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Abstract

Statistical prediction methods typically require some form of fine-tuning of tuning parameter(s), with
K-fold cross-validation as the canonical procedure. For ridge regression there exist numerous procedures,
but common for all, including cross-validation, is that one single parameter is chosen for all future pre-
dictions. We propose instead to calculate a unique tuning parameter for each individual for which we
wish to predict an outcome. This generates an individualized prediction by focusing on the vector of
covariates of a specific individual. The focused ridge – fridge – procedure is introduced with a two-part
contribution: 1) first we define an oracle tuning parameter minimizing the mean squared prediction error
of a specific covariate vector, 2) then we propose to estimate this tuning parameter by using plug-in esti-
mates of the regression coefficients and error variance parameter. The procedure is extended to logistic
ridge regression by utilizing parametric bootstrap. For high-dimensional data, we propose to use ridge
regression with cross-validation as the plug-in estimate, and simulations show that fridge gives smaller
average prediction error than ridge with cross-validation for both simulated and real data. We illus-
trate the new concept for both linear and logistic regression models in two applications of personalized
medicine: predicting individual risk and treatment response based on gene expression data. The method
is implemented in the R package fridge.

Keywords: focused information criterion; genomics; personalized medicine; ridge regression; tuning pa-
rameters.

1 Introduction

The development of inexpensive genomic technologies has greatly contributed to the field of personalized
medicine, by facilitating predictions of individualized treatment decisions and disease risks based on genetic
characteristics (Hamburg and Collins, 2010). In Norway, for instance, the Norwegian Cancer Genomics Con-
sortium (cancergenomics.no) has been founded to establish “nationwide use of individual patient genetics
to guide cancer treatment”. Genomic data are typically high-dimensional with the number of variables, p,
greatly exceeding the number of observations, n, and this high-dimensionality is often handled by regulariza-
tion, or by constructing new, low-dimensional features (Hastie et al., 2009). Penalized linear regression, the
most widely used regularization technique, introduces some form of penalization of the regression coefficients
in the linear model, yi = xTi β + ε. Ridge regression imposes an L2 penalty, penalizing the sum of squared
regression coefficients:

β̂(λ) = arg min
β

‖Y −Xβ‖22 + λ

p∑
j=1

β2
j

 ,
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enforcing both proportional shrinkage of all coefficients towards zero (increasing the bias, but lowering the
variance) and shrinking positively correlated variables towards each other. In addition, the least informative
directions in the data space are penalized more, effectively improving the predictive performance of the
method (Hastie et al., 2009, p.82). Ridge regression was originally introduced as an extension of ordinary least
squares (OLS) regression to handle rank-deficient data matrices (Hoerl and Kennard, 1970; van Wieringen,
2015). Ridge regression has become a standard prediction tool within genomics, and has, for instance, been
shown to give the lowest error of a range of methods when predicting survival based on gene expression data
(Bøvelstad et al., 2007).

As with all penalized regression methods, the L2 penalty is controlled by a tuning parameter, λ, dictat-
ing the fit of the predictive machinery balancing between over- and under-fitting. A range of fine-tuning
procedures has been proposed for ridge regression, including minimizing the mean squared error (MSE) of

β̂(λ) (Lawless, 1981; Hemmerle, 1975), marginal maximum likelihood (Tran, 2009; Johnsen, 2011), boot-
strapping (Delaney and Chatterjee, 1986), Bayesian methods (Zuliana and Perperoglou, 2016) and versions
of AIC (Boonstra et al., 2015). K-fold cross-validation (CV) has nevertheless become the canonical choice of
procedure (Hastie et al., 2009, p. 243). CV works by dividing the data into K parts, or folds, (typically 5 or
10) predicting each fold out-of-sample based on the remaining data, and finally averaging the squared pre-
diction error over all folds. This is done for a range of tuning parameters, selecting the value with the lowest
average error. Variations of CV include generalized cross-validation (Golub et al., 1979) and approximate
cross-validation (Meijer and Goeman, 2013).

Common for all procedures is that only one tuning parameter value is found for all further use and
future predictions. For some applications, however, it can be important to minimize the prediction error
of a specific individual, rather than the average prediction error. In applications of personalized medicine,
individual predictions can determine decisions with severe consequences: a predicted increase in the risk of
complications could trigger a surveillance response, or a treatment with high predicted success probability
can be initiated despite possible adverse side effects. Hence, our goal is to adjust the prediction model
towards each specific patient by modifying the tuning parameter. When the risk or treatment response of a
new patient is to be predicted, can we find a tuning parameter optimal for that particular patient’s covariate
vector x0? Such targeting of a specific covariate vector is made possible when the optimal tuning parameter
is based on minimizing the expected error of the prediction, the so-called MSE approach.

The selection of tuning parameter(s) shares parallels with the task of model selection, for which the
focused information criterion (FIC) has introduced the concept of addressing a ‘final outcome’ of a fitted
model, such as a specific prediction, instead of an overall goodness-of-fit (Claeskens and Hjort, 2008). Along
the same lines, we first define an oracle personalized tuning parameter λx0

, the minimizer of the expected

MSE of the ridge prediction xT0 β̂(λ) as a function of λ. Second, we propose to estimate the tuning parameter
by using plug-in estimates of the regression coefficients and error variance parameters in the MSE expressions.
The approach aims to minimize the expected prediction error for each individual, rather than minimizing the
sample prediction error over all individuals simultaneously; in other words we average over the (theoretical)
distribution of yi and not over the observed set of yis, as done by CV. Such individualized tuning parameters
require a recalculation of the ridge model for each prediction, which previously would have been a constraint.
But due to current computational power, this can be viewed as one approach to tailoring predictions towards
the individual.

Related work, also modifying the ridge regression tuning parameter, introduced a variable specific weight
to the tuning parameter with an additional grouping determined by external data (Wiel et al., 2016). This
leads to a different λ for each (group of) covariate(s), say λj for the jth covariate. Our approach, however,
aims at producing an individualized tuning parameter, say λ(x0) for each new individual, i.e. each vector
of covariates x0. In other words, in terms of the n × p matrix X, the previous work has tailored the λ per
(group of) column(s), whereas we construct one λ per row.

The outline of the paper is as follows: Section 2 introduces the framework of the procedure, the general
definition of the oracle tuning parameter and our proposed approach to estimate the tuning parameter by
plug-in estimates, and Section 3 gives an overview of the theoretical aspects of the procedure. Section 4
extends the fridge approach to the logistic regression model. Section 5 shows the results of simulations
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comparing the focused tuning and cross-validation in real and simulated data, and Section 6 illustrates the
procedure in the linear and logistic regression models with two genomic data examples.

2 Method

Consider the data {yi, xi}, consisting of n observations of a continuous outcome yi and p-dimensional vector
of covariates xi, following the linear regression model

yi = xTi β + εi, i = 1, . . . , n

with unknown p-dimensional regression coefficients, β, and iid noise, εi, with zero mean and variance σ2.
We denote the outcome vector Y , and the n× p data matrix X. For p < n and a data matrix of full rank,
the OLS estimate of β is given by β̃ = (XTX)−1XTY .

In the high-dimensional situation with p > n, the least squares criterion requires a penalty to give a
unique solution, and ridge regression introduces an L2 penalty (Hoerl and Kennard, 1970), also known as
Tikhonov regularization,

β̂(λ) = arg min
β

{
‖Y −Xβ‖22 + λ

p∑
i=1

β2
i

}
, (1)

with the explicit solution

β̂(λ) = (XTX + λIp)
−1XTY = (XTX + λIp)

−1XTXβ̃.

Suppose we aim to predict the expected outcome of y0 for the vector of covariates of a specific individual
x0, the focus parameter µ0 = Ey0 = xT0 β, such that the estimated ridge prediction is given

µ̂0 = xT0 β̂(λ) = xT0 (XTX + λIp)
−1XTY.

If we then consider the expected MSE of the prediction, where the expectation is taken with respect to the
distribution of Y , the MSE will be a function of the tuning parameter λ, together with x0 and the parameters
β and σ2:

MSEµ̂(λ;x0, β, σ
2) = EY

(
(xT0 β̂(λ)− xT0 β)2

)
= Bias2(µ̂) + Var µ̂,

=
{
xT0 ((XTX + λIp)

−1XTX − Ip)β
}2

+ σ2xT0 (XTX + λIp)
−1XTX(XTX + λIp)

−1x0. (2)

Note that we consider the error of xT0 β and not y0, which simplify notation by omitting the intrinsic prediction
error σ2.

For each specific vector of covariates x0, i.e. representing a new individual or patient, the MSE will have
a different minimum as a function of λ, as seen in Figure 1. We will aim to estimate these MSE curves
separately for each x0 to lower the expected prediction error of each individual, and as this optimal value is
given for known parameters β and σ2, it is termed the oracle tuning parameter.

Definition 1 (Oracle tuning). The oracle tuning parameter is the minimand of the mean squared prediction
error

λx0
= arg min

λ
MSEµ̂(λ;x0, β, σ

2), λ ≥ 0,

where the parameters β and σ2 are known.

The oracle value of the personalized tuning parameter, λx0
, will give the smallest expected prediction

error, but cannot be used in practice as it requires the true value of β and σ2. A direct way to estimate λx0

from data is to first estimate β and σ2 by some other method and plug-in the resulting estimates in Eq. (2).
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Figure 1: MSE curves for different x0 demonstrating how the minima occur at different values of λ.

In low dimension (p < n) the simplest choice of plug-in estimate is the ordinary least squares (OLS)
estimator (assuming X is of full rank), and corresponding variance estimator

β̃ = (XTX)−1XTY, σ̃2 =
1

n− p

n∑
i=1

(yi − xTi β̃)2.

In the high-dimensional situation (p � n), one choice of plug-in estimate is ridge regression tuned by
standard CV. Alternative plug-in estimators include lasso (L1 penalty) and principal component regression
both fine-tuned by CV, or the OLS estimate combined with the Moore-Penrose pseudo-inverse. However,
when ridge regression is already considered an appropriate prediction method for the problem at hand, it is
natural to also use ridge as a plug-in estimate.

The MSE in Eq. (2) relies on the squared bias, Bias2, estimated by squaring the estimated bias, (B̂ias)2,

directly. The resulting estimate will be biased as E((B̂ias)2) = Bias2 + Var B̂ias, and a correction of the
overestimation is necessary (Claeskens and Hjort, 2008, p. 150). We can correct the squared bias, for
instance by subtracting the variance of the bias and truncate at zero

max{(B̂ias)2 −Var B̂ias, 0},

or using a smooth correction

(B̂ias)2 − (B̂ias)2

(B̂ias)2 + 1
Var B̂ias.

We will in our proposed procedure consider the first option.
In the low-dimensional case, the OLS estimates can be used as plug-in estimates:

Definition 2 (Fridge-OLS). The fridge-OLS tuning parameter estimate is the minimand of the estimated
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mean squared error curve

λ̂x0,OLS = arg min
λ

M̂SEµ̂(λ;x0, β̃, σ̃
2),

= arg min
λ

{(
(B̂ias(λ))2 −Var B̂ias(λ)

)
+

+ V̂ar(λ)

}
,

= arg min
λ

{(
(λxT0 (XTX + λIp)

−1β̃)2

− σ̃2λ2xT0 (XTX + λIp)
−1(XTX)−1(XTX + λIp)

−1x0

)
+

+ σ̃2xT0 (XTX + λIp)
−1XTX(XTX + λIp)

−1x0

}
. (3)

where β̃ and σ̃2 are the OLS estimates, and (·)+ = max{·, 0}.

We can construct a simplified version of fridge by omitting the bias correction

λ̂∗x0,OLS = arg min
λ

{
(xT0 ((XTX + λIp)

−1XTX − Ip)β̃)2 (4)

+σ̃2xT0 (XTX + λIp)
−1XTX(XTX + λIp)

−1x0
}
.

which ensures a continuous first derivative.
In the high-dimensional case, we propose to use ridge regression with the tuning parameter found by CV

as the plug-in estimate:

Definition 3 (Fridge-ridge). The fridge-ridge tuning parameter estimate is the minimand of the estimated
mean squared error curve

λ̂x0,ridge = arg min
λ

{(
(λxT0 (XTX + λIp)

−1β̂(λ̂CV))2

−σ̂2λ2xT0 (XTX + λIp)
−1(XTX + λ̂CVIp)

−1XTX(XTX + λ̂CVIp)
−1(XTX + λIp)

−1x0

)
+

+ σ̂2xT0 (XTX + λIp)
−1XTX(XTX + λIp)

−1x0

}
,

where λ̂CV is found by cross-validation, giving the standard ridge estimates

β̂(λ̂CV) = (XTX + λIp)
−1XTY, σ̂2 =

1

n− df(λ̂CV )

n∑
i=1

(
yi − xTi β̂(λ̂CV )

)2
,

with the effective degrees of freedom df(λ̂CV ) = tr(X(XTX + λ̂CV )−1XT ).

Other estimators for σ2 in the high-dimensional setting have also been proposed (Dicker, 2014).

For the MSE of the ridge estimate, MSE
(
β̂(λ)

)
, it has been shown that there always exists a value,

λ > 0, for which the MSE of ridge regression will be smaller than the MSE of OLS (Hoerl and Kennard,
1970; van Wieringen, 2015). This is also true for the MSE of the prediction xT0 β; there always exists a tuning
parameter value, λ > 0, with smaller mean squared prediction error. If Eq. (2) is rewritten in terms of
the singular value decomposition, X = UDV T , as a summation over the singular vectors, v1, · · · , vp, and
singular values, d1, . . . , dp

MSEµ̂(λ;x0, β, σ
2) =

{
λ

p∑
i=1

xT0 viv
T
i β

d2i + λ

}2

+ σ2

p∑
i=1

d2i (x
T
0 vi)

2

(d2i + λ)2
,
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the first derivative of MSEµ̂ with respect to λ

∂

∂λ
MSEµ̂(λ;x0, β, σ

2) = 2λ

[
p∑
i=1

xT0 viv
T
i β

d2i + λ

][
p∑
i=1

d2ix
T
0 viv

T
i β

(d2i + λ)2

]
− 2σ2

p∑
i=1

d2i (x
T
0 vi)

2

(d2i + λ)3
, (5)

is always negative in the limit, λ→ 0:

∂

∂λ
MSEµ̂(λ;x0, β, σ

2)

∣∣∣∣
λ=0

= −2σ2

p∑
i=1

(xT0 vi)
2

d4i
.

Thus there always exists a tuning parameter value larger than zero, λ > 0, for which MSE(λ) is smaller than
MSE(0).

The MSE of βTβ has a single global minimum, which is not the case for the MSE of the prediction,
xT0 β̂(λ), as the MSE curves in Eq. (2) can have several local minima. Extra care therefore needs to be
taken when using numerical optimizers to locate the global minimum. There are no explicit solutions for the
minima, except for the case of all singular values being equal, and the limit values of the curve are given

lim
λ→0

MSEµ̂(λ;x0, β, σ
2) = σ2xT0 (XTX)−1x0, lim

λ→∞
MSEµ̂(λ;x0, β, σ

2) = (xT0 β)2.

Thus if (xT0 β)2 ≥ σ2xT0 (XTX)−1x0, there must exist a global minimum for λ < ∞. In the reverse case,
however, the global minimum can be given in the limit λ→∞.

We illustrate these characteristics in the case of p = 10, n = 100 with a fixed x0 and normally distributed
data and regression coefficients, xj ∼ N(0, Ip), β ∼ N(0, Ip). For this setup we typically see zero to three
critical points, as shown in Figures 2 and 3. There can be no critical points (Figure 2a), giving the global
minimum in the limit, λ→∞ , or one critical point (Figure 2), a minimum, giving the global minimum at
the local minimum. Further, one can have two critical points (Figure 3a), a minimum and a maximum, or
three critical points (Figure 3b), two minima and a maximum, where simulations suggest that the second
minimum is always below the first local minimum.

The MSE curves with the plug-in estimates exhibit the same behavior as the oracle curves. As λ → 0
the first derivative will always be negative, such that there exists an optimal tuning parameter larger than
zero. However, the asymptotic limit of the estimated MSE as λ→∞ changes to

lim
λ→∞

M̂SE(λ; β̃, x0, σ̃
2) = max

{
0, (xT0 β̃)2 − σ̃2xT0 (XTX)−1x0

}
.

The correction of the squared bias by truncating at zero will more often produce a global minimum in the
limit λ→∞.

3 The benefits of focusing

The goal of fridge is to lower the expected prediction error of a specific covariate vector x0, and to what
degree this can be achieved depends on the x0, X and β in question. In this section, we explore the theoretical
characteristics of fridge in simplified examples, to showcase how the relation between x0 and β affects the
procedure.

We first consider the oracle setting, where β and σ2 are known, to demonstrate that the effect of focusing
acts through the inner product between the vector of covariates and the regression coefficients, xT0 β. Suppose
the covariates are transformed to give a diagonal covariance matrix with equal entries,

XTX = diag(M, . . . ,M) = MI, M =

n∑
i=1

x2i,j ,
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Figure 2: MSE curves as a function of λ for p = 10. a) With no critical points the minimum is in the limit
λ→∞. b) The classical case with one minimum and a curve increasing towards an asymptote.
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such that the columns of X are orthogonal. This is an artificial data matrix allowing for an explicit solution
with the crucial aspect being equal diagonal entries. The oracle MSE from Eq. (2) can then be written out
with an explicit solution

MSEµ̂(λ;x0, β, σ
2) = (xT0 β)2

λ2

(M + λ)2
+ σ2xT0 x0

M

(M + λ)2
, λx0 =

σ2xT0 x0
(xT0 β)2

.

The oracle tuning parameter is thus controlled by xT0 β, the inner product between the focus covariate vector
and regression coefficients, and the tuning parameter can be re-expressed in terms of the geometry of x0 and
β, specifically the length of β, ‖β‖, and the angle between the vectors x0 and β, αx0 :

λx0 =
σ2

‖β‖2 cos2 αx0

, (6)

It is evident that the length of x0, ‖x0‖, does not influence the value of the oracle tuning in the orthogonal
case. In addition, if p = 1, the x0 in Eq. (6) cancels out, such that λx0

does not depend on x0 at all and the
estimator has in some sense lost its focus.

The covariate vector x0 influences the oracle tuning through its relation to β as the angle α measures how
close the prediction is to the mean response. When the true outcome is close to the mean of Y , cosαx0 will
be close to zero (meaning x0 and β are close to being orthogonal). This causes the oracle tuning parameter
to blow up, λ → ∞, shrinking the estimated prediction towards the mean. The length of β on the other
hand acts as a measure of the signal strength, such that larger values of β, i.e. a stronger signal, warrants
a stronger penalization in the optimal case, while weaker signal requires less penalization. As previously
stated, the resulting prediction error of fridge in the oracle case will be uniformly smaller than the OLS
prediction error, corresponding to λ = 0;

MSEµ̂(λ0;x0, β, σ
2) =

σ2xT0 x0(xT0 β)2

σ2xT0 x0 + (xT0 β)2
< MSEµ̂(0;x0, β, σ

2) = σ2xT0 x0.

The effect of the data matrix X is best understood as a modification of x0 and β, relative to the orthogonal
case. Consider the general case where the singular value decomposition of the data matrix is X = UDV T ,
giving the mean square error

MSEµ̂(λ;x0, β, σ
2) =

{
λxT0 V (D2 + λIp)

−1V Tβ
}2

+ σ2xT0 V D(D2 + λIp)
−1DV Tx0, (7)

where the matrix of singular vectors V rotate the original x0 and β. The data matrix determines the value
of λ by projecting the x0 and β along the singular vectors and up-weighting the vectors associated with large
singular values. The data matrix, therefore, gives the premise for which directions in the covariate space
that are considered more important. Hence, how x0 and β are spanned by the first singular vectors of X
will together determine the optimal value of the tuning parameter. If all singular values are equal, such that
all directions carry the same weights, the data matrix X = U(MIp)V

T works as a rotation matrix through
the singular vectors, and V Tx0 and V Tβ can be viewed as new a covariate vector and regression coefficients
oriented along the singular vectors:

MSEµ̂(λ;x0, β, σ
2) = (xT0 V V

Tβ)2
λ2

(M + λ)2
+ σ2xT0 V V

Tx0
M

(M + λ)2
, λx0

=
σ2xT0 V V

Tx0
(xT0 V V

Tβ)2
.

If instead some of the singular values are substantially larger than the rest, the first singular vectors of
the data matrix will dominate, and it is crucial how x0 and β are spanned by the first singular vectors. If
all variables are equally correlated

XTX =


M R . . . R
R M R
...

. . .
...

R R R M

 ,
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the first singular vector, v1 = [1, 1, . . . , 1]T , has a singular value substantially larger than the rest: d1 �
d2 = · · · = dp. For such a data matrix, the part of x0 and β spanned by v1 will be heavily emphasized.
If β is spanned by v1 alone and x0 is orthogonal to v1, the bias part becomes zero, forcing λ → ∞ and
the prediction towards the mean. In the reverse situation, if β is not properly spanned by v1, the same
shrinkage towards the mean will occur. But when β and x0 are spanned by v1 alone, the tuning parameter

will approximately be given by the length of β, scaled by the largest singular value, λx0
= σ2

d21‖β‖2
.

It is also a question how much of the oracle optimality is lost by estimating the tuning parameter through
the plug-in approach. In the orthogonal case, the distribution of the estimated bias of fridge-OLS is given

B̂ias = − λ

M + λ
xT0 β̃, Var B̂ias =

σ̃2λ2xT0 x0
M(M + λ)2

,

such that the estimated fridge-OLS tuning parameter is explicitly given

λ̂x0,OLS =
σ̃2MxT0 x0(

M(xT0 β̃)2 − σ̃2xT0 x0

)
+

.

When combining the estimated tuning parameter with the ridge prediction

xT0 β̂(λ̂x0,OLS) =


0 if |xT0 β̃| ≤ σ̃

√
xT0 x0/M,

(xT0 β̃)2 − σ̃2xT0 x0/M

(xT0 β̃)2
xT0 β̃ if |xT0 β̃| > σ̃

√
xT0 x0/M,

the risk of fridge-OLS is given

risk
(
xT0 β̂(λ̂x0,OLS)

)
=

(xT0 β)2 if |xT0 β̃| ≤ σ̃
√
xT0 x0/M,

E
(

(xT
0 β̃)

2−σ̃2xT
0 x0/M

(xT
0 β̃)

2
xT0 β̃ − xT0 β̃

)2
if |xT0 β̃| > σ̃

√
xT0 x0/M.

If the residuals are assumed to be normally distributed, εi ∼ N(0, σ2), the risk can be visualized in two
dimensions, for either fixed x0 or β. Figure 4 displays contour plots of the risk of fridge-OLS for an orthogonal
data matrix, scaled to give OLS risk equal to 1. The left panel shows a contour plot of the risk as a function
of β for fixed covariates, x0 = [−5, 2], illustrating that the risk of fridge-OLS is constant along lines parallel
to xT0 β = 0. Thus fridge-OLS will have lower risk than OLS within a trench following the line xT0 β = 0. The
right panel shows the risk as a function of x0 for fixed regression coefficients, β = [−5, 2], and then the risk
will be constant along radial lines from the origin. This illustrates that it is the angle between x0 and β,
and not the length of x0, which determines the benefit of the focused approach. The fridge-OLS will have
lower risk than OLS within a cone, oriented along the line xT0 β = 0.

4 Fridge for logistic ridge regression

The focused approach to ridge regression can also be extended to generalized linear models by utilizing para-
metric bootstrap to obtain expressions for the variance and squared bias. Consider logistic ridge regression:
independent responses, yi ∈ {0, 1} for i = 1, . . . , n, are distributed as

yi ∼ Bernoulli(logit−1(xTi β)),

for covariate vector xi with the link function logit−1(xTi β) = exp(xTi β)/(1+exp(xTi β)), where the regression

coefficients, β̂, are estimated by maximizing the penalized log-likelihood with an L2 penalty

n∑
i=1

[yi log(pi) + (1− Yi) log(1− pi)]− λ
p∑
j=1

β2
j , pi = logit−1(xTi β),

typically using the Newton-Raphson algorithm (Le Cessie and Van Houwelingen, 1992).
We then propose the following procedure for extending the fridge concept to logistic regression:
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Figure 4: Contour plots of the risk of fridge-OLS for an orthogonal data matrix scaled relative to the OLS
risk a) as a function of β1 and β2 for a fixed covariate vector x0 = (−5, 2), and b) as a function of x0,1 and
x0,2 for fixed regression coefficients β = (−5, 2).

1. Use parametric bootstrap with plug-in β̃ to simulate r = 1, . . . ,M bootstrap samples of n observations
Y (r)

y
(r)
i ∼ Bernoulli(logit−1(xTi β̃)), i = 1, . . . , n.

2. Over a suitable grid of λ, holding the tuning parameter value fixed:

• calculate β̂
(r)
λ for each bootstrap sample,

• find the squared bias and variance of xT0 β̂
(r)
λ , compared to xT0 β̃ as the population parameter,

• add the terms, yielding the MSE.

3. Set the estimate λ̂x0
to the tuning parameter value with the smallest MSE over the grid of λ.

With the use of the glmnet R package, the estimate β̂
(r)
λ can be calculated for a long sequence of λ within

each bootstrap iteration, greatly increasing calculation speed. Similar fridge procedures of Cox’s proportional
hazard regression may also be established.

5 Simulation: comparison with cross-validation

To compare the predictive performance of fridge and ridge with CV, we perform simulations with both
simulated and real data. K-fold cross-validation is the most widely used fine-tuning procedure, probably
due to its conceptual simplicity: The data is divided into K folds with each part held out and predicted
by fitting a model on the remaining folds. A range of tuning parameters can then be tested and one will
choose the value with the lowest error, averaged over all folds (Stone, 1974; Allen, 1974). Currently 10- or
5-fold cross-validation has become the default approach in modern statistics and machine learning (Hastie
et al., 2009). In the case of ridge regression, leave-one-out cross-validation (LOOCV) error has an explicit

10
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Figure 5: a) Data concentrated in two distinct clusters centered at (1, 1) and (−1, 1) b) Density plot of
1/(λ+ 1) for fridge (black) and cross-validation (dashed) for β = [−1, 1] and σ2 = 1.

expression (Golub et al., 1979), thus being particularly easy to calculate

λ̂CV = arg min
λ

n∑
i=1

(
yi − xTi β̂(λ)

1− wii

)2

, wii = xTi (XTX + λI)−1xi,

and LOOCV will be used for the remainder of the paper.
To illustrate the difference between the focused tuning and cross-validation, consider an example where

the data matrix consists of different clusters. Figure 5a) shows a data example (p = 2) with two distinct
clusters centered at (1, 1) and (−1, 1), respectively. If the regression coefficients are given β = [−1, 1], the
outcome for the right cluster will be close to zero, xTi β ' 0, while the outcome for the left cluster will be
close to two, xTi β ' 2. The line implied by xTβ = 0 is marked in black. The clusters will then require a
very different level of penalization to produce an optimal prediction; the right cluster requires a stronger
penalization and the left cluster requires a weaker penalty. Figure 5b) shows the distribution of the covariate
vector specific tuning, 1/(1 +λx0) in red, for each of the observations seen in Figure 5a). The corresponding

distribution of the tuning parameter estimated by leave-one-out cross-validation, 1/(1 + λ̂CV ) over multiple
sets of simulated yi is shown in black. Figure 5b) displays clearly that the difference in optimal tuning
parameter for the two clusters are captured by the fridge procedure, with the right cluster corresponding
to a large tuning parameter value and the left cluster to a small tuning parameter value. Cross-validation,
on the other hand, estimates an overall tuning parameter, averaging over all individuals, and thus selects a
tuning parameter value inappropriate for both clusters.

In low dimensions, the risk of fridge-OLS and fridge-ridge can be compared to ridge with cross-validation
for varying β. In Figure 6, the average squared prediction error is shown in the case of p = 2 and n = 50,
when β = [b, b] and the data matrix X and focus x0 are drawn from a uniform distribution X,x0 ∼ U(−1, 1).
It is seen that the risk of fridge-OLS is slightly higher than cross-validation for β close to zero, but lower for
medium β. The fridge-ridge has the same risk as ridge with cross-validation for β close to zero, but a higher
risk for medium β.

Lastly, we compare fridge to standard ridge in a simulation study based on real high-dimensional co-
variates, with simulated yi and known β coefficients. The data consist of gene expression profiles measured
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Figure 6: Risk functions for OLS, ridge with cross-validation, fridge-OLS, fridge-ridge for varying β.

in 40 glioma patients (Moeckel et al., 2014), and the data are described and analyzed in detail in Section
6. The simulation was done on the 1000 genes with the largest variance, and was carried out by drawing
standard normally distributed residuals, εi ∼ N(0, 1), and regression coefficients from the normal distribu-
tion, β ∼ N(0, 0.05), to ensure a suitable signal-to-noise ratio. We then simulated 200 sets of outcomes Y
and calculated the average squared prediction error of fridge-ridge and ridge regression with cross-validation
for each individual. The bottom panel of Figure 7 shows the relative difference in the MSE of fridge-ridge
compared to ridge with cross-validation, ordered from best to worst, and fridge gives a lower MSE for a
majority of the observations. The upper panel shows the out-of-sample estimated tuning parameter on an
inverse scale for CV, fridge-ridge and the oracle fridge, and demonstrates that fridge-ridge estimates well the
large oracle tuning parameters, but is less precise when estimating the smallest oracle values.

6 Data examples

We demonstrate the proposed fridge-ridge procure in two examples where accurate prediction of individual
patients can be considered more important than overall accuracy; specifically the prediction of complication
risk and the response of treatment.

6.1 Prediction of weight gain

We demonstrate the fridge procedure in a study investigating whether gene expression can be used to predict
weight gain (Cashion et al., 2013), available in the EMBL-EBI ArrayExpress database (www.ebi.ac.uk/arrayexpress)
under accession number E-GEOD-33070. Kidney transplant recipients are known to gain substantial weight
during the first year after transplantation, with a reported average increase of 12 kg (Patel, 1998). Such large
weight gain over a short time period results in increased risk for adverse health effects, e.g. cardiovascular
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Figure 7: Top panel: the inverse of the estimated tuning parameter for each out-of-sample observation given
by cross-validation (triangle), oracle fridge (cross) and fridge-ridge (circle). Bottom panel: the corresponding
relative difference in MSE for fridge-ridge compared to ridge with cross-validation.

disease, contributing to an overall worse outcome for patients. The weight gain has been partly explained
by patients experiencing better appetite, due to the use of prescribed steroids, and by patients having less
restrictive diets after transplantation. However, steroid-free protocols do not alone reduce the risk of obesity,
suggesting that other causes also contribute (Elster et al., 2008).

Weight gain is fundamentally caused by a too high intake of calories, relative to the energy expenditure,
but the individual response is seen to be substantial. Hence genetic variations have been thought to be a
contributing factor, and several genes have already been linked to obesity and weight gain. To investigate
the predictive power of genomic data regarding weight gain, gene expression profiles were measured in
adipose tissue taken from kidney transplant patients (Cashion et al., 2013). Subcutaneous adipose tissue
was considered particularly well-suited as it is involved in appetite regulation and can be easily obtained
from the patients during surgery. Tissue samples from 25 transplant patient were collected at the time
of surgery, and mRNA levels were measured using Affymetrix Human Gene 1.0 ST arrays, obtaining gene
expression profiles for 28 869 genes. Patients were weighed at transplantation and at a follow-up time of
one year, resulting in a one-year recorded weight gain. Additional covariates, such as race and gender, were
collected to adjust for possible confounding, but gene expression variability was not associated with neither
characteristics.

As excessive weight gain can have severe consequences for the patients, the goal is to predict the future
weight increase based on the available gene expression profiles. When a large increase in weight is predicted,
additional measures such as diet restrictions or physiotherapy could be set in effect. It is thus important
to predict the weight gain of each transplant recipient as accurate as possible. In such a setting, a focused
tuning parameter tailored to the covariate vector of each patient could give an advantage.

We will predict each of the 25 measured patients out-of-sample based on the remaining 24 observations,
considering the hold-out observation as the new covariate vector x0. The plug-in estimates for β̃ and σ̃2 are
given by ridge regression with the LOOCV tuning parameter, following Definition 3.

Figure 8 shows the out-of-sample predicted change in weight estimated by fridge (in black) and ridge with
cross-validation (in gray), plotted against the true change in weight. The difference between the predictions
from the two methods is colored black when fridge gives the lowest error, and grey otherwise. In general,
it is seen that both methods achieve a good out-of-sample predictive performance. The observations in the
upper right corner of Figure 8 are penalized less by the focused approach, compared to cross-validation,
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which results in smaller prediction error. This demonstrates how fridge aims to give a smaller penalty to
predictions far from the outcome mean and a larger penalty to the predictions close to the outcome mean.

Fridge gives a smaller prediction error compared to ridge with cross-validation for around 44% of the
observations. But the overall improvement in the individual predictions gives an average squared prediction
error of 15.60 for fridge and 16.24 for standard ridge, which yields a 4.0 % decrease when using the focused
approach. The average parameter estimate over the leave-one-out models was, σ̂2 = 6.7, for the variance
and, λ̂cv = 12.2, for the cross-validation tuning parameter.

6.2 Prediction of treatment response

The prediction of treatment response, in particular within cancer treatment, is an important application in
the field of personalized medicine. We illustrate the logistic fridge procedure with treatment response data
in glioma tumor samples.

High-grade gliomas, cancer tumors in the brain, are amongst the most deadly human tumors, and in
treatment trials only around 20% of patients respond to therapy. It has been investigated whether gene
expression can be used to identify glioma patients that will profit from cancer therapy (Moeckel et al., 2014),
and the data are publicly available in the EMBL-EBI ArrayExpress database (www.ebi.ac.uk/arrayexpress)
under accession number E-GEOD-76900. Decisions regarding treatment for glioma patients are currently
based on age and performance status (Weller et al., 2012), and increased use of molecular markers would
be beneficial. As a follow-up validation study, 18 samples of high-grade gliomas were treated with Sunitinib
(tyrosine kinase inhibitor) to measure treatment response in terms of decrease in proliferation rate, or cell
growth, over a 6 hour time period, compared to a control sample of the same tissue (Moeckel et al., 2014). To
illustrate logistic fridge, we dichotomize the outcome in a high and low treatment response group, relative
to the median value. Before treatment, genetic expression profiles of 19 410 genes were measured using
Affymetrix Human gene 1.1 arrays, and for analysis, we used the 3000 genes most correlated with the
treatment response.

Figure 9 shows the ROC curves for the logistic out-of-sample prediction of the 18 samples, with the
predictions based on fridge (black line) and the ridge with cross-validation (dashed line). It is seen that the
ROC curves are identical for most of the predictions probably due to the low number of samples, but the
fridge preforms better in predicting the zero values. Fridge performs better in terms of area under the curve
(AUC) with an AUC value of 0.914, compared to an AUC value of 0.877 for ridge regression with CV.

7 Discussion

The development of personalized medicine will increase the demand for new prediction methodologies tar-
geting the individual, where one possible approach is to allow tuning parameter(s) to vary with the covariate
values for which the prediction is to be given. A covariate vector specific tuning parameter, λx0

, can be
defined as the minimizer of the expected prediction error, and we have proposed to estimate this tuning
parameter by plugging in separately obtain regression coefficients and noise variance estimates in the the-
oretical MSE expressions. As the MSE approach minimizes the error on a population level, it allows for
the added focus on specific individuals. Standard cross-validation, on the other hand, cannot be focused in
the same way, as it relies on averaging over all observed outcomes to minimize the sample prediction error.
Where fridge tries to minimize the expected squared prediction error for each individual, cross-validation
minimizes the observed squared prediction error over all individuals. The difference lies in averaging over
the theoretical distribution of yi, instead of averaging over the observed outcomes. Our simulations demon-
strate, however, the adaptability and robustness of cross-validation, and that the benefits of focusing can be
lost if the utilized plug-in estimates are not precise enough. Future works should explore whether one can
predetermine for which covariate values the fridge approach will out-perform CV. Further, also alternative
loss functions and more direct approaches to estimation should be explored.

The use of ridge regression combined with cross-validation as the plug-in estimate can also be set in
the following conceptual framework: in an initial step, cross-validation is used to establish an average or
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Figure 9: The ROC curve for fridge-ridge (black) and ridge with cross-validation (dashed).

overall suitable level of penalization, followed by a focusing step where the average value is tweaked to
a necessary stronger or weaker penalization, depending on the individual predictions. The focused tuning
parameter is also connected to random effect models when viewed in the Bayesian context. As ridge regression
corresponds to a Gaussian prior on the regression coefficients with a variance inversely proportional to the
tuning parameter, a covariate vector specific λxi

can be formulated as a Gaussian prior with a variance
specific to the covariate vector. This can further be viewed as an individual-specific scaling of β:

yi = xTi λ
−1/2
xi

β + εi = xTi βi + εi, βi = λ−1/2xi
β, i = 1, . . . , n,

giving individual-specific regression coefficients, similar to a random effects model. Such random effects in
a mixed model framework are typically assumed to follow a multivariate normal distribution and estimated
using empirical Bayes methods, an approach which could also be suitable for fridge.

Based on the plug-in approach to estimate the tuning parameter, a possible extension of fridge is to
utilize external data to form the plug-in estimate. The integration of external data, so-call co-data, such as
p-values from earlier studies, gene annotations or other prior knowledge (Tai and Pan, 2007; Bergersen et al.,
2011), is typically achieved by up- and down-weighting variables according to some measure of importance
and the approach has also been studied in the setting of ridge regression (Wiel et al., 2016). Basing the
plug-in estimates in the fridge framework additionally, or solely, on external data opens for new approach to
utilizing co-data in integrative analyses.
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