CLASSICAL MOLECULAR DYNAMICS
USING NEURAL NETWORK
REPRESENTATIONS OF POTENTIAL
ENERGY SURFACES

by

Andreas Godg Lefdalsnes

THESIS

for the degree of

MASTER OF SCIENCE

Faculty of Mathematics and Natural Sciences
University of Oslo

September 2019

Abstract

Artificial neural networks are fitted to molecular dynamics trajectories using
the Behler-Parrinello method of atom-centered symmetry functions in order to
obtain analytical interatomic potentials. Molecular dynamics trajectories are
generated using the Atomic Simulation Environment (ASE) and the neural
networks are initialized and trained using the Atomistic Machine-Learning
Package (AMP). AMP is interfaced with ASE through the Calculator interface,
which is a black box that accepts atomic numbers and atomic positions and
calculates the energy and, if implemented, forces and stresses.

Neural network potentials are constructed for copper and silicon in equi-
librium crystal structures, and are evaluated on the potential energy, energy
conservation, radial distribution function and mean squared displacement,
as well as the absolute errors of the potential energies and force components
on the test trajectories. We find the neural networks are able to reproduce
the crystal structures, but obtain negative results for the ability to conserve
energy, leading to an increase in kinetic energy and translational momen-
tum over time, with negative implications for long-term numerical stability.
Recommendations for future work include better sampling algorithms for
sampling likely configurations out of equilibrium, testing different numerical
optimization algorithms and a more efficient implementation of the Behler-
Parrinello symmetry functions for facilitating faster training and deployment
of different architectures on available training data, as well as on new input
data.

Acknowledgements

Thank you to my supervisor Morten Hjorth-Jensen for giving me valuable
advice and support. Through participation in your courses you have given me
the training required to plan, structure and develop a large scientific project
with good scientific and ethical conduct. Your optimism and belief in me
has guided me through difficult times without which this work would not
have been possible. I would also like to thank Morten Ledum for providing
valuable input and insights in the early stages of developing this thesis.

I would also like to recognize the master theses of Hakon V. Treider and
John-Anders Stende, for providing me with a solid foundation from which
to build upon. Thank you to Andrew Peterson and Alizera Khorshidi for
their theoretical work on electronic structure calculations using machine
learning, and for developing and open sourcing their Atomistic Machine-
learning Package, without which this thesis might have been made considerably
more difficult.

Finally, thank you to the fine people at the Computational Physics group,
for many interesting conservations and for your extensive enthusiasm and
knowledge concerning physics and scientific programming.

Contents

-

Introduction
1.0.1 Electronic structure calculations
1.0.2 Atom-centered descriptors .
1.03 Goals.
1.0.4 Contributions
1.0.5 Structure

Theory

Quantum Mechanics

2.0.1 Ketsand bras
2.0.2 Operators
2.0.3 Time evolution
2.0.4 The Schrodinger equation .

Many-body Quantum Mechanics
3.0.1 Hartree-Fock
3.0.2 Density-functional theory .

Molecular Dynamics

4.0.1 From quantum mechanics to molecular dynamics
4.0.2 Molecular dynamics simulations
4.0.3 Molecular dynamics potentials

Machine learning
5.0.1 Basics of statistical learning
5.0.2 Bias-variance decomposition

10
11
12

13

14
14
16
18
19

21
23
27

33
33
37
43

5.0.3 Neural networks
5.0.4 Backpropagation
5.0.5 Optimization

6 Atom-centered descriptors

6.0.1 Gaussian descriptors

6.0.2 Zernike and bispectrum descriptors
6.0.3 Deep Potential Molecular Dynamics

II Implementation

7 Atomic Simulation Environment

7.0.1 Installation
7.0.2 Molecular Dynamics
7.0.3 Calculators

8 Atomistic Machine-learning Package

8.0.1 Theory
8.0.2 Inmstallation
8.0.3 Training example
8.0.4 Descriptors and models

9 Fitting to the Lennard-Jones potential

9.0.1 Tensorflow implementation . . .

9.0.2 Comparison and absolute error

IIT Results

10 Parameter search
10.0.1 Force training
10.0.2 Activation, hidden layers
10.0.3 Cutoff radius
10.0.4 Symmetry functions
10.0.5 Overfitting and regularization .
10.0.6 Sampling and scaling

78

79
80
80
81

84
85
87
88
90

91
91
96

11 Empirical potentials
11.0.1 Effective Medium Theory
11.0.2 Stillinger-Weber

12 Conclusions and future work
12.0.1 Prospects and future work

Appendices
A Symmetry function parameters
B Software and hardware

C Bibliography

118
119
128

137
138

142

143

147

148

Chapter 1

Introduction

The field of artificial intelligence (AI) has experienced a tremendous growth
in recent years, with a large growth in the number of published papers, and
an influx in funding from both universities and commercial entities. The
exponential growth of available and high quality data has brough about a
demand for accurate, efficient and semi-automated algorithms, capable of
building complicated mathematical models and making predictions without
human supervision. Artificial neural networks (ANNs) in particular, partially
inspired by simple models of human cognition, have found success in a large
variety of tasks, largely owing to their ability to scale efficiently as the size of
the dataset grows. Many trace this recent Al renaissance to AlexNet[1], which
was a convolutional neural network that won the Imagenet Large Scale Visual
Recognition Challenge in 2012, Artificial intelligence, or machine learning
(ML) as it is known within the literature, can now boast state-of-the-art
performance in areas such as image recognition and analysis, computer vision,
speech recognition and natural language processing|[2].

Data analysis and machine learning has found application in many sub-
fields of physics, such as observational astronomy, condensed matter, and
subatomic particle physics [3][4][5]. Quantum chemistry, and electronic struc-
ture calculations in particular is an area which could be well suited for the
adoption of machine learning methods, as large datasets can be produced on
demand and relatively free of noise which obscures patterns.

! Imagenet Large Scale Visual Recognition Challenge

http://www.image-net.org/challenges/LSVRC/

1.0.1 Electronic structure calculations

Electronic structure calculations - or numerical solutions to the many-body
Schrodinger equation - are methods of modelling physical systems based on the
principles of quantum mechanics. They involve very few parameters, and the
results are found to be very accurate compared to laboratory measurements.
However, exponential time complexity as the system grows in size greatly
limits their applications, and we are in general limited to very small and
simple systems. Approximations can be made which reduces the complexity
to polynomial, but this also limits the accuracy of the method. The most
succesful and widely applied methods are the Density Functional Theory
(DFT) method and the Hartree-Fock (HF) family of methods. The Hartree-
Fock method’s time complexity scales nominally as O(N?), where N is the
number of particles in the system (i.e. electrons), owing to the number of
two-electron integrals which must be computed. However, as the system
grows in size many of these spatial integrals become vanishingly small and
can be neglected, at the cost of introducing a small and adjustable error. A
major weakness of Hartree-Fock methods is the neglect of electron correlation
energies, which can lead to large deviations from experiment. The Density
Functional Theory method scales in a similar manner, but often with a larger
proportionality term. Density Functional Theory can treat both exchange and
correlation interactions, but this must be done approximately, and developing
accurate and numerically stable approximations remains an active area of
research [6].

Molecular Dynamics (MD) freezes out the degrees of freedom of the
electrons, and treats the atoms as point particles centered on the nucleus
using a mean-field approach. The dynamics of the particles are treated as
Newtonian, meaning the position and velocity can be integrated using a
symplectic integrator such as Verlet integration (see for example [7]). This
treatment allows for systems much larger than ab-initio methods, but at
the cost of neglecting both nuclear and electronic phenomena. However, the
development of molecular dynamics potentials involves a large amount of
parameters for any realistic system, and determining their functional form is
more of an art than an exact science.

An application of machine learning which has shown some promise is the
development of molecular dynamics potentials or Potential Energy Surfaces
(PES)[8]. Using for example artificial neural networks, the parameters (i.e.
weights and biases) are fully determined from the training data, and the

amount of handcrafting involved can be greatly reduced. Under mild assump-
tions imposed on the activation functions in the hidden layers, ANNs have
been proven to be able to approximate any continuous functions on compact
subsets of RV[9]. This offers the potential of developing potential energy
surfaces directly from ab-initio data or from mature and tested empirical
potentials.

1.0.2 Atom-centered descriptors

For electronic structure calculations the potential energy, forces and other
derived properties are determined by the cartesian coordinates. However, it
is not sufficient to feed neural networks cartesian coordinates labeled with
the energy. From physical theory we know that any molecular dynamics
potential must be invariant w.r.t. translation, rotation, and permutation of
like atoms. In order to apply machine learning methods we require a mapping
from the cartesian coordinates to a 1D feature vector which conserves all of
these properties.

In their article introducing the Atomistic Machine-learning Package (AMP),
the authors [10, Khorshidi, Peterson| describe the general process. The idea
is to approximate the potential energy with a regression model:

(R} B = E(RY), (L)

where { R} represents the cartesian coordinates of our system. We will refer
to a mapping which satisfies the constraints of translation, rotation and
permutation invariance as a descriptor. The descriptor is a multidimensional
function G that serves as input to the regression method:

{R} — G({R}) "™" E= E(G({R})). (1.2)

Once we have a descriptor and a regression model the dynamics can be readily
obtained by taking derivatives. The force on atom i is calculated as:

F,=-V, B
= ~ViE(G({R}))
9E oG,
— 0G; OR;’

(1.3)

where we have applied the chain rule to break the gradient into derivatives
with respect to the network inputs and derivatives of the network inputs
with respect to the coordinates of atom i. The derivatives with respect to
the network inputs are obtained through backpropagation [11], while the
derivatives of the network inputs can be obtained analytically or numerically.
The potential energy is typically also broken into atomic contributions:

E= Z Eatom (Ri, {R}), (1.4)

where each atomic contribution is determined by the atom’s local environment.
This allows us to treat systems with a varying amount of particles without
retraining the machine learning method each time.

1.0.3 Goals

The goal of this thesis was to investigate machine learning as a tool for bridging
the gap between ab-initio electronic structure calculations and molecular
dynamics. Previous theses at the University of Oslo’s Computational Physics
group have investigated the Behler-Parrinello [12] method of atom-centered
symmetry functions, in particular the theses of [13, Stende, John A,] and [14,
Treider, Hakon Vikgr|. In these theses they have evaluated the numerical
speed and accuracy of potentials trained on data produced from the Lennard-
Jones and Stillinger-Weber potentials. We sought to continue this work,
and demonstrate and validate machine-learned potentials developed using
the Behler-Parrinello method, but also apply the method to data obtained
using ab-initio molecular dynamics and compare these potentials to empirical
potentials. This was initially attemped using a combination of Tensorflow?
and LAMMPS?. However, this was later abandoned, as connecting software
packages written in different programming languages proved to be tedious
and error-prone, and the Atomic Simulation Environment (ASE*) package
provided a Python® interface to electronic structure calculations. Initially we
sought to implement and test the Deep Potential Molecular Dynamics (DPMD)
method by [15, Zhang et al.], but it proved difficult to obtain acceptable

2 https://www.tensorflow.org/

3 https://lammps.sandia.gov/

4 https://wiki.fysik.dtu.dk/ase/
° https://www.python.org/

10

https://www.tensorflow.org/
https://lammps.sandia.gov/
https://wiki.fysik.dtu.dk/ase/
https://www.python.org/

results for the energy and force root mean squared errors (RMSEs), and
calculating the forces efficiently proved too difficult to implement. This was
therefore abandoned in favor of the more tried and tested Behler-Parrinello
method.

We finally settled on a combination of using the ASE package for producing
molecular dynamics trajectories and the Atomistic Machine-learning Package
(AMP?®) for training them. The AMP package provides an interface for gener-
ating Behler-Parrinello ” fingerprints” of atomic environments and training
them using neural networks (and potentially other machine-learning models).
This allowed us to focus on the accuracy, speed and scaling when training neu-
ral networks on empirical potentials and ab-initio data in molecular dynamics,
and how accurately equilibrium properties can be replicated using trained
neural networks. Unfortunately, we did not have time to generate ab-initio
trajectories, as there are many details which have to be considered when
performing density functional theory calculations, and the calculations are
very time-consuming. Further work in this area could focus on generating and
reproducing trajectories using either Velocity-Verlet dynamics and ground
state DF'T calculations or time-dependent density functional theory molecular
dynamics described for example in the GPAW calculator documentation .

1.0.4 Contributions

Ideally we might have liked to make our own implementation of the Behler-
Parrinello method, and I would have especially liked to build a neural network
interface through the recently released Tensorflow 2.0 (beta). Unfortunately
there was no time for this, and we settled for working through the AMP
interface and making modifications as necessary. Developing code from
scratch could have given insights into the structure and process of calculating
fingerprints and feeding them through neural networks to produce energies
and forces. However, the nature of AMP is modular and the code is well
documented and readable, so settling on making modifications to the package
can allow one to focus more on the process of generating and sampling data,
training and deploying the trained neural networks on novel systems and
evaluating the results. Suggestions for future work on the topic is included in
our final conclusion. In this thesis we have:

SAMP documentation
"Ehrenfest theory

11

https://amp.readthedocs.io/en/latest/
https://wiki.fysik.dtu.dk/gpaw/documentation/ehrenfest/ehrenfest_theory .html

e Generated and sampled from classical molecular dynamics trajectories

e Trained and tested neural network potentials on data generated from
molecular dynamics

e Evaluated the ability of neural network potentials to reproduce equilib-
rium properties of classical molecular simulations

e Written a set of analysis and post-processing scripts

e Minor extensions and modifications to the AMP library for personal use

1.0.5 Structure

This thesis is divided into four parts. First we build from first principles to
connect classical molecular dynamics with the laws of quantum mechanics.
We go through the basics of machine learning and connect it to molecular
dynamics through the concept of atom-centered descriptors. Then we we
discuss the implementation details of using ASE, AMP and Tensorflow. Third
we train neural networks potentials on empirical potentials and generate new
molecular dynamics trajectories using these potentials. Fourth we conclude
the thesis and discuss future applications and work.

12

Part 1

Theory

13

Chapter 2

Quantum Mechanics

In order to proceed to electronic structure calculations we require a solid
foundation in the principles of quantum mechanics. This chapter will give a
brief overview of the basic tenets of quantum mechanics and describe briefly
how these rules lead to the Schrodinger equation, which is the equation
governing all non-relativistic quantum mechanics. We will assume an under-
graduate understanding of calculus and linear algebra, and some knowledge
of mechanics is also helpful. The discussion in this chapter follows closely
and summarizes the discussion in [Sakurai 16, pages 10-76], and the reader is
referred there for more details.

2.0.1 Kets and bras

In quantum mechanics, the state of a quantum system is represented by a
state vector in a complex vector space. Such a vector is called a ket, denoted
by |a), following the notation of Paul Dirac. The state ket is postulated to
contain all information about the state of the quantum system, such as energy,
angular momentum, mass and so on. Two kets can be added to produce a
new ket:

@) +18) =) - (2.1)
They can also be multiplied by a complex number:
cla) =|a)e=19). (2.2)

If ¢ is zero the resulting ket is called a null ket. If ¢ is non-zero it is postulated
that the resulting ket contains the same information as the initial ket.

14

Observables such as momentum and spin are represented by operators acting
on the vector space in question. Operators act on a ket from the left to
produce a new ket:

Ala) =6). (2.3)

Of particular importance is when the action of an operator on a ket is the
same as multiplication:

Ala) =cla) =9). (2.4)

These kets are known as eigenkets and the corresponding complex numbers
are known as eigenvalues. The physical state represented by an eigenket is
known as an eigenstate. The eigenvalues of an operator A represent the only
possible values of a measurement of the observable. For observables such as
position and momentum, the operators will have a continuous spectrum of
eigenvalues, whereas operators such as energy and spin have a discrete or
quantized spectrum, whereby the term quantum mechanics is derived. The
eigenkets of a physical observable form a complete orthogonal set, meaning
any ket can be written as an expansion of eigenkets |a’):

o) =) culal), (2.5)

a/

where ¢, is a complex coefficient. In principle there are infinitely many
linearly indepedent eigenkets, depending on the dimensionality of the vector
space.

A bra space is a vector space "dual” to the ket space. We postulate that
for every ket |a) there exists a bra («|. The bra space is spanned by eigenbras
(a’| corresponding to the eigenkets |a’). The ket and bra spaces have a dual
correspondence:

) = (o
@), o) ... e (@], (@], .. (2.6)
@) +18) > (ol + (8]
The bra dual to c¢|a) is postulated to be ¢* |a), and more generally:

Ca |@) + cg|B) < ¢ (af + ¢ (Bl (2.7)

The inner product of a bra and a ket is a complex number written as a bra
on the left and a ket on the right. It has the fundamental property:

(a]8) = (Blay)”, (2.8)

15

meaning they are complex conjugates. For this to satisfy the requirements of
an inner product we must have

(afa) > 0, (2.9
with equality if and only if |«) is a null ket. We define the norm of a ket as

Viala), (2.10)

which can be used to form normalized kets

~ 1
) = 9% (2.11)
(aa)
with the property
(ala) = 1. (2.12)
Two kets are said to be orthogonal if
{a]5) = 0. (2.13)

2.0.2 Operators

As we mentioned briefly above, operators act on kets from the left to produce
a new ket. Two operators A and B are equal A = B if

Ala) = Bla), (2.14)

for an arbitrary ket in the relevant ket space. An operator A is said to be the
null operator if

Ala) = 0. (2.15)

Operators can be added, and addition operations are commutative and
associative.

X+Y =Y +X, (2.16)

(X+V)+Z=X+(V +2). (2.17)

Operators act on bras from the right to produce a new bra

(al A= (8]. (2.18)

16

The ket A|a) and the bra (a] A are in general not dual to each other. We
define the hermitian adjoint At through the dual correspondence:

Ala) < (af AT, (2.19)
An operator is said to be hermitian if
A=Al (2.20)

Hermitian operators have real eigenvalues, and since the result of any mea-
surement must be a real number any operator that represents a physical
observable must be Hermitian.

Operators can be multiplied. Multiplication is associative, but non-commutative:

XY £YX, (2.21)

X(YZ) = (XY)Z. (2.22)

The left product of a ket and a bra is known as the outer product:

) (B]. (2.23)

The outer product should be treated as an operator, while the inner
product («|3) is a complex number. If an operator is to the left of a ket |a) A
or to the right of a bra A (3| these are illegal products, in other words not
defined within the ruleset of quantum mechanics. The associative properties
of operators are postulated to hold true as long as we are dealing with legal
multiplications among kets, bras and operators. As an example, the outer
product acting on a ket:

(ley (B1) 7)), (2.24)

can be equivalently regarded as scalar multiplication

) ({ely)) = le) ¢ = cla), (2.25)

where ¢ = (a|y) is just a complex number.

17

2.0.3 Time evolution

In quantum mechanics, time is treated not as an observable, but as a parameter.
Relativistic quantum mechanics treats space and time on the same footing,
but only by demoting position to a parameter.

Suppose we have a physical system |a) at a time ¢5. Denote the ket at a
later time t > ty by

lav, 5 to) (2.26)
Time evolution is assumed to be continuous and symmetric, meaning that if
we evolve the system backwards in time we should arrive at the initial state:
lim |a, t;t9) = |a) . (2.27)
t—to

The kets separated by a time At =t — ty are related by the time-evolution
operator U:
la, t;t0) = U(t, to) |, to) - (2.28)
If the state ket is normalized to unity at a time ty, it must remain normalized
at a later time:
(o, tolay, to) = {ay t;tolay, L5 tg) = 1. (2.29)

This is guaranteed if the time evolution operator U is a unitary operator:
U =1. (2.30)

We also require that the time evolution operator exhibits a composition
property:

u<t2,t0) :Z/{(tg,t1>u<t1,t0), (tg >t > to), (231)
meaning that the time evolution between two points ¢ty and t; remains the

same if we first evolve the system to an intermediate time ;.
If we consider an infinitesimal time-evolution operator

|O./, to + dt, to) = Z/{(tg + dt, t()) |Oé, to) > (232)

it must reduce to the identity operator as the infinitesimal time interval dt

goes to zero:

dt—0

18

and we expect the difference between the operators to be of first order in dt.
These requirements are all satisfied by the operator

Uty + dt, tg) = 1 —iQdt, (2.34)
where () is a Hermitian operator:
Qf = Q. (2.35)

The operator €2 has the dimension inverse time. Frequency or inverse time is
related to energy through the Planck-Einstein relation:

E = hw. (2.36)

In classical mechanics the Hamiltonian is the generator of time evolution, so
we postulate that €2 is related to the Hamiltonian operator H:

0= - (2.37)

The Hamiltonian operator represents the energy of our system, which is a
physical observable and must therefore be Hermitian.

2.0.4 The Schrodinger equation

The Schrodinger equation is the fundamental equation governing non-relativistic
quantum mechanics. It can be assumed as a postulate, but is usually derived
from more fundamental principles. By exploiting the composition property of
the time-evolution operator we find that:

tHdt
h

where the time difference ¢ — ¢ is not required to be infinitesimal. Subtracting
from both sides of this equation:

U+ dt o) = Ut + dt, DU 1) = (1 — SN L), (2.38)

Hdt
Ut + dt, to) — U(t, L) = —

U(t, o). (2.39)
Rearranging this equation and taking the limit dt — 0 leads to the equation:

m%u@, to) = HU(t, ty). (2.40)

19

This is known as the Schrodinger equation for the time-evolution operator.
We multiply both sides by a ket |a, tg):

zh%l/l(t,to) |Oz, t0> = HZ/{(f,t()) |Oé, t0> . (241)

This ket does not depend on ¢, leading us to the famous equation:
0
ih, la, tito) = H |a t o). (2.42)

This is known as the time-dependent Schrodinger equation, and gives the
description for how a quantum system evolves with time. It is possible to
show that in the classical limit A — 0, the expectation value of the operator
H takes on the role of the energy in classical mechanics. The Schrodinger
equation takes on the role of Newton’s laws in quantum mechanics. However,
it is not the only way to study quantum systems, as it has been shown to be
an equivalent interpretation to the matrix mechanics of Werner Heisenberg
and the path-integral formulation developed by Richard Feynman.

20

Chapter 3

Many-body Quantum
Mechanics

The Schrodinger equation only offers exact solutions for very small and simple
systems, such as the hydrogen atom or a system of non-interacting harmonic
oscillators. If we want to study most systems of interest we must turn instead
to numerical methods and solutions. The most prominent methods in the
field of many-body quantum mechanics are the Hartree-Fock (HF) and the
Density Functional Theory (DFT) families of solvers. This chapter will
give a brief overview of both methods, focused more on understanding and
intuition than rigor. Eventually we will take these methods to be black boxes
of electronic structure calculations, given some cartesian coordinates and
outputting energies and forces. This section will give a brief overview of the
discussion of the electronic Hamiltonian in [Szabo 17, pages 39-89], which
also covers the Hartree-Fock theory which will be expanded upon in the next
section.
We want to find solutions to the non-relativistic time-independent Schrédinger

equation:

H|U) = E|¥), (3.1)

with the Hamiltonian H describing a system of nuclei and electrons with
cartesian coordinates R,, a=1,2,...,Aand r;, 1 =1,2,..., N respectively.
The distance between nuclei a and electron i is given as the euclidean distance
R,; = |R, — r;| and correspondingly for the nuclei-nuclei and electron-electron
distances. The full Hamiltonian for a set of N electrons and A nuclei in atomic

21

units is:

MZ
M

[\DI»—t

(1

ZZ

(3.2)

The first two terms describe the kinetic energy operators of the electrons
and nuclei, with M, the ratio of the mass of nuclei a to the electron mass. The
third term describes the Coulomb attraction between electrons and nuclei,
while the fourth and fifth terms describe the repulsion between electrons and
nuclei respectively.

Since the nucleons are approximately 2000 times heavier than the electrons,
the electrons can to a good approximation be described as moving in the field
of fixed nuclei. In practice we neglect the kinetic energy terms of the nuclei,
while considering an averaged effect from the nuclei-nuclei repulsion. The
nuclei-nuclei repulsion energy averaged over adds a constant to the energy
eigenvalues, but has no effect on the energy eigenfunctions. The remaining
terms are known as the electronic Hamiltonian:

ﬁ:—ilv?—iiz’“rii (3.3)
’ i=1 2 i=1 a=1 Ria i=1 j=i

The electronic wavefunction ¥, = W ({r;};{R.}) is a function of the
electronic coordinates with a parametric dependence on the fixed nuclear coor-
dinates. The electronic energy is obtained in the usual way E, = (U |H,|¥,).
The total energy of our system must now include the constant nuclear repul-
sion:

A A

Eior = Ee + Z Z z Zb (3.4)

a=1 b=a+1 a

If one has solved the Schrodinger equation for the electronic Hamiltonian,
one can subsequently solve for the nuclear motion using the same trick, i.e.
substituting the electronic coordinates for their average values, averaged over

22

the electronic wave function. We are then left with a nuclear Hamiltonian

R A 1 N 1 N A 7 N N 1
W AL G LA D WD WD I
a=1 a i=1 i=1 a=1 ~ '@ i=1 j=i+1 Y
A A
Py L (3.5)
a=1 b=a+1 ab

A1
= — V2 + Eor.
;QMG ot Lot

Under this approximation the nuclei move on a potential energy surface
obtained by solving the electronic Hamiltonian. We will however remain
focused on the electronic structure problem. The electronic Hamiltonian
further simplifies if we restrict our attention to a system consisting only of a
single nuclei and N electrons. We fix the coordinate system in the center of
mass of the nucleus and, which gives us the expression:

N 7 NN oy
- 1, Z 1
=1 =1 i=1 j=i+1
For simplicity, we will restrict ourselves to this Hamiltonian in our discus-
sion of the Hartree-Fock and Density Functional Theory methods.

3.0.1 Hartree-Fock

The Hartree-Fock method is a method for finding solutions to the electronic
Hamiltonian assuming the electron-electron repulsion can be approximated
with a set of single-particle functions or orbitals, moving in a mean field
generated by the presence of other electrons. The theory in this section
is based upon the [18, Sherrill] lecture notes from the Georgia Institute of
Technology and the lecture notes on Computational Physics 1T [19, Hjorth-
Jensen] from the University of Oslo. It is meant to give an overview of the
method, and not as a full mathematical treatment. We will restrict our
attention to a system of IV electrons orbiting a single nucleus. Assuming that
the electrons do not interact the Hamiltonian is separable and the wavefunction

23

is simply a product of orbitals ¢ which are solutions to a onebody Hamiltonian.
This gives us an ansatz for the many-body wavefunction ¥ known as the
Hartree product:

U(ry,...,ry) =(ry) -+ P(ry). (3.7)

Since we are dealing with fermions this ansatz fails to satisfy the antisym-
metry principle, i.e. the wavefunction is not antisymmetric with respect to the
interchange of any two particles. Fermions in addition to three spatial degrees
of freedom also have a spin degree of freedom ¢ which means the fermion
can be described by the space-spin coordinate © = (r, o) with £ € R* ® 0.
The problem of antisymmetry in a system of N fermions is satisfied by the
introduction of Slater determinants

xi(®1) xo(®1) ... xw(®1)
U, ... zy) = \/% Xl(;c2> Xz(za%) XN§w2) ’ (3.8)
xi(zn) xelzn) -0 xw(@w)

with y(x) spin orbitals and a normalization factor (N!)~!/2. The in-
troduction of this ansatz is equivalent to assuming that all electrons move
independently of each other in a mean field generated by the electron-electron
repulsion. Define the one-electron operator of the electronic Hamiltonian as:

- 1 A
hi(x;)) = —=-V? - = 3.9
1<$) QV’L 7,.1:7 ()
with a twobody interaction term
. 1
b(@,) = —. (3.10)
Tij

which allows us to write the electronic Hamiltonian more compactly as:

fI:Zizl(mi)+Z@(mi,mj). (3.11)

The expectation value of the energy is given as the usual inner product:

E = (U|H|T). (3.12)

24

The variational theorem states that the expectation value of any normal-
ized wavefunction with respect to the energy represents an upper bound to
the ground state energy. This suggests a procedure wherein we vary the pa-
rameters of a set of approximate wave functions W, until an energy minimum
is reached. The Hartree-Fock energy can be written in terms of integrals over
the onebody and interaction terms:

Enp = (VH|U) = (ilhli) +) (ijl0lif) 4 (3.13)

i 1<j

where we have introduced an antisymmetrized matrix element:
(ij]0lig) 45 = (igl0lig) — (ijlolji) (3.14)

and the shorthand integrals:

(ilhali) = / drx: (P xa(r), (3.15)

and

(ijlolij) = /d"'idrjX,?(ri>X;<rj)f)Xi(ri)Xj('r'j)- (3.16)

In order to derive the Hartree-Fock equations we perform a linear expansion
of the spin orbitals y in terms of a fixed orthogonal basis ¢:

in principle an infinite sum, but in practice truncated. This basis is usually
obtained as the eigenfunctions of parts of the electronic Hamiltonian, e.g.
solutions to the Schrodinger equation with a harmonic oscillator or Coulomb
potential. If the coefficients belong to an orthogonal or unitary matrix, the
resulting basis will preserve orthogonality. This expansion allows us to rewrite
the Hartree-Fock energy as:

%

Epp=>_Y CrnCiglal|B)+Y Y CiCr5CisCy (aBlon) . (3.18)
af

i<j afdn

25

Using the method of Lagrangian multipliers we can define a functional to
be minimized:

FIV] = Exp[¥] =) € (ilj)

= EHF[‘I’] - Z € Z C;aciau

with Lagrange multipliers ¢;, where we have exploited the orthogonality
of the basis functions to introduce the coefficients. The Lagrange multipli-
ers are identified with the energy eigenvalues of the single-particle orbitals.

Minimizing with respect to C}, yields the eigenvalue equation:

(3.19)

Z ﬁff@g = eij, (320)
B
where we have introduced the Fock matrix elements:

N
hily = (alhn|B) + Y > CisCiy (a8]8]5n) s - (3.21)
Jj o on
The single-particle integrals are usually tabulated in advance, and depend
upon the choice of basis functions. Often the single-particle integrals (v|hy|/3)
have analytical expressions, while the antisymmetric matrix elements must
be evaluated using numerical integration. The eigenvalue problem can be
written more compactly as:

FC = Cé, (3.22)

where F'is the Fock matrix defined above, C' is the matrix of coefficients
and € is now a vector of single-particle energies. The Hartree-Fock equations
are solved in an iterative way, starting with an initial guess for the coefficients
C. Solving the eigenvalue problem yields new eigenvectors and eigenvalues.
The process continues until the change in eigenvalues is within some tolerance
v

n n—1
Zp ‘ei —€
m

where p runs over all the single-particle energies and m is the number of
single-particle states.

<v, (3.23)

26

3.0.2 Density-functional theory

Density-functional theory (DFT) is a method for investigating the electronic
structure of a many-body system by finding approximations to the ground
state density n(r). It holds many similarities to the Hartree-Fock method,
since the usual method of obtaining the ground-state density involves con-
structing a single-determinant wave function from a set of orthonormal single-
particle states, and expanding these single-particle states in terms of a known
basis. However, DF'T methods offer the explicit treatment of both the elec-
tron exchange and electron correlation interactions, while Hartree-fock only
includes the exchange energy.

This section is a brief summary of the material covered in the [Toulouse
20, pages 1-12] lecture notes from the Université Pierre et Marie Curie, which
the reader is encouraged to check out for more detail. Our starting point
is once again the electronic Hamiltonian for a system of NV electrons and a
single nucleus:

N

. 1
J{:—§:§V3—§:

=1 =1

[N

.+§:Z:%. (3.24)

b=1 =i Y

<

Any electronic wavefunction ¥ which solves this equation is in principle
a function of 3N spatial and N spin coordinates ; = (r;,0;), i =1,...,N
where N is the number of electrons. Once we have obtained a solution to the
Schrodinger equation we can obtain the one-electron density n(r) as:

TKr)::Ai/j@(rwnwg,..,xNHQdadeH.dwN, (3.25)

Since the wavefunction is a unique functional of the Hamiltonian H, the
one-electron density is uniquely determined by the Hamiltonian. Hohenberg
and Kohn showed in 1964 [21] in their first theorem that this mapping
can be inverted, i.e. that the one-electron density uniquely determines the
Hamiltonian of our system (up to an arbitrary constant). Taken altogether,
this means that all properties of our system, including the Hamiltonian and
the many-body wavefunction are fixed by a one-electron density carrying a
dependency on only 3 spatial coordinates. The electronic Hamiltonian can be
rewritten as:

~

H=F+V,, (3.26)

27

where F is an operator consisting of the kinetic energy and electron-
electron operators and V,,. is the electron-nuclei interaction. For their second
theorem, Hohenberg and Kohn defined the universal density-functional:

Fln] = (¥[n]|F[¥[n)) , (3.27)

and the total electronic energy functional:

E[n] = F[n] + /Vnen(r)dr. (3.28)

Hohenberg and Kohn showed that the energy functional with respect to
one-electron densitites n(r) is an upper bound to the ground state energy:

Ey < Fln] + / Vien(r)dr, (3.29)

with equality if and only if the one-electron density is the one-electron
density corresponding to the Hamiltonian H. This suggests a variational
procedure, wherein we vary the total electronic energy functional until we
reach an energy minimum:

Epin = min E[n], (3.30)

which serves as our best estimate for the ground state one-electron density
n(r). Levy and Lieb [22, 23, 24] proposed to redefine the universal density-
functional in terms of normalized antisymmetric wavefunctions ¥ which yield
a fixed density n:

Fln] = min (V| F[¥) = (V[n]|F|[n]) (3.31)

in
U—n
wherein the minima search is performed over wavefunctions which yield
the fixed density n. A search is then performed over densitities n until we
reach an energy minimum. This method is known as the constrained search
formulation. Kohn and Sham [25] proposed to decompose F[n] as:

Fln] = Ts[n] + Eux[n], (3.32)

where T[n] is a non-interacting kinetic-energy functional which can be
defined through the constrained-search formulation:

Ty[n] = min (®|T]®) = (®[n]|T|P[n]) (3.33)

28

wherein the minima search is now performed over normalized single-
determinant wavefunctions ® which yield the fixed density n. The functional
Fhxe[n] is known as the Hartree-exchange-correlation functional. The vari-
ational procedure is now performed over single-determinant wavefunctions
which yield a fixed density n and then minimized over densities:

Ey = min {F[n] + / Vnen(r)dr}

~ min {min (BT + Erpeeln] + / Vnen(r)dr}

P—n

(3.34)
= min min {(CI>|T + Ve |®) + EHXC[nq>]}

n ®—on
= win (BT + V;|®) + Busclna] }

These equations now involve only a single-determinant wave function,
which is a large simplification over a variational method involving multi-
determinant wave functions. Now a major part of the kinetic energy contribu-
tion can be treated through the single-determinant wave function, while only
the Hartree-exchange-correlation needs to be approximated as a functional
of the density. As with the Hartree-Fock method, the single determinant
wavefunctions are constructed from an orthonormal basis of spin orbitals
xi(x), i = 1,..., M with spin-spatial coordinates x; = (r;,0;). The total
electronic energy can be expressed in terms of spatial orbitals ¢;(r) after
integrating out the spin variables:

* 1 9
Bl = Y [61597 + Voo + Bulal, (339
with the density expressed as:
n(r) = lei(r)l. (3.36)
The energy minimum is obtained using the method of Lagrangian multipli-

ers, with the constraint that the spatial orbitals be normalized we introduce
the following Lagrangian:

clfo] = Bliod - Y ([ormatmar—1). ()

29

with ¢; the associated Lagrangian multiplier. The energy minimum is
where the Lagrangian is stationary with respect to the spatial orbitals:

oL
oorr) 33

which gives us the functional derivative:

1 2 ~ 8EHXC[7”L]
(257 + e i+ 250

The second term can be expressed through the chain rule as:

= (7). (3.39)

8EHXC[n] 8EHXC 871(7“’) ’
Zxeld . e) 4
ao;) oty ag)" (3:40)
The second factor can be expressed as:
On(r’) :
= ¢;(r)o(r —7'). 3.41
561 () = Oer)atr —v) (3.41)

Defining the Hartree-exchange-correlation potential as the functional
derivative:

& aEch
xc — s 3.42
Ve = e) (342

we arrive at the Kohn-Sham eigenvalue equations:
1 N N
(—§V2 + Vne + VHXC> ¢1(T) = Ez¢z<'r) (343)

The eigenfunctions satisfying these equations are known as the Kohn-Sham
orbitals, and are eigenfunctions of the Kohn-Sham one-electron Hamiltonian:

~ 1 A
his = —§V2 + Vks, (3.44)
with the Kohn-Sham potential defined as:

VKS - Vne + VHXC‘ (345)

The Kohn-Sham one-electron Hamiltonian defines a system of N non-
interacting electrons in an effective external potential Vi g ensuring that the
one-electron density is the same as that of the ground-state one-electron

30

density of a system of interacting electrons. The Hartree-exchange-correlation
potential is further decomposed as:

Vch = VH + VXC7 (3.46)

where VH is the Hartree potential and VXC is the exchange-correlation
potential. The Hartree potential can be expressed through the density:

o n<r> 'I"/
Va —/—‘r_r/’d . (3.47)

The exchange-correlation potential is decomposed into the exchange po-
tential and the correlation potential:

VXC = VX + Vc. (348)

For practical calculation the spatial orbitals are expanded as a linear
combination of a known basis, such as hydrogen-like functions or Gaussian-
type orbitals:

gi(r) = Z Cuixi(r). (3.49)

We insert these into the Kohn-Sham equations, multiply by x;(r) and
integrate over r to arrive at the eigenvalue equations:

Z F,uucm' =& Z S;U/Cw'? (350)

where F),, = [X;(T)BKSX:;(T)CZT are the elements of the Kohn-Sham Fock
matrix and Sy, = [x}(7)x,(r)dr are the elements of the overlap matrix of
basis elements. The Fock matrix is decomposed into its constituent parts:

F/.Ll/ = Hp,u J/.LV + VXC,;LV: (351>

where H,, are the one-electron integrals:

H,y = / i) (-%v? + Vm(r)> \u(r)dr, (3.52)

Juw is the Hartree-potential contribution:

J,uz/ = Z Z P)«y (XMXV’X/\X’Y)) (353>

Ay

31

where we have defined the density matrix Py, as:

Py = Z CriCxs (3.54)
and the two-electron integrals are defined as:
X (r1) X X3 (r2) X
(X/JXV|X/\X"{ // K A ’Yd 1d’l"2, (355)
11— 72

and finally the exchange-correlation potential contribution:

VxCw = / X () Ve (P)xu(r)dr. (3.56)

The Kohn-Sham equations can be written more compactly as the matrix
equation:

FC = SCe, (3.57)

where € is a vector containing the energy eigenvalues of the basis elements.
The equations are then solved iteratively through diagonalization to obtain
the matrix of coefficients C'. Once we have obtained the coefficients the
density n(r) is calculated as:

=D Z P (1) (r), (3.58)

where the summation is over the number of basis functions M. The total
electronic energy can now be expressed as:

E=> Y PuHu+ % > P + Bxc. (3.59)
7 v W v

Typically the energy contribution from the exchange-correlation Ex¢ has
a complicated non-linear dependence on the density and must therefore be
evaluated through numerical integration.

32

Chapter 4

Molecular Dynamics

The ab-initio methods discussed in the previous chapter are appropriate for
systems with a relatively small amount of electrons, but suffer from cubic
time complexity as the number of electrons grows. If we would like to study
systems of molecules, nanoscale structures or calculate transport coefficients
we have to make further approximations limiting the degrees of freedom of our
system. Instead of solving Schrodinger’s equation to obtain the wave function,
classical approximations are made to treat the atoms as point particles, with
their interactions governed by a classical potential. This eliminates both
the nucleonic and electronic degrees of freedom and allows for much larger
systems to be simulated, though at the cost of quantum effects exhibited by
the electrons. In addition, the construction of molecular dynamics potentials
involves guessing at a functional form, and typically a large amount of
parameters to be determined from experiments and simulations. In this
chapter we will show how quantum mechanics and classical mechanics can
be bridged semi-rigorously, and also give an introduction to central concepts
of molecular dynamics, such as initialization, integration of the equations of
motion and the construction and evaluation of potentials.

4.0.1 From quantum mechanics to molecular dynamics

This section summarizes the route described in the lecture notes [Marx,
Dominik and Hutter, Jorg 26, pages 1-10] given at the Winterschool 2000 at
the John von Neuman Institute for Computing, Jiilich. It is meant to give an
overview of the main ideas, and not as a full mathematical treatment. We
will be using SI units as we wish to study the equations of motion derived

33

from quantum mechanics but in the classical limit. Our starting point is the
full Hamiltonian for a set of IV electrons and A nuclei:

. A A hg N A ZZa
H==3 o Vi Va2 5
i=1 a=1 i=1 a=1
M) . (4.1)

We want to find solutions to the time-dependent non-relativistic Schrodinger
equation:

0 A
h—U = HU. 4.2
tho (4.2)

The wave function is separated in terms of the electronic and nuclear
coordinates with the ansatz:

¥ () (R), 0 = o R e |3 [aE@)] @)

with the electronic and nuclear wave functions normalized to unity at
every instance of time. A phase factor is introduced to make the equations
look nice:

E, = / drdR®**Hdy, (4.4)

where the integration occurs over all spatial coordinates {r},, {R},. This
is a single determinant ansatz which must lead to a mean-field description of
the dynamics. Inserting this ansatz into the Schrodinger equation reveals the
following set of equations:

2
A > h V20 + {/dRX*VneX} P, (4.5)

2me

inX _ -> g + / dr&*Ho (4.6)
- - 2Ma aX X *

34

These coupled equations form the framework for the time-dependent
self-consistent field (TDSCF) method. The electrons and nuclei move on a
potential energy surface obtained from averages over the opposite class of
degrees of freedom (the nuclear and electronic wave functions respectively).
In the framework of classical molecular dynamics we approximate the nuclei
as classical point particles. This can be done by rewriting the nuclear wave
function as

x = AexpliS/hl, (4.7)

with an amplitude factor A and a phase S which are both considered to
be real. The TDSCF equation for the nuclear wavefunction is rewritten in
terms of these variables after separating the real and imaginary parts:

1 . 1 V2A
05 + Z (Va9)? + /dr@*H@ = K Z 1 Ve , (4.8)

ot oM, oM, A

a

5L AT+ D AT <0 (49

This set of equations is known as the ”quantum fluid dynamical represen-
tation”. The term for S contains a term for A which vanishes in the classical
limit A — 0:

as
ot

1 -
+) 2Ma<v“5)2 + /drCD H® =0. (4.10)

a

This formulation of the nuclear dynamics is isomorphic to the Hamilton-
Jacobi formulation:

a5 -
= tH =0, (4.11)

with the classical Hamilton function

H=T{P,}) + V{R,}), (4.12)

with coordinates {R,} and conjugate momenta {P,}. If we identify the
conjugate momenta with the phase S as:

P, =V,S, (4.13)

35

we obtain the following Newtonian equations of motion:

d{;“ = -V,V = —va/dr@*ﬁ@ or
2
AR —Va/d'r(I)*th (4.14)
dt2
= _vaVeE ({Ra(t)}) .

Under this formulation of nuclear dynamics the nuclei move according to
the laws of classical mechanics in an effective potential V.¥ generated by the
electrons. After averaging out the electronic degress of freedom this potential
is now only a function of the nuclear coordinates. For consistency the nuclear
wave function appearing in the TDSCF equation for the electronic degrees of
freedom has to be replaced by the positions of the nuclei. This is accomplished
by replacing the nuclear density \x!Q in the limit 7 — 0 by a product of delta
functions [[, d(R, — R,(t)) centered at the instantaneous positions { R,(t)}
of the classical nuclei. This leads to a time-dependent wave equation for the
electrons:

ot 2m.

which evolve quantum mechanically as the nuclei propagate classically.
This mixed approach is commonly referred to as Fhrenfest molecular dynamics.
Under this formulation of nuclear dynamics the nuclei evolve classically while
the electrons evolve according to the laws of quantum mechanics. Although
the underlying equations describe a mean-field theory, the Ehrenfest approach
includes transitions between electronic states. In order to arrive at a purely
classical description of the dynamics of both the nuclei and the electrons we
need to make further simplifications. Firstly we restrict the electronic wave
function ® to the ground state wave function ®(at every instant of time.
This means the nuclei move on a single potential energy surface:

® h .
ind® Y Vo4V, (4.15)

e

VE = / drdHdy = Ey ({R.}), (4.16)

that is obtained by solving the Schrodinger equation for the ground state
electron wave function:

Hdy = Ey®,. (4.17)

36

Since we are now dealing with a single potential energy surface, the
problem of computing the energy surface can be decoupled from computing
the expectation values from the electronic wave function. First one produces
an appropriate set of nuclear configurations by solving the time-independent
Schrodinger equation. Second, these configurations are fitted to an analytical
functional form to produce a global potential energy surface. Finally the
Newtonian equations of motions are solved on this energy surface, producing
a set of classical trajectories. To deal with the large number of degrees of
freedom as the number of nuclei in the system increases, the global potential
energy surface is approximated as an expansion of many-body contributions:

VE R VP =N "0y (Ry) + Y va(Ray Ry) + Y v3(Ra, Ry, Re), (4.18)

a<b a<b<c

and is typically truncated at 2, 3 or 4-body interactions depending on
the complexity of the atoms and molecules in the system. This renders the
problem of computing dynamics purely classical:

d*R,
dr

This reduction in the number of degrees of freedom is a huge simplification
which allows us to study much larger and more complex systems than ab-initio
methods. However, many approximations have to be made to get to this
formulation of atomic/molecular mechanics, and neglecting the electronic
degrees of freedom effectively precludes chemical transformations from ap-
pearing in the simulations. In addition, the analytical functional forms of the
potentials usually include many parameters to be determined, and they often
have to be tailored to the quantities one is trying to compute.

M, = v, Vapprox, (4.19)

4.0.2 Molecular dynamics simulations

The theory in this and the following sections is based partly on [Frenkel,
Daan and Smit, Berend 27, pages 63-107], which explains the physics behind
many popular methods for computer calculation and simulation. Classical
molecular dynamics is a method for computing equilibrium and transport
properties of many-body systems obeying classical laws of motion. While a
large number of simplifications have to be made in order to describe quantum
mechanical systems classically, the approximation works surprisingly well

37

except for atoms which are quite light (He, H?) or for atoms with a vibrational
energy which is substantially larger than the thermal energy of the system
(hV > kBT)

In order to calculate properties of the system they have to be expressed
in terms of the positions and velocities of the constituent nuclei. For instance
the temperature can be related to the average kinetic energy of the system:

1 N
(§mv2> = 7kaT, (4.20)

where Ny is the number of degrees of freedom in our system. At every
instant of time the total kinetic energy of our system defines an instantaneous
temperature, which has to averaged over a large number of timesteps in order
to produce the equilibrium property. In practice, one is satisfied when the
fluctuations in the instantaneous temperature appear reasonably small.

To run a molecular dynamics simulation one requires a set of initial
conditions, i.e. a set of initial positions and velocities for every atom in the
system. Typically the atoms are placed by replicating a unit cell a number
of times in every dimension. A unit cell consists of a set of lattice vectors
which define the placement of every atom in the unit cell. For instance the
face-centered cubic cell (FCC) contains 4 atoms:

r = (0,0,0)
b b
Ty = (575)0)
b b (4.21)
r3 = (075,5)
b b
Ty (57075)7

where b is known as the lattice constant and defines the size of the unit
cells. In figure 4.1 we have an image of a box of atoms visualized using the
Visual Molecular Dynamics (VMD!) software. In this system we have a group
of water molecules over a Self-Assembled Monolayer (SAM) surface, consisting
of C12 molecules attached to a sulfthydryl group. In this case the SAM surface
is placed regularly while the water molecules are placed randomly, ensuring
no molecules are too close.

1Visual Molecular Dynamics (VMD)

38

https://www.ks.uiuc.edu/Research/vmd/

Figure 4.1: Water molecules over a SAM surface. Hydrogen atoms in white,
oxygen in red, carbon in blue and sulfur in yellow. Visualized using Visual
Molecular Dynamics (VMD).

The velocities are typically initialized with a random uniform distribution
or the Maxwell-Boltzmann distribution. The Maxwell-Boltzmann distribution
is the one most often used, since the equilibrium distribution tends towards
this distribution. The exact form however will differ from the one we started
with.

Given these initial conditions, the system will not be in an equilibrium
state at t = 0. To evolve the system to an equilibrium state one most com-
monly advances the system in time until fluctuations in dynamic properties
such as the total potential energy or the temperature settle down. Once we
are in equilibrium we can start calculating thermodynamic averages.

39

As we mentioned before, the global energy surface as a function of nuclear
coordinates {r} is approximated as an expansion of many-body contributions:

VE{r}) = Zvl(ri) + Zw(ri, r;) + Z v3(Ti, T4,), (4.22)
i i<j i<j<k

wherein each N-body term is an analytical function of N coordinates. As
an atom moves on the energy surface it feels a force which is the gradient of
the potential energy surface. This means atom i feels an acceleration:

d2’f’z’
mi;——=
dt?

F, - — V.V ({r}). (4.23)

For a system of N atoms with only pairwise interactions this means the
forces must be calculated N (N — 1)/2 times for every timestep which means
we have a time complexity of order O(N?). The force calculation is by far
the most important part of any molecular dynamics simulation, and the most
time consuming. A number of techniques are employed in order to reduce
the time usage, perhaps the most common is the use of neighbor lists. Using
neighbor lists, each atom carries a list of neighbors within a cut-off radius
rewt and interactions beyond this cut-off are neglected. This reduces the
time-complexity to merely O(N), with a proportionality constant dependent
upon the average number of neighbors in the system within a cutoff r.,. For
a large system this can be a huge reduction in complexity, but the choice of
cut-off can obviously massively impact the dynamics of the system.

In order to simulate the dynamics of a system governed by a conservative
force F = —VV.F we need to integrate the Newtonian equations of motion.
The equations of motion are typically not solvable analytically, which means
we require an effective numerical method for integration. Some important
considerations for molecular dynamics are conservation of energy and accuracy
for large time steps. The most common method used is the Velocity-Verlet
algorithm. At any given time step ¢, the position r(t + At) and velocity
v(t + At) at the next time step ¢t + At is calculated as:

r(t+At) = r(t) + v(t)At + %a(t)AtQ,
alt + Af) = — TV (r(t + A)), (4.24)

v(t+ At) =v(t) + %(a(t) + a(t + At))At.

40

The error in the Velocity-Verlet method is of order O(At?), which means
that it is not particularly accurate for large time steps over a long time.
However, the long term energy drift of the method is small, which is very
desirable. It is also not very memory-intensive, which matters for simulating
very large systems.

Molecular dynamics is usually performed within a cubic box of fixed volume
V = L,-L,-L,, where L; is the length of the box in direction . Molecular dy-
namics is typically limited by the number of particles we are able to simulate,
of the order 105 — 10%, which means the size of the box is often decided by
the desired density p = N/V. Since the number of particles is always much
smaller than the number of particles in realistic systems, approximations are
required. Periodic boundary conditions can be applied to the box in order to
approximate an infinite system. Typically particle coordinates are restricted
to the simulation box, which can be expressed in pseudocode as:

Algorithm 1 Continuity
if * < —L,/2 then

z+= 1L,

end if

if > L,/2 then
rx—=1L,

end if

Distance and distance vectors between particles should also obey the
minimum image convention:

Algorithm 2 Minimum image

dr = x; — x;
if dv < —L,/2 then

dr += L,

end if

if dx > L,/2 then
dr —= L,

end if

These conditions should be applied in every dimension. This approach
runs the risk of introducing nonphysical artifacts of the simulation, such as a

41

macromolecule interacting with its own image, and for coulombic interactions
the system must be charge neutral to avoid summing to an infinite charge.
The optimal system size with periodic boundary conditions will therefore
depend on the intended simulation length, the desired accuracy and the
dynamics which are being studied.

Thus far we have discussed molecular dynamics for a system of N particles
within a fixed volume V' and constant energy F, i.e. in the microcanonical
ensemble NVE. Other ensembles are also possible, such as the canonical
ensemble NVT and the isothermal-isobaric ensemble NPT.

Simulations in the canonical ensemble can be achieved by modifying the
Verlet integration algorithm. The simplest thermostat possible follows from
the equipartion theorem (see for example [28]):

T {(mv?), (4.25)

meaning some amount of kinetic energy i.e. velocity can be added or
subtracted to every atom in order to maintain a constant temperature at
every timestep. Multiplying every velocity by a factor A = /Ty/T(t) where
T'(t) is the instantaneous temperature and Tj is the desired temperature will
achieve the desired effect. This approach significantly alters the trajectories of
the system however, which means this thermostat should only be applied for
adjusting the temperature of the system and not for taking ensemble averages
in equilibrium.

The most common thermostat used is the Nosé-Hoover thermostat, which
is one of the most accurate and efficient algorithms for achieving realistic
constant-temperature conditions (see the lecture notes [29, Shell, M. Scott]).
Nosé introduced an extended Hamiltonian with two additional degrees of
freedom:

e s - the position of an imaginary coupled heat reservoir
e p, - the conjugate momentum of the heat reservoir

In addition it introduces an effective mass () such that p, = %.

Hoover modified Nosé’s approach by introducing the Hamiltonian:

1 2 £Q
H = > milpil* + U(r) + 2 +3NkpTIns, (4.26)

42

where £ is a friction coefficient and p; = m;v; X s are the particle momenta.
This leads to a new set of Newtonian equations of motions with an additional
force that is proportional to the velocity:

d’l“i
dt
d’UZ‘ _ _i@U('r) —é-’vi
d .
dlns

a b

These can then be solved with a numerical integration scheme such as the
velocity-Verlet algorithm.

4.0.3 Molecular dynamics potentials

The dynamics of an ensemble of particles is governed by their interactions.
In molecular dynamics we stipulate that the interactions are decided only by
the relative positions of the particles, i.e. only conservative forces act on the
atoms. This means that the force on atom 7 is fully described by a potential
energy U:

F, = -V ({r}). (4.28)

which in principle depends on the position of atom ¢ and all other atoms
in the system. Finding an appropriate potential for the system of atoms
which you intend to study can be ardous work, and usually involves fitting
an analytical functional form with a large set of parameters to a potential
energy surface from ab initio quantum mechanical calculations.

Potentials can be classified as either bonded or non-bonded. Bonded
potentials compute the interactions for a predefined set of atoms and molecules
in the simulations, while non-bonded potentials compute the interactions
between all pairs, triplets etc. of atoms (usually within a certain radius).
Larger, more complex systems typically contain a mix of bonded and non-
bonded potentials, for example a system of rigid water molecules interacting
with a surface of carbon atoms.

43

One of the simplest potentials meant to simulate a realistic system is the
Lennard-Jones potential:

U(ri;) = 4e ((%) v (%>6> , (4.29)

with r;; = |r; — r;|. For the Lennard-Jones potential there are only two
parameters to be decided, a characteristic energy € and a characteristic length
o. This potential is meant to emulate the relatively weak interactions between
noble gas atoms such as Argon. It can be separated into two terms:
o — (%)6 - owing to the long-term attraction from van der Waals interac-
tions

o + (%)12 - owing to the short-term repulsion from the Pauli principle

While the van der Waals term is justified by theory, the repulsion term
is justified by numerical efficiency - as it contains the square of the van
der Waals term - and because it models the Pauli repulsion accurately. In
figure 4.2 we have plotted the Lennard-Jones potential as a function of
interatomic distance. This form of the potential, with close repulsion and
distant attraction is very common among molecular dynamics potentials,
though often with modifications.

44

Plot of Lennard-Jones potential

0.015

0.010 -

0.005

U(r) [eV]

0.000

-0.005

-0.010 7

Figure 4.2: Lennard-Jones potential as a function of interatomic distance.
Units in Angstrom and electronvolts. The potential has a stable energy
minimum at r,,, diverges as the atoms approach each other and decays to zero
as they move away from each other. Reprinted from [30, Molecular dynamics
modelling of clay-fluid interfaces].

While the Lennard-Jones potential is very simple, requiring only two
parameters to be determined, it has shown to be effective at modelling noble
gas atoms and is commonly used as a building block for more complicated
interactions.

Another simple and common potential is the Stillinger-Weber potential,
which is meant to model the interactions between silicon atoms (see the lecture
notes [31, Abrams, Cameron]). Silicon forms tetrahedral bonded structures
as well as pairwise interactions which means the potential includes a twobody
and a threebody interaction:

U= ZUQ(TZ'j) + Z Ug(’l“i,’l”j,’l"k). (430)

i<j i<j<k

45

The twobody interaction models the pairwise interaction:

r>a

o) = {SA(Br_p —r Yexpl[(r—a)’t], r<a (4.31)

This twobody term resembles the Lennard-Jones potential, but with an
exponential cutoff. The threebody term models the tetrahedral angles, and is
a sum over three triplets:

vg(1y, Ty, TE) = hjir + hiji + higj, (4.32)

with the angular interaction hjy, = h(ri;, rig, 0;i) and

2
€A exp 7 + 7 (cos 0ji — cos G?ik) ri; < a
hjik: Ty —a Tik — Q

0 rijza

(4.33)

where G?Z-k is an "equilibrium” angle. The terms €, A, B,p,q, \,y are
parameters to be decided and a is a cutoff radius. The inclusion of the
threebody terms prove to be quite important in silicon maintaining its equi-
librium crystal structure. The Stillinger-Weber potential agrees quite well
with experiment, and its relatively simple form makes it well suited for the
testing and evaluation of new potentials.

A more complicated set of potentials is the Effective Medium Theory
(EMT) family of potentials, developed to describe the late transition metals in
the FCC crystal structure. The potential was first described by [32, Jacobsen,
K.W.; Ngrskov, J.K. and Puska, M.J.|, but the most common set of parameters
was published in the later article by [33, Jacobsen, K.W.; Stoltze, P. and
Nerskov, J.K.]. These potentials are based on the effective medium theory
concept of an electron density with a volume-dependent contribution to the
total energy. Effective Medium Theory computes the energy of an atom in an
arbitrary environment by computing it first in a reference system and then
estimating the energy difference between the real system and the reference
system. The total energy is written as:

E=Y E.+ (E = E) , (4.34)

46

where E,; is the energy of atom ¢ in the reference system. The correction
E—-3". E.;is made small enough so that it can be estimated using approximate
methods such as perturbation theory. From Density Functional Theory the
total energy can be written as:

E =) FE.i(n;)+ AEss + AEa, (4.35)

where E., AE s and AFE;, are known as the cohesive function, atomic-
sphere correction and one-electron correction respectively. The density argu-
ment n; is known as the embedding density, which connects the surroundings
of atom 7 to the reference system of atom i. The atomic-sphere correction is
the difference in electrostatic and exchange-correlation energy for the atoms in
the system of interest and the reference system. The one-electron correction
is the sum of one-electron energies in the two systems. If the one-electron
correction is small and can be neglected a pair-potential approximation leads
to the expression:

E = Z [Em(nl) + AEAS]

] (4.36)
— Z {ECZ(nZ) + 5 })

The one-electron correction is often not small, so this is usually referred to
as just the atomic-sphere correction. The embedding density n; is computed
by superimposing density contributions from the neighboring atoms:

n;, = Z ATL]’(SZ‘, Tij), (437)
J#i
where the density tail An(s,r) from a neighboring atom a distance r
averaged over a sphere of radius s has an exponential form:

ref

D Viiry) = > V(i)

i i

An(s,r) = Angexp [(s — so) — n2(r — Bs0)] - (4.38)

The size of the sphere s is chosen so that the total charge within in zero.
The geometric factor 8 = (167/3)"/% /y/2 is related to the nearest-neighbor
distance d,,, = [s. For this set of electron densities there is a one-to-one

47

correspondence between the average electron density and its neutral-sphere
radius. This relationship has been shown to be approximately exponential:

n(s) = noexp [—n(s — s0)]. (4.39)

For an FCC crystal of varying nearest-neighbor distance r = (s the
neutral-sphere radius can be expressed as:

1 O1,i
=gy — —1 i 4.4
Si S0 6772 og < 12 > 9 (O)
where
o1 = Y exp [~ (riy — Bs0)]. (4.41)
J#i

The cohesive function is parameterized as a function of the neutral-sphere
radius using the functional form:

E.(s) = Eof [A(s— s0)],

f(z)=(1+2x)exp(—x) (4.42)

where sq is the equilibrium (zero pressure) neutral-sphere radius. Finally
the atomic sphere correction is written as:

. 1
ABas(i) = 5 Z V(ri) —12V(Bs:) | , (4.43)
JFi
where the factor 12 comes from the 12 nearest neighbors at a distance
r = fBs; in the FCC reference system. The pair potential is parameterized as:

V(r)=—Voexp[—k(r/B — s0)]. (4.44)

This has been found to give reasonable descriptions of the six fcc metals
Cu, Ag, Au, Ni, Pd, Pt and their alloys. Further description and parameters
can be found in the article [33, Jacobsen, K.W.; Stoltze, P. and Ngrskov,
JK.].

48

Chapter 5

Machine learning

Machine learning is the study of algorithms and statistical models employed
by computing systems capable of performing tasks without explicit instruction.
While traditional algorithms rely on some specified input and a ruleset for
determining the output, machine learning is instead concerned with a set of
generic algorithms which can find patterns in a broad class of data sets. This
section will give a brief overview of machine learning, and more specifically
the class of algorithms known as neural networks, and will follow closely the
review by [Mehta et al. 34, pages 1-64] which the reader is encouraged to seek
out for further information.

Examples of machine learning problems include identifying objects in
images, transcribing text from audio and making film recommendations to
viewers based on their watch history. Machine learning problems are often
subdivided into estimation and prediction problems. In both cases, we choose
some observable x (e.g. the period of a pendulum) related to some parameters
0 (e.g. the length and the gravitational constant) through a model p(x|0)
that describes the probability of observing x given 6. Subsequently we
perform an experiment to obtain a dataset X and use these data to fit the
model. Fitting the model means finding the parameters 6 that provide the
best explanation for the data. FEstimation problems are concerned with the
accuracy of é, whereas prediction problems are concerned with the ability of
the model p(x|@) to make new predictions. Physics has traditionally been
more concerned with the estimation of model parameters, while in this thesis
we will be focused on the accuracy of the model.

Many problems in machine learning are defined by the same set of ingre-
dients. The first is the dataset D = (X,Y’), where X is a matrix containing

49

observations of the independent variables «, and Y is a matrix containing
observations of dependent variables y. Second is a model F' : & — y which is
a function with parameters 8. Finally we have a cost function C (Y, F (X;8))
that judges the ability of our model to make predictions.

In the case of linear regression we consider a set of independent observa-

tions X = [azl Ty ... X N} related to a set of dependent observations y =
(Y1, Y2, - - -, yn) through a linear model f(x;0) = x1-w) +x9-wo+---+xp-wp,
with parameters @ = (wy, ws, ..., wp). The cost function is the well known

sum of least squares C(y, f(X;80)) = SN (y; — f(z;6))? and the best fit is
chosen as the set of parameters which minimize this cost function:

~

0 = arg;nin ClY, f(X;0)) (5.1)

In figure 5.1 we have plotted an example of simple linear regression,
wherein a single value x is mapped to a response y = bg + by - . The term by
is known as the offset and b; the slope and they are parameters which are to
be determined from the training data.

40 -
® Actual response, y; ’

B Predicted respanse, f(x;) = bg + b1Xx;
—— Estimated regression line, f(x)=bg+ b1 x

30 == Residuals, y;—f(x;)

0 10 20 30 40 50 60
X

Figure 5.1: Example of simple one-dimensional linear regression. The relation-

ship between the dependent and independent variables x and y is estimated

using a simple linear function. Reprinted from www.realpython.com: Linear

Regression in Python.

50

https://realpython.com/linear-regression-in-python/
https://realpython.com/linear-regression-in-python/

5.0.1 Basics of statistical learning

Statistical learning theory is a field of statistics dealing with the problem of
making predictions from data. This section is covered in the slides from the
MIT course [35, 9.2520: Statistical Learning Theory and applications] from
2012, and then the remainder of the section and chapter is a summary of the
most relevant parts of [34, Mehta et al.] as we mentioned before. We start
with an unknown function y = f(x) and our goal is to develop a function
h(x) such that h ~ f. We fix a hypothesis set H that the algorithm is willing
to consider. The expected error of a particular h over all possible inputs x
and outputs y is:

mmzﬁyammwmmmm% (5.2)

where C is a cost function and p(z,y) is the joint probability distribution
for x and y. This is known as the ezpected error. Since this is impossible to
compute without knowledge of the probability distribution p, we instead turn
to the empirical error. Given n data points the empirical error is given as:

Eelh] = 3~ C(h(zs),) (5.3)

The generalization error is defined as the difference between the expected
and empirical errors:

G = E[h] — Eglh). (5.4)

We say an algorithm is able to learn from data or generalize if

lim G = 0. (5.5)

n—oo

We are in general unable to compute the expected error, and therefore
unable to compute the generalization error. The most common approach
known as cross-validation is to estimate the generalization error by subdividing
our dataset into a training set and a test set. The value of the cost function
on the training set is called the in-sample error and the value of the cost
function on the test set the out-of-sample error. Assuming the dataset is
sufficiently large and representative of f, and the subsampling into train and
test datasets is unbiased, the in-sample error can serve as an appropriate
proxy for the generalization error.

51

In figure 5.2 we show the typical evolution of the errors as the number
of data points increase. It is assumed that the function being learned is
sufficiently complicated that we cannot learn it exactly, and that we have a
sizeable number of data points available. The in-sample error will decrease
monotonically, as our model is not able to learn the underlying data exactly.
In contrast, the out-of-sample error will decrease, as the sampling noise
decreases and the training data set becomes more representative of the
underlying probability distribution. In the limit, these errors both approach
same value, which is known the model bias. The bias represents the best our
model could do in the infinite data limit. The out-of-sample error produced
from the sampling noise is known as variance, and will vanish completely
given an infinite representative data set.

Eout
Variance
5 ¥ _
Sr-—y .- R
m "‘_‘.F‘
..#""-—
,d
J,‘ .
R Bias
f",
Ein

Number of data points

Figure 5.2: Typical in-sample and out-of-sample error as a function of the
number of data points. The error on the test set decreases as the sampling
noise decreases while the error on the training set increases as the function
cannot be fit exactly. It is assumed that the number of data points is not
small, and that the true function cannot be exactly fit. Reprinted from [34,
Mehta et al. page 11].

52

In figure 5.3 we show the typical evolution of the out-of-sample error
as the model complexity increases. Model complexity is a measure of the
degrees of freedom in the model space, for example the number of coefficients
in a polynomial regression. In the figure we can see that bias decreases
monotonically as model complexity increases, as the model is able to fit a
larger space of functions. However, the variance will also increase as the model
becomes more susceptible to sampling noise. In general the lowest out-of-
sample error, and therefore generalization error, is achieved at an intermediate
model complexity. We also find that as model complexity increases, a larger
amount of data points is required to be able to reasonably fit the true function.

Error

~ - L Variance

Model Complexity

Figure 5.3: Typical out-of-sample error as a function of model complexity for
a fixed dataset. Bias decreases monotonically with model complexity, while
variance increases as a result of sampling noise. Reprinted from [34, Mehta et
al. page 11].

5.0.2 Bias-variance decomposition

Consider a dataset D(X, y) of n pairs of independent and dependent variables.
Assume the true data is generated from a noisy model:

y=[f(z)+e (5.6)

53

where € is normally distributed with mean p and standard deviation o.
Assume that we have an estimator h(x; @) trained by minimizing a cost
function C(y, h(x)) which we take to be the sum of squared errors:

Cly, h(z)) = Z(yz — h(z:;0))*. (5.7)

Our best estimate for the model parameters

0p = argmin C(y, h(x;9)), (5.8)
0

is a function of the dataset D. If we imagine we have a set of datasets
D; = (y,, X;), each with n samples, we would like to calculate the expectation
value of the cost function over all these datasets Ep .. We would also like to
calculate the expectation value over different instances of the noise e. The
expected generalization error can be decomposed as:

Ep[C(y. h(X;:6p))] = E

> (yi — i 9@))2]

i (5.9)
= Zag + Ep[(f () — f(xi;6p))].
The second term can be further decomposed as:
Ep|(f(z:) — f(®:;600))’] = (f(z:) — Ep[h(z:;0p)])? (5.10)
+ E[(h(x;; 0p) — E[h(x;; 0p))?] '
The first term is what we have referred to as the bias:
Bias® = Y "(f(x:) — Ep[h(z; 6p)])*. (5.11)

i
The bias measures the expectation value of the deviation of our model

from the true function, i.e. the best we can do in the infinite data limit. The
second term is what we have referred to as the variance:

Var = Z E[(h(z;; 0p) — E[h(z;; 6p))?] (5.12)

o4

The variance measures the deviation of our model due to finite-sampling
effects. Combining these effects we can decompose the out-of-sample error
into:

Eou = Bias® 4+ Var + Noise, (5.13)

with Noise = Y. 02. In general it can be much more difficult to obtain
sufficient good data than to train a very complex model. Therefore it is often
useful in practice to use a less complex model with higher bias, because it is
less susceptible to finite-sampling effects.

5.0.3 Neural networks

Artificial Neural Networks (ANN) or Deep Neural Networks (DNN) are
supervised learning models vaguely inspired by biological neural networks.
The building blocks of neural networks are neurons that take a vector input
of d features * = (1,...,r4) and produce a scalar output a(x). A neural
network consists of layers of these neurons stacked together with the output
of one layer serving as input for another. The first layer is typically known
as the input layer, the middle layers as hidden layers and the final layer the
output layer. The basic architecture is shown in figure 5.4. In almost all cases
the output a;(x) of neuron i can be decomposed into a linear operation on
the inputs passed through a non-linear activation function:

a;(x) = 04(2;), (5.14)

where o; is a non-linear function and z; is the dot product between the
inputs & and a set of neuron-specific weights w;:

The term b; is a neuron-specific re-centering of the input. Typical choices
of non-linearities/activation functions include the sigmoid and hyperbolic
tangent functions, and Rectified Linear Units (ReLU). When the activation
function is non-linear, the neural network with a single hidden layer can be
proven to be a universal function approrimator|9]; given an arbitrarily large
number of neurons it can reproduce any continuous function on compact
subsets of RY. We typically also want activation functions that are monotonic
and smooth with a monotonic derivative.

95

(a)

H
f [Zx,w;} m—
i=1
(b) Input 15t hidden 2nd hidden Output
layer layer layer layer

yff[x.-w,J }’ff[zxjw,-] ny[Zx*w,,]

Figure 5.4: Neural network building blocks. Each neuron performs a dot
product on the inputs followed by a non-linear activation function which is
then fed to the next layer in the network. Reprinted from [36, Vieira, Pinaya,
Mechelli].

The simplest neural networks are known as feed-forward neural networks
(FNN). The input layer is the vector @ of inputs, while each neuron in the
first hidden layer performs a dot product between its weights w; and the
inputs and passes it through a non-linearity o;. The activation function is
typically shared across one or multiple layers o; = 0. The vector of neuron
outputs a serves as input to the next hidden layer until we reach the final
layer. In the final layer the choice of activation function is dependent on the
problem we are trying to solve. If we are performing non-linear regression
the final activation function is often the identity o;(z) = z, or if we are doing
classification the soft-max function is often employed.

Let @ be a vector of d = 1,..., D inputs or features. Let al(-l) denote the
output of neuron ¢ = 1,..., N;in layer [= 1,..., L. The output of neuron ¢

56

(1)

in the first hidden layer @, is thus:

D gTep® 4 p0)
(3 [

g
agl) = al-(l)(z(l)).

(5.16)

1

The inputs are iterated through each hidden layer until we reach the final

layer. Denote the vector of outputs o = (oy,...,00):
2 = (@) w™ + 5",
CLZ(L) = 0;
= a"(=")

(5.17)

T
:¢w(@gm,”pgﬂ)u&uww).

This allows us to compose a complicated function F : RP? — R?, with
D the number of inputs and O the number of outputs. The universal
approximation theorem[9] tells us that this simple architecture can approximate
any of a large set of continuous functions given appropriate choice of weights
w! and mild assumptions on the activation functions. The theorem requires
only a single hidden layer, where the strength of the approximation relies on
the number of neurons. In practice it has been found that adding more layers
produces faster convergence and higher accuracy, which has given rise to the
field of deep learning.

5.0.4 Backpropagation

Given a set of datapoints (x;,v;), ¢ = 1,...,n, the value of the cost function
is entirely determined by the weights and biases of each neuron in the network.
We define learning narrowly as adjusting the parameters of the network in
order to minimize the cost function. Gradient descent is a simple, but powerful
method of finding the minima of differentiable functions. Given a function
F :R?Y - R, and an initial value &, we define an iterative procedure:

Tpi1 = x, — NV F(x,), (5.18)

o7

where 7 is known as the learning rate. The procedure terminates when
the norm |V F(x,)| or alternatively |, — x,| is appropriately small. The
learning rate is not necessarily fixed throughout the procedure, and proves
crucial to the convergence of the method. If f is convex, and 7 is reasonably
small, convergence is guaranteed. Convergence may be very slow however,
and if f is not convex you are only guaranteed to find local minima, and this
makes the method very sensitive to initial conditions. In figure 5.5 we can see
how gradient descent finds minima in a function of two variables by always
walking in the steepest direction.

1(80,6,)

Figure 5.5: How gradient descent discovers extrema points. Gradient descent
considers its nearest environment and walks in the direction where the cost
function decreases the most. If the cost function cannot be decreased in the
nearest environment the procedure terminates. Reprinted from [Gradient
Descent: All You Need to Know| (Hacker Noon).

In order to train the model, we need to calculate the derivative of the cost
function with respect to a very large number of parameters multiple times.
However, numerical calculation of gradients is very time consuming. The
backpropagation algorithm is a clever use of the chain rule that allows us to
calculate gradients efficiently. Assume that there are L layers in our network
with [= 1,2, ..., L indexing the layers, including the output layer and all the
hidden layers. Let w!; denote the weight for the connection from the i-th
neuron in layer [— 1 to the j-th neuron in layer [. Let bé- denote the bias
of this j-th neuron. The activation aé- of the j-th neuron in the [-th layer is

58

 https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

related to the activities of the neurons in the layer [— 1 by:

=1 (Z wiya; +b§~) =/ (=), (5.19)

where f is some activation function. The cost function C depends directly
on the activations in the output layer, and indirectly on the activations in all
the lower layers. Define the error A% of the j-th neuron in the L-th (final)
layer as the change in cost function with respect to the weighted input zJL

j I
8,2]-

(5.20)

Define analogously the error A; of neuron j in the [-th layer as the change
in cost function with respect to the weighted input zé

AL = ac
J L

0z;
This can also be interpreted as the change in cost function with respect

to the bias bé-:

(5.21)

ac ac o, ac
A= 5 T (5.22)
J J J

J

since 6(7{ / 8z§ = 1. The error depends on neurons in layer [only through
the activation of neurons in layer [+ 1, so using the chain rule we can write:

oC oC Ot
AL = 22 — T
)= 5 = 25 o
B Z Al Oz
N - ‘ azé

(5.23)
-y

— (Z Aﬁ“wﬁjl) f1(2h).

The sum comes from the fact that any error in neuron j in the [-th layer
propagates to all the neurons in the layer [+ 1, so we have to sum up these

59

errors. This gives us the equations we need to update the weights and biases
of our network:

oc oc 0z ~
owt. - 0z 8w? - Aé-aé g (5.24)
) J 1]
aC
— = AL (5.25)
b, —

Now, if we have the error of every neuron j at the output layer, AJL,

equation 5.23 gives us the recipe for calculating the error in the preceding
layer until we reach the first hidden layer, and we are done. All we are missing
is the error at the output layer:

ocC 0 1 2
Aiza—sz:a—ZJL<zo:§(Z£—yo) >:Z]L—yj (526)

Now, since the derivatives for the weights depend on the activations in the
preceding layer, this suggests an iterative procedure for training the network.
First we feed the input data through the network and obtain activations and
an output, then the output is backpropagated through the network to update
the weights and biases. This is then repeated for some number of steps or
until the network achieves acceptable accuracy.

5.0.5 Optimization

In order to begin the minimization procedure and find an optimal set of
weights and biases for our network we first need some initial values. Often
weights are initialized with small values distributed around zero, drawn from
a uniform or normal distribution. The bias can be initalized to zero, but
enforcing that all biases have some small value ensures that every neuron has
output which can be backpropagated in the first training cycle. In recent years
a technique known as Xavier initialization has become the default technique
for initializing the weights of deep neural networks. For more information
the reader is encouraged to read the paper of [37, Glorot, Xavier and Bengio,
Yoshua|, though the lessons in this paper do not necessarily generalize to deep
convolutional neural networks using ReLLU activations or other architectures
which we will not discuss here.

60

A critical choice for building neural networks is the choice of activa-
tion function. As we have mentioned briefly above, we have a small set of
requirements in order for the neural network to be an universal function
approximator, namely that the function be nonconstant, bounded, continuous
and monotonically increasing. We also desire that the function be quick to
evaluate, with a derivative that is simple to calculate. A function that fulfills
all of these criteria is the sigmoid function:

1

Cl4e’
o'(x) =o(x)(1 —o(x)).

o(@) = (5.27)

The sigmoid function is defined on the entire real number line, and outputs
a number between 0 and 1. It also has a continuous derivative which is simple
to calculate. The sigmoid function is well suited for binary classifiers, since
it easily creates a decision boundary between two categories 0 and 1, and is
often the first goto for Al programmers. Another simple and commonly used
activation function is the hyperbolic tangent

e —1
ST (5.28)
tanh’(z) = (1 — tanh(z)?).

tanh(x) =

The hyperbolic tangent is defined on the real number line and outputs
a number between —1 and 1. Both the sigmoid and the hyperbolic tangent
functions exhibit the problem of vanishing gradients. In deep learning, you
typically have several layers of neurons outputting some linear combination
of the activation functions. Through the backpropagation algorithm, each
neuron receives a weight update proportional to the partial derivative of the
loss with respect to its weights. For the sigmoid and hyperbolic tangent
activations these gradients will be in the range (—1,1), and therefore often
exceedingly small. This means that many neurons may receive effectively no
weight update in any given training epoch, which severely impedes training.
The Rectified Linear Unit (ReLU) has gained popularity in recent years for its
effectiveness in the field of convolutional neural networks. The ReLu function

61

and its derivative is defined as:

>
ReLU() = { & * =0
0 =<0
(5.29)
1 23>0
ReLU'(z) ={ =
0 <0

Since the ReLLU function in principle has no upper bound, it does not suffer
the effect of vanishing gradients. Instead, the ReLLU function can produce
exploding gradients, if one or more activations becomes very large. In practice
the gradients are often ”clipped”, i.e. truncated above a certain upper bound.
With the ReLLU function one can also encounter ”dying” neurons, since the
input to any neuron that does not exceed zero is set to zero, which means
that many neurons may receive no weight update. From the point of view
of the neural network, the inputs are just dimensionless numbers, which are
passed through layers until some output is produced. It is therefore often
useful to standardize the inputs. A common method is to shift the inputs by
their mean and normalize by their standard deviation:

o=2"7 (5.30)

7 O_:E

Another method is to rescale the inputs to the range of activation function,
meaning [0, 1] for the sigmoid and [—1, 1] for the hyperbolic tangent. This is
often useful in speeding up the training of neural networks. In theory any
shifting and rescaling can be reproduced simply by updating the weights and
biases of the network. In practice however, as the weights often start as small
numbers, it can take quite a few training cycles before the weights are of
appropriate size. Standardizing or rescaling the inputs also imposes a penalty
on the weights which in turn reduces overfitting.

The most common methods for training neural networks are variations on
the simple gradient descent scheme as mentioned above:

Tpi1 =z, —nVF(x,). (5.31)

Since we are interested in training neural networks, x, represents the
weights and biases of the network after n training cycles, 1 is our learning
rate and VF(x,) is the gradient of the loss function. The learning rate n

62

controls how fast we reach a given minimum. A small learning rate will
require more training cycles and a larger learning rate will require fewer. The
learning rate also controls the numerical stability of the method, if it is too
large the weights may diverge and if it is too small the weight may never
converge. Gradient descent also tends to exhibit oscillating behaviour around
the minimum. These basic intuitions can be shown in figure 5.6. Often a
schedule is imposed on the learning rate, such as reducing it by a fixed amount
every few epochs or incorporating an exponentially decaying learning rate. As
discussed in [34, Mehta et. al] using gradient descent to optimize our neural
network imposes some limitations:

1(6)

Too low

{

1(8)

Just right

|

1(8)

Too high

/
\
9

A small learning rate
requires many updates
before reaching the
minimum point

\ ./‘F
/
\
\\ /
8

The optimal learning
rate swiftly reaches the
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

Figure 5.6: How gradient descent behaves with different (fixed) values of the
learning rate. For low values the procedure will require many iterations, for
close to optimal values the procedure will terminate quickly and too large val-
ues can lead to divergent behaviour. Reprinted from [www.jeremyjordan.me:
Setting the learning rate of your neural network| (author Jeremy Jordan).

e Gradient descent finds local minima - if the GD algorithm converges, it
will converge to a local minimum. This can lead to poor performance
in complicated cost function landscapes

e Gradients are expensive to compute - the loss function often includes a
term for each data point, which means the gradient also does.

o GD is sensitive to learning rate - as mentioned above, GD is very
sensitive to learning rate

63

https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/

o GD is sensitive to initial conditions - gradient descent can take two
different initial values and converge at two drastically different values

o GD does not take curvature into account - the learning rate for gradient
descent is the same in all directions of parameter space, which means the
maximum learning rate is set by the behaviour of the steepest direction

A common method for ameliorating some of these concerns is minibatching
the inputs. Instead of calculating the gradient on the entire dataset for every
epoch, we instead calculate the gradient on a subset of the data called a
minibatch. If there are n datapoints and a minibatch size of m the total
number of batches is n/m. If we denote each minibatch by, k =1,2,...,n/m
the gradient becomes:

1 & 1
- 2; — EZb (5.32)

i.e. instead of averaging the loss over the entire dataset we instead average
over a minibatch. The cost function C is now decomposed as a sum over
the loss function £ at every datapoint ¢, £;. This significantly speeds up
the calculation, since we do not use the entire dataset for every update.
In addition, introducing stochasticity in the division of the dataset into
minibatches introduces stochasticity to the weights update, which should help
gradient descent in overcoming local minima. It is also common to introduce
regularization to the weights and biases of the networks. Regularization in
the context of neural networks means adding a term to the cost function
proportional to the L, norm of the weights and biases. For example using
the L2-norm our cost function becomes:

ve %;vcﬁ %gjmmuwu% g;vcw;wz, (5.33)

i.e. we sum up all the weights squared. The parameter A is known as a
regularization parameter. This extra term adds a penalty on the size of the
weights dependent on the regularization parameter. This has been shown to
reduce overfitting, as the weights cannot be adjusted to arbitrary size in order
to fit the training dataset. Gradient descent is often paired with a momentum

64

parameter that serves as a "memory” of the direction we are moving. This
can be implemented as a modification to the gradient descent update:

Vp = YUp-1+ T]VF(.’EH), (5 34>

Lpt+1 = Lp — Uy,

where 0 < 7 < 1 is a memory parameter that controls the time scale for
the memory. It is termed a momentum parameter because the equations for
updating the parameters @ are analogous to the equations of motion for a
particle moving in a viscous medium. Momentum helps the gradient descent
algorithm gain speed in directions where the curvature is flat while dampening
speed in high curvature directions.

So called first-order gradient descent methods differ from quasi-Newton
methods in that they do not keep track of the curvature which is encoded
in the so-called Hessian matrix of second order derivatives. Second-order
methods accomplish this by calculating or approximating the Hessian and
normalizing the learning rate by the curvature. The RMSprop algorithm
keeps a running average of both the first and second moment of the gradient.
If we term the gradient as g = VF(x) and the first and second orders as
m = E[g] and s = E[g?] we can write the update rule as:

g, = VF(x,)

$n = Bsn1+ (1 - P)g;, (5.35)
gn

Lpi1 = Ly — N—F———
V8, + €

where [is a parameter which controls the time scale of the averaging and e
is a small regularization constant to prevent divergences. Operations involving
vectors are understood to be element-wise. This results in a dampening of the
learning rate in directions where the gradient is consistently large, and allows
us to use a larger learning rate for areas of flat curvature. Perhaps the most
commonly used optimizer today is the closely related ADAM optimizer. In
addition to keeping a running average of the first and second-order moments
ADAM performs an additional bias correction to account for the fact that we
are estimating first and second order moments using a running average. The

65

update rule is given as:

g, = VF(x,)
m, = Blmn—l + (1 - ﬁl)gn
Sp = ﬁan—l + (1 - 62)9121

T, = —
S g (5.36)
Gy =

m,
Lnt+1 = Tp — 1= 5
VS, +e€

with 8; and (s as memory parameters for the first and second moments
respectively. This update rule effectively normalizes the learning rate by the
standard deviation of the gradient, which is a natural measurement scale.
This also has the effect of cutting off directions where the gradient varies by
a lot.

Quasi-Newton methods differ from the methods discussed above in that
they make explicit approximations to the Hessian matrix of second order
derivatives. These methods are discussed in great detail in the book [38,
Numerical optimization: theoretical and practical aspects]. Let W ~ (H™!)
be an approximation to the inverse of the Hessian. A schematic algorithm is
described in the book (p.53):

1. Step 0: Choose an initial &y, stopping tolerance € and matrix W, positive
definite. Compute the gradient g = VF(x).

2. Step 1: Compute d = —Wg.

3. Step 2: A line search is performed with a step size ¢t = 1, to compute
the next iteration ; = x + td and its gradient g(x).

4. Compute the new matrix W, and we return to step 1.

A full discussion of these methods is beyond the scope of this thesis, and
the reader is directed to the book [38] for further details.

66

Chapter 6

Atom-centered descriptors

For small-scale systems, we have discussed the Hartree-Fock and Density
Functional Theory methods as the primary workhorses of ab-initio electronic
structure calculations. However, these methods suffer from very poor scaling
as the system size increases, with Hartree-Fock naively scaling as O(N*) with
N the number of electrons and Density Functional Theory scaling as O(N?),
but with a larger proportionality scaling. In many cases the exact details of
the electronic structure are less important than the long-time behaviour of the
atoms and molecules involved in the simulation, and classical approximations
can be made as in molecular dynamics, which comes close to linear scaling.
This allows us to simulate systems of up to millions or hundreds of millions
of atoms, which can approximate nano- or micro-scale systems if periodic
boundary conditions are applied. However, the question remains as to how
you develop an accurate classical potential which can accurately reproduce
fundamentally quantum systems, with a speed that allows us to enter into
realistic timescales (i.e. nano or microseconds).

The most common approach to developing molecular dynamics potentials
is to guess a functional form based on your physical intuition and experience
with the systems and calculate appropriate parameters from data obtained
from DFT calculations. The number of parameters involved can range from
two in the case of Lennard-Jones or hundreds of parameters in the case of
complex, many-atom potentials such as the AMBER and CHARMM force
fields. The imposition of functional forms to quantum data is an artform,
and the potential must often be tailored to not only the chemical species
and number of atoms in your system, but also the specific experimental
quantity you are trying to extract, such as the energy, radial distribution

67

function or transport coefficients. Notably there are dozens of MD potentials
describing different models of water (H20), each fine-tuned for a specific
system structure or parameter.

Due to recent developments in the field of machine learning, the question has
been raised as to how it may be possible to automate the process of develop-
ing potentials. In their article introducing the Atomistic Machine-Learning
Package (AMP) [10, Khorshidi, Alireza and Peterson, Andrew A.] outline one
potential way forward. The idea is to approximate the potential energy with
a regression model:

(R} 55" E = E(RY). (6.1)

where { R} is the set of nuclear coordinates of our system. Most machine
learning methods operate over a set of one-dimensional so-called feature
vectors, where every vector element represents a feature of the data set. For
example the amount of precipation in a given area at a given time is a
function of features such as humidity, cloud cover, air pressure etc. This is a
vector of some length D, while the nuclear coordinates represent a point in
3N-dimensional phase space. This difference in representation requires some
way of mapping the nuclear coordinates to features which can be employed
by a machine learning method. The naive approach would be to simply feed
in the nuclear coordinates as a 1D vector, and then perform a regression on
the dataset in order to obtain the potential energy. However, our physical
intuition imposes some constraints on the potential energy. In particular, the
potential energy of a microscopic system should be translationally, rotationally
and permutationally invariant.

Translational invariance implies that the addition of any three-dimensional
vector to every coordinate in the system should not in any way alter the
potential energy of the system. This should not be the case with a naive
mapping, as for a given set of weights (or equivalent) smaller/larger coordi-
nates values would be mapped to smaller /larger activations, and therefore
alter the final output. Rotational invariance implies that the potential energy
of the system should not change as the system is rotated about an axis. This
also should not be the case in the context of a naive mapping, as any change
to any of the inputs would be mapped in a non-linear way to produce a
different output. Finally, permutation invariance implies that swapping the
coordinates of any two atoms of the same chemical species would produce

68

the same potential energy. This should also not be the case, for the same
reasons as we just discussed. These constraints together heavily restrict the
functional form that any mapping to the potential energy could have, which
means a more careful analysis should be considered.

In order for the mapping to be applicable to systems of varying size, a
decomposition into atomic energy contributions is performed:

E({R}) = EQQMJR} (6.2)

The individual energy contributions F,., are then approximated by
performing a regression analysis. The atomic energy contributions are usually
limited to its local environment through the introduction of a cutoff radius
R,:

Eatom({R}) ~ Eatom(Ri’ {R}] | |R'1]| < Rc) (63>

meaning that interactions are only treated if the interatomic distance is
smaller than the cutoff. This is a good approximation for a sensible choice
of cutoff radius if no electrostatic interactions are involved. Long-range
interactions can also be treated through the introduction of methods such
as Ewald summation, but this will not be discussed here. A mapping that
satisfies the above constraints we will refer to as a descriptor, and is used as
input to the regression method:

{R} = GUR}) "3 Euom = Euion(G({R})). (6.4)

Once we have a descriptor and a regression model the dynamics can be
readily obtained by taking derivatives. The force on atom i is calculated as:

F,=-V.E
local

= —V ZEatom {R}))

local 8Eatom Pled
T Z ; 0G,; 8Rj,-’

69

where we have applied the chain rule to break the gradient into derivatives
with respect to the network inputs (obtained through backpropagation) and
derivatives of the network inputs with respect to the coordinates of atom 3.
Once we have obtained the forces the system can be propagated through time
classically using for example the Velocity-Verlet equations (see for example

[7])-

6.0.1 Gaussian descriptors

In their paper on neural-network representations of potential energy surfaces
[12, Behler, Jorg and Parrinello, Michele] suggested the decomposition of
the mapping G; of atom i into two subvectors G! and G representing
pairwise and three-body interactions respectively. The components of G/ are
comprised of sums of gaussian functions of the pairwise distance R;;:

local
1= exp (=n(Riy — R)*/R2) fu(Ry). (6.6)
J#
with the sum over the local environment of atom ¢. This form of the radial
symmetry functions is known as the G2 type, while other forms are possible
such as the G1 type which sums over cutoff functions only. The parameters n
and R, represent the width and center of the gaussian functions respectively.
The term f,. is a cutoff function which decays smoothly to zero at the cutoff
radius. Behler and Parrinello proposed the following cutoff:
1
(R = {2 (14 cos (rR/R.)) R<R. 67)
0 R > R,

however other functional forms are possible. The only requirements we
pose is that the function be continuous with a continuous first derivative in
r € [0,00), approach one as R — 0 and zero as R — R.. The AMP authors
propose an alternative polynomial cutoff function:
. v+l v
ﬂga:{1+v<wRa OHDO/RY R<Re o
0 R > R,

where v is a user-specified parameters that controls the rate of decay. For
values of v < 2 this cutoff reproduces the cosine cutoff, while for higher values
the polynomial has much larger values within the cutoff radius. Figure 6.1

70

shows the cutoff functions plotted together for different values of . Figure
6.2 shows radial and angular parts of the symmetry functions with different
parameter values, where the radial functions are centered at R, = 0.

1.0

0.8}

0.6}

0.4}

0.2}

cosine form

0.0 0.2 0.4 0.6 0.8 1.0
r/R

C

Figure 6.1: Cosine and polynomial cutoff functions plotted within the cutoff
radius. The polynomial cutoff reproduces the cosine cutoff for small values of
7. Reprinted from [10, Khorshidi, Alireza and Peterson, Andrew A.].

a i@ T -9 b v . ik k
iy A _ N « 7 :
1.0 ; -—- n=00s 10k o W M °~<}&~° *—0—0
s : :
—-- n=4 Ny me= =1 =41 —kg=1A=-1]
0.8 n==8 08 N, —C=2d=+41 —-ii=2a=-1]
o I ——- p=20 \
*, i
0.6 \ ., — 7 j A0 C,” 06}
G.! | ! == n=280
0.4 | 0.4}
0.2 02r .
. - P A e
0.2 0.4 0.6 0.8 1.0 05 10 1.5 2.0 25 3.0

R/ R, Bl rad)

Figure 6.2: Radial and angular symmetry functions for different values of
1,(, A. The radial symmetry functions are centered at Ry, = 0. Reprinted
from [10, Khorshidi, Alireza and Peterson, Andrew A.].

71

The components of the three-body subvector are defined incorporating
the angles 0;;;, between every triplet of atoms:

local
fH =21 Z (14 Acos Gl-jk)c exp (—7) (Rlzj + R3, + R?k) /Ri)
Joki
X fe(Rij) fe(Ri) fe(Rjk)-

This form of angular function is known as the G5 type, while the G4
angular symmetry functions do not contain the R;; terms. The components
for each subvector is calculated by varying the different parameters 7, R, (, .
The choice of neither symmetry functions, cutoff, nor the parameters employed
by Behler and Parrinello are unique. The guiding wisdom is that atomic
environments with different potential energies should give differing energies,
while remaining invariant under translation, rotation and permutation. Fi-
nally we note that the descriptors and the neural network models are not
interchangeable, as each neural network is trained for a specific set of input
vectors, and must be retrained if the way inputs are composed changes.

(6.9)

6.0.2 Zernike and bispectrum descriptors

Two closely related examples of atom-centered descriptors are the Zernike
and Bispectrum descriptors. They are described by [10, Khorshidi, Alireza
and Peterson, Andrew A.] in their paper on the Atomistic Machine-learning
Package (AMP). Bispectrum descriptors are also discussed by [8, Behler, Jorg]
in his perspective on machine learning potentials. Zernike descriptors represent
a tensor product between spherical harmonics and Zernike polynomials. The
local atomic environment of atom i is represented by an atomic density
function p;(r;):

local
pi(rs) =D m;d (ri — i) fe([Imisll) (6.10)
J#i
with f.(r) a cutoff function as described in the previous section. The
3-D Zernike basis set Z is formed by a tensor product between the Zernike
polynomials basis set R and the spherical harmonics Y. The Zernike basis
set is defined inside and on the surface of the S? unit sphere as:

g(rvevd)) = RZ(T)Ylm(Qﬁ)a (6'11)

72

where n > 0 is an integer, [is restricted to even n — [> 0 and m is an
integer such that [m| < I. Functions defined inside and on the S? sphere can
be represented by the 3-D Zernike basis as:

f(r,0,¢) = ZZZC m(r,0,0), (6.12)

m=—1

with coefficients ' = (Z, f) computed as projections of f onto the
Zernike basis. These prOJectlons form the basis of the Zernike fingerprint,
G;. Centering the atomic density preserves translation invariance of the
atomic environment, while the projections onto the Zernike basis set preserves
rotational invariance. Permutation invariance is maintained by keeping the
constant values 7; the same within each chemical species. The Zernike
descriptors are able to incorporate quadruple atomic interactions involving
for example dihedral angles, while the gaussian descriptors are truncated at
threebody interactions. The Zernike coefficients can also often be represented
in terms of monomials, making them computationally cheaper than the
bispectrum descriptors.

Bispectrum descriptors are computed much in the same way as the Zernike
descriptors. The 4-D spherical harmonics form a complete, orthogonal basis set
for the S3 4-D unit sphere, and the components of the Bispectrum fingerprints
G, can be computed by projecting the atomic density function onto them.
For more information the reader is encouraged to check out the [10, AMP

paper].

6.0.3 Deep Potential Molecular Dynamics

Deep Potential Molecular Dynamics (DPMD) is a method proposed by [15,
Zhang et al.] in response to the successes of methods such as Behler-Parrinello,
Gaussian Approximation Potentials (GAP[39]) and Gradient-Domain Ma-
chine Learning (GDML[40]). These methods all involve some amount of
handcrafting the inputs, and building these inputs for larger, more complex
systems is not always straightforward. The Deep Potential method assigns
a local environment and reference frame to each atom. The total potential
energy is a sum of atomic contributions as before:

E = Z Eatom ({R})) (613>

73

with the atomic energy determined by its nearest neighbors within a cutoff
radius R,:

Buoms = B (Ri {R}, | Ry| < R.) . (6.14)

The position of each neighbor of atom ¢ is described by the relative position
R;; = R;— R;, which preserves translational symmetry. Rotational symmetry
is conserved by constructing a local frame for each atom. Two neighboring
atoms a and b are picked by a user-specified rule (default: two closest). The
environment of atom ¢ is then described by three unit vectors:

€1 = e(Ria>a
€jg = e(Rib - (Rib : ei1>ei1)7 (6'15)

€i3 = €;1 X €;2,

where e(R) denotes the normalized vector e(R) = R/|R|. Together
these vectors form an orthonormal basis for the reference frame of atom 1.
The local coordinates R;; can then be obtained from the global coordinates
R); through the transformation:

where R = [e;1 e €3] is a rotation matrix with columns given by the
local basis vectors. The neural network input vector for every atom-to-
atom interaction D);; can be given with radial-only or full radial-angular
information:

1 g
< Ry) full information,

Ry |Ry;
D?j — 1] | J| (617)
() radial-only information,

with o = 0 when only radial information is specified and o = 0,1,2,3
when full information is provided. Radial information is typically sufficient for
long-range interactions such as van-der-Waals forces, while covalent bonding
can be modeled by including only the closest atoms. We therefore specify two
separate cutoff shells, one for the radial information R. and one for treating
angular interactions R,.

74

In order to preserve permutation symmetry the input vectors D);; are sorted
first according to chemical species, and then within each chemical species
according to their inverse distance 1/R;;. The vector of subvectors D; is then
fed through a neural network to produce the atomic energy contribution. The
network input size is fixed according to the maximum number of neighbors
in the system which is being studied, with some entries D;; = 0 if there are
fewer neighbors within the radial cutoff. Figure 6.3 shows how the neural
network input vector is computed for the environment of a hydrogen atom.

75

D;; ={1/R;;}

or

D;; = {UR?jaJ?J/R yij/Rie- Eij/jo}

Figure 6.3: Computation of the neural network input vector for atom i.
Hydrogen in white and oxygen in red. The coordinates of atom j are computed
in the reference system of atom ¢. The vector e, is along the OH bond, e, is
perpendicular to the plane of the water molecule and e, is the cross product.
The subvector D;; forms part of the input vector D; computed from the
atom’s nearest neighbors. The vector D; is fed through a neural network to
produce an atomic potential energy contribution. Reprinted from [15, Zhang
et al.].

The authors also propose a scheme of force learning, wherein the force
root mean square error (RMSE) is incorporated into the Cost function:

pe 2
C=% (AE?) Z IAF}?, (6.18)

with p. and py energy and force pre-factors Wthh are adjusted throughout
the learning process. The term AFE; denotes the error between the network

76

outputs and the correct potential energy, while the term AF; denotes the
error in the force output. The pre-factors are adjusted based on the learning
rate:

p(t) = p™it {1 - ”T—(Igf)} + p* {”T—?} , (6.19)

with () and r¥ the learning rate at time step ¢ and time step 0 respectively.
The learning rate decays exponentially as:

r(t) = 7"10 . d&t/ds), (6.20)

with d, the decay rate and d, the decay steps. The decay rate should be
less than 1. The force error is often a magnitude or two larger than the energy
error, and it is believed that incorporating the force into the loss should
improve the learning rate for physics-based applications which incorporate
forces. The virial information can also be treated in this manner, but we will
not discuss this here.

77

Part 11

Implementation

78

Chapter 7

Atomic Simulation
Environment

The Atomic Simulation environment (ASE!) [41, Larsen et al.] is a software
package written in Python for the purpose of setting up, steering and analyzing
atomistic simulations. Python is an interpreted, high-level general purpose
language, with a powerful, consise syntax which allows one to perform very
complex tasks with few lines of code. Python can also easily be extended
and interfaced with fast and mature libraries. The modular interface of
Python makes ASE easily extensible; in particular the calculator interface for
evaluating energies, forces and much more has been implemented for open-
and closed-source software packages such as LAMMPS, VASP, Quantum
Espresso and many more. The Atomic Simulation Environment is intended
to be:

e Easy to use

e Flexible

e Customizable
e Pythonic

e Open to participation

! https://wiki.fysik.dtu.dk/ase/index.html

79

https://wiki.fysik.dtu.dk/ase/index.html

The real drawback of Python is that it is an interpreted language, which
results in slow execution. It can also be quite memory-intensive, which makes
pure Python unsuitable for large scale computations and simulations. It is
therefore common to write the computationally demanding tasks in a lower
level compiled language, and build a Python interface for calling functions
and classes.

7.0.1 Installation

ASE requires an installation of

e Python 2.7, 3.4-3.6
e Numpy 1.9 or newer

e Scipy 0.14 or newer

This can be easily obtained through the Anaconda or Miniconda pack-
ages?, or follow the instructions on the Python website®. Once you have the
prerequisites ASE can be installed using pip:

pip install ase

7.0.2 Molecular Dynamics

Here we will demonstrate how to setup a simple Argon crystal, set the
velocities and integrate the system using the Velocity Verlet equations. First
we import some prerequisites and define the system:

from ase.lattice.cubic import FaceCenteredCubic

from ase import units

from ase.md.velocitydistribution import MaxwellBoltzmannDistribution
from ase.md.verlet import VelocityVerlet

symbol = "Ar"
size = (3, 3, 3)

’https://anaconda.org/
3 https://www.python.org/

80

https://anaconda.org/
https://www.python.org/

8

9

10

11

12

13

14

atoms = FaceCenteredCubic(symbol=symbol, size=size, pbc=True)

MaxwellBoltzmannDistribution(atoms, 300 * units.kB)

This defines a face-centered-cubic (FCC) crystal unit cell with 4 atoms, and
a system size of 3 x 3 x 3 unit cells for a total of 4-3% = 108 atoms with periodic
boundary conditions. We thereafter give the atoms velocities according to
the Maxwell-Boltzmann distribution such that the system temperature is
approximately 300 Kelvin.

Next we give the atoms a Lennard-Jones calculator for calculating dynam-
ics and create a Velocity Verlet integrator for evolving the atoms according
to their forces. Calculators will be discussed in the next section.

calc = LennardJones(sigma=3.405, epsilon=1.0318e-2)
atoms.set_calculator(calc)

dyn = VelocityVerlet(atoms, 2 * units.fs)

The parameters ¢ and € define the well known length and energy scales
for the Lennard-Jones potential. The Velocity Verlet integrator is initialized
with a timestep of 2 femtoseconds, which strikes a balance between accuracy
and the timescale of the simulation. Finally we run the system for 1000 steps:

for i in range(100):

dyn.run(10)

Every 10 timesteps the system quantities can be printed, written to file or
put through some other form of analysis or post-processing.

7.0.3 Calculators

The calculator interface gives ASE an easy to use, flexible and customizable
way of computing dynamics, and makes ASE viable for a wide range of
electronic structure calculations. For ASE a calculator is a black box that
receives positions, atomic numbers and so on and outputs energies, forces,
stresses; all that is required to perform atomistic simulations. The basic
interface is defined in the ASE source code as:

81

10

11

12

13

14

15

import numpy as np

class Calculator:
def get_potential_energy(self, atoms=None,
force_consistent=False):

return 0.0

def get_forces(self, atoms):

return np.zeros((len(atoms), 3))

def get_stress(self, atoms):

return np.zeros(6)

def calculation_required(self, atoms, quantities):

return False

There is also an interface for DFT calculators, which also requires the
implementation of spins, occupation numbers, the fermi level and so on.

In the previous section we used the Lennard-Jones calculator as an ex-
ample, however this calculator is not suited for general use. Apart from
Lennard-Jones being a toy potential unsuited for real systems, the ASE
implementation is also written in Python, which makes it very, very slow.
Usually the calculator interface is used as a wrapper for much faster compiled
code or software packages; for example the ASAP* calculator is a Python
wrapper for the Effective Medium Theory potential, which is implemented
in the Fortran programming language and is orders of magnitudes faster. A
Python molecular dynamics code is justified since the bulk of computation
time is spent on computing forces, however for large scale molecular dynamics
simulations one would be advised to use fast compiled code such as LAMMPS?
or GROMACSS. ASE really shines when it comes to small-scale simulations,
experimentation and testing out new methods, and this is why it has been
chosen as a basis for this thesis. Fortunately, ASE has an extensive code base
of calculators for Molecular Dynamics and Density Functional Theory codes

‘https://wiki.fysik.dtu.dk/asap
° https://lammps.sandia.gov/
6 http://www.gromacs.org/

82

https://wiki.fysik.dtu.dk/asap
https://lammps.sandia.gov/
http://www.gromacs.org/

such as ASAP, CP2K", LAMMPS, GROMACS which are all implemented in
lower-level languages.

"https://www.cp2k.org/

83

https://www.cp2k.org/

Chapter 8

Atomistic Machine-learning
Package

The Atomistic Machine-learning Package (AMP) [10, Khorshidi, Alizera
and Peterson, Andrew A.] is a software package written in Python with
the intent of bringing machine learning to electronic structure calculations.
The software is intended to interface with ASE and the OpenKIM API!
for usage in LAMMPS. The interface to AMP is written purely in Python
while computationally intensive tasks are outsourced to Fortran modules and
supports neural networks through both Python code and through a Tensorflow
backend. The Python interface makes AMP flexible and easily extended, and
this makes the package ideal for prototyping and testing both newer and more
established machine learning methods.

A suggested workflow is as follows?:

e Use AMP for training, testing and validation of novel descriptors and
systems

e Use the AMP calculator for smaller scale simulation in the ASE envi-
ronment

e Export the network compliant with the OpenKIM API for usage in
more mature, large-scale electronic structure calculation software such
as LAMMPS

https://openkim.org/
Zhttps://bitbucket.org/andrewpeterson/amp/issues/79/
parallelize-fingerprint-derivatives

84

 https://openkim.org/
https://bitbucket.org/andrewpeterson/amp/issues/79/parallelize-fingerprint-derivatives
https://bitbucket.org/andrewpeterson/amp/issues/79/parallelize-fingerprint-derivatives

Unfortunately, the software is not currently fully compliant with the latest
version of the OpenKIM API, which introduces artifacts in the simulation
involving periodic images. However, the authors have recently received a
large grant from the U.S. Department of Energy?®, which should facilitate
further development.

8.0.1 Theory

AMP is intended to interface extensively with ASE, and the primary interface
to AMP is the AMP calculator. The AMP calculator is an ASE compliant
calculator that accepts cartesian coordinates and outputs energies and forces,
just as a classical molecular dynamics calculator. The primary difference
between the AMP calculator and ASE calculators such as the Lennard-Jones
calculator is the train method, which accepts a set of images, i.e. a set of
snapshots of atomic configurations labeled with the potential energy and forces.
The calculator is fitted to the images and can subsequently be used to predict
atomic energies and forces from never before seen atomic configurations.

Shttps://www.brown.edu/news/2018-09-20/simulations

85

 https://www.brown.edu/news/2018-09-20/simulations

———> ML[element] (train)

—> ML[element]
N
. E = Z} E;

N feature vectors

oF

— ML[element] (train)

3N Cartesian coordinates of atoms

invariant learning model
representation algorithm predictions

Figure 8.1: Schematics of how AMP works in atom-centered mode. The
cartesian coordinates representing the environment of every atom is mapped
to a 1D representation using the symmetry function set. The input vector
is fed through the neural network to produce an atomic potential energy
contribution. Reprinted from [10, AMP paper].

AMP provides interfaces for both atom-centered descriptors, as we dis-
cussed in chapter 6, and image-centered descriptors, which are formed from
the complete set of cartesian coordinates. Figure 8.1 shows the schematics
of how the potential energy and forces are computed in the atom-centered
mode. A set of feature vectors are formed from an image, which are fed
through a neural network to produce the potential energy. The neural network
including backpropagation is written by the authors, though there exists a
Tensorflow (0.12) interface only compatibable with Python 2. The inputs
can be backpropagated through the network to produce both weight updates
and derivatives with respect to the inputs. For the loss function, AMP pro-
vides support for custom implementations, but the default is the sum over

86

atom-normalized residuals:

1 E; E;nnp > a 2
C—§Z{<N—T) +3_N;(Fij_ﬂj,NNP>) (81>

where Ennp and Fynp represent the energies and forces predicted by the
neural network and « is a parameter that determines the relative weighting of
the energies and forces in the loss function. Generally, an atomic configuration
with N atoms will have 1 potential energy and 3N forces, which means
incorporating the forces into the loss function can provide for much richer
information into the potential energy surface. It is not known to us whether
the energy normalization over the number of atoms represents an improvement
over the simple sum of residuals squared.

8.0.2 Installation

AMP requires an installation of
e Python 2.7, 3.4-3.6, 3.6 is recommended
e Numpy 1.9 or newer

e Scipy 0.14 or newer

e ASE

Python installations can be easily obtained through the Anaconda or
Miniconda packages?, or follow the instructions on the Python website®.
ASE installation is described in the chapter on ASE. Once you have the
prerequisites AMP can be installed using pip:

pip install amp-atomistics

‘https://anaconda.org/
5 https://www.python.org/

87

https://anaconda.org/
https://www.python.org/

10

11

12

13

14

15

16

17

18

19

20

21

8.0.3 Training example

In the previous chapter we showed how to run a molecular dynamics simulation
using ASE. Here we will show how an AMP calculator can be fitted to
molecular dynamics data with only minor modifications to the code. First we
import the prerequisites and define the system:

import ase.io

from ase.lattice.cubic import FaceCenteredCubic

from ase import units

from ase.md.velocitydistribution import MaxwellBoltzmannDistribution

from ase.md.verlet import VelocityVerlet

from amp import AMP
from amp.descriptor.gaussian import Gaussian
from amp.model.neuralnetwork import NeuralNetwork

from amp.model import LossFunction

symbol = "Ar"
size = (3, 3, 3)
atoms = FaceCenteredCubic(symbol=symbol, size=size, pbc=True)

MaxwellBoltzmannDistribution(atoms, 300 * units.kB)

The class AMP is the primary object of the AMP package, and is imple-
mented through the ASE interface. We will use a neural network machine
learning model and Gaussian descriptors, which are an implementation of
the Behler-Parrinello method. To implement force training we require access
to the LossFunction class. We will also be using the ASE Input/Output
(ase.io) module to generate an ASE Trajectory, which is an object storing
the time-evolution of a simulation and usually interpreted as a time series of
atoms.

traj ase.io.Trajectory("training.traj", "w")

calc LennardJones(sigma=3.405, epsilon=1.0318e—2)
atoms.set_calculator(calc)
atoms.get_potential_energy ()

atoms.get_forces()

traj.write(atoms)

88

22

23

24

25

26

27

28

29

30

31

32

33

dyn = VelocityVerlet(atoms, 2 * units.fs)

In order to write the potential energy and forces to file they must first
be calculated using the ASE Atoms methods, which require a calculator and
otherwise raise an error. We can then evolve the system forward in time and
save the atomic configuration every 10 time steps:

for i in range(100):
dyn.run(10)
atoms.get_potential_energy ()
atoms.get_forces()

traj.write(atoms)

After the data has been generated we can train the AMP calculator using
the Lennard-Jones calculations as input. We use a neural network model
with three hidden layers, each containing 10 neurons. The training procedure
will terminate once the energy and force root mean squared errors (RMSE)
have reached values of 1072 or less:

calc = Amp(descriptor=Gaussian(),
model=NeuralNetwork(hiddenlayers=(10, 10, 10)))
calc.model.lossfunction = LossFunction(
convergence={"energy_rmse": 1E-2,
"force_rmse": 1E-2})

calc.train(images="training.traj")

Once the calculator has been trained, the parameters are stored in a file
called "amp.amp”, and can be loaded using the command:

calc = Amp.load("amp.amp")

From there the calculator can be used as any other ASE calculator, in
electronic structure calculations on Atoms objects.

89

8.0.4 Descriptors and models

Currently AMP provides support for three different descriptors. Gaussian
descriptors implement the Behler-Parrinello method of radial and angular
symmetry functions. For this descriptor the derivatives are also available,
which means it can be used for computing dynamics. Some physical intuition
and chemical knowledge is necessary to choose various parameters for the
symmetry functions - unless you wish to do it by trial and error - but AMP
provides defaults for multiple chemical species. The Zernike and Bispectrum
descriptors are also implemented, but without derivatives, which means the
trained calculator cannot be used to for example perform molecular dynamics
simulation. Currently the neural network and kernel ridge regression® models
are the only models implemented. However, the modular nature of AMP
should enable more additions in time, such as derivatives for the Zernike and
Bispectrum descriptors or other regression models which have derivatives
available.

6 See for example: https://scikit-learn.org/stable/modules/kernel_ridge.
html

90

 https://scikit-learn.org/stable/modules/kernel_ridge.html
 https://scikit-learn.org/stable/modules/kernel_ridge.html

Chapter 9

Fitting to the Lennard-Jones
potential

In order to demonstrate the construction of a neural network potential, this
chapter will demonstrate the use of Tensorflow to reconstruct the Lennard-
Jones potential. The Lennard-Jones potential is the simplest realistic molec-
ular dynamics potential, and since it is a function of only radial distance,
symmetry functions are not required. We can thus use neural networks to
perform a simple regression on a function accepting one input and producing
one output. This serves to illustrate some of the intuitions and problems
one runs into when using more complex methods such as atom-centered
descriptors and gives a nice introduction into modern Tensorflow. We will be
using the Tensorflow 2.0 beta version recently released, since it introduces
a wide array of changes which will likely prove influential to the long-term
direction of the Tensorflow project.

9.0.1 Tensorflow implementation

The code used to produce this implementation is a modification of the
Tensorflow 2.0 for experts guide which is available online!. We start with
some necessary imports from the Numpy and Tensorflow libraries. Tensorflow
from 2.0 onwards is now primarily accessed through its Keras interface, which
is a general high-level API for constructing and training neural networks.
We also use a utility function from the scikit-learn library for splitting the

https://www.tensorflow.org/beta/tutorials/quickstart/advanced

91

 https://www.tensorflow.org/beta/tutorials/quickstart/advanced

dataset into train and test data, but this is merely for convenience as it is
very simple to implement from scratch. Finally we use the matplotlib and
Seaborn libraries for producing the plots.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import seaborn as sns

4 import tensorflow as tf

5 from tensorflow.keras import Model

6 from tensorflow.keras.layers import Dense

7 from sklearn.model_selection import train_test_split

s sns.set()

Our neural network is a simple feed-forward artificial neural network which
inherits from the tensorflow.keras base model. It contains 2 layers with 50 and
10 neurons respectively using the hyperbolic tangent as the activation function.
The neural network produces a single output which represents the potential
energy and is computed as a dot product of the activations in the final hidden
layer and the weights in the output layer. The gradient of the neural network
with respect to the input can be computed using the tensorflow.GradientTape
object. The GradientTape monitors the computation from the input to the
output and is then able to backpropagate the output in order to obtain the
gradient.

9 class MyModel(Model):

10 def __init__(self):

11 super (MyModel, self).__init__Q)

12 self.dl = Dense(50, activation="tanh")
13 self.d2 = Dense(10, activation="tanh")
14 self.d3 = Dense(l, activation="linear")
15

16 def call(self, x):

17 x = self.d1(x)

18 x = self.d2(x)

19 x = self.d3(x)

20

21 return x

92

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

def derivative(self, x):
with tf.GradientTape() as t:
t.watch(x)
y = self.call(x)

return t.gradient(y, x)

The data is produced using the Lennard-Jones potential, which is a simple
function of the radial distance. The inputs need to be in the shape of matrices
in order to be fed through the neural network in batches. We split the data
into train and test using a test fraction of 0.2, with the remainder used for
training.

def lennard_jones_data():
1j = lambda r: 4 * ((1.0 / r) **x (12) - (1.0 / r) ** 6)

x = np.linspace(0.90, 3.0, 10000) .reshape(-1, 1)
1j(x)

x_train, x_test, y_train, y_test = train_test_split(

X, y, test_size=0.2

return (x_train, y_train), (x_test, y_test)

The data which is in the form of numpy arrays can easily be converted
into tensors which can then be processed by Tensorflow. In order to perform
regression we will use the mean squared error for evaluating the loss. We will
use the Adam optimizer, which is currently the most popular optimizer for
training neural networks, and generally outperforms the other less popular
optimizers.

(x_train, y_train), (x_test, y_test) = lennard_jones_data()

train_ds = tf.data.Dataset.from_tensor_slices(

(x_train, y_train)

93

44) .shuffle(1000) .batch(32)

45 test_ds = tf.data.Dataset.from_tensor_slices(

46 (x_test, y_test)

a7) .batch(32)

48

49 model = MyModel()

50 loss_object = tf.keras.losses.MeanSquaredError ()

51 optimizer = tf.keras.optimizers.Adam()

52

53 train_loss = tf.keras.metrics.Mean(name="train_loss")

54 test_loss = tf.keras.metrics.Mean(name="test_loss")

The train and test steps are wrapped as Tensorflow functions so that they
can be efficiently called and applied to tensors. For every train step the loss is
computed and then backpropagated so that the optimizer can apply updates
to the weights and biases. We subsequently train the neural network for 100
epochs, computing the train and test loss for every epoch.

55 @tf.function

56 def train_step(images, labels):

57 with tf.GradientTape() as tape:

58 predictions = model(images)

59 loss = loss_object(labels, predictions)

60 gradients = tape.gradient(loss, model.trainable_variables)

61 optimizer.apply_gradients(zip(gradients, model.trainable_variables))
62

63 train_loss(loss)

64
65 @tf.function

66 def test_step(images, labels):

67 predictions = model (images)

68 t_loss = loss_object(labels, predictions)
69

70 test_loss(t_loss)

71
72 epochs = 100

73

94

75

76

77

78

79

80

81

82

83

84

85

for epoch in range(epochs):
for images, labels in train_ds:

train_step(images, labels)

for test_images, test_labels in test_ds:
test_step(test_images, test_labels)

template = "Epoch {}, Loss: {}, Test Loss: {}"
print (template.format(
epoch + 1, train_loss.result(), test_loss.result()

95

9.0.2 Comparison and absolute error

Meural network potential comparison

| —— Lennard-Jones
6 Neural Network

Potential energy V(r)
L

1.0 1.5 2.0 2.5 3.0
Radial distance r

Figure 9.1: Neural network potential compared to Lennard-Jones.

After training the network we can evaluate its performance on test data. For
the potential energy we obtain a root mean squared error of 0.56 (energy
units). However, the root mean squared error does not tell the complete
story, and the simplest way to evaluate the fit is to plot the potential. In
figure 9.1 the neural network potential is plotted with the Lennard-Jones
potential. We see that this potential is not difficult to reproduce, as the
number of datapoints is relatively small, and we used a small number of
epochs, amounting to only a few seconds of training. The potentials agree
very well on most of the input space, and we can only spot a small divergence
as the potential rises sharply around a radial distance of one.

96

Derivative of neural network potential

140 —— Lennard-Jones

Neural Network
120

100
80 '

60

Force dV(r)

40 .

20

1.0 1.5 2.0 2.5 3.0
Radial distance r

Figure 9.2: Neural network derivative compared to Lennard-Jones.

For the error in the derivative we obtain a force root mean squared error
of 79.1 (energy units per length units), which is approximately two orders of
magnitude larger. The derivatives are plotted in figure 9.2. The difference
in derivatives is more pronounced, as the difference is much larger as the
radial distance decreases from around one, and we can see that the neural
network does not have the same asymptotic behaviour. This poses a potential
problem for the dynamics, as the forces keep the atoms from moving too
closely and causing massive increases in the energy of the system. This implies
that we should train the potential on a representative set of points in order
to reproduce the correct asymptotic behaviour, especially at the edges of
configuration space. It may also be beneficial to include force terms in the
loss function, as this is expected to decrease the error in the derivatives.

97

Absolute error of neural network

0.25

0.20

0.15

0.10

Absolute error

0.05

0.00 Mvv

1.0 1.5 2.0 2.5 3.0
Radial distance r

Figure 9.3: Absolute error of the neural network potential compared to
Lennard-Jones.

In figure 9.3 we have plotted the absolute error of the neural network
potential, defined as |E, — Exn| where Eny is the potential energy from
the neural network. From this we can see that the error in the fit is much
larger at one edge of configuration space, as shown in the above plots. The
neural network is able to reproduce small values at larger distances, but
not the asymptotic behaviour as the interatomic distance approaches zero.
Additionally, we can observe that the absolute error in the derivative is two
orders of magnitude larger than the error in the potential energy fit. However,
since this behaviour occurs only at the edge of the input space, dynamics
could be preserved by training on a representative set of input data. Small
distances between atoms in the system are highly unlikly configurations which
should never be observed in molecular dynamics simulations, and they would
cause problems regardless of the accuracy of the interatomic potential. This
is occasionally a problem in conventional molecular dynamics, as for large

98

timesteps some atoms may ”tunnel” too close, causing large spikes in the
energy of the system. If the force accuracy is poor for some of the atoms
and they move too close, we may also observe this using the neural network
potential.

Absolute error of neural network force

= PJ] Lt [¥¥]
un o un La=] (9]

Absolute error

=
o

5 k\f\/—\
0
1.0 15 2.0 2.5 3.0

Radial distance r

Figure 9.4: Absolute error of neural network derivative compared to Lennard-
Jones.

99

Part 111

Results

100

Chapter 10

Parameter search

In order to obtain optimal performance from the neural network given a set
of atomistic configurations we need a careful choice of parameters and neural
network architecture. The parameters can be classified as either training
parameters - such as the learning rate and the force loss coefficient - or
architectural parameters - such as the number of neurons and hidden layers,
or the choice of interaction cutoff radius. The former are important in the
training of the neural network, i.e. adjusting weights and biases while the
latter influence both the training process and the final deployment of the
neural networks on unfamiliar data. In this section we will be employing a
grid search over a set of parameters, training multiple neural networks on the
same data set and subsequently testing energy and force Root Mean Squared
Errors on a smaller test data set. Generally we will only be training the
neural networks on the energies, since training with forces is much more CPU-
and memory- intensive. However, training with forces would likely affect the
final result and improve the force RMSEs, as we will observe in the following
section.

The parameters are unless otherwise specified the defaults listed in table
10.1. In their paper on Random Search, [42, Bergstra and Bengio] demonstrate
that Random Search outperforms Grid Search for dimensions of search space
larger than 3 or 4. However, since we have tested a small number of parameters
(since training and testing is costly) and we have a general idea of what
parameters are appropriate, we have chosen to employ Grid Search. The
Atomistic Machine-learning Package (AMP) has a built in simulated annealing
(see for example [43]) module, which performs simulated annealing on the
weights and biases of the network, in order to find values for which the

101

loss is lowest. The annealing is run for every trained neural network for
2000 steps at the beginning of the training procedure, with temperatures
starting at T},., = 20 and ending with T},;, = 1. Simulated annealing is a
suitable algorithm for finding minima in a complicated energy landscape, and
it reduces somewhat the randomness of initialization so that the results are
comparable without having to perform many runs. We will also be using the
BFGS Quasi-Newton (see for example [38]) method implemented through
the scipy.optimize library. This is the optimizer interface currently provided
by AMP and the BFGS optimizer generally performs the best. Finally we
mention that AMP initializes the weights and biases of the neural network
using Xavier initialization[37], as we discussed briefly in chapter 5.0.5.

Table 10.1: Default values used in parameter search. The parameters are
roughly divided into architecture and training parameters.

Hyperparameters
Architecture Symmetry functions 12 radial, 20 angular
Hidden layers (10, 10)
Activation Hyperbolic tangent
Cutoff function Polynomial, R. = 6.0,v = 5.0
Training Epochs 2000
Energy coefficient 1.0
Force coefficient None
Regularization A=10"8
Optimizer BFGS

The AMP package provides a set of defaults for most elements, and these
symmetry functions are plotted in figure 10.1. However, we did not feel that
these covered the radial and angular space sufficiently so we constructed
our own instead which is what we will use for training. AMP only provides
centered radial functions, while we use a mix of centered and shifted radial
functions since these have demonstrated higher performance, as is discussed
in the section on symmetry functions. For the symmetry functions we have
chosen a set of 6 uncentered radial, 6 centered radial and 20 angular (G4)
symmetry functions. The uncentered radial functions have n’s spaced evenly
from 1 to 20 and are centered at 0. The centered radial functions are centered
evenly from 0.5 to R. — 0.5 with n = 5.0. The angular functions have n’s

102

Symmetry function values
o o o
— o ©

o
N

o
=}

spaced evenly from 0.01 to 3 with (= 1 and v = £1. These symmetry
functions are displayed in figure 10.2. We have also chosen to employ the
polynomial cutoff introduced in AMP with v = 5.0, since this has a larger set
of values inside the cutoff boundary. The numerical values of the parameters
are available in appendix A.

Radial symmetry functions Angular symmetry functions

n
o
)

-
~
v

3
S$150
g
5 1.25
g
5 1.00
>
2 0.75
£
E 050
(%]
0.25
0.00
0 1 2 3 4 5 6 0.0 0.5 1.0 1.5 2.0 2.5 3.0
R/Rc¢ Theta [radians]
(a) Radial symmetry functions. (b) Angular symmetry functions.

Figure 10.1: The AMP default symmetry function set. The radial functions
are plotted with the radial distribution function within the cutoff radius of
R_c = 6 Angstrom. The angular symmetry functions cover an angular space
from [0, 7] radians. The y-axis is dimensionless.

103

Symmetry function values

Radial symmetry functions Angular symmetry functions

1.0

o
©

o
o

o
S

o
[N}

o
=}

0 1 2 3 4 5 6 0.0 0.5 1.0 1.5 2.0 2.5 3.0
R/R¢ Theta [radians]

(a) Radial symmetry functions. (b) Angular symmetry functions.

Figure 10.2: Selected symmetry function set used for parameter search. The
radial functions are plotted with the radial distribution function within the
cutoff radius of R. = 6 Angstrom. The angular symmetry functions cover an
angular space from [0, 7] radians. The y-axis is dimensionless.

10.0.1 Force training

When training the neural networks we have the choice of whether to incorpo-
rate the forces into our loss function, or only fit the neural network to the
potential energy. By default, unless we have access to a per-atom energy
every configuration is labeled with only a single number for a potentially
large number of atoms, which limits the improvement in loss metrics for
every epoch, and the final result. If instead we incorporate the forces into
the loss we have potentially 3N + 1 labels for every epoch, which provides
a lot more information for weight updates. In the previous chapter we also
showed how adding derivatives to the loss function could significantly improve
the accuracy of the derivatives. Since the forces determine the trajectories
generated from molecular dynamics we would expect much better accuracy
and numerical stability if we could improve the fit of the derivatives. The
real drawback is the calculation of the derivatives in the input layer - also
known as the fingerprintprimes, of which there are a lot for every coordinate
and input symmetry function - as they consume a lot of disk space, memory
and CPU time.

In order to test the performance of neural networks we trained with and

104

abs(Exact energy - AMP energy) [eV]

without forces on the same set of training images. A system of copper atoms
is generated in the face-centered cubic (FCC) configuration with 4 atoms in
the unit cell and 3 x 3 x 3 unit cells for a total of 4-3% = 108 atoms. The atoms
are given velocities from the Maxwell-Boltzmann distribution corresponding
to a temperature of 500 Kelvin. The potential we will be using is the Effective
Medium Theory (EMT), which has a very fast Fortran implementation in the
ASE software package!. The training trajectory is ran for 5 - 10* steps with
a timestep of At = 5 femtoseconds and written to file every 100 steps for a
total of 500 atomic configurations. The test trajectory is integrated for 1-10*
steps for a total of 100 atomic configurations.

Scatterplot of energy error, energy RMSE=9.09E-03 Scatterplot of force error, force RMSE=6.26E-01

0.03 "E
. >
. ©
0.02 ~—t— 2
® o ° =
- * o . <
° ° . ~ e® . 0‘1
001 g e___ - __ o __g -t] v
. v e &% o .:- e° sl
e o oof °, ko]
o s ‘. o A %y o, . e
0.00 LA . ~ =
a
T
-0.01
3.6 3.8 4.0 4.2 4.4 -20 -15 -1.0 -05 0.0 0.5 1.0 1.5
Exact energy Exact force
(a) Energy error. (b) Force component error.

Figure 10.3: Energy and force component absolute errors training without
force loss. The root mean squared errors are shown with dotted lines. Units
are in electronvolts and electronvolts/Angstrom respectively.

! https://wiki.fysik.dtu.dk/asap/asap

105

https://wiki.fysik.dtu.dk/asap/asap

abs(Exact energy - AMP energy) [eV]

Scatterplot of energy error, energy RMSE=3.44E-02 Scatterplot of force error, force RMSE=7.62E-02

o
(=]
@
[
[

=3
S .
° A
o =
0.06 ° . g
. " . g
° e e o0 ot ® [] %
0.04 . ¥ (] - <
————————————— --------o—-—— o ______. @
o ® ° é
0.02 .° @ el o °8 % e, * g
° ° * % >
LAY) S
0.00 ¢ S e ¢ =
36 3.8 4.0 4.2 4.4 20 -15 -10 -05 00 05 1.0 15
Exact energy Exact force
(a) Energy error. (b) Force error.

Figure 10.4: Energy and force component absolute errors with forces in the
loss function. Root mean squared errors are shown with dotted lines. Units
are in electronvolts and electronvolts/Angstrom respectively.

In figure 10.3 we have created a scatterplot of the energies and force
components versus the absolute error after training without forces, and
labeled the plots with the energy and force RMSEs. We observe that the
potential energies can achieve fairly low error values of approximately 0.005
to 0.03 eV, and the result does not depend very much on the value of the
exact potential energy. The force error however is approximately an order of
magnitude larger, which echoes some of the concerns raised in the previous
chapter with fitting derivatives. The force errors produced by the neural
network also appear to be increasing as we move away from zero.

In figure 10.4 we have a scatterplot of energies and force components
generated from a force-trained neural network with a force loss coefficient of
0.1. While the error in the potential energy is now approximately 4 times
higher, the error in the forces is now about 8 times smaller. This is arguably
a good tradeoff, since the force error matters much more for long molecular
dynamics trajectories, and will make any simulation requiring large amounts
of data more stable. However, force training is as mentioned much costlier in
terms of memory and CPU hours. Instead of training with forces on the full
set of images, we instead suggest training on a large amount of configurations
with only the energies (and arguably a small amount of atoms, since the ratio
of fingerprints to labels is higher), and subsequently training with forces on a
smaller set of images in order to improve the force fit, at some cost to the

106

energy fit.

10.0.2 Activation, hidden layers

In order to test different network architectures we test different choices of
the activation functions, and the number of hidden layers and nodes. At our
chosen range of values, we do not expect a large variation in the performance.
Since we do not have a large set of input parameters, we do not expect that a
large amount of nodes and hidden layers is required, as this would only increase
the training time, and larger neural networks with a large amount of hidden
layers might be expected to overfit the training data and generalize poorly. In
the paper Efficient Backprop by [44, Lecun et al.] the authors suggest that the
hyperbolic tangent outperforms the sigmoid, since the derivatives are larger,
which provides more efficient training. The hyperbolic tangent is somewhat
more computationally costly, however this is not a big consideration for our
neural networks overall, since they are quite small and can be evaluated
relatively fast. Inputs should generally be either standardized or scaled, as
discussed in chapter 5.0.5, as these activation functions cannot sufficiently
distinguish large inputs (tanh(1000) ~ tanh(10000)). AMP rescales inputs to
the range [—1, 1], which should be appropriate for both activation functions.
To test different architectures a copper system of 4-2% = 32 atoms is generated
and integrated for 8 - 10* steps with a timestep of At = 5.0 femtoseconds
and written to file every 100 steps for a total of 800 training images. By the
same procedure we also obtain 200 test images. The velocities are generated
according to a Maxwell-Boltzmann distribution with a temperature of 500
Kelvin. The results are shown in table 10.2. The network is trained only on
energies, while for the test set we calculate the energy and force root mean
squared errors (RMSEs).

107

Table 10.2: Neural network architectures evaluated using root mean squared
errors. The hyperbolic tangent and sigmoid is evaluated with varying sizes of
the hidden layers.

Activation/Hidden layers Energy RMSE Force RMSE

tanh-[10] 1.78E-03 2.67E-01
tanh-[20] 1.83E-03 1.80E-01
tanh-[30] 1.71E-03 5.71E-01
tanh-[40] 1.81E-03 3.17E-01
tanh-[10, 10] 1.73E-03 7.71E-02
tanh-[20, 10] 1.65E-03 3.95E-01
tanh-[30, 10] 1.83E-03 3.68E-01
tanh-[40, 40] 1.87E-03 3.42E-01
sigmoid-[10] 4.58E-03 8.83E-02
sigmoid-[20] 3.52E-03 1.25E-01
sigmoid-[30] 4.72E-03 7.27E-02
sigmoid-[40] 5.05E-03 6.19E-02
sigmoid-[10, 10] 3.07E-03 2.38E-01
sigmoid-[20, 10] 4.89E-03 9.93E-02
sigmoid-[30, 10] A.T4E-03 9.22E-02
sigmoid-[40, 40] 4.09E-03 7.37E-02

From the results we can see that the number of hidden layers and nodes
of the network does not significantly influence the result. The hyperbolic
tangent clearly outperforms the sigmoid for all sizes in the case of the energy,
while the sigmoid appears to outperform when it comes to the forces. This is
likely because we have not trained the network with force losses, which means
the tangent is better able to fit the energy, and this degrades somewhat the
performance on the forces. For the hyperbolic tangent with hidden layers
of size [10,10] we are able to achieve a low energy and force error, and we
have seen this result consistently throughout our work. This implies that
this size and activation strikes an appropriate balance between the training
epochs required and overfitting, and we have settled on this architecture for
the remainder of the thesis. However, it remains to be seen if a larger network
trained for longer periods could outperform the smaller models.

108

10.0.3 Cutoff radius

The cutoff radius defines the boundary outside of which no interactions
between atoms take place, and the magnitude of the interactions which take
place within. We therefore expect it to have a reasonable effect on the final
result. Ideally we would like all atoms to interact, as they do in the real world.
However, since the cutoff radius defines a sphere with a volume V oc R?, the
average number of neighbors and therefore calculations increases substantially
with the cutoff radius. This means there is a tradeoff between the accuracy
and speed when calculating fingerprints and fingerprint derivatives, with
substantial CPU and memory cost the larger the cutoff radius. Accuracy
may also be impacted if any atom interacts with an atom which in actuality
does not have a substantial energy and force contribution. In figure 10.5
we have plotted the radial distribution function of copper atoms governed
by the EMT potential, together with the polynomial cutoff function with
v = 5.0. The radial distribution function is scaled to 1 in order to compare
with the cutoff function. The radial distribution function is highly peaked
at R ~ 2.5,4.5, with smaller peaks as the radial distance grows. This may
justify a fairly small cutoff radius, but it is not clear how large the cutoff
sphere should be until we have examined the results on the test set. It is
nevertheless reasonable to assume a cutoff between 4 and 8 Angstrom would
perform well, without sacrificing too much accuracy.

109

Copper radial distribution function

~ 1.0

Q —*_*_—_‘——-“_‘
=

=]

a

N

™ 0.8

£

]

£

g 0.6

E —— Radial distribution function
g —— Polynomial cutoff, gamma=5.0
Y

= 0.4

8

=

-

Q

£ 0.2

.

©

© 0.0

[

0 1 2 3 4 5 6
Radial distance [Angstrom]

Figure 10.5: Radial distribution function of copper atoms governed by the
EMT potential. The radial distribution function is plotted with the polynomial
cutoff function with v = 5.0. The radial distribution function is mostly peaked
at the lattice sites, with few atoms in between.

We will be comparing the cosine and polynomial cutoffs at different cutoff
radii to test whether one outperforms the other. As in the previous section
we produce a system with 32 atoms, with 800 training configurations and 200
test configurations. The network is only trained on the energy, since this is
substantially cheaper, and then the network is evaluated on the energy and
force RMSE on the test set. The results are presented in table 10.3.

110

Table 10.3: Cutoff radius evaluated using root mean squared errors. Each
cutoff radius is tested with the cosine and polynomial functions with v = 5.0.

Cutoft Energy RMSE Force RMSE
Cosine-2.0 2.18E-01 4.57TE-01
Polynomial-2.0 2.18E-01 4.57TE-01
Cosine-3.0 5.08E-03 3.96E-01
Polynomial-3.0 4.85E-03 4.12E-01
Cosine-4.0 1.34E-03 1.57E-01
Polynomial-4.0 1.21E-03 1.42E-01
Cosine-5.0 7.39E-04 2.05E-01
Polynomial-5.0 9.34E-04 1.91E-01
Cosine-6.0 1.99E-03 2.68E-01
Polynomial-6.0 2.42E-03 3.84E-01
Cosine-7.0 4.46E-03 2.04E-01
Polynomial-7.0 7.71E-03 1.18E-01
Cosine-8.0 6.40E-03 2.63E-01
Polynomial-8.0 1.05E-02 3.41E-01

From the energy RMSEs we can see that the intermediate values of the
cutoff produce the lowest values. This may hint at some kind of overfitting
on the training set, such that better values are obtained by considering fewer
atoms more strongly. The intermediate values also seem to produce somewhat
lower values of the force RMSE, of which the lowest is the polynomial with a
cutoff of 7 Angstrom. We do not find a substantial difference between the
polynomial and cosine cutoff functions, and these results indicate that not
much is to be gained by choosing one over the other. We do note that there
is a substantial stochastic element in these tests, and also that longer training
periods may have produced more substantial differences, but training is costly
in terms of CPU time. For the remainder of this thesis we settled on the
polynomial with a cutoff of 5 Angstrem, while the cosine may have performed
just as well.

10.0.4 Symmetry functions

The symmetry functions determine the local environment of every atom,
which is then fed to and backpropagated through a neural network to produce

111

the potential energy and forces, and should in theory have substantial impact
on the final results. The authors of AMP suggest through experience that
the most important factors are the quality of data, the cutoff radius and
the symmetry functions?. The symmetry functions should cover both the
radial and angular environment of the atoms in the system we are trying
to learn from. They should also be distinguishable in order for the neural
network to be able to separate different chemical environments. Jorg Behler
writes in his article on neural network potential energy surfaces [45, Behler]
that the symmetry functions should describe the structures uniquely, and
not be too highly correlated. In their article on Weighted Atom-Centered
Symmetry Functions [46, Gastegger et al.] suggest that uncentered aka shifted
radial symmetry functions perform better than symmetry functions centered
at Ry = 0, since these offer better coverage of the radial space. They also
suggest that this is not the case for angular symmetry functions, since they
contain the products of gaussian functions of the interatomic distances in
a triplet configuration, narrowing their range of values. Furthermore they
suggest that for angular symmetry functions the parameter ¢ controlling the
power of the angular term should be limited to values of 1 or 2, and they
demonstrate that increasing this parameter narrows the functions to a smaller
range of angles close to the maxima (i.e. 0 or 90 degrees). We follow some of
their suggestions and use a combined set of centered and uncentered radial
functions.

In the introduction to this chapter we defined a method for constructing
the set of symmetry functions, with the parameters being the number of
radial functions, angular functions, zetas and the type of angular function.
To find the optimal set we perform tests of the energy and force RMSE
while varying the number of radial and angular symmetry functions, and
testing whether the G4 or G5 types (see 6.0.1) of angular functions performs
noticeably better than the other type. The results are presented in table 10.4.
The first parameter is the number of radial n’s controlling the width of the
gaussian functions, the second is the number of angular n’s and the third is
the number of { values.

2 AMP mailing list

112

https://listserv.brown.edu/cgi-bin/wa?A2=AMP-USERS;52062bd3.1810

Table 10.4: Symmetry function sets evaluated on the energy and force root
mean squared errors. The AMP default set for copper is compared to our
method described in the introduction to this chapter. The first two numbers
tell us half of how many radial and angular symmetry functions are employed
respectively, while the second number tells us how many (values are employed.
Finally the symmetry function set is labeled with either the G4 or G5 type of
angular symmetry functions.

Symmetry function Energy RMSE Force RMSE

Default 8.07E-02 6.99E+00
Gs-4-8-1-G4 2.55E-03 8.54E-02
Gs-4-8-1-G5 3.11E-03 5.26E-02
Gs-5-9-1-G4 2.08E-03 2.42E-01
Gs-5-9-1-G5 2.65E-03 1.36E-01
Gs-6-10-1-G4 1.88E-03 6.60E-02
Gs-6-10-1-G5 2.14E-03 1.99E-01
Gs-7-11-1-G4 1.68E-03 2.98E-01
Gs-7-11-1-G5 1.96E-03 4.54E-02
Gs-8-12-1-G4 1.75E-03 1.38E-01
Gs-8-12-1-G5 1.66E-03 8.30E-02
Gs-9-13-1-G4 1.70E-03 1.00E-01
Gs-9-13-1-G5 2.58E-03 2.08E-01
Gs-10-14-1-G4 1.52E-03 4.30E-02
Gs-10-14-1-Gb 2.58E-03 1.70E-01
Gs-10-14-2-G4 1.18E-03 1.71E-01
Gs-10-14-2-G5 1.92E-03 2.04E-01

From these results we observe that the energy errors are marginally
improved by increasing the number of symmetry functions, though the errors
may be increasing at the upper end. This may indicate that an intermediate
mix of symmetry functions offers appropriate coverage of the radial and
angular space, while too many symmetry functions makes environments
difficult to distinguish. The type of angular function seems to matter, but
is dependent on the mix of symmetry functions, as one type outperforms
the other dependent on the composition. We speculate that the force errors
generally improve as we increase the number of symmetry functions, as forces
represent the change in energy from a small perturbation of the position of a

113

single atom, and this may be better represented by having a larger number
of functions sensitive to this change. Our method of generating symmetry
function markedly outperforms the AMP default symmetry functions, which
suggest that we exercise some care when selecting the symmetry function
set. As for the number of zetas, we only test two values with ¢ = 1,2, thus
doubling the number of angular symmetry functions, and this does not seem
to significantly improve the error rate.

10.0.5 Overfitting and regularization

Overfitting describes the phenomenom whereby statistical learning methods
that perform well on a training set perform poorly on the test set, and
indicates poor generalization. In order to guard against overfitting we try
to ensure that the neural network architecture is not too complicated, and
typically we add a term to the loss function proportional to the size of the
weights and biases, as this ensures that no weight can be adjusted to arbitrary
size to fit the training dataset. In order to test whether the neural network is
overfitting the training data we generate the same configurations as before
and vary the value of the regularization proportionality term A. Once the
neural networks have been trained we evaluate their performance on the test
set. The results are shown in table 10.5.

Table 10.5: Regularization parameter search. The value of the regularization
proportionality term A is evaluated on the energy and force root mean squared
errors.

Regularization A Energy RMSE Force RMSE

1.00e+-00 9.36E-02 3.92E-01
1.00e-01 9.33E-02 3.92E-01
1.00e-02 9.34E-02 3.92E-01
1.00e-03 9.34E-02 3.92E-01
1.00e-04 3.35E-02 2.97E-01
1.00e-05 9.86E-03 1.63E-01
1.00e-06 5.14E-03 1.20E-01
1.00e-07 2.29E-03 1.11E-01
1.00e-08 1.52E-03 3.02E-01
1.00e-09 1.32E-03 2.35E-01

114

From these results we see that for values of the regularization parameter
A that are too large, the regularization is too punishing, and the training
is not able to find any appropriate minima. The errors seem to improve
as the regularization decreases, while the force errors rise slightly as the
regularization continues to decrease. Since we have such a small neural
network, large values of the regularization are too punishing, while small
values are equivalent to no regularization, and overfitting is not prevented.
From these results we do not find much evidence of overfitting, but they may
suggest some small regularization is appropriate for optimal generalization
performance.

10.0.6 Sampling and scaling

In order for the neural network to learn patterns from data the data needs to be
of high quality, and atomic configurations should be sufficiently distinguishable
while being representative of the underlying distribution. Neural networks
typically perform poorly or unexpectedly on unseen data, in addition to being
data-hungry requiring fairly large amounts of data in order to train well
over many epochs. One approach to learning atomic configurations might
be to generate random configurations (not too closely spaced) and calculate
energy and forces from these using a suitable calculator. However, this phase
space of configurations would be enormous using only a few particles, and
we would encounter many highly unlikely configurations. Since we want
to train the neural network to perform molecular dynamics, the obvious
solution is to sample configurations from molecular dynamics trajectories.
However, these configurations are (mostly) in equilibrium, with relatively
small forces, and thus the network might struggle if it encounters smaller
distances between atoms. In their paper on fitting potential energy surfaces
using neural networks, [47, Pukrittayakamee et al.] suggest using a variable
time interval dependent on the maximum acceleration:

(10.1)

floor[a/ame:| At floor[a/amas] > 0,
T =
At floor[at/amaz] = 0,

where floor(z) is the floor function, At is a minimum time interval and «
is a parameter which must be determined empirically. The rationale behind
this is that we will sample more from areas where the forces are large, while
skipping areas where the forces are small. In our experiments using this

115

algorithm (slightly modified) we find that appropriate choices of At and «
can broaden the distribution of the force somewhat. However it does not add
a substantial amount of larger forces, since these are simply not present in
equilibrium. Other sampling algorithms have been suggested, for example
iteratively pruning a large data set of images by removing images where the
errors are not very large, and then retraining on the pruned datasets until we
are satisfied with the result. One can also check for images where new values of
the fingerprints are encountered and add these to the training set, or checking
images for large overall values of the feature vector. Behler in his review[45]
on neural network potentials suggests that sampling from equilibrium states
may leave holes in the potential energy surface, and suggests a few ways
of dealing with this sampling problem. However, we have not had time to
test these different methods. Other methods such as metadynamics® have
seen increasing application and there are now numerous implementations
available such as PLUMED®. In general, though sampling has not been studied
closely in this thesis, an increase in high quality data is an increase in neural
network performance, both for electronic structure calculations and for other
applications. Neural networks are known as data-hungry, and typically require
a large amount of data to perform well and also scale well with the number
of data points. In order to test the accuracy as we add data points we train a
neural network on progressively larger sets of images generated from molecular
dynamics, and evaluate them on a test set. The results are shown in table
10.6.

3 https://parrinello.ethz.ch/research/metadynamics.html
‘https://www.plumed.org/

116

https://parrinello.ethz.ch/research/metadynamics.html
https://www.plumed.org/

Table 10.6: Neural network accuracy as a function of the number of images.
The number of images is a function of the length of the molecular dynamics
trajectory, using a constant sampling interval.

Number of images Energy RMSE Force RMSE

10 1.33E-01 6.84E-01
20 2.51E-02 3.10E-01
20 1.07E-02 1.32E-01
100 5.58E-03 3.03E-01
200 2.00E-03 1.81E-01
200 1.78E-03 9.79E-02
1000 1.82E-03 3.07E-01
2000 1.58E-03 1.06E-01
2000 1.36E-03 1.62E-01
10000 1.42E-03 9.61E-02

From these results we see that the energy RMSE scales favorably as
the number of images available increase, and the force RMSE decreases as
well, though not as systematically, due to stochasticity and the fact that the
networks have not been trained on force. However, the gain in performance
tails off after approximately 500 data points, which suggests that there is
not much more to be gained from adding more configurations. Instead of
sampling more configurations from equilibrium, we may be better served by
looking at alternative sampling algorithms, sampling at higher or varying
temperatures to introduce larger forces into the trajectory or introducing
force training.

117

Chapter 11

Empirical potentials

In order to test the validity of using neural networks trained on molecular
dynamics trajectories to generate new trajectories we train neural networks
on systems of copper and silicon atoms using the Effective Medium Theory
[33] and Stillinger-Weber [31] potentials respectively. These potentials have
efficient implementations through the Atomic Simulation Environment (ASE)
and their As Soon As Possible (ASAP) interface, which makes it ideal for our
purposes. Additionally these potentials have an intermediate complexity, with
Stillinger-Weber explicitly including three-body interactions, which makes
them ideal for testing whether the Behler-Parrinello method [12] can replicate
this. At temperatures which are not too large these potentials describe atoms
in a crystalline structure in equilibrium, and we test whether the neural
network can reproduce the correct potential energy, forces, radial distribution
and mean squared displacement. In table 11.1 we have listed the parameters
we have used in the training process. While we have used a large amount of
training images for the energy training, since this is relatively inexpensive,
8000 training images were not a noticeable improvement over approximately
5000-1000 images, and only seemed to affect the speed of convergence. We
finally used 1000 images to refine the force accuracy, as we discussed in the
previous chapter. In table 11.2 we have listed the parameters used for testing
the neural network. For sampling data we used a larger timestep and sampling
interval than for applying the neural network, in order to obtain a larger
diversity of configurations, though this did not appear to matter much in the
final analysis.

118

Table 11.1: Hyperparameters used in fitting the neural network to the copper
and silicon images.

’ Hyperparameter Value ‘
Hidden layers [10, 10]
Activation Hyperbolic tangent
Time (fs) 9-10°
Timestep (fs) 5
Sampling intervall (timesteps) 100
Max epochs 4000
Regularization A=10""
Optimizer BFGS
Energy coefficient 1.0
Force coefficient 0.1

Table 11.2: Hyperparameters used in testing the trained copper and silicon
neural networks.

’ Hyperparameter Value ‘
Hidden layers (10, 10]
Activation Hyperbolic tangent
Time (fs) 5103
Timestep (fs) 1
Sampling intervall (timesteps) 10

11.0.1 Effective Medium Theory

The Effective Medium Theory (EMT) potential [32, 33| gives a good descrip-
tion of the late transition metals in a Face-Centered Cubic (FCC) crystal
lattice, and has a very efficient implementation in ASE, which makes it ideal
for producing large amounts of data. We will train on a rather small system
of 4 x 23 = 32 atoms with a temperature of 500 Kelvin since this means
a larger amount of labels available for atoms when we are only using the
potential energy. We train with only the energy for 8 - 10° steps with a
timestep of At = 5.0 fs writing to file every 100 steps and then subsequently
train using both energy and forces for 1-10° steps for a total of 8000 and 1000
configurations. We train on both sets of images for 4000 steps, where the

119

Error [eV]

BFGS optimizer has generally stopped improving by much. The cutoff radius
is set to 5 Angstrom, using 14 radial and 16 angular functions of the G4 type.
After the calculator is trained we compare the performance of the neural
network with the EMT potential on a system of 32 atoms with a temperature
of 300 Kelvin for 5000 steps writing to file every 100 steps.

Figure 11.1: Training loss, energy and force RMSE for the copper system
(using logarithmic axes). The loss function is discussed in chapter 8.0.1.
The network is first trained only with energies, and subsequently using both
energies and forces. The neural network weight updates are generally small
after approximately 1000 training epochs.

Energy and force Root Mean Square Error Energy and force Root Mean Square Error
108

—— Energy RMSE —— Energy RMSE

Loss function 103 Force RMSE

104 —— Loss function

10? 10t

10°

Error [eV, eV/A]

107

1074

10° 10t 102 10* 10° 10t 102 10*
Steps Steps

(a) Training loss and energy RMSE. (b) Training loss and energy and force RMSE.

In figure 11.1 we have plotted the loss and root mean squared errors
for the training process. After a few large oscillations in the beginning the
losses generally settle down and begin to decrease more smoothly. After
approximately 500-1000 steps the network seems to have converged, and the
change in loss is much smaller than before. Subsequently we train with forces
and we observe a large increase in the energy RMSE in exchange for a modest
decrease in force RMSE, as discussed in the previous chapter. After training
for a while both errors stop improving, and we consider the training converged.
Note that the loss function is not equivalent to the energy or force root mean
squared errors, as discussed in chapter 8.0.1.

120

abs(Exact energy - AMP energy) [eV]

Scatterplot of energy error, energy RMSE=1.11E-01 Scatterplot of farce error, force RMSE=5.81E-02

=4
i
o

=4
i
o

4
o
S

0.20

=4
i
[N}

015

=4
i
o

0.10

g
o
=

0.05

g
o
=3

o

=}

&
e
o
S

0.2 0.4 0.6 0.8 10 -1.0 -0.5 0.0 0.5 1.0
Exact energy Exact force
(a) Energy error. (b) Force component error.

Figure 11.2: Energy and force component errors on the test images. Root
mean squared errors in dotted lines. The errors are measured in units of eV
and eV /A respectively.

In figure 11.2 we have plotted the energy and force component (i.e. in
the x,y,z direction) absolute errors on the EMT test trajectory. We obtain
an energy error of approximately 0.1 eV, with a max value of approximately
0.16 eV. For the force errors we obtain an force RMSE of 0.05 eV /A, but
some of the force errors considerably higher, up to and including values of 0.3
eV /A, which may pose a problem for the long term stability of the system.
These values are comparable to other works studying neural network potential
energy surfaces, such as [13, 14, 10, 15|, at least for the forces. For the
energy, the energy is higher than usual, and this is caused at least partially
by training with force terms. Generally we observe that large force residuals
cause an increase in energy and translational momentum over time. As we
discussed in chapter 10.0.4 we believe this is because the sampling has left
holes in the neural network.

121

Radial distribution function

— EMT
10 — AMP
8 A
w b
O
o
4
2 M
0) \
0 1 2 3 4 5 6

Radial distance [A]

Figure 11.3: AMP radial distribution function plotted against EMT radial
distribution. The radial distribution function of the neural network potential
is generally more dispersed due to the increase in kinetic energy. The y-axis
is the radial distribution function, which is dimensionless.

In figure 11.3 we have plotted the AMP neural network radial distribution
function compared to the EMT radial distribution. We see that the AMP
potential can reproduce the copper crystal structure fairly well, though with
smaller peaks. As we will soon discuss, the neural network appears to be
able to reproduce the equilibrium crystal structure, though increases in
kinetic energy and translational momentum over time makes the atoms more
dispersed.

122

Potential energy as a function of time

w
un

— EMT
— AMP

w
(=]

N
(€]

N
(=]

=
u

L
o

Potential energy [eV]

4l .+".;‘|r\-f\|l.\'“

o
u

o
o

0 1000 2000 3000 4000 5000
Steps

Figure 11.4: AMP and EMT potential energy as a function of time. The
potential energy of the neural network generally performs well for the first
1000 steps, and then starts to increase likely due to an increase in kinetic
energy and total energy.

If we examine the potential energy as a function of time in figure 11.4 we
see that the neural network follows the EMT potential energy fairly well for
approximately 1500 steps, but then starts to significantly increase. As the
atoms move away from the energy minimum due to an increase in kinetic
energy, the potential energy starts to increase. This is most noticeable in
figure 11.5, where we have plotted the total energy as a function of time.
While the EMT energy is flat or oscillating around a mean value, the neural
network potential exhibits increasing energy over time. At the beginning the
increase in energy appears to be attributable to an increase in kinetic energy,
which may be caused by errors in the interpolated forces from the neural
network. This increase in kinetic energy also appears to lead to an increase
in translational momentum.

123

Total energy as a function of time

— EMT
AMP
5
3 4
=
o
Q
=
T 3
T
(=]
'—
2
R
0 1000 2000 3000 4000 5000

Steps

Figure 11.5: AMP and EMT total energy as a function of time. The energy
starts increasing after approximately 500 steps, and the increase seems to
be non-linear. This is hypothesized to be due to large force error residuals
causing increases in the kinetic energy of the atoms.

In figure 11.6 we have plotted the mean squared displacement (MSD),
which measures mean distance travelled averaged over all atoms in the system.
We observe that the MSD for the neural network is significantly larger than for
the EMT potential, and increasing non-linearly. In equilibrium we expect for
a crystal lattice that the mean squared displacement be linear, as the atoms
mostly oscillate in stable energy minima. For the neural network potential
the motion in the system appears to be increasing significantly, as the kinetic
and total energy is increasing over time.

124

Mean Squared Displacement

7000 EMT

AMP
6000

5000

= 4000

MSD [A

3000
2000

1000

I G . —

0 1000 2000 3000 4000 5000
Steps

0 e

Figure 11.6: AMP and EMT mean squared displacements as a function
of time. For the neural network potential the system picks up energy and
momentum over time, while the atoms governed by the EMT potential mostly
oscillate in stable energy minima.

If we examine the system trajectory in a program such as Ovito! we find
that the crystal structure has mostly remained intact, while the system has
picked up a certain amount of translational momentum. In figure 11.7 we
see that the system has moved as a whole, although this is easier to see
if you open up the trajectory file in Ovito yourself. This is in contrast to
the EMT potential, in which the atoms vibrate in place, and the system
remains more or less in place. Altogether, this suggests that while the neural
network potential is able to reproduce the crystal structure, numerical errors
propagate to a linear (possibly non-linear) increase in energy over time,
which threatens the long-term numerical stability of the trajectory. In order

1 Open VlIsualization TOol (OVITO)

125

https://www.ovito.org/

to obtain better results we would likely require datasets containing more
unlikely configurations and forces (i.e. slightly out of equilibrium). We also
generally find that the performance improves as we add more symmetry
functions, particularly radial functions are believed to improve the accuracy
with this potential, as the potential contains no explicit treatment of angular
interactions. However, more symmetry functions add significant CPU-time
cost, and the set of symmetry functions would have to be pruned to remove
significant correlations.

(a) Copper atoms after 10 steps. (b) Copper atoms after 5000 steps.

Figure 11.7: The system of copper atoms governed by the neural network
potential after 10 and 5000 timesteps. The system has picked up kinetic
energy and momentum and is moving over time.

Finally, we tested the time-scaling of the neural network as the number
of atoms increased. To test this we simply made a forces call on lattices
of different sizes, in order to obtain the force on every atom in the system.
Ideally we would have taken averages over multiple force calls, however at
these time scales we did not think it would significantly impact the results.

In figure 11.8 we see as expected that the trained neural network scales
linearly with the number of atoms, though with a significant pre-factor. We
see that it takes approximately 50 seconds to evaluate all the forces for a
system of 50 atoms, while it takes 250 seconds for a system of 200 atoms.
This pre-factor is dependent on the average number of neighbors of each
atom, which is again dependent on the cutoff radius. Since the neural network
has been trained with a set cutoff radius, this radius should be considered a

126

Time scaling as a function of system size
350

300

250

200

Time [5]

150
100

50

0 50 100 150 200 250
Number of atoms

Figure 11.8: Time scaling of the neural network as the number of atoms
increases. The time scaling is measured using the time it takes to obtain the
forces on every atom in the system. The time it takes to obtain the forces is
generally a linear function of the number of atoms in the system.

part of the neural network architecture and cannot be significantly changed
without impacting accuracy. This pre-factor is of course also dependent on
the time it takes to evaluate the symmetry functions and derivatives, which
is dependent on the number and type of symmetry functions, as the angular
function derivatives are significantly more expensive to evaluate than the
radial angular functions. For the system of 250 atoms the 5000 steps take
approximately 2 weeks to integrate over, which cannot compete with classical
potentials, often evaluated on the order of milliseconds. However, this is only
on a single core, and parallelizing using neighbor list algorithms such as those
found in the LAMMPS package could be a big improvement without too
much overhead. While this would help deployment, training would still be too

127

slow. As it stands now, the symmetry function derivatives have significant
parts implemented in Python which could with some effort be moved entirely
to Fortran, such as if-tests, dictionaries and neighbor lists. If these parts of
the codebase were moved fully to a lower-level compiled language, this would
help both training and deployment, and would enable training and testing of

larger and more complex systems?.

11.0.2 Stillinger-Weber

The Stillinger-Weber is a potential which describes accurately Silicon atoms
in the diamond lattice structure, and was one of the first potentials used
to describe a realistic atomic-scale model of Silicon. It is also one of the
most common examples of a potential with a three-body interaction, and
its intermediate complexity makes it ideal for verification with for example
quantum calculations or in our case machine learning methods. We initialize
a system of 8 unit cells with 8 atoms in each unit cell for a total of 8 x 23 = 64
atoms with velocities corresponding to a temperature of 500 Kelvin. As in the
previous section we integrate the system over 9 - 10° steps using a timestep
of At = 5.0 fs (suitable for most metals in a crystalline structure) writing to
file every 100 steps for a total of 8000 images for energy learning and 1000
images used to train forces. The neural network is trained for 4000 steps
after using simulated annealing for 2000 steps in order to search for optimal
initial weights. We then generate test sets using the Stillinger-Weber and
trained neural network potentials integrated for 5000 steps and compare the
results using the potential energy, radial distribution function, mean squared
displacement and more. The cutoff radius is set to R. = 5 Angstrom using
14 radial and 22 angular symmetry functions of the G2 and G4 types.

2 See for example this exchange on the AMP mailing list.

128

 https://listserv.brown.edu/cgi-bin/wa?A2=AMP-USERS;d7c6c98c.1904

Error [eV]

Energy and force Root Mean Square Error Energy and force Root Mean Square Error

—— Energy RMSE 105
10% Loss function Force RMSE

—— Loss function

10°

10t

2
Error [eV, eV/A]

10° 10t 102 10* 10° 10t 102 10°
Steps Steps

(a) Training loss and energy RMSE. (b) Training loss and energy and force RMSE.

Figure 11.9: Training losses and energy and force root mean squared errors.
The loss function is discussed in chapter 8.0.1. The network is first trained
only with energies, and subsequently using both energies and forces. The
neural network weight updates are generally small after approximately 1000
epochs.

For both the energy training and the force training phases, the losses often
rise sharply at the beginning, and then decay smoothly over time, reaching
something of a convergence after approximately 500-1000 steps. These values
are somewhat comparable to other works studying neural network potential
energy surfaces, such as [13, 14, 10, 15], at least in terms of the forces, though
the energies are higher than usual. The losses are somewhat higher for the
Stillinger-Weber than for the EMT potential, this may indicate more difficulty
reproducing the distribution or overfitting for the EMT potential. This is
also indicated in the test losses in figure 11.10, where both the energy and
force RMSEs are slightly higher than for the EMT potential. This may also
be an artifact of initialization, as finding good high-dimensional minima using
gradient descent is a process which in some cases may require many restarts.
However, if we examine the energies interpolated over time, it paints a better
picture than for the EMT potential.

129

—— Energy RMSE

abs(Exact energy - AMP energy) [eV]

Scatterplot of energy error, energy RMSE=2.45E-01 Scatterplot of force error, force RMSE=9.70E-02

o
o

e
n

<
ES

0.3

0.2

0.1

abs(Exact force - AMP force) [eV/A]

o
o

-276.8 -276.6 -276.4 -276.2 -276.0 -2758 -2756 -2.0 -15 -1.0 -0.5 0.0 0.5 10 15
Exact energy Exact force
(a) Energy error. (b) Force component error.

Figure 11.10: Energy and force component errors on test trajectory. Root
mean squared errors in dotted lines. The errors are measured in units of eV
and eV /A respectively.

In figure 11.11 we have plotted the energy as a function of time. While
the energy for the Stillinger-Weber potential is flat or oscillating around a
mean value over time, the neural network exhibits as before a seemingly linear
increase in energy over time. However, if we compare with the EMT potential
the change over time is now significantly smaller.

130

2.0

Total energy as a function of time
-274.4

AMP

-274.6

-274.8

-275.0

Total energy [eV]

-275.2

-275.4
0 1000 2000 3000 4000 5000

Steps

Figure 11.11: AMP and Stillinger-Weber total energy as a function of time.
The energy conservation is generally much better for the neural network
trained on the Stillinger-Weber potential than the one trained on the EMT
potential. The energy is increasing over time, but may have stabilized after
approximately 2500 steps. Longer trajectories would have to be produced in
order to verify this.

This is also seen in the potential energy over time in figure 11.12, which
is as before increasing, though the increase is smaller, and in general the
potential energy fits better than before. We speculate on a few reasons for this.
One reason may be that since angular interactions contribute significantly
to the Stillinger-Weber potential, a mix of radial and angular symmetry
functions provides a better fit than for the EMT potential, where only radial
interactions are explicitly treated. Another reason may also be that the
Silicon atoms are radially distributed more discretely, such that there are
fewer neighbors for any given atom to consider. We expect in general that
if the symmetry functions are not too correlated, adding more symmetry

131

functions increase fit and numerical stability, but we are limited by the time
it takes to evaluate their derivatives.

Potential energy as a function of time

~275.6
-275.8
> _276.0 |
S 1 N " i
5 —276.2 1 | A L
c | | '
b | Il
© -276.4 1 | |
e
c
|
S -276.6
-276.8
— sw
—— AmP
-277.0
0 1000 2000 3000 4000 5000

Steps

Figure 11.12: AMP and Stillinger-Weber potential energy as a function of
time. The neural network is able to reproduce the Stillinger-Weber potential
well, but appears to be increasing slightly over time.

As before there are indications that the increase in energy is initially
attributed to the kinetic energy, and as we see in the radial distribution
functions in figure 11.13, the neural network system is slightly more dispersed
than the Stillinger-Weber system. In addition in figure 11.14 we can see that
the mean squared displacement is increasing in a non-linear fashion as the
atoms pick up both kinetic energy and translational momentum.

132

Radial distribution function

— SW

AMP
10

Radial distribution function

Radial distance [A]

Figure 11.13: Radial distribution functions for the Stillinger-Weber and neural
network potentials. The system governed by the neural network potential is
more dispersed over time, due to an increase in kinetic and total energy.

The increase in kinetic energy and translational momentum is illustrated
both in the mean squared displacement and from snapshots of the system as
in figure 11.15. This is even better illustrated in visualization software, where
we can see that while the Stillinger-Weber system remains stationary over
time, the neural network system picks up momentum and starts moving. We
see that the system has moved slightly over time, while the crystal structure
has remained mostly intact as evidenced by the radial distribution function.
However, since the energy conservation is better for the neural network trained
on the Stillinger-Weber potential, this motion is smaller than what we have
observed for the EMT potential.

133

Mean Squared Displacement

— 5W
14000 —— AMP

12000
10000
8000
6000

4000

Mean Squared Displacement [A]

2000

0 1000 2000 3000 4000 5000
Steps

Figure 11.14: Mean squared displacement over time for the Stillinger-Weber
and neural network potentials. For the neural network potential the system
picks up some energy and momentum over time, while the atoms governed
by the Stillinger-Weber potential mostly oscillate in stable energy minima.

134

(a) Silicon atoms after 10 steps. (b) Silicon atoms after 5000 steps.

Figure 11.15: The system of silicon atoms governed by the neural network
potential after 10 and 5000 steps. The system has picked up some kinetic
energy and momentum and is moving over time.

Finally, we also examined the time scaling of the system as we did for the
neural network trained on the EMT potential. As before we calculated the
time it took for a single forces call on all the atoms in the system, as this is
the limiting factor for integrating the atoms a single timestep using the Verlet
algorithm. Ideally we would take averages of the time this takes, but except
for the smaller systems this does not affect the results very much, due to the
timescales involved. The results are shown in figure 11.16. From this plot
we observe that integrating a system with 100 silicon atoms one step would
take approximately 25-30 seconds, while a system of 300 atoms would take
approximately 110 seconds. This means integrating a system of 100 atoms for
5000 steps would take about 35 hours, which is quite a large amount of time
compared to typical empirical potentials. For the Stillinger-Weber potential
this force call takes on the order of milliseconds, several orders of magnitude
removed. However, since the neural network potential scales linearly, this
may be competive with ab-initio methods which exhibit much poorer scaling
as the system size increases.

Even though the neural network potentials have the same cutoff radius, the
Stillinger-Weber potential takes roughly 2-4 times fewer seconds to evaluate
the forces for an equivalent size. It is unclear why this is the case, as the trained
potentials have a comparable number of radial symmetry functions, while the
Stillinger-Weber potential has a larger amount of angular symmetry functions.

135

Time scaling as a function of system size
200

175
150
125

100

Time [s]

75
50

25

0 100 200 300 400 500
Number of atoms

Figure 11.16: Time scaling of the neural network potential as a function of
the size of the system. The time scaling is measured using the time it takes
to obtain the forces on every atom in the system. The time it takes to obtain
the forces is generally a linear function of the number of atoms in the system.

This may be because the copper atoms have a larger average amount of
neighbors, or because the potentials have been tested on different computers
(due to some difficulty in installing the Stillinger-Weber potential on one
computer). Otherwise, this may be down to bugs in the code which stalls the
network when calculating neighborlists, fingerprints or other quantities.

136

Chapter 12

Conclusions and future work

In this thesis we have trained neural networks to reproduce molecular dynamics
potentials using the Behler-Parrinello method. These potentials are high-
dimensional functions with many parameters to be determined, and are
often developed through intimate knowledge of the physical and chemical
properties of the systems they are designed for. In addition there are certain
symmetries which must be respected when developing potentials, in particular
translational, rotational and permutational symmetries, as well as conserving
energy over time (in the NVE ensemble). Traditional ab-initio methods
suffer from poor scaling as the size of the systems increases, while classical
potentials derived from ab-initio calculations allows us to simulate realistic
scales of up to millions of atoms depending on the computer resources and
the complexity of the atoms in the system. Since these neural networks
when trained offer linear scaling, they could serve both as supplements to
ab-initio methods or be deployed for calculations using classical molecular
dynamics. For example, one could save many CPU cycles by producing and
training on a small trajectory calculated from DFT, and then use the neural
networks to produce the remainder of the data, provided the neural networks
are reasonably accurate. While our neural network potential scales linearly
with system size, it has a rather large pre-factor dependent on the symmetry
function set, cutoff radius and the average number of neighbors in the system.
We believe this could be improved by moving more calculations to lower level
compiled languages, such as calculations of neighbor lists, fingerprints and
fingerprint derivatives for every step. Although we have only ran the neural
networks on a single core, the potential could be parallelized over the atoms
using algorithms such as LAMMPS neighbor lists without too much overhead.

137

Unfortunately we were not able to achieve energy conservation with our
neural networks. This a central feature of any neural network potential, and
without energy conservation, we cannot sample properties in equilibrium,
as for example the radial distribution function or the diffusion constant is
increasing over time and ill defined. Generally we find an increase in kinetic
energy over time, corresponding to an increase in potential energy as the
atoms move apart, and an increase in translational momentum. This indicates
holes in the training data from sampling in equilibrium, as the network seems
to perform poorly on unseen configurations with larger forces, and produce
large force residuals. The results are notably different for the EMT and
Stillinger-Weber potential, this is caused by among other things the symmetry
function sets and the average number of neigbors in the system. The Stillinger-
Weber explicitly includes three-body interactions, while the EMT potential is
a function of interatomic distances, and our results suggest that the balance
between the number of radial and symmetry functions should be decided by
more careful analysis of their relative importance.

On the test trajectory we achieved reasonable values of the energy and
force root mean squared errors, approximately 0.1 eV for the energy and
0.05-0.1 eV /A for the force. These are mostly consistent with the results
others have achieved such as [13, 14, 10, 15], though the energy is often on
the order of 1-10 meV, which is lower than what we have achieved. This is
partly due to the fact that we have emphasized training with forces, which
comes at the expense of the energy fit. Since the training Root Mean Squared
Errors (RMSEs) is substantially lower than the test RMSE this may indicate
overfitting, though we would not expect this to be a substantial problem with
such a small network with applied regularization. We note that this has not
been tested extensively, and more testing could produce different results.

12.0.1 Prospects and future work

In this thesis we barely scratched the surface of combining machine learning
methods with molecular dynamics. There are therefore many, many paths
to be explored for future theses or even articles to be published, which may
be achieved working through ASE and/or AMP and making modifications
or writing your own code from scratch. We will list some of the prospects
considered while writing this thesis in semi-ordered order of importance,
though there are likely many which have not been considered.

138

e Numerical optimization: In order to speed up the training and de-
ployment of neural networks the Atomistic Machine-learning Package
(AMP) authors created efficient Fortran implementations of the Behler-
Parrinello symmetry functions. This is an improvement over pure
Python code, but not enough to be satisfied. Many parts of the finger-
printing, including neighborlists, dictionary data structures, IF tests
and so on are currently implemented in Python code. This means we
are limited in terms of CPU time and memory in how fast we can alter
hyperparameters and train neural networks on new datasets, and how
quickly the neural networks can be deployed and evaluated in molecular
dynamics. First and foremost we would suggest moving the calculation
of the neighborlists, fingerprints and fingerprint derivatives entirely to
Fortran or some other efficient compiled language. This would reduce
the speed of evaluations which are currently performed in Python, and
reduce communication overhead between the Python APIs and the
Fortran compiled functions. For more information see this post on the
AMP mailing list. Once we have our input data and labels, training
can be performed efficiently using software packages such as Tensorflow
or Pytorch, and training moved to GPUs with little effort.

e Parallelization and LAMMPS: As we have discussed in the chapter on
the Atomistic Machine-learning Package, AMP is planned to provide
support for the OpenKIM API which would provide the means to
export the neural networks to LAMMPS molecular dynamics software
for deployment. If this is implemented (currently unknown) this could
significantly speed up the deployment and testing of the neural networks,
as LAMMPS is an efficient compiled code, with efficient algorithms for
parallelizing the force evaluations over multiple cores.

e Improved sampling method: We have observed that sampling from
molecular dynamics trajectories limits us mostly to systems in equi-
librium, which limits the range of energies and forces observed in the
dataset. Neural networks perform unexpectedly when encountering
unseen data, and the training data therefore restricts the generalization
properties of the network. Improved sampling algorithms to sample
a wider range of energies and forces out of equilibrium would likely
improve the long timescale performance of the neural network and make
the neural network potential more accurate on new configurations.

139

 https://listserv.brown.edu/cgi-bin/wa?A2=AMP-USERS;d7c6c98c.1904

e Neural network implementation: Currently AMP provides a neural
network implementation written by the authors, and a Tensorflow 0.11
module compatible only with Python 2.7. We would suggest writing a
more modern Tensorflow interface, using for example the new Tensorflow
2.0 beta, in order to take full advantage of these mature neural network
implementations. This could among other things improve speed, more
efficient algorithms for initialization and training and a large set of
helpful functions for training neural networks efficiently.

e Determining symmetry function sets: We have discussed some methods
of determining symmetry functions, but not in great detail. Generally
you want the symmetry functions to cover the radial and angular space,
while no two symmetry functions should be highly correlated. However,
we have observed that the same general mix of symmetry functions can
produce very different results. It would be very beneficial if we had an
automated approach or highly specified approach to determining the
numbers of and parameters of the symmetry functions for a wide range
of potential energy surfaces, which would significantly ease the difficulty
in training and deploying neural networks using the Behler-Parrinello
method.

e Finding minima: The AMP package finds minima in the loss function
using an interface to the scipy.optimize library of functions. In this
thesis we have only tested with the BFGS optimizer, which is the default
in AMP, and the one generally favored by the authors and other users.
However, finding minima in the cost function of neural networks is
a complicated affair, which has been examined in great detail in the
literature. First and foremost one could test other optimizer available
through scipy, such as the basin hopping optimizer. If an interface to
a more mature neural network software package such as Tensorflow is
implemented it would be easy to test optimizers such as ADAM, SGD,
Adagrad and many more [48].

e New descriptors: In this thesis we have restricted our interest to the
tried and tested Behler-Parrinello symmetry functions as the mapping
from coordinates to inputs. There have since been many suggestions
on how to fingerprint atomic systems, such as DPMD, SOAP, Zernike
and Bispectrum descriptors and so forth [15, 49, 10], some of which are
discussed in chapter 6. If the forces can be calculated efficiently and

140

accurately these descriptors should be evaluated for use in molecular
dynamics.

New machine-learning models: In this thesis we have only tested neural
networks as the machine-learning method for regression, due to the
explosion of interest and application in recent times. Neural networks
are favorable due to their ability to scale well as the data available
increases, but if data is limited other machine-learning algorithms may
be competitive. Since we require the calculation of forces for usage
in molecular dynamics we require the algorithm to have continuous
derivatives, and a good example is Kernel Ridge Regression, which is
currently supported in AMP.

Multiple atom types: In this thesis we have limited our attention to
single-atom systems, though AMP provides support for multiple atoms.
The Behler-Parrinello method is limited in that a neural network has
to be trained for every type-type interaction, for example an O-H
interaction must be treated separately. This means that fewer potential
energy labels are available for training per neural network, and creates
a combinatorial problem as the number of interactions in the system
increases. Suggestions have been made to solve this problem such as
weighted atom-centered symmetry functions (WACSF's [46]) and these
could be implemented and evaluated against empirical potentials and
neural networks trained using the standard approach.

Long-range interactions: The Behler-Parrinello approach we have de-
ployed is currently limited to short-range interactions within a cutoff
sphere, and this is not sufficient for long-range interactions such as the
Coulomb interaction. Using methods such as Ewald summation [50],
the Behler-Parrinello method could accommodate this, and this would
facilitate training on systems containing for example water or biological
molecules.

141

Appendices

142

Appendix A

Symmetry function parameters

In this section we list the symmetry function parameters employed in the
parameter search and in fitting to the Effective Medium Theory and Stillinger-
Weber potentials. An explanation of the various parameters can be found in
chapter 6.0.1.

143

Table A.1: The symmetry function parameters employed in the parameter
search in chapter 10. The symmetry function parameters are divided into the
G2 radial symmetry function type and the G4 angular symmetry function

type.

G2 radial symmetry functions. G4 angular symmetry functions.

n R, n A (¢
1.0 0 001 1.0 1
48 0 001 -1.0 1
86 0 034 1.0 1
124 0 034 -1.0 1
16.2 0 067 1.0 1
20.0 0 0.67 -1.0 1
50 0.5 1.0 1.0 1
50 1.5 1.0 -1.0 1
50 2.5 133 1.0 1
50 3.5 1.33 -1.0 1
50 4.5 1.67 1.0 1
50 5.5 1.67 -1.0 1
- 20 1.0 1
20 -1.0 1

233 1.0 1

2.33 -1.0 1

267 1.0 1

2.67 -1.0 1

30 1.0 1

30 -10 1

144

Table A.2: The symmetry function parameters employed in the fitting to the
Effective Medium Theory potential in chapter 11.0.1. The symmetry function
parameters are divided into the G2 radial symmetry function type and the
G4 angular symmetry function type.

G2 radial symmetry functions. G4 angular symmetry functions.

n R, n A (¢
1.0 0 001 1.0 1
416 0 001 -1.0 1
733 0 044 1.0 1
10.50 0 044 -1.0 1
13.66 0 086 1.0 1
16.83 0 0.86 -1.0 1
20.00 0 1.29 1.0 1
50 0.50 1.29 -1.0 1
50 1.16 1.72 1.0 1
50 1.83 1.72 -1.0 1
50 2.50 215 1.0 1
50 3.16 215 -1.0 1
50 3.83 257 1.0 1
50 4.50 2.57 -1.0 1
- 3.00 1.0 1

3.00 -1.0 1

145

Table A.3: The symmetry function parameters employed in the fitting to
the Stillinger-Weber potential in chapter 11.0.2. The symmetry function
parameters are divided into the G2 radial symmetry function type and the
G4 angular symmetry function type.

G2 radial symmetry functions. G4 angular symmetry functions.

n R, n A (¢
1.0 0 001 1.0 1
416 0 001 -1.0 1
733 0 031 1.0 1
10.50 0 031 -1.0 1
13.66 0 061 1.0 1
16.83 0 061 -1.0 1
20.00 0 091 1.0 1
50 0.50 091 -1.0 1
50 1.16 121 1.0 1
50 1.83 1.21 -1.0 1
50 2.50 1.50 1.0 1
50 3.16 1.50 -1.0 1
50 3.83 1.80 1.0 1
50 4.50 1.80 -1.0 1
E— 210 1.0 1
210 -1.0 1
240 1.0 1
2.40 -1.0 1
270 1.0 1
2.70 -1.0 1
3.00 1.0 1
3.00 -1.0 1

146

Appendix B

Software and hardware

The software stack for this thesis involves primarily Python, using the Ana-
conda package on the Ubuntu operating system. We have employed a mix of
the Atomic Simulation Environment, the Atomistic Machine-learning Package
(AMP) and parts of AMP implemented in Fortran. The code used to generate
this thesis is available on Github:

user:aglgit, repository: master-thesis

The code used to generate the results are also available on Github:
user:aglgit, repository: python-md

user:aglgit, repository: amp

The AMP code is a fork of the AMP project with minor modifications,
which is available on Bitbucket:
user:andrewpeterson, repository: amp

Nearly all calculations were performed on the Abel computing cluster, hosted
at the University of Oslo University Center for Information Technology (USIT)
by the Research Infrastructure Services group. The Stillinger-Weber calcula-
tions were performed using my assigned computer at the University of Oslo
Computational Science group, with an Intel(R) Core(TM) i5-6500 CPU @
3.20GHz and 16 GB of RAM using the Ubuntu 18.04 operating system.

147

https://www.anaconda.com/
https://www.anaconda.com/
https://ubuntu.com/
https://github.com/aglgit/master-thesis
https://github.com/aglgit/python-md
https://github.com/aglgit/amp
https://bitbucket.org/andrewpeterson/amp/src/master/
https://www.uio.no/english/services/it/research/hpc/abel/more/index.html
https://www.usit.uio.no/english/

Appendix C

Bibliography

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances
in Neural Information Processing Systems 25. Ed. by F. Pereira et
al. Curran Associates, Inc., 2012, p. 1097. URL: http : / / papers .
nips . cc / paper / 4824 - imagenet - classification - with - deep -
convolutional-neural-networks.pdf.

Md. Zahangir Alom et al. “The History Began from AlexNet: A Compre-
hensive Survey on Deep Learning Approaches”. In: CoRR abs/1803.01164
(2018). arXiv: 1803.01164. URL: http://arxiv.org/abs/1803.01164.

Nicholas M Ball and Robert J Brunner. “Data mining and machine
learning in astronomy”. In: International Journal of Modern Physics D
19 (2010), p. 1049.

Juan Carrasquilla and Roger G Melko. “Machine learning phases of
matter”. In: Nature Physics 13 (2017), p. 431.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. “Searching for
exotic particles in high-energy physics with deep learning”. In: Nature
communications 5 (2014), p. 4308.

Michael J Gillan, Dario Alfe, and Angelos Michaelides. “Perspective:
How good is DFT for water?” In: The Journal of chemical physics 144
(2016), p. 130901.

Nicos S Martys and Raymond D Mountain. “Velocity Verlet algorithm
for dissipative-particle-dynamics-based models of suspensions”. In: Phys-
ical Review E 59 (1999), p. 3733.

148

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1803.01164
http://arxiv.org/abs/1803.01164

[16]

[17]

[18]

[19]

Jorg Behler. “Perspective: Machine learning potentials for atomistic
simulations”. In: The Journal of chemical physics 145 (2016), p. 170901.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer
feedforward networks are universal approximators”. In: Neural networks
2 (1989), p. 359.

Alireza Khorshidi and Andrew A Peterson. “Amp: A modular approach
to machine learning in atomistic simulations”. In: Computer Physics
Communications 207 (2016), p. 310.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al.
“Learning representations by back-propagating errors”. In: Cognitive
modeling 5 (1988), p. 1.

Jorg Behler and Michele Parrinello. “Generalized neural-network repre-
sentation of high-dimensional potential-energy surfaces”. In: Physical
review letters 98 (2007), p. 146401.

John-Anders Stende. “Constructing high-dimensional neural network
potentials for molecular dynamics”. MA thesis. 2017.

Hakon Vikgr Treider. “Speeding up ab-initio molecular dynamics with
artificial neural networks”. MA thesis. 2017.

Linfeng Zhang et al. “Deep Potential Molecular Dynamics: A Scalable
Model with the Accuracy of Quantum Mechanics”. In: Phys. Rev. Lett.
120 (2018), p. 143001. pO1: 10.1103/PhysRevLett.120.143001. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.120.143001.

Jun John Sakurai and Eugene D Commins. Modern quantum mechanics,
revised edition. AAPT, 1995.

Attila Szabo and Neil S Ostlund. Modern Quantum Chemistry: Intro-
duction to advanced electronic structure theory. Dover Publications Inc,
1996.

C. David Sherrill. An Introduction to Hartree-Fock Molecular Orbital
Theory. http://vergil.chemistry.gatech.edu/notes/hf-intro/
hf-intro.html. Online; accessed March 2019. 2000.

Morten Hjorth-Jensen. FYS//11/9411: Computational Physics 2 notes,
Definitions of the many-body problem and Hartree-Fock theory. https://
compphysics.github.io/ComputationalPhysics2/doc/web/course.
Online; accessed March 2019. 2019.

149

https://doi.org/10.1103/PhysRevLett.120.143001
https://link.aps.org/doi/10.1103/PhysRevLett.120.143001
http://vergil.chemistry.gatech.edu/notes/hf-intro/hf-intro.html
http://vergil.chemistry.gatech.edu/notes/hf-intro/hf-intro.html
https://compphysics.github.io/ComputationalPhysics2 /doc/web/course
https://compphysics.github.io/ComputationalPhysics2 /doc/web/course

[23]

[24]

[25]

Julien Toulouse. Introduction to density-functional theory. http://www.
lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_
dft.pdf. Online; accessed April 2019. 2017.

Pierre Hohenberg and Walter Kohn. “Inhomogeneous electron gas”. In:
Physical review 136 (1964), B864.

Mel Levy. “Universal variational functionals of electron densities, first-
order density matrices, and natural spin-orbitals and solution of the
v-representability problem”. In: Proceedings of the National Academy
of Sciences 76 (1979), p. 6062.

John P Perdew et al. “Density-functional theory for fractional particle
number: derivative discontinuities of the energy”. In: Physical Review
Letters 49 (1982), p. 1691.

John P Perdew and Mel Levy. “Physical content of the exact Kohn-
Sham orbital energies: band gaps and derivative discontinuities”. In:
Physical Review Letters 51 (1983), p. 1884.

W. Kohn and L. J. Sham. “Self-Consistent Equations Including FEx-
change and Correlation Effects”. In: Phys. Rev. 140 (1965), A1133. DOI:
10.1103/PhysRev.140.A1133. URL: https://link.aps.org/doi/10.
1103/PhysRev.140.A1133.

Dominik Marx and Jorg Hutter. Ab Initio Molecular Dynamics: Theory
and Implementation. Online; accessed April 2019. John von Neumann
Institute for Computing, 2000.

Daan Frenkel and Berend Smit. Understanding molecular simulation:
from algorithms to applications. Vol. 1. Academic Press, 2001.

Davis Sterkewolf and Sudarson S. Sinha. The FEquipartition Theo-
rem. https : //chem . libretexts . org/Bookshelves /Physical _
and_Theoretical _Chemistry_Textbook_Maps/Map’3A_Physical_
Chemistry_(McQuarrie_and_Simon)/18%3A_Partition_Functions_
and_Ideal_Gases/The_Equipartition_Principle. Online; accessed
September 2019. 2019.

M. Scott Shell. Advanced molecular dynamics techniques. https://
sites.engineering.ucsb.edu/~shell/che210d/Advanced_molecular_
dynamics.pdf. Online; accessed April 2019. 2012.

Jostein Blyverket. “MOLECULAR DYNAMICS MODELING OF CLAY-
FLUID INTERFACES”. PhD thesis. June 2015.

150

http://www.lct.jussieu.fr/pagesperso /toulouse/enseignement/introduction_dft.pdf
http://www.lct.jussieu.fr/pagesperso /toulouse/enseignement/introduction_dft.pdf
http://www.lct.jussieu.fr/pagesperso /toulouse/enseignement/introduction_dft.pdf
https://doi.org/10.1103/PhysRev.140.A1133
https://link.aps.org/doi/10.1103/PhysRev.140.A1133
https://link.aps.org/doi/10.1103/PhysRev.140.A1133
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/18%3A_Partition_Functions_and_Ideal_Gases/The_Equipartition_Principle
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/18%3A_Partition_Functions_and_Ideal_Gases/The_Equipartition_Principle
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/18%3A_Partition_Functions_and_Ideal_Gases/The_Equipartition_Principle
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/18%3A_Partition_Functions_and_Ideal_Gases/The_Equipartition_Principle
https://sites.engineering.ucsb.edu /~shell/che210d/Advanced_molecular_dynamics.pdf
https://sites.engineering.ucsb.edu /~shell/che210d/Advanced_molecular_dynamics.pdf
https://sites.engineering.ucsb.edu /~shell/che210d/Advanced_molecular_dynamics.pdf

[34]

[35]

[36]

[40]

[41]

Cameron Abrams. Molecular Simulations. http://www.pages.drexel.
edu/~cfa22/msim/node41.html. Online; accessed April 2019. 2013.

KW Jacobsen, JK Norskov, and Martti J Puska. “Interatomic interac-
tions in the effective-medium theory”. In: Physical Review B 35 (1987),
p. 7423.

Karsten W Jacobsen, Per Stoltze, and JK Ngrskov. “A semi-empirical
effective medium theory for metals and alloys”. In: Surface Science 366
(1996), p. 394.

Pankaj Mehta et al. “A high-bias, low-variance introduction to machine
learning for physicists”. In: (2019). Online; accessed March 2019.

Poggio et al. 9.520: Statistical Learning Theory and Appplications.
https : //www . mit . edu/~9 . 520/ springl2 /slides / class01/
classO1.pdf. Online; accessed September 2019. 2012.

Sandra Vieira, Walter HL. Pinaya, and Andrea Mechelli. “Using deep
learning to investigate the neuroimaging correlates of psychiatric and
neurological disorders: Methods and applications”. In: Neuroscience &
Biobehavioral Reviews 74 (2017), p. 58.

Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of
training deep feedforward neural networks”. In: Proceedings of the
thirteenth international conference on artificial intelligence and statistics.
2010, p. 249.

Joseph-Frédéric Bonnans et al. Numerical optimization: theoretical and
practical aspects. Springer Science & Business Media, 2006. Chap. 1-4.

Albert P. Bartdk et al. “Gaussian Approximation Potentials: The Accu-
racy of Quantum Mechanics, without the Electrons”. In: Phys. Rev. Lett.
104 (2010), p. 136403. DOL: 10.1103/PhysRevLett.104.136403. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.104.136403.

Stefan Chmiela et al. “Machine learning of accurate energy-conserving
molecular force fields”. In: Science Advances 3 (2017). Do1: 10.1126/
sciadv . 1603015. eprint: https : / / advances . sciencemag . org/

content/3/5/e1603015.full.pdf. URL: https://advances.sciencemag.

org/content/3/5/e1603015.

Ask Hjorth Larsen et al. “The atomic simulation environment—a Python

library for working with atoms”. In: Journal of Physics: Condensed
Matter 29 (2017), p. 273002.

151

http://www.pages.drexel.edu/~cfa22/msim/node41.html
http://www.pages.drexel.edu/~cfa22/msim/node41.html
https://www.mit.edu/~9.520/spring12/slides/class01/class01.pdf
https://www.mit.edu/~9.520/spring12/slides/class01/class01.pdf
https://doi.org/10.1103/PhysRevLett.104.136403
https://link.aps.org/doi/10.1103/PhysRevLett.104.136403
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1126/sciadv.1603015
https://advances.sciencemag.org/content/3/5/e1603015.full.pdf
https://advances.sciencemag.org/content/3/5/e1603015.full.pdf
https://advances.sciencemag.org/content/3/5/e1603015
https://advances.sciencemag.org/content/3/5/e1603015

James Bergstra and Yoshua Bengio. “Random search for hyper-parameter
optimization”. In: Journal of Machine Learning Research 13.Feb (2012),
p. 281.

Dimitris Bertsimas, John Tsitsiklis, et al. “Simulated annealing”. In:
Statistical science 8 (1993), p. 10.

Yann A LeCun et al. “Efficient backprop”. In: Neural networks: Tricks
of the trade. Springer, 2012, p. 9.

Jorg Behler. “Neural network potential-energy surfaces in chemistry:
a tool for large-scale simulations”. In: Physical Chemistry Chemaical
Physics 13 (2011), p. 17930.

Michael Gastegger et al. “wACSF—Weighted atom-centered symmetry
functions as descriptors in machine learning potentials”. In: The Journal
of chemical physics 148 (2018), p. 241709.

A Pukrittayakamee et al. “Simultaneous fitting of a potential-energy
surface and its corresponding force fields using feedforward neural
networks”. In: The Journal of chemical physics 130 (2009), p. 134101.

Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

Albert P Barték, Risi Kondor, and Gabor Csanyi. “On representing
chemical environments”. In: Physical Review B 87.18 (2013), p. 184115.

Abdulnour Y Toukmaji and John A Board Jr. “Ewald summation tech-
niques in perspective: a survey”. In: Computer physics communications
95 (1996), p. 73.

152

	Introduction
	Electronic structure calculations
	Atom-centered descriptors
	Goals
	Contributions
	Structure

	I Theory
	Quantum Mechanics
	Kets and bras
	Operators
	Time evolution
	The Schrödinger equation

	Many-body Quantum Mechanics
	Hartree-Fock
	Density-functional theory

	Molecular Dynamics
	From quantum mechanics to molecular dynamics
	Molecular dynamics simulations
	Molecular dynamics potentials

	Machine learning
	Basics of statistical learning
	Bias-variance decomposition
	Neural networks
	Backpropagation
	Optimization

	Atom-centered descriptors
	Gaussian descriptors
	Zernike and bispectrum descriptors
	Deep Potential Molecular Dynamics

	II Implementation
	Atomic Simulation Environment
	Installation
	Molecular Dynamics
	Calculators

	Atomistic Machine-learning Package
	Theory
	Installation
	Training example
	Descriptors and models

	Fitting to the Lennard-Jones potential
	Tensorflow implementation
	Comparison and absolute error

	III Results
	Parameter search
	Force training
	Activation, hidden layers
	Cutoff radius
	Symmetry functions
	Overfitting and regularization
	Sampling and scaling

	Empirical potentials
	Effective Medium Theory
	Stillinger-Weber

	Conclusions and future work
	Prospects and future work

	Appendices
	Symmetry function parameters
	Software and hardware
	Bibliography

