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abstract: Long-term phenotypic stasis is frequently observed in the
fossil record, but not readily predicted from microevolutionary theory.
To test competing explanations for stasis on macroevolutionary time-
scales we need reliably estimated parameters from appropriate evolu-
tionary models that adequately describe the evolutionary trait dynamics.
Here, we develop tests to assess the adequacy of themost commonly used
stasis model in evolutionary biology and apply them to time series of
phenotypic traits from fossil lineages. Of the 572 fossil time series we
analyzed from the literature, 263 time series showed a better fit to the
stasis model relative to alternative models, but only 172 of those fitted
the stasis model in both relative and absolute terms. The estimated trait
variances from these 172 time series do not correlate with rough proxies
of effective population size. Our preliminary investigation of the fixed-
optimumhypothesis hence fails to give empirical support to the idea that
genetic drift around a constant trait optimum is an explanation for stasis
in the fossil record. We argue that optima following stationary processes
on the adaptive landscape is a viable hypothesis for stasis that needs fur-
ther investigation.We end by discussing how investigations ofmodel ad-
equacy can be a valuable approach for increasing our understanding of
the dynamics of the adaptive landscape onmacroevolutionary timescales.

Keywords: macroevolution, adaptive landscape, paleontology, stabiliz-
ing selection, phenotypic evolution.

Introduction

Understanding long-termmorphological stasis (i.e., low or no
net evolution in a lineage on macroevolutionary timescales;
Eldredge and Gould 1972; Gould and Eldredge 1977; Gould
2002) remains a major challenge in evolutionary biology (Brad-
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shaw 1991; Hansen and Houle 2004; Voje 2016). Studies on
generational timescales tend to find substantial additive ge-
netic variation in most traits (Houle 1992; Lynch andWalsh
1998; Hansen et al. 2011), which is indicative of a large po-
tential for traits to evolve. This potential is commonly con-
firmed by the observation of rapid changes in phenotypic traits
over a few generations in natural populations (e.g., Hendry and
Kinnison 1999; Kinnison andHendry 2001) and inmany ar-
tificial selection experiments (e.g., Hill and Caballero 1992).
Moreover, population genetic theory predicts faster rates of
change in quantitative traits thanwhat is commonly observed
in the fossil record (Lynch 1990; Cheetham et al. 1994). Long-
term stasis is therefore not readily predicted from microevo-
lutionary theory or empirical insights on short evolutionary
timescales. Yet, stasis appears to be a common mode of evo-
lution in the fossil record (Hunt 2007; Hopkins and Lidgard
2012; Hunt et al. 2015; Voje 2016).
Part of the challenge in explaining stasis is to ascertain the

validity of various competing hypotheses and to evaluate their
relative importance (Hunt and Rabosky 2014). A much-
invoked explanation for stasis is genetic and developmental
constraints (Eldredge and Gould 1972; Hansen and Houle
2004). For example, stabilizing selection on pleiotropically
linked traits may severely reduce the amount of free additive
genetic variance available for selection to act on (Hansen
2003; Hansen et al. 2003). Genetic covariation among traits
is the basis for understanding multivariate trait evolution
(e.g., Lande 1979; Lande and Arnold 1983; Blows 2007), and
genetic correlations have been shown to influence evolution-
ary trajectories onmacroevolutionary timescales (e.g., Schluter
1996; Blows and Higgie 2003; Hansen 2003; Hansen et al.
2003;Marroig andCheverud2005;Grabowski et al. 2011;Han-
sen and Voje 2011; Grabowski 2016). Genetic covariances
and reduction in the amount of freely available additive ge-
netic variance can reduce the response to selection, but to
what extent such constraints can explain morphological sta-
sis onmillion-year timescales is debated (Hansen 2012). An-
other hypothesis for stasis invokes homogenizing gene flow
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between locally adapted subpopulations (Lieberman et al.
1995; Lieberman and Dudgeon 1996; Eldredge et al. 2005;
Futuyma 2010). Some evidence that evolutionary changes
within subpopulations may be swamped by gene flow have
been found in studies of brachiopods (Lieberman et al. 1995),
but the homogenizing effect of gene flowonmacroevolution-
ary timescales has generally been little explored. Stabilizing
selection on the focal trait is the most commonly invoked
explanation for long-term stasis (Charlesworth et al. 1982;
Smith 1983; Haller and Hendry 2014). The strictest version
of the stabilizing-selection hypothesis assumes that stasis is
a result of stabilizing selection around a fixed optimum over
long timescales (Haller and Hendry 2014). According to the
fixed-optimumhypothesis, deviations from the optimum are
caused by drift and the size of the deviations from the opti-
mum are thus predicted to be inversely proportional to the
effective population size. A second hypothesis also invoking
stabilizing selection claims that stasis is the result of a popu-
lation tracking a fluctuating optimum via directional selec-
tion (e.g., Hunt 2007; Hunt and Rabosky 2014; Voje 2016).
The role of stabilizing selection in the fluctuating-optimum
hypothesis is to keep the population at the optimum when
the population has reached the adaptive peak.

As pointed out by Hunt and Rabosky (2014), the fixed-
optimum hypothesis yields at least one testable prediction
that is not predicted by the three alternative hypotheses: since
the effect of genetic drift decreases when the effective popula-
tion size gets larger, the fixed-optimum hypothesis predicts
a negative correlation between effective population size and de-
viations from the optimum during periods of stasis. In other
words, if the fixed-optimum hypothesis is true, a smaller pop-
ulation size predicts on average larger deviations from the
optimum compared to a larger population, as long as the av-
erage curvature of the adaptive peak is similar. A test of the
fixed-optimum hypothesis could therefore be done by a com-
parison of estimated deviations from a fixed optimumbetween
groups of taxa that differ vastly in their effective population
size.
Testing the Fixed-Optimum Hypothesis:
Adequate Estimates of Evolutionary Change

There is a long history of research onmeasuring rates of evo-
lution in the fossil record (e.g., Haldane 1949;Gingerich 1983,
1993, 2001, 2009; Bookstein 1987; Lynch 1990; Sheets and
Mitchell 2001; Roopnarine 2003; Hunt 2012; Voje 2016). A
fundamental challenge with most rate metrics is their depen-
dence on timescales: lower rates of evolution are typically es-
timated for data spanning longer time intervals compared to
data spanning shorter time intervals (for a discussion, see
Hunt 2012). Thismakes these rates difficult to comparemean-
ingfully across different time intervals and thus among time
series of varying durations. In phylogenetic comparative
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methods, rates of evolution are commonly estimated asmodel
parameters (e.g., Hansen 1997; Butler andKing 2004; Hansen
et al. 2008; Harmon et al. 2010; Adams 2013; Slater 2013,
2015). Hunt (2012) argued how evolutionary rates could be
estimated as model parameters in his models of three canon-
ical modes of evolution in the fossil record, that is, stasis, ran-
dom walk, and directional change. In the same article, using
simulations, he showed that each of these three models could
accurately estimate evolutionary rates at different temporal
resolutions via maximum likelihood as long as the underly-
ing model of evolution is true. Thus, evolutionary rates in
the fossil record can be estimated as model parameters if the
model being used is a good descriptor of the data in abso-
lute terms. However, we currently lack tools for evaluating
whether a particular model is a good descriptor of fossil
time series data. Analyses of modes of evolution in the fos-
sil record have so far been conducted through model selec-
tion, which means that researchers typically use an infor-
mation criterion (e.g., Akaike information criterion; Burnham
and Anderson 2004) to select the best model out of a set of
candidate models (e.g., Hunt 2007; Monnet et al. 2011; Hop-
kins and Lidgard 2012; Pearson and Ezard 2014; Hunt et al.
2015; Voje 2016). In this approach, the preferred model will
be the one with best relative fit among the candidate models,
but that does not guarantee that the preferred model is an
adequate description of the data. While the same challenge
applies to models within phylogenetic comparative analyses,
several statistical procedures have been suggested to test the
absolute fit of various models of evolution along a phylogeny
(e.g., Garland et al. 1992; Boettiger et al. 2012; Beaulieu et al.
2013; Slater and Pennell 2013; Pennell et al. 2015). To date,
there are no tests of adequacy of fitted models to fossil phe-
notypic time series. To alleviate this deficiency, we construct
tests of adequacy to evaluate the absolute fit of Hunt’s (2006)
stasis model to fossil data. Given a good absolute fit of data to
Hunt’s model, trait deviations from a fixed optimum among
different data sets can then be reliably compared using the
same model if these data are analyzed on a comparable scale.
A test for a negative correlation between effective population
size and deviations from fixed optima during periods of sta-
sis, as predicted by the fixed-optimum hypothesis, can then
be applied if measures of effective population size can be ob-
tained.
Testing the Fixed-Optimum Hypothesis:
Proxies for Effective Population Size

An empirical test of the fixed-optimum hypothesis requires
data on effective population sizes, a parameter that is chal-
lenging to estimate even in extant populations (Wang 2005).
In the fossil record, a range of factors such as biased preser-
vation, varying sampling probabilities, time averaging, range
shifts of populations, and so on (Patzkowsky and Holland
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2012)make estimates of population sizemeasures unreliable,
if at all attainable. An alternative approach is to focus on rel-
ative differences in this parameter among groups of organ-
isms through proxies, and we discuss population size, body
size, and habitat in turn. Body size is a fundamental property
of any given organism and frequently shows allometric scal-
ing with various ecological and physiological variables (e.g.,
Damuth 1981, 1987, 1993; Peters 1983; Schmidt-Nielsen 1984;
Charnov 1993; West et al. 1997; Brown and West 2000). How
effective population size (Ne) and body size correlates across
several orders of magnitude has rarely (if ever) been quanti-
fied, but large animals are generally less abundant compared
to smaller organisms (Damuth 1981, 1987, 1993), which sug-
gests that larger-sized organisms have lower Ne, all else be-
ing equal. A positive (albeit variable) log-linear relationship
(r2 p 0:43) between Ne and N was indeed found by Palstra
and Fraser (2012) in their analysis of empirical estimates of
Ne and N among different species of fish, amphibians, and
insects. Life-history parameters also affect effective popula-
tion size (e.g., Vindenes et al. 2010; Serbezov et al. 2012;
Waples et al. 2013). Longer life span and later age at matu-
rity lead to lower Ne and are positively related to body mass
across species (e.g., Charnov 1993; Healy et al. 2014), which
also suggests that larger-bodied species have smaller effective
population sizes. However, variation in other life-history traits
(e.g., age structure, fecundity, mating system; Nunney 1991,
1993) may counter these general correlations and reduce the
validity of body size as a proxy for effective population sizes,
especially among species of comparable sizes.While acknowl-
edging that variation in life-history strategies, phylogenetic
history, and other factors may reduce the precision of body
size as a proxy for effective population size, organisms that
belong to vastly different size classes, such as diatoms and
mammoths, are likely to have on average substantially differ-
ent effective population sizes (for a few examples, see also ta-
ble 1 in Charlesworth 2009).

Other proxies for effective population size are sizes of hab-
itats. Hunt and Rabosky (2014) suggested comparing fluc-
tuations during stasis in species inhabiting pelagic and ben-
thic marine habitats as a potential test of the fixed-optimum
hypothesis, with the underlying assumption being that ben-
thic species on average have smaller effective population sizes
compared to pelagic marine planktonic species. We are not
aware of any direct estimates of effective population size of
species inhabiting these environments to confirm this assump-
tion. In addition, variation in life-history strategies among
species may reduce the precision of habitat as proxies for ex-
pected differences in effective population size. However, pe-
lagic (open ocean) species are purported to have “enormous
population sizes and broad, even global, distributions” (Norris
2000; see also Angel 1993; Gray 1997), features that are im-
plicitly less probable or widespread for species restricted to
the benthic zone. Furthermore, holoplanktonic organisms
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often exhibit little genetic differentiation over large spatial
scales compared to many benthic organisms (see Thornhill
et al. 2008 and references therein), also suggesting on average
larger population sizes in pelagic compared to benthic spe-
cies. The fact that shallow-marine benthic species in general
have smaller effective population sizes compared to pelagic
(open ocean) species does not seem like an unrealistic claim,
although we acknowledge that it remains to be verified by fu-
ture research.
Testing Absolute and Relative Fit of Data
to a Model of Stasis

One of the main goals of this study is to evaluate the fixed-
optimum hypothesis of stasis on macroevolutionary time-
scales. To do this, we first examine the relative fit of 572 fossil
time series to different models of evolutionary modes to de-
tect traits in lineages that evolved in a stasis-likemanner, that
is, that show trait fluctuations around a constant optimum.
We then develop and apply four test statistics to detect which
of these time series fit the stasis model in absolute terms.
Time series that pass all our adequacy tests are deemed suit-
able for reliably estimating average deviations from a fixed
optimum (the omega in the stasis model). We then partition
the time series into categories assumed to reflect substantial
differences in effective population size (based on body size or
habitat; see previous section) and test for a relationship be-
tween these categories and average deviations from fixed op-
tima. The merits of different hypotheses explaining stasis in
the fossil record are discussed in light of our results.
Material and Methods

Data

The majority of the fossil time series analyzed in this article
overlap with the data analyzed in Voje (2016), which repre-
sents a subset of the fossil time series analyzed inHunt (2007),
Hopkins and Lidgard (2012), and Hunt et al. (2015). An ad-
ditional 85 bryozoan fossil time series from the work of
Cheetham et al. (2007) were kindly provided to us by Gene
Hunt. In total, we analyzed 572 fossil time series. These
data cover a broad range of taxa: mammals (N p 84), fish
(N p 9), brachiopods (N p 6), ostracods (N p 5), bryo-
zoans (N p 92), mollusks (N p 78), echinoids (N p 7),
hemichordates (N p 1), trilobites (N p 7), conodonts (Np
22), foraminiferans (N p 125), coccolithophores (N p 65),
radiolarians (N p 46), and diatoms (N p 25). A total of
364 size traits, 144 shape traits, and 64 meristic traits were
analyzed (for more information on all time series analyzed,
see table S1, available online). All time series are measures
of a morphological trait (i.e., principal components and dis-
criminant functions were not analyzed) that are either
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reported on a log scale or where a log transformation of
the trait is a meaningful transformation. Log transformation
makes changes in traits comparable since a proportional scale
is independent of the original scale in which the traits were
measured. To further enhance comparability, each sample
mean in each time series was divided by the dimensionality
of the measurement of the trait to make the trait both di-
mensionless and scale independent. Similarly, the variances
of the trait means in each time series were divided by the
square of the dimensionality of the trait.

Time series were divided into three pairs of categories,
with the underlying assumption that taxa belonging to differ-
ent categories within a pair on average have large differences
in effective population size: (i) microfossils (ostracods and
bryozoans were classified as microfossils) are assumed to have
onaverage larger effectivepopulation sizes compared tomacro-
fossils, (ii) mammals are assumed to have on average smaller
effective population sizes compared to non-mammals (e.g.,
invertebrates and unicellular microfossils), and (iii) unicellu-
lar microfossils in a marine pelagic habitat are assumed to
have on average larger effective population sizes compared
to unicellular species living in a shallow-marine benthic hab-
itat. The two first pairs of categories (micro vs. macro, mam-
mals vs. non-mammals) represent different ways of separat-
ing the stasis time series data based on differences in overall
size, while the last pair of categories (benthic vs. pelagic) is
a subset of the total data.
Relative Fit of Data to Different Models of Evolution

Models describing directional change, randomwalk, and sta-
sis were fit to each time series by maximum likelihood using
the fit3models function (specifying joint parameterization)
in the paleoTS package, version 0.5-1 (Hunt 2006, 2008), us-
ing R, version 3.1.3 (R Development Core Team 2013). The
relative fit of each of the three models to each time series was
assessed using the Akaike information criterion corrected for
small samples (AICc). Time occurs in discrete intervals, and
the expected difference between samplemeans is represented
by a normal distribution, withmean (m) and variance (j2) for
all three models. In the directional-change model, the mean
of the normal distribution is not zero (m ( 0) and reflects
the direction of evolution of the given trait over time, while
j2 represents the fluctuations around the directional trend.
In the random-walk model, the mean of the step distribu-
tion is zero, which means that the expected difference be-
tween the ancestor and descendant is normally distributed
with a zeromean and a variance of tj2, where t is the number
of generations separating the ancestor and descendent. The
stasis model differs slightly from the other two models, as it
describes a trait that fluctuates with a variance (q) around
an optimal/central phenotype (v), essentially a white noise
process with uncorrelated normally distributed trait values
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around the fixed mean through time. This makes the inter-
pretationof the rate parameter in the stasismodel slightly dif-
ferent from themodels of directional change and the random-
walk model: while the directional change and random-walk
models are models of trait change, the stasis model is a model
of trait values around a fixed optimum.Hence, rates of change
between discrete time units (e.g., generations) are possible to
estimatewith the directional-change and random-walkmodels,
while the variance (q) parameter in the stasis model repre-
sents the variance of trait deviations from a fixed mean over
time, which is not strictly a description of how the trait
changes per discrete time unit. In the context of our study,
estimates of q from the stasis model should therefore not
be interpreted as estimates of rates but instead as an estimate
of the variance of deviations from a fixed optimum. For a de-
tailed description of the three models, see Hunt (2006).
Relative and Absolute Fit of the Stasis Model
(Model Adequacy)

Hunt (2012) showed that q in the stasis model could be re-
liably estimated when the underlying evolutionary dynamics
are similar to a white noise process with uncorrelated nor-
mally distributed trait values around an invariant optimum
through time. We therefore need to make sure that the data
sets that show a better fit to the stasis model relative to the
alternative models (random walk and directional change)
also show a good fit in absolute terms to a white noise pro-
cess. Hence, it is necessary that the following four criteria
are fulfilled: (1) themagnitude of deviations around the fixed
optimummust not increase or decrease as a function of time,
(2) net evolution must be small (i.e., the absolute difference
between the first and the last sample mean in the time series
must not significantly exceed the expected difference between
sample means given the estimated q), (3) the deviations from
the estimated optimum must show randomness in the tem-
poral order (i.e., many successive positive or negative devia-
tions indicate nonrandomness), and (4) the temporal series
must show low autocorrelation.
We develop four test statistics reflecting the criteria above

to investigate whether the stasismodel adequately describes a
particular fossil time series. Criterion 1 is necessary since the
estimated variance parameter in the stasis model is assumed
to be constant over time. A correlation in the deviations from
the optimum over time will therefore indicate a violation of
this assumption and thus a bad model fit in absolute terms.
The zero-slope test represents the slope of the least squares
regression of the size of deviations (their absolute value) from
the optimal phenotype as a function of time. A slope of zero
is expected in a true stasis time series, as there should be no
relationship between time and the magnitude of deviations
from the optimum. A positive or negative slope indicates a
tendency for the trait to show larger or smaller deviations
57.207.096 on January 24, 2019 00:16:59 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



Model Adequacy and Stasis 513

This content downloaded from 193.1
All use subject to University of Chicago Press Term
from the optimum as a function of time (heteroscedasticity),
which is a violation of our first criterion. The second criterion
reflects an essential part of the general (verbal) definition of
stasis, that a trait shows little net change over time. The net-
evolution test represents the absolute difference in trait value
between the first and the last sample mean in the time series.
Criteria 3 and 4 reflect the nature of a white noise process.
There should be no tendency for a trait to successively devi-
ate from the optimum in the same direction, and a runs test is
applied to the sign of the residuals (i.e., v 2 trait value) to
identify series that have nonrandom patterns in the sign
of deviations. For a time series of length n, the number of
runs (one run is a sequence of consecutive numbers with the
same sign) is approximately normal with mean m p 2(n1n2)=
n1 1 and variance (m2 1)(m2 2)=(n2 1), where n1 and
n2 are the number of residuals above and below the opti-
mum, respectively. The mean and variance are used to cal-
culate the standard/Z score implemented as the test statis-
tic. Last, since trait values are seen as random draws from
a normal distribution, they should exhibit low levels of au-
tocorrelation. We therefore apply an autocorrelation test,
which is the correlation of the first n2 1 observations with
the last n2 1.
Criteria 1–4 do not need to be fulfilled for a fossil time se-

ries to show a relative better fit to Hunt’s (2006) stasis model
compared to alternative models, which is why a better fit to
the stasis model in relative terms is no guarantee that a fossil
time series will fulfill these properties. Hence, if all four cri-
teria are met for a particular fossil series, we consider the sta-
sis model a sufficiently good descriptor of the data in both
relative and absolute terms. Furthermore, for fossil time se-
ries that meet all four criteria, the estimated variance param-
eter q could be considered an adequate descriptor of the
magnitude of deviations from the fixed optimum.
The procedure for our model-adequacy tests on time se-

ries that is best explained by the stasis model in relative
terms is a parametric bootstrapping approach that follows
these steps (fig. 1): (1) we fit the stasis model (Hunt 2006)
to an observed fossil time series under consideration and
estimate theq and v usingmaximum likelihood. (2)We cal-
culate each of the four test statistics on the observed time
series. (3) Using the q and v parameters estimated from
the observed time series (step 1), we simulate 1,000 new sta-
sis time series (using the sim.Stasis function in the R pack-
!"
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Figure 1: Stepwise representation of the approach for assessing model
adequacy for data sets showing a better relative fit to the stasis model
than the models portraying random walk and directional change ac-
cording to their AICc score. Step 1: fit the stasis model to the fossil time
series and estimate the parameters v andq. Step 2: calculate the four test
statistics on the observed data. Step 3: use the estimated v and q

parameters to simulate 1,000 stasis data sets of the same length as the
observed data. Step 4: calculate the four test statistics on each of the
1,000 simulated data sets. Step 5: compare the test statistic estimated
from the observed data to the test statistics estimated from the simulated
data sets. If the observed test statistic lies outside the 2.5% most ex-
treme test statistics from the simulated data, the data are considered in-
adequate for our purpose.
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age PaleoTS, version 0.5-1; Hunt 2006) with the same num-
ber of trait means as the focal time series. (4) We calculate
the four test statistics on each of the simulated time series.
(5) Last, we compare each of the test statistics from the ob-
served data to the distribution of test statistics calculated on
the 1,000 simulated time series. The stasis model is deemed
unsuitable as a descriptor of a particular observed time se-
ries if one of the four observed test statistics is in the lower
or upper 2.5 percentiles in the distribution of test statistics
from the simulated time series. Inflated type I error rates can
easily be introduced when applying several tests to the same
data. This is problematic if the goal of applying these test sta-
tistics is to evaluate whether a specific model should be ac-
cepted or rejected. However, our goal is not acceptance ver-
sus rejection but to evaluate the suitability of individual data
sets in order to reliably estimate model parameters. We are
accordingly not correcting for multiple testing. A similar ap-
proach was also used by a recent study onmodel adequacy in
phylogenetic comparative methods (Pennell et al. 2015).
Simulations of Model-Adequacy Tests

We assessed the type I error rates of ourmodel-adequacy test
statistics by performing simulations. Many of our test statis-
tics have well-known statistical properties, but we perform
the simulations to assess the effect of varying lengths of fossil
sequences and variation in other underlying properties of the
data. The simulations follow the procedure described above
and shown in figure 1, except that step 1 is a simulated time
series with known parameter values. All simulations of stasis
time series were done using the sim.Stasis function in the
PaleoTS package, version 0.5-1 (Hunt 2006). For all simulated
time series, v was set to 1 and the within-species variance was
set to 0.05.We varied both sequence length (10, 20, 40, 80) and
q (0.1, 0.2, 0.4, 0.6), which covers most of the observed varia-
tion in these parameters in the empirical fossil time series we
analyze (see table S1). For each combination of q and se-
quence length, one stasis time series was simulated and the
four test statistics were calculated (step 2). We then used the
estimated parameters from this observed stasis time series to
simulate 1,000 new stasis sequences (step 3) to obtain distribu-
tions for each test statistic (step 4), which were then used to
investigate the frequency of type I error for these simulated
data (step 5). This procedure was repeated 500 times for each
combination of q and sequence length.
1. Code that appears in the American Naturalist is provided as a convenience
to the readers. It has not necessarily been tested as part of the peer review.
Testing for a Relationship between Trait Variance
and Effective Population Size

The estimated variance parameters (q) for data that passed
all of the four adequacy tests described above were used as
data to investigate whether groups of species hypothesized
to have vastly different effective population size differ in their
This content downloaded from 193.1
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trait variance during periods of stasis. Before doing this, how-
ever, we tested for a relationship between the variance pa-
rameter (q) and the interval length of the fossil time series,
as our tests depend on these two variables being independent:
it is difficult to rely on estimates of q if they correlate with in-
terval length since estimates of q should be independent of
the duration of phenotypic stasis in a given lineage. Next, un-
der the assumption that taxa that on average differ in body
mass by several orders of magnitude also have very different
effective population sizes, we investigated whether microfos-
sils have a smaller trait variance during stasis compared to
macrofossils and whether mammals have a larger trait vari-
ance than non-mammals (see table 1). Similarly, assuming
that unicellularmicrofossils that inhabit the (shallow-marine)
benthic zone on average have substantially smaller effective
population sizes compared to unicellular microfossils that in-
habit the (open ocean) pelagic zone, we investigated whether
suchplanktonicmicrofossils have smaller trait variances com-
pared to benthic microfossils. Tests of differences in trait
variance during stasis between these pairs of categories were
done using mixed-effects models, as implemented in the R
package lme4, version 1.1.13 (Bates et al. 2015). Study and
species were included as random factors to control for non-
independence in the data. R code to run all analyses and all the
analyzed time series are deposited in the Dryad Digital Repos-
itory: http://dx.doi.org/10.5061/dryad.r5d10 (Voje et al. 2017).1

Results

Simulations to Evaluate Adequacy Tests

Error rates for the four test statistics in the simulation pro-
cedure show that type I errors are centered around 0.05, in-
Table 1: Estimated average trait variance around the fixed
optimum for different categories of fossil lineages
Model and fixed effect (N)
57.207.096 on January 24, 2019 00:16:59 AM
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Trait variance q (SE)
1:

Microfossils (122)
 .0108 (.0045)

Macrofossils (50)
 .0047 (.0029)
2:

Non-mammals (154)
 .0093 (.0026)

Mammals (18)
 .0060 (.0077)
3:

Benthic (17)
 .0015 (.0153)

Planktonic (41)
 .0141 (.0093)
Model 1: microfossils are represented by foraminiferans, coccolithophores,
radiolarians, diatoms, ostracods, and bryozoans, while macrofossils are repre-
sented by mammals, mollusks, trilobites, and conodonts. Model 2: the non-
mammals category consists of all taxa represented in our data with the exception
ofmammals.Model 3: a comparison of benthic and planktonic unicellularmicro-
fossils. N p number of analyzed traits.
du/t-and-c).
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dependent of the length of the time series or the size of the
trait fluctuations (q) during stasis (fig. 2). This indicates that
our test statistics for evaluating model adequacy work as
intended. The proportion of simulated data sets that violates
at least one of the test statistics is between 0.15 and 0.20,
which indicates that most of the simulated time series that
are deemed inadequate violate only one of the four test
statistics.
This content downloaded from 193.1
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Model Fit and Model Adequacy

Of the 572 analyzed fossil time series, 263 fitted the stasis
model best, 253 fitted the random-walk model best, and
56 fitted the directional-change model best, based on AICc.
Of the 263 time series that best fitted the stasis model, 91
(34.6%) failed at least one of the four test statistics, 28 showed
a relationship between the magnitude of deviations from the
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Figure 2: Type I error rates of adequacy tests for simulated stasis time series. Five hundred “true” stasis time series were simulated for a given
sequence length (orange diamond p 10, red square p 20, blue cross p 40, black triangle p 80) and a given size of the omega parameter. For
each of these “true” stasis time series, 1,000 time series were simulated to check whether the test statistics estimated on the “true” data fall
within the 95% of the observed test statistics conducted on the simulated data. Type I error rates for the four test statistics are around the
expected 0.05 threshold. Min, which lies between 0.15 and 0.20, represents the number of simulated time series that deviated from the
95% distribution in at least one of the four test statistics. Auto p test for autocorrelation in the data; Net evol. p test for larger amounts
of net evolution than expected; Runs p test for nonrandom patterns in the sign of deviations from the optimum; Zero sl. p test for a rela-
tionship between time and the magnitude of deviations from the optimum.
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optimum with time (zero slope), 25 showed a larger net evo-
lution than expected, 36 had a larger or smaller number of
runs than expected, and 33 showed a level of autocorrelation
exceeding the expectation. Figure 3 shows examples of data
sets violating (and not violating) the four test statistics. De-
tailed results for all adequacy tests of the 263 time series fitting
the stasis model are reported in table S1. Importantly, the
estimated trait variance (q) from the 172 time series that
did not fail any of our tests showed no relationship with in-
terval length (fig. 4): the ordinary least squares slope of
q as a function of time in millions of years was 20.0000128
(5 0.0008329), R2 ! 0:00001%, P p :988.
Relationship between Trait Variance
and Effective Population Size

We did not find evidence for differences in the magnitude of
trait variance around a fixed optimum for groups of taxa as-
sumed to have large differences in relative effective popula-
tion sizes based on rough proxies (fig. 5; table 1). The average
deviation from the optimum is larger in microfossils com-
pared tomacrofossils and larger in non-mammals compared
to mammals. These differences are in the opposite direction
predicted from the fixed-optimum hypothesis. The differ-
ence in average trait variance in unicellular benthic lineages
compared to unicellular planktonic lineages is also in the op-
posite direction from the prediction following from the fixed-
optimum hypothesis. Confidence intervals show extensive
overlap in all three comparisons.
Discussion

A well-known challenge in comparative studies of the fossil
record is the difficulty of obtaining comparable estimates of
trait change across data that cover different time intervals
(e.g., Gingerich 1993, 2001, 2009; Hunt 2012; Voje 2016).
Hunt (2012) showed that reliable estimates of trait change
can be obtained as model parameters when trait dynamics
in the fossil record are closely matched by a particular model
of evolution. Here, we developed tests to ensure that a model
for stasis in the fossil record adequately describes time series
data. This allowed estimates of the variance in 172 traits dur-
ing periods of long-term stasis and enabled investigations of
predictions from competing hypotheses explaining stasis on
macroevolutionary timescales.
Explanations for Stasis in the Fossil Record

We do not find support for the hypothesis that stasis in the
fossil record generally is the result of stabilizing selection
around a constant phenotypic optimum. The fixed-optimum
hypothesis predicts that the size of deviations from the opti-
mum is negatively correlated with effective population size,
This content downloaded from 193.1
All use subject to University of Chicago Press Term
since genetic drift is what causes phenotypes to diverge from
the optimum. A species with a large effective population size
is accordingly predicted to show smaller trait variance during
periods of stasis relative to a species with smaller effective
population size, as long as the curvatures of the adaptive
peaks are similar. However, when comparing groups of spe-
cies that are hypothesized to have large differences in effec-
tive population size based on their body size or habitat, we
did not find any indication that effective population size pre-
dicted trait variances during stasis. In fact, the differences in
trait variance were in the opposite direction from that pre-
dicted by the fixed-optimum hypothesis. We acknowledge,
however, that the categories we used when sorting our data
may not represent strong predictors of an association be-
tween effective population size and drift, as these categories
consist of organisms with very different biology and life his-
tories. Our investigation should therefore be interpreted as a
first step in investigating the fixed-optimum hypothesis that
we hopewill inspire further work in understanding long-term
stasis in the fossil record. More detailed knowledge on rela-
tionships between effective population size and variables such
as habitat, population density, body size, and so onmay allow
for more robust evaluations of the hypothesis in the future.
A stasismodel containing a parameter interpretable as an evo-
lutionary rate on a generational scalemay also allow estimates
of quantitative genetic parameters (e.g., Estes andArnold 2007;
Hansen 2012), including estimates of effective population size,
which can then be evaluated as biologically plausible or not
in relation to the fixed-optimum hypothesis.
Both neontologists (e.g., Hansen andHoule 2004) and pa-

leontologists (e.g., Lieberman andDudgeon 1996; Gould 2002)
have been skeptical toward the fixed-optimum hypothesis.
It has been argued that it is difficult to reconcile long-term
stability of fitness optima with the observation of continuous
change in species’ environments (e.g., Hansen 2012), although
niche tracking can buffer against environmental changes and
keep fitness optima stable (e.g., Gould 2002; Eldredge 2003;
Eldredge et al. 2005; Brett et al. 2007). The fixed-optimum
hypothesis also seems at odds with the infrequent detection
of stabilizing selection relative to directional selection in nat-
ural populations (Kingsolver et al. 2012; Morrissey andHad-
field 2012; Morrissey 2016). However, a recent article by
Haller and Hendry (2014) argues how empirical selection
estimates showing frequent directional selection and the idea
that most traits are under stabilizing selection around a con-
stant optimum can be reconciled: if the adaptive landscape is
not sharply peaked, a population can be expected to fluctuate
stochastically around the peak, which would lead to frequent
directional selection being detected on short timescales. Some
of the estimated variance parameters among the 172 investi-
gated traits are very small or even zero, making it difficult to
exclude the possibility that stasis in some lineages may be
explained by the fixed-optimum hypothesis. For example,
57.207.096 on January 24, 2019 00:16:59 AM
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518 The American Naturalist
certain traits may serve functions that remain fairly constant
over millions of years. In a study of phenotypic evolution
in canids, Slater (2015) found that the trait dynamics of the
relative size of the grinding surface of lower teeth showed a
faster rate of adaptation toward more stable fitness peaks
compared to the estimated trait dynamics of body mass.
Slater (2015) interpreted this difference in dynamics between
the two traits based on their difference in functional role: the
This content downloaded from 193.1
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properties and availability of different types of food (e.g., ver-
tebrate flesh and insect chitin) have likely remained relatively
constant over millions of years and have been only margin-
ally influenced by biotic and abiotic changes in the environ-
ment. The grinding surface of teeth used to eat food within
these diet categories has consequently not needed to change
much, a situation that is less likely to hold true for body
mass, as this trait influences multiple aspects of the general
ecology of species (e.g., Schmidt-Nielsen 1984). A proper test
of whether traits with very specific functional roles show dif-
ferent trait dynamics compared with other types of traits de-
serves attention in future studies. We also note that in our
analyses, traits with small variance parameters are almost al-
ways associated with lineages where the sample variance is
large compared to the differences among samplemeans, which
indicates that highly variable trait observations during the
time period used to estimate the samplemean can in fact lead
to low estimates of trait variance over time. Stabilizing selec-
tion on a trait that is close to an invariant fitness optimum is
therefore not supported by our results as a general explana-
tion for stasis in the fossil record.
The general lack of support for the fixed-optimum expla-

nation of stasis indicates that other explanations for stasis
in the fossil record need to be evaluated. The fluctuating-
optimum hypothesis claims that stasis is the result of popu-
lations tracking the boundedmovements of an optimumover
macroevolutionary timescales (Hunt 2007; Uyeda et al. 2011;
Arnold 2014; Voje 2016). This hypothesis does not predict
any relationship between effective population size and devia-
tions from the optimum and is therefore not in conflict with
the results presented in this study. We stress, however, that
further tests of this hypothesis are needed. For example, the
fluctuating-optimum hypothesis predicts that morphologi-
cal stasis should overlap in time with bounded fluctuations
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of the environmental variables that act as agents of selection
on the trait (Hunt and Rabosky 2014). This prediction has
been explored by Hunt et al. (2015); assuming a general reac-
tion norm for how changes in temperature lead to changes in
body size, they testedwhether a proxy for temperature change
onmacroevolutionary timescales produced a pattern of mor-
phological change similar to the blunderbuss pattern shown
by Uyeda et al. (2011). The blunderbuss pattern of evolution
represents boundedmorphological change on time spans less
than about 1 myr, while larger changes in morphology hap-
pen on timescales above the threshold of about 1 myr. Hunt
et al.’s (2015) model was able to recreate the blunderbuss pat-
tern to some extent, which suggests that bounded variation
in environmental components may be an important explana-
tion for long-term stationarity in morphology (i.e., stasis).
The work by Hunt et al. (2015) shows how the fluctuating-
optimum hypothesis can be tested. We suggest that future
investigations of this hypothesis could explore clade-specific
models for how an environmental variable (e.g., tempera-
ture) affects the evolution of a given trait.

The results of our study are not relevant for evaluating
constraints, defined broadly as any mechanism that biases,
limits, or prevents an evolutionary response to selection (Ar-
nold 1992; Houle 2001), as a potential explanation for stasis.
For instance, pleiotropy is widespread (Walsh and Blows
2009), and a specific trait can have reduced ability to evolve
when its pleiotropically linked traits are under stabilizing se-
lection (Hansen 2003; Hansen et al. 2003). The timescales
at which such multivariate genetic correlation can constrain
traits are unclear, however, as it is possible to envision sce-
narios where pleiotropic constraints have long-lasting effects
but yet decay rather fast (e.g., Futuyma 2010; Hansen 2012).
Genetic constraints can be neither accepted nor rejected as
a general explanation of stasis in the fossil record given the
current state of the field (Hansen 2012).

Envisioning long-term stasis as the result of homogeniz-
ing gene flow between locally adapted subpopulations (e.g.,
Lieberman et al. 1995; Futuyma 2010) is an explanation of
a slightly different nature than the genetic constraint and
the two stabilizing-selection hypotheses.While fixed or var-
iable optima and genetic constraints can be linked to par-
ticular traits, their adaptive landscapes, and trait covariance
structure, homogenizing gene flow is not an explanation at
the level of traits but at the level of a species and its ecology.
The fact that a species is spatially distributed and selection
varies over space does not seem commensurate with the ob-
servation that several time series from the same sequences of
population can show different modes of evolution (Hopkins
and Lidgard 2012; this study; table S1). If it is only the struc-
ture of a metapopulation that gives rise to observed stasis in
the fossil record, this explanation would suggest that all traits
of a particular lineage should show stasis, which is not the
case. Additionally, for a trait showing stasis, the homogeniz-
This content downloaded from 193.1
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ing gene flow explanation would also need to invoke some
degree of stationarity of the optima in each subpopulation,
essentially including aspects of the fluctuating-optimum hy-
pothesis with a spatial component.
The Importance of Model Adequacy in the Study
of the Fossil Record

All models are simplifications of the phenomena we want to
investigate. Models are hence useful only if they capture key
properties of the phenomenon we are interested in. Com-
paring how alternativemodels fit a particular data set allows
for a relative evaluation of how each model explains the
data, but this approach does not guarantee that the bestmodel
out of the alternatives describes the data particularly well
(e.g., Pennell et al. 2015).While tests of absolute fit of models
within phylogenetic comparativemethods continue to be de-
veloped and investigated (e.g., Slater and Pennell 2013; Pen-
nell et al. 2015; Chira and Thomas 2016), this has not been
a focus for studies fitting models to fossil sequence data. We
have argued that development of test statistics to evaluate
model adequacy for studies of the fossil record is important
if the goal is to reliably estimatemodel parameters of interest.
Given our goal of testing the fixed-optimum hypothesis, we
developed adequacy tests only for the stasis model, but ade-
quacy tests can also be developed for alternative models of
evolution, such as the models of random walk and direc-
tional change used as alternativemodels in our study. For ex-
ample, the random-walkmodel, like the stasismodel, assumes
no autocorrelation in consecutive sample means, no change
in step size as a function of time, and no long runs of consec-
utive steps from one side of the normal distribution. Similar
statistics can also be applied to the directional-trend model.
Adequacy tests for different models of trait dynamics could
pave the way to identify data sets that can be used for reliable
and model-based evolutionary rate comparisons.
One-third of the data sets showing a better relative fit to

the stasis model than to the random-walk and directional-
trend models failed at least one of our four tests of model
adequacy. This illustrates the point that a relative fit is no
guarantee that themodel is a good description of a particular
data set. A series of seminal papers in the 1980s and 1990s by
Cheetham and colleagues (Cheetham 1986; Cheetham et al.
1993, 1994; Jackson and Cheetham 1999) consolidated the
bryozoan genus Metrarabdotos as a textbook example of a
punctuated equilibrium-like mode of evolution, where evo-
lutionary changes happen predominantly during rapid spe-
ciation events while lineages experience stasis after their first
appearance in the fossil record.We reanalyzed 85 time series
of trait change in eight different Metrarabdotos lineages in
our study. Of these, 71 showed a relative better fit to the stasis
model, and 21 of these time series failed one or more of the
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adequacy tests. In other words, 41% of the Metrarabdotos
data we analyzed was poorly described by the stasis model.
Model adequacy is likely an important tool for developing
a more nuanced view of trait dynamics in the fossil record.

Test failures might have both biological and nonbiological
causes (Pennell et al. 2015). For example,many samplemeans
in fossil time series have been calculated based on rathermod-
est sample sizes. The resolution of a fossil sequence may also
vary substantially through time, and strong time-averaging
effects for estimated sample means may also be present in
many data sets. Such factors can contribute to poor fit of data
to simple process models. On the other hand, biological ex-
planations may potentially underlie failures to pass our ade-
quacy tests (Pennell et al. 2015). For example, a particular
trait may evolve according to one model of evolution for a
period of time and then evolve according to a differentmodel,
and such heterogeneous evolutionary trait dynamics can be
captured by fitting different models to different parts of a
time series (Hunt 2008; Hunt et al. 2015). Furthermore, as-
suming populations have the ability to track optima on the
adaptive landscape with an insignificant time lag on million-
year timescales, patterns of trait change in the fossil record
can be interpreted as descriptions of how the adaptive land-
scape itself changes (Hunt 2007; Uyeda et al. 2011; Hansen
2012; Hunt and Rabosky 2014; Voje 2016). Hence, failing a
particular adequacy test can suggest how the adaptive land-
scape changed onmacroevolutionary timescales. Twenty-eight
traits showed an increased or decreased trait variance with
time (the zero-slope test). Several scenarios involving changes
in the adaptive landscape can potentially explain such pat-
terns. For example, a change in the curvature of the adaptive
landscape over time might alter the range of morphologies
with (more or less) equal fitness: a flattening of the adaptive
landscape over time may increase the permissible disparity
during the same time period. An alternative explanation is
that the environmental variable influencing the trait shows
an increase or decrease in its fluctuations over time, causing
a similar increase or decrease in themagnitude of fluctuations
of the optimum on the adaptive landscape (Hunt et al. 2015).
Twenty-five of the 263 fossil sequences that showed a relative
better fit to stasis also showed a larger net evolution than
expected (table S1). This means that the first or the last (or
both) sample mean in the time series deviates substantially
from the optimum in the stasis model, which might indicate
a shift in the optimum in the adaptive landscape either in the
beginning or at the very end of the fossil sequence. Again, given
a hypothesized driver of the phenotypic evolution in such
a time series, one could predict that this driver should also
show an abrupt change in the same time period. Failures of
the runs test or the autocorrelation test may also suggest that
the optimum is not constant during the stasis period. About
25% of the times series that failed the runs test had a larger
number of consecutive observations both above or below the
This content downloaded from 193.1
All use subject to University of Chicago Press Term
optimum than expected from a white noise process, which
might indicate that a model where the optimum switches be-
tween two selective regimes could fit the data well.
Conclusion

Our preliminary investigation of the fixed-optimumhypoth-
esis fails to find empirical support for the claim that genetic
drift around a constant adaptive peak on the adaptive land-
scape is a general explanation for stasis in the fossil record.
The common observation that traits from a single lineage of-
ten follow different models of evolution also questions ho-
mogenizing geneflowbetween locally adapted subpopulations
as a common explanation for long-termmorphological stasis.
Stasis may instead reflect stationary optima on the adaptive
landscape, but models of how the adaptive landscape change
on macroevolutionary timescales are needed to investigate
this hypothesis. The recent explosion of evolutionary models
in comparative phylogenetic approaches has increased the
toolbox for testing and investigating alternative dynamics of
the adaptive landscape on million-year timescales (e.g., But-
ler and King 2004; Hansen et al. 2008; Harmon et al. 2010;
Bartoszek et al. 2012; Beaulieu et al. 2012; Thomas andFreck-
leton 2012; Ingram andMahler 2013; Slater and Pennell 2013;
Pennell et al. 2014; Uyeda and Harmon 2014; Khabbazian
et al. 2016; Caetano and Harmon 2017), and the usefulness
ofmodel-adequacy tests within comparativemethods has re-
cently been stressed (Pennell et al. 2015). Likewise, amorede-
tailed investigation of the absolute fit of fossil time series to
specific evolutionary models can result in additional knowl-
edge of the evolutionary dynamics of the trait of interest
andmay inspire newmodels of trait dynamics onmacroevo-
lutionary timescales that have not yet been considered.
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