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A B S T R A C T

This paper is communicated theoretically to study the collective effects of Arrhenius activation
energy and binary chemically reactive species in the presence of the second order momentum slip
model which has not been studied so far. To support these declaration in addition with elec-
trically conducting boundary layer flow and heat transport have considered towards an ex-
ponential stretching sheet. The current study incorporates the impact of activation energy,
temperature difference ratio parameter, 1st and 2nd order slip parameter, chemical reaction rate
on fluid velocity, fluid temperature and concentration of chemical species are elaborated through
graphically and discussed in detail. Appropriate transformations are betrothed to acquire non-
linear highly coupled ordinary differential equations (ODE's) from partial differential equations
which are then solved numerically by employing finite difference collocation process that apply
three-stage Lobatto IIIa scheme. The obtained results confirm that an excellent agreement is
achieved with those available in open literature. It is found that concentration profile decreases
in the presence of chemical reaction rate and temperature difference ratio parameter whereas
opposite demeanour is seen for activation energy.

1. Introduction

The development of mass transfer phenomena with chemical reaction has attracted substantial interest to the researcher and
scientists because of its innumerable useful applications in oil reservoir, chemical engineering, nuclear reactor cooling, geothermal
engineering, deterioration of materials, mechano-chemistry, oil and water emulsions include Arrhenius activation energy along with
the species binary chemical reactions. Usually the relation of chemical reactions with mass transfer are very complicated, and
regularly it can be examined through fabrication and digestion of reactant species at dissimilar rates for both within the mass transfer
and fluid flow. One of the most important benchmark is that typically not taken is the species chemical reactions along with
Arrhenius activation energy. The terminology of activation energy was initially proposed by Arrhenius by [1]. He pronounced that
least amount of energy (or threshold energy) is required to function atoms or molecules in a chemical system to flinch a chemical
reaction. A simple model involving boundary layer fluid flow problem underneath binary chemical reaction with Arrhenius activation
energy was first revealed by Bestman [2]. He applied perturbation technique to describe the activation energy impact in natural
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convection. Shafique et al. [3] scrutinised the mutual performance of activation energy and binary chemical reaction in rotating fluid
flow over a stretching surface. Makinde et al. [4] examined the nth order Arrhenius chemical reaction, thermal radiation, suction/
injection, with buoyancy forces on unsteady incompressible fluid flow past a porous plate. Recently Zeeshan et al. [5] discussed the
activation energy in Couette-Poiseuille flow in the presence of chemical reaction and convective boundary conditions. They employed
HAM method to understand the problem.

The study of magneto-hydrodynamics (MHD) fluids are used in several industrial process to control the cooling rate. Moreover,
nuclear reactor with cooling walls, fusing metals in electric heater, bearings and pumps, which are exaggerated with the collaboration
between the conducting incompressible fluid and applied magnetics field. In eyesight of this, Pavlov [6] who primarily studied
transvers magnetic field due to elastic deformation on plane surface using boundary layer approximation. Andersson [7] executed
exact solution for the viscous fluid flow past a stretching surface under the impact of MHD. Ellahi et al. [8] examined 3D flow of
Carreau fluid with magnetic field by applying homotopy analysis method. A generalized magnetic field impact on the flow of a
Burgers' fluid model towards an inclined surface was elaborated by Rashidi et al. [9]. A numerical results of MHD viscous flow
towards a permeable porous surface by applying successive linearization method (SLM) and Chebyshev spectral collocation method
was adopted by Bhatti et al. [10]. Mukhopadhyay [11] investigated the thermally stratified medium surrounded with magneto
hydrodynamic flow over an exponentially embedded. Mabood et al. [12] studied MHD viscous flow past an exponential stretching
surface with radiation effects by applying Homotopy analysis method. Few investigations regarding the magnetic field over a
stretchable surface can be stated through [13–20].

In all aforementioned literature survey, no-slip Navier boundary condition were considered, which is also recognized as a main
principle of the Navier-Stokes philosophy [21]. Although, here some situation where slip condition is important. For example, Flow of
gases below typical atmospheric pressure, in which slip conditions are useful in MEMS devices and low-pressure [22–24]. The 2-D
steady mixed convection flow and heat transfer in ferromagnetic fluid under the influence of partial slip was explored by Zeeshan
et al. [26]. Additionally, slip often arises in non-homogeneous fluid, particularly slurries, suspensions, gels, foams and emulsions
[25]. Wu [26] has suggested a 2nd order slip model which is superior to the results of Fukui-Kaneko which are based on linearized
Boltzmann equation [27]. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate has been studied by
Ellahi et al. [28]. Rashidi et al. [29] discussed the heat transport analysis over a stretchable surface under the impact of second order
slip. Several authors adopted Wu's model to examine the influence of the liquid flow problems over a solid surfaces [30–32]. Some of
the applications regarding to slip, MHD, against rarefied gases, sough surfaces and super hydrophobic micro-surfaces can be seen in
more detail [33–39].

Inspired by the above investigation, the main persistence of our discussion is to explore the physical significance of activation
energy with binary chemical reaction in the presence of 2nd order momentum slip model over an exponential stretching sheet
because it has a tremendous application in micro systems like micro-valve, micro-nozzles, micro-pump and micro-electro-mechanical
systems (MEMS) in flow regime. To the best of our information no such study has been described earlier.

Nomenclature

A, B Constant
Cp Specific heat (Jkg K )1 1

Cf Skin friction
Cw Wall concentration
C Ambient concentration
D Mass diffusivity coefficient
Ea Activation energy
E Non-dimensional activation energy
f Dimensionless stream function
M Magnetic field A m( / )
m Exponent fitted rate
k thermal conductivity (Wm K )1 1

Kn Knudsen number
kr

2 Exponential reaction rate
K1 Boltzmann constant
L Characteristic length
Nux Local Nusselt number
Pr Prandtl number
R Radiation parameter
Rex local Reynolds number
S Suction/injection parameter
T Temperature of the fluid (K)

Tw Wall temperature
T Ambient free-stream temperature
Uw Wall velocity
U0 Reference velocity
Sc Schmidt number
(u,v) Velocity components (ms )1

(x,y) Coordinate axes normal to sheet (m)
μ Dynamic viscosity (Nsm )1

θ Dimensionless temperature

Greek Symbols

1st order slip
2nd order slip
Mean free molecular path
Momentum accommodation
Density (kgm )3

Chemical reaction rate constant
1 Mean absorption coefficient

k* Absorption coefficient
Temperature difference parameter

ψ Stream function (m s )2 1
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2. Problem formulation

We have reflected 2-D incompressible electrically conducting viscous flow along an exponentially stretching sheet positioned at
=y 0 along with both heat and mass transport characteristics. The x-axis and y-axis are taken along the coordinate axis and flow is

occupied in the plane y 0. Assume that the wall velocity of the plate is U x( )w in x-axis. Also assume that fluid temperature at wall is
Tw which is greater than ambient temperature T . A moveable magnetic field B x( ) is employed perpendicular to the horizontal. The
induced magnetic field is flouted because of lower value of magnetic Reynolds number.

Under the above assumption with Boussinesq approximation, the governing equations of continuity, momentum energy and
concentration are [40].

+ =u
x

v
y

0,
(1)

+ =u u
x

v u
y

u
y

B u,
2

2

2

(2)

+ =u T
x

v T
y

T
y c

q
y

1 ,
p

r
2

2 (3)

+ =u C
x

v C
y

D C
y

k T
T

e C C( ).r

m Ea
K T

2

2
2 1

(4)

Here u, and v specifies the velocity component parallel to coordinate axis, is the density of fluid, = notify the kinematic
viscosity, is the thermal diffusivity, Cp is the specific heat, =B x B e( ) o

x L/2 represent the variable magnetic field, Bo and T signify
constant magnetic field and fluid temperature, C represent fluid concentration, D specify mass diffusivity coefficient, =k k er

x L2
0
2 /2 is

the exponential reaction rate, ( ) eT
T

m Ea
kT denote the Arrhenius function where m shows exponent fitted rate constants usually lies

between − 1 < m< 1.
The associated boundary equations corresponding to exponential stretching surface are

= + = = = =u U x U v V x T T C C y
u T T C C y

( ) , ( ), , at 0
0, , as

.w slip w w

w (5)

Here =U x U e( )w o
x L/ expresses surface velocity, Uo is reference velocity, L is characteristic length, and =V x V e( ) o

x L/ is the special
kind of velocity, where <V x( ) 0 signify injection and >V x( ) 0 represent suction. Vo is initial strength of suction, = +T T T ew o

x L/2 is
fluid temperature at wall, To is reference temperature, = +C C C ew o

x L/2 indicate concentration at the sheet, Co symbolise reference
concentration at sheet, Uslip represent second order momentum slip model which is specified by Wu's [26]
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Here Kn is Knudsen number is stated as the ratio of molecular mean free path to a physical length for the flow, =l Kmin(1/ , 1)n
and is momentum adaptation coefficient with 0 1. From signification of l, we conclude that for every value of Kn, we take

l0 1. The molecular mean free path is always positive which give a negative result of B.
Now applying Rosseland approximation, radiative flux qr is recognized as

Table 1
Calculated value of Nusselt number when = = = = = = = =Sc E S m 0.

M R Pr Present results Mabood et al. [12] Ishak [32]

0 0 1 0.954783 0.95478 0.9548
2 1.471460 1.47151
3 1.869073 1.86909 1.8691
4 2.204512 2.50012 2.5001
5 2.500131 – –
10 3.660371 3.66039 3.6604

0 1 1 0.531730 0.53121
1 0 0.861109 0.86113
0 0.5 2 1.073519 1.07352 1.0735

3 1.380752 1.38075 1.3807
4 1.640265 – –
5 1.869073 – –

1 1 1 0.450571 0.450571 0.450571

A. Majeed et al. Case Studies in Thermal Engineering 12 (2018) 765–773

767



=q
k

T
y

4
3 *

,r
1

4

(7)

The temperature differences inside flow region are small enough, therefor T4 can be obtained by expanding Taylor series around
T and ignoring the terms of greater order

T T T T4 3 .4 3 4 (8)

Substituting Eqs. (7) and (8) into (3), we find
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3. Method of solution

We introduce the transformation of the form

Fig. 1. Visualize the impact of activation energy (E) on ( ).

Fig. 2. Visualize the impact of chemical reaction rate ( ) on ( ).
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by substitution of (10) in Eqs. (2)–(4), yield the following ODE's

+ =f ff f Mf2 0,2 (11)

+ + =R f f1 4
3

Pr 0,
(12)

+ + +Sc f f Sc e( ) (1 ) ,m
E

(1 ) (13)

with boundary equations are:

= + + = =
= = = =

f f f f S
f

(0) 1 (0) (0), (0) , (0) 1
(0) 1, ( ) 0, ( ) 0, ( ) 0.

.
(14)

Here 1st and 2nd order slip parameters are itemized as

Fig. 3. Visualize the impact of Temperature difference ratio ( ) on ( ).

Fig. 4. Visualize the impact of first order slip parameter ( ) on f ( ).
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Now Eqs. (11)–(13) together with Eq. (14) have a similarity solution. The parameters and are constant value and not depend
on x as shown in Eq. (15). For this we set which is proportional to e x L/2 , therefore we have

= ce ,x L/2 (16)

here ‘c′ indicate constant of proportionality. By inserting of Eq. (16) into (15), we get
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The expression and stated Eq. (15), the solution of Eqs. (11)–(13) produce similar solutions. Whereas with and signify by
relations (16), and consequently generated solutions are local similar solutions. Also = > <S V 0(or 0)o

L
U

2
o

denote the suction or

injection parameter, =M B L
U

2 o
o

2
represent magnetic parameter, =Pr stands for Prandtl number, =R T L

kk
4

*

3
indicate radiation

Fig. 5. Visualize the impact of first order slip parameter ( ) on ( ).

Fig. 6. Visualize the impact of second order slip parameter ( ) on f ( ).
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parameter, =Sc D is the Schmidt number, = lk
u

2 0
2

0
is constant chemical reaction rate, =E E

K T
a

1
is activation energy, = T T

T
w is

temperature relative parameter.

4. Physical quantities

The most significant relations of practical concern in the current analysis are friction factor,
Sherwood number and heat transfer rate are
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Using the Eqs. (10) and (18) we have

= = =L
x

C f L
x

Nu L
x

Sh2 Re (0), 2 /Re (0), 2 /Re (0),x f x x
1/2 1/2 1/2

(19)

here =Rex
U xw designates local Reynolds number.

5. Numerical computation

The set of non-linear system of ODE's (11) to (13) along with appropriate boundary functions (14) were determined numerically
by utilizing the Matlab software build in function bvp4c for various values of flow parameters. This software performs higher order
finite difference method that usages collocation method which involves three-stage Lobatto IIIa scheme with forth-order accuracy. In
this technique the ODE's are changed into a set of first order differential equations by considering similarity variables, the error and
mesh size adjustment are depend on residual of the continuation solution.

The explanation of a collocation scheme (see Shampine et al. [41]) for two-point boundary value problem are:

=x t x A t B( , ), , (20)

along with boundary conditions

=bc x A x B( ( ), ( )) 0. (21)

The approximate solution S(t) is a continuous function that is a cubic polynomial on each subinterval +t t[ , ]n n 1 of the mesh
= < < < =A t t t t B... N0 1 2 . It satisfies the boundary conditions

=bc S A S B( ( ), ( )) 0, (22)

and it also satisfies the following differential equations (collocates) at both ends and midpoint of each subinterval:

= =S t t S t( ) ( , ( )) 0,n n n (23)

+ = + + =+ + +S t t t t S t t(( )/2) (( )/2, ( )/2) 0,n n n n n n1 1 1 (24)

=+ + +S t t S t( ) ( , ( )).n n n1 1 1 (25)

These conditions result in a system of nonlinear algebraic equations for the coefficients defining S t( ), which are solved iteratively
by linearization. Here, S t( ) is a fourth-order approximation to an isolated solution x t( ), i.e., x t S t K( ) ( ) 4, where is the
maximum of step sizes = +t tn n n1 , and K is a constant. For such an approximation, the residual r x( ) in the ordinary differential
equation is defined by

=r t S t t S t( ) ( ) ( , ( )) (26)

In this approach, mesh selection and error control are based on the residual of the continuous solution. To obtain a good esti-
mation, the relative error tolerance was set to 10−7. The ‘infinity’ is interchanged by a fixed value = = 30. In fact present results
illustrate a marvellous agreement between the data and gives us assurance for present code. For this we rewrite the above Eqs.
(11)–(13) as

= + +f ff f Mf2 ,2 (27)

=
+ R

f f3Pr
(3 4 )

,
(28)

= + + +Sc f f Sc e( ) (1 ) ,m
E

(1 ) (29)

we introduce the new variables in order to transform the above higher order differential equations into system of first order
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by inserting Eq. (30) into Eqs. (11)–(14), we get
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and

= = + +
= = = =

y S y y y
y y y y y

(0) , (0) 1 (0) (0),
(0) 1, (0) 1, ( ) 0, ( ), ( ) 0

.1 2 3 3

4 6 2 4 6 (32)

To solve (31) and (32) as an initial value problem, we prerequisite a values for y (0)2 , y (0)3 , y (0)5 , y (0)7 that is, f (0), f (0), (0)
and (0) these values are not given at the end point, which is automatically calculated with the present numerical technique in order
to validate the far field boundary equations.

6. Results and discussion

The numerical simulations of the above transformed equations along with boundary equation are solved for numerous values of
convergence flow parameters. In command to justify the validity of the present scheme, the present numerical results of Nussult
number are compare with Mabood [12] and Ishak [32], which are displayed in Table 1. The results reveals a good agreement and
shows accuracy of our method.

Fig. 1 visualize the impact of activation energy (??) on concentration profile. It is remarkably noticed that species concentration
profile and their corresponding solute boundary layer thickness increases due to higher value of E. From practical point of view
higher energy activation and weaker temperature leads to weaker rate of reaction, which slow down the chemical reaction.

Fig. 2 illustrates the behaviour of concentration profile for dissimilar results of chemical reaction rate ( ). From graph it is
witnessed that species profile flattening inside the solute boundary layer. Because of increase in the rate of chemical reaction results

in a thickening of mass transport boundary layer. When is gradually increasing. The factor + +e(1 )m
E

(1 ) is enhances due to
increment in the values or m. Now the destructive reaction is encouraging owing to which species concentration increases. The
influence of temperature ratio parameter ( ) on concentration profile is portrayed in Fig. 3. Graph shows poor concentration profiles
by increasing and therefor reduces the concentration boundary layer thickness.

Figs. 4–5 designates the impact of 1st order slip parameter 0 5 on velocity and temperature profiles. Graphs elaborate that
fluid velocity reduces in the boundary area with the increase of . This is due to fact that, once slip happens, the slippery of fluid
indicates decrement in the surface among the viscous fluid and stretchable surface, in fact pulling forces cannot be partially trans-
ported to the fluid. On the other hand temperature profile within the flow field for dissimilar values of 1st order slip is exemplified in
Fig. 5. Corresponding result shows that temperature profile enhances against first order slip. Fig. 6 represents the stimulus of 2nd
order slip parameter ( ) on velocity profile. It is fascinating to observe that fluid velocity gradually slow down with the rise of
absolute value of 2nd order momentum slip, it is also charming to comprehend that boundary layer becomes denser for lowest
absolute value of 2nd order slip parameter.

7. Concluding remarks

Combined influence of Activation energy with binary chemical reaction with 2nd order velocity slip are considered for in-
compressible flow over an exponential stretching surface. The outcomes has been evaluated through graphs and tables. The main
findings of the current analysis are:

• Concentration profile is an increasing function of E while it decreases for and .
• Temperature profile enhances for higher first order slip parameter.
• Fluid velocity is flattening steadily with the increment of positive value of 2nd order slip whereas inverse trend is perceived for

temperature profile.
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