is slightly lower than the theoretical distance of 8.7 Å between the two ortho-dihydroxy groups, and may be caused by disregarded hydration effects.

Upon adding 1 mM Si\textsubscript{aq}, a significant change in the frequency and dissipation was monitored during 8 h adsorption time. Compared to TA, changes in ΔF and ΔD of EA exhibit a linear progression (Figure S4). This behavior is typically seen for atom transfer radical polymerizations and indicates a linear chain growth. After 8 h the adsorbed mass reached 180 ± 70 ng/cm2, which is equivalent to a thickness of 7.0 ± 0.5 nm. The layer thickness is similar to pyrogallol and thus reasonable for the molecular weight of EA. It is worth mentioning that although ΔD/ΔF was above 0.02 × 10-6, viscoelastic modeling using the Voigt model was not satisfactory and the Sauerbrey model based on the third harmonic was used instead. However, the linearity of the Sauerbrey model is not strictly valid for viscoelastic layers, which are coupled to the crystal oscillation, and might thus constitute to a deviation in the adsorbed mass.

In contrast to GA, EA formed a continuous layer in the presence of Si\textsubscript{aq}. Although EA is a relatively stable compound near neutral pH, lactone ring opening might occur in alkaline conditions, or by alkoxide induced catalysis. Under the experimental conditions used in this study, ring-opening reactions are unlikely to occur, although side reactions cannot be excluded. Therefore, the continuous deposition of EA may be facilitated by its two coordination sites, further supporting the crosslinking role of silicic acid.

CONCLUSIONS

In this study, we have shown that tannic acid forms a continuous coating in aqueous buffered systems exclusively in the presence of tetra or higher coordinated metalloid anions. Under our experimental conditions, silicic acid was the most efficient molecule balancing the deposition of TA with its precipitation processes. The overlaying effect of polymerization resulted in a density gradient and an average TA layer hydration of 32%. Our chemical analysis of the TA polymerization products did not conclusively show whether silicic acid acts as a crosslinker or has a catalytic role in the coating process. However, in highly concentrated silicic acid solutions, the turbidity and precipitation of TA in an unoxidized manner, point towards a coordination chemistry between both molecules.

The possibility of a catalytic breakdown of TA into smaller fragments was investigated by studying the
coating formation of GA and PG. We observed that the primary TA hydrolysis product GA did not form a continuous coating in contrast to PG. GA however features only one ortho-dihydroxy group and would not allow a crosslinking mechanism. EA, which is a bifunctional dimer of GA, was found to form a coating in the presence of silicic acid. Since the kinetics and morphology of TA coatings support the assumption that TA is not degenerated into low molecular weight compounds, we suspect that TA forms coatings via a crosslinking effect of silicic acid. Because the catalytic effect of silicic acid could not be disproven, the exact mechanism of silicic acid in the coating formation of TA requires further physical and chemical analyses of the coating and the oxidation products.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website.

Silicic acid concentration series; TA solution turbidity; influence of coating conditions and the stability of TA films; influence of particles in QCM-D measurements; substrate dependent TA adsorption; TA dry thickness depending on SiO2 concentration; EDS and FTIR analysis of TA precipitate; H3BO3 and H4GeO4 concentration series; TA-SiO2 multilayer system; SiO2 concentration series for GA and PG deposition; UV-vis analysis of GA and PG; QCM-D raw data for EA deposition. (Word)

AUTHOR INFORMATION

Corresponding Author
*E-mail: hanna.tiainen@odont.uio.no

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was funded by the Faculty of Dentistry, University of Oslo. The authors thank Prof. Pentti Tengvall for the support with the ellipsometer measurements and the Scandinavian Society for Biomaterials (ScSB) who funded the research stay of Florian Weber at the University of Gothenburg. Further, we would like to acknowledge Insplorion AB, which provided an Aculyte demo instrument and assisted with the data analysis. The graphical abstract was illustrated by modifying Servier Medical Art stock graphics.

REFERENCES

Figure 8: For Table of Contents Only