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Abstract: Flood forecasting plays an important role in flood control and water resources management.
Recently, the data-driven models with a simpler model structure and lower data requirement attract
much more attentions. An extreme learning machine (ELM) method, as a typical data-driven
method, with the advantages of a faster learning process and stronger generalization ability, has been
taken as an effective tool for flood forecasting. However, an ELM model may suffer from local
minima in some cases because of its random generation of input weights and hidden layer biases,
which results in uncertainties in the flood forecasting model. Therefore, we proposed an improved
ELM model for short-term flood forecasting, in which an emerging dual population-based algorithm,
named backtracking search algorithm (BSA), was applied to optimize the parameters of ELM. Thus,
the proposed method is called ELM-BSA. The upper Yangtze River was selected as a case study.
Several performance indexes were used to evaluate the efficiency of the proposed ELM-BSA model.
Then the proposed model was compared with the currently used general regression neural network
(GRNN) and ELM models. Results show that the ELM-BSA can always provide better results than
the GRNN and ELM models in both the training and testing periods. All these results suggest that
the proposed ELM-BSA model is a promising alternative technique for flood forecasting.

Keywords: flood forecasting; extreme learning machine (ELM); backtracking search optimization
algorithm (BSA); the upper Yangtze River

1. Introduction

Flood forecasting is not only an effective tool to reduce many risks posed by floods on life,
property, and infrastructures, but can also provide valuable decision-making information for water
resource managers [1–4]. However, due to streamflow affected by human activities and various
hydro-meteorological factors, such as rainfall, topography, and surface heterogeneity, the runoff
process exhibits highly non-linear, non-stationary, and complexly dynamic behaviors. Therefore,
accurate flood forecasting, especially in the short-term (hourly or daily scale), has been recognized as a
challenging work in hydrology.
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Until now, plenty of hydrological models have been established to realize the flood forecasting [1].
These prediction models can be broadly classified into two kinds, namely physical-based models
(also called knowledge-based models) and data-driven models (DDMs). The first group of
models usually imitate the complex behaviors in the hydrologic cycle system by conceptualizing
physical processes and basin characteristics, which often depends on detailed information and deep
understanding about physical mechanisms of hydrological processes. Additionally, fine modelling
of physical-based forecasting models using a full set of mathematic equations for each part in the
hydrological cycle (i.e., interception, infiltration, evaporation) can theoretically reflect the real-world
hydrological cycle more accurately, but this can lead to many intractable complications, such as
the massive parameters to be estimated, the plenty of data requirements, and the expensive
computational costs [5–8]. Compared with the physical-based models, the DDMs with a simpler
model structure and less demanding data attract much more attention as an alternative forecasting
tool in the cases that cannot reach the modelling conditions of physical-based models. Moreover,
the rapid developments in computer sciences and some new technologies regarding machine learning,
data mining, and optimization algorithms provide new opportunities for the DDMs in the application
of various study domains including flood forecasting.

Over the last several decades, various DDMs were developed for flood forecasting, such as
the artificial neural networks (ANNs) [1,9–12], adaptive neural-based fuzzy inference systems
(ANFIS) [13,14], and support vector machines [15]. Among them, single hidden-layer feedforward
neural networks (SLFNs), as the most widely used DDMs, show a strong ability to characterize any
nonlinear mapping relationship, and have been taken as effective tools in solving many practical
problems, such as flood forecasting [10,16–18], water level forecasting [19,20], and wind speed
forecasting [21,22]. Although SLFNs have been successfully applied for modeling hydrological
time series, they still suffer from several inherent disadvantages such as a slow learning process,
easy plunging into local minima, and an over-fitting problem.

Recently, a novel learning algorithm for SLFN models, called the extreme learning machine
(ELM), was developed by Huang et al. [23]. Compared with other typical SLFNs using gradient-based
learning (GL) algorithms that learn parameters of a network in an iterative way, ELM is not involves
less calculation work, higher learning speed, and stronger generalization ability, but also has no
requirements for some parameters, such as terminating condition and learning rate. Considering
these features, ELM has been applied as a promising non-linear fitting tool in massive complicated
engineering applications [9,21,22]. For example, Yaseen et al. [24] applied the ELM for predicting the
monthly streamflow discharge rates in a semi-arid region in Iraq and demonstrated its superiority over
support vector regression (SVR) and general regression neural network (GRNN) models. In the same
year, Deo and Şahin [20] testified the performance of ELM over conventional ANNs in forecasting mean
streamflow water level based on many hydro-meteorological factors. More recently, Zhou et al. [9]
developed a GRNN-based ensemble technique (GNE) for monthly streamflow forecasting, in which
the results of three famous ANNs, namely radial basis function, ELM, and Elman networks, were fed
into a GRNN model as the inputs.

Despite many successful applications of ELM in flood forecasting, it also results in an
ill-conditioned problem in some cases because of its random mechanism in generating input weights
and hidden layer biases. Therefore, it is necessary to introduce some effective techniques/tools to
improve the generalization performance of the single ELM. To date, many endeavors have been made
to enhance the stability of the basic ELM. The most famous way is that an evolutionary algorithm was
adopted to search the optimal hidden node parameters of ELM. Han et al. [25] proposed a hybrid
learning algorithm, in which an improved particle swarm optimization (IPSO) algorithm was applied
to adjust the parameters of an ELM. Results showed that the developed IPSO-ELM approach had
better generalization performance than the conventional ELM and the other evolutionary ELMs based
on a differential evolution algorithm (DE) or PSO algorithm. Recently, a novel dual population-based
iterative evolution algorithm, namely backtracking search optimization algorithm (BSA), was proposed
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in 2013 [26]. Since then, BSA has been used as an effective technique for searching global optimization.
Unlike other widely used evolutionary algorithms (EAs), such as PSO, covariance matrix adaptation
evolution strategy (CMAES), artificial bee colony algorithm (ABC), adaptive DE algorithm (JDE),
comprehensive learning PSO (CLPSO), and self-adaptive DE algorithm (SADE), BSA has a simpler
architecture with only one control parameter, and is insensitive to the initial value of its control
parameter. All these features make BSA more effective, adaptive, and faster than other popular EAs.
As such, BSA has already been applied to cope with many complex numerical optimization problems
as an effective global searching algorithm [26]. However, until now, the capacity of BSA for dealing
with the regression problems in the hydrological domain has never been explored.

Therefore, the major objective of this study is to develop a new, improved ELM (ELM-BSA)
techniques for daily flood forecasting, which fuses the advantages of ELM and BSA. In the proposed
ELM-BSA model, BSA was applied to find the suitable hidden node parameters of ELM, which
can further promote the robustness of the standard ELM. The Yangtze River was selected as a case
study. The measured daily streamflow data from the Yichang gauging station, the control site of the
Three Gorges Reservoir (TGR), was employed to testify the performance of the proposed method.
Moreover, two basic DDMs, namely ELM and GRNN models, which are recognized as the most
efficient methods for flood forecasting [9,16,27], were selected as benchmark models for comparisons.

The paper is organized as follows. Section 2 introduces the proposed ELM-BSA method for
short-term flood forecasting. Section 3 presents a case study of the upper Yangtze River and gives the
forecasting results and comparisons with two basic data-driven models. All the conclusions of this
study are summarized in Section 4.

2. Methodologies

2.1. Flood Forecasting Based on the Data-Diven Model

An analytic expression of a flood forecasting model can be defined as:

Q(t) = ϕ(Q(t− d1 + 1), R(t− d2 + 1), E(t− d3 + 1)) (1)

where Q(t) is the predicted streamflow at time t; Q(t− d1 + 1) represents the previous flow up
to t− d1 + 1 time steps; R(t− d2 + 1) stands for the antecedent rainfall with t− d2 + 1 time steps;
E(t− d3 + 1) is the other relevant factors up to t− d3 + 1 time steps that have main contributions to
the flow at current time t, such as potential evapotranspiration, temperature, and/or the flow from
major control stations in the upper reaches; di, I = 1, 2, 3 is the length of time lag for the relevant factors;
and ϕ(•) is a hydrological system transfer function to characterize the complicated nonlinear mapping
relationship in a basin between flow and the relevant factors. Two kinds of methods can be used to
estimate the ϕ(•). The first one is by using physical models (such as Xin’anjiang hydrological model).
The second one is by using the data-driven models (i.e., ANN models).

Generally, flood forecasting based on data-driven models can be an alternative method for flood
forecasting in some situations, such as when the observed data in the study area are inadequate
and/or the potential physical mechanisms of hydrological phenomenon are unknown or only partially
understood [8,28]. Moreover, DDMs are easy to establish and can provide acceptable forecasting
results with less input data (only rainfall and/or flow data). Considering all these advantages of
data-driven models, in this study we developed a new data-driven model named ELM-BSA for
flood forecasting. In the new method, ELM, a novel data-driven model, was adopted as a base
forecasting module to simulate the hydrological system transfer function ϕ(•). Meanwhile, BSA was
applied to find the optimal input weights and biases of hidden layer nodes in the ELM to improve the
stability of forecasting. The related methods and theories used in the new model, as well as its whole
implementation, are presented as follows.
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2.2. Extreme Learning Machine

An extreme learning machine (ELM) is an emerging fast-learning algorithm for SLFNs that usually
has a three-layer structure with one input layer containing m nodes, one hidden layer containing
h neurons, and a single output layer possessing p nodes (in flood forecasting, p is usually set to 1).
Usually, the ELM model first randomly selects its input weights and hidden layer biases, and then
analytically calculates its output weights using a least squares method instead of iterative adjusting.
Therefore, ELM not only possesses the ability of an extremely fast learning speed, but also avoids
frequent human intervention, which can provide better performance. These advantages make ELM
more and more popular in handling many complex engineering problems.

For a given training sample set
(
Xj, tj

)
with N pairs of observed data, where Xj is a

multiple-dimensional input vector and tj is the target/desired output, the simulated output of ELM
can be estimated using:

yj =
h

∑
i=1

βig
(
ωiXj + bi

)
, j = 1, 2, · · · , N (2)

where yj is the output vector of the ELM model using the input vector Xj; βi denotes the weight vector
connecting the ith hidden neuron to output layer neuron; g is the activation function for the hidden
layer in ELM; ωi are the input weights connecting input layer neurons with the ith hidden layer neuron;
and bi and g

(
ωiXj + bi

)
are the threshold and output of the ith hidden node, respectively.

The objective of an ELM is to search for a suitable set of β, ω, and b to approximate all training
sample pairs with zero error:

N

∑
j=1
‖tj − yj‖ =

N

∑
j=1
‖tj −

h

∑
i=1

βig(ωiXj + bi)‖ = 0 (3a)

Equation (3a) can be reorganized to be:

Hβ = T where

H =


g(ω1X1b1) g(ω2X1b2) · · · g(ωhX1bh)

g(ω1X2b1) g(ω2X2b2) · · · g(ωhX2bh)
...

...
...

g(ω1XNb1) g(ω2XNb2) · · · g(ωhXNbh)


N×h

β = [β1 β2 · · · βh]
−1
h×1, and T = [t1 t2 · · · tN ]

−1
N×1

(3b)

where H is the output matrix of the hidden layer; β is the weights vector connecting the hidden layer
nodes with the output layer neurons; and T represents the target output.

Once the random generation of the input hidden weights and biases of the hidden layer has been
completed, ELM analytically calculates the hidden-output weights by searching a minimal norm least
square solution of the following linear equation:∥∥Hβ̂− T

∥∥ = min
β
‖Hβ− T‖ → 0 (4)

The optimal estimated least squares solution of the above equation is:

β̂ = H†T (5)

where H† denotes the Moore–Penrose generalized inverse of the hidden-layer output matrix H.
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2.3. Backtracking Search Optimization Algorithm

Inspired by swarm behaviors, i.e., natural selection and information exchange between the
populations, Civicioglu [26] proposed a novel population-based evolutionary algorithm called a
backtracking search algorithm (BSA), which is a global searching technique to settle complex numerical
optimization problems. In BSA, besides the famous operators used in the genetic algorithms (GAs)
(i.e., the selection, mutation, and crossover operators), several particular mechanisms have also been
employed, such as a memory system in which a population generated from a randomly selected
historical generation is stored. Specifically, there are two populations in the BSA. One is the historical
population and the other is the evolution population. In each iteration, the historical population is
updated through random selection from both the historical population and the evolution population.
Then, a new temporary population, called the trial population, is generated based on the mutation
and crossover mechanisms. Finally, the trial population is used to update the evolution population
based on a greedy selection mechanism. According to the research conducted by Civicioglu [26],
the implementation of BSA consists of five major processes: initialization, selection-I, mutation,
crossover, and selection-II. These five stages are simply summarized as follows:

(a) Initialization

In this phase, individuals of the historical population oldPop and evolution population Pop are
randomly initialized within the predefined search space using a uniform distribution U as follows:

Popi,j = U
(

lowj, upj

)
,

oldPopi,j = U
(

lowj, upj

)
,

i = 1, 2, · · · , Npop; j = 1, 2, · · · , D (6)

where Npop and D are the size of population and the dimension, respectively; and
[
lowj, upj

]
are the

preset upper and lower boundaries of the variables to be optimized.

(b) Selection-I

In this stage, an option is provided to update the oldPop at the start of each iteration according to
the following “if-then” rule:

if R1 < R2 then oldPopi,j = Popi,j, R1, R2 ∈ U(0, 1) (7)

where R1 and R2 are two random numbers distributed uniformly from 0 to 1 to judge whether the
historical population should be replaced by the evolution population in the current generation.

When oldPop is determined, the sequence of the individuals in oldPop is then changed by a random
shuffling function permuting(·):

oldPop := permuting(oldPop) (8)

where “:=” indicates the update operator.

(c) Mutation

In this step, the temporary population, called trial population trialPop, is initialized using

trialPop = Pop + F · (oldPop− Pop)
F = 3 · rndn, rndn ∼ N(0, 1)

(9)

where (oldPop− Pop) denotes the search direction matrix whose amplitude can be controlled by a
control parameter F.

Due to the utilization of oldPop in the mutation operation, BSA can learn partial experiences from
previous generations.
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(d) Crossover

The final form of the trial population is determined in this stage. The crossover operator starts
with a generation of a binary integer-valued matrix (mapNpop×D) to determine which elements of
population have to be manipulated. The crossover operator is realized using

trialPopij =

{
Popij, if mapij = 1
trialPopij, otherwise

(10)

(e) Selection-II

In this phase, the population of the next generation is generated according to a greedy selection
strategy. The trial individuals with better fitness values are used to update the corresponding
individuals in population Popij:

Popij =

{
trialPopij, if fitness

(
trialPopij

)
< fitness

(
Popij

)
Popij, otherwise

(11)

2.4. The Proposed ELM-BSA Model for Flood Forecasting

As discussed in the introduction, ELM can save the calculation time by randomly generating
network parameters instead of arduously tuning them. Compared with the traditional SLFNs with
GL algorithms, ELM not only has a faster training speed and better generalization capability but also
avoids the predefining computational parameters including the learning rate and stopping criteria.
These advantages of ELM make it more suitable for solving the complex non-linear optimization
problem, i.e., flood forecasting. Unfortunately, the random generation of input weights and hidden
layer thresholds in ELM may provide some non-optimal or unnecessary network parameters which
may reduce the prediction reliability, increase uncertainty of forecasting results, and produce
unacceptable results for practical applications. To settle this problem, we proposed an ELM-BSA
model, in which the input weights and thresholds of hidden layer neurons were optimized using BSA
in the training period.

The construction of the ELM-BSA for flood forecasting is set to m-h-1 due to there being only one
node in the output layer. The implementation of the proposed model is described as follows:

Step 1: Normalize the original time series into the range [0, 1] using Equation (12), and then
partition the normalized series into two parts: training and testing datasets.

Qnor
i =

Qi −Qmin

Qmax −Qmin
(12)

where Qnor
i and Qi are the normalized and observed streamflow, respectively; and Qmin and Qmax

represent the minimum and maximum values of the original data, respectively.
Step 2: Initialize the related parameters of the proposed ELM-BSA model, such as the population

size Npop and the maximum iteration K.
Step 3: Define the architecture of the ELM and its activation function of hidden neurons, which is

set to the sigmoid function in this study.
Step 4: Set the initial iteration number k = 1, and then initialize the historical population oldPop

and evolution population Pop according to Equation (6). Each individual contains all parameters of
the hidden layer, hence the ith individual in the kth generation can be written as

para(i, k) =
[
ωT

1,(i,k), ωT
2,(i,k), · · · , ωT

h,(i,k), b1,(i,k), b2,(i,k), · · · , bh,(i,k)

]
(13)
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where ωT
1,(i,k), ωT

2,(i,k), · · · , ωT
h,(i,k) represent the weight vector that connect the input nodes with the

hidden layer neurons; and b1,(i,k), b2,(i,k), · · · , bh,(i,k) are the thresholds for the hidden layer neurons.
Step 5: Calculate the output weights and initialize fitness values of all individuals of the

population Pop using Equations (14) and (15), respectively.

β̂(i,k) = H†
(i,k)T

H(i,k) =


g
(

ω1,(i,k)X1 + b1,(i,k)

)
g
(

ω2,(i,k)X1 + b2

)
· · · g

(
ωh,(i,k)X1 + bh,(i,k)

)
g
(

ω1,(i,k)X2 + b1,(i,k)

)
g
(

ω2,(i,k)X2 + b2

)
· · · g

(
ωh,(i,k)X2 + bh,(i,k)

)
...

...
...

g
(

ω1,(i,k)XN + b1,(i,k)

)
g
(

ω2,(i,k)XN + b2

)
· · · g

(
ωh,(i,k)XN + bh,(i,k)

)


N×h

(14)

f [para(i, k)] =

√√√√ 1
N

N

∑
j=1

(
tj − yj

)2
=

√√√√ 1
N

N

∑
j=1

(tj −
h

∑
i=1

βig
(
ωiXj + bi

)
)2 (15)

where H†
(i,k) is Moore–Penrose generalized inverse of the hidden-layer output matrix H(i,k) for the ith

individual in the kth generation; yj and tj are the calculated and target output in the training stage,
respectively; and N is the total number of the training samples.

Step 6: Generate the historical population OldPop using the selection-I operator and obtain the
initial form of the trial population trialPop using mutation operator.

Step 7: Apply the mutation operator on both the historical population and the trial population
trialPop to generate the final form of the trial population.

Step 8: Calculate the fitness values of all individuals at the current generation, and then update
individuals of the next generation through selection-II strategy.

Step 9: Set k = k + 1. If the maximum iteration is reached, go to Step 10; otherwise, go to Step 6.
Step 10: Apply the well-tuned ELM model to the forecasting phase using the validated dataset.

Note, the output values of the forecasting model should be de-normalized to the range of the target
output dataset.

2.5. Performance Indexes

Several indexes including coefficient of correlation (r), Nash–Sutcliffe coefficient of efficiency
(NSE), root mean square error (RMSE), and mean absolute error (MAE) were employed to evaluate the
performance of the proposed model. Equations for these indexes are given as follows.

r =

 ∑N
i=1
(
Qobs,i −Qobs

)(
Qfore,i −Qfore

)
√

∑N
i=1
(
Qobs,i −Qobs

)2
√

∑N
i=1

(
Q f ore,i −Qfore

)2

, −1 < r < 1 (16)

NSE = 1−

∑N
i=1

(
Qobs,i −Q f ore,i

)2

∑N
i=1
(
Qobs,i −Qobs

)2

, NSE ≤ 1 (17)

RMSE =

√√√√ 1
N

N

∑
i=1

(
Qobs,i −Q f ore,i

)2
, RMSE > 0 (18)

MAE =
1
N

N

∑
i=1

∣∣∣Qobs,i −Q f ore,i

∣∣∣, MAE > 0 (19)
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where Qobs,i and Q f ore,i are the ith observed and predicted values of runoff, respectively; Qobs and Qfore
are the average values of the observed and forecasted runoff, respectively; and N is the length of the
data set.

Moreover, the Chinese flood forecasting standard recommend the use of the qualified rate (QR) to
evaluate the flood forecasting performances [29]. A predicted peak value is regarded as “qualified”
when the relative absolute error (RAE) between the predicted and the measured streamflow value is
within the given threshold value [30]. The QR can be calculated using

QR =

N
∑

i=1
numi

N × 100% where

numi =

{
1, i f (RAEi ≤ ε)

0, otherwise
, RAEi =

|Qobs,i−Q f ore,i|
Qobs,i

(20)

where RAEi is the relative absolute error (RAE) of the ith datum; numi is set to 1 when RAE is less than
or equal to the predefined threshold value (ε), which is regarded as qualified forecasting. The ε is set to
20% in accordance with the Chinese forecasting standard (GB/T 22482-2008) [31].

3. Case Study

3.1. Study Area and Data

To validate the efficacy of the proposed model, the Yangtze River, which is the longest river
in Asia and the third longest river in the world, was selected as a case study because abundant
and detailed historical daily runoff data have been collected. The Yangtze River, which is nearly
6300 km long, originates from east of the Tibetan Plateau and flows eastward to the East China Sea in
Shanghai city [10].

This study mainly focused on the upper Yangtze River, which covers a total area of nearly
1 million km2, accounting for about 56% of the whole area of the Yangtze River, with a total length
of 4529 km, up to 75% of the entire length of the Yangtze River. Flood events frequently occur in this
region. During the historical years, extreme flood events, especially for the years 1870, 1954, 1998, 2010,
and 2016, have caused heavy casualties and property losses. For example, in 2016, the whole Yangtze
River basin suffered from a monstrous flood, which led to economic losses of 146.9 billion Chinese
Yuan and affected nearly 60.74 million people [32,33]. Accordingly, flood forecasting is an essential
task for modern flood prevention and disaster relief of the upper Yangtze River.

Floods in the Yangtze River usually occur in monsoon season between June and September.
During this period, the temporal and spatial distribution characteristics of regional rainfall depend
heavily on monsoon activities and seasonal movement of subtropical anticyclones. Floods in the
middle-lower Yangtze River mainly come from the upper region of the Yichang Station, a control
hydrological station of the Three Georges Reservoir (TGR) which is situated at an intersection point of
the upstream Yangtze River and the middle reaches [34,35]. The main tributaries in the upper Yangtze
River from upstream to downstream are Yalong, Min, Tuo, Jialing, and Wu Rivers as shown in Figure 1,
where the control stations of each tributary are also given. In this study, the Jinsha River, rather than
the Yalong River, was taken into account, because the Yalong River flows into the Jinsha River, which is
considered part of the Yangtze River [10]. As shown in Figure 1, six gauging stations named Pingshan,
Gaochang, Lijiawan, Beibei, Wulong, and Yichang located in these rivers were considered. Each of
them has a concurrent mean daily flow data from the year 1998 to year 2007. The historical streamflow
of Yichang Station and its upstream stations were taken as alternative input factors, and the streamflow
of Yichang station at time t was considered as output. In other words, the proposed forecasting model
aims to predict the outflow of the TGR. The data set was divided into subsets, in which the daily
streamflow data from the year 1998 to 2005 was employed for model calibration, and the data from the
year 2006 to 2007 for model validation.
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Figure 1. Locations of hydrological stations in the study area.

3.2. Establishment of the Flood Forecasting Models

Determination of model inputs is the most significant step for the data-driven forecasting
model. The data-driven approaches may provide unreliable results when the inputs contain
irrelevant or redundant information. However, there is no uniform approach to determine the input
variables. According to a review conducted by Bowden et al. [11], the major approaches for input
determination/selection in hydrological forecasting can be divided into three groups: trial and error
method, linear method, and non-linear method. Considering the demerits and merits of these methods,
a linear method called partial cross-correlation (PCC) [11] and a nonlinear approach called entropy
based-partial mutual information (PMI) proposed by Chen et al. [10] were selected and compared.
In the entropy based-PMI method, entropy theory, a famous tool to derive distribution functions [36,37],
was combined with copula functions to predigest the solving process of PMI. Therefore, using these
three techniques, seven different input combination schemes were obtained as shown in Table 1, where
ϕ(·) indicates the complicated nonlinear mapping function between the input factors and the output
results and Qps, Qgc, Ql jw, Qbb, Qwl , and Qyc indicate the streamflow of the Pingshan, Gaochang,
Lijiawan, Beibei, Wulong, and Yichang gauging stations, respectively, and t represents the current time.

Table 1. Different input sets calculated by trial and error, PCC and PMI approaches.

Schemes Number of Input Variables Established Models

M1 1 Qyc(t) = ϕ
[
Qyc(t− 1)

]
M2 2 Qyc(t) = ϕ

[
Qyc(t− 1), Qyc(t− 2)

]
M3 3 Qyc(t) = ϕ

[
Qyc(t− 1), Qyc(t− 2), Qyc(t− 3)

]
M4 4 Qyc(t) = ϕ

[
Qyc(t− 1), Qyc(t− 2), Qyc(t− 3), Qyc(t− 4)

]
M5 5 Qyc(t) = ϕ

[
Qyc(t− 1), Qyc(t− 2), Qyc(t− 3), Qyc(t− 4), Qyc(t− 5)

]
M6 6 Qyc(t) = ϕ

[
Qyc(t− 1), Qwl(t− 4),
Qbb(t− 3), Ql jw(t− 2), Qgc(t− 2), Qps(t− 1)

]
M7 7 Qyc(t) = ϕ

(
Qyc(t− 1), Qyc(t− 2), Qwl(t− 2),
Qbb(t− 2), Ql jw(t− 3), Qgc(t− 3), Qps(t− 1)

)

The input sets of the first five schemes M1 to M5 were designed according to the trial and error
method, and schemes M6 and M7 were determined by Chen et al. [10] based on the PCC and PMI
approaches, respectively. It can be seen that the first five schemes M1 to M5 only considered the
historical runoff of the Yichang station (Qyc), whereas schemes M6 and M7 used both the anterior
runoff from the Yichang station and those from all control stations of the main tributaries located on
the upper Yangtze River as input variables. All of the seven input sets were fed into ELM-BSA, GRNN,
and ELM models to train.
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In addition, the number of hidden neurons also plays an important role for establishment of the
forecasting models. To obtain the suitable number of hidden neurons, a grid search algorithm was
employed in this study. For the proposed ELM-BSA model, the parameters of the BSA were set to
Npop = 30 and K = 100. All forecasting models established in this study were encoded based on the
Matrix Laboratory (MATLAB R2015a) platform manufactured by Mathwork Incoperation, Springfield,
MA, USA.

3.3. Sensitivity Analysis of Different Input Sets

To testify the efficiency of the proposed ELM-BSA model, the GRNN and ELM models were
selected as benchmark models. Input selection is one of the important steps for flood forecasting based
on the data-driven method. Hence, all seven input schemes mentioned in Table 1 were taken into
account in this study. The GRNN, ELM, and the proposed ELM-BSA models were employed for flood
forecasting of the Yichang station located on the Yangtze River. Five performance indexes were used
to evaluate the efficiency of the above three forecasting models. The data set was divided into two
sub-sets. The first 8 years (from the year 1998 to year 2005) was used for model calibration and the
remaining 2 years (from the year 2006 to year 2007) were used for model validation. Results of the three
models for both the training and testing periods are given in Table 2, where the model with the best
performance is highlighted in bold. It can be seen that compared with the GRNN and ELM models,
the proposed ELM-BSA model performed better based on the values of the three indexes, no matter
what the input combinations were. The most appropriate model inputs were not the same for the three
forecasting models and the response of each forecasting model was not identical when using the same
input sets. In other words, accurate forecasting results were not only affected by the inputs, but also by
the model structure and its corresponding parameters. This also indicates that obtaining the accurate
flood forecasting results is a complicated and challenging task under the comprehensive effects of
model inputs, structures, and parameters.

Table 2. Performances of the ELM-BSA, ELM, and GRNN models in both the training and testing periods.

Schemes

Training Period Testing Period

r NSE RMSE
(m3/s)

MAE
(m3/s) QR r NSE RMSE

(m3/s)
MAE
(m3/s) QR

GRNN

M1 0.9684 0.9377 2734 1939 0.9632 0.9598 0.9183 2735 1865 0.8319
M2 0.9791 0.9584 2234 1573 0.9800 0.9645 0.9271 2583 1792 0.8571
M3 0.9264 0.8579 4128 3012 0.8319 0.8925 0.7759 4530 3159 0.6597
M4 0.8605 0.7399 5585 4152 0.6828 0.8047 0.6062 6006 4374 0.5084
M5 0.7950 0.6314 6649 4972 0.6166 0.7195 0.4844 6872 5098 0.3992
M6 0.9793 0.9589 2220 1592 0.9664 0.9642 0.9191 2722 1907 0.8319
M7 0.9781 0.9565 2283 1617 0.9737 0.9562 0.9111 2853 1879 0.8487

ELM

M1 0.9681 0.9371 2746 1956 0.9674 0.9611 0.9226 2663 1715 0.9286
M2 0.9778 0.9561 2294 1562 0.9706 0.9729 0.9440 2265 1457 0.9580
M3 0.9187 0.8439 4327 3088 0.8508 0.9010 0.8019 4260 2823 0.7311
M4 0.8471 0.7175 5821 4271 0.6859 0.8123 0.6347 5785 4036 0.5420
M5 0.7807 0.6094 6845 5139 0.5809 0.7298 0.4916 6824 4983 0.4370
M6 0.9742 0.9490 2473 1788 0.9674 0.9681 0.9320 2495 1747 0.9076
M7 0.9771 0.9547 2331 1608 0.9664 0.9724 0.9415 2315 1538 0.9160
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Table 2. Cont.

Schemes

Training Period Testing Period

r NSE RMSE
(m3/s)

MAE
(m3/s) QR r NSE RMSE

(m3/s)
MAE
(m3/s) QR

ELM-BSA

M1 0.9681 0.9372 2745 1957 0.9622 0.9609 0.9222 2669 1729 0.9286
M2 0.9787 0.9578 2251 1519 0.9685 0.9743 0.9477 2188 1390 0.9454
M3 0.9199 0.8461 4296 3062 0.8424 0.9022 0.8046 4231 2804 0.7311
M4 0.8497 0.7220 5775 4227 0.6933 0.8106 0.6328 5800 3978 0.5798
M5 0.7853 0.6167 6780 5093 0.5945 0.7276 0.4907 6830 4900 0.4580
M6 0.9747 0.9501 2447 1762 0.9643 0.9690 0.9340 2458 1627 0.9328
M7 0.9787 0.9578 2250 1516 0.9706 0.9743 0.9477 2188 1388 0.9454

It can be seen from Table 2 that when the GRNN model was used, the model with the M2 input set
produced the best forecasting results in both the training and validation periods. Similarly, the ELM
based on the M2 yielded the best forecasting results for both the training and testing periods. For the
proposed ELM-BSA method, it demonstrated that the model with the M7 input sets showed better
performances. Overall, the most suitable input sets for the GRNN, ELM, and ELM-BSA models were
M2, M2, and M7 respectively.

To further compare the predicted streamflow with the observed flow, the predicted and observed
flow were drawn in the same figure as shown in Figure 2, where the x-axis represents the observed
flow and the y-axis represents the predicted flow. If the model works well, the predicted flow should
be equal to the observed flow. Results of the three flood forecasting models with seven input schemes
M1–M7 in the validation period are shown in Figure 2. The regression coefficient R2 was also calculated
and displayed in Figure 2. If the predicted and observed streamflow being compared are similar,
the scatter points should approximately lie on the line y = x, namely the diagonal line shown in
Figure 2. It can be seen that according to the R2 and fitting results, the input schemes M1, M2, M6,
and M7 for both of the three models could always provide better results than other input schemes.
For the forecasting models based on the input set selected by the PMI method, M7 provided slightly
better results than those based on the inputs chosen by the PCC approach, namely M6. It can also be
seen from Table 2 and Figure 2 that the three models with input schemes M1 and M2 showed better
performances than those models with the schemes M3 to M5. This means that when more anterior
flows, such as the flows at lag time t-3, t-4, and t-5, are considered, the performance of the models
became worse, which means more inputs bring noise to the forecasting system. Meanwhile, models
based on different input sets yielded different results, while the best input sets were not identical for all
forecasting models. According to the results of Figure 2 and Table 2, the best input combinations for the
GRNN, ELM, and ELM-BSA models were M2, M2, and M7, respectively. Figure 2 also demonstrates
that the proposed ELM-BSA model with the M7 input set performed best among all the combinations
of inputs and models with the R2 value of 0.9492.

Table 3 summarizes the best performance results calculated using the three models with different
input sets. It indicates that compared with other methods, there were significant improvements when
the ELM-BSA was used. The ELM-BSA model provided better forecasting results than the GRNN and
ELM models for daily streamflow forecasting. For the validation period, compared with the GRNN
model, when the ELM-BSA model was used, the performance indexes r, NSE, RMSE, and QR increased
by 1.05%, 3.12%, and 13.64%, respectively, and the indexes RMSE and MAE decreased by 19.63% and
27.22%, respectively. Similarly, compared with the standard ELM model, when the ELM-BSA was
used, the indexes r, NSE, RMSE, and QR increased by 0.15%, 0.4%, and 1.32%, respectively, and the
indexes RMSE and MAE decreased by 3.42% and 4.72%, respectively. Therefore, the proposed method
increased the flood forecasting model accuracy.
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Table 3. The performance of the best GRNN, ELM, and ELM-BSA models for flood forecasting at the
Yichang station.

Model R NSE RMSE (m3/s) MAE (m3/s) QR

GRNN (M6) 0.9642 0.9191 2722 1906.7 0.8319
ELM (M2) 0.9729 0.9440 2265 1456.5 0.9580

ELM-BSA (M7) 0.9743 0.9477 2188 1387.7 0.9454
Improvement (ELM-BSA vs. GRNN, %) 1.05 3.12 19.63 27.22 13.64
Improvement (ELM-BSA vs. ELM, %) 0.15 0.40 3.42 4.72 1.32

As streamflow in the flood season has a great impact on the scientific decision-making of modern
water resources management and planning, the number of forecasting values whose relative error
beyond the specific range (±15%, ±20%, and ±25%) are given in Table 4, where the number and
proportion of over-ranging points for each forecasting model in the testing period are shown. Results
indicate that the total number of over-ranging points of the ELM-BSA model was always less than
the other two models for each specific range. This means that the ELM-BSA model performed better
than GRNN and ELM for the daily streamflow forecasting. The advantages of the ELM-BSA model
for high streamflow forecasting can be visually seen in Figure 3, where the residual values of the best
ELM-BSA, GRNN, and ELM models in the validation period are presented, and the ±20% intervals
of the observed streamflow is also presented. Results show that the ELM-BSA produced the best
performance because it provided fewer residual values falling outside the ±20% range than the other
two models. For example, its residual value out of the reference range between the date 6 July 2007,
and 5 August 2007 (marked in Figure 3) was comparatively less serious. Meanwhile, the ELM-BSA
model produced smaller maximum residual values than the other two models, while the GRNN
performed even worse than the ELM. Additionally, the GRNN model was not suitable for the low and
high streamflow parts due to its remarkable over-estimation and under-estimation. All these results
imply that the proposed model was superior to the other models for flood forecasting.

Table 4. Number of forecasting values whose relative error was beyond the specific range.

Model
GRNN ELM ELM-BSA

Number Proportion Number Proportion Number Proportion

Beyond ±15% 59 24.79 54 22.69 26 10.92
Beyond ±20% 34 14.29 22 9.24 13 5.46
Beyond ±25% 20 8.40 8 3.36 8 3.36
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3.4. Sensitivity Analysis of Different Training Sample Sizes

Another important factor affecting the forecasting accuracy of data-driven forecasting models is
the number of training samples. Hence, in this sub-section, five schemes were designed and employed
to further test the performances of the proposed ELM-BSA model with different training data sizes.
In each case, the same dataset, the data from the last two years (from the year 2006 to year 2007),
was used for model validation. Performances of the ELM-BSA model in these five scenarios are
given in Table 5. Meanwhile, Figure 4 shows the values of indexes RMSE and NSE calculated using
ELM-BSA with different training data sizes. ELM-BSA with a different number of training data
demonstrate different forecasting results and all these results can comply with the Chinese flood
forecasting standard [31]. Hence, these models developed in this study can be applied to practical use.
Meanwhile, the forecasting accuracies of the ELM-BSA model were always better than the other two
models in all cases, because the ELM-BSA model could yield the largest NSE values and the lowest
RMSE values in the validation period among these three forecasting models. In the training period,
the forecasting accuracies grew with the increase of training data size, except for the GRNN model
with Case 3. In the validation period, the ELM and ELM-BSA models provided stable NSE values
for Cases 1–4, while there is a sudden drop of NSE in Case 5 for ELM. The forecasting accuracies of
GRNN in the validation period increased with the increase of the training samples, except for Case 2.
The ELM and ELM-BSA could generate stable RMSE values for Cases 2–4 in the training period and for
Cases 1–4 in the testing period. As for GRNN, its performances in the testing stage seemed to be better
when the training samples were increased, whereas its performance fluctuated in the training period
with an increase of the training samples. Additionally, Figure 4 clearly shows that the training number
in the Case 3 was the best one for all the forecasting models, because in this condition, the accuracies
in both training and testing periods for every forecasting model were well-balanced. These results
indicate that more samples adopted to train forecasting model may be conductive to enhancing the
forecasting accuracy of the training stage but may be detrimental to the performance in the testing
phase in the condition where the number of training samples exceeds a specific range. Therefore, in the
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real engineering applications, it is important to balance the sample sizes of the training and testing
datasets, which will be helpful to promote the robustness and accuracy of the forecasting models.
All the above results prove the superiority of the ELM-BSA model in the aspects of both robustness
and accuracy when compared with the other two widely used forecasting models. This is due to
the fact that the ELM-BSA model processes the merits of both the BSA and ELM, which enhances its
generalization ability and robustness.

Table 5. Results of GRNN, ELM, and ELM-BSA in five cases with different training sample sizes.

Case Year Period r NSE RMSE (m3/s) MAE (m3/s) QR

GRNN

Case 1 1994–2005
training 0.9723 0.9451 2200 1507 0.9664
testing 0.9611 0.9201 2705 1924 0.8151

Case 2 1995–2005
training 0.9731 0.9469 2082 1474 0.9681
testing 0.9561 0.9082 2900 1970 0.8193

Case 3 1996–2005
training 0.9650 0.9255 2477 1742 0.9636
testing 0.9658 0.9255 2613 1911 0.8109

Case 4 1997–2005
training 0.9740 0.9485 2130 1499 0.9856
testing 0.9652 0.9282 2565 1806 0.8277

Case 5 1998–2005
training 0.9791 0.9584 2234 1573 0.9800
testing 0.9645 0.9271 2583 1792 0.8571

ELM

Case 1 1994–2005
training 0.9711 0.9431 2241 1479 0.9517
testing 0.9741 0.9483 2175 1367 0.9538

Case 2 1995–2005
training 0.9724 0.9455 2108 1414 0.9580
testing 0.9741 0.9482 2178 1385 0.9538

Case 3 1996–2005
training 0.9726 0.9459 2110 1402 0.9608
testing 0.9740 0.9481 2181 1379 0.9538

Case 4 1997–2005
training 0.9747 0.9500 2097 1409 0.9664
testing 0.9739 0.9477 2189 1380 0.9580

Case 5 1998–2005
training 0.9778 0.9561 2294 1562 0.9706
testing 0.9729 0.9440 2265 1457 0.9580

ELM-BSA

Case 1 1994–2005
training 0.9714 0.9436 2231 1465 0.9517
testing 0.9747 0.9496 2148 1352 0.9454

Case 2 1995–2005
training 0.9727 0.9461 2097 1391 0.9597
testing 0.9748 0.9498 2143 1351 0.9454

Case 3 1996–2005
training 0.9728 0.9463 2103 1392 0.9594
testing 0.9745 0.9491 2159 1368 0.9454

Case 4 1997–2005
training 0.9748 0.9503 2091 1405 0.9652
testing 0.9745 0.9486 2169 1380 0.9454

Case 5 1998–2005
training 0.9787 0.9578 2250 1516 0.9706
testing 0.9743 0.9477 2188 1388 0.9454
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In summary, all the above results obtained from Sections 3.3 and 3.4 indicate that the ELM-BSA
model is a powerful tool to model the daily streamflow and can produce more reliable performance
compared with GRNN and ELM. It provides an effective alternative for flood forecasting.

4. Conclusions

Reliable and robust flood forecasting plays an essential role in effective/scientific flood control
and many activities associated with water resources management. On the basis of an extreme learning
machine (ELM) and an emerging dual population-based evolutionary algorithm named backtracking
search optimization algorithm (BSA), this paper developed an improved extreme learning machine
named ELM-BSA for short-term flood forecasting. In the new forecasting model, BSA was used to
find the appropriate hidden node parameters of ELM, and then the well-tuned ELM was applied
to do one-step-ahead forecasting. For the purpose of evaluating the performance of the developed
model, the standard ELM and a widely-used GRNN model were taken as reference models. The upper
Yangtze River was selected as a case study. Experiments with different input combination schemes and
training sample sizes indicated that the proposed ELM-BSA model was superior to the current ELM
and GRNN models. For example, compared with the GRNN model, the improvements achieved by
the ELM-BSA model regarding the indexes NSE and RMSE values in the validation period were 3.12%
and 19.63%, respectively. Moreover, when the sample size changed within a proper range, the accuracy
of the developed model fluctuated in a smaller scope than those of the ELM and GRNN models,
which demonstrated the stability of the proposed model. Therefore, the ELM-BSA model is a powerful
tool for flood forecasting. It is necessary to apply this new method to real-time flood forecasting.
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