
On General Sum Approximations of Irrational
Numbers

Ivan Georgiev1

Lars Kristiansen2,3

Frank Stephan4

1 Department of Mathematics and Physics, Faculty of Natural Sciences,
University ”Prof. d-r Asen Zlatarov”, Burgas 8010, Bulgaria?

ivandg@yahoo.com
2 Department of Mathematics, University of Oslo, Norway
3 Department of Informatics, University of Oslo, Norway

larsk@math.uio.no
4 Department of Mathematics and School of Computing,

National University of Singapore, Singapore 119076, Republic of Singapore??

fstephan@comp.nus.edu.sg

1 Introduction and Basic Definitions

There are numerous ways to represent real numbers. We may use, e.g., Cauchy
sequences, Dedekind cuts, numerical base-10 expansions, numerical base-2 ex-
pansions and continued fractions. If we work with full Turing computability,
all these representations yield the same class of real numbers. If we work with
some restricted notion of computability, e.g., polynomial time computability or
primitive recursive computability, they do not. This phenomenon has been in-
vestigated over the last seven decades by Specker [13], Mostowski [8], Lehman
[10], Ko [3, 4], Labhalla & Lombardi [9], Georgiev [1], Kristiansen [5, 6] and quite
a few more. Georgiev et al. [2] is an extended version of the current paper.

Irrational numbers can be represented by infinite sums. Sum approximations
from below and above were introduced in Kristiansen [5] and studied further
in Kristiansen [6]. Every irrational number α between 0 and 1 can be uniquely
written as an infinite sum of the form

α = 0 +
D1

bk1
+

D2

bk2
+

D3

bk3
+ . . .

where

– b ∈ N \ {0, 1} and Di ∈ {1, . . . , b− 1} (note that Di 6= 0 for all i)
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– ki ∈ N \ {0} and ki < ki+1.

Let Âαb (i) = Dib
−ki for i > 0 (and let Âαb (0) = 0). The rational number∑n

i=1 Â
α
b (i) is an approximation of α that lies below α, and we will say that

the function Âαb is the base-b sum approximation from below of α. The base-b
sum approximation from above of α is a symmetric function Ǎαb such that 1 −∑n
i=1 Ǎ

α
b (i) is an approximation of α that lies above α (and we have

∑∞
i=1 Â

α
b (i)+∑∞

i=1 Ǎ
α
b (i) = 1). Let S be any class of subrecursive functions which is closed

under primitive recursive operations. Furthermore, let Sb↑ denote the set of irra-
tional numbers that have a base-b sum approximation from below in S, and let
Sb↓ denote the set of irrational numbers that have a base-b sum approximation
from above in S. It is proved in [6] that Sb↑ and Sb↓ are incomparable classes,
that is, Sb↑ 6⊆ Sb↓ and Sb↓ 6⊆ Sb↑. Another interesting result proved in [6] is that
Sa↓ ⊆ Sb↓ iff Sa↑ ⊆ Sb↑ iff every prime factor of b is a prime factor of a.

In this paper we prove some results on general sum approximations. The general
sum approximation from below of α is the function Ĝα : N × N → Q defined
by Ĝα(b, n) = Âαb (n); let Ĝα(b, n) = 0 if b < 2. The general sum approximation
from above of α is the function Ǧα : N × N → Q defined by Ǧα(b, n) = Ǎαb (n);
let Ǧα(b, n) = 0 if b < 2. Let S be any class of subrecursive functions which
is closed under primitive recursive operations. Furthermore, let Sg↑ denote the
set of irrational numbers that have a general sum approximation from below
in S, and let Sg↓ denote the set of irrational numbers that have a general sum
approximation from above in S.

It was proved in [5] that Sg↑ ∩ Sg↓ contains exactly the irrational numbers that
have a continued fraction in the class S. In this paper we prove that Sg↑ 6= Sg↓.
Moreover, we prove that

Sg↓ 6=
∞⋂
b=2

Sb↓ and Sg↑ 6=
∞⋂
b=2

Sb↑.

Some might find it interesting (at least the authors do) that we manage to
complete all our proof without resorting to the standard computability-theoretic
machinery involving enumerations, universal functions, diagonalizations, and so
on. We prove our results by providing natural irrationals numbers (the numbers
are natural in the sense that they have neat and transparent definitions).

2 Preliminaries

We will restrict our attention to real numbers between 0 and 1.

A base is a natural number strictly greater than 1, and a base-b digit is a natural
number in the set {0, 1, . . . , b− 1}.
Let b be a base, and let D1, . . . , Dn be base-b digits. We will use (0.D1D2 . . . Dn)b
to denote the rational number

∑n
i=1 Dib

−i.
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Let D1, D2, . . . be an infinite sequence of base-b digits. We say that (0.D1D2 . . .)b
is the base-b expansion of the real number α if for all n ≥ 1 we have

(0.D1D2 . . . Dn)b ≤ α < (0.D1D2 . . . Dn)b + b−n.

Every real number α has a unique base-b expansion (note the strict inequality).

When α = (0.D1D2 . . . Dn)b for some n with Dn 6= 0, we say that α has a finite
base-b expansion of length n. Otherwise, we say that α has an infinite base-b
expansion, and this infinite base-b expansion is periodic iff α is rational. More
concretely, if α = cd−1 for non-zero relatively prime c, d ∈ N, then the base-b
expansion of α is of the form 0.D1 . . . Ds(Ds+1 . . . Dt)

ω which we use as shorthand
for the infinite sequence 0.D1 . . . DsDs+1 . . . DtDs+1 . . . DtDs+1 . . . Dt . . .. The number
s is the largest natural number such that ps divides d for some prime factor p of
b. The length of the period t−s is the multiplicative order of b modulo d1 where
d1 is the largest divisor of d relatively prime with b. It follows straightforwardly
that t < d. Of course, α has a finite base-b expansion iff d1 = 1, that is, iff every
prime factor of d is a prime factor of b.

We assume the reader is familiar with subrecursion theory and subrecursive
functions. An introduction to the subject can be found in [11] or [12].

A function φ is elementary in a function ψ, written φ ≤E ψ, if φ can be gen-
erated from the initial functions ψ, 2x, max, 0, S (successor), Ini (projections)
by composition and bounded primitive recursion. A function φ is elementary if
φ ≤E 0. A function φ is primitive recursive in a function ψ, written φ ≤PR ψ, if
φ can be generated from the initial functions by composition and (unbounded)
primitive recursion. A function φ is primitive recursive if φ ≤PR 0.

Subrecursive functions in general, and elementary functions in particular, are
formally functions over natural numbers (N). We assume some coding of inte-
gers (Z) and rational numbers (Q) into the natural numbers. We consider such
a coding to be trivial. Therefore we allow for subrecursive functions from ratio-
nal numbers into natural numbers, from pairs of rational numbers into rational
numbers, etc., with no further comment. Uniform systems for coding finite se-
quences of natural numbers are available inside the class of elementary functions.
Hence, for any reasonable coding, basic operations on rational numbers – like
e.g. addition, subtraction and multiplication – will obviously be elementary. It
is also obvious that there is an elementary function ψ(q, i, b) that yields the ith

digit in the base-b expansion of the rational number q.

A function f : N→ N is honest if it is monotonically increasing (f(x) ≤ f(x+1)),
dominates 2x (f(x) ≥ 2x) and has elementary graph (the relation f(x) = y is
elementary).

A class of functions S is subrecursive class if S is an efficiently enumerable class
of computable total functions. For any subrecursive class S there exists an honest
function f such that f 6∈ S (see Section 8 of [5] for more details).

More on elementary functions, primitive recursive functions and honest functions
can be found in Section 2 of [5] and in [7].



4 I. Georgiev, L. Kristiansen and F. Stephan

3 Irrational Numbers with Interesting Properties

Definition 1. Let Pi denote the ith prime (P0 = 2, P1 = 3, . . .). We define the
auxiliary function g by

g(0) = 1 and g(j + 1) = P
2(j+2)(g(j)+1)3

j .

For any honest function f and any n ∈ N, we define the rational number αfn and
the irrational number αf by

αfn =

n∑
i=0

P
−h(i)
i and αf = lim

n→∞
αfn

where h(i) = g(f(i) + i) (for any i ∈ N).

It is easy to see that both g and h are strictly increasing honest functions.
Moreover, we have

P 2(n+2)(h(n)+1)3

n < h(n+ 1) (1)

for any n ∈ N. Thus the function h possesses a growth property which f might
not possess. We will need this property. This explains why we introduce the
function g in the definition of αf .

When f is a fixed honest function, we abbreviate αfj and αf to αj and α,
respectively.

The next lemma is easily proven using the preliminaries on base-b expansions.

Lemma 2. For any j ∈ N and any base b, we have

(i) if Pi divides b for all i ≤ j, then αj has a finite base-b expansion of length
h(j)

(ii) if Pi does not divide b for some i ≤ j, then αj has an infinite (periodic)
base-b expansion.

Lemma 3. Let

– b be any base, and let j ∈ N be such that Pj > b
– (0.D1D2 . . .)b be the base-b expansion of αj
– (0.Ḋ1Ḋ2 . . .)b be the base-b expansion of αj+1

– M = M(j) = P
(j+1)h(j)
j and M ′ = M ′(j) = h(j + 1).

Then

(i) there are no more than M consecutive zeros in the base-b expansion of αj,
that is, for any k ∈ N \ {0} there exists i ∈ N such that

k ≤ i < k +M and Di 6= 0
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(ii) the first M ′ −M digits of the base-b expansions of αj and αj+1 coincide,
that is

i ≤M ′ −M ⇒ Di = Ḋi

and moreover, these digits also coincide with the corresponding digits of the
base-b expansion of α.

Proof. By Lemma 2 (ii), αj has an infinite periodic base-b expansion of the form
0.D1 . . . Ds(Ds+1 . . . Dt)

ω with s < t. Using the preliminaries on base-b expansions
we obtain

t− s ≤ t <

j∏
i=0

P
h(i)
i ≤ P

(j+1)h(j)
j = M . (2)

Thus (i) holds since every M consecutive digits of αj contain all the digits
Ds+1, . . . , Dt of at least one period.

We turn to the proof of (ii). We have

αj < αj+1 = αj + P
−h(j+1)
j+1 ≤ αj + b−M

′
(3)

since bM
′
< PM

′

j = P
h(j+1)
j < P

h(j+1)
j+1 . At least one digit in the period Ds+1 . . . Dt

is different from b− 1, and the length of the period is t− s. Thus (3) entails

Di = Ḋi for any i ≤M ′ − (t− s). (4)

It follows from (2) and (4) that the first M ′−M digits of the base-b expansions
of αj and αj+1 coincide. Moreover, since M ′(j) is strictly increasing in j,

αj < αj+k ≤ αj +
∑
i<k

b−M
′(j+i) ≤ αj + b−M

′(j)+1

for any k ≥ 1. Letting k → ∞ we obtain as above that the first M ′ −M digits
of αj and α coincide. ut

Theorem 4. Let f be any honest function, and let b be any base. The function

Âα
f

b is elementary.

Proof. Fix the least m such that Pm > b. We will use the functions M and M ′

from Lemma 3. We will argue that we can compute the rational number Âαb (n)
elementarily in n when n ≥ M(m). Note that M(m) is a fixed number (it does
not depend on n). Thus, we can compute Âαb (n) by a trivial algorithm when
n < M(m) (use a huge table).

Assume n ≥ M(m). We will now give an algorithm for computing Âαb (n) ele-
mentarily in n.

Step 1 of the algorithm: Compute (the unique) j such that

M(j) ≤ n < M(j + 1) (5)
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(end of Step 1).

Step 1 is a computation elementary in n since M has elementary graph. So is
Step 2 as M ′ also has elementary graph.

Step 2 of the algorithm: Check if the following relation holds:

n2 + 1 < M ′(j) − M(j). (6)

If it holds, carry out Step 3A, otherwise, carry out Step 3B (end of Step 2).

Step 3A of the algorithm: Compute αj . Then compute base-b digits D1, . . . , Dn2+1

such that

(0.D1D2 . . . Dn2+1)b ≤ αj < (0.D1D2 . . . Dn2+1)b + b−(n
2+1) .

Find k such that Dk is the nth digit different from 0 in the sequence D1, . . . , Dn2+1.
Give the output Dkb

−k (end of Step 3A).

Recall that αj =
∑j
i=0 P

−h(i)
i . We can compute αj elementarily in n since

h(0), h(1), . . . , h(j) < M(j) ≤ n and h is honest. Thus, we can also compute
the base-b digits D1, D2, . . . , Dn2+1 elementarily in n. In order to prove that our
algorithm is correct, we must verify that

(A) at least n of the digits D1, D2, . . . , Dn2+1 are different from 0, and
(B) D1, D2, . . . , Dn2+1 coincide with the first n2 + 1 digits of α.

By Lemma 3 (i) the sequence DkM(j)+1, DkM(j)+2, . . . , D(k+1)M(j) contains at least
one non-zero digit (for any k ∈ N). Thus, (A) holds since n ≥ M(j). Using
(6) and Lemma 3 (ii) we see that (B) also holds. This proves that the output
Dkb
−k = Âαb (n).

Step 3B of the algorithm: Compute αj+1 and M(j+1). Then proceed as in Step
3A with αj+1 in place of αj and nM(j + 1) in place of n2 (end of Step 3B).

Step 3B is only executed when M ′(j)−M(j) ≤ n2 + 1. Thus, we have M ′(j) =
h(j+ 1) ≤ n2 +n+ 1. This entails that we can compute h(j+ 1) – and also αj+1

and M(j + 1) – elementarily in n. It follows easily from (1) that

M(j + 1)2 + M(j + 1) + 1 < M ′(j + 1)

which together with (5) imply

nM(j + 1) + 1 < M ′(j + 1) − M(j + 1) .

As in Step 3A, there will be at least n non-zero digits among the first nM(j+1)
digits of αj+1. Moreover, the first nM(j + 1) digits of αj+1 coincide with the
corresponding digits of α. ut

Theorem 5. Let f be any honest function. We have f ≤PR Ĝα
f

(f is primitive

recursive in Ĝα
f

).
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Proof. Fix n ∈ N, and let b be the base b =
∏n
i=0 Pi. By Lemma (2) (i), αn has

a finite base-b expansion of length h(n). By the definition of α, we have

α = αn + P
−h(n+1)
n+1 + P

−h(n+2)
n+2 + . . . .

It follows that for any j > h(n)

Ĝα(b, j) ≤ P
−h(n+1)
n+1 + P

−h(n+2)
n+2 + . . . ,

which easily implies Ĝα(b, j) ≤ P
−h(n+1)+1
n+1 (use that h is strictly increasing).

Hence we also have (Ĝα(b, j))−1 ≥ Ph(n+1)−1
n+1 > h(n+ 1)− 1 for any j > h(n).

The considerations above show that we can compute h(n + 1) by the following
algorithm:

– assume that h(n) is computed;
– compute b =

∏n
i=0 Pi;

– search for y such that y < (Ĝα(b, h(n) + 1))−1 + 1 and h(n+ 1) = y;
– give the output y.

This algorithm is primitive recursive in Ĝα: The computation of b is an elemen-
tary computation. The relation h(x) = y is elementary, and thus the search for
y is elementary in h(n) and Ĝα. This proves that h is primitive recursive in Ĝα.
But then f will also be primitive recursive in Ĝα as the graph of f is elementary
and f(n) ≤ h(n) (for any n ∈ N). This proves that f ≤PR Ĝα. ut

Theorem 6. Let f be any honest function. There exists an elementary function
Ť : Q→ Q such that (i) Ť (q) = 0 if q < αf and (ii) q > Ť (q) > αf if q > αf .

Proof. In addition to the sequence αj we need the sequence βj given by

β0 = P
−h(0)+1
0 = 2−h(0)+1 and βj+1 = αj + P

−h(j+1)+1
j+1 .

Observe that we have α < βj for all j ∈ N.

Now we will explain an algorithm that computes a function Ť with the properties
(i) and (ii).

Step 1 of the algorithm: The input is the rational number q. We can w.l.o.g.
assume that 0 < q < 1. Pick any m′, n ∈ N such that q = m′n−1 and n ≥ h(0).
Find m ∈ N such that q = m(P0P1 . . . Pn)−n, and compute the base b such that
b =

∏n
i=0 Pi (end of Step 1).

The rational number q has a finite base-b expansion of length s where s ≤ n.
Moreover, the rational numbers α0, α1, . . . , αn and β0, β1, . . . , βn also have finite
base-b expansions.

Step 2 of the algorithm: Compute (the unique) natural number j < n such that

h(j) ≤ n < h(j + 1) .
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Furthermore, compute α0, α1, . . . , αj and β0, β1, . . . , βj (end of Step 2 ).

All the numbers h(0), h(1), . . . h(j) are less than or equal to n, and h has ele-
mentary graph. This entails that Step 2 is elementary in n (and also in q).

Step 3 of the algorithm: If q ≤ αk for some k ≤ j, give the output 0 and
terminate. If βk < q for some k ≤ j, give the output βk and terminate (end of
Step 3 ).

Step 3 is obviously elementary in q and gives the correct output.

If the algorithm has not yet terminated, we have αj < q ≤ βj . Now

q ≤ βj+1 ⇔ q − αj ≤ P
−h(j+1)+1
j+1 ⇔ P

h(j+1)
j+1 ≤ (q − αj)−1Pj+1.

We have determined αj , and h is an honest function. This makes it possible
to check elementarily if q ≤ βj+1: Search for y < (q − αj)

−1Pj+1 such that
h(j + 1) = y. If no such y exists, we have q > βj+1. If such an y exists, we have
q ≤ βj+1 iff P yj+1 ≤ (q − αj)−1Pj+1.

Step 4 of the algorithm: Search for y < (q − αj)−1Pj+1 such that y = h(j + 1).
If the search is successful and P yj+1 ≤ (q − αj)−1Pj+1, go to Step 5, otherwise
go to Step 6B (end of Step 4 ).

Clearly, Step 4 is elementary in q. If q ≤ βj+1, the next step is Step 5 (and we
have computed y = h(j + 1)). If βj+1 < q, the next step is Step 6B.

Step 5 of the algorithm: Compute αj+1 and βj+1. If q ≤ αj+1, give the output
0 and terminate. If αj+1 < q, search for z < (q − αj+1)−1Pj+2 such that z =
h(j+2). If the search is successful and P zj+2 ≤ (q−αj+1)−1Pj+2, give the output
0 and terminate, otherwise, go to Step 6A (end of Step 5 ).

Step 5 is elementary in q since we have computed h(j + 1) in Step 4. If the
algorithm terminates because q ≤ αj+1, we obviously have q < α and the output
is correct. If q > αj+1, the algorithm will not proceed to Step 6A iff αj+1 < q ≤
βj+2. So assume that αj+1 < q ≤ βj+2. It is not hard to show that the first
h(j + 1) digits of αj+1, α, βj+2 coincide, and moreover, h(j + 1) > n ≥ s (recall
that s is the length of the base-b expansion of q). Thus, we have q < α, and
the algorithm gives the correct output, namely 0. If the algorithm proceeds with
Step 6A, we have βj+2 < q.

Step 6A of the algorithm: Compute the least t such that bt > (q − αj+1)−1.
Search for u < (q − b−t − αj+1)−1Pj+2 such that u = h(j + 2). If the search
is successful and Puj+2 < (q − b−t − αj+1)−1Pj+2, give the output βj+2 and
terminate, otherwise, give the output q − b−t and terminate (end of Step 6A).

It is easy to see that Step 6A is elementary in q: we can compute t elementarily
in q, b and αj+1 (and we have already computed b and αj+1 elementarily in q).
When the execution of the step starts, we have βj+2 < q (thus, βj+2 will be a
correct output, but we do not yet know if we will be able to compute βj+2). If
the search for u is successful, we have u = h(j + 2). Then, we can compute βj+2

elementarily in u, and give βj+2 as output. We also know that the search for u
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is successful iff q − b−t < βj+2. Thus, if the search for u is not successful, we
have α < βj+2 ≤ q − b−t < q, and we can give the correct output q − b−t.
Step 6B of the algorithm: Exactly the same as 6A, but replace j + 1 and j + 2
by j and j + 1, respectively (end of Step 6B).

The argument for correctness of Step 6B is the same as for Step 6A, just replace
j + 1 and j + 2 by j and j + 1, respectively, and note that we have βj+1 < q
when the execution of the step starts. ut

Definition 7. A function D : Q→ {0, 1} is a Dedekind cut of the real number
β when D(q) = 0 iff q < β.

Corollary 8. Let f be any honest function. The Dedekind cut of the real number
αf is elementary.

Proof. By Theorem 6 there is an elementary function Ť such that Ť (q) = 0 iff
q < αf . Let D(q) = 0 if Ť (q) = 0, and let D(q) = 1 if Ť (q) 6= 0. The function D
is elementary since Ť is elementary. Moreover, D is the Dedekind cut of αf . ut

4 Main Results

Theorem 9. For any subrecursive class S that is closed under primitive recur-
sive operations, we have

(i) Sg↓ ⊂
⋂
b

Sb↓ and (ii) Sg↑ ⊂
⋂
b

Sb↑.

Proof. The inclusion Sg↑ ⊆
⋂
b Sb↑ is trivial. Pick an honest function f such that

f 6∈ S. By Theorem 4, we have αf ∈
⋂
b Sb↑. By Theorem 5, we have αf 6∈ Sg↑.

This proves that Sg↑ ⊂
⋂
b Sb↑. The proof of (i) is symmetric. ut

Definition 10. A function T̂ : Q → Q is a trace function from below for the
irrational number α when we have q < T̂ (q) < α for any q < α. A function
Ť : Q→ Q is a trace function from above for the irrational number α when we
have α < Ť (q) < q for any q > α. A function T : Q→ Q is a trace function for
the irrational number α when we have |α− q| > |α− T (q)| for any q.

For any subrecursive class S, let SD denote the set of irrational numbers that
have a Dedekind cut in S; let ST↑ denote the set of irrational numbers that have
a trace function from below in S; let ST↓ denote the set of irrational numbers that
have a trace function from above in S; let ST denote the set of irrational numbers
that have a trace function in S; let S[ ] denote the set of irrational numbers that
have a continued fraction in S.

It is proved in [5] that we have Sg↓ ∩ Sg↑ = ST = S[ ] for any S closed under
primitive recursive operations. It is conjectured in [5] that Sg↓ 6= Sg↑. Theorem
12 shows that this conjecture holds. The following theorem will be used as a
lemma in the proof of Theorem 12. Its proof can be found in Georgiev et al. [2].
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Theorem 11. For any subrecursive class S that is closed under primitive re-
cursive operations, we have

(i) ST↑ ∩ SD = Sg↑ and (ii) ST↓ ∩ SD = Sg↓ .

Theorem 12. For any subrecursive class S that is closed under primitive re-
cursive operations, there exist irrational numbers α and β such that

(i) α ∈ Sg↓ \ Sg↑ and (ii) β ∈ Sg↑ \ Sg↓ .

Proof. Pick an honest function f such that f 6∈ S. We have αf ∈ ST↓ by Theorem
6, and we have αf ∈ SD by Corollary 8. By Theorem 11, we have αf ∈ Sg↓. By
Theorem 5, we have αf 6∈ Sg↑. This proves (i). The proof of (ii) is symmetric. ut
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