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SEARCH FOR GOOD EXAMPLES OF HALL’S CONJECTURE

STÅL AANDERAA, LARS KRISTIANSEN, AND HANS KRISTIAN RUUD

Abstract. A good example of Hall’s Conjecture is a pair of natural numbers

x, y such that 0 < |x3−y2| < x1/2. We have implemented a new algorithm and

found nine not previously known good examples. Moreover, we have verified
that all good examples with x < 1029 are now found.

1. Introduction

Consider the equation

x3 − y2 = k(1.1)

where x, y ∈ N and k ∈ Z. It is easy to see that the equation has infinitely many
solutions when k = 0 (let x = t2 and y = t3 where t is a natural number). By
Siegel’s theorem, there will be only finitely many solutions of the equation when
k 6= 0. Moreover, it is hard to find solutions where k is small compared to x and
y. Hall [4] conjectured that there is a constant C such that |k| > Cx1/2 for any
solution of (1.1) where k 6= 0. This conjecture is discussed in e.g. Danilov [2] and
Elkies [3]. The general opinion is that Hall’s original conjecture is too strong, and
his conjecture has been reformulated to a weaker modern variant: For any exponent
e < 1

2 , there exists a constant Ce > 0 such that |k| > Cex
e. For more on Hall’s

conjecture and further references, see Calvo et al. [1].
Hall’s Conjecture is neither proved nor disproved. To shed some light on the

conjecture, researchers have searched for solutions of (1.1) where 0 < |k| < x1/2.
We follow the terminology of Calvo et al. [1] and refer to such solutions as good
examples of Hall’s conjecture. We will say that a pair of natural numbers (x, y) is
a good example when 0 < |x3 − y2| < x1/2.

We have implemented a new algorithm for finding good examples. We have found
9 not previously known good examples, and we have checked that all good examples
(x, y) where x is less than 1029 are now found. Other algorithms for finding good
examples can be found in Elkies [3] and Calvo et al. [1]. The algorithm of Elkies has
an asymptotic running time similar to ours. The algorithm of Calvo et al. seems to
have slightly better asymptotic running time, but the authors offer no proof that
their algorithm will detect all good examples within its search space. However, it
is easily verified that the algorithm will find all the new good examples presented
in this paper if it is given enough running time.
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2. The Algorithm

Definition 2.1. We define the polynomials B, C, F and H by

B(q, p, x) = p2 − q2x

C(q, p, x, y) = p3 − 3pq2x+ 2q3y

F (q, p, x, y) = 4pC − 3B2

H(q, p, x, y) = 9FB − 8C2

where x, y, p, q are positive integers.

Our algorithm is based on the four polynomials given by the definition above.
The values of these polynomials will be small when (x, y) is a good example and p

q

is the approximation to x1/2 given by the next theorem.

Theorem 2.2. Let (x, y) be a good example. Then, there exist p, q,Q ∈ N and
δ ∈ R such that (i) p = qx1/2(1 + δ), (ii) 0 < q < x1/6 < Q and

(iii)
1

qx1/2(Q+ q)
< |δ| <

1

qx1/2Q
.

Moreover, p and q are co-prime.

Proof. In this proof we use continued fractions. For more on continued fractions,
see e.g. Niven et al. [7] or Khintchine [6].

First we note that x1/2 is an irrational number when (x, y) is a good example. (If
x1/2 is a natural number, then (x, y) will not be a good example as x3−y2 = 0. But
x1/2 is either a natural number or an irrational number. Thus, x1/2 is irrational.)

Let a0, a1, a2, . . . be the coefficients for the continued fraction for x1/2, that is

x1/2 = lim
n→∞

[a0; a1, . . . , an] .

The list of coefficients will be infinite as x1/2 is irrational. Let hi and ki be,
respectively, the nominator and the denominator of the convergent [a0; a1, . . . , ai],
that is hi

ki
= [a0; a1, . . . , ai]. Then, for any i ∈ N, we have

1

ki(ki + ki+1)
<

∣∣∣∣hiki − x1/2

∣∣∣∣ <
1

kiki+1

and ki < ki+1. Now, pick the least j such that kj+1 > x1/6. Let q = kj , let p = hj
and let Q = kj+1. Then, we have

1

q(q +Q)
<

∣∣∣∣pq − x1/2

∣∣∣∣ <
1

qQ

where q < x1/6 < Q (we cannot have q = x1/6 as x1/6 6∈ N). Next, let δ be the real
number such that p = qx1/2(1 + δ). Then, we have

1

q(q +Q)
<

∣∣∣∣qx1/2(1 + δ)

q
− x1/2

∣∣∣∣ <
1

qQ
.

Thus
1

qx1/2(q +Q)
< |δ| <

1

qx1/2Q
.

Note that p and q are co-prime since hj and kj are co-prime for any convergent
hj

kj
. �
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The proof of the next theorem will be given in Section 5.

Theorem 2.3. Let (x, y) be a good example where x 6= 2. Then, there exist co-
prime natural numbers p and q such that q < x1/6 and

0 < C < 3qx1/6 + 1 , |F | < 8q + 1 and |H| < 72q4 + 1 .

In order to explain our algorithm, we introduce the notion of a good septuple.

Definition 2.4. Let x, y, p, q, c ∈ N and f, h ∈ Z. The sequence (x, y, p, q, f, c, h)
is a good septuple if p and q are co-prime and

q < x1/6, f = F (q, p, x, y), c = C(q, p, x, y), h = H(q, p, x, y)

and |x3 − y2| < x1/2. We define the function E by

E(q, f, c, h) =


(x, y) if there exists p such that

(x, y, p, q, f, c, h) is a good septuple

(0, 0) otherwise.

An algorithm for computing E(q, f, c, h). It follows from Definition 2.1 that

B =
H + 8C2

9F
(2.1)

p =
F + 3B2

4C
(2.2)

x =
p2 −B
q2

(2.3)

y =
3pq2x− p3 + C

2q3
.(2.4)

If (x, y, p, q, f, c, h) is a good septuple, we have f = F (q, p, x, y) and c = C(q, p, x, y)
and h = H(q, p, x, y). Thus, we can compute E(q, f, c, h) by the following procedure:

• Compute b such that b = B and equality (2.1) holds. Use f, c, h for respec-
tively F,C,H.
• Compute p such that equality (2.2) holds. Use f, c, b for respectively F,C,B.
• Compute x such that equality (2.3) holds. Use p, q, and use b for B.
• Compute y such that equality (2.4) holds. Use p, q, and use c for C.
• Check if (x, y, p, q, f, c, h) is a good septuple, that is, check if p, x, y are

natural numbers and check if |x3 − y2| < x1/2. If it is a good septuple, the
output is (x, y); otherwise, the output is (0, 0).

Overview of the algorithm. We are now ready to give an overview of our algorithm
for finding good examples (where x 6= 2). A pair (x, y) is a good example if and
only if there exist p, q, f, c, h such that (x, y, p, q, f, c, h) is good septuple (this follows
straightforwardly from Theorem 2.3). Since q < x1/6 when (x, y, p, q, f, c, h) is a
good septuple, we can decide if (x, y) is a good example checking all good septuples
where q < x1/6. Our algorithm works by generating good septuples by a sieve
method. The input to the algorithm is a natural number xmax. The algorithm
outputs all good examples (x, y) where x < xmax. Figure 1 gives a high-level
description of the algorithm.
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qmax := bx1/6
maxc.

for q := 1, 2, . . . , qmax do

begin

Generate a set Fq of possible values for f .

for each f ∈ Fq do

begin

Generate a set Cqf of possible values of c.

for each c ∈ Cqf do

begin

Generate a set Hqfc of possible values for h.

for each h ∈ Hqfc do

begin

(x, y) := E(q, f, c, h) (see Definition 2.4).

Output (x, y) if (x, y) 6= (0, 0).

end

end

end

end

Figure 1. The high-level description of our algorithm.

Our algorithm might also output good examples (x, y) where x ≥ xmax. If

x ≥ xmax, there might exist a good septuple (x, y, p, q, f, c, h) where q < x
1/6
max and

c < 3qx
1/6
max. This is why our algorithm has found good examples with x > 1029.

3. More on the Algorithm

In this section we explain how the algorithm in Figure 1 computes the sets Fq,
Cqf and Hqfc. We will also discuss the running time. The correctness of our
algorithm is based on the next couple of lemmas.

Lemma 3.1. We have

(i) C ≡ p3, F ≡ p4 and H ≡ p6 (mod q2)
(ii) H ≡ −8C2 (mod 9|F |)

(iii) p4 − 2pC + F ≡ 0 and H ≡ 5p3C − 4p6 (mod q3)
(iv) either F ≡ 0 or F ≡ 1 (mod 4)
(v) |F | and q are co-prime if p and q are co-prime.

Proof. Clause (i), (ii) and (iii) follow straightforwardly from Definition 2.1.
In the case when B is even there exists i ∈ Z such that

F = −3B2 = −3(2i)2 = −12i2 .

Hence, we have F ≡ 0 (mod 4) when B is even. A similar argument shows that
F ≡ 1 (mod 4) when B is odd. This proves (iv).

In order to see that (v) holds, assume that |F | and q are not co-prime. Then
there is a prime m that divides both |F | and q. By (i), m will also divide p. Hence,
p and q are not co-prime. �

The proof of the next lemma is straightforward.
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Lemma 3.2. Let m and n be natural numbers such that m ≤ n, and let P (x) be a
polynomial. Furthermore, let x0 ≡ x (mod qm), and let y ≡ P (x) (mod qn). Then
we have y ≡ P (x0) (mod qm).

3.1. The Construction of the Set Fq. Assume that (x, y, p, q, f, c, h) is a good
septuple. By Lemma 3.1 (i), we have f ≡ p4 (mod q2). Now, let p0 be any natural
number such that p0 ≡ p (mod q). By Lemma 3.2, we have f ≡ p4

0 (mod q). Thus,
f can be written of the form

f = (p4
0 mod q) + iq(3.1)

for some i ∈ Z and some p0 where p0 < q. By Theorem 2.3 we have

−(8q + 1) < f < 8q + 1(3.2)

and by Lemma 3.1 (iv), we have

f ≡ 0 or f ≡ 1 ( mod 4).(3.3)

If q > 1, our algorithm computes the set Fq such that f ∈ Fq iff (3.1), (3.2) and
(3.3) hold. In the case when q = 1, the algorithm let

Fq = {−8 , −7 , −4 , −3 , 0 , 1 , 4 , 5 , 8 } .

Note that we only need q to determine the set Fq (in particular we do not need the
value of p).

3.2. The Construction of the Set Cqf . Assume that (x, y, p, q, f, c, h) is a good
septuple where x < xmax. By Lemma 3.1 (i), we have f ≡ p4 (mod q2). Let p1 be
any natural number such that p1 ≡ p (mod q2). By Lemma 3.2, we have f ≡ p4

1 (
mod q2). Hence,

p4
1 = f + iq2(3.4)

for some i ∈ Z. Let p1 ∈ P1 iff 0 < p1 < q2 and (3.4) holds. Our algorithm
computes the set P1 from q and f (the set will contain at most four elements).

By Lemma 3.1 (i), we have c ≡ p3 (mod q2). By Lemma 3.2, we have c ≡ p3
1 (

mod q2). Hence, c can be written of the form

c = (p3
1 mod q2) + iq2(3.5)

for some p1 ∈ P1 and some i ∈ Z. By Theorem 2.3, we have 0 < c < 3qx1/6 + 1.

Recall that qmax = bx1/6
maxc. Hence

0 < c ≤ 3qqmax + 1 .(3.6)

If q > 1, our algorithm computes the set Cqf such that c ∈ Cqf iff (3.5) and (3.6)
holds. If q = 1, the algorithm computes the set Cqf such that c ∈ Cqf iff (3.6) holds.
We need q, qmax and the set P1 to determine the set Cqf (and we need q and f ∈ Fq
to determine P1).



6 STÅL AANDERAA, LARS KRISTIANSEN, AND HANS KRISTIAN RUUD

3.3. The Construction of the Set Hqcf . Assume that (x, y, p, q, f, c, h) is a good
septuple. Let p2 be such that p2 ≡ p (mod q3). By Lemma 3.1 (iii), we have
p4 − 2pc+ f ≡ 0 (mod q3). By Lemma 3.2, we have

p4
2 − 2p2c+ f ≡ 0 ( mod q3) .(3.7)

Our algorithm computes the set P2 such that p2 ∈ P2 iff 0 ≤ p2 < q3 and (3.7)
holds. We need q, c ∈ Cqf and f ∈ Fq to determine the set P2.

By clause (ii) and (iii) of Lemma 3.1 and Lemma 3.2, there is p2 ∈ P2 such that

h ≡ −8c2 ( mod 9|f |) and h ≡ 5p3
2c− 4p6

2 ( mod q3) .(3.8)

By Theorem 2.3, we have

−(72q4 + 1) < h < 72q4 + 1 .(3.9)

The case when 3 does not divide q. We will now explain how our algorithm computes
the set Hqfc when 3 does not divide q. We know that p and q are co-prime (since
(x, y, p, q, f, c, h) is a good septuple). By Lemma 3.1 (v), |f | and q are co-prime.
Thus, 9|f | and q3 will also be co-prime since 3 does not divide q. The Chinese
Reminder Theorem and (3.8) yield h1 such that

0 ≤ h1 < 9|f |q3 and h = h1 + i9|f |q3(3.10)

for some i ∈ Z. Let S(q, p2, f, c) denote the unique h1 such that (3.10) holds. The
number S(q, p2, f, c) can be computed from q, p2, f, c by the Euclidean method. If
q > 1, our algorithm computes the set Hqfc such that h ∈ Hqfc iff (3.9) holds and
h = S(q, p2, f, c) + i9|f |q3 for some p2 ∈ P2 and some i ∈ Z. The set Hqfc will be
computed by a tailored algorithm when q = 1.

The case when 3 divides q. By Lemma 3.1 (v), |f | and q are co-prime. Thus, if
3 divides q, the greatest common divisor of 9|f | and q3 will be 9. The equations
in (3.8) have a solution iff h ≡ −8c2 (mod 9). If there is a solution, the Chinese
Reminder Theorem yields h1 such that

0 ≤ h1 < |f |q3 and h = h1 + i|f |q3(3.11)

for some i ∈ Z, and our algorithm can proceed as described in the case when 3 does
not divide q.

We need q, f ∈ Fq, c ∈ Cqf and the set P2 to determine Hqfc (and we need q,
f ∈ Fq, c ∈ Cqf to determine P2).

3.4. The Running Time. Let |S| denote the number of elements in the set S. It
is easy to see that |Fq| ≤ 17q. It follows from (3.5) and (3.6) that

|Cqf | ≤
|P1|(3qqmax + 1)

q2
.

We have computed the set P1 from q and f , but the number of elements in the set
will not depend on q or f (tedious considerations will show that |P1| ≤ 4). Hence
there is a constant k such that |Cqf | ≤ (kqmax)/q. We can now determine an upper
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# x r p
q Comments

.

.

. 1)

41 10747835083471081268825856 1.35 42884607802081920
13081 2)

42 37223900078734215181946587 1.87 46777434586297319
7667 3)

43 69586951610485633367491417 1.22 72198966044283893
8655 4)

44 3690445383173227306376634720 1.51 121619570207840431
2002 3)

45 133545763574262054617147641349 1.69 17888245804569497941
48950 4)

46 162921297743817207342396140787 10.65 20237053244197156774
50137 4)

47 374192690896219210878121645171 2.97 33505351516504847893
54773 4)

48 401844774500818781164623821177 1.29 30878500908406560580
48711 4)

49 500859224588646106403669009291 1.06 44288039658068321315
62579 4)

50 1114592308630995805123571151844 1.04 95524640670266092418
90481 5)

51 39739590925054773507790363346813 3.75 211515916260522809737
33553 4)

52 862611143810724763613366116643858 1.10 930889835660831460142
31695 4)

53 1062521751024771376590062279975859 1.01 1095269810850785984986
33601 4)

54 6078673043126084065007902175846955 1.03 20224028423712303104623
259396 3)

1) The first 40 entries of the table can be found in [1]. These entries are found by Hall [4],

Gebel et al. [5], Elkies [3], Calvo et al. [1] and Johan Bosman using the software

of Calvo et al. [1]

2) Found by Jiménez Calvo [8].

3) Found by Calvo et al. [1].

4) Found by the authors of this paper.

5) From the Danilov-Elkies infinite Fermat-Pell family, see [3] or [1].

Table 1. Good examples of Hall’s conjecture.

bound for how many times the third loop in Figure 1 will be executed. We have

qmax∑
q=1

∑
f∈Fq

|Cqf | ≤
qmax∑
q=1

∑
f∈Fq

kqmax

q
≤ 17qmax

qmax∑
q=1

kqmax

q

= kqmax17qmax

qmax∑
q=1

1

q
= O(q2

max log qmax) .

This shows that the number of times the loop for each c ∈ Cqf . . . will be executed
is of order O(q2

max log qmax).
It follows from (3.9), (3.10) and (3.11) that there exists a constant k such that

the number of elements in Hqfc is bounded by kq. Thus the number of elements
in Hqfc is of order O(qmax). This entails that the innermost loop of the algorithm
in Figure 1 will be executed O(q2

max log qmax) × O(qmax) times. In the innermost
loop numbers will be added, multiplied and divided. The running time of these

arithmetical computations will be of order O(log2 x). Thus, as qmax = bx1/6
maxc and

x < xmax, our algorithm runs in time

O(q2
max log qmax)×O(qmax)×O(log2 xmax) =

O(q3
max log qmax)×O(log2 xmax) = O((x1/6

max)3 log x1/6
max)×O(log2 xmax)

= O(x1/2
max logO(1) xmax) .

The algorithm of Elkies [3] has a similar running time.
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4. Computations and Results

A first implementation of the algorithm was written in Python. The results of
test runs looked promising, and we reimplemented the algorithm in C using the
Gnu Multi-Precision library to carry out operations with arbitrary-length integers.
The C implementation was run with qmax = 10000 (corresponding to a xmax of
1024). The run lasted for 1368 processor-hours, and after 840 processor-hours the
algorithm found example #43 in Table 1. A subsequent run, with qmax = 20000
(corresponding to a xmax of 64×1024), lasted for 10 580 processor-hours and found
an example that was earlier found by Calvo et al. [1].

After these experiences we modified our C code for being run on the Norwegian
national computing facilities (Notur). The computations at national facilities took
about 1.3 millions processor-hours. Our computations have detected 9 previously
unknown good examples and verified that all good examples where x is less than
1029 are included in Table 1.

The second column of Table 1 shows the x of a good example (x, y). The r
appearing in the third column of the table, is given by r = x1/2/(x3 − y2). High
values of r indicate that (the original) Hall’s Conjecture is false. The fourth column
shows the rational approximation p

q to x1/2.

5. The Proof of Theorem 2.3

Throughout this section we will use w to denote x1/2 and k to denote x3 − y2.

Lemma 5.1. Let (x, y) be a good example. Then there exists γ ∈ R such that

y = x3/2(1 + γ) and
|k| − 1

2x3
< |γ| < |k|+ 1

2x3
.

Proof. Let γ ∈ R be such that y = x3/2(1 + γ). Then we have

y = x3/2(1 + γ) = w3(1 + γ) .(5.1)

Furthermore, we have

γw3 = w3(1 + γ)− w3

= y − w3 (5.1)

= (y2 − w6)/(y + w3)

= (y2 − x3)/(y + w3) since w = x1/2

= −k/(y + w3) since x3 − y2 = k

This establishes that γw3 = −k/(y + w3), and thus γ = −k/w3(y + w3). Further-
more, since |k| < w = x1/2 and x ≥ 2, we have

|γ| =
|k|

w3(y + w3)
<
|k|
w6

<
1

w5
< 1 .(5.2)

We also have

|γ| =
|k|

2w6

1

(1 + 1
2γ)

(5.3)
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since

|γ| (5.2)
=

|k|
w3(y + w3)

(5.1)
=

|k|
w3(w3(1 + γ) + w3)

=
|k|

w6(2 + γ)
=

|k|
2w6

1

(1 + 1
2γ)

.

Next we prove that

1− |γ| <
1

(1 + γ
2 )

< 1 + |γ| .(5.4)

Let r be a real number such that 0 < r < 1. Then we have

1 < 1 +
r

2
− r2

2
= (1 + r)(1− r

2
)

and thus 1/(1− r
2 ) < 1 + r. By (5.2), we have |γ| < 1. Hence, if γ > 0, we have

1

1 + γ
2

<
1

1− γ
2

< 1 + γ = 1 + |γ|

and if γ < 0, we have

1

1 + γ
2

=
1

1− |γ|
2

< 1 + |γ| .

This shows that 1/(1 + γ
2 ) < 1 + |γ|. A symmetric argument shows that 1− |γ| <

1/(1 + γ
2 ). Use that

1 > 1− r

2
− r2

2
= (1− r)(1 +

r

2
)

when 0 < r < 1. This concludes the proof of (5.4).
By (5.3) and (5.4), we have

|k| − |k||γ|
2w6

=
|k|(1− |γ|)

2w6
< |γ| <

|k|(1 + |γ|)
2w6

=
|k|+ |k||γ|

2w6
.

Finally, as |k||γ| < 1
w4 < 1, we have

|k| − 1

2w6
< |γ| <

|k|+ 1

2w6
.

This proves the lemma as w = x1/2. �

We are now ready to prove Theorem 2.3. Let (x, y) be a good example where
x 6= 2. We need to prove that there exist co-prime natural numbers p and q such
that q ≤ x1/6 and

0 < C(q, p, x, y) < 3qx1/6 + 1(Claim 1)

|F (q, p, x, y)| < 8q + 1(Claim 2)

|H(q, p, x, y)| < 72q4 + 1(Claim 3)

By Theorem 2.2 and Lemma 5.1, we have δ, γ ∈ R and p, q,Q ∈ N such that p
and q are co-prime and

p = qw(1 + δ) and y = w3(1 + γ) .(5.5)



10 STÅL AANDERAA, LARS KRISTIANSEN, AND HANS KRISTIAN RUUD

Moreover, we have the following bounds:

0 < q < w1/3 < Q(5.6)

|δ| <
1

qwQ
(5.7)

|γ| <
|k|

2w6
.(5.8)

Note that we also have |k| < w as (x, y) is a good example. Furthermore, note that
(x, y) is a good example where x 6= 2. There are no other good examples where x
is less than 5234 except the one where x = 2. It follows that w > 72 and Q > 4.

The Proof of (Claim 1). The definition of C says that

C = p3 − 3pq2x+ 2q3y(5.9)

By (5.5) and (5.9), we have C = q3w3(δ3 + 3δ2 + 2γ) (substitute qw(1 + δ) and
w3(1 + γ) for respectively p and y and simplify the expression).

First we prove 0 < C. It follows from (5.7) that |δ| < 1
2 , and thus we have

δ3 + 3δ2 = 2δ2 + δ2(1 + δ) > 0.(5.10)

If γ ≥ 0, it follows trivially from (5.10) that 0 < C. If γ < 0, then y < w3, i.e.
x3 − y2 = k > 0. Then we have

C = q3w3(δ3 + 3δ2 + 2γ)
(5.10)
> q3w32γ

(5.8)
> q3w32

−|k|
2w6

=
−q3|k|
w3

(5.6)
>

−|k|
w2

> −1 .

This proves that C > −1. We will now prove that C 6= 0 (and thus we have C > 0).
Assume that C = 0 (we prove that (x, y) is not a good example). By (5.9), we

have p3 = q(2q2y − 3pqx). This shows that any prime divisor of q divides p, but p
and q are co-prime, and thus q = 1. Equation (5.9) with C = 0 and q = 1 gives

0 = p3 − 3px+ 2y(5.11)

We will prove that a solution of (5.11) cannot yield a good example. The proof
splits into the three cases: the case when x = p2, the case when x > p2, and the
case when x < p2.

Assume x = p2. Then y = p3 gives a solution of (5.11), but x3 − y2 = 0. Thus,
(x, y) is not a good example.

Assume x > p2. Then we have x = p2 +m for some positive natural number m.
Thus

x3 = (p2 +m)3 = p6 + 3p4m+ 3p2m2 +m3

By (5.11) we have

y =
3px− p3

2
=

3p(p2 +m)− p3

2
= p3 +

3pm

2

and

y2 = p6 + 3p4m+
9p2m2

4
.
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Hence

x3 − y2 =
3p2m2

4
+m3 > p

and we conclude that (x, y) is not a good example as p ≈ x1/2. A similar argument
shows that (x, y) is not a good example if x < p2. This proves that C > 0.

Next we prove that C < 3qw1/3 + 1. This will complete the proof of (Claim 1)
since w1/3 = x1/6. We have

C = q3w3(δ3 + 3δ2 + 2γ) ≤ q3w3(|δ|3 + 3|δ|2 + 2|γ|)

(5.7,5.8)
< q3w3

([
1

qwQ

]3

+ 3

[
1

qwQ

]2

+ 2

[
|k|

2w6

])
=

1

Q3
+

3qw

Q2
+
q3|k|
w3

(5.6)
<

1

w
+ 3qw1/3 +

|k|
w2

<
1

w
+ 3qw1/3 +

1

w
.

Thus, we have C < 3qw1/3 + 1 as w = x1/2 > 72 in any good example where x 6= 2.

The Proof of (Claim 2). It follows straightforwardly from Definition 2.1 that F =
p4 − 6p2q2w2 + 8pq3y − 3q4w4. By (5.5), we have F = q4w4(δ4 + 4δ3 + 8γ + 8γδ).
We have

|F | ≤ q4w4(|δ|4 + 4|δ|3 + 8|γ| + 8|γ||δ|)

(5.7,5.8)
< q4w4

([
1

qwQ

]4

+ 4

[
1

qwQ

]3

+ 8

[
|k|

2w6

]
+ 8

[
|k|

2w6

] [
1

qwQ

])

=
1

Q4
+

4qw

Q3
+

4q4|k|
w2

+
4q3|k|
w3Q

<
1

Q4
+

4qw

Q3
+

4q4

w
+

4q3

w2Q

(5.6)
<

1

Q4
+ 4q + 4q +

4

wQ
.

Thus, |F | < 8q + 1 as w > 72 and Q > 4.

The Proof of (Claim 3). It follows straightforwardly from Definition 2.1 that

H = p6 − 15p4q2w2 + 40p3q3y − 45p2q4w4 + 24q5pw2y + 27q6w6 − 32q6y2 .

By (5.5), we have

H = q6w6(144δγ − 32γ2 + 40δ3γ + 120δ2γ + 6|δ|5 + |δ|6) .

In order to prove that that |H| < 72q4 + 1, we need

q6w6(32|γ|2 + 40|δ|3|γ|+ 120|δ|2|γ|+ 6|δ|5 + |δ|6) < 1(5.12)

and

144q6w6|δ||γ|
(5.7,5.8)
< 144q6w6

[
1

qwQ

] [
|k|

2w6

]
=

72q5|k|
wQ

(5.6)
< 72q4 .(5.13)

The proof of (5.12) is tedious, but straightforward. Use that |k| < w, that q <
w1/3 < Q, that w > 72 and that Q > 4.
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Now we have

|H| ≤ q6w6(144|δ||γ|+ 32|γ|2 + 40|δ|3|γ|+ 120|δ|2|γ|+ 6|δ|5 + |δ|6)

= 144q6w6|δ||γ| + q6w6(32|γ|2 + 40|δ|3|γ|+ 120|δ|2|γ|+ 6|δ|5 + |δ|6) .

Thus, we have |H| < 72q4 + 1 by (5.12) and (5.13).
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