SEARCH FOR GOOD EXAMPLES OF HALL’S CONJECTURE

STÅL AANDERAA, LARS KRISTIANSEN, AND HANS KRISTIAN RUUD

Abstract. A good example of Hall’s Conjecture is a pair of natural numbers \(x, y \) such that \(0 < |x^3 - y^2| < x^{1/2} \). We have implemented a new algorithm and found nine not previously known good examples. Moreover, we have verified that all good examples with \(x < 10^{29} \) are now found.

1. Introduction

Consider the equation

\begin{equation}
 x^3 - y^2 = k
\end{equation}

where \(x, y \in \mathbb{N} \) and \(k \in \mathbb{Z} \). It is easy to see that the equation has infinitely many solutions when \(k = 0 \) (let \(x = t^2 \) and \(y = t^3 \) where \(t \) is a natural number). By Siegel’s theorem, there will be only finitely many solutions of the equation when \(k \neq 0 \). Moreover, it is hard to find solutions where \(k \) is small compared to \(x \) and \(y \). Hall [4] conjectured that there is a constant \(C \) such that \(|k| > Cx^{1/2} \) for any solution of (1.1) where \(k \neq 0 \). This conjecture is discussed in e.g. Danilov [2] and Elkies [3]. The general opinion is that Hall’s original conjecture is too strong, and his conjecture has been reformulated to a weaker modern variant: For any exponent \(e < \frac{1}{2} \), there exists a constant \(C_e > 0 \) such that \(|k| > C_e x^e \). For more on Hall’s conjecture and further references, see Calvo et al. [1].

Hall’s Conjecture is neither proved nor disproved. To shed some light on the conjecture, researchers have searched for solutions of (1.1) where \(0 < |k| < x^{1/2} \). We follow the terminology of Calvo et al. [1] and refer to such solutions as good examples of Hall’s conjecture. We will say that a pair of natural numbers \((x, y)\) is a good example when \(0 < |x^3 - y^2| < x^{1/2} \).

We have implemented a new algorithm for finding good examples. We have found 9 not previously known good examples, and we have checked that all good examples \((x, y)\) where \(x \) is less than \(10^{29} \) are now found. Other algorithms for finding good examples can be found in Elkies [3] and Calvo et al. [1]. The algorithm of Elkies has an asymptotic running time similar to ours. The algorithm of Calvo et al. seems to have slightly better asymptotic running time, but the authors offer no proof that their algorithm will detect all good examples within its search space. However, it is easily verified that the algorithm will find all the new good examples presented in this paper if it is given enough running time.
2. The Algorithm

Definition 2.1. We define the polynomials B, C, F and H by

$$
B(q,p,x) = p^2 - q^2 x
$$
$$
C(q,p,x,y) = p^3 - 3pq^2 x + 2q^3 y
$$
$$
F(q,p,x,y) = 4pC - 3B^2
$$
$$
H(q,p,x,y) = 9FB - 8C^2
$$

where x, y, p, q are positive integers.

Our algorithm is based on the four polynomials given by the definition above. The values of these polynomials will be small when (x, y) is a good example and p/q is the approximation to $x^{1/2}$ given by the next theorem.

Theorem 2.2. Let (x, y) be a good example. Then, there exist $p, q, Q \in \mathbb{N}$ and $\delta \in \mathbb{R}$ such that

1. $p = qx^{1/2}(1 + \delta)$,
2. $0 < q < x^{1/6} < Q$ and
3. $1 < q/Q < |\delta| < 1$.

Moreover, p and q are co-prime.

Proof. In this proof we use continued fractions. For more on continued fractions, see e.g. Niven et al. [7] or Khintchine [6].

First we note that $x^{1/2}$ is an irrational number when (x, y) is a good example. (If $x^{1/2}$ is a natural number, then (x, y) will not be a good example as $x^3 - y^2 = 0$. But $x^{1/2}$ is either a natural number or an irrational number. Thus, $x^{1/2}$ is irrational.)

Let a_0, a_1, a_2, \ldots be the coefficients for the continued fraction for $x^{1/2}$, that is

$$
x^{1/2} = \lim_{n \to \infty} [a_0; a_1, \ldots, a_n].
$$

The list of coefficients will be infinite as $x^{1/2}$ is irrational. Let h_i and k_i be, respectively, the nominator and the denominator of the convergent $[a_0; a_1, \ldots, a_i]$, that is $h_i/k_i = [a_0; a_1, \ldots, a_i]$. Then, for any $i \in \mathbb{N}$, we have

$$
\frac{1}{k_i(k_i + k_{i+1})} < \left| \frac{h_i}{k_i} - x^{1/2} \right| < \frac{1}{k_ik_{i+1}}
$$

and $k_i < k_{i+1}$. Now, pick the least j such that $k_{j+1} > x^{1/6}$. Let $q = k_j$, let $p = h_j$ and let $Q = k_{j+1}$. Then, we have

$$
\frac{1}{q(q + Q)} < \left| \frac{p}{q} - x^{1/2} \right| < \frac{1}{qQ}
$$

where $q < x^{1/6} < Q$ (we cannot have $q = x^{1/6}$ as $x^{1/6} \notin \mathbb{N}$). Next, let δ be the real number such that $p = qx^{1/2}(1 + \delta)$. Then, we have

$$
\frac{1}{q(q + Q)} < \left| \frac{qx^{1/2}(1 + \delta)}{q} - x^{1/2} \right| < \frac{1}{qQ}.
$$

Thus

$$
\frac{1}{qx^{1/2}(q + Q)} < |\delta| < \frac{1}{qx^{1/2}Q}.
$$

Note that p and q are co-prime since h_j and k_j are co-prime for any convergent h_i/k_i. □
The proof of the next theorem will be given in Section 5.

Theorem 2.3. Let \((x, y)\) be a good example where \(x \neq 2\). Then, there exist co-prime natural numbers \(p\) and \(q\) such that \(q < x^{1/6}\) and

\[
0 < C < 3qx^{1/6} + 1, \quad |F| < 8q + 1 \quad \text{and} \quad |H| < 72q^4 + 1.
\]

In order to explain our algorithm, we introduce the notion of a good septuple.

Definition 2.4. Let \(x, y, p, q, c \in \mathbb{N}\) and \(f, h \in \mathbb{Z}\). The sequence \((x, y, p, q, f, c, h)\) is a good septuple if \(p\) and \(q\) are co-prime and

\[
q < x^{1/6}, \quad f = F(q, p, x, y), \quad c = C(q, p, x, y), \quad h = H(q, p, x, y)
\]

and \(|x^3 - y^2| < x^{1/2}\). We define the function \(E\) by

\[
E(q, f, c, h) = \begin{cases}
(x, y) & \text{if there exists } p \text{ such that } (x, y, p, q, f, c, h) \text{ is a good septuple} \\
(0, 0) & \text{otherwise.}
\end{cases}
\]

An algorithm for computing \(E(q, f, c, h)\). It follows from Definition 2.1 that

\[
B = \frac{H + 8C^2}{9F}
\]

\[
p = \frac{F + 3B^2}{4C}
\]

\[
x = \frac{p^2 - B}{q^2}
\]

\[
y = \frac{3pq^2 x - p^3 + C}{2q^3}.
\]

If \((x, y, p, q, f, c, h)\) is a good septuple, we have \(f = F(q, p, x, y)\) and \(c = C(q, p, x, y)\) and \(h = H(q, p, x, y)\). Thus, we can compute \(E(q, f, c, h)\) by the following procedure:

- Compute \(b\) such that \(b = B\) and equality (2.1) holds. Use \(f, c, h\) for respectively \(F, C, H\).
- Compute \(p\) such that equality (2.2) holds. Use \(f, c, b\) for respectively \(F, C, B\).
- Compute \(x\) such that equality (2.3) holds. Use \(p, q, \) and use \(b\) for \(B\).
- Compute \(y\) such that equality (2.4) holds. Use \(p, q, \) and use \(c\) for \(C\).
- Check if \((x, y, p, q, f, c, h)\) is a good septuple, that is, check if \(p, x, y\) are natural numbers and check if \(|x^3 - y^2| < x^{1/2}\). If it is a good septuple, the output is \((x, y)\); otherwise, the output is \((0, 0)\).

Overview of the algorithm. We are now ready to give an overview of our algorithm for finding good examples (where \(x \neq 2\)). A pair \((x, y)\) is a good example if and only if there exist \(p, q, f, c, h\) such that \((x, y, p, q, f, c, h)\) is good septuple (this follows straightforwardly from Theorem 2.3). Since \(q < x^{1/6}\) when \((x, y, p, q, f, c, h)\) is a good septuple, we can decide if \((x, y)\) is a good example checking all good septuples where \(q < x^{1/6}\). Our algorithm works by generating good septuples by a sieve method. The input to the algorithm is a natural number \(x_{\max}\). The algorithm outputs all good examples \((x, y)\) where \(x < x_{\max}\). Figure 1 gives a high-level description of the algorithm.
Our algorithm might also output good examples \((x,y)\) where \(x \geq x_{\text{max}}\). If \(x \geq x_{\text{max}}\), there might exist a good septuple \((x,y,p,q,f,c,h)\) where \(q < x^{1/6}\) and \(c < 3q^{1/6}\). This is why our algorithm has found good examples with \(x > 10^{29}\).
Lemma 3.2. Let m and n be natural numbers such that $m \leq n$, and let $P(x)$ be a polynomial. Furthermore, let $x_0 \equiv x \pmod{q^m}$, and let $y \equiv P(x) \pmod{q^n}$. Then we have $y \equiv P(x_0) \pmod{q^m}$.

3.1. The Construction of the Set F_q. Assume that (x, y, p, q, f, c, h) is a good septuple. By Lemma 3.1 (i), we have $f \equiv p^4 \pmod{q^2}$. Now, let p_0 be any natural number such that $p_0 \equiv p \pmod{q}$. By Lemma 3.2, we have $f \equiv p_0^4 \pmod{q}$. Thus, f can be written of the form

$$f = (p_0^4 \mod q) + iq$$

for some $i \in \mathbb{Z}$ and some p_0 where $p_0 < q$. By Theorem 2.3 we have

$$-(8q + 1) < f < 8q + 1$$

and by Lemma 3.1 (iv), we have

$$f \equiv 0 \text{ or } f \equiv 1 \pmod{4}$$

If $q > 1$, our algorithm computes the set F_q such that $f \in F_q$ iff (3.1), (3.2) and (3.3) hold. In the case when $q = 1$, the algorithm let $F_q = \{-8, -7, -4, -3, 0, 1, 4, 5, 8\}$.

Note that we only need q to determine the set F_q (in particular we do not need the value of p).

3.2. The Construction of the Set C_{qf}. Assume that (x, y, p, q, f, c, h) is a good septuple where $x < x_{\text{max}}$. By Lemma 3.1 (i), we have $f \equiv p^4 \pmod{q^2}$. Let p_1 be any natural number such that $p_1 \equiv p \pmod{q^2}$. By Lemma 3.2, we have $f \equiv p_1^4 \pmod{q^2}$. Hence,

$$f \equiv (p_1^4 \mod q^2) + iq^2$$

for some $i \in \mathbb{Z}$. Let $p_1 \in P_1$ iff $0 < p_1 < q^2$ and (3.4) holds. Our algorithm computes the set P_1 from q and f (the set will contain at most four elements).

By Lemma 3.1 (i), we have $c \equiv p^3 \pmod{q^2}$. By Lemma 3.2, we have $c \equiv p_1^3 \pmod{q^2}$. Hence, c can be written of the form

$$c = (p_1^3 \mod q^2) + iq^2$$

for some $p_1 \in P_1$ and some $i \in \mathbb{Z}$. By Theorem 2.3, we have $0 < c < 3qx^{1/6} + 1$. Recall that $q_{\text{max}} = \lfloor x_{\text{max}}^{1/6} \rfloor$. Hence

$$0 < c \leq 3qq_{\text{max}} + 1$$

If $q > 1$, our algorithm computes the set C_{qf} such that $c \in C_{qf}$ iff (3.5) and (3.6) hold. If $q = 1$, the algorithm computes the set C_{qf} such that $c \in C_{qf}$ iff (3.6) holds. We need q, q_{max} and the set P_1 to determine the set C_{qf} (and we need q and $f \in F_q$ to determine P_1).
3.3. The Construction of the Set \(H_{qfc} \). Assume that \((x, y, p, q, f, c, h)\) is a good septuple. Let \(p_2 \) be such that \(p_2^i \equiv p \) (mod \(q^3 \)). By Lemma 3.1 (iii), we have \(p^4 - 2pc + f \equiv 0 \) (mod \(q^3 \)). By Lemma 3.2, we have
\[
\tag{3.7} p_2^i - 2p_2c + f \equiv 0 \pmod{q^3}.
\]
Our algorithm computes the set \(P_2 \) such that \(p_2 \in P_2 \) if 0 \(\leq p_2 < q^3 \) and (3.7) holds. We need \(q, c \in C_{qf} \) and \(f \in C_q \) to determine the set \(P_2 \).

By clause (ii) and (iii) of Lemma 3.1 and Lemma 3.2, there is \(p_2 \in P_2 \) such that
\[
\tag{3.8} h \equiv -8c^2 \pmod{9|f|} \quad \text{and} \quad h \equiv 5p_2^2c - 4p_2^6 \pmod{q^3}.
\]
By Theorem 2.3, we have
\[
\tag{3.9} -(72q^3 + 1) < h < 72q^4 + 1.
\]

The case when 3 does not divide \(q \). We will now explain how our algorithm computes the set \(H_{qfc} \) when 3 does not divide \(q \). We know that \(p \) and \(q \) are co-prime (since \((x, y, p, q, f, c, h)\) is a good septuple). By Lemma 3.1 (v), \(|f|\) and \(q \) are co-prime. Thus, \(|f| \) and \(q^3 \) will also be co-prime since 3 does not divide \(q \). The Chinese Remainder Theorem and (3.8) yield \(h_1 \) such that
\[
\tag{3.10} 0 \leq h_1 < 9|f|q^3 \quad \text{and} \quad h = h_1 + i|f|q^3
\]
for some \(i \in \mathbb{Z} \). Let \(S(q, p_2, f, c) \) denote the unique \(h_1 \) such that (3.10) holds. The number \(S(q, p_2, f, c) \) can be computed from \(q, p_2, f, c \) by the Euclidean method. If \(q > 1 \), our algorithm computes the set \(H_{qfc} \) such that \(h \in H_{qfc} \) iff (3.9) holds and \(h = S(q, p_2, f, c) + i|f|q^3 \) for some \(p_2 \in P_2 \) and some \(i \in \mathbb{Z} \). The set \(H_{qfc} \) will be computed by a tailored algorithm when \(q = 1 \).

The case when 3 divides \(q \). By Lemma 3.1 (v), \(|f|\) and \(q \) are co-prime. Thus, if 3 divides \(q \), the greatest common divisor of \(9|f| \) and \(q^3 \) will be 9. The equations in (3.8) have a solution iff \(h \equiv -8c^2 \pmod{9} \). If there is a solution, the Chinese Remainder Theorem yields \(h_1 \) such that
\[
\tag{3.11} 0 \leq h_1 < |f|q^3 \quad \text{and} \quad h = h_1 + i|f|q^3
\]
for some \(i \in \mathbb{Z} \), and our algorithm can proceed as described in the case when 3 does not divide \(q \).

We need \(q, f \in F_q, c \in C_{qf} \) and the set \(P_2 \) to determine \(H_{qfc} \) (and we need \(q, f \in F_q, c \in C_{qf} \) to determine \(P_2 \)).

3.4. The Running Time. Let \(|S|\) denote the number of elements in the set \(S \). It is easy to see that \(|S_q| \leq 17q \). It follows from (3.5) and (3.6) that
\[
|C_{qf}| \leq \frac{|P_1|(3qq_{\text{max}} + 1)}{q^2}.
\]
We have computed the set \(P_1 \) from \(q \) and \(f \), but the number of elements in the set will not depend on \(q \) or \(f \) (tedious considerations will show that \(|P_1| \leq 4 \)). Hence there is a constant \(k \) such that \(|C_{qf}| \leq (kq_{\text{max}})/q \). We can now determine an upper
SEARCH FOR GOOD EXAMPLES OF HALL’S CONJECTURE

<table>
<thead>
<tr>
<th>#</th>
<th>(x)</th>
<th>(r)</th>
<th>(\frac{q}{r})</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>10747835083471081268825856</td>
<td>1.35</td>
<td>1.354</td>
<td>1)</td>
</tr>
<tr>
<td>42</td>
<td>37223900078734215181946758</td>
<td>1.87</td>
<td>1.871</td>
<td>2)</td>
</tr>
<tr>
<td>43</td>
<td>695869516104856336376491417</td>
<td>1.22</td>
<td>1.221</td>
<td>3)</td>
</tr>
<tr>
<td>44</td>
<td>3690445383173227306376634720</td>
<td>1.51</td>
<td>1.511</td>
<td>4)</td>
</tr>
<tr>
<td>45</td>
<td>133545763574262054617147641349</td>
<td>1.69</td>
<td>1.691</td>
<td>5)</td>
</tr>
<tr>
<td>46</td>
<td>162921297743817207342396140787</td>
<td>10.65</td>
<td>10.651</td>
<td>6)</td>
</tr>
<tr>
<td>47</td>
<td>3741926908962197210978121645171</td>
<td>2.97</td>
<td>2.971</td>
<td>7)</td>
</tr>
<tr>
<td>48</td>
<td>401844774500818781164623821177</td>
<td>1.10</td>
<td>1.101</td>
<td>8)</td>
</tr>
<tr>
<td>49</td>
<td>500859224588646106403669009291</td>
<td>1.06</td>
<td>1.061</td>
<td>9)</td>
</tr>
<tr>
<td>50</td>
<td>1114592308630995805123571151844</td>
<td>1.04</td>
<td>1.041</td>
<td>10)</td>
</tr>
<tr>
<td>51</td>
<td>3973959092505477350779036334813</td>
<td>3.75</td>
<td>3.751</td>
<td>11)</td>
</tr>
<tr>
<td>52</td>
<td>86261143381072476361366116643858</td>
<td>1.10</td>
<td>1.101</td>
<td>12)</td>
</tr>
<tr>
<td>53</td>
<td>1062521751024771376590062279975859</td>
<td>1.01</td>
<td>1.011</td>
<td>13)</td>
</tr>
<tr>
<td>54</td>
<td>6078673043126084065007920175846955</td>
<td>1.03</td>
<td>1.031</td>
<td>14)</td>
</tr>
</tbody>
</table>

1) The first 40 entries of the table can be found in [1]. These entries are found by Hall [4], Gebel et al. [5], Elkies [3], Calvo et al. [1] and Johan Bosman using the software of Calvo et al. [1].

2) Found by Jiménez Calvo [8].

3) Found by Calvo et al. [1].

4) Found by the authors of this paper.

5) From the Danilov-Elkies infinite Fermat-Pell family, see [3] or [1].

Table 1. Good examples of Hall’s conjecture.

This shows that the number of times the loop for each \(c \in C_{qf} \ldots\) will be executed is of order \(O(q_{\text{max}}^2 \log q_{\text{max}})\).

It follows from (3.9), (3.10) and (3.11) that there exists a constant \(k\) such that the number of elements in \(H_{qfc}\) is bounded by \(kq\). Thus the number of elements in \(H_{qfc}\) is of order \(O(q_{\text{max}})\). This entails that the innermost loop of the algorithm in Figure 1 will be executed \(O(q_{\text{max}}^2 \log q_{\text{max}}) \times O(q_{\text{max}})\) times. In the innermost loop numbers will be added, multiplied and divided. The running time of these arithmetical computations will be of order \(O(\log^2 x)\). Thus, as \(q_{\text{max}} = [x^{1/6}]\) and \(x < x_{\text{max}}\), our algorithm runs in time

\[
O(q_{\text{max}}^2 \log q_{\text{max}}) \times O(q_{\text{max}}) \times O(\log^2 x_{\text{max}}) = O(x_{\text{max}}^3 \log q_{\text{max}}) \times O(\log^2 x_{\text{max}}) = O((x_{\text{max}}^{1/6})^3 \log x_{\text{max}}^{1/6}) \times O(\log^2 x_{\text{max}}) = O(x_{\text{max}}^{1/2} \log O(1) x_{\text{max}}).
\]

The algorithm of Elkies [3] has a similar running time.
4. Computations and Results

A first implementation of the algorithm was written in Python. The results of test runs looked promising, and we reimplemented the algorithm in C using the Gnu Multi-Precision library to carry out operations with arbitrary-length integers. The C implementation was run with $q_{\text{max}} = 10000$ (corresponding to a x_{max} of 10^{24}). The run lasted for 1368 processor-hours, and after 840 processor-hours the algorithm found example #43 in Table 1. A subsequent run, with $q_{\text{max}} = 20000$ (corresponding to a x_{max} of 64×10^{24}), lasted for 10 580 processor-hours and found an example that was earlier found by Calvo et al. [1].

After these experiences we modified our C code for being run on the Norwegian national computing facilities (Notur). The computations at national facilities took about 1.3 millions processor-hours. Our computations have detected 9 previously unknown good examples and verified that all good examples where x is less than 10^{29} are included in Table 1.

The second column of Table 1 shows the x of a good example (x, y). The r appearing in the third column of the table, is given by $r = x^{1/2}/(x^3 - y^2)$. High values of r indicate that (the original) Hall’s Conjecture is false. The fourth column shows the rational approximation p/q to $x^{1/2}$.

5. The Proof of Theorem 2.3

Throughout this section we will use w to denote $x^{1/2}$ and k to denote $x^3 - y^2$.

Lemma 5.1. Let (x, y) be a good example. Then there exists $\gamma \in \mathbb{R}$ such that

$$ y = x^{3/2}(1 + \gamma) \quad \text{and} \quad \frac{|k| - 1}{2x^3} < |\gamma| < \frac{|k| + 1}{2x^3}. $$

Proof. Let $\gamma \in \mathbb{R}$ be such that $y = x^{3/2}(1 + \gamma)$. Then we have

$$ y = x^{3/2}(1 + \gamma) = w^3(1 + \gamma). $$

Furthermore, we have

$$ \gamma w^3 = w^3(1 + \gamma) - w^3 $$$$ = y - w^3 $$$$ = (y^2 - w^6)/(y + w^3) $$$$ = (y^2 - x^3)/(y + w^3) \quad \text{since } w = x^{1/2} $$$$ = -k/(y + w^3) \quad \text{since } x^3 - y^2 = k $$

This establishes that $\gamma w^3 = -k/(y + w^3)$, and thus $\gamma = -k/w^3(y + w^3)$. Furthermore, since $|k| < w = x^{1/2}$ and $x \geq 2$, we have

$$ |\gamma| = \frac{|k|}{w^3(y + w^3)} < \frac{|k|}{w^6} < \frac{1}{w^5} < 1. $$

We also have

$$ |\gamma| = \frac{|k|}{2w^6(1 + \frac{k}{2w^3})}. $$
since

\[|\gamma| \overset{(5.2)}{=} \frac{|k|}{w^3(y + w^3)} \overset{(5.1)}{=} \frac{|k|}{w^3(w^3(1 + \gamma) + w^3)} = \frac{|k|}{w^6(2 + \gamma)} = \frac{|k|}{2w^6(1 + \frac{1}{2} \gamma)}. \]

Next we prove that

\[(5.4) \quad 1 - |\gamma| < \frac{1}{1 + \frac{2}{2}} < 1 + |\gamma|. \]

Let \(r \) be a real number such that \(0 < r < 1 \). Then we have

\[1 < 1 + \frac{r}{2} - \frac{r^2}{2} = (1 + r)(1 - \frac{r}{2}) \]

and thus \(1/(1 - \frac{r}{2}) < 1 + r \). By (5.2), we have \(|\gamma| < 1 \). Hence, if \(\gamma > 0 \), we have

\[\frac{1}{1 + \frac{r}{2}} < \frac{1}{1 - \frac{r}{2}} < 1 + \gamma = 1 + |\gamma| \]

and if \(\gamma < 0 \), we have

\[\frac{1}{1 + \frac{r}{2}} = \frac{1}{1 - \frac{\gamma}{2}} < 1 + |\gamma|. \]

This shows that \(1/(1 + \frac{2}{2}) < 1 + |\gamma| \). A symmetric argument shows that \(1 - |\gamma| < 1/(1 + \frac{2}{2}) \). Use that

\[1 > 1 - \frac{r}{2} - \frac{r^2}{2} = (1 - r)(1 + \frac{r}{2}) \]

when \(0 < r < 1 \). This concludes the proof of (5.4).

By (5.3) and (5.4), we have

\[\frac{|k| - |k||\gamma|}{2w^6} = \frac{|k|(1 - |\gamma|)}{2w^6} < |\gamma| < \frac{|k|(1 + |\gamma|)}{2w^6} = \frac{|k| + |k||\gamma|}{2w^6}. \]

Finally, as \(|k||\gamma| < \frac{1}{w^4} < 1 \), we have

\[\frac{|k| - 1}{2w^6} < |\gamma| < \frac{|k| + 1}{2w^6}. \]

This proves the lemma as \(w = x^{1/2} \). \(\square \)

We are now ready to prove Theorem 2.3. Let \((x, y)\) be a good example where \(x \neq 2 \). We need to prove that there exist co-prime natural numbers \(p \) and \(q \) such that \(q \leq x^{1/6} \) and

(\text{Claim 1}) \quad 0 < C(q, p, x, y) < 3qx^{1/6} + 1

(\text{Claim 2}) \quad |F(q, p, x, y)| < 8q + 1

(\text{Claim 3}) \quad |H(q, p, x, y)| < 72q^4 + 1

By Theorem 2.2 and Lemma 5.1, we have \(\delta, \gamma \in \mathbb{R} \) and \(p, q, Q \in \mathbb{N} \) such that \(p \) and \(q \) are co-prime and

\[(5.5) \quad p = qw(1 + \delta) \quad \text{and} \quad y = w^3(1 + \gamma). \]
Moreover, we have the following bounds:

\[0 < q < w^{1/3} < Q \quad (5.6) \]

\[|\delta| < \frac{1}{qwQ} \quad (5.7) \]

\[|\gamma| < \frac{|k|}{2w^6} \quad (5.8) \]

Note that we also have \(|k| < w\) as \((x, y)\) is a good example. Furthermore, note that \((x, y)\) is a good example where \(x \neq 2\). There are no other good examples where \(x\) is less than 5234 except the one where \(x = 2\). It follows that \(w > 72\) and \(Q > 4\).

The Proof of (Claim 1). The definition of \(C\) says that

\[C = p^3 - 3pq^2x + 2q^3y \quad (5.9) \]

By (5.5) and (5.9), we have

\[C = q^3w^3(\delta^3 + 3\delta^2 + 2\gamma) \quad (5.10) \]

First we prove \(0 < C\). It follows from (5.7) that \(|\delta| < \frac{1}{2}w\), and thus we have

\[\delta^3 + 3\delta^2 = 2\delta^2 + \delta^2(1 + \delta) > 0. \]

If \(\gamma \geq 0\), it follows trivially from (5.10) that \(0 < C\). If \(\gamma < 0\), then \(y < w^3\), i.e. \(x^3 - y^2 = k > 0\). Then we have

\[C = q^3w^3(\delta^3 + 3\delta^2 + 2\gamma) > q^3w^32\gamma > q^3w^32\frac{|k|}{2w^6} = -q^3\frac{|k|}{w^3} \]

\[> -\frac{|k|}{w^2} > -1. \]

This proves that \(C > -1\). We will now prove that \(C \neq 0\) (and thus we have \(C > 0\)).

Assume that \(C = 0\) (we prove that \((x, y)\) is not a good example). By (5.9), we have \(p^3 = q(2q^2y - 3pqx)\). This shows that any prime divisor of \(q\) divides \(p\), but \(p\) and \(q\) are co-prime, and thus \(q = 1\). Equation (5.9) with \(C = 0\) and \(q = 1\) gives

\[0 = p^3 - 3px + 2y \quad (5.11) \]

We will prove that a solution of (5.11) cannot yield a good example. The proof splits into the three cases: the case when \(x = p^2\), the case when \(x > p^2\), and the case when \(x < p^2\).

Assume \(x = p^2\). Then \(y = p^3\) gives a solution of (5.11), but \(x^3 - y^2 = 0\). Thus, \((x, y)\) is not a good example.

Assume \(x > p^2\). Then we have \(x = p^2 + m\) for some positive natural number \(m\). Thus

\[x^3 = (p^2 + m)^3 = p^6 + 3p^4m + 3p^2m^2 + m^3 \]

By (5.11) we have

\[y = \frac{3px - p^3}{2} = \frac{3p(p^2 + m) - p^3}{2} = p^3 + \frac{3pm}{2} \]

and

\[y^2 = p^6 + 3p^4m + \frac{9p^2m^2}{4}. \]
Hence

\[x^3 - y^2 = \frac{3p^2m^2}{4} + m^3 > p \]

and we conclude that \((x, y)\) is not a good example as \(p \approx x^{1/2}\). A similar argument shows that \((x, y)\) is not a good example if \(x < p^2\). This proves that \(C > 0\).

Next we prove that \(C < 3qw^{1/3} + 1\). This will complete the proof of (Claim 1) since \(w^{1/3} = x^{1/6}\). We have

\[C = q^3w^3(\delta^3 + 3\delta^2 + 2\gamma) \leq q^3w^3(|\delta|^3 + 3|\delta|^2 + 2|\gamma|) \]

(5.7, 5.8)

\[\leq \frac{1}{Q^3} + 3qw \frac{|k|}{w^3} \]

(5.6)

Thus, we have \(C < 3qw^{1/3} + 1\) as \(w = x^{1/2} > 72\) in any good example where \(x \neq 2\).

The Proof of (Claim 2). It follows straightforwardly from Definition 2.1 that \(F = p^4 - 6p^2q^2w^2 + 8pq^3y - 3q^4w^4\). By (5.5), we have \(F = q^4w^4(\delta^4 + 4\delta^3 + 8\gamma + 8\gamma\delta)\). We have

\[|F| \leq q^4w^4(|\delta|^4 + 4|\delta|^3 + 8|\gamma| + 8|\gamma||\delta|) \]

(5.7, 5.8)

\[\leq \frac{1}{Q^4} + 4q + \frac{4q^3|k|}{wQ} \]

(5.6)

Thus, \(|F| < 8q + 1\) as \(w > 72\) and \(Q > 4\).

The Proof of (Claim 3). It follows straightforwardly from Definition 2.1 that

\[H = p^6 - 15p^4q^2w^2 + 40p^3q^3y - 45p^2q^4w^4 + 24q^5pw^2y + 27q^6w^6 - 32q^6y^2. \]

By (5.5), we have

\[H = q^6w^6(144\delta^6 - 32\gamma^2 + 40\delta^3\gamma + 120\delta^2\gamma + 6|\delta|^5 + |\delta|^6). \]

In order to prove that \(|H| < 72q^4 + 1\), we need

\[q^6w^6(32|\gamma|^2 + 40|\delta|^3|\gamma| + 120|\delta|^2|\gamma| + 6|\delta|^5 + |\delta|^6) < 1 \]

(5.12)

and

\[144q^6w^6|\delta||\gamma| \leq 144q^6w^6 \frac{1}{qwQ} \left(\frac{|k|}{2w^6} \right) = \frac{72q^5|k|}{wQ} \leq 72q^4. \]

(5.13)

(5.7, 5.8)

The proof of (5.12) is tedious, but straightforward. Use that \(|k| < w\), that \(q < w^{1/3} < Q\), that \(w > 72\) and that \(Q > 4\).
Now we have

\[|H| \leq q^6 w^6 (144 |\delta| |\gamma| + 32 |\gamma|^2 + 40 |\delta| |\gamma| + 120 |\delta|^2 |\gamma| + 6 |\delta|^3 + |\delta|^6) \]

\[= 144 q^6 w^6 |\delta| |\gamma| + q^6 w^6 (32 |\gamma|^2 + 40 |\delta| |\gamma| + 120 |\delta|^2 |\gamma| + 6 |\delta|^3 + |\delta|^6) . \]

Thus, we have \(|H| < 72q^4 + 1 \) by (5.12) and (5.13).

Acknowledgments

The authors want to thank the referees and the editor for valuable advice regarding the presentation. Furthermore, the authors want to thank N. D. Elkies for comments on an earlier version of this paper and R. H. Johansen for helpful advice on parallel programming. The authors gratefully acknowledge the support from the Norwegian meta-center for computational science (Notur).

References

Department of Mathematics, University of Oslo, P.O.Box 1053 Blindern, NO-0316 Oslo, Norway
E-mail address: staal@math.uio.no

Department of Mathematics, University of Oslo, P.O.Box 1053 Blindern, NO-0316 Oslo, Norway
E-mail address: larsk@math.uio.no

Department of Mathematics, University of Oslo, P.O.Box 1053 Blindern, NO-0316 Oslo, Norway