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Abstract

One of the most used techniques to study neural circuit function is extracellular
electrophysiology, which enables one to measure the electrical activity of neuron
communication using electrodes placed in the extracellular space of the neural
tissue. The power of this technique lies in the opportunity to link single neuron
and network activity to complex behaviour and cognition. Recent years have
witnessed huge advancements in neurotechnology for extracellular recordings,
with the advent of new neural devices capable of recording from hundreds of
electrodes simultaneously and to measure the activity of hundreds of neurons
with very high spatio-temporal resolution (high-density multi-electrode arrays
- HD-MEASs). These novel opportunities raise challenges with regards to data
analyses and how to interpret results from recordings.

In this thesis I introduce new tools and analysis methods specifically targeting
HD-MEA devices. The first goal of the work was to develop e unified approach
using simulations to assist in the method development to address open problems
in the analysis of electrophysiological data. These include spike sorting, cell-
type classification, neuron localization, and selective electrical stimulation. A
secondary goal of this work was to investigate to what extent the current modeling
framework is capable of replicating the measured spiking activity.

In Papers [[Jand [[T] T present two tools to improve the process of developing
and evaluating methods for spike sorting, introducing a simulator of extracellular
spiking activity and a unified framework for spike sorting evaluation.

In Papers [[TT] and [[V]I investigate the use of independent component analysis
for spike sorting of high-density multi-electrode arrays, both in an offline and an
online setting.

In [Paper V] I introduce a method for neuron localization and cell-type
classification that combines forward modeling and deep learning techniques.

presents a model-based optimization framework for targeted
extracellular electrical stimulation of single neurons from multi-electrode arrays.

is a modeling study which investigates the effect of the neural
probe on the recorded potentials.

With the work presented in this thesis, I show that computationally-
assisted methods can contribute to the state-of-the-art analysis of extracellular
electrophisiological data. In combination with newly developed neurotechnologies,
these methods will advance our understanding of neural circuit function.
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Chapter 1

Introduction

“I like nonsense; it wakes up the brain cells.”

— Dr. Seuss

The brain is arguably the most fascinating and complicated of all organs.

A recent study® estimates that the human brain contains around
86°000°000°000, or 8.6x10'°, or, if the reader prefers, eighty six billion neu-
rons. If we consider other animal species, still the numbers are incredible, with
chimpanzees having around 28°000°000°000L, cats 760°000°0002, rats 200’000’0002,
and honey bees around 960’000 neurons.

I have always had a hard time making a sense of millions and billions. So,
the day before a talk that I was preparing, I tried to come up with an analogy,
both for me and my audience, to grasp the immensity of the brain:

A tennis ball has an average diameter of 6.7 cm. An soccer pitch is 100 m
long and 60 m wide, give or take. Now: imagine covering the entire football
field with tennis balls (let’s assume for simplicity that the balls are cubes of side
6.7 ¢cm). Once we are done with the first layer, we go on with the second layer,
and so on. In order to place 86°000°000°000 tennis balls, we would have stacked
around 64°000 layers, reaching an altitude of 4’300 m. Basically, we are on top
of the Alps mountains

Neurons are electrical entities®. Their structure enables them to maintain
an electric potential across their membrane that is modulated by incoming
signals from other neurons. When the membrane potential of a neuron crosses a
threshold, an action potential is generated and it is sent to all the neurons to
which that neuron’s axon connects to through synapses.

Being electrical entities, one can measure neurons’ activity by inserting
electrodes in the brain. When an action potential is generated, electric currents

fwhen T gave the talk and made this calculation I was in the United States and I ended up
on top of the Mount Everest (around 8000 m). Tennis balls are probably bigger in the US.



1. Introduction

quickly flow in and out of the neuron for around a millisecond. Extracellularly,
if an electrode is close enough to a neuron firing an action potential, we observe
a fast transition in the recorded electric potential, that we refer to as spike.

Recent years have witnessed an unprecedented advancement in neurotech-
nology”. Extracellular recordings have been historically performed with single
microwires or bundles of microwires (e.g. four microwires in a tetrode), capable of
recording a few tens of neurons per experiment. The use of silicon manufacturing
processes for neural probes, which can provide higher density and electrode
counts than microwire technology®™, has been investigated for more than two
decades™ I3 However, the main innovation has come from the integration
of electronic circuits in CMOS (Complementary Metal-Oxide-Semiconductor)
technology with the neural probes. These embedded electronic circuits can
perform amplification and digitization of the neural signals, which results in
lower noise levels (thanks to on-site amplification) and the capability of greatly
increasing the electrode counts (thanks to on-site digitization, as digital transmis-
sion requires less metal wires, which are the main bottleneck for high electrode
counts)lm. CMOS-based neural probes have resulted in the prototyping of several
high-density custom solutions both for in vitr¢™®18 and in vivd™® 25 recordings.
Leveraging this research, neuroscientists now have access to commercial recording
probes with hundreds and thousands of electrodes, for both in vitrd] and in
viv(ﬂ applications.

High-density multi-electrode arrays, or micro-electrode arrays (MEAs), enable
researchers to perform high-yield experiments, in which several hundreds of
neurons can be recorded simultaneously. These devices offer many opportunities
for next-generation electrophysiology?® (as well as challengeéza). Apart from
being able to record the activity of many more neurons than previous techniques,
the high spatial density of the electrodes enables the observation of the same
action potentials on many different recording contacts. The known spatial
geometry of the recording sites allows one to study neurons, from extracellular
signals, even at the sub-cellular level?8. Figure displays a simulation with a
pyramidal cell from layer 5 in the center, a tetrode on the left, and a high-density
probe on the right. The tetrode sees the spike from four contacts, with no precise
knowledge of the relative electrode locations (at least for self-assembled wire
tetrodes). On the high-density MEA, the same spike appears on tens of adjacent
electrodes, with precise knowledge of the geometry. The amount of available
spatio-temporal information provided by these probes is arguably unprecedented.

How can we exploit this high spatio-temporal information to improve
the current methods used in extracellular electrophysiology?

This question is the main thread of my thesis. I have an engineering

*Maxwell Biosystems — www.mxwbio.com, 3Brain — www.3brain.com, Multichannel systems
— www.multichannelsystems.com
TNeuropixels — www.neuropixels.org
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Microwire / Tetrode High-density MEA

Figure 1.1: Tllustration of an extracellular recording with two types of probes:
a tetrode (left) and a high-density multi-electrode array (right). The traces show
a single spike recorded from the pyramidal cell in the center. The amount and
richness of spatial information from the MEAs can enable one to observe even
sub-cellular aspects of the action potential23

background and I was naturally attracted to several open questions and problemg’]
in the extracelular electrophysiology field. So, during these (almost) four years,
I tried, with the help of several colleagues, to tackle them one by one.

I am still missing something: Maths. Engineers see the world as formulas
and numbers, equations to solve, parameters to estimate, or, in other words,
models. Fortunately, the computational neuroscience field is no disappointment.

Detailed models of single neurons, or multi-compartment models ,
have been widely used by the neuroscience community to study various aspects of
single-cell dynamics?? 3L These models represent a valuable tool for investigating
and understanding neural mechanisms, and the international community has
invested huge resources in building and sharing a large variety of detailed neuronal
models. As an example, the Blue Brain Project has constructed over 30’000 cell
models from the somatosensory cortex of juvenile rats, with the final goal to
digitally reconstruct the neocortical microcircuit®235, A similar effort is being

*Yes, engineers do like to solve problems.
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conducted by the Allen Institute for Brain Science, whose cell-type database?0
contains several hundred of cell models from mice and even humans®Z. Moreover,
we have a good understanding of how currents generated by neurons translate
to recorded extracellular potentiald3842,

Great, now everything is in place: an enthusiastic (now) neural engineer,
advanced models of neurons, and electrophysiology problems to solve.

1.1 Objectives

The main objective of this work is to combine simulations and engineering
methods to tackle several aspects of the electrophysiology pipeline
for high-density MEAs. Given the availability of biophysically detailed models,
that may pass a biological Turing test®3 the central idea of this project is
to use modeling and simulations to assist the development of methods for
electrophysiology. These techniques include spike sorting, cell localization
and classification from extracellular action potentials, and targeted electrical
stimulation from extracellular probes (Figure in . Moreover,
since a great part of this work uses simulations to drive method development,
a secondary goal is to investigate to what extent the conventional modeling
framework is accurate and trustworthy and what are its limitations.

While the order of the papers presented in follows the natural
electrophysiology pipeline (Figure7 I present here the objective of the papers
in a quasi-chronological order, to highlight why and how the main project evolved
and the different sub-projects were conceptualized.

How can we exploit the high density of MEAs to make electrical
stimulation more selective?

The goal of this paper was to improve the selectivity of extracellular
stimulation leveraging the high density of the electrodes, a model-based approach,
and optimization techniques. We assumed that we knew the location of the
neuron with respect to the probe.

Pap V| Can we accurately estimate the position of a meuron from its
extracellular signals?

The objective of this article was to improve the performance of neuronal
localization and classification from extracellular action potentials by combining
forward biophysical modeling and deep learning techniques. In this approach,
we assumed that extracellular simulations of single spikes are biophysically
accurate enough to be used as ground-truth information for training machine
learning algorithms. Moreover in this contribution we assumed that inference
was performed after spike sorting, on average waveforms.

Are our estimates of extracellular signals accurate enough?
The aim of this article was to investigate to what extent the neural probes

we use to record neural activity affect the recorded signals. In order to do so, we

4
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used finite element methods. Moreover, we wanted to implement a more efficient
method to include the presence of the probes in the calculation of extracellular
potentials.

What about spike sorting for high-density MEAs?
In this article we aimed to investigate the use of independent component

analysis (ICA) for spike sorting data from high-density MEAs. Moreover, we
wanted to build a fully automatic pipeline and compare its performance with
state-of-the-art algorithms. In order to benchmark the algorithm, we needed to
develop a simulator of ground-truth spiking activity, wrappers for some existing
spike sorters, and automated comparison routines.

Pap V| What about real-time spike sorting for high-density MEAs?

The goal of this paper was to investigate an online version of ICA, namely
online recursive ICA — ORICA, for real-time spike sorting. We aimed to
benchmark the accuracy of the ORICA model in finding spiking sources within
real-time time constraints.

Can we develop a simulator of extracellular activity to aid spike sorting
development?

This question arose from [Paper III| and [Paper IV] in which I felt the need to
include ground-truth simulations in the development of spike sorting algorithms.
The objective of this paper was to create a simulator of extracellular activity
and make it an accessible and usable software package that could be used by
the spike sorting community. We aimed to develop a fast, easy to use, highly
controllable, and biophysically detailed simulator. Additionally, we wanted the
simulator to be able to reproduce features of extracellular signals that are critical
for spike sorting, such as bursting, drifting, and spatio-temporal overlapping
spikes.

How can we benchmark and compare several spike sorters?

This question as well has its origins in[Paper [Iljand [Paper V] from the tedious
and time-consuming process of running several spike sorters and comparing their
outcome. The goal of this paper was to build a unified software framework for
spike sorting. I teamed up with international collaborators in the spike sorting
community to create an open-source software to make the spike sorting process
easy and accessible, even to those with very little programming background.
Moreover, we wanted to include tools for the entire electrophysiology pipeline,
including processing, quality control, and curation tools, as well as a comparison
framework for both ground-truth and non ground-truth data.

1.2 Structure of the Thesis

The thesis is organized in three background chapters, a summary of the papers
(Chapter 5)), and a final discussion that contextualizes the work, highlighting its

5
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limitations and future directions (Chapter 6)).
In I cover the electrophysiology pipeline, with a brief background

and state-of-the-art methods for the different steps involved in the interaction
between neural tissue and extracellular devices. covers the basics of the
computational models that I used throughout my thesis, from multi-compartment
models, to finite element methods. Finally, introduces the engineering
solutions employed in most of the projects, focusing on independent component
analysis, machine learning and deep learning, optimization strategies and genetic
algorithms, as well as the use of Python for scientific software development.



Chapter 2

The extracellular
electrophysiology pipeline

“You are nothing but a pack of neurons.”

— Francis Crick

When we implant a neural probe in the brain, it can be used to bi-directionally
interact with the neural tissue that surrounds it. On one hand, electrodes can
record the activity of neurons in the neighborhood, on the other end they can
be used to inject currents in the tissue and stimulate neuronsﬂ

A few steps are required to go from raw recordings to selective stimulation
of neurons. I will refer to these steps as the electrophysiology pipeline.

A representation of the electrophysiology pipeline is displayed in Figure
The neural probe inserted in the brain tissue is surrounded by neuronaﬂ (A).
The electrodes on the probe record the electric potential on their surface. Neural
activity produces both low frequency signals, named local field potentials (LFPs),
and higher frequency components, which include the spiking activity. In this
work, T will focus on the latter, assuming that the recordings (B) are already
filtered with a high-pass filter. The signals recorded extracellularly contain a
mixture of activity from several neurons. Hence, the first processing step required
in the pipeline is to identify, or sort, the activity of individual neurons. This step
is called spike sorting (C). After spike sorting, one can focus on single neurons
separately and use their extracellular signature, or extracellular action potential
(EAP), to extract further information from the recordings. For example, one
can classify if the recorded neurons are excitatory or inhibitory (D), which is
important when untangling the structure and functions of neural microcircuits.
In addition, EAPs can be used to triangulate or localize the 3D position of the
neuron with respect to the recording electrodes (E). The locations and type

Tnot all probes allow for electrical stimulation, as stimulation requires dedicated electronic
circuitry.
fas well as glia cells, but let us focus on neurons for this thesis.
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B Recordings C Spike sorting

A Brain tissue { ) D Classification

‘ F Stimulation E Localization

Figure 2.1: The extracellular electrophysiology pipeline.

of the recorded neurons can be used to selectively target a specific cell with
electrical stimulation (F).

2.1 Spike sorting

Spike sorting is the procedure used to identify which spikes belong to the same
neuron. The extracellular recordings contain in fact a mixture of activity of
several neurons. The relative position between each recorded neuron and the
probe, as well as the neuron morphology and electrical properties, results in
different spike shapes on the electrodes. Spike sorting attempts to separate
different waveforms and it outputs a set of neurons and their spike times.
Historically, spike sorting has been performed by hand. In manual
spike sorting, waveforms are first detected by thresholding and aligning the
signals; second, waveforms are represented in lower dimensions (either using
dimensionality reduction techniques®™ or considering the amplitude of the spikes)
and the electrophysiologist manually isolates (or cuts) clusters, i.e., tries to
identify separate groups. Manual clustering has two main limitations: first it
could undermine the reproducibility of the data, due to subject variability*2:
second, it is not scalable to high-density probes. Manual clustering could be
manageable, in terms of time, for up to a few tens of electrodes, but it quickly
becomes extremely hard, if not impossible, when the number of electrodes reaches

8



Spike sorting

larger numbers.

In recent years, several semi-automatic and automatic spike sorters have been
developed to alleviate these problems. Spike sorting algorithms*8 58 attempt to
separate spike trains of different neurons (also called units) from the extracellular
mixture of signals using a variety of different approaches. Although automatic
spike sorting methods were first developed in the 80’s, in recent years, probably
due to the above-mentioned limitations of manual spike sorting, there has been
a boost in the development and sharing of spike sorting software solutions.

In the following paragraphs, I will briefly introduce the principles of the
different approaches to spike sorting. While the most widely used strategies are
clustering-based and template-matching, I will also introduce a spike sorting

strategy based on independent component analysis (ICA —[Section 4.1)), because
I have used it for [Paper 1] and [Paper IV}

Clustering-based approaches Clustering-based approaches are inspired by
the manual clustering steps described above (Figure ) Filtered signals are
first thresholded to detect putative spikes. The detected waveforms are aligned
and projected on lower dimensional space, using for example principal component
analysis (PCA)IEI or wavelet features®?, and then automatic clustering algorithms
are used instead of manual cutting.

While some solutions focus on low-channel count probes™®9, mainly used on
epileptic human subjects, other approaches attempt to scale up the algorithms
for higher channel counts®53,  Clustering-based approaches can suffer from
over-splitting of units, i.e., the cluster corresponding to a single unit is split
into multiple clusters. An automatic curation step is therefore applied by some
algorithms®® to merge putative over-split units. In addition, some solutions
have mechanisms to correct for drif Others use an estimate of the spike
location, computed for example as the center of mass of the peak amplitude, as
a clustering dimensionP223 in order to improve the clustering performance.

One of the main and well-known problem of clustering-based approaches is
overlapping spikes. While events that are overlapping in time, but not in space,
can be handled by considering the spatial location of the detected waveformP253
or by applying a spatial mask to the feature set®d, the occurrence of spatio-
temporal overlapping events can result in a distortion of the waveforms. This
is due to the spatial summation of two (or more) waveforms, and may confuse
the clustering algorithm. In order to alleviate this problem, template-matching
solutions have been proposed.

Template-matching approaches Although the first template-matching solu-
tions predate clustering-based approaches®, these methods have recently under-
gone a renewed interest, as high-density probes greatly increase the occurrence
of spatio-temporal overlapping events.

*drift occurs when there is a relative movement between the recorded neuron and the
probe, which causes a change in the spike waveforms over time
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Figure 2.2: Principles of the different spike sorting approaches. The 6-channel
recordings are simulated and they contain activity of three neurons. (A)
Clustering-based approach. The recordings are thresholded and the detected
waveforms are projected onto a lower dimensional space and clustered using
automatic algorithms. (B) Template-matching approach. After a pre-clustering
step, in which a subset of waveforms is clustered as described in (A), the templates
of the different clusters are projected back to the time domain and recursively
matched to the recordings (matching) (C) ICA-based approach. The recordings
are processed with ICA, and the detection and optionally clustering is performed
on the independent sources, which are tuned to separate neurons.

Template-matching approaches in general assume that the recorded signals
can be described ad®®:

r(t) = ZaijTj(tfti) +e(t) (2.1)

where 7(t) is the set of recorded signals, Tj(t — ¢;) is the template associated
to a neuron j (firing at times t;), a;; is a scalar that scales the the amplitude of
the template for each spike event, and e(t) is additive noise.

Template-matching methods try to identify templates for each neuron, and
then reconstruct the signals following Eq. (Figure ) To achieve this,

10
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templates are first estimated by running a pre-clustering step, which corresponds
to a clustering-based approach on a subset of detected waveforms. The estimated
templates are then matched to the recordings s(t) recursively: if a good matc
is found, the template is subtracted from the recording, in order to disclose
underlying overlapping spikes.

Template-matching solutions"859 mainly differ in terms of the clustering
step for finding the initial templates, the matching algorithm, and automatic
curation steps. Finally, some of the latest algorithms attempt to handle drifting
recordingdod.,

ICA-based approaches A third and less explored possibility for spike sorting
involves the use of ICA (see[Section 4.1]for a detailed description of the algorithm).
ICA is an unsupervised blind source separation method that aims to find
projections that make the signals more statistically independent.

Although ICA has been suggested to spike sort tetrode signals®L, in combi-
nation with clustering to increase the data dimensionality®2, and dodecatrode
recordings (12 microwires)3, the main limitation of ICA has been its assumption
that the number of sources, i.e., neurons, is less than the number of electrodes,
which is not true for tetrode and dodecatrode recordings. The development of
high-density MEAs, however, could satisfy this assumptionZl. The use of ICA
and some of its variants for spike sorting of high-density probes has in fact been
suggested more recently®263,

The principle of an ICA-based spike sorting pipeline is displayed in
Figure 2.2IC. Instead of detecting spikes or finding templates, the signals are
first processed with ICA. The ICA step outputs a set of unmizring matrices.
The projections of the initial signals on these matrices are called independent
components (IC) or sources. Assuming that the signals from different neurons
are fairly independent, each IC source should be tuned to a separate neuron.
Detection and optionally clustering can be then performed directly on the IC
sources®¥05  and this process can also be applied recursivelyjﬂl7 similarly to
template-matching approaches. ICA-based spike sorting approaches, however,
have not been fully benchmarked and compared to other available solutions for
high-density MEAs, and this is the main motivation for

With the assumption of statistical independence of signals coming from
different neurons, synchronous activity could be problematic. However, this
issue would be an actual problem if the spiking activity of different neurons
were perfectly coincident. Due to intrinsic noise and randomness in the spiking
activity, this is not fortunately the case. A second potential limitation of ICA-
based spike sorting is the assumption of linearity between the sources and the
signals (see and Eq. 7 i.e., the recorded signals are assumed to be
an instantaneous mix of the sources. Due to the filtering properties of dendrites,
there is a phase shift between extracellular spikes recorded in the vicinity of
the soma and ones closer to the dendrites. This assumption might result in
finding more than one source tuned to the same neuron (duplicate sources). A

*usually defined as an improvement in a cost function
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possible solution to this issue is to use convolutive ICA (cICA Y5 instead of the
standard ICA model. Using cICA, the recordings are described as a filtered
version of the sources. However, cICA algorithms are much more complicated
and slower than instantaneous ICA approaches. In order to tackle this problem,
in we perform a post-processing step on the identified spike trains to
find and remove duplicates. Finally, with the increasing number of channels in
the recording devices, ICA could be a too computationally intense processing
step. Nevertheless, the performance of ICA could be easily improved by applying
separate ICA models to subsets of adjacent electrodes in parallel, or to estimate
the ICA model using a subsample of the data instead of all the recorded signals,
assuming that the statistical properties are the same.

2.1.1 Challenges

Spike sorting is a very important step in extracellular electrophysiology, but
despite the huge development over the past years, there are still some open
challenges.

Spike sorting validation Spike sorting is unsupervised in nature, since
when recording from extracellular probes ground-truth information about the
underlying spiking activity is not available.

In order to validate the spike sorting output without ground truth, several
quality control metrics have been proposed to assess the goodness of sorted
units. Some of these metrics quantify biophysical properties of the sorted units,
such as refractory violations and waveform amplitude distribution®®. Others
more generally quantify the isolation of the clusters with several indicators, i.e.,
isolation distancé®?, L-ratio®, linear discriminant analysis classification (d/69),
or nearest neighbors?®. Other metrics related to noise distribution have been
proposed®®89 a5 well as stability measures?Y,

While these metrics are useful to characterize spike sorting performance, they
are also unsupervised and they require users to empirically set “good” values.
Alternatively, several groups have tried to simultaneously record units both
extracellularly and using patch-clamp or juxtacellular recordings®7 170 These
sets of ground-truth recordings are extremely valuable for validating spike sorting
algorithms. However, their main limitation is the low yield of the experiments
(only one or a few cells can be patched simultaneously), resulting in a limited
validation capability.

A third validation approach relies on the use of simulated data™. This
approach can range from injecting simulated waveforms to real recordings,
a so-called hybrid approachP™7 to the generation of entirely simulated
recordings™80. The latter approach provides full ground-truth information
and it can therefore help to benchmark spike sorting algorithms. However, the
question of how realistic these simulated recordings is still open.

|Paper I and [Paper Il try to alleviate the problems related to spike
sorting validation. In we present a Python-based simulator of
extracellular spiking activity, called MEArec. MEArec, with its easy-to-use
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design, speed, controllability, and capability of reproducing challenging properties
of extracellular recordings, can provide high quality ground-truth recordings for
spike sorting development and evaluation.

In[Paper IT|we introduce SpikeInterface, an open-source and unified framework
for spike sorting. Spikelnterface is a powerful and comprehensive software capable
of loading several file formats, running a multitude of available spike sorters, and
can validate and compare the spike sorting output. Within Spikelnterface, users
can compute several quality metrics available in the literature for unsupervised
validation, as well as compare spike sorting output with ground-truth recordings,
for example generated by MEArec.

Challenging aspects of extracellular recordings Some intrinsic aspects of
spiking activity and extracellular recordings can be challenging for spike sorting
algorithms.

One of the main challenges can be identifying bursting units. When neurons
burst (i.e., they fire quick sequences of action potentials), the underlying dynamics
of the spike generation changé®?, causing a modulation of the spike shape, with
lower amplitudes and wider waveformd”®9. As a result, bursting neurons are
harder to correctly identify*?, and may be over-split. However, bursting neurons
can be identified a posteriori from their cross-correlograms, and merged using
manual curation softward>#52. Some algorithms also implement specific steps to
identify and automatically merge bursting units54.

A second challenge is the occurrence of spatio-temporal overlapping spikes,
which can distort the recorded waveforms. However, the use of template-matching
approaches and the higher spatial density of probes should alleviate this problem.

A third complicated feature of extracellular recording is drift. Drift occurs
when there is a relative movement between the probe and the neural tissue.
Drift can result from the slow relaxation of the tissue after a probe insertion
(slow drift), or from movement artifacts that cause a quicker shift of the tissue
with respect to the probe (fast drift)m. Some recent algorithms were specifically
designed to identify and correct for drifting artifactd2260,

The presence of noise artifacts can also be challenging for spike sorting
algorithms, especially when recording from freely moving animals. Artifacts
can be related to shocks, mastication, and grooming®? and they are usually
detected as spikes because of their large amplitude. However, artifact clusters
could be automatically rejected based on the above-mentioned quality metrics®3.
Alternatively, due to the large availability of manually curated spike sorting
outputs in which artifact-clusters are rejected, another possibility is to build
machine learning systems to automatically reject noisy clusters.

In order to provide a faithful validation of spike sorting algorithm, the
MEArec simulator (Paper 1)) is capable of reproducing bursting behavior, drift,
and to precisely control the occurrence of spatio-temporal collisions between
spikes.

13



2. The extracellular electrophysiology pipeline

Performance With very high density probes now reaching a channel count of
several hundreds/thousands of electrodes PHIB202Y 41 likely to reach several
thousands of simultaneously recorded channels in the near future, scalability is
an essential requirement to keep in mind. Strikingly, an algorithm developed
in 2016 and classified as for “large and dense” probes (up to 64 channels), has
become outdated in less than 4 yearssL.

Recent methodologically sophisticated and innovative solutions, have been
developed for highly parallel clusters®@545859 and for graphical processing unit
(GPU) accelerated hardward>25760,

Online spike sorting While most of the available algorithms are designed for
offline usdIBEETNEI the capability of detecting and sorting spikes online is very
powerful for closed-loop intervention with the neural tissuesa.

While a few solutions have been suggested for online spike sorting of low-
channel probes®#4 the extension to high-density probes is not trivial.

The matching phase of template-matching approaches, after an offline
estimate of the templates, can be applied onliné®87,  However, the non-
stationarity of the signals, due to drifts or non-stationary activity, may require a
re-estimation of the templates over the course of an experiment®.

Alternatively, adaptive algorithms could be developed to track non-
stationarities of the signals. In we introduce an online spike sort-
ing method based on adaptive ICASS0 that has the potential to track non-
stationarity of the signals in real-time. However, further validation for this
approach is required.

2.2 Cell-type classification

In order to understand how the brain works as a whole, we first need to identify
the roles of its components. To this end, the characterization of neuronal cell
types based on extracellular recordings is essential to study the function of
different neurons in computations.

Cell types can be defined by several different aspects, including gene expres-
sion, morphology, electrical properties, and connectivityB26H9H92  However, the
main distinction between cell types happens at the connectivity level: neurons
that elicit an excitatory post-synaptic potential (EPSP) are said to be ezcitatory;
conversely, neurons that cause an inhibitory post-synaptic potential (IPSP) are
classified as inhibitory. Excitatory and inhibitory cells have very distinctive roles
in neural circuits. Excitatory cells mainly provide local recurrent and long-range
projections®, and inhibitory cells play a modulatory and balancing rolé®. Tt is
therefore important to be able to identify these different cell types from their
extracellular signatures, in order to better understand the underlying neural
mechanisms.

When measuring from extracellular electrodes, one can putatively classify
cells as being excitatory or inhibitory. Based on the extracellular action potential
shape, units are usually classified as regular spiking (RS) or fast spiking (FS)
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celld®B07 RS cells exhibit a broader action potential and are regarded as
excitatory pyramidal cells; F'S cells have a narrower waveform and are generally
considered to be inhibitory neurons. The separation of these two classes has
historically been performed by extracting waveform features from the spike
sorted spikes, and then applying unsupervised clustering techniques. Some
of the commonly used features computed from the waveforms include the 1)
trough-to-peak width, 2) full-width half maximum, 3) half-amplitude duration,
and 4) peak-amplitude asymmetry20 98 Moreover, properties derived from the
spike statistics such as firing rate, auto-correlogram shape, inter-spike-interval
distributions, and bursting activity can exhibit differences between the two
cell-typed??.

The above-mentioned methods mainly consider the waveform recorded on
the electrode with the largest spike amplitude. However, the use of high-density
MEAs can provide much more spatial information that can be used to refine and
improve the classification. For example, in a recent study??, several features were
computed from the spatio-temporal signature of the waveforms. The authors
showed that high-density silicon probes, in their case Neuropixels?, allow for the
tracking of backpropagating action potentials, which are unique to pyramidal
cells. Moreover, the use of the rich spatial information enabled the authors to
identify two separate classes of RS neurons in visual cortex. In we
show that the use of features extracted from high-density probes improves the
classification accuracy over conventional clustering approaches.

The validation of cell-type classification is challenging, but there are a
few solution. When measuring the activity of multiple cells from the same
region, some of those might be mono-synaptically connected. In that case,
the analysis of the cross-correlograms can suggest whether a cell is excitatory,
inhibitory, or even if there is reciprocal excitatory-inhibitory interaction between
a pair of celld?898 However, the rate of monosynaptic connections in recorded
neurons is usually very low (~0.2%)2%97 Another viable alternative for the
validation of cell-type classification is the use of optotagging?®. This technique
consists of using optogenetics™ L to target specific sub-populations of neurons.
Optogenetics allows one to make neurons express ion channels which can be
activated by light (opsins). Using genetic techniques or transgenic lines, these
light-sensitive channels can be expressed only in sub-populations of neurons.
Shining light with wavelengths matching the activation spectrum of the opsin
will activate only neurons belonging to the tagged, or labeled, cell types. However,
optogenetics adds another invasive component to the recording approach, as it
requires transgenic lines or viral injections to express the light-sensitive channels.
Moreover, the presence of these additional ion channels might affect the cell
dynamics, hence slightly changing the recorded waveform.

2.3 Cell localization

The recorded extracellular potentials can also be used to localize or triangulate
the position of a neuron with respect to the probe. The capability to reconstruct
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neuron locations can shed light on the microscale organization of neural circuitsl=.
Moreover, precise cell localization could improve targeted stimulation™2 and
automatic positioning of recording electrodes for patch-clamp experimentsio3,

Localization from extracellular potentials is inherently an ill-posed problem,
because of the ambiguity arising from measuring the electric potential in only a
limited number of locations when neuronal currents are generated from complex
neuronal morphologies. While first approaches for neuron localization used
tetrodes’ V%108 or Jow-density polytrodes %07 the development of high-
density MEAs can provide much higher spatial resolution, improving localization
accuracyl® and even enabling tracking sub-cellular mechanisms, such as axonal
propagation™® and back-propagating action potentials®?.

Most of the methods developed for localization attempt to solve the inverse
problem. Given the set of recorded potentials V. (usually observed at the spike
pea@@m) and a forward model F that describes the spike generation, the
solution of the inverse problem tries to estimate the soma position (zs, ys, 25)
that minimizes the error between the recorded potentials V. and the potentials
predicted by the forward model V. Mathematically, the inverse problem can be
formulated as:

Vf - ‘F(xs,ysazsap)
argmin (Vy — V,.)?

Ts,Ys,2s, P

(2.2)

where P is the set of additional parameters to xs, ys, zs of the model F[]

The models chosen for the spike generation are usually very simple, in order
make the solution unique. Examples of models used in previous studies are
monopole current-sources M0 dipole current-sourcedtSHOHI0E  mylti-pole
current-sources 0, as well as line-source models™?, and more recently ball-and—
stick modeld™ L,

One of the main limitations of solving the inverse problem to tackle neuron
localization is that the models chosen to solve the inverse problem are often too
simple too grasp complex spike waveforms (e.g. monopolar or bipolar current-
source models) or they are tuned to a specific cell types (ball-and—stick model for
the pyramidal morphologym). Therefore, in we suggest a supervised
method in which detailed simulations are used as ground truth to train deep
learning models.

A challenging aspect of neural localization is arguably its validation. It is in
fact experimentally very challenging to accurately measure the correct position
of the soma with respect to an extracellular devicd™5. therefore, detailed
computational neuronal models are usually used and treated as ground truth
to evaluate the accuracy of the localization methods™8M0TIII - Ap alternative
mean for validation is to combine extracellular recordings and imaging™? to
precisely co-localize the cells and validate localization performance.

*for example, for a monopole current source model P corresponds to the value of the
monopole current.
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Finally, most of the above-mentioned approaches aim to identify the neuronal
soma. However, recent experimental and computational findings suggest the axon
initial segment (AIS), not the soma, is the main contributor to the extracellular
action potential 314 Ag the AIS can be tens of pm away from the soma, this
discrepancy should be taken into account in developing localization methods.

2.4 Electrical stimulation

Neurons are excitable cells. Almost by definition, this means that they can be
excited and one way of doing so is to use electrical stimulation from extracellular
electrodes.

Stimulation of neural tissue has been successfully used for decades in several
biomedical applications, including cochlear implants for hearing restoration™,
retinal implants for vision improvements™® and deep brain stimulation (DBS)
to treat Parkinson’s diseasé™Z. Moreover, electrical stimulation is used to repair
sensory perception in paralyzed patients™ 8, and to restore walking in tetraplegic
patientém.

Another interesting application of electrical stimulation is in closed-loop
settings to facilitate neuroplasticity. Following the Hebbian principle “neurons
that fire together, wire together”, if a neuron is stimulated whenever another
neuron connecting to it, directly or indirectly, fires, their synaptic connection
is strengthened. This idea has inspired several studies to, for example, rewire
motor neural connections®# 20121 op interact with spatial memorie

The application of extracellular potentials at a neuron’s membrane can
depolarize or hyperpolarize the membrane potential. If the depolarization is
strong enough, this can trigger action potentials (see for a modeling
perspective). A multitude of experimental studies over the last century have
characterized the key aspects of electrical stimulation for neural excitation™%:

o Excitable regions: the most excitable parts of a neuron, and therefore
the most likely to be activated by electrical stimulation, are the axon initial
segment and the nodes of Ranvier, where the density of sodium channels

is the highest25{126]

o Current-distance relation: the amount of current required to elicit an
action potential (threshold current) in a neuron is proportional to the
square of the distance from the electrode tip when simulating with a
monophasic constant pulsé 22,

e Strength-duration curve: using similar stimulation settings, the
threshold current is related to the pulse duration by 20128l

te
Iin = I (1 + ;) (2.3)
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where I,., is the rheobase current, i.e., the minimum current value capable
of eliciting an action potential; d is the pulse duration; and t., is the
neuron chronaxie, which is the pulse duration at 217,.

e« Charge balance: electrical stimulation is usually applied by means of
charge balanced biphasic currents™? or balanced voltage pulses’®2 in order
to preserve the safety of the tissue and the electrode-tissue interfacé30,

Most of what we know about electrical stimulation comes from experimental
studies. More recently, several groups have investigated the effect of elec-
trical stimulation by means of computational studies, both using analytical
approached2#I3THI3A 41 q more advanced finite element methods™2 139 Theoret-
ical and numerical simulations can provide a controlled framework to investigate
the effects of electrical stimulation®Z,

Despite the widespread use of electrical stimulation in the clinical and
academic fields, there are still some open challenges and limitations.

The first limitation is physical: when a current is injected in the brain, i.e., a
conductive medium, it spreads radially in all direction. This phenomenon can
result in the activation of a larger area (and more neurons) than desired 22127140,
This can clearly be a problem for applications that require targeted stimulation,
such as the above-mentioned closed-loop neuroplasticity experiments as well as
visual and auditory prostheses applications. The use of high-density probes can
in part alleviate this problem. In vitro studies have in fact shown that it is
possible to selectively target specific regions of a neuron %214, Tn we
exploit the high spatial density of MEAs for optimizing targeted spatial patterns
to increase stimulation selectivity.

The second challenge is more related to technology and electronics. In order to
apply electrical stimulation from the electrodes, neural probes require specialized
stimulation circuits™28192 which occupy space and consume power. Although
the integration of such circuits is common for in vitro applicationd™ L7 their
inclusion in active CMOS probes designed for in vivo experiments is still limited
due to size and tissue heating constraints. Alternatively, extracellular stimulation
in vivo is possible using passive electrodes (both silicon probes or microwires)
and external systems capable of simultaneous recording and stimulation}

*e.g [ttp://intantech.com/stim_record_controller.html
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Chapter 3

Computational models

“All models are wrong, but some are useful.”
— George Box

In this chapter, I will present a brief introduction of the computational models
used in this thesis, with their main principles, applications, and limitations.

3.1 Multi-compartment models

Multi-comparment models are representations of a neuron as an electric circuit.
Neuron morphologies, extracted from microscopy2234 or built using simplified
assumptionsT®2 are modeled by many small segments and represented as electrical
circuits. Each segment implements a membrane model, which consists of several
ion channels represented as conductance-based models.

Conductance-based models describe the biophysical properties of an excitable
membrane. In this model, the contribution of an ion channel type is represented
as an overall conductance. For example, for an ion channel z (e.g. sodium,
potassium, calcium), the current density flowing out of the membrane is:

iz = g.(V — Ey) (3.1)

where i, is the ionic current density generated by the x ion [mAcm=2], E, is
the reversal potential for the ion, i.e., the potential at which electric and diffusion
currents are balanced®, V' is the membrane potential (the difference between
intracelllular and extracellular potential: V = ¢, — ¢z ), and g, [mS em™2] is
the ion channel conductance per unit of are

Conductances can be passive (constant), representing leaky currents that
traverse the membrane, or active. The leak current density is usually defined
with respect to the resting potential V., i.e., iy = ¢;(V — V,.). Active channels
enable to reproduce the highly non-linear dynamics of neurons, such as the

TNote that in this derivation all spatial units are assumed to be in em
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generation of an action potential. Famously, Hodgkin and Huxley® were able to
quantitatively reproduce an action potential by modeling active Na?* and KT
channels. For active channels, the conductance is dependent on the membrane
potential (g, = ¢g.(V)). The membrane of an excitable cell can be represented as
a capacitor, as the lipid bilayer that it is made of keeps ions apart, similarly to a
capacitance. The equation governing the current density of a single-compartment
can be written using Kirchoff’s current law:

dv . . . .
CmE = — ;gz(v — EI) — gl(V — Vr) + text = —lion — Ueak T lext (32)

where ¢, [mF ¢m™2] is the membrane capacitance, ic.; [mA em™2] is an
external current density entering the membrane, for example a synaptic input or
a stimulation current. Single-compartment models do not include morphological
information as they represent a so-called point neuron (Figure ) In order to
build a morphologically detailed version of a neuron, multi-compartment models
can be used.

Multi-compartment models consist of a set of connected single-compartment
models. Adjacent compartments, or segments, are connected via internal resistors,
which model the resistance of the intracellular cytosol. While single-compartment
models are governed by a single equation (Eq. , when assembling multiple
compartments the set of equations become coupled.

Considering a non-branching neuronal segment and assuming a constant
cylindrical section (Figure ), a compartment length of dx, and an axial
conductivity of o; [mS em™1], the current densities between compartments i — 1
and 4, and between compartments 7 and 7 + 1 can be written as:

. ox

lim1,i = 5*(@7;,1‘71 — Gin,i)
Uf (3.3)

Tiit1 = E(Qbm,i — Gin,it1)

Applying Kirchoff’s current law, we can relate the transmembrane current
density flowing out of the i-th compartment 7; to the axial currents from adjacent
sections (for simplicity the additive external current i.,; is neglected):

1°)%
I; = A, l:cm + tion + leak :Ac(ii,i—i-l _ii—l,i)
ot
— Ticw o N T g (3.4)
Ac [(53? (¢m,z—1 ¢m,z) S (¢zn,z ¢zn,z+1)]
O,
= A= (din,i+1 — 20in,i + Pini—
(5.’17(¢ i1 ¢ 7+¢ ) 1)

where A. = 7/4d? is the cross section area and A,, = wddx is the membrane
area of the compartment, and d is the diameter of the neurite. Differently from
Eq. the derivative notation is partial because V' is now function of time and
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space. Let now C,, = ¢, A, be the membrane capacitance, G, = Acoi/sz the
axial conductance, I;y, = Amiion the ionic current, and G; = A,,g; the leak
conductance of the membrane. When dx — 0, the right hand-side of Eq.
becomes the second spatial derivative of ¢;,. Since ¢, = V + ¢es, we can
reformulate as:

ov PV + ¢ex)
Cm ot + Izon + Gl(v Vr) - Ga 8.’1)2
where the dependence of V', I;,,, and ¢, on (z,t) is not shown for clarity. To
further simplify, we can rewrite with respect to V;,, = V—V,., define 7 = C,,, /G| =
¢m/gi (membrane temporal constant) and A = /G,/Giox = +/(do;)/(4q1)
(membrane spatial constant). Finally, we can assume that the extracellular
potential is constant (and therefore its second derivative is null):

(3.5)

oV, 32 0V n Tion

T
ot 02 qi

V=0 (3.6)

This partial differential equation (PDE) is the cable equation and it is a
fundamental equation in computational neuroscienc

While Egs. 3.5 and [3:6] assume a homogeneous neurite, axons can be covered
by myelin sheets to increase the transmission speed. In this case, the continuous
solution can be substituted by a discrete solution, in which the values of the
membrane capacitance and resistance are fit to the properties of myelinated
sections and nodes of Ranvier.

Importantly, the cable equation assumes the extracellular resistance to be 0
(in Figure there is in fact no resistor between the extracellular nodes), i.e.,
the extracellular potential to be constant. This is done mainly for two reasons:
on one hand the intracellular resistance is much larger than the extracellular
one; secondly, assuming a null extracellular resistance simplifies extensively
the solution of the cable equation. However, when a non-null resistance is
incorporated, ephaptic effects, i.e., the contribution of the extracellular potential
to neuronal dynamics, can be studied?2144H146]

Software The solution of the cable equation for complex morphologies and
conductances is far from trivial, especially considering the highly non-linear
dynamics of ion channels®2Y. Therefore, simulators have been developed, such as
NEURONMZES and cENESIS™Y, with high-level definition languages and graphical
user interfaces. Moreover, NEURON has a Python Application Programming
Interface (API)m. NEURON, through the LFPy environment introduced in the
next section, has been used extensively throughout this thesis.

3.2 Extracellular potential

After computing the internal dynamics of the neuron, we need to compute what
is actually measured by neural probes, i.e., the extracellular potential.
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Figure 3.1: (A) Point neuron model. The membrane is modeled with a
capacitance, a leaky resistor, and active ion channels represented as voltage-
dependent resistors. (B) Multi-compartment model. A neuron is split in small
compartments. Each compartment implements a membrane model and it is
connected to adjacent compartments with resistors that model the intracellular
cytosol. (C) Extracellular potentials. The extracellular potential ¢, is computed
as the sum of transmembrane currents’ contributions. (The drawing of the
pyramidal cell is by Federico Claudi, and it is available at |scidraw.io)).

From the solution of the cable equation, which is the set of membrane
potentials for each neuronal compartment V;(¢), one can easily obtain the
transmembrane currents I; for each compartment (Eq. .

One of the most commonly used and computationally efficient way to compute
the extracellular potential generated by neurons uses volume conduction theory*L.
Considering a quasistatic approximation of Maxwell’s equations and assuming a
conductive, isotropic, homogeneous, linear, and infinite medium, the extracellular
potential generated by a point current source I(t) at position 75 can be computed
at any point r (except for rg) as:

I(t)
ex (T, 1) = 7
Dz (1, ?) dro |7 — s | (37)
In this case ground (¢, = 0) is set far away from the current and o

is the conductivity of the medium [mS em™!]. Straightforwardly, one can
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Extracellular potential

then consider each transmembrane current I; as a point source located at the
center of its neuronal compartment r;, and compute the extracellular potential
measured by an electrode in position 7, as a linear sum of the individual current’s

contributiong243|I52,

Gea(re,t) = 1— Z T (3.8)

Eq. B8l assumes that transmembrane currents are generated from a single
point and it is therefore referred to as point-source approximation 352
(Figure ) A more realistic approximation treats the neuronal segments
as lines rather than points (line-source approximation). In this case the
transmembrane currents are evenly distributed along the compartments.
Integrating Eq. [3.8] over the segments’ axes, the potential can be computed
as:

i+1/2
Pea(re,t) = UZ / 1 _T‘ (3.9)
i—1/2

where r;_1/, and 7,1/, represent the initial and final position of each
compartment.

In both Eq. B8 and [3.9] the electrode is represented as a three-dimensional
point 7. In order to consider the spatial extent of the recording contact, one
can compute the potential on several points belonging to the electrode surface
and average their values (disk-electrode approximationm).

The above-described formulations are based on several assumptions. First
of all the conductivity of the medium is assumed to be scalar, hence neglecting
capacitive properties of the tissue. This assumptions seems however to be well
justified for relevant frequencies in extracellular recordinggt52,

Second, the medium is assumed to be isotropic, but this assumption is harder
to relax. In the neural tissue, in fact, the presence of oriented pyramidal cells
makes conductivity anisotropic®3. Anisotropy in the tissue can be accounted
for with analytical solutions*#15%,

Finally, the extracellular milieu is assumed to be homogeneous (without
discontinuities) and infinite. This is clearly a stronger assumption, considering
that in order to measure the electric potentials generated by the neurons, we
insert a probe in their vicinity. In case of in vitro preparations, in which cell
cultures or slices lie on a planar MEAs, the effect of the electrode plane and of the
discontinuity between the neural tissue and the saline solution can be modeled
also analytically, using the method of imaged™™ 93 For more complicated
cases, one can use numerical solutions, such as finite element methods (FEM)
(Section 3.4)). In [Paper VII| for example, we used FEM to simulate the effect of
in vivo neural probes on the recorded potentials.

Software There are some available and open-source software to compute the
extracellular potentials generated by neural activity. BIONET™2, developed by
the Allen Institute for Brain Science, is a software for large-scale simulations.
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It includes a wrapper to the NEURON environment and it enables to compute
extracellular potentials arising from network simulations using the line-source
approximation (Eq. [3.9). In this thesis, I used LFPy, developed by our
grou , for simulating extracellular potentials. LFPy also provides a NEURON
wrapper and it has ha simple API for the definition of cells and electrodes.
The new version of LFPY™¥ also includes computationally-efficient forward
modeling schemes for the calculation of electroencephalography (EEG) and
magnetoencephalography (MEG).

3.3 Models of electrical stimulation

In order to model activation of neurons from electrical stimulation, we can
combine principles from [Section 3.1| and [Section 3.2 The models presented in
this section have been mainly derived for axons, as axons are the most excitable
neuronal parts?9 (alongside with the axon initial segment - see .

Stimulation can trigger action potentials by imposing an extracellular
potential at the neuron’s membrane. In order to compute these potentials from
a stimulating electrode at position 7., we can consider, in a first approximation,
the electrode as a point current source and use Eq. [3.7

Let us now get back to the cable equation. During the derivation, we set
the extracellular potential to be constant, but this assumption clearly needs
to be revisited as we are attempting now to simulate the effect of extracellular
potentials on the neuron dynamics. If we relax this assumption, we can rewrite

Eq. adTZI33).

8V )\28 V + Lion V _ )\28 (befb

ot Ox? q Ox?

From this formulation, one can see that the source term or force function
of the differential equation (the right-hand side) is proportional to the second
spatial derivative of the extracellular potential ¢.,. The 7V ’" term defines the
capacitive currents, and A2 88;/;” term represents the longltudlnal currents.

While Eq. could be solved numerically, several studies tried to propose
estimators for neural activation from extracellular stimulation, in order to avoid
to solve Eq. [3:10] and still have “first impression of the influence of an applied
electric or magnetic field on a target neuron. 28,

One of the first estimator proposed in literature is the activating func-
tion 2832156 Tf we assume that the neuron is at rest, the spatial derivative
of V,,, (longitudinal currents) can be neglected since V,,, is relatively constant.
Then, the polarization at the steady state will be proportional to the second
spatial derivative of the extracellular potential along the axon:

P pea
Ox?

The activating function AF is convenient because it can estimate neural
activation only by knowing the extracellular potential and the neuronal

(3.10)

Vi < AF = \? (3.11)
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morphology. Even neglecting the A term, which might be hard to correctly
estimate, the AF can tell whether a region is hyperpolarized (AF < 0) or
depolarized (AF > 0). The AF has been used in to predict neural
activation in order to optimize electrical stimulation patterns involving multiple
electrodes using MEAs.

It is not clear, however, if the longitudinal currents can be safely ignored, as
they are scaled by A2, so their contribution depends on this parameter. Secondly,
the AF wrongly predicts that an axon is not activated by an applied linear
potential. While this might be true for infinitely long axons™2, in practice
neurites have a finite extension and edge effects need to be considered33,

Another study™®? suggests that when X is large enough, then the longitudinal
currents are more prominent than the capacitive currents and cannot be neglected.
At the steady state, Eq. can then be approximated as:

Ox? Ox?
When ) is “small enough”, Eq. [3.13] coincides with the AF, but when )\ is
large the predictor of V;,, become :

—\? + Vi = N2 (3.12)

Vin X ME = —¢eg + (Pea) (3.13)

The mirror estimate (ME) predicts the depolarization/hyperpolarization of
a neurite as the opposite of the applied extracellular field (mirror) centered on
its mean value ({¢ez) 1, ]

Figure shows the extracellular potential (¢, ), AF and ME predictions
for a cathodic (current drawn by the electrode - A) and an anodic stimulation
(current injected by the electrode - B) for a linear and uniform axon. In this
case, the extracellular potential can be computed analytically from Eq. 3.7] for a
fiber oriented in the z direction and located at a distance d from the electrode:

_ Is(t)
4o d? + x2

While AF and MFE agree on the position and magnitude of the central
depolarization/hyperpolarization, there are some differences between these two
estimators in the shape of the depolarization and hyperpolarization regions.

Although estimators can provide a feeling about the effect of extracellular
stimulation, one of their main limitation is that they do not take into account the
time course of the stimulation, as they predict the neural activation generated
by a constant monophasic pulse. However, the effect of the pulse waveform, e.g.,
biphasic pulses, or of the application of a train of stimulation pulses cannot be
estimated. A more powerful, but computationally intense approach consists of
solving Eq. to simulate the entire dynamics of the neuron in response to an
extracellular time-varying stimulation™¥. Nevertheless, even using this approach

Pex () (3.14)

*the spatial mean can be computed analytically also for non-uniform fibers, accounting for
different diameters ad leaky propertie

25



3. Computational models

A B

Pex Pex
AF —— AF
— ME — ME

Figure 3.2: Extracellular stimulation and estimators. Extracellular potential
(dex ), activating function (AF') and mirror estimate (ME) generated by a cathodic
current (A) and by an anodic current (B) on a linear neurite.

some assumptions are made. First of all, since the cable formulation constructs a
1D problem, it assumes that the extracellular potential varies only along the main
direction of the fiber, and it is constant in the orthogonal direction. Similarly,
it assumes that the membrane potential is constant along the circonferential
direction of the neuronal membrane. Finally, it assumes that the presence of the
fiber does not affect the extracellular field27139,

Finite element methods have been used in literature for simulating extracel-
lular potentials in highly non-homogeneous problems and pair them with the
cable equation solution (hybrid approach®2I3SIBHISEHIET) byt the use of the
cable framework cannot relax the above-mentioned assumptions. Alternatively,
whole-FEM methods, with explicit representation of the extracellular and intra-
cellular spaces, have been suggested and can be used for a detailed study of the
effect of extracellular stimulation, at the cost of computational burdenZ13%161]

(see [Section 3.4).

Software The NEURON framework can incorporate the effect of a non-constant
extracellualar potential generated by external currents using the extracellular
mechanism, which effectively adds two layers of extracellular potentials outside
the membrane and solves Eq. instead of Eq.

In order to compute extracellular potentials from MEAs, I developed the
MEAutilityff]Python package. MEAutility is convenient to define MEA designs
(the user can also use a wide variety of probe designs from the existing probe
library), to set static or time-varying currents for each electrode, and to compute

*https://github.com/alejoe91/MEAutility
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extracellular fields at neural locations, which can then be paired to NEURON
simulations or used to compute estimators. MEAutility is used in to
handle MEA designs, and in to compute extracellular potential along

the neurons.

3.4 Finite element methods

Finite element methods (FEM) are numerical methods to solve differential
equationsI®2. The basic idea is to divide the domain of interest (in our case, for
example, the extracellular space and optionally the neurons) in small regions
(finite elements) and to approximate the unknown function (e.g. the extracellular
potentials) as a linear combination of simple functions defined on these region

FEM can be used both to compute extracellular potentials generated by the
neural activity and to simulate the effect of extracellular stimulation. Another
interesting use of FEM is to validate analytical derivations with numerical
simulations. For example, in Ness et al®L a FEM simulation is used to validate
the use of the method of images to analytically compute the extracellular potential
for in vitro preparations. In Naess et al™8 the same approach is used to correct
an analytical model of the head conductivity for EEG computation.

3.4.1 Hybrid approach

The hybrid approach combines the FEM and the cable framework. It has
been used both for computing extracellular potentials in non-homogeneous
extracellular spaced™>#16% and for computing the effect of stimulation, especially
for the spinal cord 28160,

When used for computing extracellular potentials, first neuronal dynamics
are solved (for example with NEURON); then, transmembrane currents are used
as force functions for a FEM simulation of the extracellular space. Conversely,
when simulating the effect of external stimulation, extracellular potentials
at the neuron compartments’ location, generated by stimulating electrodes,
are first computed using FEM; then the cable equation is solved (using the
extracellular mechanism in NEURON).

While the hybrid approach can be useful to model complex geometries, the
cable equation framework preserves its assumptions listed in and
Section 3.3

3.4.2 EMI model

A second and more advanced approach consists of explicitly modeling the
extracellular space, the membrane of the neuron, and the intracellular spacd 32161
This model is also called the EMI model (Extracellular-Membrane-Intracellular 2

*an extensive mathematical formulation of finite element methods is beyond the scope of
this thesis.
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Figure 3.3: Mathematical representation of the EMI model for a simplified
neuron and an extracellular probe. Figure from

or whole-FEM mode132, The EMI model simultaneously solves the following
equations:

V- JZngm =0 in Qi, (315)
V- 0eVoer =0 inQ,, (3.16)
Pex =0 at €, (3.17)

Ne * 0eVder = 14 0;Vbin =iy atT, (3.18)
Gin — Pex =V at T, (3.19)
Cmaa_‘t/ - _Iion - Ileak + Iea:t at Fa (320)
(aqubex ‘N =0 at 8Qp). (3.21)

With reference to Figure 3.3} Eqgs. B.15] and [3.16] are the Poisson equations
for the intracellular and extracellular spaces (with conductivities o; and o.);
Eq. is the Dirichelet boundary condition to set the potential to zero far away
from the neuron; Eq. defines the conservation of the transmembrane current
density across the membrane; Eq. [3:19 defines the membrane potential as the
difference between the intracellular and extracellular potentials; Eq.[3:20]describes
the membrane model (see Eq. ; and Eq. added when considering an
extracellular probe in is the Neumann boundary condition that
describes the insulating property of the probé™39,

The EMI model considers the full 3D morphology of the neuron. The
EMI solution can in fact reproduce different extracellular potentials along
the circonferential direction of the membrane as well as different intracellular
potentials in the cross section of the intracellular space. Moreover, the EMI
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C

Figure 3.4: Examples of meshes for three types of extracellular probes: (A)
microwire, (B) Neuronexus probe, (C) Neuropixels-like probe with 24 electrodes.

Figure from

model does not break down the neuronal morphology into compartments, as it
represents the neuron as a continuunf] Finally, the extracellular potential is not
neglected when solving the neuron dynamics, allowing for the study of ephaptic
and self-ephaptic effectd*2146,

The main limitation of the EMI formulation, however, is that it is much
more computationally intense than the cable approach. The hybrid approach
lies somewhere in between®2.

In we used both the hybrid and the EMI solutions to investigate
the effects of extracellular probes on the recorded potentials. Figure shows
some examples of the meshes that we used (A - microwire, B-C - MEAs) in
combination with a simple ball-and-stick model of a neuronZ.

Software A very common software used for FEM is coMsoL. However, it is
a commercial solution and several groups have contributed with open-source
software. gmshI8 is an open-source and powerful software for generating 3D
meshes of complex geometries. FEniCS189 is a computing platform for solving

*the continuous morphology is discretized when creating the mesh, but increasing the mesh
resolution can achieve higher accuracy in representing the morphology.
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partial differential equations in Python. It combines a high-level Python API and
C+-+ API which makes it very accessible, versatile, and easy to use. gmsh and

FEniCS have been used in [Paper VII|for generating the meshes and computing
the EMI and hybrid solutions.
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Chapter 4

Engineering solutions

“Engineers like to solve problems. If there are no
problems handily available, they will create their own
problems.”

— Scott Adams

In this chapter, I will describe the engineering and implementation solutions
used in the presented papers.

4.1 Independent component analysis

Independent Component Analysis (ICA) is a signal processing method used
for blind source separation and dimensionality reduction®®#169 Tn the latter
case, ICA is used to find a better representation of the data making use of their
statistical structure. In[Paper IIIl and [Paper TV| ICA has been used for blind
source separation. A classic example of blind source separation is the so-called
cocktail party.

Imagine that N guests are chatting in a bar while sipping their cocktails.
Moreover, there are M > N microphones located at different positions in the bar.
Actually, let us simplify the problem and say that we have exactly N microphones.
Each microphone records then a mixture of voices from the different guests. Let
us define the speech signals coming from the guests as s(t) € RY and let us
assume that these signals are statistically independent, as the guests are not
singing in a choir. Furthermore, we can assume that the sound propagation
velocity is negligible. Therefore, we can describe the set of recorded signals
x(t) € RN as a linear combination, or mixture, of s(t):

x(t) = As(t) (4.1)

where A is defined as the mizing matrix and s(t) are called sources. Solving
the ICA problem is far from trivial, as both the sources s(t) and the matrix A
are unknown. Usually, the ICA problem is formulated as:
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y(t) ~ Wx(t) (4.2)

where y(t) is an estimate of s(¢) and W is the unmizing matrix, which is
the pseudo-inverse of the mixing matrix A. There are different approaches for
solving this problem. However, the underlying principle is to find an optimal W
that maximizes the statistical independence of the estimated sources y(t).

In order to better explain the ICA principle, we can consider a neuronal
cocktail party. When we insert a probe in the brain (the microphones), we will
hopefully pick up the activity of several neurons (the speech signals). Let us
create a simplified case to show how ICA transforms the data and how it differs
from other techniques, in particular from principal component analysis (PCA).
In this example we insert a two-channel probe, which records the activity of two
surrounding neurons. We have to assume that the specific spike times of the two
neurons are fairly independent. In the recordings, there is also some additive
Gaussian background noise. For the sake of clarity, in this example we created
the recordings as a linear mix of two spiking sources with some additive noise.
Therefore, the recorded signals, at each time point, are instant mixes of the
sources, without any phase shift. This assumption for neural signals is discussed
in (ICA-based approach paragraph).

Figure[{TJA shows the simulated recordings, the waveforms of the two neurons,
and a scatter plot of the signals on the channel dimensions. The directions of
the two neurons can be clearly identified.

When we apply PCA[] the signals are projected on the dimensions that
maximize the variance of the data. The PCA directions are shown in Figure [L.TA
as orange arrows and PCA-transformed signals, waveforms, and the scatter
plot of the data on the principal directions are shown in Figure [{.IB. After
the PCA transform, the data are decorrelated. Decorrelation implies that the
covariance matrix of the variables is diagonal. Related to this, whitening makes
the covariance matrix equal to the identity matrix (each direction is normalized).
However, each principal component contains activity from both neurons, since
the principal axes, displayed in Figure [{JA as orange arrows, are in the middle
between the two neurons’ directions. This makes the PCA-transformed waveforms
appear on both PCA channels.

Applying ICA to the data gives us different directions. Statistical
independence is in fact different from uncorrelatedness. When two random
variables x; and x5 are uncorrelated, their covariance is zero:

E[z1,22] — Elx1|E[ze] = Cov[zy,22] =0 (4.3)

When two variables are statistically independent it can be shown that non-
linear correlations are also zerd 0%

Elh(x1), g(22)] — E[h(21)]Elg(22)] = Covlh(21), 9(x2)] = 0; Vh(),9() (4.4)

*or alternatively singular value decomposition (SVD)
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Figure 4.1: Tlustration of PCA and ICA projections. (A) Top: Simulated
recording and waveforms with two channels and two neurons; Bottom: data
points on channel 1 - channel 2, with PCA and ICA axis in orange and green,
respectively. From the waveforms and the data clouds one can see that the
waveform of each unit is present on both recording channels. (B) Top: PCA-
transformed signals and waveforms; Bottom: data points in the PCA space.
The two units still appear on both axis. (C) Top: ICA-transformed signals and
waveforms; Bottom: data points in the ICA space. The ICA axis are selectively
tuned to the two units. The waveforms now mainly appear on a single ICA
dimension.

Clearly, two statistically independent variables are also uncorrelated (h(z1) =
x1, h(x2) = z3). ICA finds directions that are selectively tuned to the activity
of the separate neurons in the recordings. These directions are shown as green
arrows in Figure[L.JJA. Figure[f.I]C shows the ICA-transformed signals, waveforms,
and scatter plot. In this case, each IC source is specifically tuned to one of the
neuron, so that the waveform mainly appear on a single ICA direction.

There are several approaches to solve the ICA problem, i.e., to maximize
the independence of the estimated sources y(t). ICA is solved iteratively with
optimization techniques aiming to maximize a cost function that reflects the
status of independence of the sources.

The independence of the sources can be computed in different ways.
Independence can for instance be related to non-gaussianity. Due to the
Central Limit Theorem, in fact, the sum of two or more independent variables
makes the distribution more Gaussian. Hence, projections that maximize
non-gaussianity also maximize independence between the variables. Measures
of non-gaussianity include kurtosis and negentropy™®2. The famous FastICA
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algorithm™? maximizes negentropy with a fixed-point iteration scheme, and
it has been used in Alternatively, the ICA problem can be solved
by minimizing the mutual information, a theoretical information measure that
indicates dependence between variables. The minimization of mutual information
is equivalent to maximizing negentropy o2,

Another widely used approach for solving the ICA problem is the infomaz
principld8# I (1haximization of information flow). The learning rule for this
approach using natural gradient can be written agt’t:

Wn-i—l =W, + 77[[ - f(yn)ynT]W (45)

where 7 is the learning rate and f(-) is a non-linear function. From this
formulation, one can see how the infomaz principle is also closely related to
non-linear decorrelation (Eq. , as the gradient tends to remove the non-linear
correlations given by f(yn)yn’. It can be also proven that maximizing the
information flow (in other words the joint entropy) is analogous to minimizing
mutual information™®*169 In the infomaz approach, the choice of the function
f(+) is important: in order to maximize the joint entropy of the sources, hence
maximizing independence, the product f(yn)yn’ should result in a uniform
distribution. Therefore, the infomaz principle has been extended to match
different distributions, such as subgaussian and supergaussian onesI’J. However,
since the distribution of the sources y,, is unknown a-priori, one can estimate it
by computing the kurtosis of each source and choosing the correct non-linearity
f(+) accordingly.

From the natural gradient infomax learning rule in Eq. an online recursive
ICA solution — ORICABSHIUIT _ )55 heen developed. The adaptive learning
rule reads ag?0172;

1 W — An ynfT(yn)
(1=2n) " (I=An) 1+ )‘n(fT(yn)yn -1)

where )\, is a time-varying forgetting factor. Using this online formulation,
the ICA model can be estimated as the data stream is acquired. The forgetting
factor enables the online algorithm to gradually forget about data acquired in the
past and adjust the model to newly acquired data. This is of particular interest to
track non-stationarity in the dataS%. This solution has been adopted in [Paper 1V]
and it is promising for online spike sorting solutions. Neural recordings can in fact
exhibit a drift due to relative movement between the tissue and the electrodes.
While drift can be corrected for by some automatic offline algorithms®2¢0 there
is no current solution for handling drift online. ORICA could therefore be a
valuable solution to tackle this problem for real-time applications.

Wn+1 =

W,  (4.6)

Software The FastICA algorithm is available directly from the scikit-learn
Python packageé™, while other Python implementations can be run with the
MNE package ™. Alternatively, several ICA implementations in MATLAB are
available through EEGLABY®. For a Python implementation of the
ORICA algorithm was developed (https:/github.com/alejoe91/spyica) based

34


https://github.com/alejoe91/spyica

Machine learning and deep learning

on a MATLAB version implemented by a co-author for previous studied®3 90
(https://github.com/goodshawn12/orica).

4.2 Machine learning and deep learning

Machine learning can be defined as a set of algorithms that are able to
automatically learn from data.

Machine learning algorithms are historically divided in three different classes:
supervised learning, unsupervised learning, and reinforcement learning. After a
brief description of the three types of learning, I will focus on supervised learning
with artificial neural networks and convolutional neural networks, because of
their use in

Supervised learning aims to learn a relation, or model, between some input
and output data. In order to perform this kind of learning, one needs a labeled
dataset, i.e., a collection of observations where both the input and corresponding
output are known. The output can either be categorical or a real value. The
former case is referred to as a classification problem, the latter as a regression
problem. In[Paper V] we used supervised learning to solve both a classification
problem to predict the neuronal cell type, and a regression problem for finding
3D positions of the neurons with respect to the recording probe, using the
extracellular spikes as input.

Unsupervised learning aims to learn internal structures of the data, without
targeting a particular input-output relation. Unsupervised learning uses
unlabeled data. A classical example of unsupervised learning is clustering;:
given a set of data, clustering algorithms try to find different sub-groups in the
data, without knowledge of whether there are any groups and how many groups
there are. Clustering is widely used in the spike sorting literature ([Section 2.1|
- Clustering-based approach) and it has also been used in [Paper V| for cell-
type classification, in order to compare the unsupervised performance to the
supervised approach.

Reinforcement learning aims to learn to perform the right action in a certain
state to achieve a goal. It is a typical problem for autonomous agents, e.g.,
robots, and learning is achieved by dispensing a positive or negative reward
depending on whether the chosen actions helped the agent to reach its goal.

4.2.1 The basics of artificial neural networks

Among the large variety of machine learning algorithms developed in the past
decades for supervised learning, neural networks have arguably become the most
popular set of algorithms.

The idea behind artificial neural networks comes from biology, as a
simplification of how neurons integrate input signals. An artificial neuron,
or perceptron™?d (Figure ), is a simple entity that transforms the sum of its
weighted inputs and a bias value:
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A B
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Figure 4.2: (A) Artificial neuron (or perceptron). The weighted inputs and the
bias are transformed with the activation function f to generate the output. (B)
Neural network and definitions for the Iris dataset example described in the text.

y=1r (Z wiz; + b) (4.7)

where z; is the i-th input to the neuron, w; is the weight of the input x;,
b is a scalar bias, f(-) is the so-called activation function, and y is the output
of the neuron. The function f(-) enables the neuron to represent non-linear
transformations of the input data. Typical activation functions are sigmoids,
hyperbolic tangents, or rectified linear functions. When artificial neurons are
combined and connected together, the resulting network is capable of finding
very complex and non-linear relations between inputs and outputs.

Let us look at a simple real-world example and see how a neural network can
be constructed. A famous dataset to test machine learning algorithms is the Iris
dataset™™. It contains observations of the sepal and petal lengths and widths of
three Iris flower species, the Iris setosa, Iris virginica, and Iris versicolor. We
would like to find a model that predicts the species from the petal and sepal
morphological information. This is a typical example of classification, as the
output is categorical.

We can build a three-layer neural network. The first layer is the input layer
and it propagates the inputs to the all the nodes of the next layer. In the Iris
case, we have four inputs (petal length, petal width, sepal length, and sepal
width), so we will have four input neurons. The second layer is also called hidden
layer, as it is not seen by the inputs nor the outputs. There can be many hidden
layers, but in this case, for simplicity, we will only have one layer with, for
example, five neurons. The hidden layers are very important to capture complex
and non-linear relations in the input data, which are connected to the output.
The last layer is the output layer. In this case there are three outputs (one for
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each class), hence three output neurons. Figure displays a network with
these three layers. Nodes from the input layer are referred to as I;, from the
hidden layer as Hj, and from the output layer as Oy. The outputs of neurons
belonging to input, hidden, and output layers are defined as y;, yg, and yo,
respectively. The activation function f(-) is a sigmoid function, whose co-domain
is 0 to 1. The predicted class for an input @ = [x1, z2, x5, 24] is the class whose
output neuron is closer to 1. The output of a neuron from the output layer can
be written as:

yo, = f |>_wiyn, +bo, | =F | wjnf (Z WijT; +ij> +bo,| (4.8)
J J i

Now that we have a network architecture for our classification task we have
to train it, i.e., to learn the parameters that better describe the input-output
relation. The set of parameter that we want to optimize includes the weights
from the input to the hidden layer w;; (20 parameters), the ones from the hidden
to the output layer w;j, (15 parameters), and the bias values of the hidden nodes
(bm, — 5 parameters) and the output nodes (bo, — 3 parameters). In total, there
are 43 parameters to be fittedf] Note that input nodes have no weights nor
biases, as they propagate the inputs to the next layer without any modification.
In order to fit the parameters, we have to define a cost or loss function that
tells us how well the network is performing. Given an observation n, its labeled
output can be encoded as an array t,: (1, 0, 0) for Iris setosa, (0, 1, 0) for Iris
virginica, and (0, 0, 1) for Iris versicolor. Similarly, the output of the network
given the input x,, can be written as an array y,,, which depends on the values
of yo,, yo,, and yo,. For example, if yo, is the output value closest to 1, then
Y, will be (0, 1, 0). A cost or error function J that describes how well the
network is performing over the entire dataset can be the mean of the squared
errors (MSE):

TOW) = 2 S ltn = yn W) = 3" Sl — (W (49)

where W is the set of all parameters and v = (1, 2, 3) is the output dimension.
Note that the dependence of y,, on W is explicit.

We can now use an optimization algorithm, for example, the gradient descent,
to iteratively update the weights and minimize the cost function J. Using
gradient descent, at each iteration a generic weight w is updated as follows:

_ 9
n@w

wW=wy

Wi1 = Wt — nAwt = W¢ (410)

where 7 is the learning rate. Since the computation of the gradient
is effectively propagating the error function back to previous layers, this

*this is a very small network!
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optimization strategy is also referred to as backpropagation in the neural network
literature.

Choosing a differentiable activation function, the partial derivatives of the
weights and bias values of the different layers can be computed using the chain
rule. For example, the gradient of a weight that connects the hidden and the
output layer (wjx) can be computed as:

oJ _9J Oy,  90J  Oyo,
Owj=1 k=2  OYn OWj=1 k=2  OYn OWj=1 k=2
o] Of (Zj Wj k=2YH; + bog)
OYn awj=1,k=2

= _% Z Z [tnv - ynv(W)] f/ ij1k:2ij + bo2 YH;=

: (4.11)

In the first row of the equation, the only component of y,, that depends on
Wj—1,k=2, is indeed yo,. Similarly, gradients for biases and weights for all layers
can be computed.

Here I presented an illustrative implementation of a classification task using
a small neural network and some simplifications. For classification, usually the
output neurons use a softmax activation function and the cross-entropy as loss
function™™, Differently from other activation functions, softmax transforms the
values of all output neurons in probabilities. Moreover, here we used all data
points to compute the gradient (3, ), but in practice, for larger datasets, smaller
batches of observations are used at each iteration. This method is referred to
as stochastic gradient descent. While this example formalized a classification
problem, regression can be achieved with the same principle and a few changes
in the output layer. In order to predict one or multiple real values, the output
neurons have no activation function, so that the value of yo, can range from —oo
to +00. The mean squared error can be used as loss function also for regression
problems.

4.2.2 Deep Learning

Deep learning refers to the use of much larger architectures with many more
parameters, layers, and artificial neurons. Deep learning is now used ubiquitously
in many applications, including image and video recognition, natural language
processing, and medical diagnosis. Some of these architecture are indeed very
deep. For example, the ResNet?™™ architecture, used for image recognition, can
contain up to 1’200 layers.

Deep learning can take several flavours. Different architectures have been in
fact developed to tackle diverse classes of problems. Patterson and Gibson™0
identify four different classes of deep network architectures: unsupervised
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pretrained networks, recurrent neural networks, recursive neural networks, and
convolutional neural networks.

Unsupervised pretrained networks learn compressed representations of the
data in an unsupervised manner. In order to do so, these networks are trained
to reproduced the input data. In other words, the input is also used as labeled
output. Belonging to this class are autoencoders, generative adversarial networks,
and deep belief networks.

Recurrent neural networks are different from the type of network shown in
which is a feed-forward network, because they can have connections
between the same layer (recurrent). An example of this class of architectures is
the long short-term memory (LSTM) networks, which are commonly used for
temporal sequence learning, such as natural language processing. Thanks to
their recurrent nature, these networks are able to keep the memory, or the state,
of previous samples.

Recursive neural networks are similar to recurrent networks, but they have a
tree structure, which allows them to find hierarchical structures in the data.

The last class of architectures are convolutional neural networks, which have
been used in and are presented in the next section.

4.2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are biologically inspired from the
information processing of the visual system™™¥82 Their architecture is different
from other configurations mainly because of the use of convolutional layers.
CNNs are typically used in computer vision for image classification.

Figure [£:3] shows a sample architecture of a CNN, similar to the one used in
The input data are organized in a 2D structure, or an image I, and
convolutional kernels K are convolved with the image to extract feature maps.
These are then subsampled using pooling operators. Max pooling, for example,
reduces the dimensions of the maps by taking the maximum of adjacent pixels.
The convolution-pooling operations can be repeated multiple times (two times in
Figure and in . Finally, the outputs of convolutional-pooling layers
are connected to one or more fully-connected layers, analogous to the hidden
layers shown in [Section 4.2.1] The last fully-connected layer is then interfaced
to the output layer, which outputs the predictions of the network.

The convolution layers consist of several kernels, or filters. The number of
kernels of a convolutional layer is called depth. Each kernel has a certain size
(width and height) and it is convolved with the image. For example, if a kernel
K has a 3x3 size, the input to a neuron from the convolutional layer is the
convolution between the kernel and the image I:

Fi,j) = f DY K(kDI(i—k,1—j) (4.12)
k l

where k = (—1,0,1) and [ = (—1,0, 1) as the kernel size is 3x3. F'(i, ) is the
value of the feature map at pixel position i, j. The activation function f(x) is
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Figure 4.3: Representation of a Convolutional Neural Network. The 2D input
is convolved with 2D filters to generate feature maps. Convolved maps are
subsamples using the pooling layers. The last fully connected layer is connected
to the output neurons.

usually chosen to be a rectified linear unit (ReLU): the output is zero if x <0,
and it is  when x > 0. At the edges of the image I, padding can be applied in
order to maintain the same output size. Moreover, the stride parameter controls
the amount of overlap in pixel convolutions. When the stride is set to 1, there
are no gaps between convolutions and F' has the same size of I (provided that
padding is used at the edges).

Training is performed as described in using backpropagation.
The convolutional layers, during training, learn filters that extract relevant
features from the structured data, which are used by the fully connected layer
to improve the prediction accuracy.

In[Paper V] we have used CNNs to predict the neuronal location and cell type
from extracellular action potentials (EAPs) on dense MEAs. CNNs have been
chosen because the configuration of recording sites for recent MEAs is 2D, and
the recorded siganls can hence be considered as electrical images. Therefore, the
task is similar to image classification and CNNs are suited to find 2D structures
in the data. However, the EAPs are actually 3D input data, because they evolve
over time as well. In order to use CNNs, then, we extracted 2D feature images
from the EAPs, including negative and positive peak images, peak-to-peak
amplitude, peak-to-valley width, and full-width half maximum. We then fed
the 2D feature images as input to the network. Alternatively, we also used 3D
kernels that convolved the full 3D EAPs also in the time domain. This approach
showed an increase in performance, but the training time was much larger than
using 2D convolutional layers.

Due to their very large number of parameters, CNNs (and deep learning
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networks in general) can be easily over-trained. When this happens, the model
works very well on the data used for training, but it is not capable to generalize
over new observations.

4.2.4 Underfitting and overfitting: finding the right model

One of the most important problem in the machine learning literature is to
construct models that can provide good predictions of new and unseen data. In
order to quantify the performance of the model over new observations, the initial
dataset is usually split in two different subsets:

e Training set: the training set is used to perform the training and optimize
the parameters of the model

o Test set: the test set is not used for training (it is also denoted as holdout
set) and used to evaluate the generalization of the model

The errors on the training and test datasets are defined as training and test
errors. Ideally, one wants a machine learning model to 1) have a small error on
the training set and 2) to have a small validation gap, i.e., the difference between
the training and test errors.

If the model is too weak or simple and it is not able to reach a high performance
on the training set in the first place, then the model is underfitting. A typical
example of underfitting is having data points drawn from a quadratic function
and trying to fit it to a straight line. Alternatively, the model may perform very
well on the training set, but the performance on the test set is poor. In this case,
the model learned aspects of the training data that are not general, such as the
noise. The model is overfitting the training data. A good model lies in between
these two scenarios, with a good performance both on the training and test sets.

In case of deep neural networks, given a large enough architecture, overfitting
is definitely more problematic than underfitting. These models have in fact
a very large capacity ™, that is, the capability of fitting a large variety of
functions if properly trained. Omne way of stemming overfitting is to use
regularization techniques, which pose some constraints on the weights. Examples
of regularizations are L1 and L2 regularizers, which make the weights sparser
(L1) or limit their values (L2). Another popular method against overfitting is
dropout™3. When using dropout, during training, a percent of the weights is
randomly selected at each iteration and it is dropped from updating. Therefore,
only a subset of weights is updated at each iteration, effectively increasing the
genaralization power of the model. Dropout is usually applied layer-wise, and in
it is applied only to the last fully-connected layer.

Another way to improve the model performance is by hyperparameter tuning.
Hyperparameters include all the parameters of the model which are not trainable,
such as the number of neurons, the learning rate, and the number of training
iterations. In order to choose hyperparameters, a validation set can be extracted
from the training set and used as a proxy of the test set in order to assess the
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generalization of the model. For example, one can monitor the validation error
and stop the training when this starts to diverge from the training error (early

stopping).

Software As machine learning and deep learning applications have become
ubiquitous, several software solutions exist. For standard machine learning
methods (excluding neural networks) the scikit-learn™™ Python package is
a fantastic tool for machine learning. Specifically targeting neural networks and
deep learning, both Google and Facebook have developed powerful and open
source frameworks: Tensorflow!®® (Google) and PyTorch™3 (Facebook). In 2017,
Tensorflow incorporated Keras™8 in their core API, making the creation of deep
learning architectures easier and more abstract. Tensorflow has been used in
Dan v

4.3 Optimization and genetic algorithms

In several instances throughout this thesis I had to find a set of parameters to
fit some data or to yield a good solution for a given problem. Generally, the
problem of finding parameters that optimize a certain cost function is called
an optimization problem. Examples of optimization problems that have been
introduced in the previous sections include finding the solution of the ICA model
and training artificial neural networks.

There is a large variety of strategies to solve optimization problems. Many
of them are based on estimating the gradient of the cost function and using it to
find the minimum of the function. For example, the gradient descent method
follows the steepest path, and other methods add some momentum and adaptive
behavior to find the minimum faster and not to get stuck in local minimatS788|
One drawback of gradient-based methods is that for some problems the gradient
is unknown. In these cases a finite approximation in parameter space is used,
but this could be time consuming in some applications.

Alternatively, a second class of optimization tools are evolutionary algorithms.
Genetic algorithms are part of the evolutionary algorithms class and they are
biologically-inspired, mimicking the evolution process by natural selection™.
Genetic algorithms are general-purpose optimization methods that can be applied
to any optimization problem. Moreover, as they explore the solution space
randomly and they visit several points simultaneously, they can be quite fast,
but their meta-heuristic nature does not guarantee convergence to a global
minimum.

The fundamental unit of genetic algorithms is a chromosome, or individual,
i.e., a representation of a possible solution. At initialization, N chromosomes
are randomly created to form a population P. Each chromosome’s fitness is
evaluated with a fitness function, which indicates how good the solution is.
Chromosomes are then selected with a selection process and mated to create a
new generation of the population P. Usually, part of the individuals with the
highest fitness are kept in the new generation (elitism). Additionally, random
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mutation is applied to the individuals, to add variability to the search space.
The process is repeated until there is a convergent solution or if the solution is
in stall.

Genetic algorithms have been used both in to solve the inverse
problem for localization (Eq. 7 and to optimize the electrical

stimulation patterns for improving stimulation selectivity.

Software There are several available solutions for optimization and evolu-
tionary programming in Python. scipy™ for example, provides an excellent
optimization module (scipy.optimize). For the implementation of genetic
algorithms in [Paper V] and [Paper V1| the DEAPT (Distributed Evolutionary
Algorithms in Python) package has been used, because of its simple and flexible
APL

4.4 Scientific programming in Python

In the development of the methods presented in this thesis, I had to decide
which programming language to use for software development. With my
engineering background, I was mainly trained in MATLAB and C++. While
C++ is considered too low level for standard scientific programming, despite my
familiarity with MATLAB, I opted for Python for the following main reason

1. Python is open-source. It is accessible to any individual and, contrary to
MATLAB, it is totally free.

2. Python can seamlessly run on several operating systems and platforms.

3. The language has a clean and versatile syntax, allowing for purely
procedural coding or object-oriented approaches.

4. Python is an interpreted language (similarly to MATLAB), which allows
rapid and interactive prototyping.

5. There is a huge variety of packages for scientific computing and visualization.
Among those, the mostly used packages throughout this thesis are numpy™®¥
(numerical computations), scipy™@ (scientific computing and signal
processing), scikit-learn™™ (machine learning), matplotlib™ and
seaborn™ (visualization), and pandas™® (data structures and statistics).

6. Sharing of packages in Python is very easy, using the PyPi package
managei[]

7. Python can be interfaced with several tools for communication and
documentation of software, such as jupyter notebooks™® and sphinxﬂ

*“www.python.org/pypi
Thttp://www.sphinx-doc.org/
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In addition to field-agnostic motivations, Python has gained a large popularity
in the neuroscientific community over the past few years™?, Moreover, the field
is pushing for a full commitment to open-sourcé2?%. I strongly believe that open
science, both in terms of open-source software and hardware resources and open
access to research and journals, is truly beneficial for the progress of science.

Here are the source code repositories developed for the papers presented in
this thesis:

https://github.com/alejoe91/MEArec
https://github.com/Spikelnterface/spikeinterface

[Paper I11| - [Paper 1V} https://github.com/alejoe91/spyica
. https://github.com/CINPLA/NeuroCNN
https://github.com/alejoe91/MEAutility
https://github.com/MiroK/nEuronMI
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Chapter 5

Summary of Papers

Paper |

This paper presents MEArec, an open-source Python package for simulating
extracellular spiking activity. MEArec is designed to meet the requirements of
ease-of-use, speed, controllability, and biophysical detail that we identify as key
features of a simulator for development and validation of spike sorting software.
The simulation is split in two phases. A templates generation phase builds a
template library from biophysically detailed cell models. A recording generation
phase selects suitable templates and combines them with random spike trains in
customized convolution, capable of reproducing critical aspects of extracellular
recordings such as bursting and drifting. Moreover, the user can control the
rate of spatio-temporal overlapping events and there are several noise models
available to test the robustness of algorithms against noise assumptions. MEArec
is fully interfaced with Spikelnterface for benchmarking available
software and it is used by SpikeForestEl, an interactive website for bencharking
spike sorting algorithms.

Paper i

In this article we introduce Spikelnterface, a unified framework for spike sorting.
Spikelnterface is designed to tackle the community needs for standardization
in spike sorting, which can mine reproducibility in the analysis of extracellular
recordings. Spikelnterface is a collection of Python packages for: i) loading and
writing spike-sorting-relevant information from several file formats, ii) running
numerous available spike sorters with a standardized API (in a single line of code),
iii) providing a processing toolkit for pre-, post-processing, validation of results,
and automatic/manual curation, iv) performing comparison of spike sorting
output with known or unknown ground-truth information; and v) visualizing
every step of the electrophysiology pipeline with efficient plotting routines.

Tspikeforest.flatironinstitute.org
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Additionally, we implemented a graphical user interface to build analysis pipelines.
In the paper, we present an overview of the framework and sample applications for
analyzing experimental Neuropixels data with several sorters (resulting in large
disagreements) and for benchmarking spike sorting software on a high-density

MEArec (Paper I)) recording.
Paper [l

In this conference contribution we present a fully automated algorithm for
spike sorting based on independent component analysis (ICA). While the use of
ICA had been investigated before for spike sorting, new recording technologies
with a very high electrode density are particularly suitable for ICA processing.
In this paper, therefore, we combine ICA with a selection of spiking sources,
amplitude clustering in the ICA space, and removal of duplicate spike trains in
a fully automatic approach. We compare our approach with two other popular
automatic spike sorting algorithms (Mountainsort™® and SPyKING-CIRCUS58)
using initial versions of what would become MEArec and Spikelnterface

(Paper 11).
» N \/

This conference contribution builds upon [Paper III| and it tackles real-time spike
sorting. We approach this problem by applying an online version of the ICA
method, the Online Recursive Independent Component Analysis (ORICA), which
was originally developed for automatic artifact removal in EEG recording

The online pipeline is semi-automatic and it is very similar to the offline method
presented in After an ORICA pre-processing step and an automatic
selection of spiking sources, the user needs to set thresholds on single independent
components for spike detection. Even in this case, we benchmark the approach on
simulated data with known mixing matrices, in order to validate the performance
of estimating the ICA model in an online setting.

» N \/

In this article we target localization and classification of neurons from
extracellular recordings. We present an approach that combines biophysical
forward modeling and deep learning. In brief, we simulate a large dataset of
extracellular action potentials (EAPs) from around 200 cell models from the
Blue Brain Project®®. Then, knowing the ground-truth position and type of the
simulated neurons, we train convolutional neural networks (CNNs) to predict
i) the 3D soma locations and ii) the cell type (excitatory-inhibitory) from the
EAPs. We investigate the localization and classification performance depending
on different probe designs, CNN sizes, and selected features. We compare
the performance of our CNN model with state-of-the-art inverse methods for
cell localization and clustering techniques for cell classification and show that
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our deep learning approach is superior in both cases. Finally, we validate the
trained models on simulated EAPs from other databases, e.g., the Allen Brain
Institute, and on experimental data that use paired extracellular and patch
clamp recordings.

In this conference contribution, we investigate a model-based optimization
approach for selective electrical stimulation of single cells using high-density
MEAs. Assuming that we can extract the position of the soma and the direction of
the axon hillock from the extracellular action potentials, we use this information
to optimize the spatial patterns of the currents injected by the electrodes in order
to increase selectivity of the stimulation. We predict the excitation of a neuron
based on the so-called activating function (Eq. and we construct a multi-
objective optimization problem that aims to i) only stimulate a target neuron
(selectivity) and ii) use the least number of electrodes and the lowest stimulation
currents (efficiency). We use a genetic algorithm to solve the optimization
problem and compute the optimal currents. Using a Monte-Carlo approach,
we show that this model-based approach outperforms standard monopolar and
bipolar stimulation paradigms.

» N \/

In this paper we investigate the effect of neural probes on the extracellular
signals. While the standard modeling framework for computing extracellular
potentials from neuronal currents assumes an infinite and homogeneous milieu,
here we employ advanced finite element methods (FEM) to study the effect of
several kind of probes on the extracellular potentials. We simulate a single action
potential from a simple ball-and—stick neuron and its extracellular signature
with and without a neural probe in the extracellular space. We show that for
microwires/tetrodes the effect of the probe is negligible. Conversely, larger MEAs
strongly affect the recorded signals due to their insulating properties. The spike
peaks almost double when the probe is explicitly modeled, and the peak ratio
between the potential with and without the probe is relatively constant with
respect to the distance from the probe. However, the ratio is dependent on
the lateral alignment and relative rotation between the probe and the neuron.
Finally, we show that the probe effect is electrode-dependent and we suggest
an efficient method, namely probe correction method, to correct for the probe
effects. This method uses FEM simulations to pre-map the effect each electrode
on the extracellular space and then leverages the reciprocity and superposition
principles to compute extracellular potentials from neuronal currents.
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Chapter 6

Discussion

“Sitting on your shoulders is the most complicated
object in the known universe.”

— Michio Kaku

6.1 Towards next-generation electrophysiology

In recent years, the opportunity to conduct electrophysiological recordings
has been undergoing a revolution. Developments in technology for the
fabrication of neural probes have enabled the creation of next-generation
devices which can record from hundreds (in wvivo) and thousands (in wvitro)
of channels simultaneously. With these high-density multi-electrode arrays (HD-
MEAs BTS2 we are now able to measure the activity of hundreds of
neurons simultaneously, even at the sub-cellular levelZ29%108  However, next-
generation devices introduce novel grand challenges and the need for appropriate
tools to handle the rich information that can be recorded??. The work presented
in this thesis has therefore focused on developing and benchmarking new tools
and methods for using such devices.

The literature on electrophysiological analysis targeting spiking signals has
mainly focused on extracting individual spike trains from recordings (using spike
sorting - . However, HD-MEAs pose new challenges for spike sorting
and a large part of the presented work aimed to benchmark and compare existing
solutions (Paper I| and [Paper IIJ), as well as to develop spike sorting methods
specifically targeting HD-MEAs (Paper 111 and [Paper 1V]).

In addition to the high yield in terms of number of recorded neurons, the
abundant spatial information available from HD-MEAs can be exploited for
localizing the 3D position of the recorded neurons and accurately classifying their
neuronal type . Extracellular electrophysiolgy can therefore increasingly
be regarded as a functional electrical imaging techiniqué?®, from which one can
reconstruct a 3D map of the recorded neuronal microcircuit. Additionally, precise
localization and optimized stimulation strategies (Paper VI|) enable advanced
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closed-loop experiments, allowing for a precise bi-directional manipulation of
neural circuits.

The number of neurons that can be recorded by HD-MEAs is unprecedented.
For example, in a recent study?02, the authors report data from around 30°000
neurons acquired from 39 sessions in 10 mice. Given this immense amount of
information, one question arises: is spike sorting needed at all?

Some novel approaches present spike-sorting-free techniques to infer the
dynamics of the entire recorded population™208 The idea of these studies is
to find neural manifolds, i.e., lower-dimensional representations of the ensemble
neural activity, connected to behavior, hence bypassing the need for spike
sorting. While the approach is interesting for specific applications, such as
motor control?’? and brain-machine interfaces?%8, I believe that the reign of
spike sorting will never be overturned. In fact, spike sorting is a required step
to study how single neurons respond to stimuli, movements, or encode specific
memories. Without spike sorting, we would not know that neurons in visual
cortex are orientation-selectivé?®, that some neurons in the hippocampus only
fire in a specific placé?!¥ while others in the entorhinal cortex in a hexagonal
grid pattern?I 212 and that some neurons like Jennifer Aniston?3,

Another mean for measuring neuronal activity is through imaging, which one
might imagine could replace electrophysiology. Instead of inserting a probe in
the brain to pick up electrical signals generated by the neurons, one can image
fluorescent markers linked to sensors that (directly or indirectly) reflect neural
activity. For example, two-photon calcium imaging has been used to image
neural activity for decades?¥. Alternatively, voltage sensitive dyes?l (VSDs)
and, more recently, genetically-encoded voltage indicatorg216-218 (GEVIs) are
proxies for the neuronal membrane potential signals. While the kinetics of calcium
indicators and VSDs are considered to be fairly slow with respect to the membrane
potential dynamics, recently developed GEVIs can image neuronal spiking
activity and sub-threshold dynamics at very high speed. Imaging techniques
are capable of recording tens of thousands of neurons simultaneously??, hence
falling deservedly into the definition of next-generation tools. In addition,
a combination of simultaneous imaging and manipulation of activity using
optogenetics and holografic stimulation techniques??? enables a precise and
bi-directional manipulation of the neural tissue with unprecedented levels of
accuracy, via so-called all-optical investigations of neural circuitd?2%222, However,
imaging comes with challenges and limitations. Most importantly, current
microscopes have a depth-limitation, hence deeper structures cannot be imaged.
Nevertheless, multi-photon systems could alleviate this problem®23. The second
limitation of imaging techniques comes from the fact that most setups require
a bulky and expensive microscope and therefore behavioral studies are mainly
restricted head-fixed mice. Despite the possibility of setting up sophisticated
behavioral settings, including virtual reality systems?2% experiments on freely
moving animals arguably represent a more natural setting to observe neuronal
correlates of animal behavior. Notably, portable and wireless imaging systems
exist, such as the UCLA miniscopé???, but their capabilities are not comparable
to fixed microscopy systems.

50



Computationally-assisted electrophysiology: benefits and limitations

HD-MEA devices, instead, can be used both for head-fixed and freely moving
animals, using chronic and recoverable implants225227, They enable to perform
very high-yield experiments, with high spatio-temporal resolution recordings
from hundreds of neurons per experimental session from several structures
of the brain?! and they are opening a brand new era for neurophysiology.
Moreover, HD-MEA devices are currently being used by large-scale international
collaborationd??8 and will generate an unprecedented amount of neural data
from all known and unknown brain regions, which will greatly increase our
understanding of how the brain works.

6.2 Computationally-assisted electrophysiology: benefits
and limitations

Modeling and simulations have been central in the presented work to aid the
development of methods for extracellular electrophysiology.

In recent years, large international consortia have joined forces and dedicated
a huge amount of resources to build detailed biophysical models of neurons. In
2015, the Blue Brain Project released the Neocortical Microcircuit Portal?233]
with more than 30’000 cortical cell models. In parallel, the Allen Institute for
Brain Science is constantly expanding its cell-type databaseé20 with cell models
reconstructed from mice and even from human tissué?2.

The large and growing availability of such detailed models has created a new
opportunity in the development of analysis methods for neuroscience. Simulations
can be used to develop model-informed, or computationally-assisted tools to
solve specific problems in electrophysiology. In other words, models can provide
a-priori and ground-truth knowledge that can be incorporated in the methods
themselves. In this thesis, modeling served three main purposes: ground-truth
data simulation, validation, and prediction.

In we used ground-truth simulations in combination with machine
learning and showed that supervised localization and classification approaches
outperform unsupervised solutions. Simulations can in fact provide a virtually
infinite amount labeled datasets, which can be used to train machine learning
algorithms.

In a biophysically detailed simulator for extracellular spiking activity
was developed specifically to aid the development and validation of spike sorting
algorithms. Although also spike sorting could be tackled in a supervised manner,
by learning a model that outputs spike times of different neurons using the
extracellular signals as input, this approach would need to learn very complicated
spatio-temporal features in the recordings, and at present it has not been
attempted.

In modeling was used as a predictive tool for the outcome
of electrical stimulation. In combination with genetic algorithms used for
optimization, we were able to find optimal stimulation patterns that improved
the stimulation selectivity.
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Finally, a model-based approach would enable users to tune the methods
to diverse applications. Neurons from different brain regions or species can be
very different in terms of morphology, electrical properties, and firing patterns.
Hence, analysis tools targeting specific applications, for example, hippocampus
recordings in mice, could be enhanced by using cell models from the selected
brain region and animal species.

There are also some limitations to the modeling framework used throughout
this thesis that need to be discussed. First and foremost, simulations are not
real. A mathematical representation of a real entity, no matter how complicated,
should always be regarded as a simplified and limited representation of the
entity. However, recent developments in computational systems and recording
technologies make the simulations from cell models used in this work almost
indistinguishable from real data. Koch and Buice®, in a letter accompanying the
publication of the Blue Brain Project simulatior32, state that these simulations
would pass a biological Turing test, given their ability to accurately replicate
neuronal dynamics. Still, these detailed cell models have intrinsic limitations.

Most of the electrophysiological data used to construct biophysically detailed
cell models comes from patch-clamp somatic voltage traces. However, neurons
are more than just the soma. Neuronal dynamics are greatly affected by non-
somatic cell compartments, such as dendrites and axons?2%. Modeling studies
using data from multiple patch pipettes along the apical dendrites to fit multi-
compartmend modeld293Y were capable of replicating complex active properties
of the dendrites, such as backpropagating action potentials and calcium spikes,
which affect the extracellular signals. However, somatic patch-clamp recordings
alone are not enough to constrain cell models that replicate these features3C.
Moreover, extracellular action potentials are largely influenced by the axonal
initial segment (ATSY3H4 which should therefore be carefully considered in the
models. Cell models from both the Blue Brain Project and the Allen Institute,
however, mainly use somatic patch-clamp recordings alone to collect data used
to construct their cell models. Therefore, active dendritic properties cannot
be reproduced. Moreover, in those models the entire axon is replaced by a
single stereotyped axonal segment, hence the contribution of the AIS to the
extracellular signals might be distorted.

Second, in the calculation of extracellular signals I have mainly used the
framework described in [Section 3.2| (Paper Il [Paper 111} [Paper IV] [Paper V| and
. The volume conduction theory (Eq.[3.9)) assumes that the extracellular
space is isotropic, homogeneous, linear, and infinite. However, neural tissue is
not isotropic™®3 mainly due to the preferential orientation of pyramidal cells.
Anisotropy could be easily included in the calculation of extracellular potentials
with analytical solutions™%  Second, the tissue surrounding the neurons is
not homogeneous, because of the presence of the neural probes. In
we therefore investigated how neural probes affect the recordings. We showed
that the probe does affect the recorded potentials in a non-trivial way, and
proposed an efficient solution that involves a finite element pre-mapping of the
effect of the probe in the extracellular space. While this solution is technically
feasible and could be incorporated into current simulatord™®#153 it would require
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one to embed finite element solutions in the software, making it slower and
more complicated to handle. Alternatively, the finite element solutions could be
approximated by analytical functions and used to efficiently pre-map the effect
of different probes in the extracellular space.

Finally, regardless the above-mentioned limitations, I believe that the
presented computationally-assisted approach to electrophysiology has the
potential to improve the current status of extracellular electrophysiology research.
Methodological improvements and the integration of new techniques for acquiring
comprehensive data will make computational models more accurate and realistic.
As a result, analysis tools built upon simulations will also improve their
performance in tackling common problems in electrophysiology.

6.3 Future developments

Part of the work presented in this thesis is fully finalized, documented, and
shared with the community. In particular, the software presented in
(MEArec) and in (SpikeInterface) are already used in other projects.
As an example, the SpikeForest project[]is aiming to benchmark and compare
most of the available spike sorters using ground-truth datasets. Spikelnterface is
the engine upon which SpikeForest is running, and several MEArec-generated
datasets are used as ground-truth recordings.

[Paper 111 and [Paper IV] are instead at a proof of concept stage. The software,
named SpyICA, is dated before the development of MEArec and Spikelnterface,
which were specifically designed to ease the development, validation, and
comparison of spike sorting algorithm. Therefore, a future effort will tackle
the extensive characterization of SpyICA in comparison with state-of-the-art
spike sorters, both for offline and online use. Moreover, as mentioned in
the current implementation is not capable of handling spatio-temporal
overlapping units. Therefore, a hybrid ICA and template-based approach could
be investigated for this purpose. In particular, adding a template-matching step
to the ICA-based pipeline ) would both facilitate the correct identification
of spatio-temporal collision and alleviate the problem related to duplicate units
in different independent components mentioned in

In[Paper V] we performed a thorough analysis on the capabilities of supervised
approaches in electrophysiological analysis. Although the source code is open
and shared online (see , it consists of a series of scripts rather than
a compact package. Moreover, it was developed using an old version of the
Tensorflow package™®, which has been enormously improved and simplified
over the last year. Therefore, I plan to make the software more usable and
plug-and-play and to update the code to the newest Tensorflow version.

In we used a very simplified model of a neuron, a ball-and-
stick®2 While our purpose was to characterize the effect of extracellular probes,
in the future, similar detailed finite element simulations could make use of more

*“spikeforest.flatironinstitute.org/
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complicated and realistic morphologies, which are widely available on online
databases30.,

Finally, the performance of spike sorting, localization, classification, and
stimulation methods has been assessed using simulated data alone. Nevertheless,
experimental validation is an important and required step. In this light, validation
datasets can be acquired by a combination of multiple recording techniques,
for example combining extracellular HD-MEAs, patch-clamp, and imaging
techniques. Multi-modal setups with extracellular MEAs and imaging can
provide ground-truth information on the neuronal spiking activity, location, cell
type, and stimulation outcome.

6.4 Outlook

In conclusion, in this thesis I presented several methods for a computationally-
assisted approach targeting neural extracellular electrophysiology for multi-
electrode arrays. With the combination of state-of-the-art modeling and
engineering tools, this work has introduced a series of next-generation analysis
tools to handle newly developed and powerful neural devices, which will contribute
to a better understanding of our fascinating brain.
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Abstract

‘When recording neural activity from extracellular electrodes, both in vivo and in vitro, spike
sorting is a required and very important processing step that allows for identification of single neu-
rons’ activity. Spike sorting is a complex algorithmic procedure, and in recent years many groups
have attempted to tackle this problem, resulting in numerous methods and software packages.
However, validation of spike sorting techniques is complicated. It is an inherently unsupervised
problem and it is hard to find universal metrics to evaluate performance. Simultaneous recordings
that combine extracellular and patch-clamp or juxtacellular techniques can provide ground-truth
data to evaluate spike sorting methods. However, their utility is limited by the fact that only a
few cells can be measured at the same time. Simulated ground-truth recordings can provide a
powerful alternative mean to rank the performance of spike sorters. We present here MEArec, a
Python-based software which permits flexible and fast simulation of extracellular recordings.

MEArec allows users to generate extracellular signals on various customizable electrode designs
and can replicate various problematic aspects for spike sorting, such as bursting, spatio-temporal
overlapping events, and drifting. We expect MEArec will provide a common testbench for spike
sorting development and evaluation, in which spike sorting developers can rapidly generate and
evaluate the performance of their algorithms.

keywords: Spike sorting; Benchmark data; Extracellular recordings simulator; Open-source software

Introduction

Extracellular neural electrophysiology is one of the most used and important techniques to study brain
function. It consists of measuring the electrical activity of neurons from electrodes in the extracellular
space, that pick up the electrical activity of surrounding neurons. To communicate with each other,
neurons generate action potentials, which can be identified in the recorded signals as fast potential
transients called spikes.

Since electrodes can record the extracellular activity of several surrounding neurons, a processing
step called spike sorting is needed. Historically this has required manual curation of the data, which
in addition to being time consuming also introduces human bias to data interpretations. In recent
years, several automated spike sorters have been developed to alleviate this problems. Spike sorting
algorithms [40, 28| attempt to separate spike trains of different neurons (units) from the extracellular
mixture of signals using a variety of different approaches. After a pre-processing step that usually
involves high-pass filtering and re-referencing of the signals to reduce noise, some algorithms first detect
putative spikes above a detection threshold and then cluster the extracted and aligned waveforms in

*alessiob@ifi.uio.no
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a lower-dimensional space [38, 41, 8, 22, 25|. Another approach consists of finding spike templates,
using clustering methods, and then matching the templates recursively to the recordings to find when
a certain spike has occurred. The general term for these approaches is template-matching [37, 43, 10].
Other approaches have been explored, including the use of independent component analysis [24, 3] and
semi-supervised approaches [27].

The recent development of high-density silicon probes both for in vitro [2, 13] and in vivo appli-
cations [35, 26] poses new challenges for spike sorting [42]. The high electrode count calls for fully
automatic spike sorting algorithms, as the process of manually curating hundreds or thousands of
channels becomes more time consuming and less manageable. Therefore, spike sorting algorithms need
to be be capable of dealing with a large number of units and dense probes. To address these require-
ments, the latest developments in spike sorting software have attempted to make algorithms scalable
and hardware-accelerated (37, 25, 43].

The evaluation of spike sorting performance is also not trivial. Spike sorting is unsupervised by
definition, as the recorded signals are only measured extracellularly with no knowledge of the under-
lying spiking activity. A few attempts at providing ground-truth datasets, for example by combining
extracellular and patch-clamp or juxtacellular recordings [21, 19, 35, 43, 31, 1] exist, but the main
limitation of this approach is that only one or a few cells can be patched at the same time, providing
very limited ground-truth information with respect to the number of neurons that can be recorded
simultaneously from extracellular probes.

Biophysically detailed simulated data provide a powerful alternative and complementary approach
to spike sorting validation [11]. In simulations, recordings can be built from known ground-truth data
for all neurons, which allows one to precisely evaluate the performance of spike sorters. Simulators
of extracellular activity should be able to replicate important aspects of spiking activity that can be
challenging for spike sorting algorithms, including bursting modulation, spatio-temporal overlap of
spikes, unit drifting over time, as well as realistic noise models. Moreover, they should allow users to
have full control over these features and they should be efficient and fast.

In the last years, there have been a few projects aiming at developing neural simulators for bench-
marking spike sorting methods [6, 18, 33]: Camunas et al. developed NeuroCube [6], a MATLAB-based
simulator which combines biophysically detailed cell models and synthetic spike trains (a so called "hy-
brid approach") to simulate the activity of neurons close to a recording probe, while noise is simulated
by the activity of distant neurons. NeuroCube is very easy to use with a simple and intuitive graphical
user interface (GUI). The user has direct control of parameters to control the rate of active neurons,
their firing rate properties, and the duration of the recordings. The cell models are shipped with the
software and recordings can be simulated on a single electrodes or a tetrode. It is relatively fast, but
the cell model simulations (using NEURON [7]) are re-simulated for every recording.

Hagen et al. developed ViSAPy [18], a Python-based simulator that uses multi-compartment simu-
lation of single neurons to generate spikes, network modeling of point-neurons in NEST [9] to generate
synaptic inputs onto the spiking neurons, and experimentally fitted noise. ViSAPy does not use a hybrid
approach, as it runs a full network simulation in NEURON |7] and computes the extracellular potentials
using LFPy [29, 17|. ViSAPy implements a Python application programming interface (API) which
allows the user to set multiple parameters for the network simulation providing the synaptic input,
the probe design, and the noise model generator. Cell models can be freely chosen and loaded using
the LFPy package. Further, 1-dimensional drifting can be incorporated in the simulations by shifting
the electrodes over time [12]. Learning to use the software and, in particular, tailoring the specific
properties of the resulting spike trains, for example burstiness, requires some effort by the user. As the
running of NEURON simulations with biophysically detailed neurons can be computationally expensive,
the use of ViSAPy to generate long-duration spike-sorting benchmarking data is boosted by access to
powerful computers.

Mondragon et al. developed a Neural Benchmark Simulator (NBS) [33| extending the NeuroCube
software. NBS extends the capability of NeuroCube for using user-specific probes, and it combines the
spiking activity signals (from NeuroCube), with low-frequency activity signals, and artifacts libraries
shipped with the code. The user can set different weight parameters to assemble the spiking, low-
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frequency, and artifact signals, but these three signal types are not modifiable.

Despite the existence of such tools for generating benchmarking data, their use in spike sorting
literature has until now been limited, and the benchmarking and validation of spike sorting algorithms
non-standardized and unsystematic. A natural question to ask is thus how to best stimulate the use
of such benchmarking tools in the spike sorting community.

From a spike sorting developer perspective, we argue that an ideal extracellular simulator should
be i) fast, ii) controllable, iii) biophysically detailed, and iv) easy to use. A fast simulator would
enable spike sorter developers to generate a large and varied set of recordings to test their algorithms
against and to improve their spike sorting methods. Controllability refers to the possibility to have
direct control of features of the simulated recordings. The ideal extracellular spike simulator should
include the possibility to use different cell models and types, to decide the firing properties of the
neurons, to control the temporal and spatio-temporal synchrony of extracellular spikes, to generate
recordings on different probe models, and to have full reproducibility of the simulated recordings.
A biophysically detailed simulator should be capable of reproducing key physiological aspects of the
recordings, including, but not limited to, bursting spikes, drifting between the electrodes and the
neurons, and realistic noise profiles. Finally, to maximize the ease of use, the ideal extracellular
simulator should be designed as an accessible and easy to learn software package. Preferably, the tool
should be implemented with a graphical user interface (GUI), a command line interface (CLI), or with
a simple application programming interface (API).

With these principles in mind, we present here MEArec, an open-source Python-based simulator.
MEArec provides a fast, highly controllable, biophysically detailed, and easy to use framework to gen-
erate simulated extracellular recordings. In addition to producing benchmark datasets, we developed
MEArec as a powerful tool that can serve as a testbench for optimizing existing and novel spike sorting
methods. To facilitate this goal, MEArec allows users to explore how several aspects of recordings
affect spike sorting, with full control of challenging features such as bursting activity, drifting, spatio-
temporal synchrony, and noise effects, so that spike sorter developers can use it to help their algorithm
design. Moreover, MEArec has an extensive documentation https://mearec.readthedocs.io/ and
the code is tested with a continuous integration platform?.

Results

Getting started with MEArec: a simple tetrode dataset generation

One of the key goals of MEArec is to ease the simulation of extracellular recordings and make it fully
reproducible. In order to demonstrate this, we first show and break down the commands used to
generate a simple tetrode recording that we will to further characterize in the rest of the paper.

MEArec, at installation, comes with 13 layer 5 cortical cell models from the Neocortical Microcircuit
Portal [39, 4]. This enables the user to dive into simulations without the need to download and compile
cell models. On the other hand, the initial cell models can be easily extended by downloading more
cell models and placing them in the cell models folder.

To generate 30 extracellular spikes (also referred as templates) per cell model recorded on a shank
tetrode probe, the user can simply run this command:

>> mearec gen-templates -prb tetrode-mea-1 -n 30 --seed O

Saved templates in path-to-templates-file.hb

The -prb option allows for choosing the probe model, -n controls the number of templates per cell
model to generate, and the --seed option is used to ensure reproducibility and if it is not provided, a
random seed is chosen. In both cases, the seed is saved in the HDF5 file, so that the same templates
can be perfectly replicated.

Ihttps://travis-ci.org/
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Once the templates are generated, recordings can be generated as follows:

>> mearec gen-recordings -t path-to-templates-file.hb5 -d 30 -ne 4 -ni 2
--st-seed 0 --temp-seed 1 --noise-seed 2

Saved recordings in path-to-recordings-file.hb

The gen-recordings command combines the selected templates from 4 excitatory cells (-ne 4)
and 2 inhibitory cells (-ni 2), that usually have a more narrow spike waveform and a higher firing
rate, with randomly generated spike trains. The duration of the output recordings is 30 seconds (-d
30). In this case, three random seeds control the spike train random generation (--st-seed 0), the
template selection (--temp-seed 1), and the noise generation (--noise-seed 2). Figure 1 shows one
second of the generated recordings (A), the extracted waveforms and the mean waveforms for each unit
on the electrode with the largest peak (B), and the principal component analysis (PCA) projections
of the waveforms on the tetrode channels.

MEArec also implements a convenient Python API, which is run internally by the CLI commands.
For example, the following snippet of code implements the same commands shown above for generating
templates and recordings:

import MEArec as mr

# generate templates
templates_params = mr.get_default_templates_params()
cell_models_folder = mr.get_default_cell_models()

templates_params['probe'] = 'tetrode-mea-1'
templates_params['n'] = 30
templates_params['seed'] = 0

tempgen = mr.gen_templates(cell_models_folder=cell_models_folder,
params=templates_params)
mr.save_template_generator_templates(tempgen, 'path-to-templates-file.h5')

# generate recordings
recordings_params = mr.get_default_recordings_params()
recordings_params['spiketrains']['n_exc'] = 4
recordings_params['spiketrains']['n_inh'] 2
recordings_params['spiketrains'] ['duration'] = 30
recordings_params|['spiketrains']['seed'] = 0
recordings_params['templates']['seed'] = 1
recordings_params['recordings'] ['seed'] = 2
recgen = mr.gen_recordings(params=recordings_params,
templates='path-to-templates-file.h5')
mr.save_recording_generator(recgen, 'path-to-recordings-file.h5')

Moreover, the Python API implements plotting functions to visually inspect the simulated tem-
plates and recordings. For example, Figure 1 panels were generated using the plot_recordings()
(A), plot_waveforms() (B), and plot_pca_map() (C) functions.

MEArec overview

After having shown how to generate a recording in MEArec, we introduce here an overview of the
software (Figure 2). The simulation is split in two phases: templates generation (Figure 2A) and
recordings generation (Figure 2B).
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Figure 1: Example of simulated tetrode recording. (A) One second of the recording timeseries on the
four tetrode channels. The templates for the different units are overlapped to the recording traces in
different colors. (B) Extracted waveforms on the channel with the largest amplitude for the six units
in the recordings. (C) PCA projections on the first two PC components of the four tetrode channels.
Each color corresponds to a neuron. The diagonal plots display the histograms of the PC projection
on the corresponding channel.

Templates (or extracellular action potentials) are generated using biophysically realistic cell models
which are positioned in the surroundings of a probe model. The templates generation output is a
library of a large variety of extracellular templates, which can then be used to build the recordings.
The templates generation phase is the most time consuming, but the same templates library can be
used to generate a virtually infinite number of different recordings.
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Recordings are then generated by combining templates selected with user-defined rules (based on
minimum distance between neurons, amplitudes, spatial overlaps, and cell-types) and by simulating
spike trains. Selected templates and spike trains are assembled using a customized (or modulated)
convolution, which can replicate interesting features of spiking activity such as bursting and drifting.
After convolution, additive noise is generated and added to the recordings. Finally, the output record-
ings can be optionally filtered with a band-pass or a high-pass filter. For a full description of the
templates and recordings generation, please refer to the Materials and Methods section.

MEArec is designed to allow for full customization, transparency, and reproducibility of the simulated
recordings. Parameters for the templates and recordings generation are accessible by the user and
documented, so that different aspects of the simulated signals can be finely tuned (see Materials and
Methods for a list of parameters and their explanation). Moreover, the implemented command line
interface (CLI) and simple Python API, enables the user to easily modify parameters, customize, and
run simulations.

Finally, MEArec permits to manually set several random seeds used by the simulator to make
recordings fully reproducible. This feature also enables one to study how separate characteristics of
the recordings affect the spike sorting performance. As an example, we will show in the next sections
how to simulate a recording sharing all parameters, hence with exactly the same spiking activity, but
with different noise levels or drifting velocities.

A Templates Generation B Recordings Generation
Intracellular simulation template library Spike trains Generation
templates

locations
rotations
| cell types
‘ / info =
-}\_ NEURON é;;?&%ﬁae =
selection | overlap

template |Jitter
resample
pre-process | pad

poisson

Extracellular simulation

random location

customized |bursting
convolution |drifting

random rotation template library recordings
== templates recordings additive ggxlrgilation
7 f S locations templates ho'se far neurons
rotations electrodes filter high-pass
] cell types spike trains (optional) |band-pass
4‘ LFPy info info

Figure 2: Overview of the MEArec software. The simulation is divided in two phases: templates
generation and recordings generation. (A) The templates generation phase is split in an intracellular
and extracellular simulation. The intracellular simulation computes, for each available cell model, the
transmembrane currents generated by several action potentials. In the extracellular simulation, each
cell model is randomly moved and rotated several times and the stored currents are loaded to the
model to compute the extracellular action potential, building a template library. (B) The recordings
generation phase combines templates selected from the template library and randomly generated spike
trains. Selected templates are pre-processed before a customized convolution with the spike trains.
Additive noise is added to the output of the convolution, and the recordings can be optionally filtered.
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Generation of realistic Multi-Electrode Array recordings

The recent development of Multi-Electrode Arrays (MEAs) enables researchers to record extracellular
activity at very high spatio-temporal density both for in vitro [2, 13] and in vivo applications [35,
26]. The large number of electrodes and their high density can result in challenges for spike sorting
algorithms. It is therefore important to be able to simulate recordings from these kind of neural probes.

To deal with different probe designs, MEArec uses another Python package (MEAutility - https:
//meautility.readthedocs.io/), that allows users to easily import several available probe models
and to define custom probe designs. Among others, MEAutility include Neuropixels probes [26],
Neuronexus commercial probes (http://neuronexus.com/products/neural-probes/), and a wide
variety of square MEA designs with different contact densities (the list of available probes can be
found in Appendix A).

Similarly to the tetrode example, we first have to generate templates for the probes. These are
the commands to generate templates and recordings for a Neuropixels design with 128 electrodes
(Neuropixels-128). The recordings contain 60 neurons, 48 excitatory and 12 inhibitory. With similar
commands, we generated templates and recordings for a Neuronexus probe with 32 channels (A1x32-
Poly3-5mm-25s-177-CM32 - Neuronexus-32) with 20 cells, and a square 10x10 MEA with 15pum
inter-electrode-distance (SqQMEA-10-15) and 50 cells.
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Figure 3: Generation of high-density multi-electrode array recordings. (A) Example of three available
probes: a commercial Neuronexus probe (left), the Neuropixels probe (middle), and a high-density
square MEA. (B) Sample templates for each probe design. (C-D-E) One-second snippets of recordings
from the Neuronexus probe (C), the Neuropixels probe (D), and the square MEA probe (E). The
highlighted windows display the activity over three adjacent channels and show how the same spikes
are seen on multiple sites.
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>> mearec gen-templates -prb Neuropixels-128 -n 100 --seed O
Saved templates in path-to-Neuropixels-templates-file.hb

>> mearec gen-recordings -t path-to-Neuropixels-templates-file.h5 -d 30 -ne 48 -ni 12
--st-seed 0 --temp-seed 1 --noise-seed 2

Saved recordings in path-to-Neuropixels-recordings-file.hb

Figure 3 shows the three above-mentioned probes (A), a sample template for each probe design
(B), and one-second snippets of the three recordings (C-D-E), with zoomed in window to highlight
spiking activity.

‘While all the recordings shown so far have been simulated with default parameters, several aspects
of the spiking activity are critical for spike sorting. In the next sections, we will show how these
features, including bursting, spatio-temporal overlapping spikes, drifting, and noise assumptions can
be explored with MEArec simulations.

Bursting modulation of spike amplitude and shape

Bursting activity is one of the most complicated features of spiking activity that can compromise the
performance of spike sorting algorithms. When a neuron bursts, i.e. it fires repeated and fast action
potentials, the dynamics underlying the generation of the spikes changes over the bursting period
[20]. While the bursting mechanism has been largely studied with patch-clamp experiments, combined
extracellular-juxtacellular recordings |1] and computational studies [18] suggest that during bursting,
extracellular spikes become lower in amplitude and wider in shape.

In order to simulate this property of the extracellular waveforms in a fast and efficient manner,
templates are modulated both in amplitude and shape during the convolution operation, depending
on the spiking history.

To demonstrate how bursting is replicated, we built a constant spike train with 10 ms inter-spike-
interval (Figure 4A). A modulation value is computed for each spike and is used to modulate the
convolution operation for that event. The blue dots show the default modulation, in which the mod-
ulation values are drawn from a Gaussian distribution with unitary mean. When bursting is enabled,
the modulation value is computed as a sublinear power depending of the number of consecutive spikes
in a burst and the inter-spike-interval (see Materials and Methods for details). The bursting events
can be either controlled by the maximum number of spikes making a burst (orange - 5 spikes; green -
10 spikes) or by setting a maximum bursting duration (red - 75ms).

The modulation value controls the level of amplitude and shape modulation of the spike event.
In Figure 4B, examples of bursting templates are shown. The blue traces display templates only
modulated in amplitude, i.e. the amplitude is scaled by the modulation value. The orange and green
traces, instead, also present shape modulation, which is achieved by stretching the time axis using a
sigmoid transform. The sigmoid transform can be adjusted to have more (green) or less (orange) shape
modulation.

Figure 4C shows a one-second snippet of the tetrode recording shown previously after bursting
modulation is activated. The top panel shows the spike events, the middle one displays the modulation
values, and the bottom panel shows the output of the modulated convolution between one of the
templates (on the electrode with the largest amplitude) and the spike train.

Figure 4D and Figure 4E show the waveform projections on the first principal component for the
tetrode recording shown previously with and without bursting, respectively. In this case all neurons
are bursting units and this causes a stretch in the PCA space, which is a clear complication for spike
sorting algorithms.
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Figure 4: Bursting behavior. (A) Modulation values computation for a sample spike train of 300 ms
with constant inter-spike-intervals of 10ms. The blue dots show the modulation values for each spike
when bursting is not activated: each value is drawn from a N(1,0.052) distribution. When bursting is
activated, a bursting event can be limited by the maximum number of spikes (orange - 5 spikes, green
- 10 spikes), or by the maximum bursting event duration (red - 75ms). (B) Modulated templates. The
blue lines show templates modulated in amplitude only. The orange and green lines display the same
templates with added shape modulation. (C) Modulation in tetrode recordings. The top panel shows
spikes in a one-second period. The middle panel displays the modulation values for those spikes. The
bottom panel shows the modulated template on the electrode with the largest peak after convolution.
(D-E) PCA projections on the first principal component for the tetrode recordings wihout bursting (D)
and with bursting (E) enabled. Note that the PCA projections were computed in both cases from the
waveforms without bursting. The clusters, with bursting, become more spread and harder to separate
than without bursting.

Controlling spatio-temporal overlaps

Another complicated aspect of extracellular spiking activity that can influence spike sorting perfor-
mance is the occurrence of overlapping spikes. While temporal overlapping of events on spatially
separated locations can be solved with feature masking [41], spatio-temporal overlapping can cause a
distortion of the detected waveform, due to the superposition of separate spikes. Some spike sorting
approaches, based on template-matching, are designed to tackle this problem [37, 43, 10].

In order to evaluate to what extent spatio-temporal overlap affects spike sorting, MEArec allows the
user to set the number of spatially overlapping templates and to modify the synchrony rate of their
spike trains. In Figure 5 we show an example of this on a Neuronexus-32 probe (see Figure 3A). The
recording was constructed with two excitatory and spatially overlapping neurons, whose templates
are shown in Figure 5A (see Materials and Methods for details on spatial overlap definition). The
spike synchrony rate can be controlled with the sync_rate parameter. If this parameter is not set
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Figure 5: Controlling spatio-temporal overlapping spikes. (A) Example of two spatially overlapping
templates. The two templates are spatially overlapping because on the electrode with the largest signal
(depicted as an black asterisk) for template A (blue), template B has an amplitude greater than the
90% of its largest amplitude. (B) Without setting the synchrony rate, the random spike trains (left)
present a few spatio-temporal collisions (red events). When setting the synchrony rate to 0 (middle),
the spatio-temporal overlaps are removed. When the synchony rate is set to 0.05 (right), spatio-
temporal overlapping spikes are added to the spike trains. (C) One-second snippet of the recording
with 0.05 synchrony. In the magnified window, a spatio-temporal overlapping event is shown: the
collision results in a distortion of the waveform.

(Figure 5B - left), some spatio-temporal overlapping spikes are present (red events). If the synchrony
rate is set to 0, those spikes are removed from the spike trains (Figure 5B - middle). If set to 0.05, i.e.
5% of the spikes will be spatio-temporal collisions, events are added to the spike trains to reach the
specified synchrony rate value of spatio-temporal overlap. As shown in Figure 5C, the occurrence of
spatio-temporal overlapping events affects the recorded extracellular waveform: the waveforms of the
neurons, in fact, get summed and might be mistaken for a separate unit by spike sorting algorithms
when the spikes are overlapping.

The possibility of reproducing and controlling this feature of extracellular recordings within MEArec
could aid in the development of spike sorters which are robust to spatio-temporal collisions.
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Generating drifting recordings

When extracellular probes are inserted in the brain, especially for acute experiments, the neural tissue
might slowly move with respect to the electrodes. This phenomenon is known as drift.

Drifting is particularly critical for spike sorting, as the waveform shapes change over time due to
the relative movement between the neurons and the probe. New spike sorting algorithms have been
developed to specifically tackle the drifting problem (Kilosort2?, IronClust [25]).

In order to simulate drift in the recordings, we first need to generate drifting templates:

>> mearec gen-templates -prb Neuronexus-32 -n 30 --drifting --seed 0

Saved templates in path-to-Neuronexus-drift-templates-file.hb

Drifting templates are generated by choosing an initial and final soma position with user-defined
rules (see Materials and Methods for details) and by moving the cell along the line connecting the two
positions for a defined number of drifting steps (50 by default). An example of a drifting template is
depicted in Figure 6A, alongside with the drifting neuron’s soma locations.

Once a library of drifting templates is generated, drifting recordings can be simulated. Depending
on the drifting velocity, the drifting template is replayed so that, for each spike, the correct drifting
template is selected for convolution. In Figure 6B, we show an example with four drifting cells, a
drifting velocity of 20 pm/s, and a duration of 60 seconds. The colored arrows show the initial and
final positions of the four neurons making up the recording. Note that a drifting velocity of 20 pm/s
is much larger than normal experimental drifts, and it has been chosen to illustrate the drifting
phenomenon. Figure 6C shows the waveforms and the average waveforms for the four neurons on the

2e.g. https://github.com/MouseLand/Kilosort2
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Figure 6: Drifting. (A) Example of a drifting template. The colored asterisks on the left show the
trajectory from the initial (blue large asterisk) to the final (red large asterisk) neuron positions. The
positions are in the x-y coordinates of the probe plane, and the electrode locations are depicted as black
dots. The corresponding templates are displayed at the electrode locations with the same colormap,
showing that the template peak is shifted upwards following the soma position. (B) 60-second drifting
recording with four neurons moving at a velocity of 20 pm/s. The colored arrows show the initial and
final soma positions for each neuron. (C) Waveforms and average waveforms on the electrode with the
largest peak for each of the four neurons in the recording. (D) Amplitude of the waveforms over time
recorded on the electrode with the largest initial peak. Drifting results in a slow change of amplitude
over the course of the recording.
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electrode with the largest peak. In this case, the variability is mainly due to the relative movement
between the cell and the probe. This can be observed by visualizing the waveform amplitude for each
spike over time (Figure 6C - each color is a different neuron).

Modeling experimental noise

Spike sorting performance can be greatly affected by noise in the recordings. Many algorithms first
use a spike detection step to identify putative spikes. The threshold for spike detection is usually set
depending on the noise standard deviation or mean average deviation [38]. Clearly, recordings with
larger noise levels will result in higher spike detection thresholds, hence making it harder to robustly
detect lower amplitude spiking activity. In addition to the noise amplitude, other noise features can
affect spike sorting performance: some clustering algorithms, for example, assume that clusters have
Gaussian shape, due to the assumption of an additive normal noise to the recordings. Moreover,
the noise generated by biological sources can produce spatial correlations in the noise profiles among
different channels and it can be modulated in frequency |6, 40].

To investigate how the above-mentioned assumptions on noise can affect spike sorting performance,
MEArec can generate recordings with several noise models. Figure 7 shows 5-second spiking-free record-
ings of a tetrode probe for five different noise profiles that can be generated (A - recordings, B -
spectrum, C - channel covariance, D - amplitude distribution).

The first column shows uncorrelated Gaussian noise, which presents a flat spectrum, a diagonal
covariance matrix, and a symmetrical noise amplitude distribution. In the recording in the second
column, spatially correlated noise was generated as a multivariate Gaussian noise with a covariance
matrix depending on the channel distance. Also in this case, the spectrum (B) presents a flat profile
and the amplitude distribution is symmetrical (D), but the covariance matrix shows a correlation
depending on the inter-electrode distance. As previous studies showed |6, 40], the frequency content
of extracellular noise is not flat, but its spectrum is affected by the spiking activity of distant neurons,
which appear in the recordings as below-threshold biological noise. To reproduce the spectrum profile
that is observed in experimental data, MEArec allows coloring the noise spectrum of Gaussian noise with
a second order infinite impulse response (IIR) filter (see Materials and Methods for details). Colored
noise represents an efficient way of obtaining the desired spectrum, as shown in the third and fourth
columns of Figure 7, panel B. Distance correlation is maintained (panel C - fourth column), and the
distribution of the noise amplitudes is symmetrical. Finally, a last noise model enables one to generate
activity of distant neurons. In this case, noise is built as the convolution between many neurons (300 by
default) whose template amplitudes are below an amplitude threshold (10 1V by default). A Gaussian
noise floor is then added to the resulting noise, which is scaled to match the user-defined noise level.
The far-neurons noise profile is shown in the last column of Figure 7. While the spectrum and spatial
correlation of this noise profile are similar to the ones generated with a colored, distance-correlated
noise (4th column), the shape of the noise distribution is skewed towards negative values (panel D),
mainly due to the negative contribution of the action potentials.

The capability of MEArec to simulate several noise models enables spike sorter developers to assess
how different noise profiles affect their algorithms and to modify their methods to be insensitive to
specific noise assumptions.

Testbench for spike sorting development and assessment

In the previous sections, we have shown several examples on how MEArec is capable of reproducing
several aspects of extracellular recordings which are critical for spike sorting performance, in a fully
reproducible way. The proposed design and its integration with a spike sorting evaluation framework
called SpikeInterface® enables developers to actively include customized simulations in the spike
sorting development phase.

Shttps://github.com/SpikeInterface
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Figure 7: Noise models. The 5 columns refer to different noise models: 1) Uncorrelated Gaussian noise,
2) Distance-correlated Gaussian noise, 3) Colored uncorrelated Gaussian noise, 4) Colored distance-
correlated Gaussian noise, and 5) Noise generated by distant neurons. (A) One-second spiking-free
recording. (B) Spectrum of the first recording channel between 10 and 5000 Hz. (C) Covariance matrix
of the recordings. (D) Distribution of noise amplitudes for the first recording channel. The different
noise models vary in the spectrum, channel correlations, and amplitude distributions.

Due to its speed and controllability, we see MEArec as a testbench, rather than a benchmark tool.
We provide here a couple of examples. In Figure 8A, we show a one-second section of recordings
simulated on a Neuronexus-32 probe with fixed parameters and random seeds regarding template
selection and spike train generation, but with four different levels of additive Gaussian noise, with
standard deviations of 5, 10, 20, and 30 pV (Appendix B contains the Python code used to generate
and plot these recordings). The traces show the same underlying spiking activity, so the only variability
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Figure 8: MEArec as testbench platform for spike sorting. (A) Four one-second snippetd of recordings
generated with a different noise level parameter (5 - red, 10 - green, 20 - blue, and 30 pV - blue
The underlying spiking activity is exactly the same for all recordings, and the only difference lie in
the standard deviation of the underlying uncorrelated Gaussian noise. (B) Three drifting recordings
generated with a different drifting velocity parameter (10 - green, 30 - blue, and 60 um/s - blue). Also
in this case, the underlying spiking activity is the same, but it can be observed how the different speeds
result in a modification of waveforms over time.

Nt

in spike sorting performance will be due to the varying noise levels. Similarly, in Figure 8B, 1-minute
drifting recordings were simulated with three different drifting velocities. The recordings show that for
low drifting speeds the waveform changes are almost not visible (green traces), while for faster drifts
(orange and blue traces), the waveform changes over time become more important.

The capability of MEArec of reproducing such behaviors in a highly controlled manner could aid
in the design of specific tests for measuring and quantifying the ability of a spike sorting software
to deal with specific complexities in extracellular recordings. Other examples include simulating a
recording with increasing levels of bursting in order to measure to what extent bursting units are
correctly clustered, or changing the synchrony rate of spatially overlapping units to assess how much
spatio-temporal collisions affect performance.

Integration with Spikelnterface We have recently developed SpikeInterface, a Python-based
framework for running several spike sorting algorithms, comparing, and validating their results. MEArec
can be easily interfaced to SpikeInterface so that simulated recordings can be loaded, spike sorted,
and benchmarked with a few lines of code. In the following example, a MEArec recording is loaded,
spike sorted with Mountainsort4 [8] and Kilosort2? [37], and benchmarked with respect to the
ground-truth spike times available from the MEArec simulation:

import spikeextractors as se
import spiketoolkit as st

“https://github.com/MouseLand/Kilosort2
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# loading MEArec recording

recording = se.MEArecRecordingExtractor('path-to-recording.h5")
# loading ground-truth sorting

sorting GT = se.MEArecSortingExtractor('path-to-recording.h5")

# run several spike sorters
sorting MS4 = st.sorters.run_mountainsort4(recording)
sorting_KS2 = st.sorters.run_kilosort2(recording)

# compare with ground-truth and get performance
cmp_GT_MS4 = st.comparison.compare_sorter_to_ground_truth(sorting GT, sorting_MS4)
cmp_GT_KS2 = st.comparison.compare_sorter_to_ground_truth(sorting_GT, sorting_KS2)

# get and print performance
cmp_GT_MS4.get_performance ()
cmp_GT_KS2.get_performance ()

The combination of MEArec and SpikeInterface represents a powerful tool for systematically
testing and comparing spike sorter performances with respect to several complications of extracellular
recordings. MEArec simulations, in combination with SpikeInterface, are already being used by other
groups to benchmark and compare spike sorting algorithms®.

Performance considerations

As a testbench tool, the speed requirement has been one of the main design principle of MEArec. In
order to achieve high speed, most parts of the simulation process are fully parallelized. As shown in
Figure 2, the simulations are split in templates and recordings generation. The templates generation
phase is the most time consuming, but the same template library can be used to generate several
recordings. This phase is further split in two sub-phases: the intracellular and extracellular simulations.
The former only needs to be run once, as it generates a set, of cell model-specific spikes that are stored
and then used for extracellular simulations, which is instead probe specific.

We present here run times for the different phases of the templates generation and for the record-
ings generation. All simulations were run on an Ubuntu 18.04 Intel(R) Core(TM) i7-6600U CPU @
2.60GHz, with 16 GB of RAM.

The intracellular simulation run time for the 13 cell models shipped with the software was ~ 130
seconds (~ 10 seconds per cell model).

Run times for extracellular simulations for several probe types, number of templates in the library,
and drifting templates are shown in the Templates generation section of Table 1. The run times for
this phase mainly depend on the number of templates to be generated (N templates column), on
the minimum amplitude of accepted templates (Min. amplitude column), and especially on drifting
(Drifting column). When simulating drifting templates, in fact, the number of actual extracellular
spikes for each cell model is N templates times N drift steps. Note that in order to generate the far-
neurons noise model, the minimum amplitude should be set to 0, so that low-amplitude templates are
not discarded. The number of templates available in the template library will be the specified number
of templates (N templates) times the number of cell models (13 by default).

Recordings are then generated using the simulated template libraries. In Table 1, the Recordings
generation section shows run times for several recordings with different probes, durations, number of
cells, bursting, and drifting options. The main parameter that affects simulation times is the number
of cells, as it increases the number of modulated convolutions. Bursting and drifting behavior also
increase the run time of the simulations, because of the extra processing required in the convolution

Shttps://spikeforest.flatironinstitute.org
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Templates generation

Probe N templates N channels  Min. amplitude  Drifting N drift steps  Run time (s)
tetrode-mea-1 30 4 30 No - 169
tetrode-mea-1 100 4 30 No - 588
tetrode-mea-1 100 4 0 No - 236
Neuronexus-32 100 32 30 No - 567
Neuropixels-128 100 128 30 No - 809
SqMEA-10-15 30 100 30 No - 1027
Neuronexus-32 30 32 30 Yes 50 2000
Recordings generation

Probe N cells N channels  Duration Bursting  Drifting Run time (s)
tetrode-mea-1 6 4 10 No No 2
tetrode-mea-1 6 4 600 No No 27
Neuronexus-32 20 32 30 No No 12
Neuronexus-32 20 32 30 Yes No 45
Neuropixels-128 60 128 30 No No 62
SqMEA-10-15 50 100 30 No No 48
Neuronexus-32 4 32 60 No Yes 20
Neuronexus-32 20 32 60 No Yes 53

Table 1: Templates and recordings generation run times depending on several simulation parameters.

step. The simulation run times, however, range from a few seconds to a few minutes. Therefore, the
speed of MEArec enables users to generate numerous recordings with different parameters for testing
spike sorter performances.

Discussion

In this paper we have presented MEArec, a Python package for simulating extracellular recordings for
spike sorting development and validation. We first showed the ease of use of the software, whose
command line interface and simple Python API enable users to simulate extracellular recordings with
a couple of commands or a few lines of code. We then introduced an overview of the software function,
consisting in separating the templates and the recordings generation to improve efficiency and simula-
tion speed. We explored the capability of reproducing and controlling several aspects of extracellular
recordings which can be critical for spike sorting algorithms, including spikes in a burst with varying
spike shapes, spatio-temporal overlaps, drifting units, and noise assumptions. We illustrated two ex-
amples of using MEArec, in combination with SpikeInterface’, as a testbench platform for developing
spike sorting algorithms. Finally, we benchmarked the speed performance of MEArec (Table 1).
Investigating the validation section of several recently developed spike sorting algorithms [41, 37,
26, 22, 25, 27, 43|, it is clear that the neuroscientific community needs a standardized validation
framework for spike sorting performance. Some spike sorters are validated using a so called hybrid
approach, in which well-identified units from previous experimental recordings are artificially injected
in the recordings and used to compute performance metrics [41, 37]. The use of templates extracted
from previously sorted datasets poses some questions regarding the accuracy of the initial sorting, as
well as the complexity of the well-identified units. Alternatively, other spike sorters are validated on
experimental paired ground-truth recordings [8, 43]. While these valuable datasets [19, 21, 35, 31|
can certainly provide useful information, the low count of ground-truth units makes the validation
incomplete and could result in biases (for example algorithm-specific parameters could be tuned to
reach a higher performance for the recorded ground-truth units). A third validation method consist
of using simulated ground-truth recordings [11]. While this approach is promising, in combination
with experimental paired recordings, the current available simulators [6, 18, 33| present some limita-
tions in terms of biological realism, controllability, speed, and/or ease of use (see Introduction). We
therefore introduced MEArec, a software package which is computationally efficient, easy to use, highly
controllable, and capable of reproducing critical characteristics of extracellular recordings relevant to

Shttps://github.com/SpikeInterface
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spike sorting, including bursting modulation, spatio-temporal overlaps, drifting of units over time, and
various noise profiles.

The capability of MEArec to replicate complexities in extracellular recordings which are usually
either ignored or not controlled in other simulators, permits the user to include tailored simulations in
the spike sorting implementation process, using the simulator as a testbench platform for algorithm
development. MEArec simulations could not only be used to test the final product, but specific simula-
tions could be used to help implementing algorithms that are able to cope with drifting, bursting, and
spatio-temporal overlap, which are regarded as the most complex aspects for spike sorting performance
[40, 43].

In MEArec, in order to generate extracellular templates, we used a well-established modeling frame-
work for solving the single neuron dynamics 7], and for calculating extracellular fields generated by
transmembrane currents [29, 18|. These models have some assumptions that, if warranted, could be
addressed with more sophisticated methods, such as finite element methods (FEM). In a recent work
[5], we used FEM simulations and showed that the extracellular probes, especially MEAs, affect the
amplitude of the recorded signals. While this finding is definitely interesting for accurately model-
ing and understanding how the extracellular potential is generated and recorded, it is unclear how it
would affect the spike sorting performance. Moreover, when modeling signals on MEAs, we used the
method of images [34, 5|, which models the probe as a infinite insulating plane and better describes
the recorded potentials for large MEA probes [5].

Secondly, during templates generation, the neuron models were randomly moved around and rotated
with physiologically acceptable values [4]. In this phase, some dendritic trees might unnaturally cross
the probes. We decided to not modify the cell models and allow for this behavior for sake of efficiency
of the simulator. The modification of the dendritic trees for each extracellular spike generation would
in fact be too computationally intense. However, since the templates generation phase is only run once
for each probes, in the future we plan to both to include the probe effect in the simulations and to
carefully modify the dendritic positions so that they do not cross the probes’ plane.

Another limitation of the proposed modelling approach is in the replication of bursting behavior.
We implemented a simplified bursting modulation that attempts at capturing the features recorded
from extracellular electrodes by modifying the template amplitude and shape depending on the spik-
ing history. However, more advanced aspects of waveform modulation caused by bursting, including
morphology-dependent variation of spike shapes, cannot be modelled with the proposed approach,
and their replication requires a full multi-compartment simulation [18]. Nevertheless, the suggested
simplified model of bursting could be a valuable tool for testing the capability of spike sorters to deal
with this phenomenon.

Finally, the current version of MEArec only supports cell models from the Neocortical Microcircuit
Portal |30, 39|, which includes models from juvenile rat somatosensory cortex. The same cell model
format is also being used to build a full hippocampus model [32] and other brain regions, and therefore
the integration of new models should be straightforward. Moreover, we are in the process of extending
the supported cell models for the Allen Brain Institute database [16]7, which contains models from
mice and human cells. Further, by design, the templates and recordings generation phases are split.
Therefore, the recordings generation mechanism could also be used, in principle, for user-defined
template libraries, either from other unsupported cell models or from units extracted from experimental
recordings.

In conclusion, we introduced MEArec, which is a Python-based simulation framework for extracellu-
lar recordings. Thanks to its speed and controllability, we see MEArec to aid both the development and
validation spike sorting algorithms and to help understanding the limitation of current methods, to
improve their performance, and to generate new software tools for the hard and still partially unsolved
spike sorting problem.

"https://celltypes.brain-map.org/

17

93



bioRxiv preprint first posted online Jul. 3, 2019; doi: http://dx.doi.org/10.1101/691642. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Materials and Methods

Templates generation

This section explains the templates generation phase of the simulator (Figure 2A). Table 2 shows
the list of parameters involved in this phase, their default values, types, and an explanation of their
function.

MEArec is compatible with realistic multi-compartment neuronal models from the Neocortex Mi-
crocircuit Portal (NMC - (39, 30]). Upon installation, 13 cell models from layer 5 are copied in the
package folder. Moreover, the user can manually download other cell models from the portal and use
them for the simulation.

Intacellular simulation

The neuronal model dynamics is solved using the NEURON simulator |7]. The neuron’s soma is stimu-
lated with a constant current for a user-defined simulation time (1 secondecond by default - sim_time
parameter) and the stimulation weight is adjusted (using the weights parameter) so that the num-
ber of spikes in the simulation period is within a target interval (between 3 and 50 by default -
target_spikes parameter). The stimulation starts after delay ms from the start of the simulation
to avoid initialization artifacts. The simuation time step is defined by the parameter dt (default is
0.03125 ms, corresponding to 32 kHz). Single spikes are then detected by threshold crossing, aligned,
and cropped (using the cut_out parameter). The transmembrane currents of all segments are saved
to disk, so that the intracellular simulation only needs to be run once for each cell model.

Extracellular simulation

Transmembrane currents generated by the intracellular simulation are used to compute extracellular
potentials at the electrode locations using LFPy [17]. Transmembrane currents are distributed over a
line source with the length of its corresponding neural segment. Using the quasi-static approximation
[36] and with the assunmption of a homogeneous, isotropic, and infinite neural tissue with conductivity
o =0.3S/m [15], the contribution of each compartment ¢ at position r; with transmembrane current
I;(t) to the electric potential on an electrode at position r; reads [23, 17, 4]:

1 dr;
i) = 310 [ S

While the assumption of an infinite milieu holds for small probes, such as microwires and tetrodes,
when using larger silicon probes, the use of the method of images (Mol) [34] can yield a better estimate
of the extracellular potential [5|. Using Mol, the contribution of a transmembrane current to an
electrode at position r; reads:

1 dT‘i
Bi(rj,t) = %Ii(t) / Ty —mill (2)

The simulated extracellular spike is obtained by summing up the contributions of all compartments.
For each recording site, the electric potential can be computed on several points within the electrode
area (ncontacts parameter - 10 points by default), that are then averaged to model the spatial filtering
properties of the electrodes (disk-electrode approximation [29]).

Each cell model, during the templates generation phase, is used to generate several spikes (n
parameter - 50 by default). For each extracellular action potential, the neuron is randomly moved
to a position within user-defined boundaries (x1im, ylim, zlim parameters). If the boundary for a
specific axis is set to null, the limits are computed as the boundary of the probe in that axis plus the
overhang value (default 30 pm). Moreover, a random rotation of the model can be optionally added
(rot parameter). The models can be only shifted (norot), rotated along a single axis (xrot, yrot,

zrot), rotated with a physiological rotation (physrot), or rotated randomly along all axes (3drot). For
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further details we refer to [4]. Extracellular spikes are included in the dataset only if their maximum
amplitude is greater than a user-defined minimum amplitude (min_amp parameter - 30 pV by default).
In order to use the far-neurons noise model (Figure 7), the minimum amplitude parameter should be
set to 0, so that low amplitude templates are not discarded.

Probe models

Probe models are handled using the MEAutility Python package (https://meautility.readthedocs.
io/), which is automatically installed upon MEArec installation. The probe type can be chosen us-
ing the probe parameter (if not set, a random probe will be selected). MEAutility contains a large
variety of available probe designs, e.g. commercial Neuronexus probes, Neuropixels [26], and high-
density square MEA (Figure 3), and it also allow users to define new probes using a yaml file or a
Python dictionary. The probe definition contains information about the number and arrangement of
the electrodes, the electrode shape and size (used for spatial filtering), the plane in which electrodes
are located, and the probe type (wire or mea), which tells the simulator whether to use the infinite
assumption (Equation 1) or Mol (Equation 2) for the extracellular potential calculation. In order to
list the available probes and their information, one can use the mearec available-probes --info
command.

Drifting templates

When inserting recording probes in the brain, over time there might be relative movement between
the probe and the tissue, which causes a so-called drift in the recorded action potentials. In order to
incorporate this phenomenon in the simulation of the recordings, drifting templates has to be generated
(when the drifting parameter is set to true). From an initial random position of the cell model which
satisfies the requirements in terms of location (within boundaries) and amplitude (above the detection
threshold) a final drifting position is found so that the same conditions are satisfied. Moreover, the
user can choose preferred drifting direction by setting the drift_xlim, drift_ylim, and drift_zlim
parameters. When the final position is selected, the cell model is moved along a straight line connecting
the initial and final position and the extracellular spike is simulated for drift_steps equidistant points
(30 points by default) along this line (Figure 6A).

The templates generation phase can be reproduced by setting the seed parameter, which is ran-
domly selected if it is set no null.

Recordings generation

When a template library is generated, it can be used to generate many recordings, as shown in Fig-
ure 2B. Tables 3 and 4 show the list of parameters involved in the recordings generation phase, their
default values, types, and an explanation of their function.

Spike trains generations

In order to obtain the spiking activity, spike trains have to be generated. All the spike train generation
parameters can be found in the spiketrains section of the recordings parameters.

Spike trains can be generated either as Poisson or Gamma processes (process parameter). If the
Gamma process is selected, its shape is controlled by the gamma_shape parameter (default is 2). The
user can decide the number of excitatory (n_exc) and inhibitory neurons (n_inh) in the recordings.
The average and standard deviation of the firing rates of excitatory and inhibitory neurons can be
chosen (with the f_exc, f_inh, st_exc, and st_inh parameters), as well as the minimum accepted
firing rate (min_rate - default 0.5 Hz). Alternatively, the user can define the type (E-I) and mean
firing rate of all neurons in the recordings. As Poisson and Gamma processes do not have a minimum
inter-spike-interval, spikes violating a refractory period (ref_per - 2ms by default) are removed from
the spike trains. Finally, the duration of the spike trains sets the duration of the recordings (duration
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Parameter Value Type Explanation

Intracellular simulation settings

sim__time 1 float intracellular simulation time in seconds
target _spikes [3, 50] list (int) min-max number of spikes in sim_time
cut_out [2, 5] list (float)  pre-post peak cut_out in ms

dt 0.03125 float time step in ms (default is 32 kHz)
delay 10 float stimulation delay in ms

weights [0.25, 1.75] list (float)  weights to multiply stimulus amplitude

if number of spikes is above (0.25)
or below (1.25) target spikes

Extracellular simulation settings

rot physrot string rotation to apply to cell models
(norot, xrot, yrot, zrot, physrot, 3drot)
probe Neuronexus-32  string extracellular probe (if null an available
probe is randomly chosen)
ncontacts 10 int number of contacts per recording site
overhang 30 float extension in pm beyond MEA boundaries for
neuron locations (if corresponding lim is null)
xlim [10,80] list (float)  limits (low, high) for neuron locations
in the x-axis in pm
ylim null list (float)  limits (low, high) for neuron locations
in the y-axis in pm
zlim null list (float)  limits (low, high) for neuron locations
in the z-axis in pm
min_amp 30 float minimum template amplitude
n 50 int number of spikes per cell model
n_overlap_pairs null int number of spatially overlapping templates
drifting False bool if True, drifting templates are simulated
max_drift 100 float maximum distance from the initial
and final cell position
min_ drift 30 float minimum distance from the initial
and final cell position
drift _steps 30 int number of drift steps
drift_xlim [-10, 10] list (float)  limits (low, high) for neuron drift
locations in the x-axis (depth)
drift _ylim [-10, 10] list (float)  limits (low, high) for neuron drift
locations in the y-axis (depth)
drift _zlim [20, 80] list (float)  limits (low, high) for neuron drift
locations in the z-axis (depth)
seed null int random seed for positions and rotations

Table 2: Templates generation parameter list, values, types, and explanations.

parameter), and the user can set the random seed for spike train generation (seed parameter in the
spiketrains section). Spike trains are represented as neo.SpikeTrain objects [14].

Excitatory and inhibitory cell types

The cell_types section of the recordings parameters tells the simulator which cell types are excitatory
and which are inhibitory. For all cell models in the Neocortical Microcircuit Portal [39], excitatory
cells can be pyramidal cells (PC), star pyramidal cells (SP), and stellate cells (SS). The population
of inhibitory cells is more diverse and it includes: axon cells (AC), bipolar cells (BP), bitufted cells
(BTC), basket cells (BC), Chandelier cells (ChC), double bouquet cells (DBC), Martinotti cells (MC),
and neurogliaform cells (NGC) [30]. This substrings are used to identify the cell models belonging to
the excitatory and inhibitory group for the template selection process.

Template selection and pre-processing

After spike trains are generated, templates are selected from the template library and associated with
each spike train. The parameters involved in the template selection and pre-processing are in the
templates section of the recordings parameters.

Templates are chosen based on amplitude, distance, spatial overlap, and cell type. The selection
algorithm discards templates with a peak amplitude below and above user-defined threshold (min_amp
and max_amp parameters) and with a distance from already selected neurons below a minimum distance

20

96



bioRxiv preprint first posted online Jul. 3, 2019; doi: http://dx.doi.org/10.1101/691642. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

(min_dist parameter). Moreover, the user can select specific boundaries in the x-, y-, and z-direction
(x1im, ylim, and zlim parameter). If the boundaries are set to null (by default), there is no restriction
on the neurons’ location. Templates are chosen so that the number of excitatory and inhibitory
types matches the spike trains’ ones. Finally, the user can select the number of spatially overlapping
template pairs in the recordings (n_overlap_pairs parameter). Two templates A and B are identified
as spatially overlapping if the amplitude of template B on the electrode with largest amplitude for
template A is above 90% (overlap_threshold parameter) of its maximum amplitude, and viceversa.
The template selection seed can be set with the seed parameter in the templates section of the
recordings parameters.

When templates are selected, they are pre-processed before the convolution operation. First, the
templates are padded on both sides (by default extending the templates of 3 ms on each side - pad_len
parameter) in order to ensure a smooth convolution operation. The template baseline is first removed,
then the templates are extended in both directions by linearly interpolating their initial and final values
to 0. Finally, this linearly extended template is re-interpolated with a cubic spline.

Next, to model the time variation occurring during sampling, for each template n_jitter versions
are created (10 by default). Jittering is performed by upsampling the templates (8x by default -
upsample parameter) and shifting them randomly in time within a sampling period, before downsam-
pling them back to the original sampling frequency.

Recordings construction

In the recordings section of the recordings parameters, the user can set several parameters for the
recordings generation. If not specified, the sampling frequency of the recordings (fs parameter) is the
same as the generated templates (32 kHz by default), but the user can choose a different sampling
rate. In this case the templates are resampled using a polyphase filter. If the overlap parameter is
set to true, each spike is annotated as NO (no overlap), TO (temporal overlap), or STO (spatio-temporal
overlap). If the extract_waveforms parameter is set to true, after the recordings generation the
waveforms are extracted from the recordings and loaded to the spike train objects.

Overlapping spikes and spatio-temporal synchrony Spatio-temporal overlapping of spikes can
make spike sorting very challenging [37, 43]. In order to control how spike sorting is affected by the
rate of overlapping spikes, MEArec enables users to modify the spike trains in order to introduce a
controlled amount of spatio-temporal overlapping synchrony (Figure 5).

If the synchrony rate is set (sync_rate parameter), the spike trains of spatially overlapping tem-
plates are modified to reach the desired synchrony rate. If the chosen synchrony rate is lower than
the initial rate, spatio-temporal overlapping spikes are randomly removed from the spike trains. Con-
versely, when the chosen synchrony rate is greater than the initial rate, additional spikes that do not
violate the refractory period are randomly added to the corresponding spike trains until the desired
rate is reached. The additive spikes are jittered randomly within a user-defined interval (sync_jitt -
default +1 ms).

Modulated convolution Pre-processed templates and spike trains are combined with a customized
(modulated) convolution. The convolution step can be performed in parallel on chunks (20 seconds by
default - chunk_conv_duration parameter). In order the replicate the variability of spikes in experi-
mental data and computational models [1, 18], the convolution between spike trains and templates is
modulated, i.e. the template corresponding to each spike can be modified both in amplitude and in
shape (Figure 4).

There are three types of amplitude modulation available: 1) none (no modulation), 2) template,
3) electrode modulation (default). On top of amplitude modulation, when modulation is not none,
shape modulation can be used by setting the shape_mod parameter to true.

Amplitude modulation. The amplitude modulation consists of scaling the amplitude of each
spike event with a modulation value. When the template modulation is selected, the modulation
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value is the same for all the electrodes. When the electrode modulation is used, each electrode has a
slightly different modulation value. For the template and electrode modulation types, if the bursting
parameter is set to false, the modulation value is a random value drawn from a normal distribution
N(1, sdrand?), (where sdrand is 0.05 by default). As the distribution has mean equal 1, the average
amplitude of the resulting modulated spikes is the same as the original template. When the bursting
parameter is set to true, the modulation values are computed to reproduce the amplitude scaling
due to bursting behavior (see Figure 4A). The user can choose how many units will be affected by
bursting (n_bursting parameter). Consecutive spikes occurring within a user-defined bursting period
(max_burst_duration parameter - default 100 ms) are scaled with a sub-linear function (up to a
maximum number of consecutive spikes n_burst_spikes - 10 by default). The amplitude scaling for
the i-th consecutive spike within a bursting event is computed as:

avg_15%0—i exp decay

mod; = (c -max_burst_duration

where avg_isig—; is the average inter-spike-interval (ISI) from the first bursting spike to the cur-
rent spike in the bursting event, ¢ is the number of consecutive spikes encountered up to spike i,
max_burst_duration is the maximum bursting period (default 100 ms), and exp_decay is the ex-
ponent (0.1 by default). Additionally, the ISI-dependent modulation value is scaled a by a random
value drawn from a normal distribution at the template level (template modulation) or electrode level
(electrode modulation).

Shape modulation. When shape_mod is set to true, spikes are also modulated in shape. Shape
modulation consists of strecthing the template depending on its modulation value. The stretch is
achieved in the following way: first, the template time axis is centered to the template peak and scaled
so that its length is equal to 1 — we will refer to this centered and normalized time axis as x.; second,
z. is multiplied by the bursting_sigmoid parameter, which controls the amount of stretch — we will
refer to this transformed time axis as xy; then, a stretch factor s is computed for the entire template
(the same factor is computed for all electrodes) as the average modulation value of all electrodes (if
electrode modulation is used); if the stretch factor is less than 1, z; is projected on a sigmoid function:

1
= 05

(1 + exp—(1=s)zt)

Zs is now a non-linear stretched time axis. The template is interpolated on x5 with a cubic
spline and transformed back to the original time axis z.. The shape modulation with two different
bursting_sigmoid values is shown in Figure 4B. The amplitude of the shape-modulated template is
finally scaled with the modulation value to include the amplitude modulation.

T

Noise models and post-processing Additive noise is superimposed to the signals after the mod-
ulated convolution is finished. There are three types of noise models that can be set using the
noise_mode parameter: uncorrelated, distance-correlated, and far-neurons. The uncorrelated noise
model is an additive Gaussian noise with a user-defined standard deviation (noise_level parameter -
10 nV by default). The distance-correlated mode generates a multivariate normal noise with a covari-
ance matrix dependent on the distance between electrodes. The covariance between electrode i and
j is defined as ¢;; = dn/2.d;;, where d;; is the distance between the electrodes and dj, is the distance
at which the covariance is 0.5 (noise_half_distance parameter - 30 pm by default). Finally, the
far-neurons model generates noise as the activity of many neurons (far_neurons_n parameter - 300
by default) with small amplitudes (below far_neurons_max_amp - 101V by default). The population
of distant neurons has an excitatory/inhibitory ratio of far_neurons_exc_inh_ratio (default 0.8).
A random noise floor with a standard deviation of far_neurons_noise_floor (default 0.5) times the
standard deviation of the distant neurons’ spiking activity is added, in agreement with experimental
data [6].

Uncorrelated and distance-correlated noise types can also be modulated in frequency to match
the spectrum observed in experimental data |6, 17]. Extracellular spiking activity exhibit a peak in

22

98



All rights reserved. No reuse allowed without permission.

bioRxiv preprint first posted online Jul. 3, 2019; doi: http://dx.doi.org/10.1101/691642. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

Parameter Value Type Explanation

Spike trains

n_exc 7 int number of excitatory cells

n_inh 3 int number of inhibitory cells

f_exc 5 float average firing rate of excitatory cells in Hz

f_inh 15 float average firing rate of inhibitory cells in Hz

st_exc 1 float firing rate standard deviation of excitatory cells
in Hz

st_inh 3 float firing rate standard deviation of inhibitory cells
in Hz

min_rate 0.5 float minimum firing rate in Hz

ref per 2 float refractory period in ms

process poisson string process for spike train simulation (poisson-gamma)

gamma_shape 2 float gamma shape (for gamma process)

duration 10 float duration in seconds

seed null int random seed for spiketrain generation

Cell types

excitatory ['PC’, ’SS’, 'SP’| list (string) Excitatory cell types

inhibitory [’AC’, 'BP’, 'BC’,

‘BT ’ChC’, ’DBC’,
'MC’, 'NGC’] list (string)  Inhibitory cell types

Templates

min_ dist 25 float minimum distance between neurons

min_amp 50 float minimum spike amplitude in pV

max_amp 500 float maximum spike amplitude in pV

xlim null list (float) limits for neuron x in pm (min, max)

ylim null list (float) limits for neuron y in pm (min, max)

zlim null list (float) limits for neuron z in pm (min, max)

overlap _threshold 0.9 float threshold to consider two templates spatially
overlapping

n_jitters 10 int number of temporal jittered copies for each template

upsample 8 int upsampling factor to extract jittered copies

pad_len [3, 3] list (float) padding of templates in ms

seed null int random seed to select templates

Table 3: Recordings generation parameter list, values, types, and explanations.

frequency at around 300 Hz, a 1/f spectrum, and a random noise floor. Noise can be colored (when
the noise_color parameter is true) with a second order infinite impulse response (IIR) peak filter
and an additional gaussian noise floor. The frequency peak, quality factor, and weight of the random
noise floor can be set with the color_peak, color_g, and color_noise_floor parameters. Note that
with distance-correlated noise the correlation is slightly reduced by the color filter, as a random noise
floor is added.

Optionally, the signals can be filtered (by setting the filter to true) with an high-pass or band-
pass Butterworth filter of order filter_order (3 by default) and cutoff frequencies of filter_cutoff
(1300, 6000] Hz by default).

Drifting recordings When the drifting parameter is set to true, drifting recordings are generated.
The template library must have been generated with the drifting mode as well. The user can decide
the number of drifting units (n_drifting parameter). If n_drifting is null, all units will be drifting.

The generation of drifting recordings is only different in the template selection and modulated
convolution steps. In the template selection, in addition to the selection rules based on template
amplitude, inter-neuron distance, and spatial overlap, templates are selected if the angle between the
drifting direction (computed as the vector connecting the final and initial position) and a user-defined
preferred direction (preferred_dir parameter - [0, 0, 1| by default) is within an angle tolerance
(angle_tol parameter - 15° by default).

In the modulated convolution, the correct template among the drifting templates for each spike oc-
currence is selected based on the current drifting position computed as the initial position plus drifting
velocity times simulation time. The drifting velocity can be modified by the user (drift_velocity
parameter - 5 pm/min by default) and the user can decide to start the drift after t_start_drift
seconds.
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Parameter Value Type Explanation
Recordings
fs null int sampling frequency in Hz
(if null it is computed form the templates)
overlap False bool if True, temporal and spatial overlap are computed
for each spike (it may be time consuming)
extract_waveforms False bool if True, waveforms are extracted from recordings
sync_rate null float synchrony rate ([0-1]) for spike trains
of spatially overlapping templates
sync_ jitt 1 float jitter in ms for added synchronous spikes
modulation clectrode string type of modulation [none | template | electrode]

none - no modulation

template - each spike instance is modulated with the
same value on each electrode

electrode - each electrode is modulated separately

sdrand 0.05 float standard deviation of Gaussian modulation
bursting False bool if True, spikes are modulated in amplitude depending
on the IST
exp_ decay 0.1 float (bursting) experimental decay in
amplitude between consecutive spikes
n_burst_spikes 10 int (bursting) max number of ’bursting’ consecutive spikes
max_burst_ duration 100 float (bursting) duration in ms of maximum burst modulation
shape_mod False bool if True waveforms are stretched in shape with a sigmoid
transform depending on their modulation value
bursting _sigmoid 30 float sigmoid range used to stretch the template
n_ bursting null int number of bursting units. If null all units are bursting
chunk _conv_ duration 20 float chunk duration for convolution
(if running into MemoryError)
noise_ level 10 float noise standard deviation in uV
noise_ mode uncorrelated  string [uncorrelated | distance-correlated | far-neurons|
noise__ color False bool if True noise is colored resembling experimental noise
noise__half _distance 30 float (distance-correlated) distance between
electrodes in pm for which correlation is 0.5
far_neurons_n 300 int (far-neurons) number of far neurons to be simulated
far _neurons_max_amp 10 float (far-neurons) maximum amplitude of far neurons
far_neurons_noise_floor 0.5 float (far-neurons) percent of additive random noise
far _neurons_exc_inh_ratio 0.8 float (far-neurons) excitatory / inhibitory noisy neurons ratio [0-1]
color__peak 300 float (color) peak / cutoff frequency of resonating filter in Hz
color_q 2 int (color) quality factor of resonating filter
color_noise_ floor 0.5 float (color) percent of additive random noise
chunk _noise_ duration 0 float chunk duration for noise addition
seed null int random seed for noise generation
filter True bool if True recordings are filtered
filter _cutoff [300, 6000] float/list  filter cutoff frequencies in Hz
filter _order 3 int filter order
chunk _filter _duration 0 float chunk duration for filtering
drifting False bool if True drifitng recordings are simulated
n_ drifting null int number of drifting units. If null all units are drifing
preferred _dir [0, 0, 1] list preferred drifting direction
([0, 0, 1] is positive z, direction)
angle_ tol 15 float tolerance for direction in degrees
drift_velocity 5 float drift velocity in pm/min
t_start_ drift 0 float time in seconds after which drifting starts

Table 4: (Continued) Recordings generation parameter list, values, types, and explanations.

Statistical analysis

No statistical analysis is used in this contribution.

Code availability
The presented software package is available at https://github.com/alejoe91/MEArec and https:

//github.com/alejoe91/MEAutility (used for probe handling). The packages are also available on
pypi: https://pypi.org/project/MEArec/ - https://pypi.org/project/MEAutility/.
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Data availability

All the datsets generated for the paper and used to make figures are available on Zenodo at https:
//doi.org/10.5281/zenodo.3247736.
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Appendix A - command line interface (CLI)

MEArec implements a command line interface (CLI) to make templates and recordings generation easy
to use and to allow for scripting. In order to discover the available commands, the user can use the
--help option:

>> mearec --help
Usage: mearec [OPTIONS] COMMAND [ARGS]...

MEArec: Fast and customizable simulation of extracellular recordings on
Multi-Electrode-Arrays

Options:
--help Show this message and exit.

Commands :
available-probes Print available probes.
default-config Print default configurations.
gen-recordings Generates RECORDINGS from TEMPLATES.
gen-templates Generates TEMPLATES with biophysical simulation.

set-cell-models-folder Set default cell_models folder.
set-recordings-folder Set default recordings output folder.
set-recordings-params  Set default recordings parameter file.
set-templates-folder Set default templates output folder.
set-templates-params Set default templates parameter file.

Each available command can be inspected using the --help option:
>> mearec command --help

At installation, MEArec creates a configuration folder (.config/mearec) in which global settings
are stored. The default paths to cell models folder, templates and recordings output folders and
parameters can be set using the set-cell-models-folder, set- commands. By default, these files
and folders are located in the configuration folder.

>> mearec default-config

{'cell_models_folder': path-to-cell_models,
'recordings_folder': path-to-recordings-folder,
'recordings_params': path-to-recordings-params.yaml,
'templates_folder': path-to-templates-folder,
'templates_params': path-to-templates-params.yaml}

A list of available probes can be found by running the available-probes command:

>> mearec available-probes

Neuronexus-32 ---------- Neuronexus A1x32-Poly3-5mm-25s-177-CM32 probe.
32 circular contacts in 3 staggered columns.

Neuropixels-128 ---------- Neuropixels probe.
128 square contacts in 4 staggered columns.
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Neuropixels-24 ---------- Neuropixels probe.
24 square contacts in 4 staggered columns.

Neuropixels-384 ---------- Neuropixels probe.
384 square contacts in 4 staggered columns.

Neuropixels-64 ---------- Neuropixels probe.
64 square contacts in 4 staggered columns.

Neuroseeker-128 ---------- Neuroseeker probe.
128 square contacts in 4 columns.

SqMEA-10-15 ---------- Square MEA. 100 square contacts in 10x10 matrix configuration
with 15um pitch.

SQMEA-15-10 ---------- Square MEA. 225 square contacts in 15x15 matrix configuration
with 10um pitch.

SQMEA-5-30 ---------- Square MEA. 25 square contacts in 5x5 matrix configuration
with 30um pitch.

SQMEA-6-25 --------—- Square MEA. 36 square contacts in 6x6 matrix configuration
with 25um pitch.

SqMEA-7-20 ---------- Square MEA. 49 square contacts in 7x7 matrix configuration
with 20um pitch.

four-tetrodes ---------- 4 tetrodes on a shank with 100um inter-tetrode distance.
tetrode ---------- Microwire tetrode with 4 circular contacts.
tetrode-mea-d ---------- Silicon tetrode with 4 square contacts

in diamond configuration.

tetrode-mea-1 ---------- Silicon tetrode with 4 square contacts
in linear configuration.

tetrode-mea-s ---------- Silicon tetrode with 4 square contacts
in square configuration.

Finally, examples of templates and recordings generation commands can be found in the Results
section.
Appendix B - Python API example

MEArec implements a Python API for simulating both templates and recordings. The Python API is
recommended for generating recordings for testbench purposes. For example, the following script is
used to generate four recordings with varying noise level, shown in Figure 8A:

import MEArec as mr
import matplotlib.pylab as plt
import numpy as np
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# load template file as a TemplateGenerator object
template_file = 'path-to-template-file.h5'
tempgen = mr.load_templates(template_file)

# load default recording parameters
params = mr.get_default_recordings_params()

# set seeds for spike trains and template selection
params['spiketrains']['seed'] = 0
params['templates']['seed'] = 1

# list of noise levels
noise_levels = [30, 20, 10, 5]

# generate recordings

recordings_noise = []

for n in noise_levels:
print('Noise level:', n)
params['recordings'] ['noise_level'] = n
params['recordings'] ['seed'] = np.random.randint(1000)
recgen = mr.gen_recordings(tempgen=tempgen, params=params)
recordings_noise.append(recgen)

# plot recordings on the same axis
colors = plt.rcParams['axes.prop_cycle']l.by_key()['color']
fig = plt.figure()
ax = fig.add_subplot(111)
for i, rec in enumerate(recordings_noise):
ax = mr.plot_recordings(rec, colors=colors[i], ax=ax)

For additional examples, please refer to the Github page https://github.com/alejoe91/MEArec.
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Abstract

Given the importance of understanding single-neuron activity, much development has been di-
rected towards improving the performance and automation of spike sorting. These developments,
however, introduce new challenges, such as file format incompatibility and reduced interoperability,
that hinder benchmarking and preclude reproducible analysis. To address these limitations, we
developed Spikelnterface, a Python framework designed to unify preexisting spike sorting technolo-
gies into a single codebase and to standardize extracellular data file operations. With a few lines
of code and regardless of the underlying data format, researchers can: run, compare, and bench-
mark most modern spike sorting algorithms; pre-process, post-process, and visualize extracellular
datasets; validate, curate, and export sorting outputs; and more. In this paper, we provide an
overview of Spikelnterface and, with applications to both real and simulated extracellular datasets,
demonstrate how it can improve the accessibility, reliability, and reproducibility of spike sorting
in preparation for the widespread use of large-scale electrophysiology.

1 Introduction

Extracellular recording is an indispensable tool in neuroscience for probing how single neurons (and
populations of neurons) encode and transmit information. When analyzing extracellular recordings,
most researchers are interested in the spiking activity of individual neurons, which must be extracted
from the raw voltage traces through a process called spike sorting. Many laboratories perform spike
sorting using fully manual techniques (e.g. XClust [49], MClust [65], SimpleClust [71], Plexon Offline
Sorter |7]), but such approaches are nearly impossible to standardize due to inherent operator bias
[73]. To alleviate this issue, spike sorting has seen decades of algorithmic and software improvements
to increase both the accuracy and automation of the process [58|. This progress has accelerated in
the past few years as high-density devices [24, 11, 25, 9, 51, 75, 42, 36, 21, 8|, capable of recording
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from hundreds to thousands of neurons simultaneously, have made manual intervention impractical,
increasing the demand for both accurate and scalable spike sorting algorithms [61, 55, 40, 19, 74, 33, 35].

Along with these exciting advances, however, come unintended complications. Over the years, dozens
of new file formats have been introduced, a multitude of data processing and evaluation methods have
been developed, and an enormous amount of software, written in a variety of different programming
languages, has been made available for general-use. In an ideal world, standards and best-practices for
spike sorting would naturally arise from using these tools in experimental and clinical settings. How-
ever, due to the high complexity of spike sorting and a lack of interoperability among its corresponding
technologies, no clear standards exist for how it should be performed or evaluated [58, 10, 17]. Further-
more, the importance of publication for career development rewards proof-of-concept breakthroughs
at the expense of long-term maintenance of software tools. The lack of best practices, the scarcity of
well-maintained code, the dearth of rigorous benchmarking, and the high barrier to entry of using a
new spike sorter or file format all contribute to many laboratories either continuing to use manual spike
sorting techniques or arbitrarily settling on one automated algorithm and its corresponding suite of
analysis tools and supported file formats. Reproducibility, data provenance, and data sharing become
increasingly difficult as different laboratories adopt different spike sorting solutions [20].

Recent work to alleviate these issues has focused on tackling file format incompatibilities in electro-
physiology. This has led to progress in creating a common description of neurophysiological data both
with new software tools and file formats [72, 27, 70, 69, 67, 68|. Despite progress in defining a com-
mon standard, many different file formats are still widely used in electrophysiology, with more being
developed continuously [22]. Along with attempts to define common standards, much work has been
put into creating open-source analysis tools that make extracellular analysis and spike sorting more
accessible [23, 15, 32, 26, 30, 12, 41, 13, 53, 39, 44, 14, 57, 76, 52]. These software frameworks, while
valuable tools in electrophysiology, implement spike sorting as a small step in a larger extracellular
analysis pipeline, leading to undersupported, incomplete, and outdated spike sorting functionality.
Given the ever-increasing amount of spike sorting software and file formats, there is an urgent need for
an open-source analysis framework that is up-to-date with modern spike sorting methods, is agnostic
to the underlying file formats of the extracellular datasets, and is extendable to new technologies.

In this paper, we introduce Spikelnterface, the first open-source, Python! framework designed exclu-
sively to encapsulate all steps in the spike sorting pipeline. Spikelnterface overcomes both file format
incompatibilities and software interoperability in spike sorting with a intuitive application program in-
terface (API), and with a unified, extendable codebase of modern analysis tools. Using Spikelnterface,
researchers can: run, compare, and benchmark most modern spike sorters; pre-process, post-process,
and visualize extracellular datasets; validate, curate, and export sorting outputs; and more. This can
all be done regardless of the underlying data format as Spikelnterface addresses file format compat-
ibility issues within spike sorting pipelines without creating yet another file format. For developers,
Spikelnterface enables easy integration and evaluation of their spike sorting software, allowing for accel-
erated development and a constantly expanding codebase. We also introduce a graphical user interface
(GUI) based on Spikelnterface that allows for straightforward construction of spike sorting pipelines
without any Python programming knowledge. To illustrate the advantages of a unified framework
for spike sorting, we utilize Spikelnterface’s Python API and GUI to build a complex spike sorting
pipeline. We also use Spikelnterface to run, compare, and evaluate six modern spike sorters on both a
sample Neuropixels recording and a simulated, ground-truth recording. With these three use cases, we
demonstrate how Spikelnterface can help alleviate long-standing challenges in spike sorting. To clar-
ify, the main contribution of this work is a novel framework for running and comparing spike sorting
pipelines, not an exhaustive comparison of current spike sorting algorithms. All code for SpikeInterface
is open-source and can be found on GitHub?.

1We utilize Python as it is open-source, free, and increasingly popular in the neuroscience community [50, 29].
Zhttps://github.com/Spikelnterface
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2 Design Principles

SpikeInterface is designed to efficiently encapsulate all aspects of a spike sorting pipeline. To this end,
we apply a set of design principles. These principles inform both the project’s overall structure and
the implementation of specific functionalities.

Focused. Spikelnterface was designed to unify all operations related to the spike sorting of extra-
cellular recordings. Therefore, we did not attempt to incorporate any metadata from the underlying
experiments (stimulus information, behavioral readouts, etc.) as such a task is beyond the scope of
our problem statement. Also, we did not incorporate any analysis steps unrelated to spike sorting and
did not attempt to handle any other electrophysiological data such as intracellular or electroencephalo-
graphic recordings. Keeping this narrow focus makes Spikelnterface light-weight, scalable, easy to use,
and extendable.

Comprehensive. To do justice to years of research and development into spike sorting, we incor-
porated many existing extracellular file formats and the most current, semi-automatic spike sorters
into Spikelnterface. We also incorporated common pre- and post-processing methods, quality metrics,
evaluation and curation tools, and data visualization widgets. The broad range of methods and tech-
nologies that are supported makes Spikelnterface the most expansive spike sorting toolbox currently
available by a wide margin. For an overview of the current file formats and spike sorters that are
supported in Spikelnterface, see Table 1.

Modularized. The Spikelnterface codebase is separated into multiple, distinct modules which encap-
sulate individual processing steps shared across all spike sorting pipelines. In Section 3, we explain
this modularized and conceptualized structure and show how it can be utilized to build robust and
flexible spike sorting workflows. This design also makes SpikeInterface easily extendable, allowing new
formats, methods, and tools to be added rapidly. We encourage the community to contribute to its
further development.

Efficient. As we aim to support the analysis of large-scale extracellular recordings, much considera-
tion has been put into making Spikelnterface as memory- and computation-efficient as possible. For
instance, file input/output (I/O) operations are generally memory-mapped (only the data needed for a
computation are loaded into memory) and processing is parallelized where feasible. We also made sure
that running a spike sorter in our framework adds little to no extra computational cost in comparison
to running the same spike sorter outside of our framework.

Reproducible. Although spike sorting is an essential step in extracellular analysis, it is often difficult
to reproduce due to the variety of complex (and sometimes stochastic) processing steps performed on
the underlying dataset. We designed Spikelnterface to make spike sorting and all associated compu-
tation as reproducible as possible with a unified codebase, fixed random seeds, a standard API, and a
careful version control system. Laboratories using SpikeInterface can share and process extracellular
datasets with a guarantee that they get identical results for the same functions.

3 Overview of Spikelnterface

SpikeInterface consists of five main Python packages designed to handle different aspects of the spike
sorting pipeline: (i) spikeextractors, for extracellular recording, sorting output, and probe file I/O;
(ii) spiketoolkit for low level processing such as pre-processing, post-processing, validation, curation;
(iil) spikesorters for spike sorting algorithms and job launching functionality; (v) spikecomparison
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spikeinterface

.extractors .toolkit .sorters .comparison .widgets
spikeextractors spiketoolkit spikesorters spikecomparison spikewidgets
Recorded Data File 10 P"eD"OCESSi_nQ Spike Sorting Sorter Comparison Visualization Widgets

Sorted Data File 10 POS‘PFOCQSS'HQ Job Launching Ground Truth Comparison
Probe File 10 Validation Ground Truth Studies
Curation

Figure 1: Overview of Spikelnterface’s Python packages, their different functionalities, and how they
can be accessed by our meta-package, spikeinterface.

for sorter comparison, ground-truth comparison, and ground-truth studies; and (iv) spikewidgets,
for data visualization.

These five packages can be used individually or installed and used together with the spikeinterface
metapackage, which contains stable versions of all five packages as internal modules (see Figure 1).
With these five packages (or our meta-package), users can build, run, and evaluate full spike sorting
pipelines in a reproducible and standardized way. In the following subsections, we present an overview
of, and a code snippet for, each main package.

3.1 SpikeExtractors

The spikeextractors package® is designed to solve issues of file format incompatibility within spike
sorting without creating yet another file format. This goal is met by standardizing data retrieval
rather than data storage. By standardizing access to data from all spike sorting related files, whether
extracellular recordings or sorting outputs, we eliminate the need for shared file formats and can
allow for new tools and packages to directly interface with our framework instead. We distinguish
between three data files in spike sorting: the extracellular recording, the sorting output, and the probe
configuration. Being able to efficiently and easily interface with these three data file types is essential
for running and evaluating any spike sorting pipeline. To this end, we developed two Python objects
that can provide all the functionality required to access these data: the RecordingExtractor and the
SortingExtractor.

The RecordingExtractor directly interfaces with an extracellular recording and can query it for four
primary pieces of information: (i) the extracellular recorded traces; (ii) the sampling frequency; (iii) the
number of frames, or duration, of the recording; and (iv) the channel indices of the recording electrodes.
These data are shared across all extracellular recordings, allowing standardized access. In addition, a
RecordingExtractor may store extra information about the recording device as "channel properties"
which are key—value pairs. This includes properties such as "location", "group", and "gain" which are
either provided by certain extracellular file formats, loaded manually by the user, or loaded automati-
cally with our built-in probe file (.prb or .csv) reader. Taken together, the RecordingExtractor is an
object representation of an extracellular recording and the associated probe configuration.

The SortingExtractor directly interfaces with a sorting output and can query it for two primary pieces
of information: (i) the unit indices; and (ii) the spike train of each unit. Again, these data are shared
across all sorting outputs. A SortingExtractor may also store extra information about the sorting

Shttps://github.com/Spikelnterface /spikeextractors
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output as either "unit properties" or "unit spike features", key—value pairs which store information
about the individual units or the individual spikes of each unit, respectively. This extra information
is either loaded from the sorting output, loaded manually by the user, or loaded automatically with
built-in post-processing tools (discussed in Section 3.2). In sum, the SortingExtractor is an object
representation of a sorting output along with any associated post-processing.

Critically, Extractors only query the underlying datasets for information as it is required, reducing
their memory footprint and allowing their use for long, large-scale recordings. All extracted data is
converted into either native Python data structures or into numpy arrays for immediate use in Python.

The following code snippet illustrates how to return a 2D numpy array of raw data (channelsxtime)
from an extracellular recording and a list of unit indices from a sorting output:

import spikeinterface.extractors as se

recording = se.MyFormatRecordingExtractor(file_path='myrecording')
sorting = se.MyFormatSortingExtractor(file_path='mysorting')
traces = recording.get_traces()

unit_ids = sorting.get_unit_ids()

Along with using Extractors for single files, it is possible to access data from multiple files or portions
of files with the MultiExtractors and SubExtractors, respectively. Both have identical functionality
to normal Extractors and can be used and treated in the same ways, simplifying, for instance, the
combined analysis of a recording split into multiple files.

As of this moment, we support 15 extracellular recording formats, 11 sorting output formats, and 2
probe file formats. Although this covers many popular formats in extracellular analysis, we expect
this number to grow with future versions as supporting a new format is as simple as making a new
Extractor subclass for it. Also, we plan to integrate Neo’s [27] I/O system into spikeextractors
which would allow our framework to support many more open-source and proprietary file formats in
extracellular electrophysiology without changing any functionality.

3.2 SpikeToolkit

The spiketoolkit package! is designed for efficient pre-processing, post-processing, validation, and
curation of extracellular datasets and sorting outputs. It contains four modules that encapsulate each
of these functionalities: preprocessing, postprocessing, validation, and curation.

3.2.1 Pre-processing

The preprocessing module provides functions to process raw extracellular recordings before spike
sorting. To pre-process an extracellular recording, the user passes a RecordingExtractor to a pre-
processing function which returns a new "processed" RecordingExtractor. This new RecordingExtractor,
which can be used in exactly the same way as the original extractor, implements the processing in

a lazy fashion so that the actual computation is performed only when data is requested. As all pre-
processing functions take in and return a RecordingExtractor, they can be naturally chained together

to perform multiple pre-processing steps on the same recording.

4https://github.com/Spikelnterface/spiketoolkit

(S
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Pre-processing functions range from commonly used operations, such as bandpass filtering, notch filter-
ing, re-referencing signals, and removing channels, to more advanced procedures such as clipping traces
depending on the amplitude, or removing artifacts arising, for example, from electrical stimulation.

The following code snippet illustrates how to chain together a few common pre-processing functions
to process a raw extracellular recording:

import spikeinterface.spiketoolkit as st

recording = st.preprocessing.bandpass_filter(recording, freq min=300, freq_max=6000)
recording_1 = st.preprocessing.remove_bad_channels(recording, bad_channels=[5])
recording_2 = st.preprocessing.common_reference(recording_1, reference='median')

In this code snippet, recording_2 is still a RecordingExtractor. However, the extracted data when
using recording_2 will have channel 5 removed and the underlying extracellular traces bandpass
filtered and common median referenced to remove noise.

Overall, the pre-processing functions in Spikelnterface represent a wide range of tools that are used in
modern spike sorting applications and, since implementing a new pre-processor is straightforward, we
expect more to be added in future versions.

3.2.2 Post-processing

The postprocessing module provides functions to compute and store information about an extracel-
lular recording given an associated sorting output. As such, post-processing functions are designed to
take in both a RecordingExtractor and a SortingExtractor, using them in conjunction to compute
the desired information. These functions include, but are not limited to: extracting unit waveforms
and templates, as well as computing principle component analysis projections.

One essential feature of the postprocessing module is that it provides the functionality to export
a RecordingExtractor/SortingExtractor pair into the Phy format for manual curation later. Phy
[59, 61] is a popular manual curation GUI that allows users to visualize a sorting output with several
views and to curate the results by manually merging or splitting clusters. Phy is already supported
by several spike sorters (including klusta, Kilosort, Kilosort2, and SpyKING-CIRCUS) so our ex-
porter function extends Phy’s functionality to all Spikelnterface-supported spike sorters. After man-
ual curation is performed in Phy, the curated data can be re-imported into Spikelnterface using the
PhySortingExtractor for further analysis.

The following code snippet illustrates how to retrieve waveforms for each sorted unit, compute principal
component analysis (PCA) features for each spike, and export to Phy using Spikelnterface:

import spikeinterface.toolkit as st

waveforms = st.postprocessing.get_unit_waveforms(recording, sorting)

pca_scores = st.postprocessing.compute_unit_pca_scores(recording, sorting, n_comp=3)
st .postprocessing.export_to_phy(recording, sorting MS4, output_folder='phy_folder')

3.2.3 Validation

The validation module allows users to automatically evaluate spike sorting results in the absence of
ground truth with a variety of quality metrics. The quality metrics currently available are a compilation
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of historical and modern approaches that were re-implemented by researchers at Allen Institute for
Brain Science® and by the SpikeInterface team. All quality metrics can be computed for the entire
duration of the recording or for specific time periods (epochs) specified by the user.

The quality metrics that have been implemented so far include:

e spike count: the total spike count for a sorted unit.

e SNR: the signal-to-noise ratio (SNR) of the sorted units.

e firing rate: the average firing rate in a time period.

e presence ratio: the fraction of a time period in which spikes are present.

e ISI violations: the rate of inter-spike-interval (ISI) refractory period violations

e amplitude cutoff: an estimate of the miss rate based on an amplitude histogram.

e isolation distance: the Mahalanobis distance from a specified unit within as many spikes belong
to the specified unit as to other units [31].

o L-ratio: the Mahalanobis distance and 2 inverse cumulative density function (under the as-
sumption that the spikes in the unit distribute normally in each dimension) are used to find the
probability of unit membership for each spike [64].

e d': the classification accuracy between units based on linear discriminant analysis (LDA) [34].

e nearest-neighbors: a non-parametric estimate of unit contamination using nearest-neighbor clas-
sification [19].

o silhouette score: a standard metric for quantifying cluster overlap [62].

e maximum drift: the maximum change in spike position throughout a recording.

e cumulative drift: The cumulative change in spike position throughout a recording.

To compute quality metrics with Spikelnterface, the user can instantiate and use a MetricCalculator
object. The MetricCalculator utilizes a RecordingExtractor/SortingExtractor pair to generate
and cache all data needed to run the quality metrics (amplitudes, principal components, etc.) and
also to calculate any (or all) of the quality metrics. We also allow for quality metrics to be computed
with a functional interface. All quality metric function calls internally utilize a MetricCalculator,
concealing the object representation from the user.

The following code snippet demonstrates how to compute a single quality metric (SNR) and all quality
metrics with two function calls:

import spikeinterface.toolkit as st
snr_metric = st.validation.compute_snrs(sorting, recording)
all_metrics = st.validation.compute_metrics(sorting, recording)

Shttps://github.com/AllenInstitute/ecephys_spike sorting
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3.2.4 Curation

The curation module allows users to quickly remove units from a SortingExtractor based on com-
puted quality metrics. To curate a sorted dataset, the user passes a SortingExtractor to a curation
function which returns a new "curated" SortingExtractor (similar to how pre-processing works).
This new SortingExtractor can be used in exactly the same way as the original extractor. As all
curation functions take in and return a SortingExtractor, they can be naturally chained together to
perform multiple curation steps on the same sorting output.

Currently, all implemented curation functions are based on excluding units given a threshold that is
specified by the user (we provide sensible default values). If passed a MetricCalculator, curation func-
tions will threshold units based on the cached quality metrics that are stored in the MetricCalculator.
Otherwise, curation functions will recompute the associated quality metric and then threshold the
dataset accordingly.

The following code snippet demonstrates how to chain together two curation functions that are based
on different quality metrics and apply a "less than" threshold to the underlying units:

import spikeinterface.toolkit as st
sorting = st.curation.threshold_firing_rate(sorting, threshold=2.3,
threshold_sign='less')
sorting_1 = st.curation.threshold_snr(sorting, recording, threshold=10,
threshold_sign='less')

In this code snippet, sorting_1 is still a SortingExtractor. However, when queried about the
underlying units, sorting_1 will return only the units that had firing rates higher than 2.3 Hz and
SNRs greater than 10.

As of this moment, we support thresholding of all basic quality metrics including: spike count; SNR;
firing rate; presence ratio; and ISI violations. We plan to include curation tools for all implemented
quality metrics and for more complicated curation steps (merging, splitting, etc.) in future versions.

3.3 SpikeSorters

The spikesorters’ package provides a straightforward interface for running spike sorting algorithms
supported by Spikelnterface. Modern spike sorting algorithms are built and deployed in a variety
of programming languages including C, C++, MATLAB, and Python. Along with variability in the
the underlying program language, each sorting algorithm may depend on external technologies like
CUDA or command line interfaces (CLIs), complicating standardization. To unify these disparate
algorithms into a single codebase, spikesorters provides Python-wrappers for each supported spike
sorting algorithm. These spike sorting wrappers use a standard API for running the corresponding
algorithms, internally handling intrinsic complexities such as automatic code generation for MATLAB-
and CLI-based algorithms.

To allow for a simple, overarching API despite inherent differences between the sorting algorithms,
each sorting wrapper is implemented as a subclass of a BaseSorter class. To run a spike sorting
algorithm in Spikelnterface, the user passes a RecordingExtractor object to the wrapper and sets
parameters for the underlying algorithm. Internally, each spike sorter wrapper creates and modifies
the configuration based on these user-defined parameters and then runs the sorter on the dataset

Shttps://github.com/SpikeInterface/spikesorters
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encapsulated by the RecordingExtractor. Once the spike sorting algorithm is finished, the sorting
output is saved and a corresponding SortingExtractor is returned for the user. Spike sorters can be
invoked either by using the wrapper directly or by using a simple function call.

In the following code snippet, Mountainsort4 and Kilosort2 are used to sort an extracellular recording.
Running each algorithm (and setting its associated parameters) can be done using a single function:

import spikeinterface.sorters as ss
sorting_MS4 = ss.run_mountainsort4(recording, adjacency_radius=50)
sorting KS2 = ss.run_kilosort2(recording, detect_threshold=5)

Along with running each sorting algorithm normally, our spike sorting wrappers allow for users to sort
specific "groups" of channels in the recording separately (and in parallel, if specified). This can be very
useful for multiple tetrode recordings where the data are all stored in one file, but the user wants to
sort each tetrode separately. For large-scale analyses where the user wants to run many different spike
sorters on many different datasets, spikesorters also provides a launcher function which handles
any internal complications associated with running multiple sorters and returns a nested dictionary of
SortingExtractors corresponding to each sorting output.

Currently, Spikelnterface supports 9 semi-automated spike sorters which are listed in Table 1. We
encourage developers to contribute to this expanding list in future versions. We provide comprehensive
documentation on how to do so”.

3.4 SpikeComparison

The spikecomparison package® provides a variety of tools that allow users to compare and benchmark
sorting outputs. Along with these comparison tools, spikecomparison also provides the functional-
ity to run systematic performance comparisons of multiple spike sorters on multiple ground-truth
recordings.

Within spikecomparison, there exist three core comparison functions:

1. compare_two_sorters - Compares two sorting outputs.
2. compare_multiple_sorters - Compares multiple sorting outputs.

3. compare_sorter_with_ground_truth - Compares a sorting output to ground truth.

Each of these comparison functions takes in multiple SortingExtractors and uses them to compute
agreement scores among the underlying spike trains. The agreement score between two spike trains is
defined as:

score — HNmatches (1)
#n1 + #n2 — FNmatches

where #npatches 18 the number of "matched" spikes between the two spike trains and #nq and #ns
are the number of spikes in the first and second spike train, respectively. Two spikes from two different

"https://spikeinterface.readthedocs.io/en/latest/contribute.html
Shttps://github.com/Spikelnterface/spikecomparison
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spike trains are "matched" when they occur within a certain time window of each other (this window
length can be adjusted by the user and is 0.4 ms by default).

When comparing two sorting outputs (compare_two_sorters), a linear assignment based on the Hun-
garian method [38] is used. With this assignment method, each unit from the first sorting output can
be matched to at most one other unit in the second sorting output. The final result of this comparison
is then the list of matching units (given by the Hungarian method) and the agreement scores of the
spike trains.

The multi-sorting comparison function (compare_multiple_sorters) can be used to compute the
agreement among the units of many sorting outputs at once. Internally, pair-wise sorter comparisons
are run for all of the sorting output pairs. A graph is then built with the sorted units as nodes
and the agreement scores among the sorted units as edges. With this graph implementation, it is
straightforward to query for units that are in agreement among multiple sorters. For example, if three
sorting outputs are being compared, any units that are in agreement among all three sorters will be
part of a subgraph with large weights.

For a ground-truth comparison (compare_sorter_with_ground_truth), either the Hungarian or the
best-match method can be used. With the Hungarian method, each tested unit from the sorting output
is matched to at most a single ground-truth unit. With the best-match method, a tested unit from
the sorting output can be matched to multiple ground-truth units (above an adjustable agreement
threshold) allowing for more in-depth characterizations of sorting failures.

Additionally, when comparing a sorting output to a ground-truth sorted result, each spike can be
optionally labeled as:

e true positive (¢p): spike found both in the ground-truth spike train and tested spike train.

e false negative (fn): spike found in the ground-truth spike train, but not in the tested spike train.

e false positive (fp): spike found in the tested spike train, but not in the ground-truth spike train.
Using these labels, the following performance measures are computed:

acy: . #tp
® ACCUTACY: (o i,y

. #tp
e recall: ey

e precision: (#ﬁﬁiﬁﬂv)
; . #fn
e 1miss rate: i+ # )
i . #Ip

e false discovery rate: For i D)

Based on the matching results and the scores, the units of the sorting output are classified as well-
detected, false positive, redundant, and over-merged. Well-detected units are matched units with an
agreement score above 0.8. False positive units are unmatched units or units which are matched
with an agreement score below 0.2. Redundant units have agreement scores above 0.2 with only one
ground-truth unit, but are not the best matched tested units (redundant units can either be oversplit or

duplicate units). Over-merged units have an agreement score above 0.2 with two or more ground-truth
units. All threshold scores are adjustable by the user.
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The following code snippet shows how to perform all three types of spike sorter comparisons:

import spikeinterface.comparison as sc

comp_type_1 = sc.compare_two_sorters(sortingl, sorting2)

comp_type_2 = sc.compare_multiple_sorters([sortingl, sorting2, sorting3])
comp_type_3 = sc.compare_sorter_with_ground_truth(gt_sorting, tested_sorting)

Along with the three comparison functions, spikecomparison also includes a GroundTruthStudy class
that allows for the systematic comparison of multiple spike sorters on multiple ground-truth datasets.
With this class, users can set up a study folder (in which the recordings to be tested are saved),
run several spike sorters and store their results in a compact way, perform systematic ground-truth
comparisons, and aggregate the results in pandas dataframes [48]. An example ground-truth study is
shown in Section 5.2.

3.5 SpikeWidgets

The spikewidgets package’ implements a variety of widgets that allow for efficient visualization of
different elements in a spike sorting pipeline.

There exist four categories of widgets in spikewidgets. The first one only needs a RecordingExtractor
for its visualization. This category includes widgets for time series, electrode geometry, signal spectra,
and spectrograms. The second category only needs a SortingExtractor for its visualization. These
widgets include displays for raster plots, auto-correlograms, cross-correlograms, and inter-spike-interval
distributions. The third category utilizes both a RecordingExtractor and a SortingExtractor for
its visualization. These widgets include visualizations of unit waveforms, amplitude distributions for
each unit, amplitudes of each unit over time, and PCA features. The fourth, and final, category needs
comparison objects from the spikecomparison package for its visualization. These widgets allow the
user to visualize confusion matrices, agreement scores, spike sorting performance metrics (e.g. accu-
racy, precision, recall) with respect to a unit property (e.g. SNR), and the agreement between multiple
sorting algorithms on the same dataset.

The following code snippet demonstrates how Spikelnterface can be used to visualize ten seconds of
both the extracellular traces and the corresponding raster plot:

import spikeinterface.widgets as sw
sw.plot_timeseries(recording, channel_ids=[0,1,2,3], trange=[0,10])
sw.plot_rasters(sorting, unit_ids=[0,1,3], trange=[0,10])

The widget class is easily extendable, and will likely grow rapidly as new visualization tools are added.
We also plan to introduce interactive widgets that allow the user to quickly explore the underlying
elements of a spike sorting pipeline.

4 Building a Spike Sorting Pipeline

So far, we have given an overview of each of the main packages in isolation. In this section, we illustrate
how these packages can be combined, using both the Python API and the Spikely GUI, to build a

9https://github.com/Spikelnterface/spikewidgets
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robust spike sorting pipeline. The spike sorting pipeline that we construct using Spikelnterface is
depicted in Figure 2A and consists of the following analysis steps:

1. Loading an Open Ephys recording [66].

. Loading a probe file.

. Applying a bandpass filter.

. Applying common median referencing to reduce the common mode noise.
. Spike sorting with Mountainsort4.

. Removing clusters with less than 100 events.

N O ot s W N

. Exporting the results to Phy for manual curation.

Traditionally, implementing this pipeline is challenging as the user has to load data from multiple
file formats, interface with a probe file, memory-map all the processing functions, prepare the correct
inputs for Mountainsort4, and understand how to export the results into Phy. Even if the user manages
to implement all of the analysis steps on their own, it is difficult to verify their correctness or reuse
them without proper unit testing and code reviewing.

4.1 Using the Python API

Using Spikelnterface’s Python API to build the pipeline shown in Figure 2A is straightforward. Each
of the seven steps is implemented with a single line of code (as shown in Figure 2B). Additionally, data
visualizations can be added for each step of the pipeline using the appropriate widgets (as described
in Section 3.5). Unlike handmade scripts, Spikelnterface has a wide range of unit tests and has been
carefully developed by a team of researchers. Users, therefore, can have increased confidence that the
pipelines they create are correct and reusable.

4.2 Using the spikely GUI

Along with our Python API, we also developed spikely'?, a PyQt-based GUI that allows for simple
construction of complex spike sorting pipelines. With spikely, users can build workflows that include:
(i) loading a recording and a probe file; (ii) performing pre-processing on the underlying recording with
multiple processing steps; (iil) running any spike sorter supported by Spikelnterface on the processed
recording; (iv) automatically curating the sorter’s output; and (v) exporting the final result to a variety
of file formats, including Phy. At its core, spikely utilizes Spikelnterface’s Python API to run any
constructed spike sorting workflow. This ensures that the functionality of spikely grows organically
with that of Spikelnterface.

Figure 2C shows a screenshot from spikely where the pipeline in Figure 2A is constructed. Each
stage of the pipeline is added using drop-down lists, and all the parameters (which were not left at
their default values) are set in the right-hand panel. Once a pipeline is constructed in spikely, the
user can save it using the built-in save functionality and then load it back into spikely at a later
date. Since spikely is cross-platform and user-friendly, we believe it can be utilized to increase the
accessibility and reproducibility of spike sorting.

LOhttps://github.com/Spikelnterface/spikely
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u Start End B import spikeinterface.extractors as se

import spikeinterface. toolkit as st

Open Ephys folder ~ Manual Curation with Phy import spikeinterface.sorters as sorters
recording = dingExtractor( " path-to-open-ephys-folder")
recording = recording.load_probe_file('path-to-probe.prb' )
recording = st.preprocessing.bandpass_filter(recording, freq_min=300,

. freq_nax=6000)
recording = st.preprocessing. conmon_reference(recording, reference='median")
sorting MS4 = sorters.run_mountainsortd(recording)
l T sorting_curated = st.curation. threshold_min_num_spikes(sorting Msd,
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st.posptrocessing.export_to_phy(recording, sorting_curated,

______ y Recording output_folder="phy_output')
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Figure 2: Sample spike sorting pipeline using Spikelnterface. (A) A diagram of a sample spike sorting
pipeline. Each processing step is colored to represent the Spikelnterface package in which it is imple-
mented and the dashed, colored arrows demonstrate how the Extractors are used in each processing
step. (B) How to use the Python API to build the pipeline shown in (A). (C) How to use the GUI to
build the pipeline shown in (A).

5 Applications

We present two applications of the Spikelnterface framework in this section. In Application 1, we
sort a Neuropixels dataset with six popular spike sorters. After sorting, we quantify and visualize the
agreement among the spike sorters. In Application 2, we sort a simulated, ground-truth dataset with
the same six spike sorters. Afterwards, we systematically evaluate and visualize the performance of
each sorter (based on their default parameters). These applications demonstrate the advantages of
using Spikelnterface for spike sorting analysis and highlight unsolved issues in the field. All analysis
is done with PyPI version 0.9.0 of spikeinterface.

5.1 Application 1: Comparing Spike Sorters on Neuropixels Data

In this application, we utilize Spikelnterface to sort a dense in vivo recording with many different spike
sorters. After sorting and without ground-truth information, we use Spikelnterface to assess the level
of agreement between spike sorters.

The dataset we use in this application is a recording from a rat cortex using the Neuropixels probe
([47, 46] — recording c1). It has a duration of 270 seconds, 384 channels, and a sampling frequency of
30 kHz. The raw data are first pre-processed with a bandpass filter (highpass cutoff 300 Hz - lowpass
cutoff 6000 Hz) and are subsequently pre-processed with a common median reference filter.

For this analysis, we choose to run six different spike sorters: HerdingSpikes2 [33], Kilosort2 [54], Iron-
Clust [35], SpykingCircus [74], Tridesclous [28], and Mountainsort4 [19]''. As each of these algorithms
are semi-automatic, we fix their parameters to default values to allow for straightforward comparison.
We do not include Klusta [61], WaveClus [18], and Kilosort [55] in this analysis as Klusta can only

' The versions for each spike sorter are as follows: SpykingCircus==0.8.2, Tridesclous==1.2.2, Mountainsort4d==0.3.2,
HerdingSpikes2==0.3.2, IronClust==4.8.8, Kilosort2==GitHub commit 2a39926.
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Figure 3: Analysis of Neuropixels recording with six spike sorters. (A) Number of units found by each
spike sorter. (B) Network representation of the comparison between multiple sorters: each node is a
unit and edges connect agreed upon units (edge color indicates agreement score). (C) Total number
of units where k out of six sorters agree at a level of at least 0.5. (D) Number of units found and their
agreement levels for each spike sorter.
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handle up to 64 channels, WaveClus is designed for probes with a low channel count, and Kilosort is
superseded by Kilosort2.

By quickly comparing the outputs of all six sorters, large discrepancies are immediately apparent.
Figure 3A shows the number of units found by each sorter. While four of the sorters find between 200
and 400 putative units, Tridesclous only identifies 42, and Mountainsort4 almost 600.

Next, we use the compare_multiple_sorters function of the comparison module to explore these
differences in more depth. As explained in Section 3.4, this function builds a weighted graph in which
each node is a unit detected by a sorter and in which each edge is the best-match between a pair
of units from different sorters. The edges are weighted by the respective agreement scores (Eq. 1;
Figure 3B), and only edges with a score of at least 0.5 are kept. Once constructed, this graph can be
interrogated to extract the units agreed upon by different sorters.

Figure 3C shows the overall agreement statistics. Surprisingly, out of a total of 1547 units, 1362 (~88%)
are not matched at all, i.e. they are only found by a single sorter. The number of units found by all
six sorters is just 21 which is only the 1.36% of the total number of units. Panel 3D breaks this result
down for each spike sorter. For HerdingSpikes, Kilosort2, and IronClust, about half of the units are
not matched by any other sorters. For SpykingCircus and Mountainsort4, an overwhelming majority
of their units are not matched to another sorter (~90% for SpykingCircus, ~74% for Mountainsort4).
Tridesclous is more conservative, as it finds very few units, but ~83% of them are matched by at least
three sorters.

As units with little agreement are potentially noisy or very low-SNR units, we suggest a consensus-based
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strategy for removing them. Using the multiple sorting comparison function, the units in agreement
can automatically be extracted from the output of a sorter. This leads, potentially, to a subset of the
putative units that are well-isolated and suited for downstream analysis. In future work, we plan to
better understand low agreement units and to explore this consensus-based curation method.

5.2 Application 2: Benchmarking Spike Sorters on Simulated Data

In this application, we utilize SpikeInterface to evaluate and benchmark multiple spike sorters on a
simulated, ground-truth dataset. We then illustrate that a popular, unsupervised quality metric for
evaluating sorting outputs, SNR, can be correlated with a spike sorter’s accuracy on the underlying
ground-truth units. To be clear, the main goal of this application is to illustrate the capabilities
of Spikelnterface to perform such comparisons and not to thoroughly analyze and benchmark the
performance of different sorters which may be improved using different parameter sets or dedicated
curation tools.

We use a simulated dataset!? created with the MEArec Python package [16]. The probe is a square
MEA with 100 channels, organized in a 10x10 configuration with an inter-electrode distance of 15 pm.
The recording contains spiking activity from 50 neurons (from the Neocortical Micro Circuit Portal
[56, 45]) that exhibit independent Poisson firing patterns. The recording also has an additive Gaussian
noise with 104V standard deviation. For preprocessing, the recording is bandpass filtered (highpass
cutoff 300 Hz - lowpass cutoff 6000 Hz).

For this analysis, we choose to benchmark the same six sorters as used in Application 1. We use the
GroundTruthStudy class of the comparison module to run and benchmark all the algorithms in a
systematic manner (as described in Section 3.4). Again, we use the default parameters of each sorter
to allow for straightforward comparison.

As the full ground-truth information is available, we are able to thoroughly quantify the performance
of each sorter with a variety of metrics. Figure 4A shows swarm plots of the accuracy, precision, and
recall (these terms are defined in Section 3.4) for each sorter on all 50 ground-truth units. This type
of analysis provides a good first insight into the strengths of each sorter, but does not tell the whole
story. In this analysis, Kilosort2 appears to be the best performing sorter with a mean accuracy of
0.88 and the least variability across each of the metrics.

‘While assessing the accuracy of each sorter on the ground-truth units is important, it is also critical
to analyze all the units found by the sorters, not just the well-detected ones. Figure 4B shows the
number of well detected, redundant, false positive, and over-merged units for each sorter (these terms
are defined in Section 3.4). From this analysis we can see that although Kilosort2 finds many well-
detected units (43), it also returns a large number of false positive (58), redundant (6), and over-merged
(3) units. Other sorters, in contrast, display a more conservative behavior. IronClust, HerdingSpikes,
and Tridesclous, for example, find fewer well-detected units (30, 26, and 26, respectively), but also
significantly fewer false positives, redundant, and over-merged units. This suggests that there may be a
trade-off between unit isolation and reliability, a factor that has to be taken into account in subsequent
analysis of sorted spike trains.

Additionally, Spikelnterface records the runtime of each sorter (Figure 4C). The spike sorters specifi-
cally designed to deal with high-density probes (HerdingSpikes, Kilosort2, and IronClust), as expected,
have a lower computation time than more general-purpose software (Tridesclous, SpykingCircus, and
Mountainsort4). All spike sorters were run on an Ubuntu 18.04 machine, an Intel(R) Core(TM) i7-8700
CPU 3.20GHz processor, and 64 GB of RAM. Additionally, IronClust and Kilosort2 were run using a

Zhttps://doi.org/10.5281 /zenodo.3260283
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Figure 4: Analysis of a simulated ground-truth dataset. (A) Run times for each spike sorter. (B)
Number of well detected, false positive, redundant, and over-merged units for each spike sorter. (C)
Accuracy, precision, and recall for all ground-truth units for each spike sorter. (D) Accuracy on
ground-truth units with respect to the SNR for each spike sorter.

GeForce RTX 2080 Ti GPU.
Finally, performance metrics can be also related to unsupervised quality metrics. In Figure 4D, for
example, we plot the accuracy of each unit with respect to its SNR for each sorter. This plot illustrates

that spike sorters generally are capable of isolating units with strong signals, but may differ in their
ability to separate units with signals closer to the background noise level.
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6 Discussion

We have introduced Spikelnterface, a Python framework designed to consolidate a complex ecosystem
of software tools and file formats and to enhance the accessibility, reliability, and reproducibility
of spike sorting. To highlight the modularity and careful design of Spikelnterface, we provided an
overview of, and code examples for, each of the five main packages (Figure 1). To demonstrate how
SpikeInterface can be used to construct flexible spike sorting workflows, we implemented an example
pipeline (Figure 2A) using both the Python API (Figure 2B) and the spikely GUI (Figure 2C).
Finally, to demonstrate potential applications of Spikelnterface, we evaluated the results of six spike
sorters on both a Neuropixels and a simulated recording.

6.1 Supported File Formats and Spike Sorters

The file formats and spike sorters currently supported by Spikelnterface are summarized in Table 1. We
expect this list to grow in future versions as both spike sorting developers and the general neuroscience
community contribute to the growth of Spikelnterface. In order to facilitate contributions to Spikeln-
terface, we provide documentation on how to add a RecordingExtractor, a SortingExtractor, or a
spike sorter!® to our framework. At present, several Extractors have already been developed by or in
collaboration with external contributors (SpikeGLX, Neurodata Without Borders, MCS H5, MaxOne,
NIX, and Neuroscope).

Raw File Formats Sorted File Formats Sorters

Klusta Klusta Klusta [61]
Mountainsort (MDA) Mountainsort (MDA) Mountainsort4 [36]
Phy /Kilosort/Kilosort2 [59, 55, 60| Phy /Kilosort /Kilosort2 Kilosort [55]
SpyKING Circus Spyking Circus Kilosort2 [54]
Exdir [22] Exdir SpyKING Circus [74]
MEArec [16] MEArec HerdingSpikes2 [33]
SpikeGLX [37] HerdingSpikes2 Tridesclous [28]
Open Ephys [66] Trideclous IronClust [35]
Intan [2] NPZ (numpy zip) Wave clus [18]
Neurodata Without Borders (NWB) [70]  Neurodata Without Borders (NWB)

NIX [5] NeuroScope |[6]

MaxOne [3]

MCS H5 [4]

Neuroscope [32]
Biocam HDF5 [1]
Binary

Table 1: In this table, we show Spikelnterface’s currently supported file formats and spike sorting
algorithms. With the help of the neuroscience community, we plan to expand these lists in future
versions.

6.2 Comparison to Other Frameworks

As mentioned in the introduction, many software tools have attempted to improve the accessibility
and reproducibility of spike sorting. Here we review the four most recent tools that are in use (to our

L3https: //spikeinterface.readthedocs.io/en /latest /contribute.html
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knowledge) and compare them to Spikelnterface.

Nev2lkit [14] is a cross-platform, C++-based GUI designed for the analysis of recordings from multi-
shank multi-electrode arrays (Utah arrays). In this GUI, the spike sorting step consists of PCA for
dimensionality reduction and then klustakwik for automatic clustering [61]. As Nev2lkit targets
low-density probes where each channel is spike sorted separately, it is not suitable for the analysis
of high-density recordings. Also, since it implements only one spike sorter, users cannot utilize any
consensus-based curation or exploration of the data. The software is available online*, but it lacks
version-control and automated testing with continuous integration platforms.

SigMate [44] is a MATLAB-based toolkit built for the analysis of electrophysiological data. SigMate
has a large scope of usage including the analysis of electroencephalograpy (EEG) signals, local field
potentials (LFP), and spike trains. Despite its large scope, or because of it, the spike sorting step in
SigMate is limited to Wave clus [18], which is mainly designed for spike sorting recordings from a
few channels. This means that both major limitations of Nev2lkit (as discussed above) also apply to
SigMate. The software is available online'®, but again, it lacks version-control and automated testing
with continuous integration platforms.

Regalia et al. [57] developed a spike sorting framework with an intuitive MATLAB-based GUL The
spike sorting functionality implemented in this framework includes 4 feature extraction methods, 3
clustering methods, and 1 template matching classifier (0-Sort [63]). These "building blocks" can
be combined to construct new spike sorting pipelines. As this framework targets low-density probes
where signals from separate electrodes are spike sorted separately, its usefulness for newly developed
high-density recording technology is limited. Moreover, this framework only runs with a specific file
format (MCD format from Multi Channel Systems [4]). The software is distributed upon request.

Most recently, Nasiotis et al. [52] implemented IN-Brainstorm, a MATLAB-based GUI designed for
the analysis of invasive neurophysiology data. IN-Brainstorm allows users to run three spike sorting
packages, (Wave clus [18], UltraMegaSort2000 [34], and Kilosort [55]). Recordings can be loaded
and analyzed from six different file formats: Blackrock, Ripple, Plexon, Intan, NWB, and Tucker
Davis Technologies. IN-Brainstorm is available on GitHub!'® and its functionality is documented!”.
IN-Brainstorm does not include the latest spike sorting software [61, 74, 19, 35, 54, 33|, however, and
it does not cover any post-sorting analysis such as validation, curation, and sorting output comparison.

Spikelnterface overcomes all limitations of the aforementioned analysis frameworks by following rigor-
ous design principles. As the scope of Spikelnterface is focused on spike sorting only, we were able to
provide a comprehensive framework that encompasses all the functionality required for spike sorting.
This includes interfacing with a wide range of commonly used file formats for extracellular recordings
and sorting outputs, handling probe file information, pre-processing, spike sorting, post-processing,
validation, curation (automatic or manual with Phy), comparison, and visualization. The modu-
larized and object-oriented design of SpikeInterface enables users to build custom analysis pipelines
using the Python API or the spikely GUI and for the codebase to expand gracefully with community
contributions of new Extractors and spike sorters. Since Spikelnterface is efficient and already im-
plements 9 modern spike sorters, it can be used to analyze large-scale recordings from next-generation
multi-electrode arrays as shown in Section 5. Finally, Spikelnterface allows users to implement repro-
ducible analysis pipelines with careful version control, fixed random seeds, and a standardized API.
All source code is open-source, version-controlled, and tested with a continuous integration platform?!S.

Mhttp://nev2lkit.sourceforge.net/

ohttps:/ /sites.google.com /site/muftimahmud /codes
16https://github.com/brainstorm-tools/brainstorm3

Thttps:/ /neuroimage.usc.edu,/brainstorm /e-phys/Introduction
8https://travis-ci.org/
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6.3 Outlook

As it stands, spike sorting is still an open problem. No step in the spike sorting pipeline is completely
solved and no spike sorter can be used for all applications. With Spikelnterface, researchers can
quickly build, run, and evaluate many different spike sorting workflows on their specific datasets
and applications, allowing them to determine which will work best for them. Once a researcher
determines an ideal workflow for their specific problem, it is straightforward to share and re-use that
workflow in other laboratories studying similar problems. We envision that many laboratories will use
Spikelnterface to satisfy their spike sorting needs.

Along with its applications to extracellular analysis, SpikeInterface is also a powerful tool for developers
looking to create new spike sorting algorithms and analysis tools. Developers can test their methods
using our efficient and comprehensive comparison functions. Once satisfied with their performance,
developers can integrate their work into Spikelnterface, allowing them access to a large-community of
new users and providing them with automatic file I/O and software deployment. For developers who
work on projects that use spike sorting, Spikelnterface can be used out-of-the-box, providing more
reliability and functionality then handmade spike sorting scripts. We envision that many developers
will be excited to use and integrate with Spikelnterface.

Already, Spikelnterface is being used in a variety of applications. In one application, Spikelnterface
is being used as the engine of a related project called SpikeForest [43]. SpikeForest is an interactive
website for benchmarking and tracking the accuracy of publicly available spike sorting algorithms. At
present, it includes ten sorting algorithms and more than 300 extracellular recordings with ground-truth
firing information. These recordings include both simulations and paired recordings where ground-
truth is obtained from juxtacellular signals.

Overall, we hope that Spikelnterface can become a standard tool in neuroscience and can help foster
a stronger relationship between spike sorting users and developers. To this end, we are maintaining
an open forum'? that can be a common space for the community to discuss any and all spike-sorting-
related topics. We look forward to sharing and growing SpikeInterface over the years to come.

Competing interests

The authors declare no competing interests.

Ackowledgements

This work was supported by the Wellcome Trust grant 214431/7/18/Z (MHH). APB is a doctoral
fellow in the Simula-UCSD-University of Oslo Research and PhD training (SUURPhL) program, an
international collaboration in computational biology and medicine funded by the Norwegian Ministry
of Education and Research. CLH is supported by the Thouron Award and by the Institute for Adaptive
and Neural Computation, University of Edinburgh. JHS wishes to thank the Allen Institute founder,
Paul G. Allen, for his vision, encouragement and support. We would also like to thank Shangmin Guo
for his recent contributions to debugging and improving the codebase.

19www.spikeforum.org

19

129



bioRxiv preprint first posted online Oct. 7, 2019; doi: http://dx.doi.org/10.1101/796599. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

References

[1] Biocam. https://www.3brain.com/biocamx.html.

[2] Intan technologies. http://intantech.com/.

[3] MaxWell biosystems. https://www.mxwbio.com/.

[4] Multi channel systems. https://www.multichannelsystems.com/.

[5] Neuroscience information exchange format - nix. http://g-node.github.io/nix/.
[6] Neuroscope. http://neurosuite.sourceforge.net/.

[7] Plexon offline sorter. https://plexon.com/products/offline-sorter/.

[8] G. N. Angotzi, F. Boi, A. Lecomte, E. Miele, M. Malerba, S. Zucca, A. Casile, and L. Berdon-
dini. Sinaps: An implantable active pixel sensor cmos-probe for simultaneous large-scale neural
recordings. Biosensors and Bioelectronics, 126:355-364, 2019.

[9

M. Ballini, J. Muller, P. Livi, Y. Chen, U. Frey, A. Stettler, A. Shadmani, V. Viswam, I. L.
Jones, D. Jackel, M. Radivojevic, M. K. Lewandowska, W. Gong, M. Fiscella, D. J. Bakkum,
F. Heer, and A. Hierlemann. A 1024-channel CMOS microelectrode array with 26,400 electrodes
for recording and stimulation of electrogenic cells in vitro. IEEE Journal of Solid-State Circuits,
49(11):2705-2719, 2014.

[10] A. H. Barnett, J. F. Magland, and L. F. Greengard. Validation of neural spike sorting algorithms
without ground-truth information. Journal of neuroscience methods, 264:65-77, 2016.

[11] L. Berdondini, P. D. van der Wal, O. Guenat, N. F. de Rooij, M. Koudelka-Hep, P. Seitz, R. Kauf-
mann, P. Metzler, N. Blanc, and S. Rohr. High-density electrode array for imaging in vitro
electrophysiological activity. Biosensors & Bioelectronics, 21(1):167-74, jul 2005.

[12] H. Bokil, P. Andrews, J. E. Kulkarni, S. Mehta, and P. P. Mitra. Chronux: a platform for
analyzing neural signals. Journal of neuroscience methods, 192(1):146-151, 2010.

[13] L. L. Bologna, V. Pasquale, M. Garofalo, M. Gandolfo, P. L. Baljon, A. Maccione, S. Martinoia,
and M. Chiappalone. Investigating neuronal activity by spycode multi-channel data analyzer.
Neural Networks, 23(6):685-697, 2010.

[14] M. Bongard, D. Micol, and E. Fernandez. Nev2lkit: a new open source tool for handling
neuronal event files from multi-electrode recordings. International journal of neural systems,
24(04):1450009, 2014.

[15] M. P. Bonomini, J. M. Ferrandez, J. A. Bolea, and E. Fernandez. Data-means: an open source
tool for the classification and management of neural ensemble recordings. Journal of neuroscience
methods, 148(2):137-146, 2005.

[16] A. P. Buccino and G. T. Einevoll. Mearec: a fast and customizable testbench simulator for
ground-truth extracellular spiking activity. bioRziv, page 691642, 2019.

[17] D. Carlson and L. Carin. Continuing progress of spike sorting in the era of big data. Current
opinion in neurobiology, 55:90-96, 2019.

[18] F. J. Chaure, H. G. Rey, and R. Quian Quiroga. A novel and fully automatic spike-sorting
implementation with variable number of features. Journal of neurophysiology, 120(4):1859-1871,
2018.

20

130



bioRxiv preprint first posted online Oct. 7, 2019; doi: http://dx.doi.org/10.1101/796599. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

[19]

[20]

21]

22]

23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

31]

32]

33]

[34]

It is made available under a CC-BY 4.0 International license.

J. E. Chung, J. F. Magland, A. H. Barnett, et al. A fully automated approach to spike sorting.
Neuron, 95(6):1381-1394, 2017.

M. Denker, G. T. Einevoll, F. Franke, S. Griin, E. Hagen, J. N. D. Kerr, M. P. Nawrot, T. V.
Ness, R. Ritz, L. S. Smith, T. Wachtler, and D. K. W¢jcik. 1st incf workshop on validation of
analysis methods. 2018.

G. Dimitriadis, J. P. Neto, A. Aarts, A. Alexandru, M. Ballini, F. Battaglia, L. Calcaterra,
F. David, R. Fiath, J. Frazao, et al. Why not record from every channel with a cmos scanning
probe? bioRxiv, page 275818, 2018.

S.-A. Dragly, M. Hobbi Mobarhan, M. E. Leppergd, S. Tennge, M. Fyhn, T. Hafting, and
A. Malthe-Sgrenssen. Experimental directory structure (exdir): An alternative to hdf5 without
introducing a new file format. Frontiers in neuroinformatics, 12:16, 2018.

U. Egert, T. Knott, C. Schwarz, M. Nawrot, A. Brandt, S. Rotter, and M. Diesmann. Mea-
tools: an open source toolbox for the analysis of multi-electrode data with matlab. Journal of
neuroscience methods, 117(1):33-42, 2002.

B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl, P. Fromherz,
M. Merz, M. Brenner, M. Schreiter, R. Gabl, K. Plehnert, M. Steinhauser, G. Eckstein, D. Schmitt-
landsiedel, and R. Thewes. A 128 128 CMOS Biosensor Array for Extracellular Recording of
Neural Activity. IEEE Journal of Solid-State Circuits, 38(12):2306-2317, 2003.

U. Frey, J. Sedivy, F. Heer, R. Pedron, M. Ballini, J. Mueller, D. Bakkum, S. Hafizovic, F. D.
Faraci, F. Greve, K. U. Kirstein, and A. Hierlemann. Switch-matrix-based high-density micro-
electrode array in CMOS technology. IEEE Journal of Solid-State Circuits, 45(2):467-482, 2010.

S. Garcia and N. Fourcaud-Trocmé. Openelectrophy: an electrophysiological data-and analysis-
sharing framework. Frontiers in neuroinformatics, 3:14, 2009.

S. Garcia, D. Guarino, F. Jaillet, T. R. Jennings, R. Propper, P. L. Rautenberg, C. Rodgers,
A. Sobolev, T. Wachtler, P. Yger, et al. Neo: an object model for handling electrophysiology data
in multiple formats. Frontiers in neuroinformatics, 8:10, 2014.

S. Garcia and C. Pouzat. Tridesclous. https://github.com/tridesclous/tridesclous.

P. Gleeson, A. P. Davison, R. A. Silver, and G. A. Ascoli. A commitment to open source in
neuroscience. Neuron, 96(5):964-965, 2017.

D. H. Goldberg, J. D. Victor, E. P. Gardner, and D. Gardner. Spike train analysis toolkit: en-
abling wider application of information-theoretic techniques to neurophysiology. Neuroinformatics,
7(3):165-178, 2009.

K. D. Harris, H. Hirase, X. Leinekugel, D. A. Henze, and G. Buzséaki. Temporal interaction between
single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron, 32(1):141-149,
2001.

L. Hazan, M. Zugaro, and G. Buzséki. Klusters, neuroscope, ndmanager: a free software
suite for neurophysiological data processing and visualization. Journal of neuroscience methods,
155(2):207-216, 2006.

G. Hilgen, M. Sorbaro, S. Pirmoradian, J.-O. Muthmann, I. E. Kepiro, S. Ullo, C. J. Ramirez,
A. P. Encinas, A. Maccione, L. Berdondini, et al. Unsupervised spike sorting for large-scale,
high-density multielectrode arrays. Cell reports, 18(10):2521-2532, 2017.

D. N. Hill, S. B. Mehta, and D. Kleinfeld. Quality metrics to accompany spike sorting of extra-
cellular signals. Journal of Neuroscience, 31(24):8699-8705, 2011.

21

131



bioRxiv preprint first posted online Oct. 7, 2019; doi: http://dx.doi.org/10.1101/796599. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

[35] J. J. Jun, C. Mitelut, C. Lai, S. Gratiy, C. Anastassiou, and T. D. Harris. Real-time spike sorting
platform for high-density extracellular probes with ground-truth validation and drift correction.
bioRxiv, page 101030, 2017.

[36] J. J. Jun, N. A. Steinmetz, J. H. Siegle, D. J. Denman, M. Bauza, B. Barbarits, A. K. Lee, C. A.
Anastassiou, A. Andrei, C. Aydin, et al. Fully integrated silicon probes for high-density recording
of neural activity. Nature, 551(7679):232, 2017.

[37] B. Karsh. SpikeGLX. https://billkarsh.github.io/SpikeGLX/.

[38] H. W. Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly,
2(1-2):83-97, 1955.

[39] K. Y. Kwon, S. Eldawlatly, and K. Oweiss. Neuroquest: a comprehensive analysis tool for extra-
cellular neural ensemble recordings. Journal of neuroscience methods, 204(1):189-201, 2012.

[40] J. H. Lee, D. E. Carlson, H. S. Razaghi, W. Yao, G. A. Goetz, E. Hagen, E. Batty, E. Chichilnisky,
G. T. Einevoll, and L. Paninski. Yass: yet another spike sorter. In Advances in Neural Information
Processing Systems, pages 4002—4012, 2017.

[41] X.-q. Liu, X. Wu, and C. Liu. Spktool: An open source toolbox for electrophysiological data
processing. In 2011 4th International Conference on Biomedical Engineering and Informatics
(BMEI), volume 2, pages 854-857. IEEE, 2011.

[42] C. M. Lopez, S. Mitra, J. Putzeys, B. Raducanu, M. Ballini, A. Andrei, S. Severi, M. Welkenhuy-
sen, C. Van Hoof, S. Musa, et al. 22.7 a 966-electrode neural probe with 384 configurable channels
in 0.13 pm soi cmos. In Solid-State Circuits Conference (ISSCC), 2016 IEEE International, pages
392-393. IEEE, 2016.

[43] J. Magland, J. Jun, E. Lovero, L. Greengard, A. Barnett, et al. SpikeForest, 2019. https:
//spikeforest.flatironinstitute.org.

[44] M. Mahmud, A. Bertoldo, S. Girardi, M. Maschietto, and S. Vassanelli. Sigmate: a matlab-based
automated tool for extracellular neuronal signal processing and analysis. Journal of neuroscience
methods, 207(1):97-112, 2012.

[45] H. Markram, E. Muller, S. Ramaswamy, et al. Reconstruction and simulation of neocortical
microcircuitry. Cell, 163(2):456-492, 2015.

[46] A. Marques-Smith, J. P. Neto, G. Lopes, J. Nogueira, L. Calcaterra, J. Frazdo, D. Kim, M. G.
Phillips, G. Dimitriadis, and A. Kampff. Simultaneous patch-clamp and dense cmos probe ex-
tracellular recordings from the same cortical neuron in anaesthetized rats. data available from
http://dx.doi.org/10.6080/K0JETFAT.

[47) A. Marques-Smith, J. P. Neto, G. Lopes, J. Nogueira, L. Calcaterra, J. Frazdao, D. Kim, M. G.
Phillips, G. Dimitriadis, and A. Kampff. Recording from the same neuron with high-density cmos
probes and patch-clamp: a ground-truth dataset and an experiment in collaboration. bioRziv,
page 370080, 2018.

[48] W. McKinney et al. Data structures for statistical computing in python. In Proceedings of the
9th Python in Science Conference, volume 445, pages 51-56. Austin, TX, 2010.

[49] H.-J. Mucha. Xclust: clustering in an interactive way. In XploRe: an Interactive Statistical
Computing Environment, pages 141-168. Springer, 1995.

=
=2

E. Muller, J. A. Bednar, M. Diesmann, M.-O. Gewaltig, M. Hines, and A. P. Davison. Python in
neuroscience. Frontiers in neuroinformatics, 9:11, 2015.

22

132



bioRxiv preprint first posted online Oct. 7, 2019; doi: http://dx.doi.org/10.1101/796599. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

[51]

[52]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[66]

It is made available under a CC-BY 4.0 International license.

J. Miiller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, V. Viswam, I. L. Jones,
M. Fiscella, R. Diggelmann, A. Stettler, U. Frey, D. J. Bakkum, A. Hierlemann, J. Muller,
M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, V. Viswam, I. L. Jones, M. Fis-
cella, R. Diggelmann, A. Stettler, U. Frey, D. J. Bakkum, and A. Hierlemann. High-resolution
CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab on a
Chip, 15(13):2767-2780, 2015.

K. Nasiotis, M. Cousineau, F. Tadel, A. Peyrache, R. M. Leahy, C. C. Pack, and S. Baillet.
Integrated open-source software for multiscale electrophysiology. BioRziv, page 584185, 2019.

R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen. Fieldtrip: open source software for
advanced analysis of meg, eeg, and invasive electrophysiological data. Computational intelligence
and neuroscience, 2011:1, 2011.

M. Pachitariu, N. A. Steinmetz, and J. Colonell. Kilosort2. https://github.com/MouseLand/
Kilosort2.

M. Pachitariu, N. A. Steinmetz, S. N. Kadir, et al. Fast and accurate spike sorting of high-
channel count probes with kilosort. In Advances in Neural Information Processing Systems, pages
4448-4456, 2016.

S. Ramaswamy, J. Courcol, M. Abdellah, et al. The neocortical microcircuit collaboration portal:
a resource for rat somatosensory cortex. Front Neural Circuits, 9, 2015.

G. Regalia, S. Coelli, E. Biffi, G. Ferrigno, and A. Pedrocchi. A framework for the compara-
tive assessment of neuronal spike sorting algorithms towards more accurate off-line and on-line
microelectrode arrays data analysis. Computational intelligence and neuroscience, 2016, 2016.

H. G. Rey, C. Pedreira, and R. Q. Quiroga. Past, present and future of spike sorting techniques.
Brain research bulletin, 119:106-117, 2015.

C. Rossant and K. D. Harris. Hardware-accelerated interactive data visualization for neuroscience
in python. Frontiers in neuroinformatics, 7:36, 2013.

C. Rossant, S. Kadir, D. Goodman, M. Hunter, and K. Harris. Phy. https://github.com/
cortex-lab/phy.

C. Rossant, S. N. Kadir, D. F. Goodman, J. Schulman, M. L. Hunter, A. B. Saleem, A. Grosmark,
M. Belluscio, G. H. Denfield, A. S. Ecker, et al. Spike sorting for large, dense electrode arrays.
Nature neuroscience, 19(4):634, 2016.

P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of computational and applied mathematics, 20:53—65, 1987.

U. Rutishauser, E. M. Schuman, and A. N. Mamelak. Online detection and sorting of extracel-
lularly recorded action potentials in human medial temporal lobe recordings, in vivo. Journal of
neuroscience methods, 154(1-2):204-224, 2006.

N. Schmitzer-Torbert and A. D. Redish. Neuronal activity in the rodent dorsal striatum in
sequential navigation: separation of spatial and reward responses on the multiple t task. Journal
of neurophysiology, 91(5):2259-2272, 2004.

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery. mclust 5: clustering, classification and
density estimation using gaussian finite mixture models. The R journal, 8(1):289, 2016.

J. H. Siegle, A. C. Lopez, Y. A. Patel, K. Abramov, S. Ohayon, and J. Voigts. Open ephys: an
open-source, plugin-based platform for multichannel electrophysiology. Journal of neural engi-
neering, 14(4):045003, 2017.

23

133



bioRxiv preprint first posted online Oct. 7, 2019; doi: http://dx.doi.org/10.1101/796599. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

It is made available under a CC-BY 4.0 International license.

A. Sobolev, A. Stoewer, A. Leonhardt, P. L. Rautenberg, C. J. Kellner, C. Garbers, and
T. Wachtler. Integrated platform and api for electrophysiological data. Frontiers in neuroin-
formatics, 8:32, 2014.

A. Stoewer, C. J. Kellner, J. Benda, T. Wachtler, and J. Grewe. File format and library for
neuroscience data and metadata.

J. Teeters, J. Benda, A. Davison, S. Eglen, R. C. Gerkin, J. Grethe, J. Grewe, K. Harris,
C. Kellner, Y. L. Franc, et al. Requirements for storing electrophysiology data. arXiv preprint
arXiv:1605.07673, 2016.

J. L. Teeters, K. Godfrey, R. Young, C. Dang, C. Friedsam, B. Wark, H. Asari, S. Peron, N. Li,
A. Peyrache, et al. Neurodata without borders: creating a common data format for neurophysi-
ology. Neuron, 88(4):629-634, 2015.

J. Voigts. Simpleclust. https://jvoigts.scripts.mit.edu/blog/
simpleclust-manual-spike-sorting-in-matlab/.

M. Weeks, M. Jessop, M. Fletcher, V. Hodge, T. Jackson, and J. Austin. The carmen software as a
service infrastructure. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 371(1983):20120080, 2013.

F. Wood, M. J. Black, C. Vargas-Irwin, M. Fellows, and J. P. Donoghue. On the variability of
manual spike sorting. IEEE Transactions on Biomedical Engineering, 51(6):912-918, 2004.

P. Yger, G. L. Spampinato, E. Esposito, B. Lefebvre, S. Deny, C. Gardella, M. Stimberg, F. Jetter,
G. Zeck, S. Picaud, et al. A spike sorting toolbox for up to thousands of electrodes validated with
ground truth recordings in vitro and in vivo. Elife, 7:e34518, 2018.

X. Yuan, S. Kim, J. Juyon, M. D’Urbino, T. Bullmann, Y. Chen, A. Stettler, A. Hierlemann, and
U. Frey. A microelectrode array with 8,640 electrodes enabling simultaneous full-frame readout
at 6.5 kfps and 112-channel switch-matrix readout at 20 ks/s. In VLSI Circuits (VLSI-Circuits),
2016 IEEE Symposium on, pages 1-2. IEEE, 2016.

B. Zhang, J. Dai, and T. Zhang. Neoanalysis: A python-based toolbox for quick electrophysio-
logical data processing and analysis. Biomedical engineering online, 16(1):129, 2017.

24

134



Paper Il

Independent component analysis
for fully automated multi-electrode
array spike sorting

135



Paper |V

Real-time spike sorting for
multi-electrode arrays with online
independent component analysis

141



Paper V

Combining biophysical modeling
and deep learning for
multielectrode array neuron
localization and classification

147






J Neurophysiol 120: 1212-1232, 2018.
First published May 30, 2018; doi:10.1152/jn.00210.2018.

INNOVATIVE METHODOLOGY | Neural Circuits

Combining biophysical modeling and deep learning for multielectrode array

neuron localization and classification

Alessio P. Buccino,"** Michael Kordovan,>** Torbjern V. Ness,® Benjamin Merkt,>*
Philipp D. Hiifliger,' Marianne Fyhn,' Gert Cauwenberghs,” Stefan Rotter,>**

and © Gaute T. Einevoll">*

!Center for Integrative Neuroplasticity (CINPLA), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo,
Norway; *Department of Bioengineering, University of California, San Diego, California; *Bernstein Center Freiburg,
Freiburg, Germany; “Faculty of Biology, University of Freiburg, Freiburg, Germany; and Faculty of Science and
Technology, Norwegian University of Life Sciences, As, Norway

Submitted 28 March 2018; accepted in final form 29 May 2018

Buccino AP, Kordovan M, Ness TV, Merkt B, Hiifliger PD,
Fyhn M, Cauwenberghs G, Rotter S, Einevoll GT. Combining
biophysical modeling and deep learning for multielectrode array
neuron localization and classification. J Neurophysiol 120: 1212—
1232, 2018. First published May 30, 2018; doi:10.1152/
jn.00210.2018.—Neural circuits typically consist of many different
types of neurons, and one faces a challenge in disentangling their
individual contributions in measured neural activity. Classification of
cells into inhibitory and excitatory neurons and localization of neu-
rons on the basis of extracellular recordings are frequently employed
procedures. Current approaches, however, need a lot of human inter-
vention, which makes them slow, biased, and unreliable. In light of
recent advances in deep learning techniques and exploiting the avail-
ability of neuron models with quasi-realistic three-dimensional mor-
phology and physiological properties, we present a framework for
automatized and objective classification and localization of cells
based on the spatiotemporal profiles of the extracellular action poten-
tials recorded by multielectrode arrays. We train convolutional neural
networks on simulated signals from a large set of cell models and
show that our framework can predict the position of neurons with high
accuracy, more precisely than current state-of-the-art methods. Our
method is also able to classify whether a neuron is excitatory or
inhibitory with very high accuracy, substantially improving on com-
monly used clustering techniques. Furthermore, our new method
seems to have the potential to separate certain subtypes of excitatory
and inhibitory neurons. The possibility of automatically localizing and
classifying all neurons recorded with large high-density extracellular
electrodes contributes to a more accurate and more reliable mapping
of neural circuits.

NEW & NOTEWORTHY We propose a novel approach to localize
and classify neurons from their extracellularly recorded action poten-
tials with a combination of biophysically detailed neuron models and
deep learning techniques. Applied to simulated data, this new com-
bination of forward modeling and machine learning yields higher
performance compared with state-of-the-art localization and classifi-
cation methods.
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INTRODUCTION

The neural circuits of the brain involve the interplay of many
different types of neurons. On the most superficial level,
neurons are classified by their effect on the neurons they
project to as either excitatory or inhibitory. Extracellular re-
cordings enable us to measure the activity of neurons as
electrical potential deflections mainly due to ionic transmem-
brane currents. In recent years, many groups have been devel-
oping high-density multielectrode arrays (MEAs) for in vitro
and in vivo applications, which allow measurements of neuro-
nal activity with high spatiotemporal resolution (Berdondini et
al. 2014; Miiller et al. 2015; Neto et al. 2016; Schroder et al.
2015; Welkenhuysen et al. 2016). These probes provide some-
thing close to a functional electrical imaging (Vassanelli 2014)
of the neural activity, and this high information density can
potentially be exploited to obtain a better understanding of the
neural circuits under study. Specifically, it might be possible to
extract information that could be used to localize the individual
neurons and to classify them into their respective cell types.
The latest developments in manufacturing of high-density
neural probes call for novel analysis methods to exploit the
richness and detail in the recordings.

Neural localization from extracellular action potentials
(EAPs) recorded on a MEA is an ill-posed problem, since
solutions might not be unique for complex neural morpholo-
gies. Current approaches for localization assume simple neu-
ronal models to facilitate the inverse problem and make the
solution unique. Examples of models used in previous studies
are monopole current-source models (Blanche et al. 2005;
Chelaru and Jog 2005; Kubo et al. 2008), dipole current-source
models (Blanche et al. 2005; Mechler et al. 2011; Mechler and
Victor 2012), as well as line-source models (Somogyvari et al.
2012). More recently, Delgado Ruz and Schultz (2014) used a
modified ball-and-stick model (Pettersen and Einevoll 2008) to
predict somatic locations. In these approaches, the soma posi-
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tion is estimated by minimizing the error between the electrical
potential on the MEA sites predicted by the chosen model and
the recorded potential. However, it is experimentally challeng-
ing to measure the correct position of the soma (Neto et al.
2016); therefore, detailed computational neuronal models are
usually used and treated as simulated ground truth to evaluate
the accuracy of the localization methods (Delgado Ruz and
Schultz 2014; Somogyviri et al. 2005, 2012). The main limi-
tations regarding neuron localization are that the models cho-
sen to solve the inverse problem are often too simple to grasp
complex spike waveforms (e.g., monopolar or bipolar current-
source models) or are tuned to specific cell types (ball-and-
stick model for pyramidal morphology).

Regarding classification of neurons, unsupervised clustering
techniques are commonly applied to differentiate EAP shapes
(Barth6 et al. 2004; McCormick et al. 1985; Peyrache et al.
2012): narrow waveforms are considered to be fast-spiking
inhibitory neurons and broad waveforms excitatory neurons.
Also in this case, it is experimentally challenging, especially in
vivo, to validate the classification methods. One approach is to
measure a multitude of neurons and find putative monosynaptic
connections based on the shape of spike train cross-correlo-
grams. However, the rate of recorded monosynaptic connec-
tions is usually very low (~0.2%; Barth¢ et al. 2004; Peyrache
et al. 2012), resulting in a small number of observations useful
for validation. In neural classification, the complexity of spike
shapes across the multiple recording sites is usually com-
pressed by extracting spike widths (such as peak-to-peak and
full-width half-maximum widths; Barth¢ et al. 2004; Peyrache
et al. 2012) only from the electrode with the highest recorded
amplitude.

In this study, we apply a powerful machine learning tech-
nique, namely, convolutional neural networks (CNNs), to clas-

A Biophysical
simulation

i

Simulated
waveforms
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sify excitatory and inhibitory neurons and to localize their
somata from simulated EAPs. This approach—being a super-
vised learning algorithm—ademands for a large amount of
labeled data, in this case EAPs in combination with soma
position and cell type of the neuron evoking the EAPs. The
proposed method is schematically depicted in Fig. 1. First,
compartmental cell simulations are performed (Fig. 1A) that
yield EAP data sets with known simulated ground truth (for-
ward modeling) (Fig. 1B). Relying on the simulations, CNNs
are trained (Fig. 1C) on these data sets to predict position and
cell type (Fig. 1D) of the neuron generating the simulated EAP.
If the method is applied to experimental data (Fig. 1E), a
spike-triggered average EAP (average waveform) serves as
input to a CNN previously trained on simulated data to predict
soma position and cell type. In addition to binary classification,
we attempt to distinguish 11 different morphological types
(m-type classification). The performance of the CNNs depend-
ing on different characteristics extracted from the EAP, differ-
ent MEA designs, and different CNN configurations is ex-
plored. Finally, we evaluate the effect of varying neuron
alignments with respect to the recording MEA. To put our
approach into context, we compare its performance with es-
tablished methods of cell localization and classification.
CNNs perform supervised machine learning and require a
large data set to be trained. It would be experimentally chal-
lenging, if not unfeasible, to gather the required number of
recordings of exact known position (used for localization) and
morphology (used for classification) information. Therefore,
we rely on detailed compartmental cell models to provide
detailed simulated recordings and simulated ground-truth in-
formation. Forward biophysical modeling of extracellular po-
tentials has been developed and refined over the last 30 years
(Gold et al. 2006; Holt and Koch 1999; Lindén et al. 2014;

In silico pipeline
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Fig. 1. Graphical representation of the presented method. Red arrows show our approach for training (dashed lines indicate error backpropagation) and validating
the convolutional neural network (CNN) on simulated data. Green arrow shows how the method is applied within an experimental pipeline. Starting with the
red path, biophysical simulations (A) are used to generate extracellular action potential (EAP) templates (B), from which features (e.g., amplitude and width; see
Classification and Localization Features) are extracted and fed to a CNN (C) to localize and classify excitatory (blue) and inhibitory (red) neurons (D). When
applied to experimental data (green arrow), recordings are first spike sorted (E), then features are extracted from spike-triggered average waveforms (B), and
finally the CNN trained on simulated data (C) is used to localize and classify spike-sorted neurons (D).
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Pettersen and Einevoll 2008; Rall and Shepherd 1968), and it
is a still growing field. Therefore, we expect that computer
simulations will become closer to real recordings as the detail
and fidelity of neural models increase.

The aim of this study was to investigate the capability and
feasibility of the proposed deep learning approach and to
explore the large parameter space to guide future developments
and experiments. At this stage, the method is a proof of
concept, as we used some simplifications along the way.
However, valuable information can be obtained and used in the
future. Simulation software scripts are available at https:/
github.com/CINPLA/NeuroCNN.

MATERIALS AND METHODS
Cell Models

We first generated simulated spike recordings from various neuro-
nal cell types (Fig. 14). The neuronal models have been adopted from
the Neocortical Microcircuit Collaboration (NMC) Portal (Markram
et al. 2015; Ramaswamy et al. 2015, https://bbp.epfl.ch/nmc-portal), a
database containing cell models from juvenile rat somatosensory
cortex. We focused on neurons in layer (L)5, but the methods
described can be applied to a larger variety of neuronal models. The
cell models were used unmodified and are based on experimentally
reconstructed morphologies, with up to 13 different types of active ion
channels, depending on the cell type. The dynamics of these active ion
channels have been fitted to reproduce specific features of somatic
current-injection experiments, such as the amplitude and width of the
evoked action potentials, the depth and timing of the following
afterhyperpolarization, the mean interspike interval, spiking adapta-
tions, and the amplitude of the backpropagating action potential at
different positions along the apical dendrite of pyramidal cells (PC)
(Markram et al. 2015). Importantly, this means that the source of the
cell type-specific variability that we observe in, e.g., the spike widths
is grounded in experimental data. For a more detailed description of
the cell models the reader is referred to Markram et al. (2015). Note
also that each of the cell models used can be explored interactively

NEURON LOCALIZATION AND CLASSIFICATION WITH DEEP LEARNING

In principle, the data set contains 13 types of morphologies (m-
types) in L5, in accordance with the NMC Portal. However, because
of the limited data variety in the case of bipolar and neuroglial cells
(BP and NGC), we excluded them from the analyses unless elsewhere
specified. APPENDIX A describes the data set in detail and explains how
we manipulated the original data set to extract unbiased sub-data sets
for training and validating the results. A single-cell morphology of
each m-type is displayed in Fig. 2, divided into inhibitory and
excitatory neurons. Axons are not depicted because only their initial
tract is included in the simulations.

Simulated Recordings

Extracellular action potential computation. Each of the multicom-
partment neuronal models was simulated separately, and extracellular
potentials were calculated in two steps. First, transmembrane currents
were computed by solving the cable equation (Holt and Koch 1999)
with LFPy (Lindén et al. 2014) running on NEURON 7.4 (Carnevale
and Hines 2006; Hines et al. 2009). A constant depolarizing current
was applied to the soma to get the neuron firing at least 10 times (and
not more than 30 times) in a simulation period of 1.2 s. Multiple
spikes were simulated to account for spike-to-spike variations due to
electrophysiological properties (e-types). All transmembrane currents
for each compartment were stored within a time window ¢ = — 2 ms
and r = 5 ms, where ¢t = 0 is the time of the intracellular membrane
voltage peak considered as spike time. Simulations were run with a
time resolution of df = 27 ms, i.e., with a sampling frequency of 32
kHz, so that a single spike window of 7-ms duration (2 ms + 5 ms)
consists of 224 samples.

Second, transmembrane currents were used within LFPy to calcu-
late the extracellular potential at the recording site. Each transmem-
brane current, including the somatic one, was distributed over a line
source with the length of its corresponding neural segment. With
quasi-static approximation (Nunez and Srinivasan 2006) and assum-
ing a homogeneous and isotropic neural tissue with conductivity
o = 0.3 S/m (Goto et al. 2010), the contribution of each compartment
i at position r; with transmembrane current /,() to the electric potential
on an electrode at position r; reads (Holt and Koch 1999; Lindén et al.
2014; Pettersen and Einevoll 2008)

online through the NMC Portal (Ramaswamy et al. 2015, https:/ i ) = 1 I'(’)f dr; )
bbp.epfl.ch/nmce-portal/microcircuit#/layer/L5). e 4o " = x|
BP BTC ChC DBC LBC MC NBC NGC SBC
bipolar bitufted chandelier double-bouquet large basket martinotti nest basket neuroglial small basket
|
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Fig. 2. One representative cell for each different morphology type in layer 5 [data from Neocortical Microcircuit Collaboration Portal (Ramaswamy et al. 2015)].
Top: 9 inhibitory cells (red). Bottom: 4 excitatory cells (blue). Dendrites are colored in lighter shades, and the soma is indicated with a darker circle. The same
red/blue convention is used throughout article. For all cells C stands for cell, and for excitatory cells the P represents pyramidal.
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The simulated EAP was obtained by summing up the contribu-
tions of all compartments. For each recording site, the electric
potential was computed at a single point corresponding to the
center of the recording electrode. These EAPs are associated with
the templates in Fig. 1B.

Only spikes generating a notable waveform with a peak-to-peak
amplitude exceeding 30 wV on at least one of the electrodes were
included in the data set. The detection threshold of 30 wV was chosen
to mimic experimental settings, where noise in the recordings due to
equipment electronics and background neural signals does not allow
detection of low-amplitude action potentials.

The coordinate system was fixed in reference to the MEA plane.
Each recording site (different MEA designs are explained in MEA
designs) lay within the yz-plane, and neuron somata were located
within the semispace of the positive x-axis (the x-coordinate is thus
the distance from the MEA). For each neuron, 1,000 EAP recordings
above the detection threshold were simulated by randomly choosing
one of the generated spikes and by placing the soma at random
locations with distances x between 10 wm and 80 wm. The y and z
boundaries were different for each MEA, and a neuron could exceed
the y and/or z boundary of the MEA by a maximum of 30 um. For the
EAP, we considered the contributions of all dendritic compartments,
including those crossing the MEA. This was done to force the sum of
transmembrane currents to be zero (Pettersen and Einevoll 2008). In
other words, we did not clip neurites entering the probe, but we made
sure that their position did not coincide with a recording site within
LFPy.

MEA designs. We investigated the performance of seven different
MEA probes. Five of these were based on the prototype described in
Schroder et al. (2015), in which the recording sites are arranged in a
16 X 16 matrix on a penetrating shank. Instead of considering a single
interelectrode distance, we investigated five different pitches (i.e.,
distance between the centers of adjacent electrodes), namely, 10, 15,
20, 25, and 30 wm. The probe models were built in a way that they
roughly covered the same area on the shank.

Hence, we ended up with the following list of squared probes:
SqMEA-15-10: squared MEA with 15 X 15 electrodes and 10-pum
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pitch; SQMEA-10-15: squared MEA with 10 X 10 electrodes and
15-pum pitch; SQMEA-7-20: squared MEA with 7 X 7 electrodes
and 20-um pitch; SQMEA-6-25: squared MEA with 6 X 6 elec-
trodes and 25-um pitch; and SqMEA-5-30: squared MEA with
5 X 5 electrodes and 30-pm pitch.

Moreover, we simulated recordings on the Poly3-25s probe (Neu-
ronexus Technologies), which has 32 electrodes in three columns with
a hexagonal arrangement, a y-pitch of 18 wm, and a z-pitch of 22 pum.
Another probe becoming popular is the NeuroPixels probe (Jun et al.
2017), with recording sites arranged in a checkerboard pattern with a
y-pitch of 32 um and a z-pitch of 20 wm. Although the probe has 384
recording channels, for convenience we decided to trim it to 128
channels. Finally, we constructed a model of the NeuroSeeker probe
(http://www.neuroseeker.eu; used in Neto et al. 2016), a MEA with
128 recording sites arranged in a 4 X 32 configuration and a regular
interelectrode distance of 22.5 um. Figure 3 shows all the probes in
the yz-plane.

The CNNs we used required a rectangular shape of the input data.
The two dimensions of the data array correspond to the number of
electrode sites N, and N_ in y- and z-directions, respectively. There-
fore, we cut the Neuronexus-32 MEA probe to a Neuronexus-30,
which is shown in the fourth position from the left in Fig. 3.

Neuron-MEA alignment. We investigated different neuron-MEA
alignments (or rotations) of neurons. Some neurons, such as pyrami-
dal cells (PC) or bipolar cells (BP), have morphologies that follow a
specific orientation (see Fig. 2) that might affect the classification and
localization performance. For this reason, we generated three rota-
tional data sets:

Norot: The orientation of the cells (e.g., the apical dendrite of PCs)

was along the z-axis (same orientation as in Delgado Ruz and

Schultz 2014 and Somogyviri et al. 2012).

Physrot: Neurons with a preferential orientation were randomly rotated

such that after rotation their axis from white matter toward the pia

pointed into a cone around the z-direction with an opening angle of 15°

(the puncture point on the unit sphere is uniformly distributed in this

spherical cap). Neurons without a preferential orientation were rotated

randomly in the three-dimensional (3D) space. We considered all
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Fig. 3. Multielectrode array models used in the study. Right: plots show an excitatory cell [thick-tufted pyramidal cell (PC) with late bifurcating apical tuft
(TTPC1)] and an inhibitory cell [neuroglial cell (NGC)] to compare probe and neuron sizes. PCs are on average much larger than inhibitory cells, and only a
portion of the neuron is located directly in front of the probe (the apical dendrite is not fully shown, and it can be seen in Fig. 2).
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Fig. 4. Neuron-multielectrode array (MEA) align-
ments: in each panel we show a sample orientation
of a pyramidal cell [thick-tufted pyramidal cell with
late bifurcating apical tuft (TTPC1)] placed at a
fixed position of (50 wm, 0, 0). The MEA is the
SgMEA-10-15, and the colors of each recording site
(displayed as an image at fop left of each plot) show
the qualitative sodium peak image (Na image, ex-
plained in Classification and Localization Features).
A: Norot: the pyramidal cell main axis is aligned to the
z-direction. B: Physrot: the TTPCI is rotated around
the z-axis, and the apical dendrite is tilted at maximum
15° inside a cone around the z-axis. C: 3drot: the
neuron can be rotated along all axes and might end up
with its apical dendrite entering the MEA probe, as
depicted in the plot. While the Na image is similar for
A and B, it can become quite different in C, when the

neuron is 3D-rotated. "

e -
2,
%

M e

neurons apart from nest basket cells (NBC), small basket cells (SBC),

and NGC to have a preferential orientation (DeFelipe et al. 2006;

Markram et al. 2004; Overstreet-Wadiche and McBain 2015; Wang et

al. 2002, 2004; Woodruff and Yuste 2008). NBC, SBC, and NGC were

assumed to have no preferential axis.

3drot: Neurons were rotated randomly around all axes.

The soma positions corresponded to the intersection point of
rotation axes and were shifted randomly inside the observation vol-
ume in all cases. Figure 4 displays a sample orientation with respect
to the MEA of a PC [thick-tufted PC with late bifurcating apical tuft
(TTPC1)] in each of the three data sets, Norot (Fig. 4A), Physrot (Fig.
4B), and 3drot (Fig. 4C).

Classification and Localization Features

We extracted features from the EAPs as input variables to a CNN
for training. Since classification and localization of neurons from
extracellular recordings are quite different tasks, we used different
sets of features from the simulated spikes. The pipeline for extracting
feature images is described in Fig. 5. First, neurons with known cell
type and position were simulated and the spike traces on the MEA
probe were obtained. Then, for each spike, a set of features was
computed and these features were rearranged in a 2D shape according
to the MEA arrangement, i.e., the feature image. In the following
paragraphs N, N, and N_ are the total number of electrodes, the
number of electrodes in y-direction, and the number of electrodes in
z-direction, respectively.

Localization features. The goal of localization is to estimate the
soma position with respect to the probe. Therefore, we considered
only the EAP negative peak and the positive peak time points, during
which negative and positive transmembrane currents are larger in
proximity of the soma (Delgado Ruz and Schultz 2014; Gold et al.
2007; Somogyvdri et al. 2005, 2012). For simplicity, we refer to the
EAP negative peak as Na peak because, close to the soma, it is mainly
attributed to the sodium currents flowing into the soma. The positive
peak is referred to as Rep because it is associated with the cell
repolarization phase. The peak values were computed with respect to
a reference of 0 wV, i.e., the baseline, as follows:

Na. For each spike recording on N electrodes, the spike with the
largest negative peak amplitude was identified. At the time instant
when the minimum peak occurred (7,,;,,) the recorded potential on all
N electrodes was used to build the Na image (the amplitude values are
sampled at the same time instant 7, ; ).

rep. The time instant of the repolarization peak (7,,,,) was extracted
from the spike trace with the largest negative trough (same electrode
as Na) and a Rep image was built by probing all N electrodes at ¢,

max*
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Overall, the localization-specific (N, N,)-dimensional sets of fea-
tures are Na, Rep, and NaRep, where the last is a stacked version of
both features having dimension (N,N., 2).

Classification features. From each spike, we extracted features that
are commonly used for cell classification (Barth¢ et al. 2004; Peyra-
che et al. 2012): peak-to-peak width (W), full-width half-maximum
(F), and peak-to-peak amplitude (A). The peak-to-peak amplitude A,
despite not being one of the commonly used features for classifying
neurons from extracellular recordings, was selected as a feature in
combination with F and W because spike widths increase with
increasing recording distance (Anastassiou et al. 2015; Hagen et al.
2015; Pettersen and Einevoll 2008) and therefore with decreasing
amplitude.

The following is a list including a detailed description of the
features:

A B_ . __
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Na image

Fig. 5. Feature extraction pipeline: first, neuronal models (a pyramidal cell
here) are simulated (A) and extracellular action potentials (EAPs; B) are
computed on the multielectrode array (MEA) probe (SQMEA-10-15 here).
Features (D) are then extracted from EAPs. Localization features are sodium
negative peak (Na) and repolarization (positive) peak (Rep), and classification
features are peak-to-peak amplitude (A), spike width (W), and full-width
half-maximum width (F). The feature images (C) are finally used as input for
convolutional neural networks.
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A: For each recording site, the peak-to-peak amplitude was ex-
tracted as the absolute difference between the negative peak and the
following positive repolarization peak. If the amplitude value of a
recording site was less than a detection threshold of 5 wV, then the
amplitude for that electrode was set to zero.
W: For each electrode site, the width was computed as the time
difference between the negative peak and the following positive
repolarization peak. If the amplitude of the corresponding elec-
trode was below the detection threshold (i.e., when the ampli-
tude feature was set to 0), the width was set to the duration of the
spike window, which was 7 ms.
F: For each electrode site, the full-width half-maximum was computed
as the width at 50% of the negative maximum amplitude (refer to Fig.
5 for a graphical visualization and further explanation). In this case, the
reference voltage was the initial voltage on the selected electrode site
at beginning of the spike window. If the amplitude of the correspond-
ing electrode was below the detection threshold (when the amplitude
feature was set to 0), F was set to the duration of the spike window,
which was 7 ms.

For classification, we considered the feature combinations AW (N,
N_,2), FW (N,, N, 2), and AFW (N,, N_, 3), where the shapes of input
arrays to the CNN are indicated in parentheses.

Waveform. We also investigated the performance using the entire
spike waveform as input to the CNNs for localization and classifica-
tion. While localization and classification features focused on ampli-
tudes at specific time points (e.g., Na, Rep) or on extracting significant
spike shape parameters (A, F, W), here we took into account the
evolution of the action potential in time. As the additional third
dimension (2D + time) increased the training time significantly, we
downsampled the initial spike waveforms from 224 to 14 samples,
i.e., with a downsampling factor of 16. We denoted this feature set,
with a shape of (N_V, N_, 14), as Waveform.

Convolutional Neural Network

CNNs are biologically inspired artificial neural networks, and they
differ from standard artificial neural networks mainly by the use of
convolutional layers. The biological inspiration originates from the
information processing in the visual system (Krizhevsky et al. 2012;
Zeiler and Fergus 2014). For our implementation, we used the open-
source software TensorFlow to train and evaluate the network (see
Abadi et al. 2016; software available from https://www.tensor-
flow.org). All computations were done on the HPC clusters NEMO in
Freiburg and ABEL in Oslo.

Configuration. We investigated the performance of CNNs of dif-
ferent sizes, all having the same underlying configurations (except for
Waveform input features, whose CNN morphology is explained at the
end of this section). Five CNN sizes (XS, S, M, L, XL) were used, and
they differ in the size k; of convolutional kernels (the index i € {1,2}
specifies the convolutional layer), convolutional layer depths d,, and
the number of nodes in the fully connected layer np_The values used
for different sizes are listed in Table B1 in APPENDIX B.

Feature images of dimension (N,, N)) were input to a d,-deep
convolutional layer with rectified-linear units that filter the input
image with (k,, k;) kernels and a stride of 1. Then max-pooling was
applied, and the image was shrunk to a (n,, n) = (NJ/2, NJ/2)
footprint. Another d,-deep convolutional layer with rectified-linear
units applied (k,, k,) kernels, and a second max-pooling operation
reduced the output image features to a (m,, m,) = (n,/2, n./2) size. The
(m,, m_) features were input to a fully connected layer with ng nodes.
The fully connected nodes were connected to the nodes in the output
layer (see Output layer and optimization).

The Waveform feature set differed from the classification- and
localization-specific sets as it included time as a dimension. Although
some feature images for localization and classification were concate-
nated and thus had a 3D shape [for example, NaRep had a shape of
(N,, N, 2) and AFW is (N,, N_, 3)-dimensional], the optimized kernels
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were the same for two or three dimensions. For the Waveform feature
set, a 3D CNN was used, i.e., convolutional kernels were 3D with a
shape of (k,, k,, k,) and (k,, k,, k,). Max-pooling was also applied in
all three dimensions. For the Waveform feature set, we used a CNN
with k, = 4.

Output layer and optimization. The output layer of the network was
different depending on whether localization or classification was
performed. In case of localization, three output nodes linearly
summed the fully connected node inputs and biases to output the x-,
y-, and z-coordinates. Optimization minimized the mean squared error
between the predicted x-, y-, and z-coordinates and the true soma
positions of the training spikes. For classification, there were instead
two output nodes in case of excitatory/inhibitory classification. For the
m-type classification, we used 11 output nodes, 1 for each cell type
under consideration (see Cell Models for a list of m-types). During
training, softmax cross entropy was minimized (Goodfellow et al.
2016).

For both localization and classification we used an Adam optimizer
(learning rate = 0.0005) (see Kingma and Ba 2014), and we ran 2,000
training epochs. At each iteration, 10% of the training observations
were randomly sampled and used to update network weights with
backpropagation. To limit overfitting, we used dropout on the fully
connected layer (Srivastava et al. 2014) with a dropout rate of 0.3
(during training 30% randomly chosen fully connected nodes were
dropped and not considered for updating the network weights).

Validation strategy. To estimate the accuracy of the CNNs, we
divided the input data into a training set, used to estimate the CNN
parameters, and a validation set, upon which the trained CNN’s
accuracy was tested. Before the training-validation set division, we
preprocessed the data set so that morphologies in the training and
validation sets were unique (APPENDIX A). Then, we balanced the
occurrence of observations of the same cell type (m-type) by random
undersampling. For excitatory/inhibitory classification, we further
subsampled the inhibitory neuron observations to match the excitatory
ones (in the data set, there are 7 inhibitory cell types—not counting
BP and NGC—and 4 excitatory types). The class balancing was
performed for training and validation sets separately. For localization
(and m-type classification), the training and validation data sets
consisted of 44,000 and 11,000 instances, respectively. For classifi-
cation, we used 32,000 observations for training and 8,000 for
validation.

Comparison with Other Models

Localization. In previous work on neural localization, the underly-
ing idea has been to solve the inverse problem by choosing a
generative model and minimizing the error between the true extracel-
lular potential and the one predicted by the chosen model. The soma
position has been among the model parameters that have been opti-
mized. Several models were used in previous studies: monopole and
dipole current-source models (Blanche et al. 2005), line-source mod-
els (Somogyvidri et al. 2012), and ball-and-stick models (Delgado Ruz
and Schultz 2014). We compared our localization approach to inverse
problem solutions solved with the EAP negative peak (i.e., Na image)
with the following models (o denotes the extracellular conductivity):

MONOPOLAR CURRENT SOURCE. A negative monopolar current-
source I placed at position r, evokes a potential ¢(r) at position r
according to

o(r) . (&)
= —
dmofr —r|

The somatic current and soma position are the only parameters to
be optimized. The predicted soma position is r,.

BIPOLAR CURRENT SOURCE. Placing a negative current- source / at
position r,,., and its positive counterpart (absolute value of /) at r,
the potential at position r reads
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In this case, the estimated soma position corresponds to the nega-
tive current-source location, which is r,.,. This model is equivalent to
the two-monopole model in Pettersen and Einevoll (2008).

BALL AND STICK. The ball-and-stick model combines a somatic
point-like constant current-source I, at position r, with a dendritic
stick of length d,_,, pointing in direction d. We used a modified version
of the ball-and-stick model described in Pettersen and Einevoll
(2008), since we do not assume net currents to be zero (Delgado Ruz
and Schultz 2014). The current along the stick /(x) is assumed to
decay exponentially, as confirmed by experimental data (Foust et al.
2010; Goldberg and Yuste 2005; Golding et al. 2001; Gulledge and
Stuart 2003; Migliore et al. 1999; Sasaki et al. 2012; Waters et al.
2005). With initial negative value I, at r,, the current distribution
along the stick reads

159) = Lgns X exp(*?) @

T

where d_ denotes the decay constant and x4 € [0, d,.,] is the position
along the dendritic segment (discretized in Ny, = 50 uniformly dis-
tributed points along the stick of length d,.,). The predicted soma
location corresponds to r,. The potential at position r is given by the
summation of the somatic and dendritic contributions:

IS
B) = o)+ ) =
walr ]
Ngg ] dr;
el O

where each segment is modeled as a line current source (see Eg. ).

Table 1 summarizes the parameters to be estimated for each
described model.

GENETIC OPTIMIZATION. To estimate the model parameters, we
minimized the sum of squared errors at each recording site between
the extracellular potential predicted by the model and the extracted Na
feature image of the true simulated extracellular potential. Optimiza-
tion was performed with a genetic algorithm implemented with the
Distributed Evolutionary Algorithms in Python (DEAP) package
(Fortin et al. 2012). We used the (i + A) evolution strategy, which
selects the next parents from the common set of the current parents (u
individuals) and the offspring (A individuals). More precisely, the
algorithm was implemented with the deap.algorithms.eaMuPlus-
Lambda function. We used u = 100, A = 200, crossover probability
Pex = 0.8, and mutation probability p,, . = 0.2. Furthermore, tourna-
ment selection (deap.tools.selTournament) and blend crossover (deap.
tools.cxBlend) were used for selecting and mating individuals, respec-
tively. Mutation was performed with a random Gaussian mutation
(deap.tools.mutGaussian). When an individual was selected for mu-
tation with probability p.. each of its elements was individually
mutated with an individual probability of p;,, = 0.3. Gaussian means
for all parameters were set to zero, and standard deviations (SDs) were

Table 1. Inverse model parameters

Model Parameters No. of Parameters
Monopolar I rg, rg g 4
Bipolar L5 Toos, Tpos, Tpos.» Tneg s Tncg,s Thes_ 7
Ball and stick I, r, 7y 15, dy dy, o, Lyenas drens do 10

Summary of parameters for the different inverse models involved in the
study. I, current source; r,, predicted soma position; r,,, position of positive
I Toegs position of negative /; /.4, dendritic current; d,.,, dendritic length; d_,
decay constant.
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Table 2. Model parameter summary

Parameter Range Gaussian o
I, Liena (—100, 0) nA 1 nA
X positions (10, 80) wm 10 pm
¥,z positions (—180, 180) wm 10 pwm
d.d,d. (=1 1) 0.1
dien (1, 500) wm 50 uwm
d, (0.1, 500) um 20 pwm

Range for initialization and constraint and standard deviation o for mutation
Gaussian for the different parameters. /, current source; I,.,q, dendritic
current; dy,,, dendritic length; d_, decay constant.

different depending on the parameter. The parameter values are
summarized in Table 2, and we constrained the optimization to solutions
within biophysically acceptable boundaries (shown in Table 2).

Classification. Besides applying a CNN, the problem of classifying
neurons according to their EAP can be done by several other methods
(Barthé et al. 2004; Delgado Ruz and Schultz 2014; Peyrache et al.
2012). It is a well-established observation that pyramidal excitatory
cells present a broad spike waveform, while inhibitory cells have a
narrow one (Barthé et al. 2004). Therefore, a standard way of
classifying between the two classes is to plot spike width W and
full-width half-maximum F (see Classification and Localization Fea-
tures for feature extraction details) of the EAP with the maximum
amplitude and then cluster the data points in this 2D space (Bartho et
al. 2004; Peyrache et al. 2012). Once F and W were computed for the
electrode with the maximum peak-to-peak amplitude, we applied two
different clustering techniques to the point cloud: k-means and a
mixture of Gaussians (MoG) clustering (Pedregosa et al. 2011). While
k-means clustering iteratively assigns points to K clusters based on
their distances to the cluster means and then recomputes the cluster
means with new assignments until convergence, the MoG estimates K
Gaussians to fit the data and then labels the data points based on the
Gaussian shape. In this case, since the goal is excitatory/inhibitory
classification, we set K = 2.

Statistical Analysis

For localization errors, statistical tests were run on the 11,000
validation observations: since all distributions did not satisfy the
normality assumption, nonparametric tests were run (1-sided Mann-
Whitney U-test; Mann and Whitney 1947). When sample sizes are
large, statistical tests are prone to indicate that there is a significant
difference (effect) between distributions, resulting in low P values. To
characterize whether such difference is relevant, a measure of its
magnitude, or effect size, should be included (Sullivan and Feinn
2012). To quantify the effect size, we used Cohen’s d coefficient
(Cohen 1992), i.e., the difference between population means normal-
ized by the pooled SD. We considered significant differences (low P
values) to be negligible (effect size < 0.2), small (effect size = 0.2),
medium (effect size = 0.5), or large (effect size = 0.8). Test results are
shown in APPENDIX B, divided by group (data set rotation, Table B3; CNN
size, Table B4; feature type, Table BS5; probe type, Table B6; and
localization method, Table B7). Each entry of the tables shows the
Cohen’s d coefficient (rounded to 2 decimals) and the significance of the
Mann-Whitney U-test with the alternative hypothesis that column
group << row group.

RESULTS

In the following sections, we show localization and excit-
atory/inhibitory classification results only of m-type cells in-
cluded in the training data set. Therefore, unless otherwise
specified, BP and NGC are excluded from the analysis. The
performance measures were different for localization and clas-
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sification. In case of localization we used the average total
error and for classification the average classification accuracy
(ratio between correctly classified observations and total num-
ber of observations). Moreover, we analyzed the cell-specific
accuracy to get more insight on the classification performance.
The average localization error in the x-, y-, and z-directions can
be interpreted in the following way. Assuming normally dis-
tributed errors, the true soma location is with 32% probability
inside a box centered at the predicted soma position with edge
lengths of twice the average localization error in the corre-
sponding dimension. The probability rises to 87% with a box
edge length of four times the average localization error in the
corresponding dimension.

Dependence on Neuron-MEA Alignment

The first question we investigate is how the neuron-MEA
alignment affects the localization and classification perfor-
mance. Three data sets were built, Norot, Physrot, and 3drot.
To focus on the effects of alignments, we use fixed feature sets
(NaRep for localization, FW for classification; see Classifica-
tion and Localization Features for definitions), MEA probe
(SqQMEA-15-10), and CNN size L.

Localization. First, we show the mean and SD of the local-
ization errors along the three axes as well as the total error in
Table B2. Each row displays the performance of a rotational
data set. Average errors and SDs are 7.3 = 5.7 um for Norot,
7.8 £ 6.3 wm for Physrot, and 8.9 = 8.2 um for 3drot.
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The Norot data set results in significantly lower errors with
respect to the 3drot data set (effect size = 0.21; Table B3).
Negligible differences are found in the comparison between the
Norot errors and the Physrot errors (effect size = 0.09) and
between the Physrot and 3drot data sets (effect size = 0.13).
Taking into account the finite size of the soma (~10-15 wm of
diameter), we consider the resulting error values to be a
sufficient performance for most applications. The errors along
the three axes appear to be isotropically distributed, as they
show similar values in all directions (but the observations in
the x-direction are not uniformly distributed—as shown below
in Fig. 9C—since we only considered spikes above 30 wV and
spike amplitude decreases with distance).

In Fig. 6, A—C, we show the errors along x-, y-, and z-axes
with respect to the x-, y-, and z-coordinates for the three
rotational data sets. In these plots, we bin the true x, y, and
Z neuron positions in seven bins and treat them as categor-
ical data (i.e., the positions can have discrete values depend-
ing on the bin they belong to). The data points are the mean
of the error grouped by bin and rotation type and the error
bar is the SD. Figure 6A shows that errors in the distance
estimation (x-direction) tend to increase as the distance of
the neuron increases for all three data sets, similarly to
Delgado Ruz and Schultz (2014). Regarding the y- and
z-dimensions (Fig. 6, B and C, respectively), it is interesting
to note how the errors have a convex shape, meaning that
errors tend to increase when the neuron is at the border of
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Fig. 6. A: x errors with respect to the x-coordinate (distance). B: y errors with respect to the y-coordinate. C: z errors with respect to the z-coordinate. D: x
predictions with respect to the true x-coordinate (distance). E: absolute value of the y predictions with respect to the true y-coordinate. F: absolute value of the
z predictions with respect to the true z-coordinate. All values are in wm. Orange lines indicate the Norot data set, green lines the Physrot data set, and purple
lines the 3drot data set. Gray lines correspond to a perfect prediction. Data are binned in 7 bins along x-, y-, and z -directions: points and error bars display the

average errors and their SDs for each bin and each data set.
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the probe, in which case only partial information about the
spike is available.

When looking at the distribution of the predicted x-, y-, and
z-coordinates with respect to the true coordinates in Fig. 6,
D-F, one can note how the errors observed in Fig. 6, A—C, are
caused by an underestimation of the soma distance in all
dimensions: at large distances (x-direction) from the probe,
neurons are predicted to be closer to the MEA; when they are
close to the y and z borders of the probe, the predicted position
is closer to the center of the MEA.

Next, we consider the variability of localization performance
depending on cell types and alignment. In Fig. 7A the bar plots
show the average total errors and their SDs grouped by neuron
morphology type (11 training morphologies + BP and NGC;
see Fig. 2 for representative cells) for the Norot, Physrot, and
3drot data sets. The range and distribution of distances taken
into consideration are the same as in Fig. 6. Focusing on the
Physrot data set, the minimum error of 4.7 = 3.8 um is
obtained for the SBC morphology, while the worst perfor-
mance is 15.9 £ 9.1 um for slender-tufted PC (STPC) mor-
phology. The difference in prediction performance with respect
to cell type does not seem to be depending on excitatory/
inhibitory morphologies (i.e., pyramidal and nonpyramidal
cells), nor do they look to be clustered depending on morpho-
logical subclasses; for instance, among the different basket
cells (names ending with BC) there is some variability among
large basket cells (LBC), NBC, and SBC, and the same holds
for pyramidal cells [STPC, TTPC1, thick-tufted PC with early
bifurcating apical tuft (TTPC2), and untufted PC (UTPC)]. The
performance of BP and NGC (Fig. 7A), which were not used
for training, is in line with other cell types, with errors of
8.8+ 22 um and 9.4 = 5.1 um, respectively. This result
confirms that the method is capable of dealing with diverse
morphologies, as long as the training set contains a large
representation of cell types.

Classification. The accuracy analysis of excitatory/inhibi-
tory classification is based on the FW feature set. Table B8 in
APPENDIX B shows the classification accuracies for each cell
morphology plus the average accuracy and the SD for the

Fig. 7. A: localization error grouped by cell type for all
rotational data sets. Bars are the average errors, and error
bars show the SDs in wm. Orange bars display the Norot
data set, green bars display the Physrot data set, and purple
bars display the 3drot data set. Ticks on the x-axis show the
cell types: red ticks are inhibitory cells, blue ticks are
excitatory, and yellow ticks are bipolar (BP) and neuroglial
(NGC) cells (not used for training). B: excitatory/inhibitory
classification accuracy in color code grouped by rotation
and cell type. Each element of the matrix is the accuracy of
a specific cell type (red, inhibitory neurons; blue, excitatory
neurons) in the different rotational data sets (rows). For
explicit values see Table BS. C: spike shapes for maximum
peak electrode sites are plotted in the FW-plane. Red dots
are inhibitory neurons, and they lie in the lower left part of
the plot. Blue dots show excitatory cells, in the upper right

NEURON LOCALIZATION AND CLASSIFICATION WITH DEEP LEARNING

different data sets. The cell-specific accuracies are also visu-
alized by color coding in Fig. 7B.

The average classification accuracy is equally high for the
Norot and Physrot data sets (98.1 = 2.4% and 98.0 = 3.9%,
respectively) and lower for the 3drot data set (97.6 = 3.9%).
This is because neurons are rotated with more degrees of
freedom; nevertheless, on average the accuracy remains very
high in all cases. A closer examination of this result reveals
that the main reason for the drop in classification accuracy was
misclassification of the chandelier cells (ChCs). The lowest
value is the ChC accuracy in the 3drot data set (84.1%). In Fig.
7C, we show the spike shapes in the FW-plane of the electrode
site with largest amplitude. Inhibitory neurons mainly lie in the
lower left part (narrow spikes). Excitatory neurons are almost
perfectly classified as excitatory cells, as shown in Table B8
and Fig. 7B. The spike shapes of ChC in the FW-plane mainly
lie at the interface with the excitatory neurons. This might
explain why they are harder to classify correctly with respect to
the other cell types.

Effect of CNN Size

We investigated how localization and classification perfor-
mances vary with network size. The results shown in this
section were obtained with the SqMEA-10-15 probe, NaRep
features for localization, and FW for classifications. For the
remaining analyses, boxplots and cumulative distribution func-
tions (cdfs) are used to represent the performance of the
localization models. In all boxplots, the box is the interquartile
range (IQR), i.e., the 25th and 75th percentiles, the horizontal
lines inside the box show the medians, and the red diamonds
display the means. The whiskers (horizontal black lines) rep-
resent the highest and lowest data values within 1.5 times the
IQR. Data points outside the whiskers are plotted as black dots
and are regarded as outliers. We obtained the cdfs by sorting
the sample and pairing each data point with its normalized rank
(percentile). Hence, the point where the cdf crosses 0.5 repre-
sents the median of the localization error.
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Localization. Figure 8A shows the localization errors
grouped by CNN size (XS, S, M, L, and XL). Increasing the
size of the network improves the performance significantly
(Table B4), but for sizes L and XL the average localization
error is almost the same [7.8 = 6.3 um for L and 7.3 = 5.8 um
for XL (effect size = 0.09)]. If not stated otherwise, networks
of size L have been chosen, as they provide a good compro-
mise between performance and time required for training.

Classification. Table B9 in appEnDIX B shows the perfor-
mance in classification into excitatory and inhibitory neuron
types. The highest accuracy (98.6 = 1.1%) is reached with a
network of size M, while all others show a slightly lower
performance. A possible explanation for the lower score of the
XL network is overfitting to the training set because of the
large number of parameters.

Feature Selection

In the previous sections, we have presented results with
fixed feature sets (NaRep for localization and FW for classifi-
cation), eliminating the effects caused by other factors, such as
alignment, cell type and CNN size. The following results were
obtained on SQMEA-10-15 probes using CNNs of size M
(because of the long training time required by 3D CNNs for
Waveform feature).

Localization. In Fig. 8, C and D, we display the boxplots and
cdf of the errors with varying feature sets for localization. In
other studies, either the sodium peak is the only feature used
(Blanche et al. 2005; Delgado Ruz and Schultz 2014; Mechler
et al. 2011; Mechler and Victor 2012; Somogyvdri et al. 2005)
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or the entire spike time course is modeled (Somogyvdri et al.
2012). Here we show that all CNNs relying on peak input show
roughly the same performance: average errors * SDs are
8.8 = 7.1 um for Na, 8.8 = 7.9 um for Rep, and 8.8 = 7.7 um
for NaRep. Negligible differences are found when comparing
Na, Rep, and NaRep, with effect sizes close to zero (Table B5).

The Waveform CNN results in a lower average prediction error
of 6.9 £ 6.5 wm, which is significantly better in comparison with
Na (effect size = 0.28), Rep (effect size = 0.26), and NaRep
(effect size = 0.27; Table B5). We speculate that the performance
of the Waveform approach is only slightly increased (by ~2 um)
for the following reason: when considering the peaks only, trans-
membrane currents are mainly concentrated around the soma
(Delgado Ruz and Schultz 2014; Gold et al. 2007; Somogyvari et
al. 2005, 2012); therefore, the peak features contain almost all
information the CNN needs for soma location.

Classification. Classification performances are listed in Ta-
ble B10 in appenDIX B. The AFW feature set, with an accuracy
of 98.6%, performs better than AW and FW, with accuracies of
98.1% and 97.0%, respectively. The Waveform feature set,
which uses a downsampled version of the entire spike, per-
forms almost perfectly on the classification task (accuracy
99.7%). Given these results, the Waveform feature set is better
than the other approaches, at the expense of more computa-
tionally demanding training procedures.

Performance with Different MEA Probes

We built simulated spikes using eight different MEA mod-
els: five of them are square arrays with varying pitch, and the
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other three are the NeuroSeeker (Neto et al. 2016), NeuroPixels
(Jun et al. 2017) (trimmed to 128 channels), and Neu-
ronexus-32 (clipped to 30 electrodes to make it rectangular)
probes. In the following paragraphs, we present the capabilities
in terms of neuron localization and classification for the dif-
ferent probes. All simulations shown in this section make use
of CNNs of size L, NaRep features for localization, and FW for
classification.

Localization. Figure 8, E and F, show localization errors for
the eight different probes (boxplots and cdf). Although an error
reduction can be observed from square MEA with 30-um pitch
to 10-um pitch, as expected, even with a relatively low density
(30-pwm pitch) a CNN can learn localization models with an
average error as low as 8.4 = 6.4 um for the SQMEA-5-30. As
a comparison, the average error for the probe with 10-um pitch
(SqMEA-15-10) is 7.6 = 6.4 wm. The errors are in the same
order also for the Neuronexus probe (mean of 8.5 = 7.2 um)
and for the NeuroSeeker probe (mean of 9.3 * 7.7 um). When
evaluating the performance on 128 sites with the arrangement
of the NeuroPixels probe, the average error is 10.8 £ 8.5 um.
One may note that even though the NeuroSeeker and Neu-
ronexus probes have lower pitch (NeuroSeeker: 22.5 um in y-
and z-axes; Neuronexus: 18 wm in y-axis and 25 wm in z-axis)
compared with SQMEA-5-30, their localization error is higher.
The reason for this discrepancy might be in the arrangement of
the electrodes: while the SQMEA-5-30 has an effective width
(considering point electrode contacts) of 120 um, for the
NeuroSeeker the effective width (considering point electrode
contacts) is 67.5 wm and for the Neuronexus it is 36 um.
Hence on the NeuroSeeker and Neuronexus probes there is less
spatial information in the y-direction, which may explain the
reduced localization accuracy.

In general, most comparisons show negligible differences
(effect size < 0.2), except for the NeuroSeeker and NeuroPix-
els probes. The NeuroSeeker probe performs worse than the
high-density square MEAs (SQMEA-15-10: effect size = 0.25,
SqMEA-10-15: effect size = 0.22), while the NeuroPixels er-
rors show effect sizes above 0.2 in all comparisons (ranging
from 0.43 compared with SQMEA-15-10 to 0.3 compared with
Neuronexus) except for the comparison with the NeuroSeeker
probe (effect size = 0.19). In case of the NeuroPixels probe the
checkerboard arrangement might pose additional difficulties,
resulting in even lower performance.

Classification. Table B11 in ApPENDIX B shows accuracies for
classification with different probes. The average accuracies are
very high and almost the same for all probes, from a minimum
of 96.6% (SqQMEA-6-25, SQMEA-15-10) to a maximum of
98.6% (NeuroPixels-128).

Comparison with Other Approaches

In this section, we compare the CNN approach to other
state-of-the-art methods. For localization, we used the mono-
polar, bipolar, and ball-and-stick models described in Compar-
ison with Other Models to solve the inverse problem on our
simulated data sets. Hence the results obtained for other meth-
ods might be different with respect to ones in the literature
because the number of cell models, the utilized probes, and the
neuron-MEA alignments vary. For characterization of excit-
atory and inhibitory neurons, we compared with commonly
used clustering techniques.

NEURON LOCALIZATION AND CLASSIFICATION WITH DEEP LEARNING

Localization. For localization, we use the validation data set
on the SQMEA-10-15 probe. The CNN errors displayed in the
plots are obtained with the NaRep feature set and a network of
size L. In Fig. 9, we show the errors of the simplified models
described in Comparison with Other Models and for the CNN
method.

We found that the CNN performs significantly better than
the inverse approach in all cases, with an average error and SD
of 7.8 = 6.3 um. The large differences between the CNN and
the other methods’ error distributions are confirmed by the
effect sizes: 0.9 for the monopolar approach, 0.68 for the
bipolar approach, and 0.87 compared with the ball-and-stick
approach (Table B7). Among the models used to solve the
inverse problem, the monopolar has a mean error and SD of
21.7 = 20.9 um, the bipolar model of 15.6 = 15.2 um, and the
ball-and-stick model of 22.6 = 23.2 um. The better perfor-
mance of the bipolar model with respect to the monopolar
model (and ball-and-stick model) can be due to the fact that it
is the only model capable of predicting negative and positive
potential values on the MEA. Dendritic branches act as current
sources when the soma is depolarized, causing positive deflec-
tions in the extracellular potential (Pettersen and Einevoll
2008).

Studying the probability density function (pdf) of the pre-
dicted coordinates by different models in Fig. 9, C-E, the
monopolar model tends to underestimate the distance (x-coor-
dinate) from the MEA (note sharp peak in the distribution in
Fig. 9C). In the y- and z-axes, instead the predictions are closer
to the center of the MEA when observations lie outside the
boundary of the probe (note the different steepness and shape
of the monopolar pdf with respect to the true pdf in Fig. 9, D
and E, close to —100 wm and 100 wm). Similarly, the bipolar
model also underestimates distances in the x-direction, but the
underestimation is less severe. In the y- and z-directions it
nicely follows the true distribution. The ball-and-stick model
has distributions very similar to the monopolar model in all
three directions. The CNN approach, on the other hand, is the
closest match to the true distribution in all three dimensions.
Note that the distribution in the x-direction is not as uniform as
in the y- and z-directions (the density decreases with increased
distances) because we discarded spikes with a peak-to-peak
amplitude below 30 wV here.

Classification. For excitatory/inhibitory classification we
compared the performance of our CNN approach to standard
clustering techniques in the FW space (F: full-width half-
maximum, W: width). In Fig. 10A, we show the validation data
with the SqMEA-10-15 probe and the excitatory/inhibitory
balanced data sets (8,000 observations). Each point is com-
puted from the recording site with largest amplitude. Although
it is true that inhibitory cells cover the bottom left part of the
cloud (narrower width and full-width half-maximum) and ex-
citatory cells the top right (wider spike shape), we can observe
that there is some overlap between the two groups. When we
apply k-means clustering (Fig. 10B), the algorithm correctly
assigns the bottom left part to inhibitory neurons and the top
right part to excitatory neurons, but the overlap is mainly
assigned to the excitatory class. This yields an accuracy of
99.9% for the excitatory class but only 60.7% for the inhibitory
one, with an average of 80.3%. When it comes to the MoG, the
data are fit to two multivariate Gaussians and labels are
assigned based on the probability of an observation to belong
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Fig. 9. A: error boxplots grouped by model used to solve the inverse problem. Red diamonds are means; black diamonds are outliers. B-A-S, ball-and-stick; CNN,
convolutional neural network. B: cumulative distribution function (cdf) grouped by localization method. Gray dashed horizontal line at 0.5 defines the median.
Diamonds on each curve show the means (their x values are the average error; the y values are the percentile of their occurrence). The error values are clipped
to 50 wm to zoom in the distributions. C—E: probability density functions (pdfs) of predicted values by different models and true values in the x (C)-, y (D)-,

and z (E)-directions. Statistical analysis is shown in Table B7.

to the two distributions. Figure 10C shows the estimated
Gaussians (ellipses) and the labeling of the points. Although
the MoG is capable of describing the diagonal shape of the
excitatory cloud, the overlap between the observations cannot
be untangled, resulting in an accuracy of 98.8% for the excit-
atory class and 54.2% for the inhibitory one, with an average
of 76.5%. The CNN method, instead, is able to discern the
overlap in the FW space. This is certainly due to its higher
complexity, due both to the method itself and to the use of all
electrodes’ information, not only those with highest amplitude.
The CNN result shown here (FW feature set, size L) allows us
to correctly predict excitatory cells in 98.9% of the cases and
inhibitory cells with an accuracy of 97.1%. This makes it the
best-performing method among those compared here, with an
overall accuracy of 98.0%. It could be argued that the com-
parison was somewhat unfair, as our CNN approach considers
F and W images (computed on all recording sites), while the
clustering is performed with values computed from the elec-
trode with highest amplitude only. Nevertheless, it is not
common practice to consider waveforms on all electrodes but
only on the one with highest amplitude (Barthé et al. 2004;
Peyrache et al. 2012).

m-Type Classification

In addition to separating excitatory cells from inhibitory
ones by trained CNNs, we tried to make a finer subdivision and
classify cells into morphology classes (m-type) based on the
EAP. The approach is similar to that for excitatory/inhibitory
classification, but instead of only 2 output classes we take the

11 m-type classes (cells of m-type BP and NGC are excluded,
since only 1 morphology is available in the data set). We use
a CNN of size L and consider Waveform features (in this case
with a downsampling factor of 8, i.e., a sampling frequency of
4 kHz) on the SQMEA-10-15 with the Physrot data set. The
resulting confusion matrix £, in which each entry E;; represents
the amount of observations of the true cell type i predicted as
cell type j, is depicted in Fig. 11. We do not observe a striking
diagonal, indicating that full identification of all cell types is
not feasible from EAPs. But it is noteworthy that there is some
block structure dividing excitatory neurons from inhibitory
neurons. This division is learned intrinsically by the network,
and inhibitory cells are classified within the inhibitory block in
100.0% of the cases and excitatory cells within the excitatory
block in 95.7%. Concerning the mixing of TTPC1 and TTPC2,
we do not expect to be able to differentiate between these two
types because their only difference is the distance of the
bifurcation point of the apical dendrite to the soma. Since the
MEA is located close to the somatic region, recordings might
not be sensitive to this delicate difference. Disregarding this
mixing, the m-type classification performs well (chance would
be 9.1%) on excitatory cells and inhibitory Martinotti cells
(MC) (80.5%). Note that these well-classified cells make up a
large proportion of cortical cells. The overall accuracy of
34.0% illustrates that the morphological details are partially
resolved by the CNN. In cases in which the CNN is not able to
extract the information about the morphological details, it is
unclear whether the information is present at all in the EAP or
an increased number of cell models could solve the problem. In
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Fig. 10. Comparison with standard clustering approaches for excitatory/inhibitory classification. Each point is 1 spike in the FW-plane; red dots are inhibitory
cells, and blue dots are excitatory cells. A: true excitatory/inhibitory classes: it is evident that there is some overlap between the groups in the center of the plot.
B: k-means prediction: k-means clustering splits the data in 2 groups and cannot untangle the overlap (accuracy: 80.3%). C: mixture of Gaussians (MoG)
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full-width half-maximum.

conclusion, the results show promise for a more refined clas-
sification than only distinguishing excitatory cells from inhib-
itory cells.

Validation on Different Models

To investigate how general the trained CNN models are,
we tested the performance of localization and classification
on simulated EAPs from other neuronal models, namely, the
cell model from Hay et al. (2011) and the models from the
Allen Brain Institute (ABI) cell type database (Gouwens et
al. 2018; http://celltypes.brain-map.org). For the following
results, we used the SQMEA-10-15 probe, CNNs of size L,
and NaRep and FW feature sets for localization and classi-
fication, respectively.

Hay model. The Hay cell models a neocortical pyramidal
cell from L5b, and the techniques used to build the models
were similar to the models from the NMC Portal. Therefore,
we expect a relatively good performance in localization and
classification with the CNNs trained on our standard NMC
data sets. We built a Physrot data set of Hay cells consisting
of 1,000 observations at random locations around the probe
as described in Simulated Recordings, and we then evalu-

ated the performance of the CNNs in localization and
classification.

For localization, the average error on the Hay data set is
8.7 = 6.6 um, perfectly in line with the average errors of
TTPC models in the NMC validation data set (Fig. 7A). The
average error over all cell types in the NMC validation data
setis 7.8 = 6.3 um. For classification, we obtain an average
accuracy of 76.4%, while the accuracy on the NMC valida-
tion set is 98.0%. The lower accuracy could be due to the
fact that the Hay model includes other types of mechanisms,
such as active calcium channels in the apical dendrites, that
are not modeled in the NMC cell models.

Allen Brain Institute models. The cell models from the ABI
that we selected are quite different from the NMC cell
models at least for two reasons. First, the ABI neurons are
from mice, whereas the NMC cells are from juvenile rats.
Second, they are from visual cortex (19 cells) and postrhinal
area (1 cell), whereas the NMC models are from somato-
sensory cortex. With CNNs trained on NMC data are ex-
pected to have lower accuracy when applied to the ABI data.
We generated 1,000 EAPs for each of the 20 ABI cell
models, according to the description in Simulated Record-
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Fig. 11. Normalized confusion matrix of m-type classification based on Wave-
form features (here with downsampling factor 8, i.e., 28 sample points) for
Physrot data set. The convolutional neural network size is L and extracellular
action potentials are taken for the SQMEA-10-15 probe. BTC, bitufted cells;
ChC, chandelier cells; DBC, double bouquet cells; LBC, large basket cells;
MC, Martinotti cells; NBC, nest basket cells; SBC. small basket cells; STPC,
slender-tufted pyramidal cells (PC); TTPCI, thick-tufted PC with late bifur-
cating apical tuft; TTPC2, thick-tufted PC with early bifurcating apical tuft;
UTPC, untufted PC.

ings. We used the 3drot alignment because of the variability
in the ABI cell models’ orientation (for details about selec-
tion of cell models see APPENDIX A).

We ran the 3drot CNN for localization on the ABI data set,
obtaining an average error of 19.3 *£ 11.5 um, larger than the
8.9 = 8.2 um obtained on the NMC validation set as expected.
For classification, we distinguished excitatory and inhibitory
cells in the ABI data set based on mouse transgenic lines
(details in APPENDIX A). With the CNN for classification trained
on NMC models, the average accuracy is 76.9%, while it is
97.6% on the NMC validation data set.

Since the cell models of the ABI come from a different
species and are from a different cortical region, we trained a
CNN on this data set only—16 models are used for training and
4 for validation (APPENDIX A). We used a CNN of size L and
NaRep features, obtaining a localization average error of
59 £ 4.5 pm, which is in line with the performance we
obtained on NMC models only. We did not run classification
with so few models (only 20 cell models in total), because the
CNN s need a larger diversity to find general features related to
excitatory-inhibitory types (using the NMC data we trained on
192 cell models).

Test on Experimental Data

Although the method proposed in this report is at a proof-
of-concept stage, we tested some CNNs trained with simulated
data on experiments at least for plausibility.

We decided to use data (publicly available at http:/
www.kampff-lab.org/validating-electrodes) from paired juxta-
cellular and extracellular recordings (Neto et al. 2016) where,
to a certain extent, the ground-truth location is known. The
extracellular signals are measured with either the Neuronexus
or the NeuroSeeker probe. Taking the amplitude threshold of
our CNN training simulation (peak-to-peak amplitude of 30
wV on at least 1 electrode) into account and considering only
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cells in front of the MEA, we were left with 10 data sets (see
APPENDIX A for further details). After performing juxtacellular-
triggered averaging, we fed the average EAP waveform into
the CNN and predicted the soma position. The CNNs were
trained with simulated data having the appropriate geometric
alignment (MEA probes are rotated by —48.2° along the
y-axis). On average the prediction error is 42.2 = 16.8 um,
assuming the true soma position is the tip of the juxtacellular
probe. The experimentally determined positions for the x-, y-,
and z-coordinates range from 27 wm to 129 um, —48 um to 6
um, and =121 wm to 21 wm, respectively. Neto et al. (2016)
report a distance uncertainty of 10.5 = 5.2 um. This uncer-
tainty only applies to the tip position of the juxtacellular probe
with respect to the MEA, but it is a drastic assumption to
consider this position equal to the soma position (center of the
soma). Without neglecting the soma diameter, one might favor
a larger distance error by adding a soma radius uncertainty of
10-20 wm. Furthermore, the uncertainty of 10.5 = 5.2 um
reflects misalignment errors caused by the manipulators used in
the experiment and is investigated under free conditions, i.e.,
without entering any brain tissue. Additional misalignment
originating from entering brain tissue with the probes or from
the brain’s pulsation due to breathing of the mouse are not
taken into account.

Figure 12 shows predicted vs. true coordinates. Figure 124
demonstrates that the predicted soma distances (x-coordinate)
are in a plausible range. Overall, the distance x is predicted
with a mean error of 20.3 = 16.1 um. The y- and z-positions
are in the same range of precision (22.3 * 13.1 um and
22.9 £ 15.7 wm, respectively, on average). Note that the hor-
izontal error bars in the plots only represent the uncertainty due
to the misalignment of the manipulators as reported by Neto et
al. (2016) and all other previously mentioned uncertainties
(which are not quantified) are not considered.

DISCUSSION

This work provides a deep learning approach for neuron
localization and classification based on MEA recordings. We
simulated in vivo-equivalent EAPs and built data sets for
various probe designs, using a multitude of cell models from
the NMC Portal (205 cell models from Ramaswamy et al.
2015). CNN models trained on these simulated spikes predict
the soma position of the neuron and characterize whether it is
excitatory or inhibitory. The accuracy depends on the neuron-
MEA alignment, the specific cell types, the CNN size itself,
and the input feature sets. For completeness, we compared the
proposed method with existing strategies regarding both local-
ization and classification of recorded spikes, we validated on
cell models from other databases, and we tested the models on
publicly available experimental data.

Localization

We showed that the CNN method is robust and accurate in
predicting the 3D soma location from spikes generated by
neurons with a physiological neuron-MEA alignment (Physrot,
defined in Neuron-MEA alignment). The average errors are on
the order of 7.6—11.7 wm for all probes involved in the study
(Fig. 8E). We demonstrated the CNN approach to be robust
with different cell models and to be able to generalize among
cell types not used for training (BP and NGC). Finally, local-
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A

Fig. 12. Soma position predictions of a convolutional 120
neural network (CNN) based on experimental extracel-
lular action potential (EAP) recordings. Experimental
data are from paired juxtacellular-extracellular record-
ings (Neto et al. 2016) where the position of the soma
is associated with the tip position of the juxtacellular
probe. The CNN (size L, NaRep feature) is trained on
simulated (3drot) EAP signals. Error bars are CNN
prediction uncertainties for the predicted coordinates
and 4.2 um, 2.8 wm, and 8.5 um (misalignment
uncertainties reported by the experimenters of Neto et
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ization performances achieved with our approach are signifi-
cantly better than solving the inverse problem with various
generative models. With a SQMEA-10-15 data set the total
error in three dimensions was 21.7 = 20.9 um for the mono-
polar current source, 15.6 £ 15.2 um for the bipolar current
source, and 22.6 = 23.2 um for the ball-and-stick model,
whereas with our CNN approach we obtained an error of
7.8 £ 6.3 um (as shown in Fig. 9).

In a recent study (Delgado Ruz and Schultz 2014), a Neu-
ronexus-32 probe was used (shown in Fig. 3) with a modified
ball-and-stick model to solve the inverse problem. For the five
cell types considered in Delgado Ruz and Schultz (2014), they
reached average errors of 6.26 = 6.10 wm, 6.03 = 7.68 wm,
and 2.58 £ 4.75 wm along the x-, y-, and z-axes, respectively.
Using the same probe on our Physrot data set, we obtained with
CNNs average errors of 4.1 £4.5 um, 43 = 4.7 um, and
4.3 =53 pm for the x-, y-, and z-axes, respectively (with
NaRep feature set and size L).

Classification

The deep learning method was applied to excitatory/inhibi-
tory classification with accuracies above 96.6% for all em-
ployed MEA models using the FW feature set and a CNN size
L. An almost perfect outcome of 99.7% was obtained with the
Waveform features on the SQMEA-10-15 probe. Compared
with standard strategies using spike widths extracted from the
spike shape, it showed a significant improvement (k-means
clustering: 80.3%, MoG: 76.5%; Comparison with Other Ap-
proaches). We also attempted to distinguish among 11 cell
morphologies (m-type classification). The overall accuracy of
34.0% is substantially better than the chance level of 9.1%. It
is interesting to see that m-type classification performs a sort of
unsupervised learning, as inhibitory cells were classified as
inhibitory in 100.0% of the cases and excitatory cells as
excitatory 95.7% of the time.

Overfitting and Stability

When evaluating the predictions of our CNNs on the vali-
dation data set, we observed a drop in accuracy compared with
training accuracy. The drop is in an acceptable range for
excitatory/inhibitory classification (0-3% with respect to the
training accuracy) and localization (up to 3.7 wm prediction
error increase). In case of m-type classification, the validation
accuracy drops ~65% compared with training accuracy, clearly
indicating overfitting. Since we do not have enough diversity in
cell model data to build a third data set for implementing
early-stopping regularization (i.e., stop training as soon as the
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generalization error increases), we tracked the evaluation ac-
curacies depending on the number of training epochs. In most
cases, they reached a plateau after roughly 2,000 training
epochs and did not decrease significantly afterwards, while
training accuracies still increased. Therefore, we decided to
stop training after 2,000 training epochs, assuming that the
CNN has extracted most of the generalizable information
provided by the EAPs at that point. Moreover, we tried to
quantify the stability of the performance depending on differ-
ent initial weights before the optimization process. To do so we
ran the CNN training for localization and classification (on the
SqQMEA-10-15 probe, CNN size L, and with NaRep and FW
features, respectively) six times with different random seeds.
We obtained an average mean error of 7.6 = 0.1 um with an
average SD of 6.3 = 0.2 um for localization (including the BP
and NGC models) and an average mean accuracy of 97.9%
with a SD of 0.2% for classification, indicating that perfor-
mance is not dependent on the initial conditions of network
weights and the convergence is robust.

Model-Based Approach

The findings presented in this study are based on simula-
tions. Although this might be regarded as a limitation, we want
to stress that the proposed method makes use of highly detailed
cell models (Markram et al. 2015) and the complexity of such
models is maintained and learned by CNNs. Previous ap-
proaches to localization and/or classification relied on simple
forward models to solve the inverse models—monopolar, bi-
polar, ball-and-stick models, etc. (Blanche et al. 2005; Delgado
Ruz and Schultz 2014; Somogyviri et al. 2012). We showed
that CNNs outperform these models in estimating the soma
positions. Another point that plays in favor of the use of neural
simulations is the difficulty in gathering ground-truth data
experimentally. Localizing and classifying neurons in real
recordings requires advanced and highly accurate equipment,
and the recorded labeled data would most likely still not be
sufficient to train data-hungry machine learning algorithms
such as CNNs. Nevertheless, validation on experimental data is
definitely a required step and will be based on combined
approaches with paired electrophysiological recordings and
standard microscopy (Neto et al. 2016), or even involving more
sophisticated and precise imaging techniques, such as two-
photon imaging (Gobel and Helmchen 2007), which was
paired with electrophysiological recordings in vivo in Shew et
al. (2010). Paired electrophysiology and two-photon micros-
copy data, possibly in combination with intracellular voltage
monitoring through patch clamping or voltage-sensitive dyes,
could also represent a valuable tool to further validate and
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improve the forward modeling schemes, providing morpholog-
ical, intracellular, and extracellular recordings simultaneously.

Another advantage of using forward modeling is that the
performance of the machine learning algorithm could be im-
proved by building case-specific data sets that better match the
real experimental scenarios. In this work, we assumed that the
simulated probe was inserted in L5 of somatosensory cortex of
a juvenile rat with a vertical insertion angle. However, somato-
sensory cortex can present large differences with respect to
other brain regions (e.g., hippocampus, cerebellum, or other
cortical regions) but also among animal species. Therefore, we
do not envision a single universal model to localize and
classify neurons but species- and brain area-specific CNNs to
accurately deal with variability in neuronal types and func-
tions. For example, when we fed mouse data from the ABI
database, the localization CNN trained on rat data performed
relatively poorly (19.3 £ 11.5 wm; Allen Brain Institute mod-
els), but trained on mouse models the performance is in line
with what we obtained on rat data (5.9 = 4.5 um).

Effect of Probe Design

Regarding neural probes, a forward modeling-based ap-
proach can give important insights for the design and manu-
facturing of next-generation probes. For example, our results
showed that even relatively low-density probes, such as the
SqMEA-5-30, despite performing slightly worse than higher-
density probes, still yield high accuracy in localizing and
classifying neurons. Potentially, the pursuit of extremely high-
density probes, which makes the design complicated and the
data throughput very high, is not required for classification and
localization tasks [although it might still be important for spike
sorting (Franke et al. 2012; Rossant et al. 2016)]. However, for
such simulation-driven MEA design, the simulations lack a
more accurate electrode model considering finite size recording
sites (in this work we used an ideal point electrode), electrode
impedances, and transfer functions.

Future Extensions

The generative model for spike simulations could be im-
proved in various ways. A straightforward improvement to
obtain more accurate simulations could be including the MEA
scar in the data generation, by clipping or bending neuronal
branches in the proximity of the probe before simulating the
recordings. Another refinement might be to take into account
the finite size effects of the electrode contacts by means of the
disk-electrode approximation (Lindén et al. 2014), which was
shown to be appropriate for current sources positioned at
distances larger than the contact radius (Ness et al. 2015).
Moreover, here we assumed a tissue with homogeneous and
isotropic electrical properties, but experimental findings sug-
gest that in the cortex the conductive properties of the extra-
cellular space are anisotropic (Goto et al. 2010). Anisotropy
could be easily taken into account for the simulation of spikes
(Ness et al. 2015; Pettersen et al. 2012). As the proposed
approach strongly relies on high-fidelity simulations that reli-
ably describe the neuron dynamics and volume conduction,
another strategy could be using finite element method-based
models, as in Agudelo-Toro and Neef (2013), Pods et al.
(2013), and Tveito et al. (2017), which would result in more
detailed simulations at the cost of a much higher computational

1227

cost for data generation. Another layer of modeling is the
electrode-tissue interface. The generated data should include
electrical properties of the electrodes, such as the impedance,
and account for their variability in experimental scenarios. In
this work, we used polytrodes with a relevant size with respect
to the neuron: although we assumed a homogeneous medium,
the presence of the probe itself represents an obstacle for
electrical signal propagation and can be modeled with either
finite element method or analytical simplifications, such as the
method of images (Ness et al. 2015).

In this work, we did not include any noise in the simulated
recordings. The rationale behind this choice is that sorted
spikes can be cleaned by applying spike-triggered averaging.
With spike-triggered averaging, additive random noise is re-
duced by a factor of N, where N is the number of occur-
rences of the sorted unit. Moreover, a common problem in
spike sorting is electrode drift, in which the relative position
between a neuron and the recording electrodes changes during
the experiment. If drifting is detected from the spike sorting
algorithm, one could feed different averaged EAPs computed
in separate time windows and evaluate the drift over time,
similarly to Delgado Ruz and Schultz (2014), in which win-
dows of 5 min were used to compute the mean EAP.

Furthermore, the recording site area affects the amount of
noise in the recordings, as the recording area is related to the
impedance of the electrode. Here we assumed perfectly sorted
spikes, from which a clean EAP can be computed. Clearly,
with experimental data errors in spike sorting would affect the
performance of localization and classification due to distorted
waveforms from wrong assignments.

Outlook

Precise neural localization and classification from in vivo
extracellular recordings has the potential of making electro-
physiology an even more powerful technique to interact with
neural tissue. Rather than only extracting spike trains, we could
build a 3D representation of the recorded units and perform
functional electrical imaging to study the spatial interactions
among different cell types in neural microcircuits. On top of
this, a precise localization of neuronal somata might enable the
use of highly selective electrical stimulation patterns (Buccino
et al. 2016) and represent an advancement in single-neuron
stimulation from extracellular probes.

We strongly believe that computational approaches must go
hand in hand with experimental ones, and an extension of this
work might include the simulations of the entire pipeline from
simulated MEA recordings, for example, with VISAPy (Hagen
et al. 2015), to electrical stimulation including spike sorting,
localization, classification, electrical stimulation, and evalua-
tion of its effect on detailed neural morphologies.

APPENDIX A: DATA SELECTION
Neocortical Microcircuit Collaboration Portal Data Set

In this appendix we discuss the data set and the modifications that
we applied to make sure that that training and validation set are
completely disjointed.

In the original data set (https://bbp.epfl.ch/nmc-portal/welcome; L5
cells) there are nine inhibitory neuron types: BP, bitufted cells (BTC),
ChC, double bouquet cells (DBC), LBC, MC, NBC, NGC, and SBC.
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The four excitatory types, i.e., the PCs, are grouped into STPC,
TTPC1, TTPC2, and UTPC. While belonging to the same m-type,
neurons can have different electrophysiology properties (e-type)
based on their firing patterns (Markram et al. 2015). In L5 the e-types
are categorized into continuous accommodating (cAC), continuous
stuttering (cSTUT), burst accommodating (bAC), burst stuttering
(bSTUT), continuous nonaccommodating (cNAC), delayed stuttering
(dSTUT), burst nonaccommodating (bNAC), continuous irregular
(cIR), delayed nonaccommodating (INAC), burst irregular (bIR), and
continuous adapting (cAD). Since not all m-types express all e-types,
the combination of morphological and electrical type gives rise to 52
morpho-electrical types (me-types) in LS. For each me-type, the NMC
database contains five cell models; therefore, there are a total of 260
cell models in the data set.

In Markram et al. (2015), to extend the number of reconstructed
models, an algorithm is used to clone morphologies: neural compart-
ments are randomly scaled and rotated with respect to each other.
Moreover, morphologies are also stretched and shrunk to make up
new morphologies. We identified 54 different morphologies in the
data set, listed in the Supplemental Material for this article. Although
the cloned and/or scaled morphologies are indeed different than the
original ones, their shape is quite similar.

The use of CNNs, which are among the most powerful machine
learning algorithms, pushed us to pay particular attention in the
training-validation splitting so that no information of the validation set
is present in the training set (leakage). Hence, the presence of a
cloned/scaled version of the same morphology in both training and
validation has been avoided. We selected training and validation cell
models so that all morphologies in the validation set are unique. In
doing so, we had to remove all instances of BP and NGC from the
training set, as all the models are derived from the same reconstructed
morphology. For localization and excitatory/inhibitory classification,
we kept a BP and an NGC model in the additional validation set.

After the manipulation, the training set consists of 192 cell models,
while the validation set only contains 11 cell models, one for each
m-type. Moreover, we use one BP and one NGC model, not used for
training, as further validation. In total, we included 205 neuronal
models out of the available 260. The cell models are listed in the
Supplemental Material.

Allen Brain Institute Data Set

From the Allen Brain Institute cell type portal (http://celltypes.
brain-map.org/data), we selected cell models according to three cri-
teria: /) cells were from mice, 2) cells were from L5 (to maintain
consistency with the data from the NMC Portal), and 3) cells had an
all-active model. This search reduced the number of cell models
available to 42. During the simulation process, we further discarded
22 models based on two extra rules: /) if adjusting the current-clamp
amplitude to the soma could not induce a number of spikes between
10 and 30 in 10 iterations (in which the weight was multiplied by 0.75
if the number of intracellular spikes was >30 and by 1.25 when <10
spikes were detected) and 2) if <5 EAP peaks had a peak-to-peak
threshold of 30 wV in 500 random positioning of the neuron around
the probe (meaning that the EAPs were mainly below the defined
detection threshold). After this pruning, 20 cell models are left. To
distinguish between excitatory and inhibitory cells, we used the
transgenic line information: Pvalb, Sst, Htr3, and Gad2 lines were
considered inhibitory; Rbp4, Scnn, and Rorb were considered excit-
atory (Gouwens et al. 2018). After this division there were 11
inhibitory and 9 excitatory cell types.

To avoid overfitting, we randomly selected 4 models, 2 excitatory
and 2 inhibitory, and we set them aside for validation, while we used
the remaining 16 neuronal models for training.

The cell models are listed in the Supplemental Material.
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Kampff Laboratory Data Set

Accompanying their article on paired juxtacellular-extracellular
recordings (Neto et al. 2016), the laboratory of Adam Kampff publicly
offers the data on http://www.kampft-lab.org/validating-electrodes.
To extract an averaged extracellular waveform for each cell that can
be fed into a trained CNN, some data processing was necessary. First,
we detected spikes in the juxtacellular probe by thresholding the
signal to get the cell’s spike times. Second, we high-pass filtered the
extracellular MEA recording with a third-order Butterworth filter in
forward-backward mode with a band pass of 100-14,250 Hz. After-
wards, we averaged the EAP in windows of 7 ms around the spike
times (2 ms preceding and 5 ms after the peak). This average
waveform was then referred to as the juxtacellular-triggered aver-
age and was used as input for CNN predictions. After this prepro-
cessing, 10 of the 29 available data sets fulfilled the criteria of
having a peak-to-peak amplitude of 30 wV on at least one electrode
and being in front of the extracellular probe (2014_03_26: Pair 2.0,
2014_03_20: Pair 3.0, 2014_03_26: Pair 2.1, 2014_10_17: Pair
1.1, 2014_10_17: Pair 1.0, 2014_11_25: Pair 3.0, 2014_11_25:
Pair 1.0, 2014_11_25: Pair 2.0, 2015_09_04: Pair 5.0,
2015_09_03: Pair 6.0). These 10 data sets were used in Test on
Experimental Data to test our deep learning approach.

APPENDIX B: ADDITIONAL INFORMATION

This appendix contains additional information on parameters and
results.

Table B1 shows the specific CNN parameters for different network
sizes.

The average localization errors and SDs for different rotational data
sets are contained in Table B2, and the corresponding statistical
analysis is depicted in Table B3.

Further results on significant differences and effect sizes of local-
ization performances for different CNN sizes, features, MEA probes,
and localization methods are listed in Tables B4, BS5, B6, and B7,
respectively.

The excitatory/inhibitory classification accuracies grouped by cell
type for different rotational data sets, CNN sizes, feature sets, and
MEA probes are shown in Tables B8, B9, B10, and B11, respectively.
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Table B2. Localization errors grouped by rotational data set Table B4. Localization by CNN size: statistical analysis
Data Set x Error y Error z Error Total Error > XS S M L XL
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Values (in um) are average * SD errors along x, y, and z dimensions and ~ XL ns ns ns ns

total errors grouped by rotational data sets. The average of total error is
computed over the 3-dimensional distances and is not derived from the mean
X, y, and z errors.
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Abstract

Objective. Mechanistic modeling of neurons is an essential component of computational
neuroscience that enables scientists to simulate, explain, and explore neural activity. The
conventional approach to simulation of extracellular neural recordings first computes
transmembrane currents using the cable equation and then sums their contribution to

model the extracellular potential. This two-step approach relies on the assumption that the
extracellular space is an infinite and homogeneous conductive medium, while measurements
are performed using neural probes. The main purpose of this paper is to assess to what extent
the presence of the neural probes of varying shape and size impacts the extracellular field and
how to correct for them. Approach. We apply a detailed modeling framework allowing explicit
representation of the neuron and the probe to study the effect of the probes and thereby
estimate the effect of ignoring it. We use meshes with simplified neurons and different types
of probe and compare the extracellular action potentials with and without the probe in the
extracellular space. We then compare various solutions to account for the probes’ presence
and introduce an efficient probe correction method to include the probe effect in modeling of
extracellular potentials. Main results. Our computations show that microwires hardly influence
the extracellular electric field and their effect can therefore be ignored. In contrast, multi-
electrode arrays (MEAS) significantly affect the extracellular field by magnifying the recorded
potential. While MEAs behave similarly to infinite insulated planes, we find that their effect
strongly depends on the neuron-probe alignment and probe orientation. Significance. Ignoring
the probe effect might be deleterious in some applications, such as neural localization and
parameterization of neural models from extracellular recordings. Moreover, the presence of
the probe can improve the interpretation of extracellular recordings, by providing a more
accurate estimation of the extracellular potential generated by neuronal models.

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 3.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOL
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1. Introduction

Huge efforts have been invested in computational modeling
of neurophysiology over the last decades. This has led to the
development and public distribution of a large array of realistic
neuron models, for example from the Blue Brain Project (bbp.
epfl.ch [1, 2]), the Allen-Brain Institute brain cell database
(celltypes.brain-map.org [3]), and the Neuromorpho data-
base (neuromorpho.org [4, 5]). As experimental data become
available, these models become both more elaborate and more
accurate. However, some of the assumptions underlying the
most commonly used models may not allow the accuracy nec-
essary to obtain good agreements between models and experi-
ments. For instance, it was pointed out in Tveito et al [6] that
assumptions underlying the classical cable equation and the
associated method for computing the extracellular potential,
lead to significant errors both in the membrane potential and
the extracellular potential. In the present paper we investigate
whether the classical modeling techniques used in compu-
tational neurophysiology are sufficiently accurate to reflect
measurements obtained by different types of probes, such as
microwires/tetrodes, and larger silicon multi-electrode arrays
(MEAs). Traditionally, these devices are not represented in
the models describing the extracellular field, and our aim is to
see if this omission introduces significant errors and how this
mismatch could be accounted for in modeling of extracellular
activity.

The most widely accepted and used modeling framework
for computing the electrophysiology of neurons is the cable
equation [7-12], which is used to find current and membrane
potentials at different segments of a neuron. One straightfor-
ward and computationally convenient way to model the extra-
cellular electric potential generated by neural activity is to sum
the individual contributions of the transmembrane currents
(computed for each segment) considering them as point current
sources or line current sources [7, 11] using volume conductor
theory. Although this approach represents the gold standard in
computational neuroscience, there are some essential assump-
tions that need to be discussed. First, (i) the neuron is repre-
sented as a cable of discrete nodes and the continuous nature
of its membrane is not preserved. Second, (ii) when solving
the cable equation, the extracellular potential is neglected,
but the extracellular potential is computed a posteriori.
Third, and foremost, (iii) when computing extracellular
potentials, the tissue in which the neuron lies is modeled as an
infinite medium with homogeneous properties. The validity of
these assumptions must be addressed in light of the specific
application under consideration. The first assumption (i) can
be justified by increasing the number of nodes in the model,
but assumption (ii) is harder to relax since it means that the
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model ignores ephaptic effects. Therefore, this assumption
has gained considerable attention [6, 13—18]. However, the
main focus of the present paper is assumption (iii). More spe-
cifically our aim is to study the effect of the physical pres-
ence of a neural probe on the extracellular signals. Can it be
neglected in the mathematical model, or should it be included
as a restriction on the extracellular domain? Specifically, is
the conventional modeling framework, ignoring the effect of
the probes, sufficient to yield reliable prediction of extracel-
lular potentials? Finally, what can modelers do in order to rep-
resent and include the effect of recording probes?

In order to investigate this question, we have used the
extracellular-membrane-intracellular (EMI) model [6, 19, 20].
The EMI model allows for explicit representation of both the
intracellular space of the neuron, the cell membrane and the
extracellular space surrounding the neuron. Therefore, the
geometry of neural probes can be represented accurately in
the model. We have run finite element simulations of simpli-
fied pyramidal cells combined with different types of probes,
such as microwires/tetrodes, and larger silicon multi-electrode
arrays (MEAs).

Our computations strongly indicate that the effect of the
probe depends on several factors; small probes (microwires)
have little effect on the extracellular potential, whereas larger
devices (such as multi-electrode arrays, MEAs) change the
extracellular potential quite dramatically, resembling the
effect of a non-conductive infinite plane in the proximity of
the neuron. The effect, however, depends on the neuron-probe
alignment and orientation. We then compare the EMI results
with conventional cable equation-based techniques, such as
the current summation approach [11, 20], the hybrid solution
[20-23], and the method of images [24, 25] and introduce
the probe correction method, which allows to reach a hybrid
solution accuracy leveraging on a pre-mapping of the probe-
specific effect and the reciprocity principle.

The results may aid in understanding experimental data
recorded with MEAs, it may improve accuracy when extra-
cellular potentials are used to parameterize membrane models
as advocated in [26], and to localize and classify neurons from
MEA recordings [27, 28].

The rest of the article is organized as follows: in section 2
we describe the methods used throughout the paper, with
particular focus on the EMI model (section 2.1), the meshes
(section 2.2), the finite element framework (section 2.3),
and modeling approaches used for comparison (section 2.4).
In section 3 we present our findings related to the effect of
probes of different geometry on the extracellular recordings
(section 3.1), the variability of our simulations depending on
geometrical parameters of the mesh (section 3.2), before com-
paring them with results obtained from other computational
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approaches (section 3.3) and the relative computational costs
of these methods (section 3.4). Finally, we discuss and contex-
tualize the work in section 4.

2. Methods

In this section we introduce the modeling frameworks used to
investigate the effect of the probes on the extracellular poten-
tial. In particular we first describe the EMI model, the meshes,
and the membrane and finite element modeling. Then, we
describe the conventional modeling based on the cable equa-
tion solution: the current summation approach (CS), the hybrid
solution (HS) and the method of images (Mol). Finally, we
introduce the probe correction method (PC), which reaches
the hybrid solution accuracy in a more efficient and computa-
tionally-cheap way.

2.1. The extracellular-membrane-intracellular model

The purpose of the present report is to estimate the effect of
introducing a probe in the extracellular domain on the extra-
cellular potential. This can be done using a model discussed
in [6, 19, 29-31] referred to as the EMI model. In the EMI
model the extracellular space surrounding the neuron, the
membrane of the neuron and the intracellular space of the
neuron are all explicitly represented in the model. The model
takes the form

V-o,Vu; =0 in Q;, (€))
V-0,Vu,=0 in €., 2)
u, =0 atd,, (3

Vit -n, =0 at 0%y,  (4)
ne - 0.V, = —n; - o;Vu; déflm at I, 5)
U — Uy =V at [, 6)

% = Cim(lm — Iion) atT'. @)

In the simplified geometry sketched in figure 1, Q2 denotes
the total computational domain consisting of the extracellular
domain €2, and the intracellular domain €2;, and the cell mem-
brane is denoted by I'. n; and n, are the vectors normal to I'
pointing out of the intra- and extracellular domains, respec-
tively. u; and u, denote the intra- and extracellular potentials,
and v = u; — u, denotes the membrane potential defined at the
membrane I'. The intra- and extracellular conductivities are
given respectively by o; and o, and in this work we assume
that the quantities are constant scalars. The cell membrane
capacitance is given by C,, and the ion current density is
given by Ion. Iy, is the total current current escaping through
the membrane.

The EMI model is here considered with grounding
(Dirichlet) boundary conditions, i.e. u, = 0, on the boundary
of the extracellular domain (9f2,) while insulating (Neumann)

boundary conditions, i.e. 0,Vu, - n, = 0, were prescribed at
the surface of the probe (952,). Note that the latter is a suit-
able boundary condition also for the conducting surfaces of
the probe [25, 32]. The resting potential (see table 1) is used
as initial condition for v.

2.2. Meshes

In order to implement the EMI model described above, the
computational domain was discretized by unstructured tetra-
hedral meshes generated by gmsh [33]. We used a simplified
neuron model similar to a ball-and-stick model [34, 35], with
a spherical soma with 20 pym diameter—whose center is in
the origin of the axis—an apical dendrite of length Lq = 400
pm and diameter Dy = 5 pm in the positive z direction and
an axon of length Ly = 200 pum and diameter Dy = 2 pym in
the negative z direction. Both the axon and the dendrites are
connected to the soma via a tapering in the geometry. On the
dendritic side, the diameter at the soma is 8 ym and it lin-
early reduces to 5 ym in a 20 ym portion. On the axonal side,
the axon hillock has a diameter of 4 ym at the soma and it is
tapered to 2 pym in 10 pgm.

The neuron was placed in a box with and without neural
probes to study the effect of the recording device on the
simulated signals. We used three different types of probes:

Microwire: the first type of probe represents a microwire
type of probe (or tetrode). For this kind of probes we used
a cylindrical insulated model with 30 pm diameter. The
extracellular potential, after the simulations, was esti-
mated as the average of the electric potential measured at
the tip of the cylinder. The microwire probe is shown in
figure 2(A) alongside with the simplified neuron.

Neuronexus (MEA): the second type of probe model
represents acommercially available silicon MEA (A1x32-
Poly3-5mm-25s-177-CM32 probe from Neuronexus
Technologies), which has 32 electrodes in three columns
(the central column has 12 recording sites and first and
third columns have 10) with hexagonal arrangement, a
y-pitch of 18 pm, and a z-pitch of 22 pm. The electrode
radius is 7.5 pm. This probe has a thickness of 15 um
and a maximum width of 114 pm, and it is shown in
figure 2(B).

Neuropixels (MEA): the third type of probe model represents
the Neuropixels silicon MEA [36]. The original probe has
more than 900 electrodes over a 1 cm shank, it is 70 ym
wide and 20 pm thick. In our mesh, shown in figure 2(C)
we used 24 12 x 12 pym recording sites arranged in the
chessboard configuration with an inter-electrode-distance
of 25 um [36].

In order to evaluate the effect of the described probes
depending on the relative distance to the neuron (x direction),
we generated several meshes in which the distance between
the contact sites and the center of the neuron was 17.5, 22.5,
27.5,37.5,47.5, and 77.5 um. Note that these distances refer
to the beginning of the microwire tip (which extends in the x
direction for 30 ym) and to the MEA y — z plane (for the MEA
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Passive membrane model

Qe Hodgkin-Huxley membrane model

/ .
Synaptic Dendrite  “Dendrite hillock”  Soma Axon hillock Axon
input area L =400um L =20pum D = 20pm L = 10pum L = 200pm
L = 20pm D = 5um D, = 8um Dy = 4pm D =2um 1
D = 5um

09

-

Figure 1. Sketch of the simplified neuron geometry and its surroundings. The intracellular domain is denoted by 2;, the cell membrane is
denoted by I', and the extracellular domain is denoted by (2,. The boundary of the probe is denoted by 9§, and the remaining boundary
of the extracellular domain is denoted by 9€2,. The normal vector pointing out of ; is denoted by n;, and n, denotes the normal vector
pointing out of €,. L and D are the length and diameter of neural segments, respectively, and D; is the diameter of the hillocks in
correspondence of the soma. In our simulations, we consider three types of probe geometry (see figure 2). Note that the probe interior is

not part of the computational domain.

probes the recording sites do not extend in the x direction).
When not specified, instead, the distance for the microwire
probe was 25 um, 32.5 pm for the Neuronexus MEA probe,
and 30 pm for the Neuropixels probe (center of the probe tip
at 40 pm).

To investigate if and how the bounding box size affects
the simulation, since the electric potential is set to zero at its
surface, we generated meshes with five different box sizes.
Defining dx, dy, and dz as the distance between the extremity
of the neuron and the box in the x, y, and z directions, the three
box sizes were:

dx = 80 pm, dy = 80 um, and dz = 20 ym

dx = 100 ym, dy = 100 pm, and dz = 40 ym
dx =120 pm, dy = 120 pm, and dz = 60 pum
dx = 160 um, dy = 160 um, and dz = 100 ym
dx =200 pm, dy = 200 pm, and dz = 150 pm

size 1:
size 2:
size 3:
size 4:
size 5:

Moreover, we evaluated the solution convergence depending
on the resolution by generating meshes with four different
resolutions. Defining 7, 1,, and 7.y as the resolutions/typical
mesh element sizes for the neuron volume and membrane, for
the probe, and for the bounding box surface, respectively, the
four degrees of coarseness were:

coarse 0:
coarse 1:
coarse 2:
coarse 3:

rp=2pm, r, =5 pm, and r,y = 7.5 pm
rp =23 pm, r, = 6 pm, and r.y, = 9 pm
ry =4 pm, r, = 8 pum, and ry = 12 pm
rp =4 pm, r, = 10 pm, and rey, = 15 pm

At the interface between two resolutions, the mesh size was
determined as their minimum. Further, having instructed
gmsh to not allow hanging nodes the mesh in the surround-
ings of the neuron and probe is gradually coarsened to 7.y
resolution.
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Table 1. Model parameters used in the simulations. The parameters
of the Hodgkin—Huxley model are given in [37].

Parameter Value Parameter Value

Chn 1 uF em™2 &syn 10 mS cm ™2
i 7 mS cm™! Veq O0mV

o, 3mScem™! f 0.01 ms

8L 0.06 mS cm 2 o 2ms

Vrest —75 mV

For each of the mesh configuration with varying probe
model, box size, and coarseness we simulated the extracel-
lular signals with and without the probe in the extracellular
space and sampled the electric potential at the recording site
locations (even when the probe is absent).

2.3. Membrane model and finite element implementation

On the membrane of the soma and the axon, the ionic current
density, fon, is computed by the Hodgkin—Huxley model with
standard parameters as given in [37]. On the membrane of the
dendrite, we apply a passive membrane model with a synaptic
input current of the form

Lion = heak + Isynv (8)
Tieak = gL(V - Vresl)’ (9)
Isyn = g:(X)E_%(V - Veq), (10)
where
[ &syn» forxin the synaptic input area,
8s(x) = {0, elsewhere. an
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Figure 2. Visualization of simplified neuron and probe meshes. (A) Microwire: the probe has a 15 pm radius and it is aligned to the
neuronal axis (z direction) and the center of the probe tip is at (40, 0, 0) um (the soma center is at (0, 0, 0) um). The axon and soma of

the neuron are depicted in yellow, the dendrite is orange, and the axon and dendritic hillock are in cyan. (B) Neuronexus MEA: the probe
represents a Neuronexus A1x32-Poly3-5mm-25s-177-CM32 with recording sites facing the neuron. The MEA is 15 pm thick and the center
of the bottom vertex is at (40, 0, —100) xm. The maximum width of the probe is 114 yzm, which makes it almost four times larger than the
microwire probe. (C) Neuropixels MEA: this probe [36] has a width of 70 um, a thickness of 20 ym, and the center of the bottom vertex is
at (40, 0, —100) pm. All meshes represented here are built with the finest coarseness described in the text (coarse 0).

The parameters of the dendrite model are given in table 1, and
the synaptic input area is defined as a section of the dendrite
of length 20 pm located 350 pm from the soma, as illustrated
in figure 1.

The EMI model (1)—(7) is solved by the operator splitting
scheme and the H(div) discretization proposed in [20]. In
this scheme a single step of the EMI model consists of two
sub-steps. First, assuming the current membrane potential v is
known, the ordinary differential equations (ODE) of the mem-
brane model are solved yielding a new membrane state and
the value of v. Next, equation (7), discretized in time with fio,
set to zero, is solved together with equations (1)—(6) using the
computed value of v as input. This step yields the new values
of intra/extra-cellular potentials u;, 1, and the transmembrane
potential v. The H(div) approach then means that the EMI
model is transformed by introducing unknown electrical fields

o;Vu; and 0,Vu, in addition to the potentials u;, u, and v.
Thus more unknowns are involved, however, the formulation
leads to more accurate solutions, see [20, section 3].

In our implementation the ODE solver for the first step of
the operator splitting scheme is implemented on top of the
computational cardiac electrophysiology framework cbc.
beat [38]. For the second step, the H(div) formulation of the
EMI model, see [20, section 2.3.3], is discretized by the finite
element method (FEM) using the FEniCS library [39]. More
specifically, the electrical fields are discretized by the lowest
order Raviart-Thomas elements [40] while the potentials
use piecewise constant elements. The linear system due to
implicit/backward-Euler temporal discretization in equation
(7) and FEM is finally solved with the direct solver MUMPS
[41] which is interfaced with FEniCS via the PETSc [42]
linear algebra library.
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2.4. Other modeling approaches

2.4.1. Current summation (CS), method of images (Mol),
and scaled current summation (SCS). The cable equation
[43—45] is of great importance in computational neuroscience,
and it reads,

v 0%v

Cma + Iion = 77@’

where v is the membrane potential of the neuron, Cy, is the

membrane capacitance, I, is the ion current density and

n= hj‘, where £ is the diameter of the neuron, and o; denotes
the intracellular conductivity of the neuron [43].

This equation is used to compute the membrane potential
of aneuron and the solution is commonly obtained by dividing
the neuron into compartments and replacing the continuous
model (12) by a discrete model [43]. In order to compute the
associated extracellular potential, it is common to use the
solution of the cable equation to compute the transmembrane
currents densities in every compartment, and then invoke the
classical summation formula,

1 Iy
ue(x,y,z) = Fae ; m

Here, o, is the constant extracellular conductivity (in all the
implemented models, the milieu is assumed to be linear by
using a constant o¢), Iy is the center of the kth compartment
of the neuron, |r — rg| denotes the Euclidean distance from
r =r(x,y,z) to the point rg, and I, denotes the transmem-
brane current of each compartment. This solution assumes
that the extracellular milieu is purely conductive, infinite, and
homogeneous. We denote this method as current summation
approach (CS) [6].

As the silicon probes are made of insulated material, they
could be approximated with the method of images (Mol) [12,
24, 25]. With the Mol the probe is assumed to be an infinite
insulating plane, effectively increasing the extracellular
potential by a factor of 2. Using the Mol, the factor 2 can
be explained as follows: for each current source, an image
current source is introduced in the mirror position with respect
to the insulating plane, effectively doubling the potential in
proximity of the plane and canceling current densities normal
to the plane. For the Mol, the summation formula (equation
13) reads:

12)

13)

1 I

Ue(%,y,2) = %;m (14)

As will be shown section 3.1, the peak scaling factor (1 and
2 for the CS and Mol solutions, respectively) of the modeled
probes is modulated by the neuron-probe alignment, rotation,
and by the probe type and it can be a value between 0 and 2
depending on these factors. Therefore, we also propose and
compare a third current summation-based approach, namely
scaled current summation (SCS), in which the scale factor
is set to match the peak ratio between the hybrid solution
(section 2.4.2) and the CS solution on the electrode with
largest amplitude (e.g. 1.65 is used in section 3.3.1).
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We implemented the same simulations presented in sec-
tion 2.1 using the conventional modeling approach described
above (CS) to compare them with the EMI simulations. We
used LEPy [11, 12], running upon NEURON 7.5 [9, 10], to
solve the cable equation and compute extracellular potentials
using equation (13). As morphology, we used a ball-and-stick
model with an axon with the same geometrical properties
described in section 2.2. Similarly to the EMI simulations,
we used a synaptic input in the middle of the dendritic region
activated in the EMI simulation (z =360 pum) to induce a
single spike and we observed the extracellular potentials on
the recording sites. The synaptic weight was adjusted so that
the extracellular largest peak was coincident in time with the
one from the EMI simulation. To model the spatial extent of
the electrodes, we randomly drew 50 points within a recording
site and we averaged the extracellular potential computed at
these points [11]. We used the same parameters shown in
table 1 (note that in NEURON conductances are defined in
Scm~2s0 we set 8L = &pas = 0.06 - 1073 S cm~?) and we used
an axial resistance R, of 150 Q cm~'. The fixed length
method was used as discretization method with a fixed length
of 1 pum, yielding 658 segments (23 somatic, 422 dendritic,
and 213 axonal). Transmembrane currents were considered
as current point sources in their contributions to the extracel-
lular potential, following equation (13) (using LFPy point-
source argument of the RecExtElectrode class). The
Mol and SCS solutions were calculated by multiplying the CS
solution by a factor 2 and 1.65 (optimized scale factor using
the hybrid solution).

2.4.2. Hybrid solution (HS). The hybrid solution (HS)
[21-23] combines the transmembrane currents for each
neural segments computed with the cable equation and a
finite element modeling for the extracellular space. The
transmembrane currents are used as source terms in a finite
element solution of the Poisson Equation in the extracel-
lular space (equation (2), using an iterative solver for the
Poisson problem, specifically, preconditioned conjugate
gradients with algebraic multigrid preconditioning). With
this approach, the probe can be explicitly modeled using
insulating (Neumann) boundary conditions at the surface
of the probe (equation (5)) and the differences between the
HS and the EMI solution lie in differences regarding the
modeling of the neuron dynamics, such as the self-ephaptic
effect. The HS requires that a FEM simulation is run for
each timestep of the transmembrane currents, each time
setting the source terms with the currents at the specific
timestep. This makes it computationally expensive, espe-
cially, for long simulations. Alternatively, one could run a
single FEM simulation for each neural segment with a uni-
tary test current and then use the potentials computed at the
recording sites as a static map for summing the contribution
of all currents at each timestep. The latter approach can be
also computationally complex, as the number of segments
in the multi-compartment simulation can be quite high and
it would require to store in memory a large number of finite
element solutions.
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Figure 3. Extracellular action potentials (EAPs). (A) EAPs without (blue) and with (orange) the microwire probe (single recording site)

in the extracellular space. The amplitude difference in the largest peak is only 1.03 1V, which is negligible for most applications. (B) Same
as (A) but with the Neuronexus MEA probe. For this probe, the difference in amplitude is 20.17 pV (the solution with the MEA is almost
twice as large as the one without the MEA in the extracellular space). (C) Same as (A) but with the Neuropixels MEA probe. For this probe,

the difference in amplitude is 23.16 pV.

2.4.3. Probe correction (PC). The hybrid solution is a good
and widely used approach to model a non-homogeneous
extracellular space, especially in the peripheral nervous sys-
tem literature [21-23]. However, it requires to run a finite
element simulation for every neuron simulation, as transmem-
brane currents are located in different positions for different
neurons.

In order to overcome this issue, we designed the probe cor-
rection method (PC) that relies on the reciprocity principle
[46] and the principle of superimposition (given the assump-
tion of linearity of the milieu expressed in section 2.4.1).
The reciprocity principle states that if a current /; in a posi-
tion (x1,y;,z1) generates a potential u; in a second position
(x2,¥2,22), then the same current /; placed in (x2,y2,22) will
result in a potential u; in (x;,y;,z;)°. Using this principle, we
first simulated with a finite element method the extracellular
potential generated by a test current (1 nA) from each elec-
trode i of a specific probe (e.g. Neuronexus) in any point of the
extracellular space and define it as u;(x;, yi, z;), where (x;, yi, z;)
is the relative position with respect to the electrode i. Also in
this case we used an iterative solver for the Poisson problem
(preconditioned conjugate gradients with algebraic multigrid
preconditioning). Then, leveraging on the reciprocity and
superimposition principles, we mapped the contribution of
each transmembrane current to the potential at each electrode
i as: uy = Lui(Xe, Yk, z), Where (xg, Yk, 2¢) is now the relative
position between the kth neural segment and the electrode i,
and /i is the transmembrane current for the kth neural seg-
ment. The potential at each electrode i can be computed as:

U= Z U = Zlku,-(xk,yk,Zk)-
k k

The PC method allows to pre-compute the effect of a probe
in the extracellular space and then use this mapping for any

©The reciprocity principle was originally derived for static charges and
extended here to static currents.

neural model, without the need to run a full FEM simulation.
The number of FEM solutions that need to be computed and
stored during the pre-mapping is equal to the number of elec-
trodes in the probe.

3. Results

In this section we present results of numerical simulations
which quantify the effect of introducing probes in the extra-
cellular domain on the extracellular potential. We show how
this effect depends on the distance between the neuron and
the probe, their lateral alignment, and the probe rotation.
The evaluation of the probe effect (section 3.1) is carried
out using the EMI simulation framework. Furthermore, we
evaluate the numerical variability of the EMI solutions (sec-
tion 3.2), we compare with other modeling schemes (section
3.3), and finally report CPU-efforts for the simulations (sec-
tion 3.4).

3.1. The probe effect

3.1.1. The geometry of the probe affects the recorded sig-
nals. The first question that we investigated is whether the
probes have an effect and, if so, how substantial this effect is
and if it depends on the probe geometry. In order to do so we
analyzed the extracellular action potential (EAP) traces with
and without placing the probe in the mesh.

In figure 3 we show the EAP with and without the microwire
probe (A), the Neuronexus probe (B), and the Neuropixels
probe (C). The blue traces are the extracellular potentials
computed at the recording sites when the probe was removed,
while the orange traces show the potential when the probe is
present in the extracellular space. In this case the probe tip
was placed 40 pym from the soma center, we used a box of
size 2 and coarse 2 resolution. It is clear that the probe effect
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Figure 4. Extracellular potential distribution on the x — z plane with the Neuronexus MEA probe (A) without the probe (B), and their
difference (C). The images were smoothed with a gaussian filter with standard deviation of 4 ;zm. The color code for panel A and B is the
same. The isopotential lines show the potential in £V. The probe (white area) acts as an insulator, effectively increasing the extracellular
potential (in absolute value) in the area between the neuron and the probe (panel C, blue colors close to the soma and red close to the
dendrite) and decreasing it behind the probe of several pV. The effect is smaller at the tip of the probe (the green color represents a 0 uV

difference).

is more prevalent for the MEA probes than for the microwire,
suggesting that the physical size and geometry of the probe
play an important role. In particular, for the Neuronexus probe
the minimum peak without the probe is —21.09 ¢V and with
the probe it is —41.26 pV: the difference is 20.17 pV. For the
Neuropixels probe the peak with no probe is —21.2 pV, with
the probe it is —44.36 pV and the difference is 23.16 pV. In
case of the microwire type of probe, the effect is minimal:
the minimum peak without the probe is —16.85 nV, with the
probe it is —15.82 pV, and the difference is about 1.03 pV
(the peak without the probe is even larger than the one with
the probe). Note that the values for the microwire are slightly
lower than the MEAs because even if the microwire tip center
is at the same distance (40 pm), it extends for 30 ym in the
x direction, effectively lowering the recorded potential due to
the fast decay of the extracellular potential with distance. The
recording sites of the MEAs, instead, lie on the y — z plane,
at a fixed distance.

The MEAs, electrically speaking, are like insulating walls
that do not allow currents to flow in. The insulating effect can
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be appreciated in figure 4, in which the extracellular poten-
tial at the time of the peak is computed in the [10, 100] ym
interval in the x direction and in the [—200, 200] pm interval
in the z direction (the origin is the center of the soma). Panel A
shows the extracellular potential with the probe (Neuronexus)
and panel B without the probe. The currents are deflected
due to the presence of the probe, and this causes an increase
(in absolute value) in the extracellular potential between the
neuron and the probe, as shown in panel C, where the differ-
ence of the extracellular potential with and without probe is
depicted. The substantial effect using the MEA probe prob-
ably also depends on the arrangement of the recording sites:
while for the MEAs, the electrodes face the neuron (they lie on
the y — z plane) and currents emitted by the membrane cannot
flow in the x direction due to the presence of the probe, for the
microwire, the electrode is at the tip of the probe (at z =0,
extending in the x — y plane—see figure 2) and currents can
naturally flow downwards in the x direction, yielding a little
effect (figure 4(C) shows that the effect at the tip of the MEA
probe is almost null).
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Figure 5. Differences in EAP maximum absolute value peak with and without probe depending on distance. (A) Microwire probe:
maximum peak without probe (blue), with probe (orange), and their difference (green). The difference is small even when the probe is close
to the neuron. (B) Neuronexus MEA probe: maximum peak without probe (blue), with probe (orange), and their difference (green). The
difference is large at short distances and it decays at larger distances. (C) Neuropixels MEA probe: maximum peak without probe (blue),
with probe (orange), and their difference (green). Also for this probe the difference is large at short distances and it reduces at further away
from the neuron. (D) Ratio between peak with and without probe for the Neuronexus (red), the Neuropixels (blue) and the microwire probe
(grey). The ratio is almost constant at different distances and the average value is 1.9 for the Neuronexus, 1.91 for the Neuropixels, and 1.05

for the microwire probe.

3.1.2. The amplitude ratio is constant with probe distance. In
this section we analyze the trend of the probe-induced error
depending on the vicinity of the probe. We swept the extracel-
lular space from a closest distance between the probe and the
somatic membrane of 7.5 ym to a maximum distance of 67.5
.
In figures 5(A)—(C) we plot the absolute peak values
with (orange) and without probe (blue), as well as their dif-
ference (green) for the microwire (A), Neuronexus (B) and

Neuropixels (C) probes. For the microwire (A), as observed
in the previous section, the probe effect is small and the max-
imum difference is 1.97 1V, which is 10.1% of the amplitude
without probe, when the probe is closest. For the Neuronexus
MEA probe (B), at short distances the difference between
the peaks with and without probe is large—40.5 uV (88.8%
of the amplitude without probe) at 7.5 pm probe-membrane
distance—and it decreases as the probe distance increases. At
the farthest distance, where the probe tip is at 75 pm from the
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Figure 6. Effects of neuron probe alignment. (A) Amplitude ratio for different y lateral shifts for the Neuronexus (red) and Neuropixels
(blue) probes. The ratio decreases almost linearly with the y shift. (B) Amplitude ratio for different probe rotations for the Neuronexus (red)
and Neuropixels (blue) probes. At small rotations, the peak ratio is between 1.6 and 1.8, at 90° rotation (when the probe exposes its thinnest
side to the neuron) it is around 1, and between 90° and 180° the shadowing effect of the probe makes the ratio lower than 1.

somatic membrane, the difference is 4.38 1V, which is 90.2%
of the amplitude without probe. For the Neuropixels MEA
probe (C) the effect is in line with the Neuronexus probe, with
a maximum difference of 41.07 uV (95.9% of the amplitude
without probe) when the probe is closest and a minimum of
5.08 1V, which is still 116.1% of the amplitude without probe,
when the probe is located at the maximum distance. Note
that the peak amplitudes on the microwire probe are smaller
than the one measured on the MEAs at a similar distances.
At the closest distance, for example, the Neuronexus MEA
electrodes lie on the y — z plane exactly at 7.5 ym from the
somatic membrane. For the microwire, instead, 7.5 ym is the
distance to the beginning of the cylindrical probe, whose tip
extends in the x direction for 30 pum. The simulated electric
potential is the average of the electric potential computed on
the microwire tip and it results in a much lower amplitude due
to the fast decay of the extracellular potential with distance
(see equation (13)).

In panel (D) of figure 5 we show the ratio between the
peak with probe and without probe depending on the probe
distance for the Neuronexus (red), Neuropixels (blue), and the
microwire (grey) probes. The ratio for the microwire probe
varies around 1 (average = 1.05), confirming that the probe
effect can be neglected for microwire-like types of probe,
due to their size and geometry. Instead, when a MEA probe
is used, the average ratio is around 1.9 and its effect on the
recordings cannot be neglected.

3.1.3. The probe effect is reduced when neuron and probe are
not aligned. So far, we have shown results in which the neu-
ron and the probe are perfectly aligned in the y direction, but
the probe effect is likely to be affected by the neuron-probe
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alignment, since the area of the MEA probe (we focus here
on the Neuronexus and Neuropixels MEA probes as the effect
using the microwire is negligible) facing the neuron changes
depending on the lateral shift in the y direction and probe
rotation.

To quantify the trend of the probe effect depending on the
y shift, we ran simulations moving the probes at different y
locations (10, 20, 30, 40, 50, 60, 80, and 100 gm) and com-
puted the ratios between the maximum peak with and without
the MEA in the extracellular space. The simulations were run
with coarse 2 resolution and boxsize 5 and the probe tip was at
40 pm from the center of the neuron. In figure 6(A) we show
the peak ratios depending on lateral y shifts. The ratio appears
to decrease almost linearly with the shifts, from a value of
around 1.8—1.9 when the probe is centered (note that the peak
ratio slightly varies depending on resolution and size, as cov-
ered in section 3.2) to a value of around 1.2 when the shift is
100 pm (the half width of the probe is 57 ym for Neuronexus
and 35 pm for Neuropixels).

In order to evaluate the effect of rotating the probes,
we ran simulations with the probe at 70 pm distance (to
accommodate for different rotations), coarse 2 resolution,
boxsize 4, and rotations of 0, 30, 60, 90, 120, 150, and 180°.
In figure 6(B) the peak ratios depending on the rotation angle
are shown. For small or no rotations (0, 30°) the value is
around 1.7 (note that we always selected the electrode with
the largest amplitude, which might not be the same electrode
for all rotations). For a rotation of 90° the peak ratio is around
1 (the probe exposes its thinnest side to the neuron) and for
further rotations the probe’s shadowing effect makes the peak
with the probe smaller (as observed in figure 4(C)), yielding
peak ratio values below 1. These results demonstrate that the
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Table 2. Solution variability depending on box (domain) size.

The columns contain the maximum peak with the Neuronexus
(MEA) probe, without the probe, the difference and ratio of the
amplitudes with and without probe. The values are averaged over all
resolutions.

Table 3. Solution variability depending on resolution (Coarseness).
The columns contain the maximum peak with the Neuronexus
(MEA) probe, without the probe, the difference and ratio of the
amplitudes with and without probe. The values are computed with a
box size 2.

Box Vpeak with Vpeak without  Difference Peak Vpeak with Vpeak without Difference Peak
size MEA (uV) MEA (uV) (uV) ratio Coarseness MEA (uV) MEA (uV) (uV) ratio
1 —40.12 —20.64 19.48 1.95 0 —41.74 —20.67 21.07 2.02
2 —41.46 —20.91 20.55 1.98 1 —40.74 —20.25 20.49 2.01
3 —41.91 —23.83 18.07 1.77 2 —41.26 —21.09 20.18 1.96
4 —43.10 —23.35 19.75 1.85 3 —42.11 —21.64 20.46 1.95
5 —43.09 —23.71 19.38 1.82

relative arrangement between the neuron and the probe play
an important role in affecting the recorded signals.

3.2. EMI solution dependence on domain size and resolution

We generated meshes of four different resolutions and five dif-
ferent box sizes, as described in section 2.2, in order to inves-
tigate how the resolution and the domain size affect the finite
element solutions. Since we are mainly interested in how the
probe affects the extracellular potential and we showed that
only for MEA probes this effect is large, we focus on the
extracellular potential at the recording site with the maximum
negative peak. We used the Neuronexus MEA probe for this
analysis and the distance of the tip of the probe was 40 ym
(the recording sites plane is at 32.5 ym from the somatic
center). The recording site which experienced the largest
potential deflection was at position (32.5,0, —13) um, i.e. the
closest to the neuron soma in the axon direction. For a deeper
examination of convergence of the EMI model refer to [6]. For
resolutions coarse 0 and coarse 1 the box of size 4 and 5, and
of size 5, respectively, were too large to be simulated.

In table 2 we show the values of the minimum EAP peak
with and without the Neuronexus probe, their difference, and
their ratio grouped by the domain (box) size and averaged
over resolution. Despite some variability due to the numer-
ical solution of the problem, there is a common trend in the
peak values as the domain size increases: the minimum peaks
tend to be larger in absolute values, both when the probe is
in the extracellular space (from —40.12 pV for box size 1
to —43.09 pV for box size 5) and when it is not (from —20.64
uV for box size 1 to —23.71 pV for box size 5). This can
be explained by the boundary conditions that we defined for
the bounding box (equation (3)), which forces the electric
potential at the boundaries to be 0. For this reason, a smaller
domain size causes a steeper reduction of the extracellular
potential from the neuron to the bounding box, making the
peak amplitude, in absolute terms, smaller. The peak differ-
ence with and without the MEA probe appears to be rela-
tively constant, but the peak ratio tends to slightly decrease
with increasing domain size for the same reason expressed
before (from 1.95 for box size 1 to 1.82 for box size 5). The
solutions appear to be converging for box sizes 4 and 5, but
the relative error (difference between box 1 and box 5 values
divided by the value of box 5) is moderate (6.89% for the

peak with probe, 12.95% for the peak without probe, and
4.14% for the peak ratio). Nevertheless, the 1.8-1.85 peak
ratio values obtained with larger domain sizes should be a
closer estimate of the true value.

Table 3 displays the same values of table 2, but with a fixed
box size of 2 and varying resolution (Coarseness). The rela-
tive error (maximum difference across resolutions divided by
the average values among resolutions) of the peak with the
MEA is 3.3%, without the probe it is 6.65%, and for the peak
ratio it is 3.53%.

Because the main purpose of this work was to qualitatively
investigate the effect of various probe designs and the effect
of distance, alignment, and rotation on the measurements, we
used resolution coarse 2 and box size 2, which represented
an acceptable compromise between accuracy and simulation
time. For investigating the effect of probe rotation and side
shift we increased the box size to 4 and 5, respectively, to
accommodate the position of the neural probe. Finally, in sec-
tion 3.3 we increased the resolution to coarse 0 and used box
size 3 to obtain more accurate results for the comparison with
the cable equation simulations.

3.3. Comparison with other approaches

After having investigated how an extracellular probe affects
the amplitude of the recorded potentials and how this ampl-
itude is modulated with distance, alignment, and rotation
between the neuron and the probe, we now compare the EMI
solution to other modeling approaches. We first analyze the
differences between the EMI solution without the probe and
the cable equation / current summation approach (CS) and
between the EMI solution with the probe and the hybrid solu-
tion (HS). Then we focus on the HS, which combines a cable
equation solution and an explicit model of the extracellular
space, including the probe, in a FEM framework, and com-
pare its solution to three correction strategies: the method of
images (Mol), the scaled current summation (SCS), and the
probe correction (PC).

In all the following simulations we used a mesh with
coarse 0 resolution and box size 3. The distance between the
neuron soma center and the probe tip was 40 pm, resulting in
recording sites on the x = 32.5 ym plane.

3.3.1. EMI, CS, and HS comparison. In order to compare
the EMI simulations to conventional modeling, we built the
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Figure 7. Comparison of the EAPs (A) between the current summation approach (CS, red) and the EMI model without probe (blue),
displaying a peak amplitude difference of 4.91 'V, and (B) between the hybrid solution (HS, green) and the EMI model with probe

(orange), exhibiting a peak amplitude difference of 3.55 pV.

same scenario shown in figure 2(B) (Neuronexus probe)
using NEURON and LFPy, as described in section 2.4. As
conventional modeling assumes an infinite and homogeneous
medium, we compared the EAPs obtained by combining the
cable equation solution (equation (12)) and the current sum-
mation formula (equation (13)) with the EMI simulations
without the probe. The extracellular traces for the current
summation approach (CS, red) and the EMI model (blue)
are shown in figure 7(A). The EAPs almost overlap for every
recording site, despite some differences in amplitude. On the
electrode with the largest peak, the value for the EMI solution
is —23.03 pV, while the value for the CS is —27.95 puV (the
difference is 4.91 pV). This difference, which has been pre-
viously observed, is intrinsic to the EMI model [6], and can
be due to self-ephaptic effects [6, 13—18]. Note also that the
condition that forces the extracellular potential to zero at the
boundary of the domain causes a steeper descent in the extra-
cellular amplitudes, as discussed in section 3.2.

The hybrid solution (HS) uses currents computed with the
cable equation and runs a FEM simulation of the extracellular
space, including the probe. In figure 7(B) we show the extra-
cellular potential of the EMI simulation with probe (orange)
and the HS (green). Also in this case we observe that the EMI
solution yields slightly smaller amplitudes with respect to the
HS (EMI peak: —42.6 uV; HS peak —46.15 pV; difference:
3.55 V) and these differences can be once again traced back
to underlying differences of the neural solver.

3.3.2. HS, Mol, SCS, and PC comparison. After having

shown that there are intrinsic differences between the EMI
model and solutions based on the cable equation (CS, HS), we
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now compare two computationally less expensive strategies
that could be used to account for the probe effect in modeling
of extracellular potentials.

The Mol and SCS are attractive candidates due to their
almost null computational cost, as they only multiply all
values by a constant factor. The factor for infinite insulated
planes, as described in section 2.4.1, is 2, but as shown in fig-
ures 5 and 6, for MEA probes it is somewhere between 0 and
2 depending on the neuron-probe lateral shift and rotation. In
this scenario, the neuron is perfectly aligned with the probe
and there is no rotation. The peak ratio for the SCS was com-
puted by dividing the largest peaks of the HS and CS solutions
and it was set to 1.65. In figure 8(A) the EAP from the HS
(green), from the Mol (pink), and from the SCS with factor
1.65 (grey) are displayed. The Mol (pink) overshoots the esti-
mation of the extracellular amplitudes (Mol peak: —55.89 pV;
HS —46.15 pV; difference: 9.74 pV). The SCS solution,
expectedly, results in the same amplitude as the HS on the
electrode with the largest peak, as the scaling factor was com-
puted using the actual peak ratio between the HS and the CS
solution. However, there are some discrepancies between HS
and SCS. Figure 8(B) shows the distribution of peak ratios of
all the 32 electrodes with respect to the HS peaks. The CS,
Mol, and SCS solutions display a range of values in the peak
ratios, showing that the amplitude modulation of the elec-
trodes is not a constant value. This can be traced back to the
fact that a lateral shift of the neuron reduces the peak ratio
(figure 6(A)): electrodes on the side of the probe yield a lower
effect than the ones at the center of the probe. Due to this vari-
ability, a correction strategy based on a constant scaling will
not be able to accommodate for this effect.
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Figure 8. (A) EAPs of the Neuronexus probe as computed using the hybrid solution (HS, green), the Method of Images (Mol, pink) and
the scaled current summation with factor 1.65 (1.65 SCS, grey). (B) Peak ratio distribution of the electrodes of the Neuronexus probe
compared to the hybrid solution, from the current summation (CS, red), Method of Images (Mol, pink), the scaled current summation with
factor 1.65 (1.65 SCS, grey), and the probe correction (PC, cyan) models. Note that the peak amplitudes computed from all the electrodes
by the PC and HS approaches overlap perfectly, thus resulting in a single vertical line at peak ratio value 1.

The probe correction (PC) solution, based on the reci-
procity principle (section 2.4.3), results in a solution perfectly
coincident to the HS, at a much smaller computational cost
(see table 5). In figure 8(B) the PC ratios are depicted as a
vertical line at 1 because the peak amplitudes are exactly the
same as the HS. The PC approach, in fact, pre-maps the effect
of each electrode on the extracellular domain, effectively
modeling in an efficient way the distribution of peak ratios
observed when using the CS, Mol, and SCS methods.

In table 4 we summarize the comparison results, showing
maximum, minimum, average peak ratios and the peak ratio
distribution standard deviation for all the pairwise comparisons
analyzed in this section.

3.4. CPU requirements

Whereas the EMI formulation represents a powerful and more
detailed computational framework for neurophysiology simu-
lations, it is associated with a much larger computational load.
The simulations were performed on an Intel(R) Xeon(R) CPU
E5-2623 v4 @ 2.60 GHz machine with 16 cores and 377 GB
RAM running Ubuntu 16.04.3 LTS.

Table 5 contains the coarseness, domain size, number of
tetrahedral cells, number of mesh vertices, total number of tri-
angular cells (facets), facets on the surface of the neuron, the
system size for the FEM problem, and the time in second (CPU
time) to compute the solution for meshes without the probe in
the extracellular domain. We show the results without probes in
the extracellular domain, as they are they are computationally

Table 4. Summary of comparison results showing, for each
comparison, the maximum, minimum, and average peak ratio, as
well as the standard deviation of the peak ratio (PR) distribution.
The peak ratios are the electrode-wise division between the peaks of
the first and second models listed in the Comparison tab. EMI (with)
and EMI (no) indicate the EMI solution with and without the probe
in the extracellular space, respectively.

Maximum Minimum Average PR standard
Comparison PR PR PR deviation
EMI (with)— 2.16 1.4 1.81 0.19
EMI (no)
CS—EMI 1.6 1.16 1.39 0.1
(no)
HS—EMI 1.49 1.01 1.25 0.11
(with)
CS—HS 0.81 0.43 0.63 0.08
Mol—HS 1.61 0.87 1.25 0.15
1.65SCS— 133 0.72 1.03 0.13
HS
PC—HS 1 1 1 0

more intense due to the fact that the volume inside the probe
is not meshed (although the resolution on the probe surface is
finer, the resulting system size without the probe is larger than
with the probe). The CPU requirements and the time needed
to run the simulation strongly depend on the resolution of the
mesh: the problem with coarseness 3 and box size 3 takes
around 1 h and 20 min (system size = 745 789), while for the
same box size and coarseness 0, the time required is around
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Table 5. Model type, FEM system size, resolution (Coarseness), box size, mesh parameters (number of cells, number of facets, number of
neuron facets, and vertices), and CPU time to run the simulations. Note that for coarse 2 and coarse 3 the resolution of the neuron (r, =
4 pm) is the same.

Neuron

Model System size Coarse Box size  Mesh Cells Total facets facets Vertices T (s)

EMI 337515 3 1 66171 135672 2552 12400 1414.24
EMI 516079 3 2 101443 207318 2552 18628 2813.22
EMI 562137 2 1 110363 225887 2480 20420 2589.83
EMI 745789 3 3 146905 299442 2552 26540 4569.11
EMI 835365 2 2 164331 335517 2480 29940 4753.39
EMI 1204001 2 3 237259 483371 2480 42666 10797.78
EMI 1225082 1 1 241402 491840 3888 43373 9593.98
EMI 1254096 3 4 247514 503291 2552 44013 10756.46
EMI 1881777 1 2 371471 755153 3888 65867 18880.78
EMI 1983058 3 5 391986 795536 2552 68875 23756.09
EMI 2110421 2 4 416949 846736 2480 73535 21582.90
EMI 2532813 0 1 501235 1015789 8376 87535 27676.91
EMI 2728288 1 3 539518 1094385 3888 94417 45430.64
EMI 3486058 2 5 689996 1398031 2480 119968 53132.75
EMI 3810512 0 2 755076 1527718 8376 130389 52495.76
EMI 4802239 1 4 951245 1925497 3888 164359 68474.42
EMI 5271370 0 3 1045440 2112965 8376 179195 82601.74
HS 403085 0 3 2299046 4665 105 — 403085 357291
PC (map) 403085 0 3 2299046 4665 105 — 403085 2015.02
PC (load) 403085 0 3 2299046 4665 105 — 403085 409.91
PC (run) 403085 0 3 2299046 4665 105 — 403085 3.51

22h (system size = 5271 370). The domain size also strongly
affects the mesh size and computation time. For example, for
the coarse 2 resolution, with respect to box I, box 2 is 1.83x
slower, box 3 4.16x, box 4 8.33x, box 5 20.51x.

The last four rows show the CPU requirements for the HS
and the different steps of the PC solution. These simulations,
despite having the same resolution and box size as the most
intense EMI simulation (coarse 0 and box size 3), result in a
much smaller system size, as they solve for the extracellular
potential only (EMI also solves for intracellular potentials and
currents in the entire domain). To perform a fair comparison
with the EMI model, the computations were done in serial.
Parallel solvers would likely speed up the HS and PC solu-
tions and could be easily implemented. Simulating 5 ms using
the HS takes about 1 h, compared to the 22h of the EMI solu-
tion. The PC performance is divided in three steps. PC (map)
refers to the the computation of the 32 FEM solutions (one for
each Neuronexus electrode), and it takes slightly more than
30min. Once the pre-map is computed it can be used for any
neural model. Loading the FEM solutions in memory (PC
(load)) requires around 7 min and once loaded, it takes a few
seconds (3.51 s) to compute the extracellular potential. While
the HS and EMI solutions computation time increases with
the duration of the simulation linearly, as they iteratively solve
each timestep, the PC solution multiplies each transmembrane
current timeseries for a pre-defined mapping. When we ran a
500 ms NEURON simulation and then computed the extracel-
lular potentials with the PC method the PC (run) step took
only 5.38 s.
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4. Discussion

In this article, we have used a detailed modeling frame-
work—the extracellular-membrane-intracellular (EMI) model
[6, 20]—to evaluate the effect of placing an extracellular
recording device (neural probe) on the measured signals. We
used meshes representing a simplified neuron and two dif-
ferent kind of probes: a microwire (a cylindrical probe with
diameter of 30 um) and multi-electrode arrays (MEAs), mod-
eling a Neuronexus commercially available silicon probe and
the Neuropixels probe [36]. We quantified the probe effect by
simulating the domain with and without the probe in the extra-
cellular domain and we showed that the effect is substantial for
the MEA probes (figures 3(B) and (C)), while it is negligible
for microwires (figure 3(A)). The amplitude of the largest
peak using the MEA probes is almost twice as large (~1.9
times) compared to the case with no probe, and this factor is
relatively independent of the probe distance (figure 5(D)), but
it is reduced when the neuron and the probe are shifted later-
ally (figure 6(A)) or when the probe is rotated (figure 6(B)).
Moreover, we discussed the effect of varying the mesh reso-
lution and of the size of the computational domain. We also
compared our finite element solutions to solutions obtained
by solving the conventional cable equation, and found that
the latter gave result very similar to the finite element solu-
tion when the probe was removed from the extracellular space
(figure 7(A)). Therefore, we suggest that the probe effect can
be a key element in modeling experimental data obtained with
MEA probes. However, clearly further analysis is needed to
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clarify this matter. At present the computational cost of the
EMI model prevents simulations of neurons represented using
realistic geometries. Thus, in an effort to offer less computa-
tionally expensive solutions to include the probe effect in sim-
ulations, we investigated various correction methods resulting
in more accurate predictions and we proposed the probe cor-
rection method, which allows to obtain accurate solutions
with reasonable computational cost and resources.

4.1. Comparison with previous work

In this work we used a finite element approach [20] to sim-
ulate the dynamics of a simplified neuron and to compute
extracellular potentials using the EMI model. The use of FEM
modeling for neural simulations has been performed before
[19, 29, 30, 47, 48], but mainly as an advanced tool to study
neural dynamics and ephaptic effects. In Moffit er al [47],
the authors simulated, using the cable equation approach, a
neuron at 65 ym from a shank microelectrode with a single
recording site, and then used the currents in a finite element
implementation of the extracellular domain, including the
shank microelectrode. They found that the amplitude of the
recorded potential with the shank was 77-100% larger than the
analytical solution, but the spike shape was similar to the ana-
lytical solution (equation (13)), in accordance with our results
(figures 7(A) and (B)). The effects using MEA probes and
varying distances, lateral shifts, and probe rotations were not
investigated. In Ness et al [25], an analytical framework for
in vitro planar MEA using the method of images [24] was
developed. A detailed neural model was simulated using the
cable equation and transmembrane currents were used as
forcing functions for a finite element simulation to validate the
analytical solutions. In the in vifro case, in which the MEA is
assumed to be an infinite insulating plane, the authors showed
that the insulating MEA layer affects the amplitudes of the
recorded potentials, effectively increasing it by a maximum
factor of 2, which can be analytically predicted by the method
of images (Mol).

In this study, we investigated how large the effect of com-
monly used in vivo probes is using the advanced EMI mod-
eling framework. Our results are in line with these previous
findings and we also show that the geometry, in terms of size
and alignment of the probe, plays a very important role. We
show that large silicon probes can be almost regarded as insu-
lated planes when the neuron is aligned to them (potential
increased by factor ~ 1.9) for large ranges of distances (figure
5(D)). An interesting effect following the reduction of the
amplitude factor with lateral shifts (figure 6(A)) is that neu-
rons not aligned with the probe will be recorded with a lower
signal-to-noise ratio (SNR) due to the smaller amplitude
increase, assuming that other sources of noise are invariant
with respect to the probe location (such as electronic noise
and biological noise from far neurons). This might bias neural
recordings towards identifying neurons that are closer to the
center of the probe, rather than the ones lying at the probes’
sides. However, this conclusion is speculative and might be
affected by other factors, such as the distribution of neurons

around the probe and their morphology (which contributes
to the EAP). Therefore, ground truth information about the
position of the recorded neurons and their reconstructed mor-
phologies are needed for a quantitative evaluation of this
phenomenon.

4.2. Limitations and extensions

4.2.1. Mesh improvements. The EMI model is, in principle,
able to accurately represent the neuron and the neural probe.
However, the accuracy of the model comes at the cost of com-
putational resources. In order to be able to run simulations
in a reasonable amount of time, the geometry of the neuron
needed to be simplified considerably. First, we used a simple
neuron in terms of a ball-and-stick with axon. This model
is able to describe certain aspects of the neuronal dynamic
[35], but it clearly cannot reach a level of detail of some more
realistic morphologies, such as the reconstructed models
made available by various initiatives [1-5]. We quantified the
amplitude shift due to the probe in the extracellular domain
(~ 1.9 on average for the MEA probes when neuron and probe
are aligned), but this factor most likely also depend on the
specific cell morphology that we used, and not only on the
probe design and geometry. Therefore, we aim at extending
the framework [49] for generating finite element meshes from
publicly available realistic morphologies [5], allowing us to
explore the probe effect for more complex morphologies.

Furthermore, we assumed ideal recording sites with an
infinite input impedance which does not allow any current
to flow in. In reality, recording electrodes have a high, but
not infinite impedance that could be modeled by considering
electrodes as an additional domain with very low conductance,
even if it has been shown that for normal electrodes’ impedance
the effect of conductive and equipotential recording sites is
negligible [32].

4.2.2. Computational costs. In section 3.4 we showed that
the EMI model is much more computationally demanding than
conventional modeling using cable and volume conduction
theory. For the simplest simulation performed in this study
(coarse 3 and box size 1), a system with 337 515 unknowns
was solved in about 40min. The NEURON simulations
described in section 2.4 took ~0.59 s to run, about 2400 times
faster than the simplest EMI simulation performed here. How-
ever, because of our implementation and solution strategy for
FEM, this factor should be considered as a rather pessimistic
upper bound. In particular, the employed version of FEn-
1CS (2017.2.0) does not allow for finite element spaces with
components discretized on meshes with different topology.
For example, the extra/intra-cellular potentials are defined on
the entire € rather than €2, and €2; only, while the domain for
the transmembrane potential v is I, but the space for v is setup
on all facets of the mesh. For simplicity of implementation,
the v unknowns on facets outside of I" are forced to be zero
by additional constraints and are not removed from the linear
system. The LU solver thus solves also for the unphysical/
extra unknowns and the memory footprint and solution times
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are naturally higher. The number of unphysical unknowns can
be seen in table 5 as a difference between total number of fac-
ets in the mesh and the number of facets on the surface of the
neuron. For example, in the largest system considered here,
avoiding the unphysical unknowns would reduce the system
size by about 2 million.

In addition to assembling the linear system with only the
physical unknowns, a potential speed up could be achieved
by employing iterative solvers with suitable preconditioners.
That is, fast PDE solvers for diffusion equations typically use
around 1s per million degrees of freedom. As we here employ
a H(div) formulation, we expect the solution to be computed
in around 5 s per million degrees with multilevel methods.
As shown in table 5, 500 timesteps of solving systems with
around one million degrees of freedom takes 82600 s, which
means 165 s per time steps. Hence, we may expect to speed
up the solving procedure by around a factor 30 with better
solvers. If further speed-up is required then finite element
based reduced basis function method provides an attractive
approach that should be addressed in future research.

4.2.3. Finite element methods are not alternatives to the con-
ventional cable equation. The EMI framework, due to its
computational requirements, is presently not an alternative
to conventional modeling involving the cable equation (equa-
tion (12)) and the current summation formula (equation (13)).
However, for specific applications, it can provide interest-
ing insights. The hybrid solution combines the cable equa-
tion solution to finite element modeling, in practice solving
the FEM problem only for the extracellular space and using
the transmembrane currents computed by the cable equa-
tion as forcing functions [21-23, 25, 47]. However, the HS is
also computationally expensive and it increases in complex-
ity with longer simulation durations. Similar considerations
can be made if Boundary Element Methods (BEM) [50] are
employed instead of FEM ones, even though they are less
computationally intense then the current FEM formulation.
One possible drawback of BEM solvers is that they could not
accommodate for anisotropic conductivity, while FEM solv-
ers could in principle solve meshes with non-homogeneous
conductivity between surfaces [51].

Another much faster option could be using approaches
based constant scaling, such as Mol and SCS. However,
even correcting with a right factor smaller than 2, the these
methods cannot account for the variability of peak ratios
among the electrodes (figure 8(B)). Therefore, we suggested
here the probe correction (PC) method, which combines a
one-time finite element simulation to model how each elec-
trode of a specific probe affects the extracellular domain, and
then uses the reciprocity principle to compute the potential
on the recording sites arising from transmembrane currents.
We showed that this method is able to reach the HS accuracy
at a much smaller computational time (table 5), which is also
not strongly dependent on the simulation duration. Moreover,
the time required to compute the probe specific mapping (PC
(map)) and loading the FEM solutions in memory (PC (load))
could be further reduced by decreasing the mesh resolution.
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This possibility should be further investigated with a conv-
ergence analysis, similar to section 3.2 for the EMI model.

4.3. Significance of the probe effect

The effect of the recording device has not been fully taken into
consideration in mathematical models of the extracellular field
surrounding neurons. The probe effect needs to be considered
when modeling silicon MEA, whose sizes are significantly
larger than the recorded neurons. The assumption of an
infinite and homogeneous medium is in fact largely violated
when such bulky probes are in the extracellular space in the
proximity of the cells. Although the tissue can be regarded
as purely conductive and with a constant conductivity [52],
these probes represent clear discontinuities in the extracellular
conductivity, which strongly affect the measured potential due
to their insulating properties. While the probe effect is large
for MEAs, we found that it was negligible for microwire-
type of probes, mainly for two reasons: first, the microwire is
thinner and overall smaller than the MEA; second, the electric
potential is sampled at the tip of the probe and in the entire
semi-space below the microwire currents are free to flow
without any obstacle.

When dealing with silicon MEAs, though, this effect could
be crucial for certain applications that require to realistically
describe recordings. For example, Gold e al [26] used, in
simulation, extracellular action potentials (EAP) to constrain
conductances of neuronal models. Clearly, neglecting the
probe effect would result in an incorrect parameterization of
the models in this case.

Another example in which including this effect could be
beneficial is when EAP are used to localize the somata position
with respect to the probe. This is traditionally done by solving
the inverse problem: a simple model, such as a monopolar
current source [53-55], a dipolar-current source [53, 56, 571,
line-source models [58, 59], or a ball-and-stick model [60], is
moved around the extracellular space to minimize the error
between the recorded potential and the one generated by the
model. Ignoring the probe might result in larger localization
errors.

Recently, we used simulated EAP on MEA as ground truth
data, from which features were extracted to train machine-
learning methods to localize neurons [27, 28] and recognize
their cell type from EAPs [28]. When training such machine-
learning models on simulated data and applying them to
experimental data, neglecting the probe effect could confound
the trained model and yield prediction errors.

Moreover, explaining experimental recordings on MEA
without considering the probe might cause discrepancies
between the modeling and experimental results hard to recon-
cile. On the other hand, in order to fully explain and validate
our findings, an experiment with accurate co-location of extra-
cellular recordings and cell position (and ideally morphology)
is required. For example, an experimental setup in which a
planar MEA is combined with two-photon calcium imaging
[61] could provide an accurate estimate of the relative position
between the neurons and the MEA.
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In conclusion, we presented numerical evidence that
suggests that the probe effect, especially when using multi-
electrode silicon probes, affects the way we model extra-
cellular neural activity and interpret experimental data and
cannot be neglected for specific applications.
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Appendix A

Other projects

Open source modules for tracking animal behavior and
closed-loop stimulation based on Open Ephys and Bonsai

In this journal contribution to the Journal of Neural Engineering®L, we developed
a system for tracking and closed-loop stimulation of rodents in open-field
experiments. The system uses open-source systems for image analysys, Bonsai232,
and electrophysiology, Open Ephys?33. We contributed featured plugins for
tracking the animal position in real-time and setting up position-dependent
closed-loop stimulations. We showed the reliability of the system, its capability
of recording place and grid cells, and a sample use case to optogenetically
stimulate of a grid-cell within its grid field. More recently, we have been using
the system also to selectively rewire place cells by stimulating them electrically
outside of their place field.

I am the first and corresponding author for this paper, contributing in
designing and conceiving the project, implementing the software, running tests
and experiments, and writing most of the paper.

Scalable Spike Source Localization in Extracellular
Recordings using Amortized Variational Inference

In this conference paper, recently accepted to NeurIPS 2019234 we presented
a spike localization method for multi-electrode array recordings based on a
variational autoencoder (VAE). The main idea is to use a deep network encoder
and a model-based decoder to predict the 3D location of spike waveforms. We
showed that the use of a VAE improves the performance of spike localization
both in terms of accuracy with respect to center-of-mass estimates and it is
much more computationally efficient than Markov Chain Monte Carlo (MCMC)
approaches. The results were obtained both for a dense square MEA simulated
with MEArec (Paper I)) and for an experimental Neuropixels dataset. A precise
localization of individual spike waveforms could be beneficial for spike sorting

201



A. Other projects

methods that use this feature for clustering®253,

My contribution to this article has been mainly in simulating the extracellular
recordings, participating in discussions about the methods and results, and
revising and approving the final manuscript.
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