Ezrin-anchored PKA phosphorylates serine 369 and 373 on connexin 43 to enhance gap junction assembly, communication, and cell fusion

Aleksandra R. Dukic¹,², Pascale Gerbaud³, Jean Guibourdenche⁴, Bernd Thiede⁵, Kjetil Taskén¹,²,* & Guillaume Pidoux³*

¹Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo N-0318, Norway; ²K.G. Jebsen Centre for Cancer Immunotherapy, University of Oslo, Oslo N-0317, Norway; ³UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France; ⁴Department of Biosciences, University of Oslo, Oslo N-0317, Norway and ⁵Department of Biological Endocrinology, CHU Cochin, AP-HP, Paris, France; Faculté de Pharmacie, Université Paris Descartes, Paris, France.

Running title: PKA phosphorylates Cx43 on serine 369 and 373

Keywords: Cell signaling, cAMP, cell fusion, ezrin, Cx43

*Correspondence to: kjetil.tasken@ncmm.uio.no and guillaume.pidoux@inserm.fr
Abstract

A limited number of human cells can fuse to form multinucleated syncytia. In the differentiation of human placenta, mononuclear cytotrophoblasts fuse to form an endocrinologically active, non-proliferative, multinucleated syncytium. This syncytium covers the placenta and manages the exchange of nutrients and gases between maternal and fetal circulation. We recently reported protein kinase A (PKA) to be part of a macromolecular signaling complex with ezrin and gap junction protein connexin 43 (Cx43) that provides cAMP-mediated control of gap junction communication. Here, we examined the associated phosphorylation events. Inhibition of PKA activity resulted in decreased Cx43 phosphorylation, which was associated with reduced trophoblast fusion and differentiation. In vitro studies using peptide arrays, together with mass spectrometry, pointed to serine 369 and 373 of Cx43 as the major PKA phosphorylation sites that increases gap junction assembly at the plasmalemma. A combination of knockdown and reconstitution experiments and gap-FLIP assays with mutant Cx43 containing single or double phosphoserine-mimicking amino acid substitutions in putative PKA phosphorylation sites demonstrated that phosphorylation of S369 and S373 mediated gap junction communication, trophoblast differentiation and cell fusion.
Introduction

Cell fusion is a crucial process in fertilization, placentation, skeletal muscle formation, bone homeostasis, and metastasis [1-5]. Cell fusion and syncytial formation involve mixing of cell content and plasma membrane components between two or more cells. In humans, placentation requires cell fusion of cytotrophoblasts (CTs) to form multinucleated syncytiotrophoblasts (STs) on chorionic villi that extend into the maternal blood circulation. These syncytia form an interface between the mother and the fetus that allows exchange of gases and nutrients necessary for fetal growth and development [6]. Furthermore, STs synthesize and secrete pregnancy-specific peptide hormones such as human chorionic gonadotropin (hCG) and human placental lactogen (hPL) [7, 8]. Similarly as observed in vivo, isolated mononucleated CTs aggregate and fuse in vitro to form non-proliferative, multinucleated STs that produce pregnancy-specific hormones [9]. Numerous proteins in tight junctions, adherens junctions, and gap junctions have been reported to control or be associated with the first steps of trophoblast fusion processes [10-12]. However, only syncytins present defined fusogenic properties in trophoblasts and in other cell fusion models [13-15].

The cAMP signaling pathway plays a critical role in induction of trophoblast fusion (reviewed in [16]). hCG signals in an autocrine or paracrine fashion via the G protein-coupled luteinizing hormone (LH) receptor (LH/CGR). This stimulates cAMP synthesis and activates of protein kinase A (PKA) leading to phosphorylation or increased expression of fusogenic proteins (e.g. syncytins, cadherin, and connexin) [11, 17-19]. These cellular adaptations are critical to trigger CT fusion [16, 20].

A-kinase anchoring proteins (AKAPs) are a family of structurally diverse proteins with the ability to scaffold PKA [21, 22]. All AKAPs contain an A-kinase binding domain (AKB) that anchors PKA and a unique targeting domain to localize the PKA-AKAP complex to defined subcellular structures (e.g. membranes or organelles). Together these features of AKAPs confer the spatial regulation of PKA signaling events by controlling the phosphorylation of specific substrates [23-25]. Furthermore, AKAPs establish intracellular signalosome complexes by scaffolding additional signaling molecules (e.g. kinases, protein phosphatases, or cAMP phosphodiesterases), which add to the temporal regulation of PKA signaling [26, 27]. Finally, AKAPs bind to or co-localize with specific
PKA substrates to allow rapid and efficient phosphorylation [25]. Several AKAPs have been described in human placenta and we recently showed that two or more AKAPs are involved in the regulation of trophoblast fusion [20, 28-30]. Specifically, ezrin establishes a signaling complex with PKA and connexin 43 (Cx43) that mediates gap junction communication and thereby triggers trophoblast fusion [29, 31]. Ezrin belongs to the ERM (ezrin-radixin-moesin) family of proteins. These proteins are known to scaffold and organize anchored complexes with signaling effector molecules. The ezrin N-terminal domain contacts transmembrane proteins whereas the central region binds PKA through an AKB domain [32-35]. Recently, we provided evidence that the region encompassing amino acids 505 to 521 of ezrin located in the C-terminal domain, binds to the Cx43 gap junction protein [29] and that anchored PKA has a gate keeper function to regulate gap junction communication.

In vertebrates, communication between adjacent cells occurs through gap junctions, which are composed of connexin (Cx) hexamers forming gap junction channels in the plasma membrane. These intercellular channels allow diffusion of ions and small molecules (< 1kDa) such as cAMP, cGMP, inositol trisphosphate (IP₃), and Ca²⁺ [36]. Gap junctional intercellular communication (GJIC) facilitates the coordination of cell proliferation, cell differentiation, embryonic development, cell fusion, and the synchronized contraction of heart and smooth muscle [12, 37-40]. Cxs are a family of structurally related membrane proteins that in humans are encoded by 21 different genes [37, 38, 41]. Abnormal expression or sub-cellular distribution of gap junction proteins has been associated with several diseases such as cancer, deafness, neuropathy, and heart disease [38]. Cx43 is by far the most abundantly and widely expressed gap junction protein and it is noteworthy that Cx43 is the key gap junction protein expressed in fusion-competent human CTs [12, 18]. Cx43 allows the transfer from cell to cell of fusogenic signals that initiate cellular synchronization and organization of the fusogenic macrocomplex machinery in the right place and at the right time to trigger cell-cell fusion (for review [16]). While the N-terminal region of Cx43 represents two-thirds of the protein and docks with Cx in the adjacent membrane, which serves to form the pore, the C-terminal cytoplasmic region is more disordered and confers regulation of pore opening and conductivity [42]. Several kinases (e.g. PKA, AKT, PKC, CK1, MAPK and Src) phosphorylate Cx43 in the C-terminal domain thereby affecting gap junction trafficking, assembly, recycling or communication [43]. Furthermore, we identified a
region in the C-terminal domain of Cx43 encompassing amino acids R362 to D379 that binds ezrin and directs a pool of PKA to Cx43 [29, 31]. Interestingly, this sequence overlaps with a region that has been described to encompass several of the phosphorylation sites that regulate Cx43 function [44]. However, our previous study did not allow us to identify which of the putative single or multiple residues in the region 364 to 373 of Cx43 phosphorylated by PKA that trigger trophoblast fusion [29, 31]. Furthermore, the residues in Cx43 that are phosphorylated by PKA and the functional consequences of PKA phosphorylation have not been fully elucidated [45]. Therefore we aimed to identify the specific PKA phosphorylation sites in Cx43 that control gap junction assembly and communication and, thereby, cell fusion. We report here that the anchoring of PKA through the AKAP ezrin is necessary to provide spatiotemporal control of phosphorylation of S369 and S373 in Cx43. These phosphorylation events increase gap junction assembly and communication and thus human trophoblast fusion.
Experimental

Primary cultures of human placental trophoblasts

Villous cytotrophoblasts were isolated from term placentas and cultured as previously described [19]. Placentas were obtained from women aged between 28 and 44 years with uncomplicated pregnancies undergoing normal Cesarean sections at Cochin Port-Royal maternity unit (Paris, France) with written informed consent under Ethics Committee Approval CCPRB Paris Cochin n. 18-05.

Cell culture

The rat liver epithelial cell line IAR20 and HEK293 were cultured at 37°C and 5% CO₂ conditions in DMEM high glucose GlutaMAX medium (Life Technologies, Illkirch, France) supplemented with 10% fetal bovine serum (Life Technologies, Illkirch, France) and 1% PenStrep (Life Technologies, Illkirch, France).

Peptide synthesis and loading

Peptides used in trophoblast fusion, hormones and immunoblot assays were synthesized as previously described by [46]. Titrations of the optimal peptide concentration used (10 μM for Arg-tagged PKI or scrambled PKI control) and loading conditions (60 min for immunoblot assays and 48 h for fusion and hormone assays) for effective intracellular delivery (>95% w/o toxicity) was described previously [29].

Immunolocalization studies

Immunocytofluorescence was performed as previously described [10]. Fixed cells were first incubated with primary monoclonal antibody (2.5 μg) to desmoplakin (Abcam, Paris, France), Cx43 (Sigma-Aldrich, Courtaboeuf, France) and next with the appropriate fluorochrome-conjugated secondary antibody (Alexa Fluor 488 (1:500, Life Technologies, Illkirch, France)). Immunofluorescence microscopy pictures were taken using a 3D-deconvolution microscope (Leica, France). For each acquisition and wavelength z-stacks images were assembled and processed with ImageJ. Micrographs show a representative selected z from stacks.
Trophoblast fusion assay

Cell fusion was quantified by trophoblast fusion assays as previously described [10, 14]. Briefly, syncytium formation was followed by monitoring the cellular distribution of desmoplakin and nuclei after immunostaining. Desmoplakin staining at the boundaries of aggregated mononuclear cells gradually disappears during syncytium formation. Cell nuclei were counterstained with DAPI-containing mounting medium. From a random point in the middle of the coverslips, 1000 nuclei contained in desmoplakin-delimited mononuclear cytotrophoblasts and syncytia were counted. Three coverslips were examined for each experimental condition. Results are expressed as the number of nuclei per syncytium. The fusion index was determined as \(\frac{N-S}{T} \), where \(N \) is the number of nuclei in the syncytia, \(S \) is the number of syncytia, and \(T \) is the total number of nuclei counted.

Hormone assays

hCG and hPL concentrations were determined as previously described [10].

Protein sample preparation and immunoblot analysis

Cell extracts were prepared as previously described [46]. Protein samples were resolved by SDS-PAGE and immunoblotted with antibodies to PKA R\(\alpha \) (0.25 \(\mu \)g/ml), PKA R\(\alpha \) (0.25 \(\mu \)g/ml, BD Biosciences, Rungis, France); PKA C\(\alpha \) (1:1000), phospho-PKA substrate (RRXpS, 1:1000, Cell signaling, Saint Quentin, France); ezrin (0.5 \(\mu \)g/ml), unphosphorylated Cx43 (0.5 \(\mu \)g/ml, Life Technologies, Illkirch, France); actin (0.8 \(\mu \)g/ml), Cx43 (0.25 \(\mu \)g/ml), phospho-Connexin 43 (Ser373) (1:1000, Invitrogen), AKAP18 (1 \(\mu \)g/ml, Sigma-Aldrich, Courtabeuf, France), GFP-tag (1 \(\mu \)g/ml, Clontech, Saint Quentin, France), turboGFP (1:1000, OriGene). After incubation with appropriate DyLight Fluor-conjugated secondary antibody (680 or 800 conjugate, Life Technologies, Illkirch, France), blots were revealed by using Odyssey infrared fluorescent system (Li-Cor, Bad Homburg, Germany).

Duolink™ Proximity Ligation Assay
Interactions between ezrin, Cx43, PKA RIα, PKA RIα, PKA Ca, desmoplakin, and GFP-tag in trophoblasts were analysed using the Duolink™ proximity ligation assay according to manufacturer’s instructions. Pictures were taken using a 3D deconvolution microscope (Leica, France). For each acquisition and wavelength z-stacks were generated and processed with ImageJ. Micrographs show the average intensity of z projection of z-stacks. Quantification of protein proximity was performed by using ImageJ and by normalizing the intensity of fluorescence spots generated with the number of nuclei.

Immunoprecipitation

Antibodies (4 μg each) described above (anti-RIα, anti-RIIα, anti-Cα, anti-ezrin, anti-Cx43; anti-GFP-tag (Clontech, Saint Quentin, France) and nonspecific rabbit or mouse IgG (Jackson ImmunoResearch, Suffolk, UK)) were covalently coupled to protein G-linked Dynabeads (Life Technologies, Illkirch, France) using BS³ (5 mM, Thermo Scientific, Illkirch, France) using BS³ (5 mM, Thermo Scientific, Illkirch, France). Cell lysates (200 μg proteins) were added to the bead-linked antibodies. Lysates represent 2.5% of output controls. Immunocomplexes were analyzed by LC MS/MS or immunoblotted with indicated antibody.

PKA activity assay

PKA phosphotransferase activity was assayed as previously described [47] with some modifications. Briefly, immunoprecipitations were performed and precipitates resuspended and incubated in a kinase reaction mix containing 10 mM ATP, 50 mM Tris-HCL pH 7.4, 1M MgAc2, [γ-32P] ATP and Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) with cAMP (5 μM) ± PKI (10 μM) for 9 min at 30 °C. The reaction mixture was spotted on phosphocellulose paper, washed 4 times in 75 mM phosphoric acid, once in 95% ethanol, filters were next dried and subjected to liquid scintillation counting.

Peptide array synthesis and phosphorylation

Peptide arrays were synthesized on nitrocellulose membranes using a MultiPep automated peptide synthesizer (Intavis Bioanalytical Instruments AG, Koeln, Germany) as described [48]. Briefly,
peptides encompassing amino acids V359 to R376 of the Cx43 C-terminal region in which single or multiple combination of serine substitution with alanine were synthetized and spotted on filters.

For *in vitro* PKA phosphorylation of peptide arrays, membranes were rinsed in 95% ethanol and washed in Tris-buffered saline with 0.1% triton X-100, then incubated with rotation for 30 min at 30 °C in a solution with 50 mM MOPS pH 6.8, 50 mM NaCl, 2 mM MgCl2, 1 mM DTT and 50 μM ATP (including 100 μCi/mL ([γ-32P]ATP) with 0.3 mg/mL PKA. The membranes were subsequently washed four times in a buffer containing 1% sodium dodecyl sulfate (SDS), 8 M urea, 0.5% β-mercaptoethanol, four times in 50% ethanol with 10% acetic acid and two times in 95% ethanol before they were subjected to autoradiography. Films were next analyzed and quantified using ImageJ and Protein Array Analyzer plugin [49].

Protein identification by LC MS/MS

Protein identification in immunoprecipitates was performed by NanoLC-ESI-MS after tryptic digestion as described [50].

SiRNA, mammalian expression vectors and transfection

Transfections (siRNA and plasmids) were performed using Lipofectamine 2000 CD reagent (Life Technologies, Illkirch, France). SiRNA transfections described previously [10] were performed with Cx43 siRNA and control [29].

Mammalian vectors (2 μg) were incubated or co-incubated with siRNA with the cells for 48 h at 37°C. Cx43 clones were as described [29]. Cx43 siRNA insensitive clones (labeled by *) were generated by introducing three nucleotide switches, T1294C, T1297G and A1300G by using P1(+), 5’-ctaaaaactagccgcccgggcatgaattacagccact-3’; P1(-), 5’-agtggctgtaattcatgccccgcggcttagttttttag-3’. GFP-Cx43* R370E vector was generated with primers P2(+), 5’-gcagagccagcgtgaagccagcagcagacct-3’; P2(-), 5’-aggtctgctgctggcttcactgctggctctgc-3’. GFP-Cx43* R370E S364A, GFP-Cx43* R370E S365A, GFP-Cx43* R370E S368A, GFP-Cx43* R370E S369A, GFP-Cx43* R370E S372A, GFP-Cx43* R370E S373A, R370E S373A, GFP-Cx43* R370E S364D, GFP-Cx43* R370E S365D, GFP-Cx43* R370E S368D, GFP-Cx43* R370E S369D, GFP-Cx43* R370E S372D and GFP-Cx43* R370E S373D were generated.
by using respectively P3(+), 5’-gaccagcgacctgcaagcagagcc-3’; P3(-), 5’-gctgctgtgctg}
hours prior to observation. The images were acquired on a spinning disk microscope. The Spinning disk microscope is based on a CSU-X1 Yokogawa head mounted on an inverted Ti-E Nikon microscope equipped with a motorized XY Stage. Images were acquired through a 60x 1.4NA Plan-Apo objective with a QuantEM EMCCD camera (Photometrics, USA). Optical sectioning was achieved using a piezo stage (Nano-z series, Mad City Lab, USA). A Roper/Errol laser bench was equipped with 405, 491 and 561 nm laser diodes, delivering 50 mW each, coupled to the spinning disk head through a single fiber. Multi-dimensional acquisitions were performed in streaming mode using Metamorph 7.7.6 software (Molecular Devices, France). Cells were incubated with 5 μM calcein Red-Orange AM (Thermo Scientific, France) for 5 min at 37°C. Subsequently, cells were placed inside the temperature controlled chamber (temperature and CO₂) of the microscope and imaged for FLIP analysis with a Fluorescence Recovery After Photobleaching (FRAP) head (Errol and Roper, France). A single region (ROI) of a selected target cell (C1) was photobleached on a 9.8 μm² area for 300 ms each 10 s with 60 repetitions. Fluorescence loss images were acquired every time points with an attenuated laser beam (0.9 mW from the pupil of the objective). Quantification of the fluorescence loss in C1 and a neighbouring connected cell (C2) was performed by ImageJ software. The intensity of fluorescence was normalized by subtracting noise background, non-specific bleaching and plotted on the graph using GraphPad Prism 6 (La Jolla, USA). Kymograms show the FLIP time course. The mobile fraction was determined as \(\text{span/} F_i \times 100 \), with span as \(F_i - F_\infty \), where \(F_\infty \) is the fluorescence in C2 after fluorescence loss at infinite time; \(F_i \) is the fluorescence in C2 before bleaching. The recovery curves were fit by non-linear regression and the plateau followed by one-phase decay equation using GraphPad Prism 6 (La Jolla, USA). Mobile fractions were obtained by fitting curves with GraphPad Prism 6 (La Jolla, USA).

Statistics

Quantitative data are presented as mean ± SEM. Statistical differences between three or more groups were evaluated using ANOVA test with either Tukey post hoc analysis when comparing every mean with every other mean or Dunnett’s post hoc analysis to compare every mean with a control mean.
Student’s unpaired t-test were performed to compare means of two unmatched groups. Means difference were considered significant when $p < 0.05$.

Results

PKA phosphorylates Cx43 and promotes cell fusion

To assess the effect of PKA on trophoblast fusion, primary cultures of CT cells from human placenta were cultured for 48 h in the presence of a cell-penetrating Arg-tagged version of the protein kinase A inhibitor (PKI) peptide or a corresponding scrambled control (scrambled PKI). Subsequently, cell fusion assays were performed by assaying the nuclear distribution in syncytia *versus* mononuclear cells. This was achieved by immunostaining cellular boundaries using a specific marker of the human trophoblast plasma membrane (desmoplakin) together with a nuclear counterstain (DAPI). Mononuclear CTs spontaneously aggregate at 24 h of culture and fuse to form multinucleated syncytia between 48 and 72 h. Trophoblasts incubated with scrambled PKI control underwent normal cell fusion as evident from discontinuous desmoplakin immunostaining, quantified mononuclear aggregated cells, and fusion indices (*i.e.* the percentage of trophoblast nuclei present in multinucleated cells) (Fig. 1A). In contrast, trophoblasts cultured with PKI aggregated but displayed impaired cell fusion. This indicates that spontaneous fusion is PKA-driven. The cell fusion process is accompanied by an increase in secretion of pregnancy hormones (*i.e.* hCG and hPL). Treatment with PKI decreased significantly both hCG and hPL secretion compared to scrambled PKI (Fig. 1A). Together these data suggest that PKA activity plays a role in the regulation of trophoblast fusion.

We next characterized phosphorylation levels of Cx43 in trophoblasts cultured with scrambled PKI or PKI under basal conditions and in the presence of 8-CPT-cAMP to activate PKA. The use of a cell-penetrating form of PKI in human trophoblasts in the absence of a cAMP stimulus displayed similar levels of phosphorylation of Cx43 compared as cells cultured with scrambled PKI (Fig. 1B). As control, we examined the phosphorylation levels of other substrates of PKA as identified by an anti-phospho PKA substrate antibody that recognizes the sequence RRXpS. Here, we noticed a low level of phosphorylation of some PKA-substrates under basal conditions that was reduced in PKI treated cells (Fig. 1B). This is in agreement with earlier studies indicating low tonic levels of cAMP in
primary human trophoblasts sufficient to drive phosphorylation of some PKA substrates [19, 20, 51].

Interestingly, in trophoblasts cultured with 8-CPT-cAMP, PKI reduced the levels of phosphorylated Cx43 (P1 and P2 forms) over unphosphorylated Cx43 by approximately 50% (p < 0.001) compared with cells treated with scrambled PKI (Fig. 1B). The total levels of Cx43 and ezrin remained unchanged in cultures treated with either PKI or the corresponding scrambled control. Again, PKI decreased phosphorylation levels also of PKA-substrates in cells cultured with 8-CPT-cAMP (Fig. 1B). Cx43 phosphorylation by kinases is speculated to control gap junction assembly, communication, and recycling [42].

We next investigated the physical vicinity between Cx43 and a cell-membrane marker (desmoplakin) as well as Cx43 and ezrin by proximity ligation assays (PLA) in unstimulated or 8-CPT-cAMP stimulated trophoblasts that were pre-incubated for 24 h with PKI or scrambled PKI. We established by co-immunostaining that Cx43 and desmoplakin co-distribute to the plasmalemma subset of human trophoblasts (Supplementary Fig. S1A). As evident from micrographs and histograms, PKI significantly reduced the proximity of Cx43 to the cell membrane (desmoplakin) in both stimulated and unstimulated cells and compared with the scrambled control (p < 0.001 for both; Fig. 1C and Supplementary Fig. S1B). Furthermore, we noticed that stimulation with 8-CPT-cAMP slightly increased the Cx43 protein expression at the cell membrane in both scrambled PKI and PKI treated cells (p < 0.05; Fig. 1C). These observations indicate that PKA activity is necessary to promote Cx43 assembly at the cell membrane. Conversely, we observed no significant changes in PLA between Cx43 and ezrin in stimulated or unstimulated cells cultured with or without PKI (Supplementary Fig. S1B).

Ezrin brings PKA in vicinity of Cx43

A complex of the gap junction protein Cx43 and the AKAP ezrin has been shown to play an important role in trophoblast fusion [29]. For this reason, we investigated the possibility of a physical interaction between the PKA regulatory and catalytic subunits and the Cx43-ezrin complex. Immunoprecipitation of ezrin pulled down Cx43, PKA RIα, PKA RIIα and PKA Cα (Fig. 2A). Conversely, immunoprecipitation of Cx43 pulled down ezrin and PKA RIα, RIIα and Cα subunits (Fig. 2A).
Furthermore, immunoprecipitation of PKA Cα or regulatory subunits co-precipitated Cx43 and ezrin. Interestingly, AKAP18, a known AKAP for PKA type II, was not pulled down following ezrin, Cx43 or PKA RIIα immunoprecipitations, while PKA RIIα and Cα subunit immunoprecipitations did. These results indicate that in human trophoblasts the PKA holoenzyme is part of a macromolecular complex encompassing ezrin and Cx43 complex.

To examine the colocalization of ezrin, PKA regulatory and catalytic subunits, and Cx43 in trophoblasts, we performed PLA in permeabilized cells with pairs of specific antibodies (Fig. 2B). This demonstrated that PKA Cα and Rα subunits were in close proximity to ezrin and Cx43, as evident from the appearance of white dots (Fig. 2B and normalized in Supplementary Fig. S1C). PLA was negative when either antibody in these pairs was replaced with nonspecific mouse and rabbit IgG primary antibodies.

In line with the observations on proximity by PLA, ezrin, Cx43 or PKA Cα were immunoprecipitated from human trophoblasts and assayed for associated PKA activity with or without PKI (Fig. 1C). As evident from the histograms, PKA activity was associated with ezrin and Cx43 immunoprecipitates (p < 0.01 and p < 0.05, respectively, and compared to IgG control). Furthermore, PKI significantly reduced the PKA activity in ezrin and Cx43 immunocomplexes (p < 0.01 and p < 0.05 respectively). This supports the notion that PKA anchored to the signaling complex regulates gap junction communication. As expected, strong PKA activity was observed in PKA Cα subunit immunoprecipitation (p < 0.05 compared with IgG control) that was abolished in presence of PKI (p < 0.05 compared with control), whereas no activity was co-precipitated with control IgG.

Delineation of PKA phosphorylation residues on Cx43

Phosphorylation of Cx43 in the C-terminal domain regulates gap junction assembly, communication, and recycling. However, PKA-dependent phosphorylation sites on Cx43 and associated functions remain elusive. To address this gap we prepared peptide arrays encompassing amino acids V359 to R376 of the Cx43 C-terminal (Cx43-CT) region, where single or multiple combination of serine substitutions with alanine were included, by synthetizing peptides on solid phase. This region displays 6 serines (S364, S365, S368, S369, S372 and S373) that could putatively be phosphorylated by PKA.
The resulting filters were subjected to phosphorylation with recombinant PKA. The level of PKA phosphorylation for each peptide was next quantified (Fig. 3A-C and Supplementary Fig. S2A-B). Filter analysis revealed that peptides covering the Cx43-CT region were phosphorylated by PKA to varying extents depending on the substitutions incorporated (Fig. 3A-B and Supplementary Fig. S2B). A peptide from the wild type Cx43-CT region (WT) showed a high level of phosphorylation by PKA (blue bar, p < 0.001), as did positive controls (peptides with consensus and CREB PKA phosphorylation sites), whereas a negative control, a peptide with the consensus phosphorylation site for CK1D did not (Fig. 3A). Of note, the level of PKA phosphorylation of Cx43 was weaker (p < 0.001) than that of the consensus and CREB PKA phosphorylation sites (Fig. 3A).

Phosphorylation of peptides with single amino acid substitutions of serines with alanines reduced levels of PKA phosphorylation for Cx43-S369A and Cx43-S373A (p < 0.001, lilac and purple bars) compared with the phosphorylation of the wild type sequence (Fig. 3B, blue bar). Interestingly, no modification in the level of PKA phosphorylation appeared for any other single serine substitution (i.e. S364, S365, S368 and S372). This indicates that S369 and/or S373 of Cx43-CT region are preferentially phosphorylated by PKA. To explore this further, we next investigated combinations of serine substitutions (Fig. 3C and Supplementary Fig. S2A-B). The random combination of double serine substitution of S364, S365, S368 or S372 residues showed no significant reduction in PKA-dependent phosphorylation compared with the level of phosphorylation of a peptide covering the WT Cx43-CT region (Fig. 3C). However, the double substitution of S369A and S373A reduced PKA-dependent Cx43-CT phosphorylation by > 50% (p < 0.001, green bar) compared with the phosphorylation of the wild type sequence (Fig. 3C, blue bar). Interestingly, the level of PKA phosphorylation on the Cx43 S369-373A sequence was not found to be significantly different from the level of PKA phosphorylation of the negative control that is not phosphorylated by PKA (i.e. the consensus CK1D phosphorylation site). A similar reduction in PKA phosphorylation was observed with four or five serine substitutions in the Cx43-CT sequence that included substitution of S369 and S373 (Supplementary Fig. S2B). Jointly, these observations support the notion that S369 together with S373 are the major PKA phosphorylation sites in the Cx43-CT domain when examined in vitro.
NanoLC-LTQ Orbitrap mass spectrometry (MS) analysis was next performed to identify the residues in Cx43 that are phosphorylated \textit{in vivo} as a consequence of activation of the cAMP signaling pathway. To minimize sample variability and to increase sample concentration required for MS analysis, IAR20, a liver epithelial cell line with abundant Cx43, was used for these analyses. IAR20 cells were cultured with or without 8-CPT-cAMP and cell lysates were subjected to Cx43 immunoprecipitation. Excised bands from SDS-PAGE of immunoprecipitates were subjected to tryptic digestion and analyzed by MS (Fig. 3D-E). This approach identified ezrin, PKA RI\(\alpha\), PKA RII\(\alpha\), PKA Ca, and Cx43 in the Cx43 immunoprecipitates (Fig. 3D). This supports the earlier finding of ezrin and Cx43 forming a signaling complex with PKA also in other cell types than placental trophoblasts. The analysis of individual Cx43-CT peptides from parallel immunoprecipitates further revealed the presence of a mix of peptides that were phosphorylated or unphosphorylated on S364, S365, S368 and S369 in Cx43 immunoprecipitates from untreated IAR20 cells (Fig. 3E and Supplementary Fig. S3A). As expected, similar phospho-peptides were also found in Cx43 immunoprecipitates from IAR20 cells treated with 8-CPT-cAMP. However, in addition we identified new phospho-peptides that were phosphorylated on S372 and S373 in the treated cells (Fig. 3E and Supplementary Fig. S3B). Together the data from peptide arrays and MS analysis verify that S369 and S373 are phosphorylated by PKA in the C-terminal region of Cx43, and that particularly S373 is phosphorylated upon acute activation of the cAMP signaling pathway.

Subcellular distribution of phospho-mimetic forms of Cx43

Cx43 phosphorylation triggers gap junction assembly or recycling and subsequent subcellular relocation. To examine the plasma membrane localization of the different phosphorylated variants of Cx43, trophoblasts were transfected with green fluorescent protein (GFP)-tagged phosphomimetic forms of Cx43 followed by PLA analysis with a pair of specific antibodies against desmoplakin and GFP (Fig. 4A and Supplementary Fig. S4A). To avoid interference by endogenous PKA phosphorylation we employed mammalian expression vectors encoding Cx43 with a substitution that abolishes ezrin binding and thereby detaches PKA from the complex (R370E; [29]) fused to GFP (GFP-Cx43). We next introduced phosphomimetic (S/D) and phosphomutant (S/A) substitutions at
serine residues 364, 365, 368, 369, 372 and 373. GFP-Cx43 R370E was expressed at the plasma membrane in human trophoblast and colocalized with desmoplakin as evident from the appearance of magenta dots (p < 0.001), whereas GFP control did not (Fig. 4B). Interestingly, the level of colocalization with desmoplakin remained the same for most of the GFP-Cx43 R370E phosphomimetic or phosphomutant forms (364, 365, 368 and 372) compared with GFP-Cx43 R370E. We noticed an exception for GFP-Cx43 R370E+S369D and GFP-Cx43 R370E+S373D, which displayed significant increases in plasma membrane localization compared with GFP-Cx43 R370E (p < 0.01 and p < 0.05 respectively). Furthermore, pairwise comparison of colocalization between corresponding phosphomimic and phosphomutant Cx43 forms revealed that aspartate substitution at S365, S369, S372 or S373 significantly increased the desmoplakin-colocalization at the plasma membrane compared to the respective alanine-substituted phosphomutant form (p < 0.05, 0.01, 0.05 and 0.01 respectively). Surprisingly, phosphomimic and phosphomutant substitutions at position S364 or S368 did not alter the localization at the plasma membrane of these Cx43 constructs in human trophoblasts. It is noteworthy that expression of constructs with the 6 serine phospho-sites replaced with aspartate (6SD) or the double S369-373D mutant increased Cx43 colocalization at the plasma membrane (p < 0.001 and p < 0.05, respectively) compared with GFP-Cx43 R370E control, whereas the corresponding phosphomutant variants with alanine substitutions (6SA and S369-373A) displayed significantly less expression at the membrane (p < 0.001 for both). Together, these data suggest that the phosphorylation on S369 and/or S373 promotes assembly of Cx43 at the plasma membrane of human trophoblasts.

Phospho-mimetic forms of Cx43 trigger human trophoblast fusion

PKA and Cx43 gap junction communication trigger human trophoblast fusion [12, 20, 29]. The present data suggest that S369 and S373 of the Cx43-CT domain are the major residues phosphorylated by PKA. We analyzed the functional consequences of alterations of residues S364 (described previously to be phosphorylated by PKA; [52]), S369, and S373 in fusion of primary human trophoblasts. Human trophoblasts were transfected with Cx43-specific siRNA or
corresponding scrambled control and incubated for 48 h. siRNA-mediated knockdown of Cx43 reduced protein expression compared with cells transfected with scrambled siRNA (70% reduction; p < 0.001; Supplementary Fig. S4B and Fig. 5A). Human trophoblasts with Cx43 knockdown displayed cellular aggregation associated with a decrease in cell fusion by approximately 65% (p < 0.001) compared with fusion of trophoblasts transfected with scrambled control (Fig. 5B-C). In addition to this defect in morphological differentiation upon knockdown of Cx43, we observed a decrease in the functional differentiation of the trophoblast with a significant reduction in secretion of syncytial hormones (hCG and hPL) (p < 0.001 for both; Fig. 5D). This is supported by correlation studies in which a weak fusion index is associated with low syncytial hormone secretions (Supplementary Fig. S4C. Pearson’s R coefficient of 0.82 and 0.85 for hCG and hPL respectively; p < 0.001 for both).

Next, we employed a combined strategy of RNA interference and reconstitution experiments with various phosphomimic or phosphomutant forms of Cx43. Primary human trophoblasts were depleted of endogenous Cx43 by siRNA transfection. Simultaneously, we transfected cells with mammalian expression vectors encoding siRNA-resistant wild-type Cx43 or Cx43 R370E fused to GFP (GFP-Cx43* and GFP-Cx43* R370E, respectively), with or without phosphomimic or phosphomutant substitutions in the indicated phosphorylation sites (all six, single or double serine substitutions) that formed complexes with the expected composition (Supplementary Fig. S5A). As evident from discontinuous desmoplakin immunostaining, fusion indices and hormone secretion, cells reconstituted with GFP-Cx43* after knockdown of endogenous Cx43 formed syncytia (Fig. 5B-D). By contrast, trophoblasts reconstituted with GFP-Cx43* R370E that does not bind ezrin and therefore does not target PKA to the Cx43 complex, aggregated but did not fuse (Fig. 5B-C). This defect in trophoblast fusion was associated with decreased syncytial hormone production compared with cells treated with scrambled control (Fig. 5D and Supplementary Fig. S4C; p < 0.05 for hCG and p < 0.001 for hPL). Trophoblasts with knockdown of endogenous Cx43 reconstituted with GFP-Cx43* R370E with alanine substitutions individually mimicking phospho-resistant residues at position 364, 369 and 373 (GFP-Cx43* R370E S364A, GFP-Cx43* R370E S369A or GFP-Cx43* R370E S373A), in position 369 and 373 combined, or at all 6 positions displayed aggregated but unfused cells as evident from low fusion indices (Fig. 5B-C). These reductions in cell fusion were associated with significant
decreases in hCG and hPL secretion (Fig. 5D and Supplementary Fig. S4C). By contrast, cells
reconstituted with GFP-Cx43* R370E, in which corresponding serines were replaced with aspartate
substitutions to mimic a phosphorylated state, (GFP-Cx43* R370E+S364D, GFP-Cx43* R370E+S369D, GFP-Cx43* R370E+S373D, GFP-Cx43* R370E+6SD, or GFP-Cx43* R370E+S369-373D) formed syncytia (Fig. 5B-C). Correlation analysis suggests that reconstitution of trophoblast
cell fusion was also associated with reconstitution of syncytial hormone secretion (Fig. 5D and
Supplementary Fig. S4C). Interestingly, cells reconstituted with constructs expressing GFP-Cx43*
variants that rescued syncytial formation and hormonal secretion (i.e. GFP-Cx43* and constructs with
aspartate substitution: GFP-Cx43* R370E+S369D, GFP-Cx43* R370E+S373D), cultured with PKI
showed a reduction in hCG secretion compared with cells treated with scrambled PKI (Fig. 5E).
However, trophoblasts reconstituted with GFP-Cx43* R370E with or without alanine substitution and
cultured with PKI or corresponding scrambled control exhibited a similar low rate of hCG secretion,
which is consistent with data presented in figure 5B-D. In addition, HEK293 cells reconstituted with
constructs expressing GFP-Cx43* and cultured with 8-CPT-cAMP showed an increased level of
phosphorylated GFP-Cx43 at serine 373 that was inhibited with PKI (Supplementary figure S4D). In
contrast, cells reconstituted with GFP-Cx43* with alanine substitutions in position 369 and 373
combined (GFP-CX43* S369-373A) did not display this regulation of cAMP-dependent
phosphorylation (Supplementary figure S4D). Taken together, the results of these knockdown and
rescue experiments suggest that phosphorylation of specific residues (S369 and S373) in Cx43-CT
domain can be targeted by PKA and trigger trophoblast cell fusion and syncytial hormone production.

S369 and S373 phospho-mimetic variants of Cx43 trigger gap junction communication

We next characterized functional consequences of phosphomimic and phosphomutant substitutions in
the Cx43-CT domain on gap junction communication. Gap-FLIP (Fluorescence Loss In
Photobleaching) analyses were performed on HEK293 cells transfected with GFP-control or GFP-
Cx43* or GFP-Cx43* R370E, with or without phosphomimic and phosphomutant substitutions at the
indicated phosphorylation sites (all six, single, or double serine substitutions). Cells were loaded with calcein-AM dye and pairs of transfected cells were chosen for FLIP analysis (Fig. 6). Simultaneously, the targeted-cell (C1) was repetitively bleached while the calcein fluorescence intensity of the adjacent cell (C2) was monitored over the time (Fig. 6A). Kymograms (displaying the temporal evolution of the fluorescent intensity) together with high-magnification views and fluorescence intensity curves (Fig. 6A) indicated that the fluorescence loss of C2 is linked to repeated light beam exposure on C1 and thus reflects the gap junction communication between pairs of cells. HEK293 cells used in the present study expressed a very low level of endogenous Cx43 (Supplementary Fig. S5B) and displayed a correspondingly low gap junction communication as evident from fluorescence intensity curves of GFP-control transfected cells (Fig. 6A) and the associated mobile fraction (Fig. 6B). Interestingly, expression of GFP-Cx43* increased gap junction communication compared to GFP-control transfected cells (above 50% increase in mobile fraction, p < 0.001). Conversely, cells transfected with GFP-Cx43* R370E showed a similar profile of gap junction communication as GFP-control transfected cells. This is consistent with our model that ezrin associated with Cx43 is involved in the PKA-mediated modulation of gap junction communication. Cells transfected with GFP-Cx43* R370E with aspartate substitutions mimicking phosphorylated residues at positions 364, 369, and 373 individually or combined at positions 369 and 373, or in all 6 phosphosites of the Cx43-CT domain, displayed an increase in the mobile fraction of dye and thus in gap junction communication compared to GFP-control or GFP-Cx43* R370E transfected cells (Fig. 6B and supplementary Fig. S5C; above 50%, p < 0.001 for all). Conversely, substitutions mimicking dephosphorylation in the Cx43-CT domain exhibited a significantly decreased gap junction communication compared to the corresponding phosho-mimetic substitutions (Fig. 6B and supplementary Fig. S5C; p < 0.001 for all except for double substitution in S369-373 p < 0.01). Together, these experiments indicate that PKA-dependent phosphorylation of S369 and S373 of Cx43-CT domain promotes gap junction communication and furthermore that this effect depends on PKA anchoring by ezrin.
The present study reports that ezrin binds the Cx43 carboxyterminal domain and recruits PKA to directly or indirectly facilitate phosphorylation of Cx43 on serines 369 and 373, which promotes gap junction assembly at the plasma membrane of human trophoblasts, triggers gap junction communication and thereby cell fusion. Our study is consistent with the conclusions of an earlier report by TenBroek et al. [52], where the authors concluded that the carboxyterminal of Cx43 is critical for mediating effects of cAMP, possibly by facilitating interactions with trafficking proteins to enhance GJ assembly. The site of such interactions was suggested to reside in the region of S364 and that the phosphorylation of this site appeared to be necessary for effects of cAMP on assembly that follows.

Human primary trophoblasts undergo cell fusion both in vivo and in culture to form an endocrinologically active syncytium; a differentiation process that is driven by hCG acting through the cAMP signaling pathway, and that in culture also proceeds spontaneously, albeit slower [20, 53]). In primary human trophoblasts we found that a specific inhibitor of the PKA catalytic subunit (i.e. PKI) reduced the production of hCG reflecting the reduction in trophoblast fusion. Interestingly, we noticed that these effects are associated with decreased Cx43 phosphorylation and gap junction assembly, suggesting that human CTs have a basal level of cAMP production and tonic PKA activation. This is in agreement with previous observations and compatible with the spontaneous fusion in culture due to auto- or paracrine effects of hCG [19, 20, 51]. Furthermore, addition of a cAMP analog, also known to potentiate human trophoblast fusion, increased Cx43 gap junction assembly, a process that is inhibited in the presence of PKI and that supports a role for PKA activity being involved in Cx43 gap junction assembly. Such regulation has also been reported in other cell models as reviewed in [54]. By co-immunoprecipitation, proximity ligation assays, and mass spectrometry we show that PKA regulatory and catalytic subunits located in a supramolecular complex that includes ezrin and Cx43, in agreement with our previous observations [29]. In this study we characterized the physiological role of this signaling complex further and showed by immunoprecipitation of ezrin and Cx43 that PKA activity was associated with the complex and that treatment with PKI reduced the level of Cx43 phosphorylation in human trophoblasts. Moreover, we demonstrate that silencing Cx43 expression
decreased gap junction communication, syncytial formation, and associated hormonal production, which were reconstituted upon expression of a Cx43 siRNA-insensitive construct. These findings support a central role for Cx43 in trophoblast fusion in agreement with our previous observations [12, 29]. However, reconstitution with a mutant Cx43 R370E with impaired ability to bind ezrin did not restore trophoblast fusion, highlighting the critical role of ezrin to trigger gap junction communication, cell fusion and functional differentiation of human trophoblasts. This led us to propose that the pool of PKA anchored to ezrin coordinates Cx43 phosphorylation, which induces trophoblast fusion. Although Cx43 has been shown to be a poor substrate for PKA compared to other kinases, anchoring of PKA via the AKAP ezrin bound to the substrate reduces the degrees of freedom and facilitates phosphorylation. This agrees with earlier observations showing that activation of the cAMP signaling pathway increases Cx43 phosphorylation, gap junction assembly and communication [44, 52, 55, 56]. However, identification of the phosphorylated residues in Cx43 has remained controversial and the associated functional consequences have not been fully elucidated [43-45, 57]. PKA phosphorylation sites are located in the C-terminal part of the protein (Cx43-CT) [54]. This region encompasses amino acids 359 to 376 and harbors repetitions of R-X-X-S/T, the described consensus PKA phosphorylation motif [58, 59].

To further investigate the presumed PKA phosphorylation sites in Cx43, we performed in vitro phosphorylation experiments with an array of peptides covering the region. Unexpectedly, we neither found serine 364 to be effectively phosphorylated by PKA in vitro nor that activation of PKA promoted phosphorylation of S364 in cells. It is noteworthy that S364 of Cx43 has earlier been described as the main target for cAMP signaling and PKA, the phosphorylation of which promotes gap junction assembly and communication [52, 60, 61]. In the cell types examined here S364 was constitutively phosphorylated in resting cells under basal conditions without induction of cAMP signaling. This has also been noted by others [52, 60]. We cannot exclude the possibility that low levels of PKA activity could constitutively phosphorylate S364 in resting cells, or that PKA or alternate cAMP effector molecules could activate another kinase that phosphorylates S364 through a crosstalk mechanism. Shah and colleagues have shown that a peptide sequence encompassing amino acids 359 to 376 of Cx43-CT domain, in which S364 was replaced with proline displayed 50% less
PKA-dependent phosphorylation, and thus proposed S364 to serve as the main PKA target in Cx43 [60]. However, this observation revealed that other residues in this sequence were also phosphorylated. Here we propose serines 369 and 373 as the principal PKA targets. Discrepancies regarding S364 may be attributable to differences of 3D folding of the intact protein as studied by Shah et al., versus the peptide array used here as spatial organization may affect PKA phosphorylation at this site. Furthermore, our gap-FLIP experiments and fusion assays demonstrated that phospho-mimicking substitutions in residue 364 of Cx43-CT domain promoted intercellular communication, which triggered trophoblast differentiation with an increase in cell fusion and syncytial hormone production. These observations are in agreement with previous studies [12, 29] and support the possibility that S364 could be a phosphorylation target that regulates Cx43 function. Although we speculate that this residue is not directly phosphorylated by PKA, our data indicate that its phosphorylation would facilitate opening of the Cx43 channel and thus might be involved in the first steps of trophoblast fusion, e.g. prior to the activation of cAMP signaling and could act in concert with other cAMP-regulated phosphorylation sites (i.e., S369 and S373) to accelerate cell communication and cell fusion in later stages of placental differentiation.

The present MS analysis found S365 to be phosphorylated under basal conditions and the PLA experiments suggested that mimicking phosphorylation at this position also promotes Cx43 gap junction assembly. These observations are in agreement with a previous study in which S365 phosphorylation was reported to serve as a gatekeeper to prevent down-regulation of Cx43 by PKC-mediated phosphorylation of S368 [62]. Furthermore, PLA experiments showed that expression of a construct mimicking phosphorylation at S368 reduced gap junction assembly, further supporting this role for PKC [63]. In contrast, expression of a Cx43 variant mimicking phosphorylation of S372, a site described to be targeted by PKC in vitro [64], promoted gap junction assembly. Further experiments are needed to decipher kinetic and the functional consequences of PKC phosphorylation on these residues.

The in vitro phosphorylation assays indicated that serines 369 and 373 are the residues in the Cx43-CT region favored by PKA. This finding is supported by a previous study that proposed that phosphorylation of these residues in granulosa cells cultured with FSH (follicle-stimulating hormone)
FSH signals mainly, but not only, through production of intracellular cAMP and the authors suggested that these residues are phosphorylated in response to the cAMP signaling. We demonstrated that constructs directing expression of Cx43 with phosphomimicking substitutions at positions 369 and/or 373 exhibited increase cell membrane expression, supporting an increase in gap junction assembly, which was as reported [60, 64, 66-69]. The present silencing and reconstitution experiments together with gap-FLIP studies using various Cx43 mutants containing phosphoresistant substitutions at S369 and/or S373 indicated that the loss of PKA-specific phosphorylation in the Cx43-CT domain impaired gap junction communication, cell fusion, and thus production of specific pregnancy hormones. Conversely, overexpression or reconstitution with the corresponding phosphomimetic forms restored gap junction communication, trophoblast fusion, and syncytial functions, thus validating the significance of S369 and S373 phosphorylation. Interestingly, reconstitution experiments with phosphomimicking substitutions at positions 369 or 373 and cultured with PKI did not restore production of specific pregnancy hormones. This is consistent with previous observations that highlight the PKA-signaling activation as a pre-requisite for trophoblast fusion [16]. Of note, PKA leads on one hand to phosphorylation and an increase in specific gene expression of fusogenic proteins (e.g. syncytins and cadherin) and on the other hand to hCG secretion that acts in a autocrine or paracrine manner to initiate and maintain the fusion process (for review see 16). Thus, the use of PKI blocked PKA signaling, which prevents triggering of trophoblast fusion upstream of the step that requires the Cx43 PKA-dependent phosphorylation and the transfer of fusogenic signal through gap junctions. Hence, Cx43 phosphorylation on S369 and/or S373 by anchored-PKA through ezrin is necessary but insufficient to promote alone trophoblast fusion without the concomitant PKA activation in basal or in hCG-stimulated cells.

Mass spectrometry and immunoblots revealed S373 not to be phosphorylated under basal conditions but phosphorylated in cells upon acute cAMP stimulation, while S369 was constitutively phosphorylated. As with S364, we speculate that phosphorylation of S369 can occur by low tonic PKA activity or be induced by other kinases. In the line with this suggestion, residues 369 and 373 have been linked to Akt/PKB phosphorylation [66, 68, 70]. The Akt consensus phosphorylation sequence R-X-R-X-X/S/T [71] overlaps with that of PKA and the two kinases share phosphorylation...
sites in various biological contexts [72, 73]). Our data agree with previous studies in which phosphorylation of S373 by Akt induces gap junction assembly and communication [68, 69]. We propose that PKA and Akt signaling work in concert to phosphorylate similar residues in Cx43-CT to preserve a fundamental mechanism for coordinated regulation of gap junction functions in response to distinct extracellular stimuli. Interestingly, single or double phospho-mimetic forms of S369 and S373 displayed similar Cx43 behavior. This may indicate a redundancy effect to ensure phosphorylation by PKA in order to trigger a proper associated biological effect (i.e. cell communication and cell fusion) and/or that these phospho-sites could have a synergistic effect on the level of gap junction communication or selectivity of the channel for the transfer of small molecules. We propose that phosphorylation of S369 occurs upon basal PKA activation or through activation of another kinase (i.e. Akt), while, upon acute cAMP stimulation S373 phosphorylation appears to ensure gap junction assembly and intercellular communication necessary to allow trophoblast fusion.

Biological effects observed when using the Cx43 mutant with all six serines substituted with alanine or aspartic acid are more difficult to interpret due to the greater effects that six substitutions presumably would have on this structurally disordered C-terminal region of Cx43 [45]. Alteration of syncytial formation and regeneration during pregnancy affects fetal growth and outcomes of the pregnancy. Anomalies of villous trophoblast differentiation and cell fusion lead to severe placental abnormalities (i.e. intrauterine growth restriction (IUGR) and preeclampsia) [74, 75]. It is noteworthy that cAMP signaling is markedly reduced in placentas from patients with preeclampsia [76]. Furthermore, it has been observed that Cx43 gap junction functions fail in preeclampsia [77]. Together, these observations lead us to speculate that diminished cAMP signaling reduces PKA activation and phosphorylation of the C-terminal domain of Cx43 in preeclampsia.

Analysis of the level of Cx43-CT phosphorylation and more precisely that of residues S369 and S373 in preeclampsia are needed to better understand the pathology. This could help advance therapies targeting phosphorylation of PKA-specific residues in Cx43-CT to counteract the defect in gap junction communication and cAMP signaling observed in preeclampsia.

In summary, using a physiological primary culture model of human trophoblasts, we propose that ezrin binds directly to Cx43 gap junctions and directs PKA to the vicinity of Cx43. This proximity
allows for efficient and rapid phosphorylation of serine 369 and/or 373 in the C-terminal region of Cx43, which promotes gap junction assembly and communication, thereby controlling cAMP-regulated cell fusion.
Acknowledgements

We are grateful to Jorun Solheim, Fatima Ferreira and Camille Fraichard for technical assistance, to Ola Blingsmo for peptide synthesis, to members of the Taskén laboratory for assistance. This work has benefitted from the expertise of Vincent Fraisier (PICT-IBiSA @CNRS-Institut Curie; member of the French National Research Infrastructure France-BioImaging ANR-10-INSB-04) with imaging and RSI professions libérales provinces (44-boulevard de la bastille 75578 Paris Cedex 12). We are grateful to Dr. Peter A. Friedman, University of Pittsburg for critically reviewing and commenting on the manuscript.

Declarations of interest

The authors declare that they have no conflict of interest.

Funding information

This work was supported by the Norwegian Cancer Society, the Research Council of Norway, the Novo Nordic Foundation and the K.G. Jebsen Foundation (to KT), the French institute for medical research (INSERM, to GP and PG) and RSI professions libérales provinces (44-Bd de la bastille 75578 Paris Cedex 12 to GP).

Author contribution statement

GP and KT designed the research; AD, PG, GP, and KT did the experiments and analyzed data; BT did MS-analyses and interpreted the MS-data. GP and KT wrote the paper together with AD. All authors read and commented on draft versions of the manuscript and approved the final version.
References

Rust, H. L. and Thompson, P. R. (2011) Kinase consensus sequences: a breeding ground for crosstalk. ACS Chem Biol. 6, 881-892

Figure legends

Figure 1: PKA phosphorylates Cx43 and triggers human trophoblast fusion. (A) Trophoblasts were treated for 48 h with Arg-tagged cell-permeable PKI peptide or corresponding scrambled control. Cells were stained for desmoplakin (magenta) and nuclei (DAPI, cyan, left panels), and corresponding mononuclear cells with fusion indices were calculated as described in Experimental section (middle histograms). Levels of hCG and hPL secreted into the medium were also assayed and are shown as relative to scrambled control (right histograms). Scale bar: 30 μm. (B) Trophoblasts cultured with PKI or scrambled PKI and treated simultaneously with or without 8-CPT-cAMP (for 60 min) were examined by immunoblot for unphosphorylated (P0) and phosphorylated (P1/P2) Cx43, ezrin, phosphorylation of PKA-substrates (with a specific phospho-PKA substrate antibody) and actin (left panels). Ratio of unphosphorylated (P0) and phosphorylated (P1/P2) Cx43 expression was assessed by densimetric scanning of immunoblots (right histograms). (C) Trophoblasts were cultured for 24 h with PKI or corresponding scrambled control, treated with or without 8-CPT-cAMP for 60 min and subjected to PLA. Cells were stained with a pair of antibodies to Cx43 and desmoplakin. Physical proximity of the molecules was assessed using Duolink technology, generating spots when molecular proximity was < 40 nm. Scale bar: 30 μm. The intensity of the fluorescent spots generated were normalized to the number of nuclei and indicated in the corresponding histograms (right panel). Results are expressed as mean ± SEM of n = 3 independent experiments (ns for non-significant, * p <0.05, *** p < 0.001 as compared to control).

Figure 2: Ezrin organizes a complex that includes PKA and Cx43 in human trophoblasts. (A) Lysates from trophoblasts were subjected to immunoprecipitation (IP) with antibodies against ezrin, Cx43, PKA Cα, PKA RIα, PKA RIIα and non-specific IgG controls. Immunoprecipitates, IgG controls and corresponding lysates were analyzed by immunoblotting for the presence of the indicated proteins. Arrowheads indicate proteins of interest. (B) Physical proximity of ezrin-PKA RIα, ezrin-PKA RIIα, ezrin-PKA Cα, ezrin-Cx43, Cx43-PKA RIα, Cx43-PKA RIIα, Cx43-PKA-Cα complexes and non-specific IgG controls (mouse and rabbit) were assessed by PLA. Scale bar: 30 μm. (C) Lysates from trophoblasts were subjected to immunoprecipitation with antibodies against ezrin, Cx43, PKA Cα and
non-specific IgG controls. Immunoprecipitates and IgG control were assayed for cAMP-dependent (PKA) phosphotransferase activity with or without PKI as indicated in the histogram. Results are expressed as mean ± SEM of n = 3 independent experiments (ns for non-significant, * p < 0.05, ** p < 0.01, *** p < 0.001 as compared to respective control, # p < 0.05, ## p < 0.01 as compared to IgG control).

Figure 3: Delineation of PKA phosphorylation sites in Cx43. (A) Level of *in vitro* phosphorylation by PKA of peptides with consensus PKA phosphorylation site (*i.e.* AAARRRRSFIIFDAAA), from CREB with PKA phosphorylation site (*i.e.* AAARRPSYRKILNDL), from Cx43 with potential phosphorylation sites (*i.e.* VDQRPSSRASSRASSRPR) or peptide with consensus CK1D phosphorylation site (*i.e.* AAEEDAGSFIFGFFA) and quantified from phospho-peptide arrays pictured below histograms (Supplementary Figure S2). Data are presented as relative to the level of PKA phosphorylation of the peptide with the PKA consensus phosphorylation site. (B-C) Histograms represent the level of PKA phosphorylation of the wild type Cx43 peptide sequence encompassing amino acids 359 to 376 (WT) and in which single (B) or double combination (C) of serine substitution with alanine were made as indicated. Results are expressed as mean ± SEM of n = 4 independent experiments (*** p < 0.001). (D) Precipitated proteins from IAR20 cells with our without 8-CPT-cAMP treatment were subjected to immunoprecipitation with a Cx43-specific antibody and identified by nanoLC-LTQ Orbitrap mass spectrometry analysis of tryptic digests of bands excised from polyacrylamide gels after SDS-PAGE. Uniprot. Acc. No, accession number; #Pep, exclusive unique peptide count; #Spec, exclusive spectrum count; %Cov, percentage of amino acids identified; MW, molecular weight. (E) Phospho-peptides from the extreme C-terminal region of Cx43 identified by nanoLC-LTQ Orbitrap mass spectrometry from precipitated proteins as in (D). Phosphorylated serines are indicated in red.

Figure 4: Phospho-mimicking variants of Cx43 locate in gap junctions at the plasmalemma of human trophoblasts. (A) Trophoblasts were transfected with GFP-Cx43 variants. Cells were next stained with pairs of antibodies to GFP and desmoplakin and subjected to proximity ligation *in vitro*
assay (PLA). The interaction of molecules stained with pairs of antibodies was then assessed using Duolink technology. Magenta dots show molecular proximity (< 40 nm). Nuclei were counterstained with DAPI (cyan). Yellow pictures show GFP-tagged cell distribution. Merged pictures display duolink together with GFP-tagged cell distribution pictures. Scale bar: 30 μm. (B) Histograms represent the intensity of the dot signals normalized by the number of nuclei. Results are expressed as mean ± SEM of n = 3 independent experiments (* p <0.05, ** p < 0.01, *** p < 0.001).

Figure 5: Trophoblast fusion is rescued by variants of Cx43 that mimic phosphorylation of S369 and S373. (A) Trophoblasts were transfected with Cx43 siRNA or scrambled control alone or together with mammalian expression vectors directing the expression of siRNA-resistant GFP-Cx43 (GFP-Cx43*), GFP-Cx43* R370E fusion protein without ability to bind to ezrin or GFP-Cx43* R370E with substitutions in the PKA phosphorylation region (GFP-Cx43* R370E 6SA or GFP-Cx43* R370E 6SD) or with individual phosphorylation-mimicking S to D and S to A substitutions in residues 364, 369, 373 or in combination for residues 369 and 373. Cells were next subjected to immunoblot analysis with the indicated antibodies. (B) Cells with Cx43 knockdown and/or reconstitution as in A were stained for desmoplakin (magenta) and nuclei (DAPI, cyan). Yellow shows GFP-tagged cells. Scale bar: 30 μm. (C) Histograms represent remaining mononuclear cells and fusion indices of treated-culture as in A and B. (D) Levels of hCG and hPL secreted into the medium of corresponding cultures were also assayed and are shown are relative to scrambled control. (E) Levels of hCG secreted into the medium were assayed from cultures of trophoblasts with Cx43 knockdown and reconstitution as in A and incubated with scrambled PKI or PKI. Results are expressed as mean ± SEM of n = 3 independent experiments (ns for non-significant, * p <0.05, ** p < 0.01, *** p < 0.001).

Figure 6: Phosphorylation of residues 369 and/or 373 of Cx43 promotes gap junction communication. (A) HEK293 cells were transfected with mammalian expression vectors directing the expression of green fluorescent protein (GFP-control), or siRNA-resistant GFP-Cx43 (GFP-Cx43*), GFP-Cx43* R370E fusion protein without ability to bind to ezrin or GFP-Cx43* R370E with
individual phosphorylation-mimetic S to D and S to A substitutions in residues 369 (GFP-Cx43* R370E S369A or GFP-Cx43* R370E S369D), 373 (GFP-Cx43* R370E S373A or GFP-Cx43* R370E S373D) or in combination for both residues (GFP-Cx43* R370E S369-373A or GFP-Cx43* R370E S369-373D) and subjected to FLIP experiments. GFP fluorescence intensity images of transfected cells (left column) with C1 (i.e. dashed line) as the targeted cell by repetitive light beam exposition and C2 (i.e. solid line) as the connected neighbor cell (left column). Calcein fluorescence intensity loss in individual cells was mapped to pseudocolors as indicated by the color-scale bar [F, in arbitrary units (a.u.)] before (pre-bleach, t=0 min) and 600 s after (post-bleach) repetitive light beam exposure of C1. Kymograms display the temporal evolution of the fluorescent intensity mapped to pseudocolor of C1 and C2. The graph represents the corresponding fluorescence loss of C1 and C2 versus time (right column). Scale bar: 10 μm. (B) Histograms exhibit the amalgamated data of calcein dye mobile fractions from transfected cells measured in 3 independent experiments from different cultures, each analyzing > 6 cells. Results are expressed as mean ± SEM (ns for non-significant, ** p < 0.01, *** p < 0.001).
SUPPLEMENTARY INFORMATION TO:

Ezrin-anchored PKA phosphorylates serine 369 and 373 on connexin 43 to enhance gap junction assembly, communication and cell fusion

by

Aleksandra R. Dukic, Pascale Gerbaud, Jean Guibourdenche, Bernd Thiede, Kjetil Taskén & Guillaume Pidoux

Supplementary Figure Legends

Supplemental Figure S1: Desmoplakin and Cx43 co-distribute at the membrane and PLA of Cx43/ezrin complex in human trophoblasts. (A) Primary human trophoblasts were co-immunostained for desmoplakin and Cx43 (left panel). Nuclei were counterstained with DAPI (blue). Yellow arrowheads indicate co-distribution. Scale bar: 15 μm. (Right panel) Line plot profile shows cellular distribution of desmoplakin and Cx43 in human trophoblasts (corresponding to merge picture’s dashed line) (B) Trophoblasts were cultured for 24 h with PKI or corresponding scrambled control (Sc PKI), with or without 8-CPT-cAMP stimulation for 90 min and subjected to PLA. Cells were stained with a pair of antibodies: Cx43-ezrin. Physical proximity of the molecules was assessed using Duolink technology, generating white spots when molecular proximity was < 40 nm. Scale bar: 30 μm. The intensity of the fluorescent spots generated were normalized to the number of nuclei and indicated on corresponding graphs (right panel). (C) Histograms correspond to the normalization of Proximity Ligation Assay performed in Figure 1E as the intensity of the fluorescent spots generated by proximity of indicated pair of antibodies normalized to the number of nuclei. Results are expressed as the mean ± SEM of n = 3 independent experiments (* p < 0.05, ** p < 0.01, *** p < 0.001).
Supplemental Figure S2: Identification of PKA phospho-residues in Cx43.

(A) The sequence encompassing amino acids 359 to 376 of Cx43 was synthesized on cellulose membranes as overlapping 18-mer peptides with or without phosphoserine substitutions by alanine. Filters were incubated with recombinant PKA Cα subunit and subjected to PKA activity assay. PKA phosphorylation level of each peptide was revealed on a phosphoimager (top left panel) and signal intensities were quantified with ImageJ (top right panel). The signal intensity corresponding to the level of PKA phosphorylation for each phosphopeptide was mapped to pseudocolors as indicated by the color-scale bar \[S.I, \text{ in arbitrary units (a.u.)}\]. Each peptide was identified on the quantified-filter by a column (C) and a line (L) number. The amino acid sequence of identified peptide was indicated (bottom panel). Phosphoserines and corresponding alanine substitutions are marked in red and bold red highlighted letters respectively. White boxes indicate phospho-peptides with reduction in PKA phosphorylation level and the corresponding amino acid sequences are indicated with red arrows. (B) Histograms represent the level of PKA phosphorylation of the wild type Cx43 sequence encompassing amino acids 359-376 (WT) and in which quadruple or quintuple combinations of serine substitutions with alanine were performed and the CK1D consensus phosphorylation site sequence as negative control. Results are expressed as the mean ± SEM of \(n = 4\) independent experiments (* \(p < 0.05\), ** \(p < 0.01\), *** \(p < 0.001\)).

Supplemental Figure S3: Spectra of identified phospho-peptides from Cx43-CT. Spectra of identified peptides presented in Fig. 2E corresponding to the Cx43-CT domain of IAR20 cells without (A) or with 8-CPT-cAMP acute stimulation (B). The peak heights show the relative intensities of the corresponding fragmentation ions.

Supplemental Figure S4: Plasmalemma subcellular localization of Cx43 phospho-mimicking variants. (A) Trophoblasts were transfected with GFP-Cx43 variants. Cells were next stained with pairs of antibodies to GFP and desmoplakin and subjected to proximity ligation \textit{in vitro} assay (PLA). The interaction of molecules stained with pairs of antibodies was then assessed using Duolink technology. Magenta dots show molecular proximity (< 40 nm). Nuclei were counterstained with
DAPI (cyan). Yellow pictures show GFP-tagged cell distribution. Merge pictures display duolink together with GFP-tagged cell distribution pictures. Scale bar: 30 µm. (B) Immunoblot analysis of Cx43 and actin levels in trophoblasts transfected with specific Cx43 siRNA or scrambled controls (left panel). Level of Cx43 was assessed by densitometric scanning of immunoblots and normalized to actin levels in the same blots (right panel). Results are expressed as the mean ± SEM of n = 3 independent experiments (*** p < 0.001). (C) Scatter plots show correlation analysis between fusion indices and levels of syncytial hormones (hCG and hPL). Fusion indices and hCG or hPL secretion corresponds to the x- and y-coordinate, respectively. Pearson’s correlation coefficients (R) are indicated. (D) HEK293 cells were transfected with Cx43 siRNA together with mammalian expression vectors directing the expression of siRNA-resistant GFP-Cx43 (GFP-Cx43*) or GFP-Cx43* with alanine substitutions in position 369 and 373 combined (GFP-Cx43* S369-373A). Cells were next subjected to immunoblot analysis with the indicated antibodies (left panel). Level of Cx43, pCx43 S373 was assessed by densitometric scanning of immunoblots and normalized to actin levels in the same blots (right panel). Results are expressed as the mean ± SEM of n = 3 independent experiments (ns for non-significant, * p < 0.05).

Supplemental Figure S5: Ezrin bound to Cx43 brings PKA in vicinity of gap junctions in primary human trophoblasts leading to gap junction communication. (A) Trophoblasts were co-transfected with Cx43 siRNA and with the indicated Cx43 variants as in Fig. 5 and subjected to immunoprecipitation (IP) with GFP-specific antibody and non-specific IgG controls. Lysates, precipitates and IgG controls were analyzed by immunoblotting for the presence of ezrin, PKA RIα, PKA RIIα, PKA Cα, Cx43 and GFP. Arrowheads indicate proteins of interest. (B) HEK293 cells were transfected with or without mammalian expression vectors directing the expression of siRNA-resistant GFP-Cx43 (GFP-Cx43*), GFP-Cx43* R370E fusion protein without ability to bind ezrin or the green fluorescent protein (GFP-control). Cells were next subjected to immunoblot analysis with the indicated antibodies. (C) HEK293 cells were transfected with mammalian expression vectors directing the expression of GFP-Cx43* R370E with substitutions in the PKA phosphorylation region
(GFP-Cx43* R370E 6SA or GFP-Cx43* R370E 6SD) or with individual phosphorylation-mimicking S to D and S to A substitutions in residue 364, and subjected to gap-FLIP experiments. GFP fluorescence intensity images of transfected cells (left column) with C1 (i.e. dashed line) as the targeted cell by repetitive light beam exposition and C2 (i.e. solid line) as the connected neighbor cell (left column). Calcein fluorescence intensity loss in individual cells was mapped to pseudocolors as indicated by the color-scale bar [F, in arbitrary units (a.u.)] before (pre-bleach, $t=0$ min) and 600 s after (post-bleach) repetitive light beam exposure of C1. Kymograms display the temporal evolution of the fluorescent intensity mapped to pseudocolor of C1 and C2. The graph represents the corresponding fluorescence loss of C1 and C2 versus time (right column). Scale bar: 10 μm.
Dukic et al., Figure 1

A

Desmoplakin

Sc PKI

PKI

Mononuclear cells (fold of control)

Fusion Index (fold of control)

Treatment

Treatment

B

phospho-Cx43

Cx43

ezrin

phospho-PKA substrate

actin

Scrambled PKI

PKI

Vehicle + 8-CPT-cAMP

n=3

phospho-Cx43 / Cx43 (arb. units)

phospho-Cx43 / Cx43 (arb. units)

Treatment

Treatment

C

Vehicle

8-CPT-cAMP

Sc PKI

PKI

Cx43/DSP

Cx43/DSP

(PLA signal / nuclei)

Treatment

Treatment

n=3
Dukic et al., Figure 2

A

Immunoprecipitation

<table>
<thead>
<tr>
<th>IP</th>
<th>IgG</th>
<th>lysate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ezrin</td>
<td>PKA-Ria</td>
<td></td>
</tr>
<tr>
<td>Cx43</td>
<td>PKA-Ria</td>
<td></td>
</tr>
<tr>
<td>ezrin</td>
<td>PKA-Ria</td>
<td></td>
</tr>
<tr>
<td>PKA-Cia</td>
<td>AKAP18</td>
<td></td>
</tr>
<tr>
<td>PKA-Ria</td>
<td>ezrin</td>
<td></td>
</tr>
<tr>
<td>Cx43</td>
<td>PKA-Ria</td>
<td></td>
</tr>
<tr>
<td>PKA-Cia</td>
<td>AKAP18</td>
<td></td>
</tr>
</tbody>
</table>

B

Immunofluorescence

- **Ezrin/PKA-Ria**
- **Cx43/PKA-Ria**
- **Ezrin/PKA-Cia**
- **Ezrin/Cx43**
- **Ezrin/PKA-Ria**
- **Cx43/PKA-Ria**
- **Cx43/PKA-Cia**
- **IgG M/IgG R**

C

Phosphotransferase activity

- **Control**
- **PKI**

<table>
<thead>
<tr>
<th>Immunoprecipitation</th>
<th>n=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ezrin</td>
<td>Cx43</td>
</tr>
<tr>
<td>##</td>
<td>##</td>
</tr>
</tbody>
</table>

Legend:

- **Control**
- **PKI**

Immunoprecipitation

- **Ezrin**
- **Cx43**
- **PKA-Cia**
- **IgG**

Notes:

- **#**
- **##**

Immunofluorescence

- **Ezrin/PKA-Ria**
- **Cx43/PKA-Ria**
- **Ezrin/PKA-Cia**
- **Ezrin/Cx43**
- **IgG M/IgG R**

Legend:

- **Control**
- **PKI**

Notes:

- **#**
- **##**

Phosphotransferase activity

- **Ezrin**
- **Cx43**
- **PKA-Cia**
- **IgG**
Dukic et al., Figure 3

A

- peptide with consensus PKA phosphorylation site
- peptide from CREB with PKA phosphorylation site
- peptide from Cx43 with potential phosphorylation sites
- peptide with consensus CK1D phosphorylation site

n=4

B

C

D

Cx43 Immunoprecipitation control

<table>
<thead>
<tr>
<th>Protein name</th>
<th>UniProt Acc. No.</th>
<th># Pep</th>
<th># Spec</th>
<th>% Cov</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ezrin</td>
<td>P31977</td>
<td>5</td>
<td>8</td>
<td>7%</td>
<td>69 kDa</td>
</tr>
<tr>
<td>PKA Ca</td>
<td>P68182</td>
<td>3</td>
<td>3</td>
<td>11%</td>
<td>41 kDa</td>
</tr>
<tr>
<td>PKA RII</td>
<td>P12368</td>
<td>2</td>
<td>2</td>
<td>9%</td>
<td>46 kDa</td>
</tr>
<tr>
<td>Cx43</td>
<td>P08050</td>
<td>21</td>
<td>368</td>
<td>49%</td>
<td>43 kDa</td>
</tr>
</tbody>
</table>

Dx43 Immunoprecipitation + 8-CPT-cAMP

<table>
<thead>
<tr>
<th>Protein name</th>
<th>UniProt Acc. No.</th>
<th># Pep</th>
<th># Spec</th>
<th>% Cov</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ezrin</td>
<td>P31977</td>
<td>11</td>
<td>19</td>
<td>19%</td>
<td>69 kDa</td>
</tr>
<tr>
<td>PKA Ca</td>
<td>P68182</td>
<td>2</td>
<td>2</td>
<td>8.3%</td>
<td>41 kDa</td>
</tr>
<tr>
<td>PKA RII</td>
<td>P09456</td>
<td>2</td>
<td>2</td>
<td>7.9%</td>
<td>46 kDa</td>
</tr>
<tr>
<td>Cx43</td>
<td>P08050</td>
<td>17</td>
<td>282</td>
<td>45%</td>
<td>43 kDa</td>
</tr>
</tbody>
</table>

E

Cx43 Immunoprecipitation control

<table>
<thead>
<tr>
<th>Peptides</th>
<th>Modification</th>
<th>Mascot Ion Score</th>
<th>Mascot Delta Ion Score</th>
<th># Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K) KVAAGHELQPLAI VDQPSSR(A)</td>
<td>-</td>
<td>78</td>
<td>0</td>
<td>101</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSR(A)</td>
<td>phospho-S365</td>
<td>55</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S364/365</td>
<td>45</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S365</td>
<td>26</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S364/369</td>
<td>14</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S365/369</td>
<td>15</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S365</td>
<td>12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S369</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S368/369</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S364/369</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(R) ASRPRPDDLEI(-)</td>
<td>-</td>
<td>29</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

Cx43 Immunoprecipitation + 8-CPT-cAMP

<table>
<thead>
<tr>
<th>Peptides</th>
<th>Modification</th>
<th>Mascot Ion Score</th>
<th>Mascot Delta Ion Score</th>
<th># Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K) KVAAGHELQPLAI VDQPSSR(A)</td>
<td>-</td>
<td>82</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSR(A)</td>
<td>phospho-S365</td>
<td>39</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSR(A)</td>
<td>phospho-S365</td>
<td>40</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSR(A)</td>
<td>phospho-S364/365</td>
<td>22</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S368</td>
<td>26</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S369</td>
<td>10</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S365/368/369</td>
<td>7</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S365/368</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(K) VVAAGHELQPLAI VDQPSSRASSR(A)</td>
<td>phospho-S368/369</td>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(R) ASRPRPDDLEI(-)</td>
<td>-</td>
<td>26</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>(R) ASRPRPDDLEI(-)</td>
<td>phospho-S372/373</td>
<td>21</td>
<td>18</td>
<td>1</td>
</tr>
</tbody>
</table>
Dukic et al., Figure 4

A

Transfection with GFP-tagged constructs

Proximity Ligation Assay

GFP/DSP Merge

GFP-Cx43 R370E

GFP/DSP

GFP/DSP

S369A

GFP/DSP

GFP/DSP

S369D

GFP/DSP

GFP/DSP

S373D

GFP/DSP

GFP/DSP

B

Cell membrane localization (PLA signal intensity / nuclei)

S369A

S373A

S373D

GFP control

GFP-Cx43 R370E

S369A

S373A

S373D

GFP control

GFP-Cx43 R370E
Figure 5

A

<table>
<thead>
<tr>
<th>Expression vector</th>
<th>Scrambled siRNA</th>
<th>Cx43 siRNA</th>
<th>Cx43 siRNA + GFP-Cx43* R370E S364A</th>
<th>Cx43 siRNA + GFP-Cx43* R370E S369D</th>
<th>Cx43 siRNA + GFP-Cx43* R370E S373A</th>
<th>Cx43 siRNA + GFP-Cx43* R370E S364A</th>
<th>Cx43 siRNA + GFP-Cx43* R370E S369D</th>
<th>Cx43 siRNA + GFP-Cx43* R370E S373A</th>
</tr>
</thead>
<tbody>
<tr>
<td>hCG (fold of control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

- **Scrambled siRNA**
- **Cx43 siRNA**
- **Cx43 siRNA + GFP-Cx43**
- **Cx43 siRNA + GFP-Cx43* R370E S364A**
- **Cx43 siRNA + GFP-Cx43* R370E S369D**
- **Cx43 siRNA + GFP-Cx43* R370E S373A**
- **Cx43 siRNA + GFP-Cx43**
- **Cx43 siRNA + GFP-Cx43* R370E S364A**
- **Cx43 siRNA + GFP-Cx43* R370E S369D**
- **Cx43 siRNA + GFP-Cx43* R370E S373A**

C

Mononuclear cells (fold of control)

<table>
<thead>
<tr>
<th>Expression vector</th>
<th>Scrambled PKI</th>
<th>Cx43 PKI</th>
<th>Cx43 PKI</th>
</tr>
</thead>
<tbody>
<tr>
<td>hCG (fold of control)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fusion index (fold of control)

- **Scrambled PKI**
- **Cx43 PKI**

D

hCG (fold of control)

- **Scrambled PKI**
- **Cx43 PKI**

E

hCG (fold of control)

- **Scrambled PKI**
- **Cx43 PKI**

* siRNA resistant Cx43
Dukic et al., Figure 6

A

GFP Pre-bleach Post-bleach

GFP control

GFP-Cx43

GFP-Cx43* R370E

GFP-Cx43* R370E S369A

GFP-Cx43* R370E S369D

GFP-Cx43* R370E S369-373A

GFP-Cx43* R370E S369-373D

B

Mobile Fraction (%)

GFP control GFP-Cx43 GFP-Cx43* R370E S369A S369D S369-373A S369-373D

* siRNA resistant Cx43
Dukic et al., Supplementary Figure S3
Dukic et al., Supplementary Figure S4

A. Transfection with GFP-Cx43 variants PLA

B. Scrambled siRNA

C. Cx43 / actin (arb. units)

D. pCx43-S373 / actin (arb. units)

* siRNA resistant Cx43
Dukic et al., Supplementary Figure S5

A

<table>
<thead>
<tr>
<th>Sample</th>
<th>Protein Blots</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP: GFP lysate</td>
<td>PKA-C, Cx43, R370E, S364A, IgG</td>
</tr>
<tr>
<td>IP: GFP lysate</td>
<td>PKA-C, Cx43, R370E, S364A, IgG</td>
</tr>
<tr>
<td>IP: GFP lysate</td>
<td>PKA-C, Cx43, R370E, S373S, IgG</td>
</tr>
</tbody>
</table>

B

Expression vector
- Cx43
- GFP
- ezrin
- actin

C

GFP Pre-bleach Post-bleach

* siRNA resistant Cx43