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Abstract

Human adolescence is a period of rapid changes in cognition and goal-directed behavior, and it constitutes a
major transitional phase towards adulthood. One of the mechanisms suggested to underlie the protracted
maturation of functional brain networks, is the increased network integration and segregation enhancing neural
efficiency. Importantly, the increasing coordinated network interplay throughout development is mediated
through functional hubs, which are highly connected brain areas suggested to be pivotal nodes for the regulation
of neural activity. To elucidate brain hub development during childhood and adolescence, we estimated
voxel-wise eigenvector centrality (EC) using functional magnetic resonance imaging (fMRI) data from two different
psychological contexts (resting state and a working memory task), in a large cross-sectional sample (n = 754)
spanning the age from 8 to 22 years, and decomposed the maps using independent component analysis (ICA).
Our results reveal significant age-related centrality differences in cingulo-opercular, visual, and sensorimotor
network nodes during both rest and task performance, suggesting that common neurodevelopmental processes
manifest across different mental states. Supporting the functional significance of these developmental patterns,
the centrality of the cingulo-opercular node was positively associated with task performance. These findings
provide evidence for protracted maturation of hub properties in specific nodes of the brain connectome during the
course of childhood and adolescence and suggest that cingulo-opercular centrality is a key factor supporting
neurocognitive development.
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Adolescence is a sensitive period during ontogeny and a maturational gateway to adulthood. A better
characterization of the brain changes underpinning cognitive and emotional development occurring during
this period is key to inform models of normal and abnormal adaptation. Advanced brain imaging allows for
in vivo studies of the protracted maturation of brain network function and connectivity during childhood and
adolescence. Here, we used functional brain imaging to identify neural hubs during two psychological
contexts in 754 children and adolescents. Key regions of the brain network showed increasing importance
through adolescence, and individual differences in working memory performance was associated with the
\centrality of cingulo-opercular network nodes, suggesting a hot spot for neurocognitive development. j
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Introduction

The gradual transition from childhood to adulthood is
characterized by profound physical, cognitive, and emo-
tional changes. Individual adaptation to the dynamic and
socially expanding environment throughout this period is
enabled by the large potential for neuroplasticity, e.g.,
reflected in a transformation of cortical gray matter by a
massive synaptic downscaling (Spear, 2000) and in-
creases in brain white matter coherence and volume
(Paus, 2005; Westlye et al., 2010; Alnees et al., 2018).
These protracted neurodevelopmental changes form the
structural backbone allowing efficient neural signaling,
enabling functional integration and adaptation of the brain
networks underlying the substantial cognitive and func-
tional maturation seen over this age span (Casey et al.,
2008). Of note, while adolescence marks the successful
transition from childhood to adulthood for the majority,
this is also the period where most mental disorders
emerge, supporting the critical role of adolescence as a
sensitive period during ontogeny (Paus et al., 2008).

Functional brain connectivity (FC) provides an intriguing
window into the developing brain, and it has been exten-
sively studied using resting-state functional magnetic res-
onance imaging (rs-fMRI). Resting-state networks (RSNs)
show high spatial concordance with networks associated
with task activations (Smith et al., 2009), and brain con-
nectivity and activation are highly coordinated aspects of
brain functioning (Gratton et al., 2016). In a large-scale
study on children and adolescents from the Philadelphia
Neurodevelopmental Cohort (PNC), Satterthwaite et al.
(2014) analyzed fMRI data recorded during the perfor-
mance of a cognitive task and found that a reciprocal
pattern of executive-network activation and default-mode
network (DMN) deactivation was associated with working
memory performance. This pattern was more predictive of
performance differences than activations and deactiva-
tions in isolation. Network dynamics and connectivity thus
contains complementary information about the neural
substrate supporting executive ability and its maturation
(Power et al., 2010; Gu et al., 2015).
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Whereas the hubs in the default mode and executive-
networks are fairly established from five years of age
(Hwang et al., 2013; Wu et al., 2013; Cao et al., 2014), key
dynamic and functional characteristics of brain nodes
display maturational alterations throughout adolescence
(Grayson et al., 2014). How these changes support the
marked increase in executive abilities during this period is
still unclear.

One commonly used metric for investigating hub prop-
erties is centrality, which reflects the number and strength
of connections of a given node to the rest of the network.

Previous studies have reported a maturational increase
in centrality of task positive networks like frontoparietal,
cingulo-opercular and task negative DMN nodes (Frans-
son et al., 2011; Hwang et al., 2013; Cao et al., 2016).
While most developmental studies on brain network con-
nectivity have employed rs-fMRI, cognitive engagement
modulates the connectivity and centrality of brain nodes
(Chadick and Gazzaley, 2011; Cole et al., 2013; Alnzes
et al., 2015a,b; Misi¢ and Sporns, 2016; Kaufmann et al.,
2017b). Further, higher cognitive load has been shown to
increase the sensitivity for age-related differences in FC
(Dorum et al., 2017), motivating investigation of brain
dynamics beyond the unconstrained resting state.

Here, to characterize age-related differences in func-
tional connectivity in the adolescent brain, we estimated
whole-brain voxel-wise eigenvector centrality (EC) of fMRI
data collected during resting state and a working memory
task (fractal n-back) for 754 children and adolescents
aged 8-22 years from the PNC (Satterthwaite et al., 2014).
To allow for multiple levels of inference and to investigate
the hierarchical organization of the brain network nodes,
we decomposed the voxel-wise EC maps using indepen-
dent component analysis (ICA) and tested for main effects
of task, age, and their interactions both on the voxel-wise
EC maps and the ICA subject weights. Based on previous
studies and models of adolescent brain development, we
hypothesized (1) increased centrality in task positive net-
works and decreased centrality in DMN, sensorimotor,
and visual networks in response to task engagement; (2)
and that these centrality changes would be associated
with task performance. Furthermore, (3) we hypothesized
that these effects on network centrality would parallel
task-related activation through a characteristic pattern of
increased activation in networks involved in task engage-
ment and decreased activation in DMN. Lastly, we hy-
pothesized (4) that the centrality of key nodes would show
evidence of protracted maturation during the sampled
age-span, with differential age-related differences across
nodes and conditions, possibly indicating increasing age-
dependent differentiation between the two psychological
contexts for both activation and centrality.

Materials and Methods

Sample and exclusion criteria

The analysis was performed on the publicly available
PNC (Satterthwaite et al., 2014), access permission num-
ber 8642. All participants gave written informed consent,
and the study was approved by the review boards of the
University of Pennsylvania and the Children’s hospital of
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Philadelphia. After exclusion of participants with severe
medical and psychiatric conditions, missing task re-
sponses, and poor normalization of fMRI data, the final
sample comprised 754 individuals aged 8-22 years (405
males, mean 15 years old, SD 3.3 years). All subjects were
recruited through the Center for Applied Genomics at The
Children’s Hospital in Philadelphia.

MRI acquisition

MRI scans were acquired at the University of Pennsyl-
vania on a 3T Siemens TIM Trio scanner. An anatomic
scan used here for registration purposes was acquired
using a 3D T1-weighted magnetization prepared rapid
acquisition gradient echo (MPRAGE) sequence (TR: 1.81
s, TE: 3.5 ms, FA: 9°, FOV: 240 X 180 mm, slice thickness:
1 mm, slices: 160). Functional images were acquired us-
ing single-shot, interleaved multislice, gradient-echo,
echo planar imaging (GE-EPI) sequence (TR: 3.0 s, TE: 32
ms, FA: 90°, FOV: 192 mm?).

fMRI task paradigm and behavior

The task has been previously described in detail (Sat-
terthwaite et al., 2013). Briefly, we included data from two
fMRI runs: One was a resting-state run (eyes open while
fixating on central fixation cross), while the other was
collected while participants performed a fractal version of
the n-back task. The n-back task consisted of three load
levels: 0-back, 1-back, and 2-back. During 0-back, par-
ticipants were asked to press a button every time a target
fractal was presented. During 1- and 2-back, participants
were asked to respond whenever the presented fractal
was identical to the one presented one or two trials prior,
respectively. Each run consisted of three blocks per con-
dition, and each block consisted of 20 trials, of which five
were targets and 15 were non-target fractals. We com-
puted the total hit-rate, false-positive rate, and D-prime.
The latter was calculated by subtracting z score for false
positives from the z score for hit-rate from the in-scanner
responses during the n-back task (Stanislaw and Todo-
rov, 1999).

fMRI data processing

fMRI data were processed using FMRI Expert Analysis
Tool (FEAT) version 6.00, from FMRIB’s Software Library
(FSL; Smith et al., 2004; Jenkinson et al., 2012), and
included the following steps: correction for motion using
MCFLIRT (Jenkinson et al., 2002), linear trend removal
and high-pass filtering (0.01 Hz), removal of non-brain
tissue using BET (Smith, 2002), spatial smoothing with a
Gaussian kernel of full width at half maximum (FWHM) of
6 mm (SUSAN; Smith and Brady, 1997). We employed
automated procedures for data denoising, including (FIX;
Salimi-Khorshidi et al., 2014) and ICA-AROMA (Pruim
et al., 2015), which has been reported to reduce risk of
inflating age-related effects due to higher in-scanner
head-movement (Kaufmann et al., 2017a). Further, we
applied nonlinear registration using FNIRT to Montreal
Neurologic Institute (MNI) 152 standard space using the
T1-weighted scan as an intermediate.
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EC mapping (ECM)

Following previous studies (Alnaes et al., 2015b; Skatun
et al., 2016), we first created a group mask containing
common voxels across all participants and sessions (n-
back and rest). To accommodate images to EC estima-
tion, the pre-processed and normalized n-back, resting
state runs and analysis mask were resampled to an iso-
tropic voxel resolution of 3 mm, converted to the Vista
image format (Pope and Lowe, 1994) using LIPSIA (Lo-
hmann et al., 2001) and submitted to estimation of voxel-
wise EC (Lohmann et al., 2010) using the absolute of the
full correlation coefficients (equal weight to positive and
negative correlations), yielding one EC map per run for
each participant. Individual EC maps and brain masks
were converted to nifti format, resampled to 2-mm isotro-
pic resolution, and submitted to further analysis (ICA and
voxel-wise statistics).

ICA on EC maps

The 1508 EC maps were decomposed into a fixed set of
40 components, for optimal trade-off between spatial
resolution of components and not over-fitting the model,
using spatial ICA in MELODIC (Beckmann and Smith,
2004). To assess effects of condition on EC for each IC,
the associated subject-weights from the ICA was used to
calculate the difference in subject weights between rest
and n-back runs for each IC. For visualization of the
network structure, we used subject weights for both
n-back and rest to form a component by component
correlation matrix, which was submitted to hierarchical
clustering using FSLNets (Smith et al., 2011). ICs covering
white matter and CSF were excluded before clustering.

Dual regression

To assess the relationships between the centrality and
task-related activation of the ECM-based ICs, we ex-
tracted individual time series from each of the component
spatial maps from the n-back data using dual regression
(Nickerson et al., 2017). GLMs were estimated for each
participant and each component’s time series, modeling
0-back, 1-back, and 2-back as well as responses and
instructions. As a measure of BOLD task effect,
B-estimates for 0-back was subtracted from the average
of 1-back and 2-back B-estimates.

Voxel-wise analysis

For transparency, we compared our main results ob-
tained using ICA-based decomposition of EC maps with
voxel-wise effects of task and age and their interactions
on EC using FSL randomize (Winkler et al., 2014). First, we
computed difference maps by subtracting the individual
resting-state EC maps from the n-back EC maps. We
tested for main effect of condition by performing a one-
sample t test on the difference maps (n-back minus rest).
We further tested for associations with age by performing
linear regression on rest, n-back, and the difference
maps, including sex as covariate. Statistical inference was
done by permutation testing with 5000 iterations and
threshold-free cluster enhancement (Smith and Nichols,
2009).
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Statistical analysis

Analyses beyond the voxel- and imaging domain were
performed in MATLAB 2014a (MathWorks). To test for
effects of age on EC, we performed linear regressions
with the subject weights from n-back or resting-state runs
as dependent variable, and age and sex as independent
variables for all ICs. To test for main effect of task on each
component, we performed one-sample t tests on the differ-
ence scores between rest and n-back weights. To test for
interactions between task and age on EC, we performed
linear regressions with the difference score as dependent
variable and age and sex as independent variables. To test
for associations between EC and task performance (hit-rate,
false positives, and D-prime), we used the same derived
difference score as dependent variable, and hit-rate, false
positives, or D-prime as independent variables in separate
analyses, in addition to age and sex.

In the same manner, using the B-estimates derived from
dual regression on the n-back data, we tested for effect of
task by performing one-sample t tests. To test for effect of
age, we performed linear regression with task effect as
the dependent variable and age and sex as independent
variables.

To test for associations between task-related effects on
centrality and activation for each IC, we correlated the
difference EC-score (n-back minus rest) with B-estimates
for task engagement. To account for multiple compari-
sons, we adjusted the false discovery rate (FDR, g = 0.05)
across all tests and components (Genovese et al., 2002).
For visualization of the association between centrality and
activation, component-wise EC-difference-weights and
B-estimates for the n-back task was imported to R (http://
www.r-project.org) and plotted with the ggplot2-package
(Wickham, 2009).

Results

ICA and hierarchical clustering

ICA of EC maps yielded 31 spatial maps corresponding
to cortical gray-matter components, including frontopari-
etal, default mode, visual networks, and nine maps cor-
responding to white matter and CSF (for an anatomic
description of the 31 maps included in the hierarchical
clustering, see Table 1). Figure 1,1-1 shows the hierarchi-
cal clustering based on the correlation between IC-
weights across n-back and rest, and Figure 1,1-2 shows
the associated spatial maps. Clustering revealed a struc-
ture coherent with known large-scale functional networks,
largely reflecting visual, sensorimotor, frontoparietal, sub-
cortical, cingulo-opercular, and DMN.

Component-wise EC task effects

Task engagement (n-back > rest) was associated with
distributed differences in EC across most nodes. Figure
1,1-4 displays significant (FDR corrected, g = 0.05) as-
sociations between EC, task engagement and task
performance, and Table 2 summarizes corresponding sta-
tistics. All frontoparietal components displayed a signifi-
cant increase in EC with task engagement, and for one of
the components (IC 2) higher centrality was significantly
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associated with better performance. Three of the four
cingulo-opercular nodes displayed significant increase of
centrality with task engagement, and higher EC was as-
sociated with better performance (two of four ICs). The
subcortical components displayed a mixed pattern of cen-
trality changes, thalamus decreased, but cerebellum in-
creased with task engagement. Higher EC for both
cerebellum and thalamus was associated with better perfor-
mance. DMN components displayed both increase (two of
five ICs) and decrease (two of five ICs) in centrality with task
engagement, but no significant associations with task per-
formance. Sensorimotor components displayed reduced
centrality (five of six ICs) with task engagement, and for two
of the components, the degree of reduction was associated
with task performance. Visual components displayed a
mixed pattern with both increased (three of seven ICs) and
decreased (three of seven ICs) centrality with task engage-
ment, and centrality in two components showed negative
correlations with task performance.

Component-wise activation

Significant effects (FDR corrected, g = 0.05) of task en-
gagement are displayed in Figure 1,1-5, lower panel. Table 2
summarizes the corresponding statistics. The component-
wise activation pattern revealed several similarities with the
pattern for EC. Task engagement was associated with sig-
nificantly increased activation in the frontoparietal (six of
seven ICs) and cingulo-opercular (four of four ICs) compo-
nents. Among the subcortical components, we found in-
creased activation in cerebellum and decreased activation in
putamen. The visual, sensorimotor, and DMN components
displayed reduced activation during task.

Associations between centrality and activation

Overall, we found a positive correlation between activa-
tion and EC (r = 0.64, p = 1.11e™%): components showing
increased activity with task generally also showed task-
related increases in EC. Figure 2 displays the component-
wise association between task-related activation and
differences in EC between n-back and rest. However, the
results revealed some notable exceptions. For example,
whereas components in the frontoparietal cluster showed
both strong task-related activation and increased centrality,
and visual and sensorimotor cluster components showed
deactivation and decreased centrality, DMN components
showed overall task related deactivations, but a mixed pat-
tern of increased and decreased centrality.

Component-wise associations with age

Figure 1, 1-3 and 1-5, upper panel, shows the signifi-
cant (FDR corrected, g = 0.05) associations between age
centrality and task-related activation, whereas Figure 3
shows the age-associated trajectory for selected compo-
nents. Table 3 summarizes the corresponding statistics.
For frontoparietal components, we found significant pos-
itive associations between centrality and age in one com-
ponent during n-back and two components during rest.
One of the frontoparietal components displayed a signif-
icant interaction effect suggesting a stronger negative age
effect during rest compared to n-back. In contrast, we
found significantly increased activation with increasing
age across all frontoparietal components, with the excep-
tion of one. Cingulo-opercular components displayed sig-
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Table 1. Anatomic location for each IC
Sensorimotor components
IC Area
7 Bilateral superior pre/postcentral gyrus
19 Right pre/postcentral gyrus, left superior cerebellum
30 Left pre/postcentral gyrus, right superior cerebellum
1 Bilateral juxtapositional cortex, bilateral insular cortex, bilateral central opercular cortex
28 Bilateral precentral gyrus
10 Bilateral superior temporal gyrus
Visual components

IC Area
3 Bilateral intracalcarine cortex, bilateral cuneal cortex, bilateral lingual gyrus
4 Bilateral lateral superior occipital cortex
15 Bilateral occipital fusiform gyrus, bilateral lingual gyrus
20 Bilateral occipital pole
11 Bilateral precuneus cortex
24 Right lateral occipital cortex
37 Left lateral occipital cortex

Frontoparietal-associated components
IC Area
2 Right superior parietal/lateral occipital cortex, right middle frontal gyrus, right paracingulate gyrus
6 Left superior parietal/lateral occipital cortex, left middle frontal gyrus, left paracingulate gyrus
14 Left middle frontal/inferior frontal gyrus
17 Bilateral superior frontal gyrus, bilateral juxtapositional cortex
33 Bilateral superior posterior cingulate/precuneus, bilateral supramarginal gyrus
21 Bilateral superior parietal lobe/precentral gyrus/posterior cingulate/medial prefrontal cortex

Subcortical components
13 Bilateral putamen
18 Bilateral thalamus
23 Cerebellum
Cingulo-opercular associated components
16 Anterior cingulate cortex
27 Bilateral frontal pole
32 Bilateral insula, bilateral frontal operculum
36 Right Insular cortex/frontal operculum
DMN-associated components

IC Area
8 Bilateral superior medial prefrontal cortex
29 Bilateral inferior medial prefrontal cortex
26 Left middle temporal gyrus
9 Bilateral posterior cingulate cortex
34 Right posterior cingulate cortex, bilateral lateral occipital cortex

nificant age-related increases in EC in two of four
components, anterior cingulate and insula respectively.
The increase in EC was paralleled by significant increase
in activation in all cingulo-opercular components. Among
the subcortical components, thalamus and cerebellum
showed significant age-related decreased centrality, and
the latter also showed age-related increased activation.
Within the DMN cluster, one component showed signifi-
cant age-related decrease in EC during n-back. In con-
trast, all DMN-components showed significant decrease
in activation with increasing age, indicating stronger de-
activation with higher age. Visual and sensorimotor com-
ponents displayed a highly similar pattern: age-related
increases in EC during both task and rest, but decreased
activation with higher age. The exception was one com-
ponent, showing age-related increases both in centrality
and activation.

Voxel-wise analysis
Figure 4 shows the results from the full-brain voxel-wise
analyses. Figure 4,4-1 displays the difference in centrality

July/August 2018, 5(4) e0092-18.2018

during n-back compared to rest, suggesting higher cen-
trality in frontoparietal areas and posterior DMN and lower
centrality in sensorimotor areas, mirroring the ICA-based
analysis. Figure 4,4-2 and 4-3, shows associations be-
tween centrality and age during n-back and rest, respec-
tively. We found significant age-related increases in
centrality in both conditions in visual and sensorimotor
regions as well as in the anterior cingulate. During n-back,
we found significant age-related differences in the frontal
pole, extending to the superior frontal gyrus. Negative
associations with age were found in large white matter
and CSF regions. However, there was no significant age
effect in the derived difference maps, indicating no evi-
dence of interactions between age and condition.

Discussion

Using graph-based metrics and data-driven decompo-
sition of fMRI data obtained during an unconstrained
resting state condition and performance of an n-back
task, the current study yielded three main findings. First,
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Figure 1. Results from the ICA analysis and corresponding statistics. (1-1) The hierarchical clustering of the components, based on
the partial correlations between the difference weights (n-back minus rest). (1-2) Visualization of the IC spatial maps. (1-3) Visualization
of statistics reflecting the effect of age on EC during both n-back and rest, and the interaction between age and task engagement
respectively. (1-4) The effect of task engagement on EC for the ICs, and effect of EC on hit-rate, false positives and d-prime. (1-5) The
significant effects of age on task activation, and the effect of task engagement. Summary of statistics for task effect is displayed in
table 2, age effects in table 3. (1-6) The IC-subject weight correlation-matrix. Correlations across both conditions are displayed below
the diagonal and was used for the hierarchical clustering displayed in 1-1. Above the diagonal are the correlations between IC

difference-weights (n-back minus rest).

we demonstrated the sensitivity of EC to differences in
task demands. Next, we revealed age-dependent altera-
tions in the centrality of key brain networks, with increas-
ing centrality in sensorimotor, visual, and cingulo-
opercular network components and decreasing centrality
in thalamus, cerebellum, and left temporal gyrus. Finally,
the lack of condition by age interactions suggests that
these age-related differences in network centrality are not
strongly dependent on mental state, supporting that the
maturation of the functional architecture of the brain is
relatively pervasive across psychological contexts. These
main findings will be discussed below.

Brain network centrality and task engagement

The most prominent finding in the current study was
increased centrality of frontoparietal, cerebellar and
cingulo-opercular components, and decreased centrality
in sensorimotor and thalamic components with task en-
gagement, which align with previous investigations of EC
in adults (Alnzes et al., 2015b; Hearne et al., 2017). FC
during task engagement is associated with increased

July/August 2018, 5(4) e0092-18.2018

cross-network connectivity, and decreased network mod-
ularity (Di et al., 2013; Cole et al., 2014; Shine et al., 2016).
This dynamic shift in connectivity pattern in response to
task demands supports increased global effectiveness,
through shortening path lengths in the network, and in-
creased efficiency of information transfer across the
global network (Stanley et al., 2015). These alterations in
brain network dynamics enable flexible reconfiguration in
response to task demands, which supports executive
control, including working memory performance (Braun
et al., 2015; Stanley et al., 2015). Among the proposed
neurocognitive mechanisms is an increased influence of
executive nodes exerting top down control (Chadick and
Gazzaley, 2011), as well as suppression of task-irrelevant
nodes to minimize interference which may be detrimental
to performance (Tomasi et al., 2014). Indeed, within-
network visual and sensorimotor connectivity have been
reported to decrease with task demand, with simultane-
ous increases in connectivity with frontoparietal and cer-
ebellar nodes (Kellermann et al., 2012; Spadone et al.,
2015; Brissenden et al., 2016; Kwon et al., 2017), which
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Table 2. Effect of task engagement on EC (n-back minus rest) and effect of EC on hit-rate, false positives, and D-prime, and

effect of task on activation

IC Task effect Hit-rate False positives d-prime Activation

t p t P t p t p t p
Sensorimotor
7 -7.95 6.7E-15 -0.2 8.4E-01 0.99 3.2E-01 -0.26 8.0E-01 -11.82 1.1E-29
19 -6.46 1.9E-10 -1.58 1.2E-01 -0.21 8.4E-01 -1.09 2.8E-01 -17.46 1.3E-57
30 -6.65 5.6E-11 -3.00 2.8E-03 1.53 1.3E-01 -3.48 5.4E-04 -7.10 2.8E-12
1 -9.73 3.6E-21 -1.37 1.7E-01 0.88 3.8E-01 -1.92 5.5E-02 -26.91 2.7E-112
28 -3.96 8.0E-05 -0.22 8.3E-01 1.25 2.1E-01 -0.13 8.9E-01 -15.77 1.3E-48
10 4.26 2.3E-05 -1.95 5.2E-02 0.38 7.0E-01 -2.32 2.1E-02 -16.49 2.2E-52
Visual
3 -9.49 2.9E-20 2.08 3.8E-02 -0.76 4.5E-01 1.88 6.1E-02 -18.66 3.7E-64
4 -3.53 4.4E-04 0.36 7.2E-01 -0.85 4.0E-01 1.29 2.0E-01 -15.29 3.6E-46
15 -2.9 3.9E-03 -2.33 2.0E-02 1.44 1.5E-01 -2.02 4.4E-02 -15.35 1.8E-46
20 -0.17 8.6E-01 1.09 2.7E-01 -0.46 6.4E-01 1.19 2.3E-01 -6.81 2.1E-11
11 6.45 2.0E-10 -0.12 9.0E-01 -1.24 2.1E-01 112 2.6E-01 13.28 2.6E-36
24 2.36 1.9E-02 -1.05 3.0E-01 0.07 9.4E-01 -0.45 6.5E-01 -3.47 5.5E-04
37 4.37 1.4E-05 -2.45 1.5E-02 1.12 2.6E-01 -1.91 5.6E-02 -15.82 7.1E-49
Frontoparietal
2 16.09 2.8E-50 3.63 3.1E-04 -0.8 4.2E-01 2.21 2.8E-02 29.80 1.7E-129
6 12.14 4.2E-31 1.04 3.0E-01 -0.2 8.4E-01 0.33 7.4E-01 13.19 6.8E-36
14 15.21 9.3E-46 1.26 2.1E-01 -0.84 4.0E-01 0.79 4.3E-01 26.79 1.4E-111
17 4.68 3.4E-06 1.6 1.1E-01 -1.6 1.1E-01 1.36 1.7E-01 21.79 5.1E-82
33 6.35 3.8E-10 0.22 8.3E-01 -1.3 1.9E-01 0.35 7.3E-01 -9.75 3.1E-21
21 6.58 8.5E-11 -1.36 1.7E-01 -0.69 4.9E-01 -1.47 1.4E-01 28.01 7.8E-119
Subcortical
13 -1.21 2.3E-01 -0.22 8.2E-01 -1.37 1.7E-01 0.81 4.2E-01 -14.82 8.7E-44
18 -8.51 9.4E-17 0.75 4.5E-01 -2.76 6.0E-03 2.4 1.7E-02 -1.81 7.0E-02
23 6.74 3.2E-11 2.69 7.3E-03 -1.96 5.0E-02 3.7 2.3E-04 25.37 3.9E-103
Cingulo-opercular
16 2.78 5.6E-03 2.19 2.9E-02 -2.36 1.8E-02 2.32 2.1E-02 9.57 1.6E-20
27 3.33 9.1E-04 2.64 8.5E-03 0.4 6.9E-01 1.91 5.6E-02 19.83 9.6E-71
32 3.11 1.9E-03 1.29 2.0E-01 -1.53 1.3E-01 0.97 3.3E-01 9.35 9.9E-20
36 1.99 4.7E-02 0.73 4.6E-01 -0.96 3.4E-01 0.58 5.7E-01 9.15 5.4E-19
DMN
8 1.73 8.4E-02 -0.7 4.8E-01 -0.28 7.8E-01 -0.46 6.5E-01 -27.31 1.2E-114
29 -3.37 7.8E-04 -0.18 8.6E-01 1.42 1.6E-01 -0.89 3.8E-01 -33.81 3.6E-153
26 -4.03 6.1E-05 -1.38 1.7E-01 1.77 7.7E-02 -1.53 1.3E-01 -22.76 1.2E-87
9 9.03 1.4E-18 0.74 4.6E-01 -1.71 8.7E-02 1.11 2.7E-01 -21.41 8.6E-80
34 6.51 1.3E-10 -1.09 2.8E-01 -0.1 9.2E-01 -1.26 2.1E-01 -23.77 1.3E-93

Significant results are highlighted. All results are corrected for multiple comparisons (FDR), g = 0.05.

facilitates both suppression and biasing of sensory input.
Thalamus plays a key role in the gating of sensory input
toward higher cortical network structures (Halassa and
Kastner, 2017; Hwang et al., 2017). Interestingly, reduced
connectivity between specific subclusters of the thalamus
and visual and motor cortices in response to task de-
mands has been reported, also in absence of altered FC
with executive or DMN networks (Fan et al., 2015). In light
of these observations, our findings indicate that task en-
gagement reduces thalamic FC with cortical areas, facil-
itating the suppression and filtering of sensory signal
during task engagement.

Our results align with previous findings highlighting the
importance of increased influence of executive and cere-
bellar nodes during task engagement, as higher cingulo-
opercular, cerebellar and frontoparietal centrality was
associated with better task performance, and higher cen-
trality in visual and sensorimotor nodes was associated
with lower performance. Thalamus in particular was fur-
ther associated with decrease in centrality during task

July/August 2018, 5(4) e0092-18.2018

engagement reflecting a drop in global FC, and the de-
gree of differentiation between task and rest EC was
positively associated with performance. Indeed, our re-
sults support both the interference hypothesis
(D’Esposito et al., 1999), suggesting that performance
during the n-back task is supported by increased influ-
ence from frontoparietal and cingulo-opercular nodes,
providing top-down attentional control, as well as the
sensory gating hypothesis (Cromwell et al., 2008), re-
flected through the decreased thalamic EC, which was
associated with better performance.

Notably, to a large extent, the centrality pattern ob-
served during task engagement paralleled the observed
activation patterns. Studying activation and connectivity
across several cognitive tasks, Gratton et al. (2016) re-
ported coordinated changes in connectivity and activa-
tion, in which an increase in both measures were
observed for brain regions involved in active task control.
This supports the notion of connectivity and activation as
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Figure 2. Associations between BOLD and EC changes due to task engagement. co: cingulo-opercular network; dmn: default-mode
network; fp: frontoparietal; sm: sensorimotor; sub: subcortical; vis: visual.

coordinated aspects of brain functioning. Overall, our
results comply with these findings of coordinated activity
and network changes for the frontoparietal and the
cingulo-opercular-network. However, while the DMN dis-
played a task-related increase in centrality, it also dis-
played the commonly observed deactivation in response
to task demands. This could reflect a coordinated disen-
gagement, as previous studies have reported task-driven
increases in internal DMN connectivity and coherence
during cognitive engagement (Anticevic et al., 2012; Go-
paraju et al., 2014). On the other hand, recent studies
using a graph theoretical approach alternatively suggest

July/August 2018, 5(4) e0092-18.2018

that the DMN dynamically changes its cross talk with
other networks during task execution (Vatansever et al.,
2015a,b) and displays larger integration with the full con-
nectome. In particular, variability in functional connectivity
between executive networks and DMN during an execu-
tive task was shown to be positively associated with
performance (Douw et al., 2016). Taken together, there is
still a large degree of uncertainty regarding DMN involve-
ment during task engagement, and further studies are
needed to gain a better understanding of the DMN dy-
namics and its implications for brain development and
cognitive functioning.
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Figure 3. Age effect on EC during both n-back and rest on the left panel, and activation in different network nodes on the right panel.
(8-1) Frontoparietal, (3-2) cingulo-opercular, (3-3) DMN, (3-4) visual, (3-5) sensorimotor, and (3-6) subcortical. Nonsignificant

associations are annotated.

Age-related differences in activation

In line with our expectations and previous activation
analysis in an overlapping sample (Satterthwaite et al.,
2013), our analysis revealed age-related increases in the
activation of frontoparietal components and increased
deactivation of visual and DMN components, suggesting
increased differentiation of these networks with age in
response to task demands. We also observed additional
age-related effects in cingulo-opercular and subcortical
components, which were not reported earlier. This dis-
crepancy may be related to higher sensitivity for the cur-
rent ICA-based approach compared to the voxel-wise
analysis, allowing for higher component-wise specificity
and effectively reducing number of comparisons.

Age-related differences in centrality

For the connectivity and graph-based analysis, we
found increasing centrality with increasing age in key
cingulo-opercular components, as well as posterior cin-
gulate, and superior frontal gyrus, reflecting increased
centrality in task positive visual and sensorimotor compo-
nents, along with reductions in thalamus, cerebellum and
temporal gyrus during both n-back and rest. We found no
significant interaction effects between task and age. Al-

July/August 2018, 5(4) e0092-18.2018

though one should be cautious when interpreting null
findings, the lack of significant interactions suggests that
age-related differences in network characteristics are not
strongly dependent on cognitive load. A recent large-
scale developmental study demonstrated that maturation
of the structure and organization of the brain functional
connectome is characterized by increasing segregation of
large-scale functional networks, along with differentiation
of the various networks’ influence on the full connectome
(Gu et al., 2015). Indeed, converging evidence points
toward an increasing global influence from DMN in gen-
eral, and cingulo-opercular network nodes during cogni-
tive processing, as hallmarks of healthy development (Gu
et al., 2015; Marek et al., 2015). Specifically, Marek et al.
(2015) reported that maturational increase in inhibitory
control during early adolescence is accompanied by in-
creased between-network connectivity, in particular
within the sensorimotor, visual, and cingulo-opercular
networks. Furthermore, temporal variability in cingulo-
opercular connectivity has been suggested to serve as a
proxy for brain maturation (Sato et al., 2015b).

The importance of the cingulo-opercular network for
cognitive functioning is further supported by studies in-
vestigating both healthy adults and clinical groups.
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Cingulo-opercular activity in healthy adults is associated
with the ability to maintain sustained attention and inte-
grate feedback (Cocchi et al., 2013), and within-network
efficiency measured as degree of edge density has been
linked to cognitive flexibility (Sheffield et al., 2016). Com-
plementary, decreased functional connectivity between
cingulo-opercular, sensorimotor, and DMN nodes with
aging has been linked to deteriorated cognitive perfor-
mance (Meier et al., 2012), and lesions targeting hub
cingulo-opercular nodes are associated with greater cog-
nitive impairment compared to non-hub nodes (Warren
et al., 2014). Indeed, structural abnormalities in hubs has
been found to be overrepresented across a range of brain
disorders (Crossley et al., 2014), and abnormalities in
anterior cingulate of the cingulo-opercular network was
proposed as one of the key brain predictors for schizo-
phrenia. Identifying deviant hub development may show
promise as a biomarker for risk of future psychopathology
in the adolescent brain, as well as being a predictive
marker for prognosis and the degree of symptom severity
following brain insults.

Our results only displayed maturational effect in one of
six frontoparietal components, and thus revealed sparse
age associations with the centrality of the frontoparietal
network. Recent studies suggest that maturation of task
positive networks may be better reflected by dynamic
rather than static measures of functional connectivity, and
that development as well as aging are accompanied by
changes in dynamic transitions between brain states, op-
erationalized through temporal variability in between-
network connectivity (Ryali et al.,, 2016; Cordova-
Palomera et al., 2017; Faghiri et al., 2017). Thus, graph
and centrality measures based on a static apprehension
of the brain connectome may fail to capture key aspects

July/August 2018, 5(4) e0092-18.2018

of maturational differences in the brain temporal dynam-
ics.

The most prominent age-related reduction in centrality
was seen in thalamus and cerebellum, converging with
previous reports (Baker et al., 2015; Sato et al., 2015zg;
Petrican et al., 2017). Subcortical nodes have been re-
ported to display enhanced connectivity with prefrontal
nodes during adolescence (Ezekiel et al., 2013; Sato et al.,
2015a). In conjunction, these findings suggest that sub-
cortical networks reduce its influence throughout adoles-
cence, through a drop in internal connectivity, shifting
toward higher influence from frontal cortices and in-
creased top-down control (Baker et al., 2015). Indeed,
aberrant thalamo-cortical connectivity in adults have been
linked to mental disorders (Wang et al., 2015; Skatun
et al., 2018), where the suggested mechanisms include
altered inhibition of sensory signaling. In line with the
notion that cognitive and emotional development during
childhood and adolescence is accompanied and sup-
ported by substantial tuning and specialization of brain
network activation and connectivity, it was recently dem-
onstrated that the brain connectome develops into a more
stable and individualized pattern, and that a delay in this
development is associated with increased burden of men-
tal health issues (Kaufmann et al., 2017a).The balance
between maintaining a stable and idiosyncratic connec-
tivity pattern across contexts on one hand and brain
network flexibility in response to dynamic contextual
changes on the other may reflect a key characteristic of a
healthy mind. Delineating the maturational trajectories of
dynamic shifts in hub properties between mental states
may provide important clues for healthy and pathologic
brain development, as well as shed light on adult neuronal
pathology. Indeed, degree of damage to hub locations
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Table 3. Effect of age on EC in n-back, rest, and the interac-
tion between n-back and age, and effect of age on activation

IC Age n-back Age rest Task X age Activation age
t P t p t p t p
Sensorimotor
7 4.71 2.90E-064.48 8.50E-06 -0.05 9.60E-01 -2.89 4.0E-03
196.12 1.50E-09 5.46 6.40E-080.77 4.40E-01-1.02 3.1E-01
306.15 1.30E-097.00 5.70E-12-0.59 5.60E-01 0.51 6.1E-01
1 4.98 8.10E-07 7.58 1.00E-13-0.96 3.40E-01 -5.34 1.2E-07
287.14 2.20E-126.14 1.40E-090.42 6.70E-01 -3.54 4.2E-04
108.49 1.10E-165.8 9.90E-092.17 3.00E-02 -5.22 2.3E-07
Visual
3 8.49 1.10E-166.39 2.80E-101.68 9.20E-02 -0.19 8.5E-01
4 6.74 3.10E-115.15 3.30E-07 1.28 2.00E-01 -2.56 1.1E-02
153.4 7.20E-043.52 4.60E-04 -0.059.60E-01-0.39 7.0E-01
202.93 3.50E-033.31 9.80E-040.11 9.10E-01 1.58 1.1E-01
116.48 1.70E-106.39 2.90E-100.07 9.40E-011.73 8.4E-02
246.3 4.90E-105.29 1.60E-07 0.02 9.80E-01 0.08 9.4E-01
374.3 1.90E-051.93 5.40E-02 1.79 7.40E-02-1.05 2.9E-01
Frontoparietal
2 1.25 2.10E-01 0.42 6.70E-01 0.88 3.80E-014.62 4.6E-06
6 -1.451.50E-01 0.67 5.00E-01-1.67 9.60E-02 1.09 2.8E-01
14-0.09 9.30E-01 -0.9 3.70E-01 0.6 5.50E-015.73 1.5E-08
17 5.53 4.30E-08 3.61 3.20E-04 1.26 2.10E-016.40 2.7E-10
331.9 5.80E-02 2.64 8.40E-03-0.69 4.90E-01 -2.55 1.1E-02
21-1.611.10E-01 1.46 1.50E-01 -2.36 1.90E-02 5.44 7.2E-08
Subcortical
13-0.77 4.40E-01 -1.88 6.10E-02 0.95 3.40E-01 -2.33 2.0E-02
18 -3.65 2.80E-04 -4.57 5.70E-06 0.99 3.20E-01 -0.37 7.1E-01
230.06 9.60E-01-2.491.30E-022.26 2.40E-02 4.15 3.6E-05
Cingulo-opercular
165.14 3.50E-07 3.81 1.50E-04 1.08 2.80E-01 3.38
27-0.38 7.10E-01 1.44 1.50E-01 -1.38 1.70E-01 3.34
3224 1.70E-023.8 1.60E-04-0.92 3.60E-01 1.27
36 1.04 3.00E-011.43 1.50E-01-0.32 7.50E-01 1.82
DMN
8 2.24 2.50E-02 0.6 5.50E-011.26 2.10E-01 -4.73 2.7E-06
29-1.83 6.70E-02 -0.22 8.20E-01 -1.23 2.20E-01 -5.62 2.7E-08
26 -5.36 1.10E-07 -2.1 3.60E-02-2.23 2.60E-02 -4.65 4.0E-06
9 0.03 9.70E-01 -0.87 3.80E-01 0.65 5.10E-01 -4.50 7.8E-06
341.1 2.70E-01-0.01 9.90E-01 0.82 4.10E-01 -4.34 1.6E-05

7.6E-04
8.8E-04
2.0E-01
6.9E-02

Significant results are highlighted. All results are corrected for multiple com-
parisons (FDR), g = 0.05.

have been shown to be a key predictor of cognitive
impairment (Warren et al., 2014).

Limitations

The current study employed a cross-sectional design.
This limits the conclusions that can be made, as there is
no measure of within-person changes, and cohort effects
cannot be ruled out. To further differentiate healthy and
pathologic development, longitudinal studies will be of
importance to better identify markers for delayed and
aberrant maturation. Furthermore, the mounting evidence
for misinterpreted motion-driven age effects in previous
developmental studies on FC (Power et al., 2012), calls for
caution when interpreting maturational findings. Although
we implemented stringent procedures for data denoising
(Kaufmann et al., 2017a), it is not possible to completely
rule out residual motion effects as a confounder regarding
age-related findings.
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Conclusion

Our study adds to the mounting evidence supporting
the importance of hub development for healthy matura-
tion during adolescence. The activation and centrality of
cingulo-opercular components were associated with task
engagement, task performance, as well as increasing age.
This supports the importance of the hub properties of
cerebellum and cingulo-opercular network as key to
healthy development of executive capacities, as well as
its vulnerability to injuries and deviant development.
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