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Abstract—Task admission is critical to delay-sensitive appli-
cations in mobile edge computing, but technically challenging
due to its combinatorial mixed nature and consequently limited
scalability. We propose an asymptotically optimal task admission
approach which is able to guarantee task delays and achieve
(1 − ε)-approximation of the computationally prohibitive max-
imum energy saving at a time-complexity linearly scaling with
devices. ε is linear to the quantization interval of energy. The
key idea is to transform the mixed integer programming of
task admission to an integer programming (IP) problem with
the optimal substructure by pre-admitting resource-restrained
devices. Another important aspect is a new quantized dynamic
programming algorithm which we develop to exploit the optimal
substructure and solve the IP. The quantization interval of energy
is optimized to achieve an [O(ε),O(1/ε)]-tradeoff between the
optimality loss and time-complexity of the algorithm. Simulations
show that our approach is able to dramatically enhance the
scalability of task admission at a marginal cost of extra energy,
as compared to the optimal branch and bound method, and can
be efficiently implemented for online programming.

Index Terms—Mobile edge computing, Resource allocation,
Task admission, Optimization methods

I. INTRODUCTION

Computationally demanding mobile applications, such as
face recognition, language processing, online gaming, and
eHealth, have been fast developing and increasingly outgrow-
ing the limited capabilities of devices [1]. Offloading and
processing these computations at the edge of wireless access
networks, e.g., at base stations or gateways, mobile edge
computing (MEC) can bridge the gap between the capabil-
ity limitation of devices and their ever-increasing demands
for computations [2], [3]. Co-located at macro/pico/femto
base stations, MEC servers are able to conduct and deliver
computation services promptly, hence reducing latency and
energy consumption which are the key challenges to future
wireless networks [4]. Typical characteristics of MEC include
low latency, proximity, high bandwidth, mobility support and
location awareness [5].

Task admission and resource allocation are critical to MEC,
especially in the presence of a large number of delay-sensitive
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tasks, e.g., face recognition for security applications or online
gaming, due to the finite physical bandwidths of wireless
channels and limited computational resources at MEC servers.
In coupling with allocation of both radio/energy resources for
task offloading and computational resources for task process-
ing, task admission is typically a non-deterministic polynomial
(NP)-hard combinatorial mixed integer programming (MIP)
problem [6]. The computational complexity of task admission
would exponentially grow against the number of devices, and
become prohibitive in the presence of large numbers of devices
(or offloading requests). The scalability and practicality of task
admission would degrade.

Earlier works on task admission (also known as scheduling)
for MEC, such as [7]–[11], assumed independence among
different devices in their admission/offloading decisions under
unlimited computational capabilities on cloud platforms. More
recent researches have been focused on either offloading
decision-makings [12]–[16] or resource allocation [17], [18]
among multiple devices, rather than jointly accounting for
both. For joint optimizations of offloading decisions and
resource allocation, delay-tolerant tasks has been typically as-
sumed [6], [19], [20]; or the feasibility of the problem has been
assumed [21]. To the best of our knowledge, efficient joint
optimization of offloading decisions and resource allocations
has yet to be addressed for delay-sensitive tasks, especially in
the case where the number of devices is large, the optimization
can be infeasible and admission control would be necessary.

This paper proposes an asymptotically optimal online pro-
gramming of task admission which can guarantee task delays
and achieve (1 − ε)-approximation of the maximum energy
saving at a time-complexity of O(NK2/ε) linear to the
device number N . (K is the number of subchannels. ε is
linear to the quantization interval of energy.) This is based
on our new discovery that, after the tasks that cannot catch
deadlines by local execution are pre-admitted for offloading,
the admission of the remaining tasks is integer programming
(IP) with the optimal substructure. By relaxing the energy
saving as a continuous variable, the subproblems under the
substructure can recursively produce the optimal admission
schedule at a polynomial complexity depending on the num-
ber of subproblems. Another critical contribution is that we
optimally discretize the energy saving to holistically control
the number of the subproblems, leveraging the optimality loss
and complexity at an [O(ε),O(1/ε)]-tradeoff.

The proposed approach is efficient to implement. Only part
of the devices need to report their information while the
asymptotic optimality is unaffected. Other devices can evaluate
their energy savings of offloading against local execution,
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and spontaneously withhold offloading requests if there is no
energy saving or the deadlines would be violated. Evident
from extensive simulations, the proposed protocol exhibits an
attractive property that the signalling overhead can decrease
with the increasing number of devices at no cost of optimality,
especially when N is large. This is because the number
of devices pre-admitted grows, draining the resources and
increasingly preventing other devices from offloading.

DP provides an efficient solver for a class of complex
problems which can be partitioned into simpler overlapping
subproblems with optimal substructure and solved in sequel.
However, existing DP algorithms, such as the Floyd-Warshall
algorithm and the Bellman-Ford algorithm [22], are unable
to solve the problem of interest. This is due to the fact that
the original problem of interest is MIP and does not have the
optimal substructure. The solution also involves continuous
energy saving and computational resources, which prevents the
problem from being partitioned finitely and deterministically.
Our contributions of restructuring the problem to IP and com-
ply with the optimal substructure, including pre-admission,
discretization of continuous variables, and optimization of
discretization intervals, are key to solving the problem.

The rest of this paper is organized as follows. The related
works are reviewed in Section II, and the system model is
presented in Section III. In Section IV, we formulate the MIP
problem of task admission and resource allocation, reformulate
it as IP, and propose a quantized DP algorithm for the IP
problem. In Section V, we design the asymptotically optimal
quantization interval, followed by discussions and extensions
in Section VI. Simulation results are provided in Section VII.
Conclusions are provided in Section VIII.

II. RELATED WORK

Earlier works on the task admission of MEC, such as [7]–
[11], were focused on single-device decision-makings under
an implicit assumption of unlimited computational capabilities
on cloud platforms. In [7], an application was decided to be
offloaded entirely to a cloud or executed at a mobile device.
In [8]–[11], applications were partitioned into tasks or code
blocks to improve efficiency. In [8], a mobile application was
partitioned into a sequence of tasks which were processed se-
quentially. In [9], partitioned tasks were processed in parallel,
and DP was employed to minimize the processing delay under
energy constraints. In [10], a heuristic online approach was
developed to partition tasks. In [11], a directed acyclic graph
was used to represent code blocks, and a genetic algorithm
was developed to partition the code blocks.

More recent studies have been focused on either offloading
decisions or resource allocation among multiple devices [12]–
[16], with no allocation of transmission or computational
resources. In [12], under limited cloud resources, both online
and offline algorithms were developed to partition tasks for
multiple devices. In [13], using queueing theory, offloading
decisions were formulated as a non-cooperative game in a
three-tier MEC architecture consisting of mobile devices,
cloudlets and distant cloud. In [14], [15], offloading decisions
were studied in a single cell of WLAN or CDMA with

intra-cell interference, where competitions among devices for
radio resources were modeled as a non-cooperative game.
The utilities of individual game players were designed with
emphasis on the stability of the games. Only Pareto-optimal
solutions could be achieved, if stabilized, which unnecessarily
can be translated to the global optimality in terms of the utility
of the entire cell. In [16], an online task offloading algorithm
was proposed to minimize energy consumption, where Lya-
punov optimization was taken to ensure the incentives of user
cooperation in fog computing.

There are only a number of works that have jointly op-
timized the offloading decisions and resource allocation of
multiple devices, typically for delay-tolerant services [6],
[19], [20]. In [19], both offline and online approaches were
proposed for the joint optimization, where a single task was
offloaded to the MEC server while the others were executed
locally. In [20], the allocations of computational resources
and transmission bandwidths were optimized by exploiting
semi-definite programming, and the offloading decisions were
generated through randomized rounding. In [6], a heuristic
scheme based on a submodular optimization method was
proposed to jointly optimize offloading decisions and resource
allocations for delay-tolerant tasks.

There are even fewer works for delay-sensitive services [17],
[18], [21]. In [17] and [18], transmission and computational
resources were jointly optimized to save energy, but there
was no attempt to optimize offloading decisions. In [17],
a distributed optimization framework was proposed using
successive convex optimization, and a closed-form expression
for the maximum energy saving was derived in a single-user
case. In [18], both independent and joint optimizations of
computational and transmission resources were formulated to
be non-convex optimization problems, which were reformu-
lated and iteratively solved using minimum mean square error
criteria. In [21], joint optimization of offloading and resource
allocation was considered, but under a relaxed assumption
that the problem was feasible. A suboptimal solution was
developed by decoupling offloading decisions and resource
allocations. Tasks were incrementally offloaded, and resources
were correspondingly allocated by exploiting second-order
cone programming iteratively, until either the task deadlines
were violated or energy saving diminished. In practice, how-
ever, the problem can be increasingly infeasible with the
growing number of tasks to be offloaded.

Despite the same objective as in [21], our work is dis-
tinctively different from [21] by jointly optimizing offloading
decisions and resource allocations without the feasibility as-
sumption. It addresses the challenging problem of admission
control yet to be addressed in the case that the problem is
infeasible. Our work is also distinct by providing a non-
heuristic solution with proved asymptotic optimality.

III. SYSTEM MODEL

Fig. 1 shows a multi-user MEC system, where an LTE Base
Station (BS) is physically co-located with an MEC server1.

1The proposed approach is a generic MEC framework which is not
limited to LTE. Nonetheless, LTE provides a widely accepted and approved
embodiment of MEC [5].
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Fig. 1. The multi-user MEC system.

The connection between the MEC server and the BS can be via
comparatively delay- and fault-free wired links, such as fiber.
With finite computational resources, the MEC server serves the
tasks offloaded from a number of devices within the coverage
of the BS. The tasks can be processed locally at the device,
or offloaded to the MEC server.

The task of device i to be processed can be defined by a
triplet (Di, Ci, T

req
i ), where Di specifies the size of the task in

bits, Ci is the number of CPU cycles required to accomplish
the task, and T req

i is the task deadline, i.e., the maximum
delay that the task can tolerate. Assume that every task is
atomic, i.e., cannot be further split given strong dependence
over different parts of the task [14]–[19]. Di and Ci, acquired
by program profilers, depend on the type of task and are
consistent for a specific type [8], [11], [12]. The output of
a task is generally much smaller than the task size, and can
be returned to the device with negligible transmission delay
(e.g., face recognition and language processing [14], [15]).

Let F li denote the local computational capability of device i
in cycles per second. T li is the time required to perform the
task locally at the device, as given by

T li = Ci/F
l
i . (1)

The CPU power consumption is widely modeled to be a super-
linear function of F li , as given by [14], [15], [23]

P li = α(F li )
γ , (2)

where P li denotes the local power consumption of device i,
and α and γ are pre-configured model parameters depending
on the chip architecture. Typically, α = 10−11 Watt/cycleγ

and 2 ≤ γ ≤ 3 [14], [15], [23].
The energy consumption of device i for local computation,

denoted by Eli , is therefore given by

Eli = P li · T li = α(F li )
γ−1Ci. (3)

Let f0 denote the quantity of the available computational
resources at the MEC server in cycles per second. In the
case that device i is admitted for offloading, the MEC server
allocates fi computational resources, and performs the task on
behalf of the device.

With consideration of typical static IoT networks, we as-
sume that the channels are frequency-flat and each device i

feeds back its own channel, denoted by hi, to the BS infre-
quently. The BS schedules the devices accordingly. The uplink
data rate of device i can be given by

Ri = W log2(1 + pihi/N0), (4)

where W is the channel bandwidth and N0 is the noise power.
With limited number of subchannels, the BS can support at
most K concurrent data transmissions at the same time. pi
is the uplink transmission power, and can be pre-configured
based on the capability and location of the device, as suggested
by 3GPP [24]. Nevertheless, the algorithm developed in this
paper can be extended to more complex scenarios, where
the channels are frequency-selective and can be selected for
different devices to further save energy. However, signalling
overhead would grow under this channel-aware scheduling, as
all the devices need to feed back instantaneous channels to the
BS, as will be discussed in Section VI-C.

For device i, the total delay of remote task processing,
denoted by T ri , can be given by

T ri = T ti + T ei = Di/Ri + Ci/fi, (5)

where T ti = Di/Ri and T ei = Ci/fi are the uplink transmis-
sion time and remote execution time, respectively. Typically,
the computational resources allocated to each task at the MEC
server, fi, are up to 1010 cycles per second [15]. Taking the
example of face recognition, the required processing density
is 31680 cycles/bit [25]. On the other hand, the uplink data
rate Ri for IoT devices is typically less than 250kbps [24].
The processing speed of about 1010

31680 ≈ 320 kbps is similar
to the uplink rate. The processing delay at the MEC server is
non-negligible, as compared with the transmission delay.

If admitted for remote processing, the energy consumption
of device i, denoted by Eri , is given by

Eri = (pi/ζi)T
t
i = piDi/ζiRi, (6)

where ζi is the power amplifier efficiency of device i.
It is the MEC server that makes and advises admission

decisions based on the availability of its own resources and
the requests of all devices. The request that device i sends
consists of information on task and device parameters, such
as Ci, Di, T

req
i , pi, T li and Eli .

IV. ENERGY-EFFICIENT OFFLOADING AND RESOURCE
OPTIMIZATION

In this section, we propose to minimize the energy con-
sumption of devices under the latency constraints for delay-
sensitive tasks. This can be formulated as an MIP problem.
Propositions are developed to reformulate the MIP as IP,
which can be solved by a new quantized DP algorithm,
named Energy-efficient offloading and Resource Optimization
Scheme (EROS).

A. Problem Formulation

EROS is designed to minimize the total energy consumption
of devices under latency constraints. It may increase energy
consumptions at some individual devices which need to give
way to others with tighter energy budget or more stringent
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deadlines, but improve the sustainability of the entire network
in the long term. The problem of interest can be formulated as

P: min
s,f

∑
i∈N

siE
r
i + (1− si)Eli ,

s.t. C1: si ∈ {0, 1} , ∀i ∈ N,
C2:

∑
i∈N si ≤ K,

C3:
∑
i∈N fi ≤ f0,

C4: Ti ≤ T req
i , ∀i ∈ N,

(7)

where s and f are the vectors of admission decisions si ∈
{0, 1}, and allocated computational resources fi, respectively.
Particularly, the task of device i is admitted for offloading if
si = 1, or rejected otherwise; and the MEC server allocates
fi to the task. N denotes the set of active devices; Ti and Ei
denote the time and the energy consumption for executing the
task of device i, respectively, and can be written as

Ti = siT
r
i + (1− si)T li ; (8)

Ei = siE
r
i + (1− si)Eli . (9)

Here, C1 states that a task can be either executed locally or
offloaded for remote processing. C2 specifies the constraint
of concurrent offloaded tasks due to limited frequency sub-
channels. C3 ensures that the total computational resources
assigned are no more than the available computational capa-
bility. C4 is the latency constraints for task deadlines.

Note that P is NP-hard MIP [26]. This is because the
admission decision s is binary while the resource allocation
decision f is continuous. The MIP problem is typically solv-
able, e.g., by using branch and bound method or exhaustive
search, but at prohibitive NP time-complexity. To circumvent
this impasse, the following two new propositions are first put
forth to decouple f from C3 and C4 and transform P to an IP
problem which exhibits the optimal substructure of DP.

Proposition 1. Resource-restrained devices with Ci/f
l
i >

T req
i are pre-admitted for offloading to satisfy task deadlines.

Define Nr = {i | T li > T req
i }. Devices in Nr are

too resource-restrained to accomplish tasks on their own
before deadline, and hence pre-admitted for remote processing
according to Proposition 1. The MEC server allocates the
minimum computational resources to meet the deadline, as
specified in the following.

Remark 1. For a resource-restrained device i, the remote
computational resources are pre-allocated, as given by

fi = sif
min
i = siCi/(T

req
i −Di/Ri). (10)

Proof. For offloaded task, C4 indicates that siT ri ≤ T req
i ,

i.e., si(Di/Ri + Ci/fi) ≤ T req
i . Rearranging the inequality,

we have
fi ≥ sifmin

i , (11)

where fmin
i = Ci/(T

req
i − Di/Ri) for notational simplicity.

Note that the MEC server is designed to allocate the minimum
computational resources to the offloaded traffic here, since the
energy consumption of device i is independent of fi.

In the case that P is feasible, both the computational and
transmission resources are sufficient to satisfy the deadlines

of all devices. Under this assumption, the remaining compu-
tational resources and frequency subchannels available at the
MEC server are given by

f̃0 = f0 −
∑

i∈Nr

fmin
i ≥ 0; K̃ = K −Nr ≥ 0. (12)

Proposition 2. If all the devices are capable of accomplishing
tasks by their own, i.e., T li ≤ T req

i , ∀i ∈ N, constraints C3
and C4 are equivalent to C5:

∑
i∈N sif

min
i ≤ f0.

Proof. Since T li ≤ T req
i is satisfied for any device i ∈ N

by substituting (11) into C3, we can obtain the necessary
condition of C3 and C4, as given by

f0 ≥
∑

i∈N
fi ≥

∑
i∈N

sif
min
i . (13)

On the other hand, C5 can also be proved to be the sufficient
condition of C3 and C4. If C5 is satisfied, the minimum
resources fi = sif

min
i are assigned to the task of device i to

fulfill C3 and C4. Therefore, we conclude that if T li ≤ T req
i

for ∀i ∈ N, C3 and C4 are equivalent to C5.

Proposition 2 reveals that the MIP problem (7) can be
reformulated to an IP problem by replacing C3 and C4 with
C5, on the condition that all devices are capable of local task
execution. From Proposition 1, resource-restrained devices in
Nr can be pre-admitted for offloading. Proposition 2 holds for
the remaining devices, and therefore the remaining problem
can be recast as IP.

Let Nu = N \ Nr = {1, 2, . . . , Nu} collect the devices
that are capable of accomplishing tasks on their own before
deadline, and su = {si|i ∈ Nu} collect the offloading
decisions for the devices in Nu. Devices in Nu satisfy the
condition required in Proposition 2. Applying (13), the energy
minimization problem under the latency constraints can be
reformulated as an IP problem, as given by

P1: max
su

∑
i∈Nu

siE
s
i ,

s.t. C1: si ∈ {0, 1} , ∀i ∈ Nu,
C2:

∑
i∈Nu

si ≤ K̃,
C5:

∑
i∈Nu

sif
min
i ≤ f̃0,

(14)

where the objective of minimizing the total energy is equiv-
alent to maximizing the energy saving Esi = Eli − Eri
through remote processing. Analogous to (10), the remote
computational resource schedule is fi = sif

min
i .

In the case that P is infeasible, the available transmission
or computational resources at the MEC server and devices
can by no means satisfy the deadlines of all devices. Some of
the resource-restrained devices i ∈ Nr that need to offload to
meet their deadlines, as specified in Proposition 1, have to be
denied for offloading. Then, P becomes to select a subset of
the resource-restrained devices and maximize energy saving,
as given by

P1’: max
sr

∑
i∈Nr

siE
s
i ,

s.t. C1: si ∈ {0, 1} , ∀i ∈ Nr,
C2:

∑
i∈Nr

si ≤ K,
C5:

∑
i∈Nr

sif
min
i ≤ f0,

(15)
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where sr = {si|i ∈ Nr} denotes the admission decisions
of devices in Nr. The computational resources can also be
allocated based on Remark 1, i.e., fi = sif

min
i .

Both inherited from P, P1 and P1’ account for the feasible
and infeasible scenarios, respectively. Given the same structure
and the same goal of selecting the most energy-efficient subset
of devices to offload, P1 and P1’ can be solved by a unified
solver (with the only difference of input parameters) which
is to be developed in the rest of this section. For illustration
convenience, the solver is described against P1 in the paper,
but can be readily used for P1’.

B. Quantized DP Algorithm

We note that P1 yields the optimal substructure of DP, and
can be partitioned into overlapping subproblems. The solution
for P1 can be efficiently constructed from the solutions for its
subproblems by using DP techniques. Specifically, the solution
for minimizing the energy of the first i devices can be that
either device i offloads its task for remote processing or pro-
cesses the task locally, given the solutions to the subproblems
for the first (i− 1) devices.

Let φi(e, l) denote the minimum value of the subproblem
defined in (16), i.e., the minimum computational resources for
the first i devices while saving e units of energy and offloading
l ∈ {0, . . . , K̃} tasks:

φi(e, l) = min
su

{∑i

j=1
sjf

min
j

∣∣∑i

j=1
sjE

s
j = e,

∑i

j=1
sj = l

}
.

(16)
According to Bellman equation [27], φi(e, l) can be solved

recursively based on the results of the preceding subproblems
φi−1(e, l), as given by

φi(e, l) = min{φi−1(e, l), φi−1(e−Esi , l− 1) + fmin
i }. (17)

The solution for φi(e, l) is chosen between local task execu-
tion, i.e., φi−1(e, l), or task offloading for remote processing,
i.e., φi−1(e − Esi , l − 1) + fmin

i . The Bellman equation
exploits the optimal-substructure property, and reduces the
time-complexity by finding the solution from the subproblem
of the shortest size [27].

The admission decision for device i in the solution to
subproblem φi(e, l), denoted by si(e, l) ∈ {0, 1}, is given by

si(e, l) =

{
1, if φi(e, l) = φi−1(e− Esi , l − 1) + fmin

i ;
0, otherwise.

(18)
We note that e can take 2i possible discrete values for the i-th
(i = 1, · · · , Nu) subproblem in (16). It can be computationally
prohibitive to enumerate the possible discrete values of e in
(18), especially in the case N is large. To eliminate the compu-
tationally prohibitive enumeration, we propose to first relax e
to be a continuous variable (0 ≤ e ≤ E) which can be properly
initialized so that the final optimal value of e takes one of the
2Nu possible discrete values. E =

∑
i∈Nu

max(Esi , 0) is the
upper bound of energy saving for P1. Specifically, we initialize
φi(e, l) = ∞ except that φi(0, 0) = 0. If e = e′ does not
belong to the 2i possible values,

∑i
j=1E

s
j 6= e′, subproblem

(16) is inactive, and Φi(e
′, l) is not updated and remains ∞.

The superordinate subproblems of φi(e′, l) are ∞, larger than

Algorithm 1 Energy-efficient offloading and Resource Opti-
mization Scheme (EROS)

Pre-admit Resource-restrained Devices
1: if T li > T req

i then
2: Offload and schedule resources based on Proposition 1
3: end if

Quantized Dynamic Programming
4: Discretize: esi = qδ(E

s
i ), ∀i ∈ Nu

5: Initialize: φi(e, l) =∞ except that φi(0, 0) = 0
6: for Each device i = 1 to Nu do
7: for l = 0 to K̃, e = 0 to ê do
8: φi(e, l) = min{φi−1(e, l), φi−1(e−esi , l−1)+fmin

i }
9: Record si(e, l) by (18)

10: end for
11: end for
12: Find the optimal solution e∗ by (21)

Backward Induction
13: Initialize: e = e∗/δ and l = l∗

14: for i = Nu down to 1 do
15: Task admission: si = si(e, l)
16: Trace backward: e = e− siEsi , l = l − si
17: end for

Task Admission
18: Devices offload tasks according to the result of si
19: Schedule computational resources: fi = sif

min
i

their counterparts of φi(e”, l) with e” taking one of the 2i

possible discrete values. e′ cannot be part of the final optimal
solution.

Despite the computationally prohibitive enumeration is
avoided, the continuous relaxation of e ∈ [0, E] would
lead to an infinite number of subproblems. Nevertheless, the
number of subproblems is much flexible and controllable, as
compared to the rigid enumeration. To control the number of
subproblems and improve the tractability of (18), we propose
to further discretize the energy saving e, and restrain the
number of subproblems to be finite. (We also optimize the
quantization interval to holistically leverage the optimality
loss and complexity at an [O(ε),O(1/ε)]-tradeoff, as to be
articulated in Sections V and VI-A.) The uniform quantizer of
e is given by

qδ(e) = k, if (k − 1)δ < e ≤ kδ, (19)

where δ is the quantization interval. The energy saving of each
device can also be discretized, and let esi = qδ(E

s
i ) denote the

quantized energy saving of device i. As a result, the upper
bound of quantized total energy saving for P1, denoted by ê,
can be given by

ê = dE/δe+ K̃ (20)

where dE/δe corresponds to the quantized upper bound of
total energy saving. Note that, according to (19), the proposed
quantizer can overestimate the energy saving by no more
than δ, i.e., 0 ≤ δesi − Esi < δ. Given the constraint of K̃
available subchannels in P1, the MEC server cannot admit
more than K̃ devices for offloading. Thus, the quantization
error due to the discretization of esi cannot exceed δK̃.

5



0090-6778 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2018.2799937, IEEE
Transactions on Communications

The number of subproblems φi(e, l) is the product of the
numbers of devices, Nu, the number of available subchannels,
K̃, and the upper bound of quantized energy saving, ê.
There are NuK̃ê subproblems in total. After solving these
subproblems for the total of Nu devices, the optimal solution
can be given by

e∗ = δ max
l=0,...,K̃

{e | φNu(e, l) ≤ f̃0}, (21)

where e∗ is the maximum energy saving by the proposed
quantized DP algorithm. Let l∗ denote the number of offloaded
tasks corresponding to e∗.

Backward induction has been widely used to solve DP
problems and can determine a sequence of optimal actions by
reasoning backwards [28]. It starts by first assessing the last
decision in the optimal solution, i.e., sNu(e∗/δ, l∗), and then
uses the outcome to determine the second-to-last decision. This
continues until the optimal decisions are decided for all the
devices. The proposed energy-efficient offloading and resource
optimization scheme is summarized in Algorithm 1.

V. ASYMPTOTICALLY OPTIMAL QUANTIZATION INTERVAL

There is a tradeoff between the time-complexity and the op-
timality loss of Algorithm 1 due to the quantization of energy;
see (19). Particularly, narrowing the quantization interval δ
reduces the optimality loss, but increases the time-complexity.
In this section, we quantify the tradeoff by inferring the upper
and lower bounds of the solution for P1, where the linear
programming (LP) relaxation of P1 is carried out, as given by

P2: max
su

∑
i∈Nu

siE
s
i ,

s.t. C2 and C5,
C6: si ∈ [0, 1], ∀i ∈ Nu.

(22)

Here, the binary constraint C1 is relaxed to be C6. Clearly,
P2 gives the upper bound for P1 in terms of energy saving.

The Lagrangian problem of P2 can be written as

L(λ, µ) = max
su∈C6

∑
i∈Nu

siE
s
i +λ(K̃−

∑
i∈Nu

si)+µ(f̃0−
∑
i∈Nu

sif
min
i ).

(23)
The Lagrangian problem L(λ, µ) is separable, and can be
restructured as

L(λ, µ) = λK̃ + µf̃0 +
∑

i∈Nu

Li(λ, µ), (24)

where
Li(λ, µ) = max

si∈[0,1]
si(E

s
i − λ− µfmin

i ). (25)

As a result, the Lagrangian function can be maximized if
and only if Li(λ, µ) is maximized for all i = 1, 2, · · · . The
maximization of Li(λ, µ) can be efficiently solved as

s∗i (λ, µ) =

{
1, if θ(i, λ, µ) > 0;
0, if θ(i, λ, µ) < 0, (26)

where θ(i, λ, µ) = Esi − λ− µfmin
i for notational simplicity.

Strong duality holds in LP problems [29]. By substituting
(26) into (23), the dual problem of (22) can be formulated, as
given by

min
λ>0,µ>0

λK̃+µf̃0+
∑

i∈Nu

s∗i (λ, µ)(Esi −λ−µfmin
i ), (27)

where the optimal Lagrangian multipliers λ∗ and µ∗, subject to
a hyperplane search problem, can be obtained through multi-
dimensional search at a linear complexity of O(Nu) [30].

According to (26) and the optimal Lagrangian multipli-
ers, Nu can be divided into three subsets: N+

u = {i |
θ(i, λ∗, µ∗) > 0}, N0

u = {i | θ(i, λ∗, µ∗) = 0}, and
N−u = {i | θ(i, λ∗, µ∗) < 0}. From (26), clearly, si = 1
for i ∈ N+

u ; and si = 0 for i ∈ N−u .
For the evaluation of the upper bound of P1, among all

the devices i ∈ N0
u 6= ∅ and θ(i, λ∗, µ∗) = 0, one of the

devices r0 = arg maxr0∈N0
u
{sr0Esr0} with sr0 = (f̃0 −∑

j∈N+
u
fmin
j )/fmin

r0 ∈ (0, 1) can be selected to optimize P2.
This is the case where some resources remain available at
the MEC server after all devices in N+

u are accepted for
offloading, but the remaining resources cannot satisfy in whole
any unsatisfied offloading request (from the devices in N0

u).
Given the resource, the device which can save the most energy
among the unselected devices, i.e., device r0, is selected to
offload part of its task, thereby maximizing the total energy
saving in the absence of the binary constraint on sj ∈ {0, 1}.
This provides the upper bound for P1, as given by

eLP =
∑

i∈N+
u

Esi + sr0E
s
r0 . (28)

For the evaluation of the lower bound of P1, si = 0 can
be taken for any device i ∈ N0

u 6= ∅, and hence the lower
bound is given by ef =

∑
i∈N+

u
Esi . This is the case where,

after the devices in N+
u are admitted, the remaining available

resources are just wasted. Since this solution is integer but
not optimized, it can save no more energy than the optimal
solution to P1, and hence provides the lower bound.

The relationship among the lower bound, ef , the optimal
solution to P1, eopt, and the LP upper bound, eLP, is revealed
in the following Lemma.

Lemma 1. ef ≤ eopt ≤ eLP ≤ 2ef .

Proof. Note that ef is a lower bound for P1, while the LP
relaxation provides the upper bound eLP. We can obtain that
ef ≤ eopt ≤ eLP. Besides, eLP =

∑
i∈N+

u
Esi + sr0E

s
r0 ≤

2 max{
∑
i∈N+

u
Esi , E

s
r0} = 2ef . Then, we prove ef ≤ eopt ≤

eLP ≤ 2ef .

Following Lemma 1, the quantization interval δ can be
adjusted to achieve (1−ε)-approximation of the optimum eopt

for any ε > 0, as dictated in the following Lemma.

Lemma 2. The proposed quantized DP algorithm can achieve
(1−ε)-approximation of the optimum for any ε > 0, by setting
the quantization interval δ = efε/K̃.

Proof. Let soptu and s∗u denote the optimal admission decisions
for P1 and the decision obtained by the proposed quantized
DP algorithm, respectively. Let p(s) =

∑
i siE

s
i and q(s) =∑

i sie
s
i denote the original and quantized energy saving of the

admission decision s, respectively. Then, the optimal energy
saving can be given by eopt = p(soptu ) and the solution of
EROS is e∗ = p(s∗u).

According to (19), we have

δ(esi − 1) ≤ Esi < δesi . (29)

6
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Hence, we can obtain that p(soptu ) < δq(soptu ) and p(s∗u) ≥
δ[q(s∗u)− |s∗u|], and therefore, we have

eopt−e∗ = p(soptu )−p(s∗u) < δ[q(soptu )+ |s∗u|−q(s∗u)]. (30)

Note that q(s∗u) ≥ q(soptu ) holds, since the proposed EROS
produces the optimal solution for the problem after energy
quantization. Thus, we also obtain

δ[q(soptu )+|s∗u|−q(s∗u)] ≤ (efε/K̃) |s∗u| ≤ efε ≤ eoptε. (31)

From (30) and (31), we have eopt−e∗ < eoptε. Hence, for any
ε > 0, the proposed quantized DP algorithm can achieve (1−
ε)-approximation of the optimum, i.e., e∗ > (1− ε)eopt.

VI. DISCUSSIONS AND EXTENSIONS

In the proposed EROS, devices send offloading requests to
the MEC server, and offload their tasks according to the result
of task admission. Signalling is streamlined, and reduced.
In this section, we analyze the complexity, discuss fairness
and task partitioning of EROS, extend the proposed EROS to
frequency-selective subchannels, and illustrate the impact of
inter-cell interference.

A. Complexity Analysis

The following Lemma exhibits the tradeoff between the
performance and time-complexity of the proposed EROS.

Lemma 3. EROS is able to achieve (1− ε)-approximation of
the optimum at the complexity of O(NK2/ε).

Proof. Recall that Nu and K̃ denote the numbers of remaining
devices and subchannels after pre-admission by Proposition 1,
respectively. The time-complexity of EROS depends on the
number of subproblems to be solved. As mentioned in Sec-
tion IV-B, the number of subproblems is NuK̃ê, where the
time-complexity for each subproblem using (17) is O(1). The
time-complexity of backward induction is O(Nu) [28]. Thus,
the overall time-complexity of EROS is O(NuK̃ê).

We can further tighten the upper bound of quantized energy
saving in (20) by replacing E with the LP upper bound, eLP,
as given by ê = deLP/δe+ K̃. Therefore, we have

O(NuK̃ê) = O(NuK̃
2 +NuK̃e

LP/δ). (32)

From Lemma 2, we show that (1 − ε)-approximation of
the optimum can be achieved by using δ = efε/K̃. By
substituting this into (32), the time-complexity of EROS is
O(NuK̃

2 + (eLP/ef )NuK̃
2/ε) = O(NuK̃

2 + NuK̃
2/ε) =

O(NuK̃
2/ε). Since the pre-admission using Proposition 1

reduces the number of devices to be assessed, the complexity
of EROS is O(NK2/ε).

Additional measures can be taken to further reduce the
complexity and overhead. Upon the receipt of f̃0, each device
in Nu can check the following condition to determine whether
to send offloading requests.

Proposition 3. If (T ri )min = T ti +Ci/f̃0 > T req
i or Eri ≥ Eli ,

device i executes its task locally.

Proposition 3 describes two cases. In the first case, even
allocating all the remaining resources f̃0 at the MEC server

to device i cannot satisfy the task deadline, i.e., (T ri )min =
T ti +Ci/f̃0 > T req

i . In the second case, offloading would not
save energy for the device, i.e., Eri ≥ Eli . In both cases, the
device is pre-denied and chooses to execute its task locally.

Based on Propositions 1 and 3, signalling can be reduced
and streamlined while the asymptotic optimality of the system
is preserved. Particularly, devices with limited resources and
tight deadlines are given priority to send offloading requests to,
and get satisfied by, the MEC server; see Proposition 1. The
MEC server then broadcasts the remaining resources, based
on which devices can spontaneously decide to process tasks
locally and withhold requests, if the remaining resources is
insufficient to meet their deadlines; see Proposition 3. Only the
rest of the devices send offloading requests to the MEC server
which (i.e. the server) conducts the proposed quantized DP
algorithm to admit devices and allocate resources accordingly.

Lemma 3 dictates an [O(ε),O(1/ε)]-tradeoff between the
optimality loss and time-complexity of the proposed quantized
DP algorithm running at the MEC server. This gives the MEC
server an opportunity to reduce the energy consumption of
the network by leveraging its hardware capability. In practice,
an MEC server can choose the smallest ε value based on its
capability, thereby attaining the minimum achievable energy
consumption of the system.

B. Fairness and Task Partitioning

The proposed approach can be readily extended to provide
fairness between devices in terms of energy saving in the long
term. By exploiting the idea of proportional fairness [31], a
coefficient 1

κi
can be multiplied to the energy consumption

of each device in the objective of P, i.e., min
s,f

∑
i∈N

1
κi

[siE
r
i +

(1 − si)Eli]. κi is the time-average of the past energy saving
of device i. Device i with small κi is given priority to offload
tasks, achieving fairness in the long term. At every instant, the
optimal substructure of Bellman equation can be preserved,
and the reformulated problem can be readily solved by using
the proposed quantized DP algorithm.

In a different context of task partitioning, a task can be
partitioned into atomic subtasks (e.g., in a tree structure). Some
of the atomic subtasks can be offloaded, and offloading needs
to be holistically designed to ensure the consistency (i.e., the
correct order) of task processing. However, existing studies,
such as [7]–[11], implicitly assumed unlimited computational
and transmission capabilities, and did not schedule between
multiple devices. To this end, there is no comparable algorithm
to the algorithm proposed in this paper.

In our earlier work [32], we partitioned a delay-sensitive
task of a single device to be processed against limited re-
sources in the most energy-efficient manner. This has potential
to be implemented in conjunction with the proposed algorithm
to support task partitioning. Particularly, each device can
partition its own task into atomic subtasks, and specify the
deadlines of the subtasks. By using the partitioning technique
in [32], the deadlines can be designed to guarantee the integrity
of task processing, given available resources. The proposed
quantized DP algorithm can be used to asymptotically op-
timally schedule the atomic subtasks and assign resources.

7
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Given the inherent independence between task partitioning and
scheduling in this design, we can still separately focus on the
scheduling approach developed in this paper. More closely
coupled designs of task partitioning and scheduling are non-
trivial, have yet to be developed, and will be our future work.

C. Channel-aware Scheduling

The proposed algorithm has the potential to be extended to
more complex scenarios, where the channels are frequency-
selective, instantaneously measured at the devices, fed back
to the BS, and selected for different devices to further reduce
energy consumption.

Define si ∈ {0, · · · ,K} as such that device i locally
executes its task if si = 0, or offload the task to the MEC
server via subchannel si. The constraints C1 and C2 of
problem P can be accordingly reformulated as

C1’: si ∈ {0, · · · ,K}, ∀i,
C2’: si 6= sj , ∀si 6= 0, i 6= j; (33)

where C2’ indicates that a subchannel must be exclusively
occupied by a single device at a time.

The changes of the constraints do not affect Proposition 1,
where the resource-restrained devices Nr are pre-admitted for
offloading. We note that the minimum computational resources
(i.e., fmin

i ) in Proposition 2 now depend on the subchannel that
device i is allocated, and needs to be updated to fmin

i,l , i.e.,
the minimum computational resources of device i using the
specific subchannel l:

fmin
i,l = Ci/(T

req
i −Di/R

l
i), (34)

where Rli is the transmit rate of device i at subchannel l. C5
in problem P1 can be updated by

C5’:
∑

i∈N
sif

min
i,si ≤ f0. (35)

Unlike P1, the channel allocation for the pre-admitted
devices Nr are now coupled with the admission and channel
allocation for the remaining undetermined devices Nu. Given
frequency-selective channels, the problem of interest P3 be-
comes

P3: max
s

∑
i∈N siE

s
i,si

,

s.t. si 6= 0, i ∈ Nr,
C1’, C2’ and C5’,

(36)

where Esi,si denotes the energy saving of device i by offloading
its task through subchannel si. The channels of the pre-
admitted devices in Nr are selected together with the other
devices, and the admission of Nr is guaranteed by enforcing
the constraint si 6= 0, i ∈ Nr.

Let O = {o1, · · · , oK} stand for the channel occupation
status of the K subchannels and oi ∈ {0, 1}, i.e., subchannel i
is unoccupied if oi = 0, or occupied otherwise. Define
φi(e,O) as the minimum computational resources for the first
i devices while e units of energy is saved and the subchannel
status is O. We notice that the optimal substructure still holds
by replacing the original subproblem φi(e, l) with φi(e,O) in
problem P3.

According to Bellman equation [27], φi(e,O) can be pre-
sented in a recurrence expression based on the results of the
preceding subproblems φi−1(e,O), as given by

φi(e,O) = min

{
φi−1(e,O), if i /∈ Nr

φi−1(e− Es
i,l,O(l) = 0) + fmin

i,l ; ∀ol = 1

}
,

(37)
where O(l) = 0 stands for the vector O with ol = 0. Also,
the channel allocation can be recorded by

si(e,O) =

{
l, if φi−1(e,O) = φi−1(e− Es

i,l,O(l) = 0) + fmin
i,l ;

0, otherwise.
(38)

The maximum energy saving is e∗ = δmaxl{e | φN (e,O) ≤
f0}, and the channel-aware scheduling can be obtained also
through backward induction, as done in Algorithm 1.

However, signalling overhead would grow under the
channel-aware scheduling, as all the devices need to feed
back their instantaneous channels so that the BS can sched-
ule the devices in the channel-aware manner. Moreover, the
computational complexity would also grow, since the channel
selection is integer programming coupled with the device
selection in a multiplicative manner in the proposed algorithm.
The number of subproblems grows from NKê subproblems
φi(e, l) in frequency-flat channels to N2K ê subproblems
φi(e,O) in frequency-selective channels. Consequently, the
time-complexity grows from O(NK2/ε) to O(NK2K/ε).

D. The Impact of Inter-cell Interference

The proposed asymptotically optimal approach can be ap-
plied in the presence of inter-cell interference. Interference co-
ordination and fractional frequency reuse are typically adopted
for inter-cell interference mitigation [33]. Based on the Central
Limit Theorem, the residual inter-cell interference can be
modeled to be Gaussian, given a typically large number of
transmitters beyond the cell of interest [34] and [35]. (4) can
be rewritten as Rli = W log2(1 +

pih
l
i

N0+N l
I

) to account for
the Gaussian interference per subchannel, where Rli and hli
are the achievable data rate and the channel gain of device i
in subchannel l, and N l

I is the interference power measured
at the BS in the subchannel. In the case of a flat-fading
channel with i.i.d. Gaussian interference per subchannel, the
resultant problem involving Rli (not Ri) fully complies with
the original interference-free setting, and can be solved by
running the proposed algorithm, i.e., Algorithm 1. In the case
of a frequency-selective channel with independent and non-
identically distributed (i.n.d.) Gaussian interference per sub-
channel, the resultant problem fully complies with the channel-
aware variation of the original interference-free setting, and
can be also readily solved by using the proposed approach in
the same way as discussed in Section VI-C.

VII. SIMULATION RESULTS

In this section, Monte Carlo simulations are carried out to
evaluate the proposed algorithm. The number of subchannels is
K = 20, and the bandwidth per subchannel is W = 180kHz.
The total number of devices N is up to 25; unless otherwise
specified. These devices are uniformly distributed in a cell

8
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TABLE I
SIMULATION PARAMETERS

Parameters Assumptions
Macrocell Radius 250m

Number of Subchannels 20

Bandwidth per Subchannel 180kHz

Pathloss from Device to Macro BS 128.1 + 37.5log10(r)

Thermal Noise Density -174dBm/Hz

Transmit Power 23dBm

Lognormal Shadowing Standard Deviation 10dB

Input Data Size D 85kB

Required Number of CPU Cycles C 1000Million cycles

Local Computational Capability F l
i 0.5GHz−1.5GHz

Latency Request T req {1, 1.5}s
Remote Computational Capability f0 15GHz

with radius of 250m. Consider complex applications like face
recognition [25], of which the input data size is D = 85kB
and the required number of CPU cycles is C = 1000 million
cycles. The local computational capability F li is uniformly
distributed within [0.5, 1.5] GHz. Other parameters used in the
simulations are summarized in Table I [36]. 5000 independent
runs are conducted for each data point.

Apart from the proposed task admission algorithm (i.e.,
EROS), we also simulate the following algorithms for com-
parison purpose.

1) Branch and Bound (B&B): After reformulating the
MIP problem P to the IP problem P1, we take the
B&B algorithm [37] to achieve the optimal solutions
for P. B&B is a classical and popular solver for discrete
and combinatorial optimization problems, conducting a
structured enumeration of candidate solutions following
a tree structure [37]. In the case of P1, the B&B
method can be set up to assess sj (j = 1, · · · , Nu),
following a binary tree. When assessing a particular
sj , the upper and lower bounds of P1 are achieved
by taking the binary values of si, i = 1, · · · , j, from
each of the remaining branches, relaxing sk to be
continuous within [0, 1] for k = j + 1, · · · , Nu, and
solving the relaxed problems with linear programming.
The branches with upper bounds lower than the lower
bound of some other branches are removed – bounding,
since those branches offer no prospect of the optimal
solution. By this means, the optimal solution can be
achieved by enumerating a potentially reduced number
of candidate solutions. Unfortunately, in the worst-case
scenario where no branches can be removed until the
final stage of assessing the last layer, all candidate
solutions are enumerated from the root along every
branch of the binary tree. As a consequence, the worst-
case complexity of the B&B method can be as high as
exhaustive search.

2) All Request Admission Algorithm (ARAA): The MEC
server accepts all the offloading requests, and computa-
tional resources are equally allocated. In the case that
the wireless bandwidth is insufficient to admit all the
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Fig. 2. The [O(ε),O(1/ε)]-tradeoff between the optimality loss and time-
complexity.

devices, K out of the devices are randomly admitted
for remote processing.

3) Local execution (Local): There is no offloading. All
tasks are executed locally.

We have also simulated the relaxed version of EROS which
allows partial offloading by dropping the binary constraint C1,
where a task can be arbitrarily partitioned; see [4]. This is due
to the fact that there is no other comparable partial offloading
approach, as mentioned in Section VI-B. Unfortunately, the
relaxed algorithm supporting partial offloading, referred to as
“Partial”, can violate the integrity of tasks that cannot be
partitioned in many cases. Moreover, the relaxed algorithm is
less challenging than EROS. Without the binary constraint C1,
partial offloading can be straightforwardly implemented by
using the standard Matlab linear programming toolbox. The
energy saving of partial offloading can also be substantially
overestimated, especially in the case of large tasks, tight
deadlines, or limited resources, as will be shown in Figs. 3
and 4.

Fig. 2 shows the tradeoff between the optimality loss and
time-complexity of the proposed EROS, as 1/ε varies from
1 to 20. Here, N = 20 and T req = 1s. We see that the
time-complexity of EROS grows linearly with 1/ε, while the
total energy consumption of devices decreases with 1/ε and
approaches to the optimum achieved by exhaustive search. The
[O(ε),O(1/ε)]-tradeoff is confirmed, as stated in Lemma 3.
B&B achieves the minimum energy consumption, as can be
validated by comparing to the results of exhaustive search.
EROS achieves nearly the minimum energy consumption
achieved by B&B when 1/ε ≥ 10. For this reason, in the
following simulations, we set (1−ε) = 0.9, i.e., 1/ε = 10. It is
worth mentioning that both 2.3385J and 2.3345J are the energy
consumptions under different values of ε = 1 and ε = 0.05.
Their difference is not energy saving.

Fig. 3 shows the average energy consumptions of EROS,
Partial, B&B, ARAA and Local, where N = 20 and T req

ranges from 1s to 3s. The energy savings of the proposed
EROS compared with the existing solutions are evaluated.
With the growth of T req, the energy consumptions of EROS,
Partial, and B&B first decrease and then stabilize at 0.075
Joule per device when T req ≥ 2s. This is because increasingly
relaxed deadlines allow a growing number of devices to be se-
lected for offloading, thereby increasingly exploiting diversity

9
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and reducing energy consumption. EROS and B&B can save
up to 31% of energy as compared with Local. Compared with
EROS and B&B, Partial could dramatically save 28% more
energy, since it allows part of the most energy-efficient tasks
to be offloaded, but violates the integrity of the tasks. When the
deadlines are so loose that almost all devices can be selected
for offloading, the energy consumption stops decreasing and
stabilizes. The loose deadlines can also help eliminate the
difference between atomic tasks and partial offloading, since
tasks can be offloaded in whole and integrity does not degrade.

Fig. 4 shows the number of devices with satisfied deadlines
achieved by EROS, Partial, B&B, ARAA and Local, as f0 in-
creases from 10GHz to 30GHz, where N = 20 and T req = 1s.
EROS and B&B can satisfy the deadlines of all devices when
f0 ≥ 17 GHz. However, when f0 < 17GHz, the numbers of
devices satisfied by EROS and B&B slightly drop to 17 as f0
decreases to 10GHz. This is the infeasible scenario of (15) due
to the insufficient computational and transmission resources.
On the other hand, Partial can satisfy all deadlines irrespective
of f0, by overlooking task integrity and continuously leverag-
ing both local and remote computational resources. In contrast,
ARAA cannot satisfy any deadline when f0 ≤ 22GHz, and
satisfies only up to 18 devices when f0 = 30GHz. Local can
always satisfy only half of the deadlines due to the uniform
distribution of local computational capacity.

Fig. 5 compares the average latency and energy consump-
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Fig. 5. The comparison of devices’ average latency and energy consumption
where T req = 1s. EROS and B&B increase energy consumptions to satisfy
the stringent deadline.

tion between EROS, Partial, B&B, ARAA and Local, where
T req = 1s. This is the case where the deadlines are stringent,
and effective task admission is critical to meet the deadlines
by leveraging local and remote computational capabilities. We
see in Fig. 5 that EROS, Partial, and B&B can either save
energy or reduce latency, compared with ARAA and Local.
In Fig. 5(a), EROS and B&B provide nearly identical latency,
both satisfying the deadline. Partial can also meet the deadline.
The other algorithms all violate the deadline T req = 1. The
average latency of ARAA grows linearly with N when N
is small to medium (i.e., N ≤ 20); and declines when N is
large (i.e., N > 20), as the result of the increasing number
of devices executing tasks locally with the average latency of
1.1s (c.p., 1.6s for remote processing). ARAA also violates
T req = 1 for N > 13.

In Fig. 5(b), we see that the proposed EROS and B&B pro-
vide indistinguishably close energy consumptions, validating
the asymptotic optimality of EROS. We also see the energy
consumptions of EROS and B&B are low and stable when
N is small, i.e., N < 12, and grow as N increases from
12 to 20. The growths of energy consumptions slow down,
when N is large, i.e., N > 20. This is because EROS
and B&B exploit the increasing diversity pertaining to the
growing number of devices, thereby saving more energy. As
shown in Fig. 3, Partial could substantially save energy by
breaching task integrity, but would undergo the increase of
energy consumption when N ≥ 17 as in EROS and B&B.
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Fig. 6. The comparison of devices’ average latency and energy consumption
where T req = 1.5s. EROS and B&B can substantially save energy.

In contrast, the energy consumptions of ARAA and Local are
relatively stable, and can be lower than that of EROS and
B&B when N is large, at the cost of unsatisfied deadlines, as
discussed in Fig. 5(a).

Fig. 6 plots the average latency and energy consumption of
the algorithms where T req = 1.5s. This is the case where the
deadlines are relatively loose. We can see that EROS, Partial,
and B&B can substantially save energy consumptions given
the loose deadline. Their energy consumptions are much lower
than ARAA and Local, since ARAA and Local admit devices
independently of deadlines.

Fig. 7 shows the numbers of admitted and satisfied de-
vices under EROS, Partial, B&B, ARAA and Local, where
T req = 1s. We see that B&B and EROS admit at most 11
devices for offloading, while satisfying the deadlines of almost
all tasks. This is because the limited resources at the MEC
server cannot accommodate more tasks concurrently under
the stringent deadlines. Partial can admit more devices for
offloading than EROS and B&B, and satisfy all deadlines,
but the number of offloaded devices is still less than K = 20.
This is because partial offloading must not violate the physical
constraint of K subchannels. In contrast, Local does not admit
any devices, as shown in Fig. 7(a). The number of satisfied
devices is proportional to the probability that a device can
satisfy its deadline locally, and therefore grows linearly with
the number of devices, as shown in Fig. 7(b). ARAA always
admits as many devices as possible without consideration
on deadlines, as shown in Fig. 7(a). As a consequence, the
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Fig. 7. The comparison of the numbers of admitted and satisfied devices
where T req = 1s. Without task admission, ARAA satisfies no task deadlines.
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Fig. 8. The comparison of the numbers of pre-admitted and pre-denied devices
where T req = 1s. The number of devices to be assessed is consistent with
the result in Fig. 9.

satisfaction of the devices degrades rapidly, as shown in Fig.
7(b). Only in the case that N > 20, a small number of devices
that are not admitted may satisfy their deadlines through local
processing. The increase of such devices is proportional to the
probability that a device can satisfy its deadline locally, and
therefore yields the same slope as Local in Fig. 7(a).

Fig. 8 plots the numbers of the devices that can be pre-
admitted, the devices that spontaneously decide to process
tasks locally and not to send offloading requests, and the
devices that send requests to be selected for offloading, as N
increases. The total number of the three types of device is N . It
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Fig. 9. The comparison of runtime between EROS and B&B where T req =
1s. EROS is superior in terms of efficiency and stability.

is worth pointing out that the number of subchannels K limits
the number of devices concurrently offloading, not the number
of devices in total. As shown in the figure, both the numbers of
the devices pre-admitted and the devices withholding requests
increase with N , while the number of the devices that request
to be scheduled first increases and then declines. This is
because, by pre-admitting any resource-restrained devices and
pre-rejecting those which can neither save energy nor meet
deadlines by offloading, the number of devices that need to
feed back channels and task information can be substantially
reduced. The feedbacks can even reduce with the growth of
N , since the number of resource-restrained devices that need
to be pre-admitted for offloading grows, hence increasingly
draining the available computational resources and stopping
devices from offloading and feeding back.

Fig. 9 compares runtime between B&B and EROS, where
T req = 1s and the confidence interval is 95%. We can see
that the proposed EROS is superior in terms of efficiency
and stability. Both the average and variance of the runtime of
EROS are substantially lower than those of B&B, respectively.
In contrast, B&B is neither computationally scalable nor
reliable, and provides limited value in practice. We also see the
concavity of the average runtime, i.e., the runtimes of EROS
and B&B first increase and then decline as N grows, as can
be evidenced by Fig. 8.

VIII. CONCLUSION

In this paper, we formulated task admission and resource
allocation to minimize the total energy consumption of MEC
while guaranteeing the latency requirements of devices. This
problem was reformulated as an integer programming problem
by pre-admitting resource-restrained devices. A quantized DP
algorithm was proposed to solve the integer programming
problem at a polynomial complexity O(NK2/ε). We also
meticulously designed the quantization interval of energy sav-
ing to achieve the asymptotic optimality of the proposed algo-
rithm with an [O(ε),O(1/ε)]-tradeoff between the optimality
loss and time-complexity. Simulation results corroborate that,
superior in efficiency and stability, the proposed scheme is
able to save energy indistinguishably close to the maximum
energy saving.
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