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Chapter 1
Introduction

Melody, moving downstream.

A string of barges

Just lit against the blue evening

The fog - giving each light - a halo
Moving with the river but not the drift

a little faster perhaps,

or is it slower?

A singing

Sung if it is sung quietly

within the scored crashing and the
almost inaudible hum impinging
upon the river’s

seawardness.

- Denise Levertov

1.1 Introduction

Many people think of melodies as having contours. The association between
musical melodies and the visual representation of a contour—an arch, a rainbow,
a zigzag line, a circle, and so on—appears to be united in our minds, and
represents an essential quality of melodic identity. Lessons in songwriting often
teach students how to diversify their thinking by creating contrasts with contours,
although there are few formal methods to analyze contours, and they are mostly
based on the analysis of sheet music.

‘Contour’ also has signification beyond the visual representation of music.
Be it the evocative nature of optimistic arch-like melodies of theme songs of
Disney princesses, the use of large arch-like leaps of a sixth or above in the
‘princess’ songs, ranging from Somewhere Over the Rainbow from the Wizard of
Oz to Mulan’s Refiection, or the linear contours in Alban Berg’s compositions, as
discussed by [Perlelp. 86, and the descending contours of many lament songforms;
melodic contours have signification for us beyond just being musical artifacts.
Representations of contours on paper range from neumes and squiggly lines
drawn above musical notations to remind the reader of the contours of a musical
phrase, to representing these phrases with hand movements during improvisation,
as is done in, for example, the Hindustani musical tradition.

In this thesis, I investigate why we think of melodies as contours, and how
this differs from symbolic or score-based representations of melodies. A primary
objective of this thesis is trying to understand how people move to melodies. I



1. Introduction

come to this from the perspective of a vocalist, which is my entry point to these
research questions.

1.2 Motivation

I started thinking about melodic contours and the embodiment of music when
I studied Hindustani vocal music as a child. While improvising, musicians
would use elaborate hand gestures to accompany melodic phrases. When I was
new to this musical genre, it seemed as though only experts were allowed to
use gestural improvisation upon mastering the style. However, regardless of
their expertise, different singers use various styles of gestural elaboration that
communicate improvised melodic phrases to the audience, through their hands,
heads, and facial expressions. These movements not only serve a communicative
function, but they also assist the process of singing through the manipulation of
resonance centers, and facilitating breath supply. During lessons, my teachers
would illustrate nuances in the melody with hand movements, which helped
me understand the phrasing faster than in their absence, an experience that
is well documented by several learners of this style . Over
time, movement-based representation seemed the only way to understand the
intricacies of melodic phrasing.

When I learned operatic music, however, this particular method of using
visual shape to understand melody was completely absent. I also noticed that the
body was used differently in this cultural context. The idea of cultural body use
has been explained in research p.77). The vocabulary of gestures
and visual metaphors for melodic shapes that are integral to Indian music are
simply not the ones used in operatic singing. Instead, melodies were visualized
using shapes that related to the resonance centers in the body activated in
different vocal transitions. Students like me, in trying to replicate the body
movements from classical Indian music to operatic singing, ended up influencing
the articulation of the voice in this new style. I wondered why this might
be—what is the relationship between the singer’s body and the melody? How
is melodic imagery related to abstract shapes? What are the different ways in
which melodic contour is enumerated, understood, and used? Furthermore, I
was interested in the intersubjectivity in the experience of these shapes. How do
people differ in their conceptualizations of melodic shape, and why?

Experiences like this with my training as a vocalist led me to read research on
the use of hand movements in Hindustani music, and their semiotic and cognitive
implications. While researching this topic for my master’s thesis, I came across
the semiotics of these gestures and their pedagogical function. I analyzed video
recordings of performers singing the same set of ragas, to understand their specific
use of hand gestures to represent rhythm, vowels, and phrase termination.

Although my masters’s research project on this subject was restricted to
Indian music, the concept of melodic shape is not. Visual representations of
melodies and melodic contours are found in places ranging from ancient notation
forms, such as neumes, to modern music visualizers; melodic shape appears to

2



Research Objective and Research Questions

be a robust concept that requires further investigation in parallel with research
on how the body is used to express this motor imagery. I have investigated these
shapes in this thesis, using a set of vocal melodic stimuli, and have asked people
to respond to the music physically, using actions. Inevitably, this subject deals
with how we remember and imagine melody, which in turn, is also influenced by
the affective content of melodic inflection. I have brought together the aspects
of contour dealing with motor imagery, melodic memory, and melodic affect in
this thesis by presenting articles that deal with each in different ways.

I have used real sound recordings as stimulus material. Much research done in
the are of melodic contour perception and analysis involves the use of isochronous
melodies using MIDI and symbolic representation. However, by using isochronous
and symbolic melodies, we lose out on a range of information that contributes to
melodic contour perception. In order to avoid this, I have used signal processing
methods and continuous motion capture to reflect on the multimodal nature of
melodic contours. Ultimately, the goal is to learn more about melodic, and by
extension, pitch perception.

1.3 Research Objective and Research Questions
The primary research objective of this thesis is to:

Understand the role of embodiment in melodic contour perception
using the sound-tracing experimental methodology.

The following postulates form the basis of the questions explored in this thesis:
1. Melodies have contours or lines.
2. Melodies and lines are thought of as having movement.
3. This movement is imagined and can be represented physically.
4. We learn about melodic perception by studying these movements.

From this primary objective, the following research questions emerge:

RQ 1: How do listeners represent melodic motion through body
movement, and how can we analyze motion representations of melodic
contours?

The primary objective of this thesis is to understand melody through motion.
I explore the idea that the vocabulary for melodic undulation is tied to the
language of describing melodies. When we ask people to represent these contours
without the use of language, what do we find, and what do these findings suggest
about contour perception?

To fulfil this objective, I asked people to “draw” these contours in air, and
recorded them using motion capture technology. Motion traces were then
analyzed and cross-compared to reveal patterns in the movements.
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In this thesis, I have referred to people’s intentional body movements as
movement, and the data captured from these movements as motion, from their
use in systems for motion capture. I believe that the term movement intrinsically
references intentionality rather than motion. As such, I have been consistent
to this distinction between movement, as it is performed, and motion, as data
gathered from body movements, which could pertain to motion with or without
intentionality. The word trajectories is used to represent the motion traces in
motion data, pertaining to body parts that are tracked using markers.

RQ 2: What are the characteristics and applications of motion
representations of melodic contours?

Since contour representations rely on imagining contour movements as shapes, it
is only possible to reflect upon phrasal shapes in prospectively or retrospectively,
trying to anticipate or remember the memory of such a shape. Melodic shapes
may also be context dependent, and differences in vocal styles and genres can
influence tracings. This information is typically lost when we transcribe melodies
down to discrete pitches, and play them back from, for example, a MIDI sequence,
which is a common way of conducting contour-related experiments.

RQ 3: How can we test if motion related to melodic contours is
consistent: a) within participants, and b) across participants?

Comparing the motion representations of contours of several people to find
commonalities between these contour representations, I analyzed if the motion
representations of participants can be modeled individually, representing
consistency of a mental model of melodic contour.

Another sub-objective is to develop technology for the analysis of sound and
movement pairs with each other. This involves creating toolboxes and libraries
that facilitate the analysis of sound and motion. The work done to achieve this
objective includes the creation of a stand-alone library to analyze motion capture
data from sound-tracings and various features from those data.

RQ 4: Can we build a system to retrieve specific melodies based on
sound-tracings?

Could our understanding of sound-tracings and melodic embodiment be used to
build systems that would be able to retrieve specific or similar melodies? This
problem might help add to both the gamut of interactive interface literature as
well as music information retrieval applications.

Can the answers to research questions from 1-3 can provide data that can
help build a retrieval system to explore this question. Such a system would
require learning between two different paired modalities. For this, it would be
necessary to model tracing-based representations and variations well.

4
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1.4 Approach

Interdisciplinarity

I draw on research in music cognition to investigate the multi-modal interactions
between music and movement, and contribute to the computational methods
for analysis. The aim has been to combine these approaches, which are already
interdisciplinary, to deal with music information using state-of-the-art algorithms
and tools, and to investigate both their fit for the human transliteration of data,
and also the other way around. Melodic grammar and perception has been
modelled in a number of ways algorithmically to perform tasks that are quite
simple for humans to perform, such as identifying melodic similarity.

Owing to its interdisciplinary approach, this thesis handles terminology from
three domains: auditory perception, motor action, and abstract imagery and
its geometry. The central idea is that melodic contour perception gives rise to
shape imagery, which is realizable through motor action. In other words, there
is something movement-like about melodies, and we can think of them as having
a geometric structure.

There are three levels of sound and movement representations handled in this
thesis: physical, digital, and perceptual. Physical representations of sound and
movement are included in the data from direct recordings. Digital representations
of sound include transcriptions of melodies and transformation of contour data
into the symbolic domain. Perceptual descriptors of sound and motion include
computational models that mimic perceptual qualities, such as ‘smoothness’ of
movement and ‘loudness’ of sound.

More specifically, for auditory descriptors, I refer to three different levels of
concepts: the acoustic, psychoacoustic, and musical. Acoustic analysis includes
features that are calculated mathematically; for example, the energy of a sound
signal or its spectral features. Psychoacoustic features can also be approximated
through computational methods, such as perceptual loudness of a sound signal.
Musical features of a sound stimulus are different from these, and may be
embedded within a musical culture; for instance, cadence or specific intervals.
They may also be psychoacoustic approximations that are understood as having
a ‘musical’ quality, such as melody or intervals.

This research deals with human body motion, or the ‘response’ material
for the perceived qualities in melody, as data that could be purely physical or
perceptual. Analysis of these data involves, for example, the notion of an effector,
which refers to any body part that might be involved carrying out a movement
(hands, legs, the head), or an object held by or attached to the body, such as a
wand. Whether body movement is measured using cameras, motion capture, and
so on, also dictates how the data are obtained, and what these data can show
us. In this thesis, I mainly present motion capture data, which gives precise 3D
positions using infra-red markers. Some measures calculated from these data are
physical, such as ‘Quantity of Motion’, whereas others are based on modeling
movement perception, like smoothness. As such, this is comparable to acoustic
and psychoacoustic features. The details of motion features are explained in

5
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Chapter [6]

Despite how far research on melodic modeling and pitch perception has
progressed in recent decades, there is a lot more about melodic contour perception,
and its entanglements with speech, that we do not yet comprehend or have been
still trying to model (Schmuckler| 2004). The key tenets of embodied music
cognition explain how we might understand nuances of sound perception when
we understand how the body reacts to sound and music in the environment, as
several studies about beat perception and bodily entrainment have shown.

Through this thesis, I have approached melody in a similar way. What can
our knowledge of embodiment add to our understanding of melodic perception,
and how can we use it to inform music information related systems? How can
we improve interactive interfaces for the creation of music using this knowledge?

[Nymoen et al.| (2013) have explored the ideas of “active listening”, where
we control listening to musical stimuli using our bodies, by using devices to
track body motion. This can help us actively control for example, the speed of
playback, triggering samples, and so on using movement. In research involving
both movement and music, these elements have often been treated separately
. Even if we do understand music-related movement well, the
question of how it informs music analysis could still be answered and understood
in ways that allow us to explore the embodied nature of melodic perception. For
instance, by designing experiments that pay attention to our natural instincts
for representing music in the context in which it is heard with our bodies. Or
in other words, to incorporate embodied listening into the practice of music
analysis is a goal of this work.

Limitations and Scope

I have focused on analyzing melody motion data pairs in various different ways
that best illustrate spontaneous melody-motion associations. The broad results
of this study imply that metaphoric thinking is natural to most participants,
regardless of their explicit experience with movement and melodic motion. I
explain the details of movement metaphors in Chapter [4

Even though this thesis touches on theoretical perspectives in speech—prosody,
and contour perception in speech, I am unable to get into the experimental
analysis of melodies across speech and music due to time constraints. Still, I find
it important to mention a range of studies in this domain, because exaggerated
contours of speech-melody form an important part of our early experiences
with melodic contour. But the extent to which these experiences contribute
to cognition of ‘musical’ melodies is widely debated (Patel, 2010} Zatorre and|
P012)

The melodic stimuli used in this thesis are from four different music-cultures,
being classical vocalise, scat singing, Hindustani classical singing, and the Sami
joik. Despite this, this work does not involve cross comparisons of melodic
grammars within these music-cultures. However, I do discuss implications of
the participants having prior knowledge about the use of the body in some
of these genres. But the experiments are not intended to highlight ‘cross—
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cultural’ differences; they are not designed to be able to comment on them, and
socioeconomic and geocultural factors are outside the scope of this thesis.

Some findings of this thesis are also relevant to understanding gender
differences in a movement analysis context. While it could have been interesting
to comment on gender differences in music related movement, it is outside the
scope of this thesis to discuss these findings in light of gender theory. I will focus
instead on the findings from the data analysis that are directly connected to the
research questions.

1.4.1 Open Science

All the articles published in this thesis are open access. In addition, the data
sets and codes for running all experiments have been documented and released
online. In this way, This makes the work comply to the principles of open access,
and open data. The papers, code, data, and descriptions have been released on
my website at

http://tejaswineek.github.io

1.5 Thesis Outline

The thesis consists of two parts. The first part is an introduction to the theoretical
frameworks, research motivations, methods, and experiments conducted. The
second part is a collection of papers published in various peer-reviewed journals
and conference proceedings. In the summary section of the thesis, I introduce
the articles and elaborate the key findings of the research.

The main problems posed in this thesis relate to body movement and melody.
Chapters and [4 offer an overview of the theoretical motivations and key
concepts surrounding the interaction of music and motion, specifically melodic
contour. Chapter[5]describes the data sets and experiments conducted. Chapter 6]
presents the main frameworks or the disciplinary areas that inform the work in
this thesis, including analysis methods and technologies used. Chapter [7] provides
a summary of key results in each of the appended articles, and additional results
that were not included in the articles for various reasons. In addition, Chapter [7]
offers a discussion of how the research questions raised in this introduction have
been answered, and presents applications of the research done, elaborating on
future work.

All papers published in this thesis are openly available, not just on the
university website; they are written as open access articles. The data sets are
also publicly available and released at links mentioned in Chapter [5] and on my
personal website. Appendix 1 describes details of the experiments including the
stimuli, and details of motion capture. The code written for the analysis is also
open source and accessible on my personal website, and described in Appendix
2.






Chapter 2
Melody

Actually, almost any note
can be played if
there is a melodic shape to the line.

- Bob (2004]p. 24)

2.1 Introduction

The above quotation summarizes how many musicians think about improvisation:
music as melodic shapes rather than as notes. Jazz improvisation is often a
combination of several practiced ‘licks’ and phrases in the repertoire of an
improvising musician, which are played in different combinations, and over
different scales. I find this interesting because melodies are considered both, a
cluster of intervals as well as a contour unfolding over time, as if the contour
properties overrule the effects of the intervals. But do they?

Think about a familiar melody, say, Twinkle Twinkle Little Star. When
remembering a melody, many people recall it ‘as a whole’, at a faster pace
than when they would actually sing it. However while speeding through the
melody, they do not distort the durations of the notes in the melody
. People also recall the melody by imaginining singing it under their
breath, but the speeding up aspect is most interesting to me. In mental recall
of melody, people are less likely to have a clear image of the actual intervals,
and may be more invested in the act of singing through the contour. To me,
this demonstrates many properties of melodies in our imagination: they are
compressible and expandable, and they are transposable to any key and octave.
A melody is accessible to us as one holistic object, with its contour, form, and
rhythm embedded in the melodic entity or phrase. This property of resilience
is reflected in our ability to tolerate badly sung renditions of known melodies.
We are capable of smoothing over details in a melody when we are listening to,
for instance, children trying to repeat a melody that they do not know well. As
such, Mintzer’s quotation rings true—the melody is what it is, as long as the
line holds its shape. So, either the melodies themselves are robust, or we are
forgiving of melodic distortions, or both.

Exaggerated contour explorations are particularly common in infant babble—
a slow exploration of the apparatus of enunciation, from vocables and vowels to
non-speech sounds. Children repeat melodic contours and melodic phrases over
and over during play. These infant melodies are essential to the development
of speech and hearing. Specifically, contour acquisition is equally important
to understand emotional nuances of speech as it is for remembering musical
melodies. Whether our nuanced understanding of contours is developed for
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either speech or music is not a question this thesis explores; throughout history,
though, researchers have wondered about the crossovers between speech melodies
and song, song-like speech, and speech-like song in various musical cultures.

Classic examples of the speech—song illusion include Sometimes Behave So
Strangely by Diana Deutsch, where a broken replay of these words somehow
makes the phrase sound like a tonal melody, to the point that if the phrase
is encountered within a speech excerpt, it automatically sticks out as a ‘song’
(Deutsch et all [2008] [2011)).

The idea of speech—song is not new, especially to the internet generation,
as speech and interview excerpts can be easily transformed into catchy songs
by mobile applications. Every time a fragment (such as the ‘So Strangely’ one)
that we learn to hear as a tonal melody plays, we switch to the song mode of
listening on hearing the first syllable, even before we hear the whole melody.

This property of recall for familiar melodies makes them a lot like objects
or icons—identifiable from the onset and resilient to variability. This holistic
perception of a melody is what I have chosen to work on as the theoretical goal
of this thesis. Why is it that melodies are understood as a whole, and we are able
to think of them as stable shapes, while simultaneously understanding how these
melodies unfold in time. These properties are similar to the phenomenological
understanding of geometry of shapes, about which I go into detail in the next
chapter.

In this chapter, I introduce the central theme of this thesis: melody. In
Section I show the interconnections between speech melody and melodic
cognition, and how we sometimes hear speech melodies as having musical qualities.
In Section 23] T explain five essential characteristics of melodies and how they
relate to melodic contour. I also discuss how melodic entities are established
in various music cultures, the peculiarity of vocal melodies, and the connection
between verticality and melody. I detail what specifically about contour is of
interest thereafter, in Section 2.5

2.2 Speech Melody

Is there melody in speech? The ups and downs in speech intonation across
different languages are studied in detail in linguistics as prosody and intonation.
Prosody refers to the suprasegmental properties of speech, such as the modulation
of voice pitch, the durations and stresses of syllables, and fluctuations of loudness;
the pitch—curve-like properties are studied more frequently as intonation. The
connection between speech melody and musical melody has always been at the
forefront of discussions on the definitive aspects of melodies. To quote Bolinger,
“Since intonation is synonymous with speech melody, and melody is a term
borrowed from music, it is natural to wonder what connection there may be
between music and intonation.” (Bolinger and Bolinger] [1986| p.28)

Speech is often also accompanied by gestures: by movements of the hands,
head, or body (McNeill, [1992)). The relationship between speech melody and
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co-speech gestures will be discussed in detail in Chapter [d] Here, I will discuss
contours of speech melodies in more detail.

The systematic study of speech accents and speech contours across different
languages may not directly be related to the study of contours in musical melodies.
However, intonation contours are studied using fundamental pitch extraction
and by annotating high and low points in order to discuss contour families in
different languages (Ladd} 2008} Bolinger and Bolinger} [1986; [Wittmannl [1980).
I would like to draw upon this approach for discussing musical melodies. But
musical melodies are mostly studied in the form of pitch transcriptions and
symbolic notation, and traditionally, contour analysis is not usually researched
unless the research is explicitly about melodic contour.

2.2.1 Prosody

The word ‘prosody’ can be traced back to ancient Greek. A combination of
two words that meant ‘towards song’, it was used to mean ‘song sung to music’
(Nooteboom|, [1997)). Prosody generally refers more to the timing-related elements
of speech, rather than pitch levels. For example, in a rhyming poem, the timing
of a metrical foot is used to give rhythmic sense to spoken words, as seen in
poetry from Shakespeare and Kabir, to Matsuo Basho and Kendrick Lamar. In
clever poems, such as Jabberwocky, Lewis Caroll plays with pseudo-words to
make poetic sense, so long as the prosodic context is maintained. Using event-
related-potentials (ERPs) in the brain, [Pannekamp et al| (2005)) found that
prosodic, and not segmental cues are responsible for phrase-boundary detection
in language.

Another interesting example is that of auctioneers’ speech. Studies done on
auctioneers and their rapid speech reveal that they use a programmatic language
subset, that requires rehearsal of fast utterances in order to be able to reproduce
that speech quickly. Vowels and syllables fuse with each other, in a phenomenon
referred to as coarticulation , which gives rise to a new speech that
almost sounds intelligible but requires familiarity and training to comprehend.
Even though the contents of their speech are rooted in the basic principles of
the operating language (Kuiper and Haggol [1984]).

The above examples show how our perception of an utterance as ‘melody’
does not require that it belongs to a scale or tonality framework. We are capable
of understanding and appreciating speech utterances as melodies, using contour
profiles to guide us.

2.2.2 Intonation

In linguistics, intonation refers to three different levels of understanding
phonological organization p. 1-6): suprasegmental, referring to
pitch, stress, and quantity; post-lexical, which refers to pitches, whole phrases,
or sentences; and linguistically structured, referring to how sentence- and phrase-
level intonational features interact with the variable states of the speaker (for
example, degree of arousal and so on). A four-level structure containing linguistic
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segmental, linguistic suprasegmental, paralinguistic, and kinesic features is
described in spoken communication . This is split into proximal
and distal attributes. The study of ‘distal’ attributes of language, such as
intonation, is often considered to be suprasegmental and above. This means that
intonation conveys the meaning in a certain set of contexts, rather than words.
For example, the way in which we understand that a statement is a question,
even if we do not hear the words, is because of the intonation contours codified
in the spoken contour even in the absence of a question word.

There is usually a consensus on intonation curves across native speakers
of a language. Despite this, large variations in intonation are understood as
dialects of any given language across its geographical spread. We even perceive
pseudo-language, or imitations of language, as passable based on intonation
contours. In a research article, Mehler and Dupoux| (1992) found that babies as
young as four days were able to distinguish between intonation patterns in their
mother tongue and a foreign language. Mora suggests that “discourse intonation,
the ordering of pitched sounds made by a human voice, is the first thing we learn
when we are acquiring a language." p.-149). Intonation, however, is
not explicitly musical or a speech melody with a musical purpose. In essence,
three properties are said to separate speech melodies from musical melodies

(Patell |2010)):

1. Declination: The presence of fixed sentence-level contour structures for
spoken languages, which are different for different languages.

2. Tonality: We perceive tonal relationships in most musical melodies, but
not in speech melodies.

3. Diversity of linguistic intonation: Speech melodies may contain a larger
number of ‘intervals’ than musical melodies.

Micro-inflections in intonation are essential to understanding emotional affect.
Picking up on a friend’s mental state even before they have articulated it
for themselves, questioning someone’s enthusiasm based on the tone of their
affirmation, and so on, are just some examples. This topic has gained much
traction lately, especially in the era of ‘smart’ voice assistants such as Amazon
Echo, Google Home, and others. Computational analysis of affect perception
in speech melodies will probably become more important in the future, in
applications such as robotic caregiving.

2.2.3 Model for a Speech-Song Spectrum

I would like to propose a model for analysing a range of genres, and musical and
speech forms, to understand the many forms of melodic and poetic utterances
on a continuum between speech and melody in Figure 2.1} If we consider the
extremes of the spectrum to be ‘full speech’ and ‘full song’, then several forms
lie in between. I have tried to classify the forms more related to rhythmicity and
prosody, such as poetic forms with a fixed number of syllables, several forms of
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chanting that contain rules for syllable pronunciations, and perhaps an overall
contour framework.

Sprechstimme

Everyday Speech Laments Tunes
Chanting
Rap
Poetry Recitative Musical Melodies
Speech Song

Figure 2.1: Speech—Song spectrum. In this figure, I have tried to represent the
many forms between speech and song. Most categories and their place on this
spectrum are not assigned without debate; this figure is only indicative.

Somewhere in the middle are the operatic forms, such as recitative, which
is written as musical scores, but are dialogues by the characters, propelling the
story, and Schéenberg’s Sprechstimme. Then there are the more song-like rap
melodies, with contour directions that must be obeyed. Rhythm alone does not
propel rap music, but the contours of the phrases are also important to the
style. Laments in some traditions are based on singing through pitch contours
over and above ‘hitting pitches’ . To the very right are musical
melodies. Melodies without text specially use the voice idiomatically as a musical
instrument, are placed to the very right. The proposed model is not perfect,
but it is the start of what we could think of as a spectrum from speech to song,
and it is interesting to discuss how some phrases, upon repetition, move to the
extreme ends of this spectrum.

2.3 Musical Melody

Melody is often described as the ‘salient’ or ‘hummable’ musical line, often found
in higher pitch registers than the ‘rest’ of the music. Despite this operational
definition, we hear melody in many sounds around us, such as birdsong, poetry,
and repeated fragments of speech. It is interesting how melodies, with their
pitched and rhythmic identities, are often described as lines; in turn, these lines
are described as having contours, which means that they have an outline, or
contour, that unfolds over time. I would like to stress, in particular, that I am
mainly interested in the holistic nature of melodic perception. In discussions
about melodic typologies, especially contour typologies, musicologists often focus
on pitch classes and pitch relationships. However, linguists generally use fewer
categories of pitch levels to describe linguistic intonation. So, how is musical
melody studied?

In a chapter titled 'Pitch and Pitch Structures’, in the book FEcological
Psychoacoustics, Schmuckler| (2004) endeavors to provide a framework for pitch
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perception from an ecological perspective. This approach draws primarily from
the work of J. J. Gibson from the 1950s, and has found multiple applications,
particularly in explaining visual perception and movement. An approach with
ecological psychoacoustics encourages us to study perceptual properties at the
behavioral level. Schmuckler states that in order to adapt this approach into
a meaningful study on pitch perception, we might focus our attention instead
on the apprehension of pitch objects—perhaps study melodic objects and how
we hear them. In this thesis, I find it important to study melodies ‘as they
are heard’ from different cultures, and as they are vocalized or sung, instead of
trying to reinterpret them as isochronous sequences.

Additionally, it is important to locate the experiments in this thesis at the
right level in the hierarchy of musical importance. Many experiments on pitch
perception take a bottom—up approach, studying the perception and cognition of
single tones and the organization of scales in experimental conditions. However,
as Schmuckler points out, “The alphabet (an alphabet of pitch materials to
which the rules for creating well-formed patterns are applied), however, is often
defined in terms of tonal sets, implicitly building tonality into the serial patterns"
(Schmuckler| 2004, p.282). Although tonality determines the well-formedness of
melodies, it certainly does not reflect the ways in which, for example, children
play with melodies.

In general, melodies are understood as the salient, linear, and hummable
monophonic abstractions of musical expression. In polyphonic and homophonic
music, melody is often written as the topmost voice. The Concise Ozford
Dictionary of Music defines melody as “A succession of notes, varying in pitch,
which has an organized and recognizable shape.” (Kennedy et al., [2013]). The
key takeaways from this definition are the following words: 1. pitch, 2. organized,
3. successive, 4. recognizable, and 5. shape.

2.3.1 Pitch

Melody, in its everyday definition, is said to comprise pitches. Pitch has an
everyday description—the “stuff music is made up of'—and is defined as being
that attribute of music which can be ordered on a scale from low to high
p.71). Pitch and melody rely on each other for their definitions circularly.
Using the words ‘low” and ‘high’ to describe pitch sets the stage for considering
pitch perception as directional, and moreover, as having spatial orientation. Many
languages describe pitch in terms of dullness and brightness, suggesting that this
perception of brightness corresponds to the periodicity, and by extension, the
frequency of sounds (Shayan et al. 2011)). Modeling pitch successfully requires
an understanding of how pitch is perceived, and how it behaves in different
musical contexts.

Frequency and Pitch Models

Frequency—mathematically defined as the number of repeating cycles of a regular
signal; and pitch, are related but different. Pitch is a psychoacoustic component,
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while frequency is a physical measure. Psychoacoustic components rely on
perception to be realized. This means that pitch does not exist without a listener.
Studies have revealed much about pitch perception, including the auditory
perceptual scale for pitch discrimination, or just-noticeable-difference, which
varies in the range of human hearing.

In and of itself, a pitch model can be a mathematical abstraction of pitch
processing, a physical model of the hearing apparatus, or the description of
neural firing in response to pitch stimuli. What we get from a model depends on
what it is built for, and what we wish to obtain from it. De Cheveigne describes
models and what they are useful for:

A very broad definition [of a model] is: a thing that represents
another thing in some way that is useful. This definition also fits
other words such as theory, map, analogue, metaphor, law, etc., ...
“Useful” implies that the model represents its object faithfully, and
yet is somehow easier to handle and thus distinct from its object.
Norbert Wiener is quoted as saying: “The best material model of a
cat is another, or preferably the same, cat.” I disagree: a cat is no
easier to handle than itself, and thus not a useful model. Model and
world must differ. (de Cheveigne, 2005, p.3)

Since pitch is a psychoacoustic (not a physical) phenomenon, some have
argued that it is impossible to model pitch without a mind. However, models
that closely approximate how pitch is abstracted are used for various applications.
Most models for pitch estimation annotate absolute pitch, but as humans, we
seem much better at approximating relative pitch.

Computational models of pitch perception rely on an understanding of the
apparatus of pitch perception, which is curious in the case of auditory perception.
Pitch perception remains stable despite missing fundamentals, or even when
the bottom-most fundamental partial is missing from the spectral analysis.
Pitch is perceived as stable over varying factors, such as amplitude, duration,
spectra, and duration of stimulus. Melodies are also stable over a range of factors.
Transpositions do not, for example, throw us off—we can identify melodic phrases
in a wide range of transpositions. Moreover, melodic phrases remain unchanged
when played on a range of instruments, and sometimes, distortions of scale and
intonation do not disrupt the identification of melody. Lastly, we are able to
recognize a melody as ‘the same’ across a large range of time variations. This
means that we are able to perceive structural embellishments as external to
melodic identity. Thus, we are seemingly able to construct a skeletal schema for
melodic identity that is extremely robust.

Pitch Perception

We understand speech intonation, and melody through variations in pitch. The
study of pitch perception, in trying to understand the local effects that melodic
contexts have on pitch, incorporates a wide range of questions that encompass
the breadth of our hearing spectrum. Being able to abstract a fundamental
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pitch or an approximation of a fundamental frequency from a wide range of
timbres and spectral shapes seems to be a unique property of human hearing.
Physiological models of pitch deal with the shape and biological properties of
the cochlea, and the coding of tonotopy in the cortex. Algorithmic models try to
compute pitch using time- or spectrum-based signal processing methods. Pitch
perception and melodic contour are closely related, but some differences we
significant.

Melodic contour is clearly present in both music and language perception,
but it is hard to find an inclusive definition of melody that applies to both
language and music. Broadly, contour is defined in the same work as “a melody’s
pattern of ups and downs of pitch over time without regard to exact interval
size' p.99). Experimental research has suggested that contours are
a lower-level perceptual feature, in that we acquire it in early childhood
. This research also shows that infants are sensitive to directional
changes in melodies. In 1994, Dowling et al. experimented with identification
of unfamiliar or unknown melodies, to understand the role that contours play
in their recognition. Participants in Dowling’s study also used contour and
intonation distractors, which were similar stimuli to the target melody. It was
reported that contour-distractors were more often confused to be the target
melody than intonation-distractors. Early ethnographic research on melodic
contour types focused on identifying contours in different musical cultures
land Fischer} [2011)), and mapping the frequency of contours in contour typologies.

Mysteries of melodic contours are relevant to this discussion. Contours are a
coarse-level feature that we acquire very early in childhood is well known. Infant
directed (ID) speech contains highly exaggerated contour profiles compared
to adult directed (AD) speech. These experiments show that while ID and
AD speech do not differ in prosodic shape, the contour profiles themselves
contain a high level of emotional exaggeration in ID speech (Trainor et al., [2000).
Acquiring coarse categories for prosodic meaning is important for the verbal,
and by extension melodic, development of children. Melodic contours also play
an important role in emotion detection in speech. In his research, Ross studied
a case with clinical difficulty in processing affective speech prosody
[1990; Ross|, [1993)). Huron also argues for, on the one hand the co-occurrence
of musical acuity and social development in genetic disorders such as Wilson’s
disease; and on the other end, the connection between autism and proclivity to
absolute pitch perception, and difficulty in ‘getting into’ music, is also observed.
Melodic perception is essential, thus, to understanding affect in speech and
music.

2.3.2 Organization

The organization of pitch and pitch structures is a key factor in determining the
‘musicality’ of pitched material. The organization of pitch structures includes,
broadly, the following components: key, tonality, temperament, scale, and
grammar.
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Key and Tonality

A musical key refers to the perception of adherence of a piece of music to a
single tone, around which the scale and other notes in the music seem to revolve.
In tonal music, this single tone is the tonic, and the property of adherence is
described as tonality. The tonic, or the key center also appears to be the stable
pitch level; when there is a sense of ‘resolution’ in the music.

Tonality refers to the arrangement of pitches in a hierarchical order of
perceived relationships and stabilities. It also refers to an understanding of a
stable ‘key’. When a melody is constructed in a tonal framework, tonality dictates
how and where a melody rests, and how its constituent notes are interrelated.
A large amount of research done in this area is on the framework of phrasal
grammars makes up. Many experiments on octave perception have tried to
understand the perceptual organization of pitch classes.

Temperament

The intonational relationships between different tones in a melodic scale are
referred to as temperament. Intonation deals with the ratios between different
notes in an octave. In equal temperament for example, octaves are divided into
12 equal parts, so that every note is more or less equally out of tune.
designed experiments to identify interference of logarithmic and linear
temperaments on contour perception in absolute and non-absolute pitch listeners.
She found that contour and temperament affected the recognition of melodies,
but that listeners apprehend contour even when they encounter unexpected
intervals.

Scale

Scale refers to the arrangement of intervals in tonal melodies. In western
music, major and minor scales are most commonly used; however, this is not
representative of most music in the world, which features a large diversity of
intonations and scales.

If the mode of presentation of a melody is changed—for example, Happy
Birthday is played in a minor key—we can discern it as the same melodic sequence
but with a different ‘flavor’. An iconic melody changes its identity more if the
contour is dramatically different than if the scale or mode of presentation is
altered. In the latter case, the melody retains its contours. Studies by
show that contour is the principle factor for identifying melodies.
Dowling also shows that inversions, retrogrades, and other melodic operations
make the same melody harder to recognize, indicating that contour, or the
time-unfolding properties of pitch, take precedence over scale in the recognition
of melodies.
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Grammar

Expectations of tonality rely on our exposure to certain musical grammars.
‘Probe tone’ experiments are often used to test tonal expectations; for instance,
an incomplete melody is completed using a probe or question tone, and participant
ratings help us understand how the question tone is perceived in the context of
the melody (Tillmann et al. [2000; Tillmann and Bigand, |2010)). Cross-cultural
probe-tone experiments have helped reveal the extent of cultural learning for
phrase completion (Curtis and Bharuchal, [2009]), while neurological activation
studies involving probe tone experiments have also identified brain-areas tracking
tonality (Janata et al., 2002)). Some studies have also found that the tonic is
not uniquely stable in major-mode melodies (Curtis and Bharuchaj, 2009; West|
, and the dominant and subdominant were also rated equally
high in some cases. Eerola et al. (2002) tested two sets of melodies with a
total of 40 from two sources, with 27 isochronous sequences (Eerola et al., [2002).
They selected factors from probe tone experiments that are known to influence
melodic expectations. Isochronous melodies created using a generative model
based on ’typical transition probabilities” were tested in the experiments asking
participants for continuous ratings of the predictability of melodies.

To model phrasal grammars of western tonal music, several important ideas
have been proposed, but most of these models are for a particular musical style,
culture, or time period. For example, Generative Theory of Tonal Music
land Jackendoff] [1987)) deals with a linguistic analysis approach to western tonal
composition. Melodic grammars are also proposed for understanding specific
composers or their work, such as for Bach chorales (Baroni and Jacoboni,
. Schenkerian analysis, originally to analyze tonal music has been modeled
computationally modeled as context free grammar (Temperley] [2011). An
influential model for melodic grammar that also incorporates ideas from music
cognition as a whole is Narmour’s model of melodic expectancy [1992),
also called the Implication Realization or the IR model. The core fundamentals
of this model are that any melodic interval that is not perceived as closed, is an
implicative interval, (Schellenberg et al., 2000} p.296), while between the following
tone and the second tone after the implicative interval is the realized interval. The
theory claims that these implications result from five perceptual predispositions
that we learn from exposure to music: registral direction, intervallic difference,
registral return, proximity and closure. As such, the ’s IR model
is the most generalized model of melodic grammar, that has been used to
investigate cross-cultural melodic expectancy (Krumhansl et al., [2000; [Pearce]
land Wiggins|, 2006)).

The aforementioned features: key, tonality, temperament, scale, and grammar
are organizational features of melodies. The recall and recognizability of melodies
is often studied through experiments in music psychology.
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2.3.3 Recognizability

We recognize melodies that have a wide range of variabilities, but what is the
baseis of our recognition? It has been shown through research in psychology that
scale and contour influence our memory of melodies. Explicitly tonal melodies
are generally easier to remember than atonal melodies (Dowling], (1978} [Vuvan|
land Schmuckler, 2011; Bod, 2002). Research also supports the enhancement of
melodic memory when the stimuli are vocal (Weiss et al., 2012).

proposed a model to understand how melodies are stored in
long- and short-term memory, using stimuli with scale and contour variations.
The first component is the perceptual-motor schema of the musical scale. The
second component, melodic contour, is shown to function independent of pitch
interval sequences in memory. Dowling also underlines the importance of contour
while repeating melodies from unfamiliar scales.

Melodic Identity

What do we call a recognizable melody? In the preceding sections, I have
presented research studies on melodic contour that have primarily been conducted
in the West, with western classical music as the main source material. While
discussing these studies, I have explained how contour identity helps us recognize
melodies, despite variations. But how much do melodic properties have to vary
before the melody becomes unrecognizable as the original? It turns out that this
depends upon musical style or musical culture. Cambouropoulos) (2001) discusses
this in relation to Quine’s observation about the identity of any object in a
discourse. Quine states that objects that are indistinguishable from each other in
a given discourse are identical for that discourse . Cambouropoulos,
extending this discussion to melody states that a melodic phrase might be
identical only to itself if pitch is most important in the musical context, if we
imagine a theoretical context where no variation is accepted in melodic identity.
But if instrumentation is most important, then the same pitches played on
different instruments might not be recognized as the same melody.

I would like to define a melodic entity here as a melodic phrase that we can
identify in repeated hearings, and recognize its belonging to a larger melodic
framework; for instance, a song. I define melodic framework as a collection of
melodies, including composition rules in some cases, that represent an identifiable
style. A symphonic piece that features a thematic melodic entity might represent
a framework. Other examples of melodic frameworks include grammatical
arrangements of melodies, such as in a raga or makam; a tune family, such as
those found in Irish folk music; or a style of improvisation, such as in an era of
jazz. Elements of personal style can also be recognized as melodic frameworks,
while other symbolic references may be attributed to melodic frameworks; for
example, a general descending pattern might represent sadness in some contexts.
A melodic entity could belong to one of many melodic frameworks, as I have
illustrated in Figure 2.3

I make a distinction here between melodic phrase and melodic entity. A
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Figure 2.2: A melodic entity might be stable, as discussed above, to several
kinds of variation. Which kinds of variations are most relevant depends upon
the musical culture within which a similarity judgment is to be made.

Rhythmic Variation

melodic phrase can be defined as a melodic unit that has a self-contained quality.
That is, a melodic phrase can be understood as independent. Every melodic
phrase may or may not be a melodic entity, as I have described above, but
this purely is related to the use of a phrase in a particular context, and not its
structural properties.

In Figure I elaborated upon variations that are tolerable in most musical
cultures across repeated hearings of the same melodic entity. Most often,
variations in the transposition of melodies and in the simplification of ornaments
do not affect the recognition of a melodic entity. In some cases, melodies with
lyrical variations might be treated as essentially the same. Melodic entities with
changes in rhythm and duration may be treated as versions of the same. Finally,
melodic entities may be treated as the same even with the addition of ornaments
and embellishments.

Based on the assumption that melodic entities have acceptable variations, as
described in Figure we can understand which cultural or functional contexts
tolerate which of these variations. I present some examples below. Even though
practitioners often study the melodic contours of music through annotated notes
on paper, the majority of musical cultures in the world rely on learning ‘tunes’
as a key part of the tradition. This means that melodic entities are subject to a
large number of variations, and their integrity is largely determined by whether
practicing musicians decide is or is not the same melody. James Cowdery, writing
about Irish folk tunes, puts it succinctly:

“How should we characterize this entity? The problem is academic
and not practical: a folk musician is content to call “The Blackbird”
a tune. The scholar, however, realizing that all musicians play it
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Figure 2.3: A melodic entity can be recognized as belonging to one of several
melodic frameworks. A framework might mean different things according to the
musical context, as illustrated.

slightly differently and that many never even play it identically twice,
eventually comes to the same impasse that Gavin Greig described.
Like him, we must ask, “Then where is the tune?”” (Cowdery|

1990, p.44)
While discussing tunes that are orally transmitted, (1951) notes

variations in American folk music traditions. Other more computational models
have also tried to describe variations in melodic entity, such as|[Bohak and Marolt|
(2009) calculating folk song variations, and [Volk et al.| (2007) using rhythms
to identify various folk songs. |Savage and Atkinson| (2015 also analyze tune
families using sequence alignment methods.

While a tune in orally transmitted folk melodies can have these types of
variations on melodic entity, what happens if the melodic variation is restricted
by the lyrical style? An example of this can be found in Cantonese Opera.
Cantonese is a tonal language, which means that all vowels have pitch levels, or
contours, that distinguish them from each other. Cantonese has six different tone
shapes, that are categorized into two main families: ‘light” and ‘dark’. Within
these categories, there are three shapes for rising, falling, and flat tones. This
affects the melodic formation of sung poetry in Cantonese, and has a direct effect
on melodic contour .

Compositionally, Cantonese opera uses a limited number of ‘tunes’ to
accompany different texts. The structural identities of these tunes are discussed
in terms of melodic contour in books on Cantonese opera ; Yung
compares melodic and vowel contours, remarking that melodic contours in these
arias often follow the contours of the vowels.

Contours are an important part of learning improvisation in the two largest
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classical music traditions in India—Hindustani and Carnatic music. A framework
called the raga framework in these traditions, provides scale material as well
as melodic grammar to an improvising musician. There are hundreds of ragas
that have individual scale and grammar combinations. Establishing a raga’s
identity relies on the use of scales, which often have different notes in ascending
and descending contours. Rules and ornamental features, that can be loosely
described as a compositional grammar, must be remembered while presenting
each individual raga. There are many instances of different ragas accomodated in
the same scale, where the distinguishing factor is the unique melodic grammar.

Within the Hindustani tradition, there are four recognizable contour types
mentioned in theory. Together, they are called varnas. The four contour types
are ascending, descending, flat, and varying. Although descriptions of these
contour types exist, they are usually included in the study of ragas as general
guidelines rather than as formal analytical methods.

The accompanying hand gestures in improvised singing have been studied
using different approaches, from anthropological to cognitive (Clayton and Leante,
|2013} [Pearson), [2016} [Paschalidou et al.| [2016; Kelkar] 2015). Studies reveal that
contour properties and contour metaphors play a role in our cognition of melodic
nuance, and in communicating this nuance during improvisation.

Melodic identity can be defined in various ways as described, and
computational applications in which people evaluate melodic similarity usually
are within one of the above contexts. For example, we might have a task to look
for variations of folk tunes, the ground-truth data is a tune-label, while another
task might be related to identifying a raga based on pitch contours.

Melodic Similarity

In their 2005 paper, Hoffman et al. review a large number of music information
retrieval (MIR) related papers on melodic similarity. They classify the approaches
into: 1. contrast models, 2. distance models, 3. dynamic programming, and 4.
transition matrices.

A more recent paper by [Cheng et al.| (2018]) evaluates parameters in a
recurrent neural network (RNN) for melodic similarity analysis. The authors
compare string edit distance, n-gram based measures, alignment-based methods,
and RNN features using cosine distances for RNN parameters. The authors
also note that changes in scale and duration do not impact melodic similarity.
Instead, similarity measures appear to be invariant to musical transformations
such as changes in pitch and tempo (Miillensiefen et all 2004} Urbano et al.l
. For this, the authors state that using symbolic music as opposed to audio
signal might be simpler.

[Dalla Bella et al.| (2003) found that people are generally good at recognizing
familiar melodies on hearing only a few notes. This happens regularly while
listening to the radio or music from any unfamiliar source—we do not wait for
the whole melody to unfold to identify it. The authors found that with just five
to seven notes, both musicians and non—musicians are generally able to identify
the correct melody.

22



Musical Melody

2.3.4 Succession

How are we able to separate melodies into different phrases, and what defines
a phrase? Several models have been proposed to automatically segment long
melodic sequences into phrases. The idea of melodic succession relies on the
separation of a stream of continuous melodies into constituent phrases. However,
all these phrases are not remembered equally, nor are equally important, and we
have several concepts to define and determine the phrases that matter more to
us, such as a theme, a motif, an idea, a leitmotif, and so on.

(1960]) applied 12 types of distortions on familiar melodies to find
out which of these distortions was most effective in obscuring melodic identity.

Many of the distortions are common compositional tools used to expand and
grow thematic material. White found that linear transformations were least
likely to disrupt identification, while nonlinear transformations and temporal
reversal were most disruptive. This indicates that succession is a core element
of melodic cognition. He also found that melodies were just as easily identified
from the first six notes as they were from the first 24 notes.

[Frankland et al| (2004) present experiments that compare the empirical
parsing of melodies predictions, derived from the four grouping preference rules
of GTTM (generative theory of tonal music) (Lerdahl and Jackendoff, [1987). The
experiment was to ask participants to annotate melodic segments, and they found
within-subject consistency of boundary placements across three repetitions.

[Pearce et al| (2010]) present a model for a phrase segmentation task, and
summarize the musicological and psychological background to the task, and
review existing computational models. They propose a new model for phrase
segmentation called IDyOM, based on statistical learning and information
dynamics analysis. In another paper, Pearce et al.| (2008)) introduce a melodic
segmentation model based on an information dynamics analysis of melodic
structure. The performance of the model is compared to several existing
algorithms that predict annotated phrase boundaries in large corpuses of folk
music.

Other phrase segmentation models include: GTTM (Lerdahl and Jackendoff]
[1987)), the local boundary detection model (LBDM) (Cambouropoulos, [2001)),
Temperley’s grouper model (Temperleyl [1999), phrase structure preference
rules (PSPRs) (Temperleyl [2011), Tenney and Polansky’s temporal Gestalt
model (Tenney and Polansky, [1980), melodic density model by
, and Bod’s supervised learning approach to analyze grouping in melodic
boundary detection 2002). IDyOM or Information Dynamics of Music
model (Cambouropoulos| |2006|) accounts for musical segmentation from a given
melodic ‘surface’. The beginning and ending points of prominent repeating
musical patterns influence the segmentation of a musical surface; the discovered
patterns are used to determine probable segmentation points in the melody.
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2.3.5 Shape

The fifth defining attribute is melodic shape. I will discuss the phenomenological
understanding of a shape later in Chapter [3] Melodic shape is often initially
understood in the context of pitch direction. Henceforth, I will use shape to
mean melodic contour. Melodic contour is described as the general shape of
a melody or a melodic phrase (Kennedy et all [2013]). Some words that are
used interchangeably with contour are shape, configuration, outline, or simply
up-down movement. For instance, uses melodic configuration
and outline to mean melodic contour. In this thesis, I will refer to the shape
properties of melodies as melodic shape and melodic contour. Some contour
typologies defined in this work are compiled in Figure based on previous
research (Hood| [1982; |Adams, 1976} [Seeger, (1960} [Schaeffer et al., [1967b} [Vasant),
. It is evident that all these contour shapes are represented as lines that
move primarily from left to right, and the direction of pitch is represented
vertically.

Seeger XX Xy Xyy XyX

/S N NV NS IV
Schaeffer Impulsive | Iterative Sustained

___ | Mwwwn
Varna Asc:;dir‘\g D@ng Stationary \%
Hood Arch Bow Tooth Diagonal

N [T | /O
Adams Repetition |Recurrence

/N NN

Figure 2.4: Range of melodic and sound contours from previous studies from
Seeger| (1960); Schaeffer et al.| (1967a)); Sarmal (2006); [Hood| (1982); |Adams| (1976)

Pitch and Verticality

Pitch is often discussed as rising and falling. However, the up—down metaphor
for pitch is not present in every language. In fact, several languages use other
binaries to represent pitch—bright—dark, thin—thick, small-large, light-heavy,
and so on—as described by |[Shayan et al.| (2011). Some studies have investigated
cross-modal pitch correspondences by studying pre-verbal infants who tended to
look longer at visual stimuli in which an object moving up corresponded with a
sound that rose frequency (Walker et all |2014).
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[Rusconi et al| (2006) proposed the SMARC effect (Spatial-Musical
Association of Response Codes) to identify our tendency to associate high pitch
and the upward direction together. This was investigated in a cross-comparison
between English and Catalan speakers; in the experiment, the words for spatial
elevation and pitch description were congruent and incongruent
[Prieto et al. |2017)). Results showed a longer response time for speakers when
the word and spatial elevation direction were incongruent. Even though infants
prefer congruent stimuli—that is, a rising pitch and a rising motion, and a falling
pitch and a falling motion are more engaging—it takes longer developmentally
to be able to discriminate between ascending and descending pitch stimuli. In
work by |Stalinski et al.| (2008)), people in five age groups (children aged 5, 6, 8,
11, and adults) were given three-note sequences to identify a difference where
only the middle tone was higher or lower. Performance improved from the five-
to the eight-year-olds, reaching the adult level at eight years. For all age groups,
noting whether two pitch profiles were the same or different was easier than
direction identification. The study also reports that, “Twenty-two percent of the
children gave verbal or gestural responses to the examples that were considered
correct. However, only 5 percent of the children used the traditional music terms
"up and down" or "high and low" correctly." [1977).

These studies seem to show that although the association of pitch and vertical
height might precede language acquisition, the embedding of pitch descriptors
as vertical motion establishes this further. However, we must note that most of
these studies were carried out using synthetic ‘pitch’, usually sine tones or MIDI
notes, played on a piano. As such, matters can get complicated once we enter
the domain of melodic phrasesk, especially those sung.

Phrases themselves are categorized in many languages and cultures as having
inherent contour properties, which means that their internal pitch relationships
are interpreted as shapes. As such, we may ignore some notes in favor of
preserving structure. For example, a phrase with a long appoggiatura may
simply be interpreted as bow shaped due to the weight of the last tonic landing,
even if it is small in duration. On the other hand, a vibrato with a constantly
changing pitch parameter of even up to a tone might be interpreted simply as a
single note—a stable horizontal line-shaped contour. This means that in addition
to pitch properties, some kind of a weighting of pitch values based on context is
essential to understand the shapes of melodies.

Notation

In the earliest notation systems in western classical music, tiny squiggly lines
above texts indicated the melodic contours that were to be sung to the text, in
order to remember the melodies of the songs. Gradually, this is said to have
evolved into an indicator line, which set the stage for modern notation as shown
in Figure 25 This indicator line later developed to five several lines on the
staff-each position on or between the lines is related to fixed pitches. Ornamental
symbols are still notated using shapes; for example, the trill, mordant, glissando,
all have shapes that look like representations of the contour shape.
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Figure 2.5: On the left, we see Palestrina’s ITubilate deo universa terra" psalm
verses in neumes first published in 1593 in Offertoria totius anni, no. 14. It
is argued that neumatic notation is derived from cheironomic hand gestures
indicating changes in pitch. On the right, is an illustration of how neumes
evolved into mensuration notation, and finally as modern notation.

Modern notation with staff lines, and by extension MIDI-based notation,
forms the majority of data sets for musical content retrieval and analysis. Contour
analysis typologies are also based on notation, with discrete pitch and duration
values. However, not all music can be transcribed into staff notation. Moreover,
modern composers within the classical tradition have relied heavily on graphical
notation to communicate musical ideas. My favorite example of this is John
Cage’s vocal piece, Aria, where the notation is just a collection of flowing colorful
squiggly lines that are to be interpreted by a singer. We also find the use of
contour-based notations in Tibetan chants, as shown in Figure
. Material in these chants is often rhythmically stretched.

2.4 Other Aspects of Melody

So far, I have explored the idea of melody by its defining aspects of pitch,
organization, recognizability, succession, and shape. There are other aspects that
influence melodic perception that I would also like to highlight. Primarily, this
includes the special place of vocal melodies, and vocal learning in the cognition
of melodies.

2.4.1 Voice and Melody

The definition of melody centers on our ability to sing—in essence, the ability to
collapse a large quantity of acoustic and musical information into one hummable
line. When the melodic line is clearly differentiated from other instruments, this
task is trivial. But there are several musical cases where the melodic line is
shared among many instruments, two or more melodic lines exist, or the timbre
of the melody unclear and so on.
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Figure 2.6: Tibetan Yang notation from silkscreen prints, ca. nineteenth century.
This form of notation goes back to the sixth century (Collectionl 2019)

An early study observing spontaneous singing by children was conducted by
(Moorhead and Pond, 1941} p.2). Some of their main findings are interesting to
begin this discussion with:

“(a) Experimentation with vocalizations, and with songs was the
norm and that children do not organize their music in conventional
tonalities as adults do, (b) children’s songs were plaintive compared
to the songs adults would have them sing, (c¢) chant appeared under
conditions of freedom-alone or in a group, (d) physical activity was
directly related to rhythmic chant, (e) solo chants were like heightened
speech in which the music conformed to the words, group chants were
in duple meter and the words conformed to the rhythmic structure,
(f) children explored instruments first before melodic and rhythmic
patterns emerged, (g) instrumental improvisation was characterized
by asymmetrical meter, followed by duple and triple meters, then
steady beat.”

Comparison studies of spontaneous singing in children are hard to carry out
because of various differences between children’s musical and verbal abilities,
regardless of age. Spontaneous songs are also harder to keep track of and record.
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However, human beings need exposure, play, and experimentation to develop
their vocal apparatus. This is explained by the vocal learning hypothesis.

Vocal Learning Hypothesis

The main claim of the vocal learning hypothesis is that human beings (as well as
songbirds) learn from a process of vocal imitation, relying immensely on auditory
feedback. This is in contrast with contextual learning in vocal communication,
where we learn to identify or react to sounds as a result of our experiences with
them. Early vocalizations have little to do with mature song or speech, but form
the building blocks of language cognition and musicality .

Research has also demonstrated that we are better at remembering vocal
melodies than instrumental melodies (Trehub et all [1984; [Weiss et al., [2012]
. This hypothesis has been tested time and again with speakers of different
languages; it has been replicated across age groups, levels of expertise, and so on.
This implies that the voice is functionally and biologically significant. Studies
also suggest that there is greater pupil dilation in response to vocal stimuli,
showing increased attention or arousal (Weiss et al., 2016).

Yet another interesting aspect of the voice is the margin of error we tolerate
in the precision of vocal intonation. Dubbed as the ‘vocal generosity’ effect, it
describes the tolerance of intonation differences in comparison with the tolerance
for other instruments (Hutchins et al., 2012). Perhaps the note positions in
exaggerated vibratos are a by-product of such an effect.

Subvocal Rehearsal

Subvocal rehearsal, or the vocal imitation of speech and sound, is an important
aspect of the auditory working memory. Studies have shown that suppressing
subvocal rehearsal directly affects our capacity to remember sequences
land Craigherol 2004} |Jacquemot and Scott), 2006; [Kohler et al.l 2002). Recent
developments in electromyography have also enabled us to build systems to
recognize subvocal speech (Jorgensen and Binsted, 2005). I offer more on this in
the section on auditory working memory in Chapter [4]

Birdsong

The study of birdsong changed in the 1950s, after World War II, when the sound
spectrograph became available (Marler and Slabbekoorn) 2004,p. 1). Since then,
it has become possible to represent the fundamental frequencies in birdsong
using ‘sonograms’. One reason that birdsong is relevant to music and melodic
cognition is because both birds and humans are ‘vocal learners’. This means that
songbirds require auditory input to learn ‘normal’ birdsong.

There is, however, a critical difference. In a 2016 paper, (Bregman et al. 2016)
measured the ability of starlings to recognize pitch sequences that remove spectral
structure. Humans are generally good at recognizing transpositions of melodies
as instances of the same melodies. However, this paper finds that spectral shapes,
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rather than melodic contours, predicted whether starlings recognized melodies.
argues that this indicates that birdsong is more analogous to
speech perception rather than music, although it is clear that humans and birds
may have evolved to develop an acuity for melodic perception, albeit in different
ways.

2.5 Discussion

Several studies have remarked on the nature of signification in melodic contour
in a number of song styles. Mangaoang et al. (2018]) write, in their analysis of
Philippine disco-opera, how the contours of the heroine’s song are constructed
to remind one of the Disney princess songs. also writes about
Karelian lament songs, and talks about descending, terraced contours as being a
contour-motivic device to communicate grief in these songs. Researchers have
proposed and demonstrated the links between music perception and the body
time and again (Leman| [2008}|Godgyl [2003} |Gritten and King] [2006] 2011} |Goday},
12010; [Jensenius et al. [2006), as I will discuss in the following chapters.

In the sections above, I have established that contours are a feature unique
to melodies in the following ways:

e it is important for us to remember and index melodies

e it is a low-level feature acquired early in childhood

e it is closely related to prosody and speech—affect comprehension, and

e contour stability is closely related to the perception of melodic stability.

Perception of pitch and melody are highly interrelated, and I want to understand
melodic contour and its perception through the body in this thesis. I think a
systematic study of this can shed light on cross-modal mechanisms, and help us
understand pitch perception in the context of melody. The objective is, thus,
to focus on the perception of dynamic pitch. In this chapter, I hope to have
established that melodic perception is the ecological site of studying dynamic
pitch perception. As such, I have demonstrated some peculiarities of melodic
cognition to suggest that melodies are understood as holistic entities.

2.6 Summary

In this chapter, I have presented a review of melodies as speech, and then musical
melodies. I have described their essential properties, and how melodic contour
plays an important role in melodic recognition and identification in both speech
and music; although studying speech contours and musical contours typically
has different approaches. Identifiable melodies in speech and music laid out on
a spectrum demonstrate the various levels between the binary of speech and
musical melodies. Melodic entities, and their belongingness to various melodic
‘families’ is culturally determined, as a result of which, their similarity and
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categorization also have various flavors. Vocal melodies are special, and melodic
character is contingent on the ‘hummability’ of melodic lines. Finally, I have
highlighted how acknowledging the cross-model imagery of contour as shape can
contribute to our understanding of melodic perception. In the next chapter, I
will discuss auditory and motor imagery, going further into this cross-modal
connection.
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Chapter 3
Auditory and Motor Imagery

Shape without form, shade without colour,
Paralysed force, gesture without motion;

Between the motion

And the act

Falls the Shadow

- The Hollow Men, T. S. Elliot, 1925

3.1 Introduction

In The Hollow Men, one of the most famous poems of the twentieth century, T.
S. Elliot emphasizes the gaps between the ideas of shape and form, gesture and
motion, idea and reality, and motion and action, saying that between these ideas
lies uncertainty. Having shape and gesture without form and motion, lacking
intentionality, becomes a characteristic of the ‘hollow’ men. According to the
poem, it is the act and quality of movement that defines one’s "human-ness", or
how much of a person one is.

The central aim of this thesis is to explore the multimodal relationship
between melody and motor imagery, by discussing the cognition of melodic
contour as a trace. In order to discuss the various aspects of this relationship, I
would like to first discuss how humans perceives shapes within the visual and
motor modalities, and why the notion of shape is essential to cognition.

Imagery, or the reproduction of multimodal sensations in the mind in the
absence of stimuli, forms the basis for the theoretical framework used in this
chapter. Psychologists have been studying mental imagery from the time of the
Ancient Greeks to the Modernists (Kosslyn et al., 2006| p.4), although much
of the research in this area has dealt with visual imagery rather than other
modalities. In this chapter, I will focus my attention on auditory and motor
imagery, and establish the context for auditory and motor cognition within the
phenomenology of imagery.

3.1.1 Terminology

The following terms occur frequently while discussing visual and motor imagery
in relation to contours:

)

1. Line: Contrary to the notion of a line in Cartesian geometry, where ’line
refers only to straight lines, line here simply refers to a continuous path of
points. In this sense, a melodic line refers to the continuous arrangement
of notes in succession.
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2. Shape: Shape generally refers to a geometric arrangement—an autonomous
entity accompanied by a mathematical definition. However, when referring
to melodic shape, I allude more to the shape-like properties of individual
melodies, as invoked in a geometrical sense.

3. Trajectory: In the context of motion capture studies, trajectory in this
thesis refers to the path that a particular marker traces in space. As such,
it is different from a line because it refers to the actual motion history of a
moving agent, while a line refers more to the intended trajectory.

4. Contour: The contour properties of melodies include the visual and gestural
images invoked by directional features.

3.2 Auditory Imagery

It is a very common experience to be able to hear a tune in one’s head, or to hear
somebody’s voice in one’s head. Just as the ‘mind’s eye’ is said to represent visual
imagery, what we see when we are imagining something visually, the ‘mind’s
ear’ is a term used for auditory imagery, and when applicable, musical imagery
(Godgy and Lemanl, [2010). Many studies have demonstrated the activation of

the auditory cortex when the mind is engaged in auditory imagery (Zatorre and|

2005). Recalling melodic excerpts engages the auditory cortex in a
similar way, as has been demonstrated earliest through PET scans of the brain

(Halpern and Zatorre, [1999)).

Contour representations and auditory imagery have been explored in
experimental studies on the recall of melody p.2). The debates
on mental imagery revolve around the nature of internal representations of
melodies, and how these representations are accessible to us.

3.2.1 Auditory Scene Analysis

It is often said that unlike the eyes, the ears have no lids. As such, we are
constantly hearing what is happening in our environment; we can locate ourselves
in space; and we understand the density of moving objects around us, the sounds
they create, and their material properties. We can focus auditory attention on
a specific stream within the spectrum of sounds in our hearing. In his book,
Auditory Scene Analysis, attempts to explain how we segregate
an ‘auditory scene’ (unfiltered auditory information that we hear at any time)
into separate ‘auditory streams’. For example, we are able to segregate the
sound of someone speaking from the noise of a fan in the room. Further, we
can distinguish a known voice from a cacophony of many simultaneous speakers.
At the same instant, we can also identify the speaker, and perhaps even their
temporary physiological state; for example, we know from their voice if they are
joyful, or are tired. Bregman’s analysis is about the auditory stream, and not
explicitly about musicality, but it illuminates analysis of musical hearing as an
auditory stream.
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3.2.2 Ecological Pitch Perception

To address pitch perception from an ecological perspective, we have to question
as to what end contour memory might have been selected for. What advantages
does it give us? The way we perceive a fundamental pitch in a complex sound
appears related to how the partials in a sound are distributed in terms of loudness.
When we hear strong or loud harmonics, we tend to recognize the lowest loudest
partial as the fundamental. A musical illusion called ‘the missing fundamental’
shows how we perceive a fundamental when the harmonics are strong, even if the
fundamental partial is removed from the spectrum—our cognition compensates
for this missing element.

Isolated tone perception and melodic perception are to be understood as
separate because of many temporal and perceptual factors. First, upon rapid
presentation, individual tones seem to fuse together to form iconic melodic
motifs that we remember much better than series of tones whose succession is
artificially broken or disturbed. As de Cheveigne writes, absolute pitch in humans
is rare; although it can be acquired with a lot of training. The computationally
harder and more abstract task of analyzing relative pitch, however, is actually a
natural ability. We are naturally good at relative pitch perception, and interval
perception. However, computational models of pitch detection based on relative
pitch need to be developed (de Cheveigne, 2005)).

Melody relies on pitch as the main variational material, or changes in pitch
over time are primarily what makes a melody. Even though this is true,
we perceive a plethora of features from melodic stimuli that influence pitch
perception. For example, our perception of pitch is different in sounds with
simultaneously increasing pitch and loudness, and where this relationship is
inverse. However, it is noteworthy that in debrief interviews of experiments
asking participants to trace melodies, participants claim to be tracing pitch, and
do not mention timbre, dynamic envelopes and other sound features. However
this is a circular argument. If we accept pitch as the aspect in melodic music
that moves, then we have to rethink how pitch extraction algorithms tend to
model the fundamental frequency as pitch.

3.2.3 Conceptual Shapes and Music Theory

suggests that thinking of musical sounds as shapes is a valuable
way to develop a holistic approach to the analysis of musical sounds. He stresses
the importance of holistic approaches to musical sound and musical cognition
which is more than traditional music theory offers. Godgy defines conceptual
shapes as the spectral distribution and temporal evolution of various aspects of
a musical object.

In ‘Knowledge in music theory by shapes of musical objects and sound-
producing actions’, p. 90) discusses the notion of shapes in musical
objects, and how this idea of shape could be used to understand the holistic
perception of musical objects. Here, shape is invoked as in common parlance; the
drawing of dynamic envelopes is one example, as are wave forms used to represent

33



3. Auditory and Motor Imagery

different sounds. Godgy suggests that thinking in shapes is already the everyday
working method of accessing useful categories in various domains; within sound
and music, for example, there are sound envelopes, topological shapes such as
helices, and graphical analyses of compositional structures. Melodic shapes, as
has been explained in the previous chapter, are ubiquitous too, and could be
explored analysis-by-synthesis (Godgy and Lemanl [2010, p.243).

This thesis examines melody as the site of execution of our cognition of
contour. Speech intonation is another area where our cognition of contour is
useful to us—it aids our understanding of languages, dialects, affect, and so on.
As such, melodic music and melodies are not primarily used in research on the
cognition of linguistic contours.

3.3 Gestalt and Shape

Mathematician and phenomenologist René Thom writes, “the first objective is
to characterize a phenomenon as a form, as a ‘spatial’ form. To understand
means then, first of all, to geometrize" p.6). Thus, we first present
most models and architectures geometrically, to give them spatial meaning. To
arrange them in relation to one another is to clarify the conceptualization of
the model itself, whether it relates to abstract concept visualization or more
concrete and data-driven methods. This is perhaps why we draw figures and
conceptual maps to elaborate on concepts in conversation, and most analytical
models have a visual or a geometric component.

3.3.1 Melodic Gestalt

Christian von Ehrenfels, one of the founders of Gestalt theory, uses melodies as
a starting point to illustrate how Gestalt perception might function, as
land Schneider], 1997,p. 46) has described. Ehrenfels writes:

Let us suppose, on the one hand, that the series of tones t1, t2, t3,

tn on being sounded, is apprehended by a conscious subject S
as a tonal Gestalt (so that the memory—images of all the tones are
simultaneously present to him); and let us suppose also that the sum
of these n tones, each with its particular temporal determination,
is brought to presentation by n unities of consciousness in such
a way that each of these n individuals has in his consciousness
only one single tone-presentation. Then the question arises whether
the consciousness S, in apprehending the melody, brings more to
his presentation than the n distinct individuals taken together.
(Von Ehrenfels| |1988| p.85)

(1960, p.698), while elaborating upon ecological psychology, also refers
to the use of melodic stimuli in psychology experiments :

“The Gestalt psychologists pointed out that a melody is perceived,
but they never suggested that a melody was a stimulus. The notes
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of the melody were taken to be the stimuli. But what about the
transitions between notes, or the ‘transients’ of acoustical engineering?
Are they stimuli? The investigators of speech sounds seem to think
so, but the auditory literature of sensation is vague on this question.
And if a short transition is a stimulus, why not a long transition or
temporal pattern?”

In the Gestalt framework, continuity plays a big role in perception. This
means that we are likely to perceive as salient, sensory events or objects that have
the semblance of continuous motion, rather than those that jump haphazardly
from state to state.

argues with empirical evidence that Gestalt principles might not
be sufficient to propose a comprehensive theory of memory, and that several of
these principles are flouted when tested for segmentation, or grouping boundaries.
For example, they find that segmentation boundaries can exist even when there
is no note change. Further, boundaries can often also appear before or after
large pitch intervals than right at those intervals, suggesting that large pitch
intervals do not necessarily indicate phrasal shifts.

3.3.2 Contour Continuity and Gestalt

When our visual system encounters gaps along the edges of incomplete shapes,
it is able to fill in the gaps, perceiving subjective contours of objects that are
absent in the details of the stimulus.

Mathematical models of ‘mental gap-filling’, or contour perception of
incomplete shape patterns, are modeled on the following operative principles:

1. Isotropy: The contours that are filled in are insensitive to rotation,
translation, and scaling of the figures.

2. Smoothness: Except for corners, the contour apprehension is smooth, or
differentiable at least once.

3. Minimum curvature: The filled in contours have a minimum curvature.

4. Locality: The filled-in contours are operative only to edge shapes, and not
entire edges in cases of slight deviations.

An illustration of some of these concepts is made in Figure B.I] Models
like this can help us understand how contour filling in the mind’s eye validates
Gestalt principles. The models explained here clearly refer to actual and not
metaphorical shapes. However, similar principles should hold true for melodic
contour as well.

I wish to make a distinction between the geometric and motion aspects of
melodic memory and imagery on the basis of the extent and types of distortions
that we are able to tolerate when it comes to melodic objects. For example, so
long as the inter-event durations within a melody remain the same, we are able
to retain the stability of a melodic object even when the tempo is dramatically
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4

(C) (D)

Figure 3.1: A and B represent the property of isotropy in this illusion; the
triangle is perceived despite scaling and rotation. In C and D, with the change
of an angle, we perceive the third edge of the triangle to be slightly curved. This
alludes to the properties of smoothness and locality. The lines at the corners are
still straight lines, but the effect is of a curved edge instead.

different. Further, so long as the relative contour remains constant, we are able
to recognize a melody even if it is transposed heavily. Contour properties are
thus resilient to temporal compression, expansion, and spectral change in our
minds.

In his early writings on shape and morphe, Aristotle discusses grouping the
same ‘types’ of objects by their apparent shapes. In Aristotle’s phenomenology
of shape, these groupings are used as a measure of salience, and as a way to
discriminate between different categories by appearance (Long, 2007). Aristotle
distinguishes between the shapes of objects and their formative material, or
essence; as two distinct ideas. ‘Dogness’, ‘catness’, and other properties of living
beings are also invoked primarily by their external shapes.

3.4 Motor Imagery
Mental imagery is largely described as recreations of mental or sensory experiences

in the mind, without external stimuli; for example, imagining someone’s face,
or being able to ’hear’ a piece of music you like in your ‘mind’s ear’. There
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have been debates in the cognitive sciences about whether mental imagery
is representational or purely experiential for many years. However, neural
imaging studies have successfully demonstrated that we engage the same parts
of the brain involved in the perception of a stimulus, and imagining the same
stimulus. In other words, when we hear a song in the mind’s ear, we engage the
auditory cortex. Enactive theories of cognition explain perception as something
an organism is actively ‘doing’, instead of being merely passive .
Motor imagery, referring to the mental representations of movement, could be
considered necessary to planning and execution of actions (Jeannerod, [1995]).

Visual and motor imagery are thus related. On registering visual information
across time, we get a sense of the process of creation of the objects, and their
affordances. Our ability to respond to visual stimuli, in part, uses this ability of
ours according to this view.

3.4.1 Phenomenology of Shape

In common parlance, when referring to shapes, we mean circles, triangles,
rectangles, and other common geometric figures that we learn about as children,
as the building blocks of our first experiments with geometric abstraction. In
geometry, shapes have definite forms that are describable by mathematical rules.
However, when we say something is circular, for instance, we do not usually
mean a perfect circle. Thus, our own perceptions of mathematically strict shapes
can be adaptable to varying contexts. For example, in everyday parlance, every
instance of drawing an imperfect circle, is understood as being the same shape.

The stability of shapes in our minds is explained through the study of
morphogenesis. In (Bourgine and Lesnel [2010, p.2), the authors emphasize that to
understand a shape requires an understanding of its formation or morphogenesis.
In this view, such things as fractals, sand dunes, and waves are also shapes, in
that they have well understood geometric forms and morphogeneses. In other
words, if we understand how something is formed, we can tolerate variations
in that shape. Our perception of human and nonhuman shapes might also be
different. Natural formations, such as sand dunes or waves in the ocean, might
be perceived more as ‘living shapes’, than man-made formations, such as cubes.
Gestalt psychologists use melody as an example to explain what we think of as
shape and contour. I explain this more in Chapter

An accessible example to illustrate this point is the use of diagrams in
mathematics and computer science. The virtual or unseen is often represented,
especially in mathematical education, through movement metaphors and abstract
representations of mathematical objects. In studies involving mathematics and
gesture, authors have pointed to aspects of virtual shape apprehension that
would be impossible without understanding the geometric relationships between
objects, and movements that describe the morphogenesis of abstract visual
geometry.

The connections between the spatial representations, illustrated by gesturing
while teaching mathematics, have been written about in detail by Chéatelet

who remarks, ‘The virtual requires the gesturing hand’ (Chatelet| [1993] p.15).
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Chatelet insists that the gesture and the diagram are incomplete without each
other, and that they each participate in the provisional ontology of the other
(De Freitas and Sinclair} [2012). Chéatelet suggests that diagrams are ‘physico-
mathematical’ beings.

In this discussion, this notional, phenomenological shape is of interest to us in
the context of the experimental work that has been conducted in this thesis. The
idea of musical shape is multimodal, but quite accessible, as I have demonstrated
in the chapter on melody. However, understanding how this shape is executed
as an action merits a discussion on the phenomenology of shape abstraction and
the perception of movement within static, abstract visuo-gestural objects.

3.4.2 Neural Correlates of Phenomenology of Shape

Human beings live in dynamic environments and are in constant motion. To
receive and process visual information, our eyes make tiny saccadic movements
several times in a second, and our heads turn. Despite the jerky eye movements,
we can successfully integrate images of objects into stable entities, and apprehend
the motion properties of objects. Another property of shape perception and
imagery is our ability to scale, rotate, and transform objects. According to
Biederman| (2013)), object invariance, also referred to as shape constancy, is the
most striking feature of shape perception.

Shape constancy is modeled using shape percepts, or geons, that are proto-
shapes or shape-images; we are able to break down objects that we visually
perceive into a finite number of simpler shapes Biederman| (1987). In his original
theory, Biederman tries to understand object categorization through the process
of geometrical deconstruction in our visuo-motor system. He proposes a set of
volumetric geons (geometric ions) that serve as non-accidental primitives for
shape perception, and by extension, object perception.

Shape-based object representation, and its relation to visual perception, has
been the focus of several benchmark studies (Kobatake and Tanakal, 1994). These
findings have been modeled using neural networks in other studies (Hummel and
Biederman, [1992)). In a review paper, Biederman| (2013) describes theories of
shape-based object representation in the inferior temporal cortex and the lateral
occipital complex. Lesion and functional Magnetic Resonance Imaging (fMRI)
studies of the brain have determined that these two areas exhibit a high degree
of invariance to geon representation.

3.4.3 Lines and Movement

How do perceived shapes in musical objects relate to the phenomenology of shape
perception itself? Lines that we observe in static images, also seem to have a
direction of movement. They seem to emerge from somewhere, and go in another
direction. Even when not explicitly specified, through, for example, arrowheads,
we tend to think of lines as traversing different visual spaces.
noted , that without context, the motion direction of a line itself is ambiguous
It’s also important to note that lines, in this context doesn’t refer to the notion of
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lines in Euclidean geometry, but lines as we recognize them in visual perception,
which is lines that we perceive to pass between objects. But in the presence
of context, the motion direction of a line is determined by the shape of the
aperture that it traverses. A simple example of this is the barberpole illusion,
where diagonal lines appear to move perpendicularly due to the rotation of the
barberpole, either upwards or downwards. This has been later experimentally
analyzed by Wuerger et al.| (1996).

If we were perceiving melodies as lines, the aperture, or canvases upon
which we imagine them have a bearing on our perception on the direction of
motion, and therefore would change the way in which we trace the perceived
melodic lines themselves. This is why understanding shape perception and shape
phenomenology is critical in trying to understand sound tracings. There has
not been a lot of literature that deals with this explicitly in the context of
sound-tracings.

The experiments conducted as a part of this thesis rely on cross-modal
conversions between melodic lines and movement. This movement is different
from rhythmic musical entrainment in that the synchrony of gestural imagery is
less obvious. In the papers that comprise this thesis, we see that people have
different associations and strategies to respond to sound with movement.

3.5 Summary

In this chapter, I have elaborated on the principles of auditory and motor imagery,
which is our ability of being able to see and hear ‘in our minds’ Imagery forms
one of the foundational concepts behind picturing melodic contours as lines,
and being able to execute the line as movement. Our experience in the world,
with overlapping stimuli, and intertwined visual and auditory scenes is discussed
in Ecological Psychology, which is an important theoretical model for this
thesis. I outlined how melody as shape is a foundational concept in gestalt
psychology. Recent work on motor-mimesis and gestural sensations in audition
are also discussed. Several theories for shape perception are outlined, and the
cognitive dimensions of shape-perception from a phenomenological perspective
are explained. The experiments in the thesis lean on the methodology of ‘sound-
tracing’, which starts the next chapter, proceeding to a discussion of body
movement, and how embodiment informs music cognition.
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Chapter 4
Body Movement

... that mind-body split, you know?

The head is good, body bad. Head is ego, body id.
When we say “I," — as when Rene Descartes said,
“I think therefore I am,” — we mean the head.

And as David Lee Roth sang ...“I ain’t got no body."

- Levind (2002)

4.1 Introduction

The mind-body split is a problem that has long engaged philosophers and
researchers interested in consciousness. In the traditionalist view of cognitive
science cognition is seen as something that happens in the mind, while action
happens in the body. In this we take embodied cognition as the point of departure,
which takes the body with its active and perceptual capacities as the starting
point. In such a perspective, music listening is also grounded in behavior.

Drawing upon this perspective, Clarke’s early work on embodied cognition in
music demonstrates the motivations to consider motion as an important aspect
of music perception . In recent years, several important works on
embodied music cognition, both empirical, and theoretical have been published
as we will see in this chapter.

This thesis combines embodied cognition and music perception, with analysis
techniques borrowed from music information retrieval, biomechanical control, and
interactive music interfaces. In this chapter, I talk about the key frameworks in
my study of human body motion and its fundamental role in cognition in general,
and speech and music cognition in particular. These include key frameworks in
ecological psychology, auditory scene analysis, embodied music cognition, and
gestural imagery related to musical movement. The core methodology used in
the experiments for my work are rooted in sound-tracing, and so I will begin
this chapter discussing it first.

4.2 Sound-Tracing

Sound-tracing is an experimental paradigm that is used to investigate spatial
representations of sound. In a way, our perceptual system acts as a transducer to
‘translate’ between two modalities. Sound-tracing studies analyze participants’
spontaneous renderings of melodies to movement, capturing their instantaneous
multimodal associations. Typically, participants are asked to “draw” (or “trace”)
a short musical excerpt in air as they listen to it. Several studies have been
carried out using digital tablets as the transducer or medium of recording the
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data (Godgy et all, [2006; Glette et al., 2010; |Godgy et al., 2005} [Jensenius) [2007;
IKiissner} 2013} Roy et al., 2014} Kelkar} [2015]). One restriction associated with
using tablets is that the size of the rendering space is limited. Furthermore, as
the dimensionality does not evolve over time, it represents a narrow bandwidth
of possible movements.

Melodic sound-tracings, or manual renderings of sound-as-shape is not a task
that is taught or rehearsed. A theoretically robust model of sound-tracing must
consider the cognition of a melodic entity as a whole. By applying metaphors of
motion, on a purely linguistic level, we often ascribe physical object properties
to sonic features. Roughness or grain, for example, is the textural property of
a rigid body, which is available to us from our experiences of touching rough
objects. As an existing metaphor, it is readily transferable to our perception of
texture in a sound object.

An alternative to tablet-based sound-tracing is full-body motion capture.
This may be seen as a variation of ‘air performance’ studies, in which participants
try to imitate sound-producing actions of the music they hear
12005). [Nymoen et al|(2011) carried out a series of sound-tracing studies focusing
on hand movements across many studies (Nymoen et al., |2013), elaborating
several feature extraction methods to be used within the larger sound-tracing
methodology.

A substantial amount of work in music perception and embodiment
concentrates on rhythmic entrainment, tapping, and other time-synchronous
responses. Approaches to melodic shape cognition that take an explicitly
embodied perspective are fewer. , investigates many properties
of sound-tracings alongside their musical attributes. A significant takeaway
from this work is the differences in representation between musicians and non—
musicians’s tracings with modeling hyperparameters. Non-linearity of mapping
was also reported in the tracings. Participants mapped an attribute to a physical
axis, but they also end up representing feelings or other characteristics that the
music invokes.

The experiments conducted for this thesis deal with motion capture data
from participants, who trace the shapes of short melodies while listening to
them for the second time. This experimental paradigm of sound-tracing is a
development based on several theoretical constructs regarding body movement,
and the relationships between music and action.

In my view, the interactions here are between audition, movement, and
geometry. That pitched melodies can be thought of as lines is the interaction of
audition and geometry; however, their execution through movements of the hands
and body represents an interaction of geometry and movement with time—it
involves manual control and action planning. In essence, sound-tracing involves
translating the perception of auditory stimuli into an action that has its own
geometry, and sometimes even a recognizable shape.

An action or a series of actions performed as spontaneous rendering of sounds
can be described as tracings. We suppose that these movements reflect music-
related gestural sonic imagery, and try to understand how the dynamics of control
can influence motor action in sound-tracings. By definition, sound-tracing is
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a many-to-one mapping methodology; mapping parameters can vary and are
regulated or defined by several occurrences in the music.

4.3 Embodied Music Cognition

Embodied music cognition is a theoretical paradigm grounded in the
understanding that the body is critically important to our perception of music.
The theoretical framework draws from embodied cognition, in which perception
is explained as a feature of embodiment, and where bodily interaction is seen
as central to perception. Embodiment in musical contexts refers not only to
active motor responses such as tapping to the beat, but also to motor constraints
and actions that actively frame how we perceive musical stimuli (Lesaffre et al.
. In this model, action and perception form a feedback—feedforward loop
where action and perception simultaneously inform and frame each other.

The fundamental claim of the embodied music cognition paradigm is that
bodily involvement is crucial in human interactions with music, and therefore,
also in our understanding of that interaction (Leman et al.,|2018). Leman points
out that there is no explicit theory that is in direct opposition to embodied
music cognition which claims that music and the body are not related in music
cognition. However, this embodied music cognition framework allows us to make
explicit the role of the body in perceiving music. Music perception, in this
paradigm, is considered a reconstruction of our bodies’ interactions with the
world. The notion that sound is closely related to physical materials and actions
is central to understanding this concept. We learn early on that sounds have
sources. These sources are present in our physical environment, and this physical
world informs our ideas about acoustic expectations to a great degree.

4.3.1 Early Research on Music Embodiment

Historical work on embodied music can be traced back to music in the context
of music accompanying exercise , but empirical investigations
of embodiment are much newer. One of the first methods to systematically
study kinesthetic representation in relation to music and literary works was
called Schallanalyse; it was developed by Eduard Sievers. He distinguished
two classes of curves—general or ‘Becking’ curves and specific or filler curves
(Taletfiillcurven), which described types of musical movement based on dynamic
expression (related to loudness), and voice type (Shove and Repp) [1995| p.67).
Becking and Truslit distinguish between three basic types of movement curves:
‘open’, ‘closed’, and ‘winding’ (Shove and Reppl, [1995 p.71). These curves are
not conducting movements—they are supposed to be executed with outstretched
arms and are a means of portraying dynamics in space; the speed of the movement
and the musical tension affects the curvature of the motion path.

In 1977, Clynes developed a notion of essentic forms, which are dynamic

shapes that characterize basic emotions (Clynes| 1977). He developed an

apparatus called a sentograph, which captures finger pressure in two directions
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while listening to music. athe study showed that subjects produced different
‘sentographs’ while listening to music that portrayed different feelings. He
developed a computer program that enabled him to play music with different
agogic (related to note-stretching) and dynamic patterns. Later, in 1992, Todd
began studying the motion of the whole body rather than just the limbs or
fingers. He found evidence that motion and music were interrelated based on how
the ventromedial and lateral systems that control posture and motion, respond
to music. His study of motoric expression in the form of ‘expressive body sway’
is significant.

4.3.2 Recent Research on Music Embodiment

Movement that accompanies music is understood now as an important

phenomenon in music perception and embodied cognition 2008)).

Research on the close relationship between sound and movement has shed
light on the understanding of action as sound and sound as
action (Jensenius| 2007} [Jensenius et al., 2006). Interaction with music is a
bodily activity, influencing perception and even contributing to it. Cross-modal
correspondence is a phenomenon with a tight interactive loop—the body is a
mediator that engages in both perceptual and performative roles
IKing}, [2006, 2011)). Some of these interactions cause motor cortex activation even
while simply listening to music (Molnar-Szakacs and Overy, 2006). This has led
to empirical studies on how music and movements of the body share a common
structure that affords universal emotional expression (Sievers et al., [2013)).
[Mazzola and Andreattal (2007) have also worked on a topological understanding
of musical space and the topological dynamics of musical gesture.
analyzed contour similarity models as motivic topologies for
specific excerpts, proposing a motivic evolution tree (MET), modeling changes
in contour dynamics. These models are implemented in the Rubato software
(Mazzola and Zahorkal, [1994]).

Studies on Hindustani music show that singers use a wide variety of
movements and gestures during spontaneous improvisation (Clayton and Leante,
2013} |Clayton et all [2005; [Rahaim, 2012). These movements are culturally
codified; they are used in the performance space to aid improvisation and
musical thought, and they convey musical information to listeners. Performers
also use a variety of imaginary ‘objects’ with diferring physical properties to
illustrate their musical thought. Some other examples of research on body
movements and melody include Huron’s studies on how height to which eyebrows

are raised while singing are a cued response to melodic height (Huron and
2013). There are also studies suggesting that arch-shaped melodies

especially have biological origins that are related to motor constraints (Tierney
. According to the motor constraint hypothesis, melodic contours
that have an arch shape is the most energetically efficient to produce by the
vocal apparatus due to the increase and decrease in subglottal pressure during
vocalization (Savage et al., 2017, p.332).
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Auditory memory plays a key role in the discussion of melodic perception.
The interplay between time scales of auditory ‘units’ and how we remember
them is discussed below.

4.3.3 Auditory Working Memory

Working memory is the system responsible for the temporary storage and
simultaneous manipulation of information in the brain (Schulze et al., [2018]).
People distinguish between working memory (WM) and short-term memory
(STM); WM is the system responsible for temporary storage and simultaneous
manipulation of information in the brain (Schulze et al.,|2018)), while short-term
memory (STM) is used primarily for temporary storage. Demonstrably, it has
been shown in experiments that information being processed in the WM is
important in higher functional planning, and for long-term memory (LTM). WM
functioning with respect to auditory cognition is studied in a number of ways,
using verbal, tonal, and speech stimuli.

Baddeley and Hitch’s model of working memory, first proposed in 1974
(Baddeley and Hitchl [1974)), is typically used in connection with music and
language. The following concepts are useful in this discussion of Baddeley’s
model of working memory:

1. Visuo-spatial sketchpad: A sort of whiteboard for the mind that plays a
role in physical action planning and control.

2. Episodic buffer: This was added as a final explanatory component, as late

as 2000 (Baddeley,, [2000)), to explain the transfer of temporal objects from
the WM to the LTM.

3. Phonological loop: The phonological loop is the STM store and articulatory
rehearsal location in the WM. This enables phonological as opposed to
visual storage; the loop also engaged during subvocal rehearsal, which
involves motor activation, and even in micro-movements of the vocal
apparatus while engaging in memory storage or recall. When subvocal
rehearsal is not possible in, for example, articulatory suppression conditions,
verbal material is not remembered as well.

p.150) explains the importance of singing to memorize something,
where melody acts as a path towards remembering. This is also related to
the phenomena of having a song stuck in your head. She quotes, ‘Murphey|
defines the ‘song-stuck-in-my-head’ phenomenon as a melodic Din, as
an (in)voluntary musical and verbal rehearsal. Murphey also hypothesizes that
the Din could be initiated by subvocal rehearsal. So, for example, we are able
to rehear mentally the voice and words of a person with whom we have had
an argument. Similarly, while reading the notes taken in a lecture, we will
probably rehearse the lecturer’s voice, while at the same time we can mentally
visualize the place from which s/he was talking and even her/his gestures or
body movements."
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4.3.4 Multimodality

That we perceive the world using more than one sensory modality simultaneously
seems to be the norm rather than the exception. This idea is described as
‘multimodality’—we perceive the world through several stimulus modes at the
same time. When we see an action being performed, we expect to receive
information about the action through many different sensory modalities—we see
something, we expect a sound to accompany it, we can infer its touch, and so
on. Particularly with sound, a range of experiments have shown that significant
sensory illusions can occur as a result of our expectations. An example of this is
the McGurk effect is an illusion involving the auditory and visual modalities,
in which different, aligned visual and auditory speech stimuli, give rise to an
‘overriding’ effect of either the visual or auditory stimulus. For example, if we
hear just the audio stream of a voice saying ‘Ga’, we apprehend the syllable
accurately; however, when it is played back with a video of someone speaking ‘Da’,
our visual system dominates (Rosenblum et al., [1997)). Another example of this,
dubbed the ‘cocktail party effect’, is an imaginary cocktail party situation, with
several guests speaking simultaneously. We are able to understand someone’s

speech better if we are looking at them directly 1992). This seemingly
simple effect is highly complex from the auditory cognition perspective.

For this thesis, audition and motor action are the areas of neural processing
in special focus. For a long time, the motor and sensory cortices were thought
to function separately from each other. However, a number of studies have
demonstrated the role of the sensory and motor cortices in perception tasks
(Cheung et al., 2016). Robust neural activity in the motor cortex is observed
while listening to speech sounds.

The motor theory of speech perception, proposed in the 1960s, suggests that
“objects of speech perception are the intended phonetic gestures of the speaker”
(Liberman and Mattingly] [1985, p.2). Studies have since confirmed these findings
using various methods. A review article published in 2010 compiles various
studies on speech perception (Pulvermiiller and Fadigal, 2010), and shows that
in action studies, patients with lesions affecting the inferior frontal regions of
the brain have difficulty comprehending phonemes and semantic categories.

4.3.5 Ecological Psychology

James Gibson’s work on visual perception in the 1970s laid the foundations for
the ecological approach in psychology. This approach explores the connections
between the ecological context, body movements, and the action-relevant
information available to the perceptual framework. In this model, affordances—
the possibilities for action, intervention, or use—are key to guiding perception.
A drum is a well defined musical instrument, but in principle, tables, chairs, and
other rigid surfaces around us become ‘drums’, or can be used as drums, and as
such, having a rigid surface ‘affords’ an object to serve the function of a drum,
because of the possibilities of action.
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This model is has action embedded in the core of our interaction with the
world. argues for how this model explains our interaction in the
world parsimoniously. For example, in the visual domain, a good model for
catching a ball would include understanding the velocity, trajectory, and direction
of the incoming ball, and looking at the action with which the ball was thrown.
If our perception was based on complicated mathematics, our response times to
motor stimuli would be much longer than they are in reality.

4.3.6 Conceptual Metaphors

In their work, [Lakoff and Johnson| (1980 propose a theory for conceptual
metaphors, suggesting that the words we use to describe phenomena drawn from a
thematic vocabulary, rather than being employed at random (Lakoff and Johnson|
. For example, our word choices in certain phrases, such as ‘win’ an argument
and look ‘ahead’ into the future, represent how we conceptualize arguments as
war, and time as space. This theory is the foundation for the notion of conceptual
metaphors, not only in language, but also in paralinguistic phenomena. These
metaphors of space become apparent in gestures that accompany speech; for
instance, someone might indicate ‘yesterday’ behind their back, and ‘tomorrow’
in front of the body.

Conceptual metaphor theory (Lakoff and Johnson| [1980% 7) first suggested
that such linguistic metaphors show that many abstract ideas are expressed using
metaphors for spatial concepts. The relationship between linguistic metaphor
and spatial orientation might also extend to the link between language and
gesture. David MacNeill (1992), in his book, Hand and Mind: What Gestures
Reveal About Thought, he explores this relationship. In this book, he talks
about the nature of co-speech gestures and idiosyncratic movements of the body
that are associated with speech. He suggests that the microevolution of an
utterance may, in turn, epitomize the macroevolution of the linguistic system
from primitive gestures.

Metaphorics in gesture studies deals with gestures that serve as metaphors
for abstractions in language. A good example of this is the ‘cup-of-meaning’
hand shape, where the speaker refers to an abstract idea with a cup-shaped
gesture, which changes shape as the idea is refuted or changed. Data from several
studies related to metaphorics in gestures suggest that speakers in demanding
communicative situations—especially ones in which they had to express abstract
ideas—conceptualize those ideas in space (Enfield, 2005; Nunez, 2004; Sweetser,
1998). Such metaphorical gestures may help in the conceptualization of abstract
concepts by grounding them in space. These co-speech gestures are observable
‘referents’, even if the ideas they communicate are metaphorical or abstract.
Music, however, is semantically void and cannot by itself make concrete references.
The abstract nature of music makes it challenging to analyze gestures within any
of these possible typographies. It also makes it hard to analyze the meanings
of gestural associations. Do they represent cognitive schemas and back-end
multimodal structures, or are they an epiphenomenon, reflecting habits formed
during training?
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In his book, Understanding Music: Philosophy and Interpretation,
(2016, p.46) says:

“Of course the melody doesn’t literally move, it isn’t literally there.
But we hear it all the same, by virtue of our capacity to hear
metaphorically—in other words to organize our experience in terms
of concepts that we do not literally apply. ”

This quote rings true in the qualitative observations of the participants’ movement
in the experiments conducted for this thesis. Something in the melody is perceived
to be moving metaphorically, and can be represented through hand-movements,
using a variety of action metaphors.

4.4 Music Related Movement

Action produces sound, and action and sound are related to each other in a loop
. Sound also invokes images of action. When we hear a loud
drum stroke, we can imagine the force with which it might have been produced.
In the following sections, I discuss gestural imagery in the service of musical
imagery, and how musical gestures evoke sonic imagery.

4.41 Gestural Imagery

Godgy argues that the typology of sonorous objects can be extended to what he
calls gestural-sonorous objects . Theoretical approaches for this
might include analyzing our conceptual apparatuses, our invocation of gestural
metaphors, and so on in descriptions of sonorous objects; observation studies of
music producing and music imitating actions; and sound-tracing studies.

In Schaeffer’s work, sound types are presented with the following categories
(Schaeffer et al., [1967h):

1. Impulsive: The overall energy envelope is based on a sharp attack with a
decaying resonance.

2. Sustained: The energy envelope is based on a continuous energy transfer
that results in a continuously changing sound.

3. Iterative: The excitation pattern is built on a series of rapid and
discontinuous energy transfers, or a series of attacks that tend to fuse
into one another.

Godgy| (2018) proposed a three-part model consisting of gesture sensations
that are influenced by, and also influence, continuous sound and multimodal

gesture sensations. Godgy argues that Schaeffer’s categories apply to music
related movement and not just for analyzing sound, leading to phrase transitions
when playing between sounds in any category in the aforementioned typology.
For example, an impulsive drum stroke turning into an iterative drum trill has
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these features present both in the sound and the action producing the sound.
For music related movement, he proposed the following categories:

1. Sound producing: These movements are necessary in producing sound; for
instance, directly striking a drum.

2. Sound accompanying: Movements such as dance, walking, and sound-
tracings, which are representational or imitating movements.

3. Ancillary: Movements facilitating sound production.

4. Communicative: These movements communicate specific musical moments
to the audience.

In Godgy’s model of gestural-sonorous objects, our mental images of musical
sound are based on an incessant process of mentally following, or tracing, the
features and qualities of a sound. In this model, gestural sensations have visual
and motor components based on the biomechanical affordances of the sound
objects, and the physical constraints of our bodies.

It might seem to some that this model represents a listening scenario that
is inorganic, or not representative of our real-world musical listening behaviors.
Removed from their electro-acoustic contexts, these images of movements and
their tracings would not be accurate representations of the music. However,
while researching improvised gestures of North Indian classical music, Godgy’s
model applied even though that context has not been a part of the original
propositions of motor-mimesis.

Ornaments as Multimodal Melodic-Gestural Objects

We are never completely still until we die. Body motion is studied from many
angles and within different disciplines, including medicine, robotics, sports
sciences, phenomenology, and psychology. Embodied and enactive cognition
claims that much of human cognition is based on our ability to move and act in
our environments.

The production of sound is intrinsically related to the performance of an
action. We have to do something in order to produce a sound—hitting something
produces a sound that is intrinsically related to the properties of the materials
that contact each other, and the action that was involved in producing that
sound influences it. For example, hitting a drum with a mallet with great force,
from a distance, or gently, will produce different sonic possibilities. The coupling
of action and sound is obvious in this simplest example of sound production—a
collision of objects—and holds true for more complex actions that require the
coordination of several muscle groups and body parts; for example, singing a
tune or playing the piano.

Direct sound-producing actions are not, however, all that we do to produce
music. There are many subtler, postural, and communicative dimensions of
music related motion; for example, a pianist’s body swaying while they play a
particularly delicate passage. When we listen to an energetic drum sequence,
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for example, we mentally simulate the movements of the percussionist. In
this chapter, I unpack the different ways in which our perception of sound
is multimodal, and how we are also able to demonstrate the sound-shape
associations using our bodies.

While we listen to music, the act of tapping our feet to the rhythm—so-called
rhythmic entrainment—has been researched in great detail. The timing precision
and limbic control in our responses to different sound envelopes and different
tapping effectors have been studied more over time than the the embodiment of
melody.

In order to become proficient in playing an instrument, it is typical to practise
ornaments that constitute the building blocks of the style over and over again.
To play these ornaments intertwined in longer phrases, our execution of them
has to be ‘without thinking’. Ornamental symbols, notated using shapes; for
example, the trill, mordant, glissando, resemble the contour shapes of the sound
produced.

4.4.2 Gesture and Musical Gestures

A gesture can be defined as a movement of a part of the body, especially a
hand or the head, to express an idea or meaning. All body movements are not
gestures; there is an implicit signification associated with gestures that is not
generally associated with the terms actions or movements. Signification may
include specific hand shapes and their associated movement qualities. Figure [4.1
illustrates hand shapes that are used as mnemonic devices while teaching children,
which represent the seven notes of the diatonic scale.

Shrugging is a great example of a gesture that has a clear, universal meaning.
It is a short movement—the shoulders are raised quickly, and the palms face
upwards, as if to show that you are empty-handed. If our hands are otherwise
occupied, this gesture can be transposed into a shrug that incorporates only
the shoulders and a tilt of the head. A shrug has cultural connotations and
its associated notional description is to indicate that the person does not have
anything (in their hands). We can also execute this gesture in several time scales,
using various effectors. Thus, communicating and understanding the gesture
encompasses its culturally understood meaning, and its smooth execution.

We talk about ‘muscle memory’ in reference to tasks that we perform as
automatisms, without explicit conscious awareness. Of course, our muscles do
not actually hold memories, and procedural memory in the brain is what enables
the performance of these tasks. While gesturing, and especially while making
gestures that have communicative intent, we are able to perform these seemingly
difficult-to-describe actions—such as ‘wiggling your fingers’—easily, which is
perhaps a result of much practice. Rosenbaum points out that an innocuous
gesture such as ‘wiggling your fingers’ might seem simple to do, but once we

start to describe how to do it, the description seems complicated (Rosenbaum
2017, p. 65).

The study of gestures involves multiple disciplines: their semiotic meanings
and associations are studied as language, while their physiology and neurology
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Figure 4.1: Solfa gestures are used to help memorize intervals in a major scale.
This method has been used quite often to teach students of singing.

are studied to understand manual control. There may or may not be anything
biological about the ‘okay’ gesture, in which the thumb and index finger form
a ring and the other three fingers are splayed. But this type of gesture is
understood by, for example, the speakers of a language, or those belonging to a
particular culture. Tasks such as grasping objects can be scientifically studied in
the context of biologically important fine motor skills.

Co-Speech Gesture

Speech is often accompanied by co-speech gestures such as movements of the
body, particularly of the hands. Co-speech gestures are considered paralinguistic,
and have only recently been studied in the realm of formal linguistics. Gesturing
usually begins before speech, and plays a central role in the development of
language. The simplest example is understanding references from pointing.
Gesture studies have proposed several sub-types—iconic gestures indicate
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the shapes and sizes of the referenced objects; metaphoric gestures indicate
metaphorical qualities; and beat gestures emphasize particular words in speech.
Deictic or pointing gestures can indicate an actual object in space, an abstract
reference, or an idea. Many people think of emblems as co-speech gestures;
however, these are simply gestural icons in the shared vocabulary of speakers
of a language or members of a cultural group—for example, the ‘thumbs up’
gesture.

(2004)), in Gesture: Action as Visible Utterance, poses the following

question at its outset:

“How can a person, in creating an utterance, at one and the same
time, use both a language system, and depictive pantomimic actions?
As a close examination of the coordination with gesture and speech
suggests, these two forms of expressions are integrated, produced

together under the guidance of a single aim.” 2004, p.2)
Kendon defines gesture as ‘visible action as utterance’ (Kendonl [2004), and

describes the long neglecteed body in linguistics as a central component in the
affective processing of speech. Why do we make co-speech gestures, what is their
typology and function, and how can we study them better? The ‘noise’ is the
data, as it were. Researchers in the early twentieth century were preoccupied
with studying the origins of language through gesture. In the middle of the
century, however, this interest was deemed ‘unscientific’ 2004, p. 64).
The more recent evolution of interest in co-speech gestures and embodiment has
enabled us to further our understanding of music and acoustic perception.
What types of gestures do we use to accompany speech? In the study of

co-speech gestures, the following typology is proposed by [McNeill| (1992):

1. Beats: Rhythmic gestures that mark words or phrases as significant to the
discourse/pragmatic content.

2. Deictics: These gestures point at concrete entities or particular spaces.

3. Iconics: They depict the form or movement of physical entities, or the
physical relationship between them.

4. Metaphorics: They represent an abstract idea as if it could be held or was
located around the speaker—for example, a small object you hold in your
hands to mean ‘this idea’.

While studying co-musical gestures, in improvised, especially vocal music, we
find that such a typology of co-speech gestures can prove useful to understand

and describe gestures accompanying music 2016)).

4.5 Action-Sound Perception

Jensenius proposes a model of action—sound couplings, and the chain of
production of action—sound for sounds that we perform intentionally. In this
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Figure 4.2: Similarities between the action—fidgeting model and the posture-based
motion planning theory.

model, a sound producing action has an excitation phase that is preceded by a
prefix and followed by a suffix. provides a broader background of
sound producing action.

In [Jensenius| (2007)’s model of music-related movement, in controlling a
musical instrument, movement phases, actions, and fidgeting might come together
to form a chain of several movement units, action units, and fidgeting units.
An action is distinguished from fidgeting in that the former is specific and
goal-oriented. In this model, the term gesture is totally avoided, in order to not
conflate it with its multiple meanings. Instead, a four-part model is provided:

1. Movement: The act of changing the physical position of a body part or
object

2. Action: It denotes a movement unit or chunk. This is a goal-directed
movement with a particular outcome.

3. Fidgeting: Non goal-directed movements, perhaps unintentional or
subconscious movements, are classified as fidgeting, or ‘movement noise’.

4. Interaction: The reciprocal influence of the moving parts in an action
stream.

In this type of model, the goal-directed nature of certain but not all movements
is key. Jensenius represents this as a stream of action-fidgeting—action. This
feature of the model is similar to a different theory of bimanual control, called
posture-based motion planning theory, which I will explain in the following
subsections.

4.5.1 Ideomotor Theory

Ideomotor theory proposes that whenever an action is executed, the mental
representation of the movement itself is linked to the representation of the effects
in the mind (Herbort and Butz), [2012)). This means that once this relationship is
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established, merely anticipating the effect allows us to create the appropriate
movement. A review of the current state of work on ideomotor theory can be
found in (Shin et al.l [2010).

Laboratory experiments have shown that holding an object, such as a gun,
in one’s hand greatly increases the chances of spotting the same object in videos.
Another experiment showed that visual targets are perceived as being nearer
when they can be touched with a handheld tool (Rosenbaum, 2017, p. 97).

An experimental analysis of sound-tracings performed while simultaneously
listening must include a discussion of ideomotor theory, and action-first
approaches to perception. The intersecting ideas in this theory are that perception
is greatly influenced by our intention to interact with objects in the real world.

4.5.2 Motor Control

David Rosenbaum’s theory of posture-based motion planning (PBT) describes
the motion planning phases in the execution of manual control
2017). The main claim of this theory is that voluntary movements, instead of
being produced directly in ‘one fell swoop’, are generated first by our nervous
system using a series of ‘goal postures’ Then, movements translate the body from
one goal posture to the next. In this discourse, a posture is a musculo-skeletal
state.

Rosenbaum raises the question of whether there is a point below which we
cannot control our motor responses. For example, to what extent do we control
our hands when we clap? We might have conscious control over executing a clap,
and may even choose how to position our hands, or adjust the intended loudness.
Once we initiate the clap, however, it seems to perform itself. This image of
control can differ depending upon the tasks at hand, the extent of practice, and
a number of other factors. Rosenbaum calls mental representations of action
states ‘images of achievement’, likening them to reference conditions of feedback
control theory. Without images of achievement, motor imagery does not have
ideal states to which to aspire.

For a sequence of motor actions to precede purely perceptual states ‘in the
mind’, a lot of well-rehearsed action sequences must take place. In order to
perform a task such as grasping, the following mental apprehensions are needed:
distance calculation, a mental image of achievement, or a goal state, and a
rehearsed aim with hand—eye coordination. Chunking or stacking of multiple
goal states in skilled tasks such as, say arpeggio playing, will influence not just
the performance of the action, but the perception of the objects in relation to
our bodies.

In the execution of an action such as a sound-tracing, goal motor-states could
be pre-planned and contour trajectories ‘filled in’, particularly if sound stimuli
are heard multiple times.
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4.6 Summary

In this chapter, I have looked at the different ways in which music related motion
is executed, and how action-aware models of musical perception can help us
understand music as an embodied phenomenon. I believe that sound-tracing as
an experimental paradigm brings together the multimodal mappings of pitched
sound, gestural imagery evoked by these sounds, and defining geometries of
these contours. In this chapter, I discuss gesturing during speaking, and how
this field can also contribute to thinking about musical motion. I have also
outlined some important mechanisms for action—sound associations, as well as
some theories of motor planning and control. In the next chapter, I will explain
the experiments performed for this thesis, with the details of the stimuli, and
the data sets created as a result.
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Chapter 5
Data Sets and Experiments

5.1 Introduction

For the experiments in this thesis, I used a single stimulus set consisting of 16
melodies. Using these stimuli, I conducted three experiments as detailed in this
chapter. The data sets are described below, and they were released as mentioned
in the references.

One stimulus set was used for two experiments, resulting in three data sets,
as shown in Figure 5.1

5.2 Stimulus Set

The stimulus set consists of 16 melodies from four music traditions that involve
singing without words. For this set, we picked the genres classical vocalise, jazz
scat, North Indian classical music, and Sami Joik. These musical traditions also
represent the author’s interests and experiences. We picked a short melodic
fragment from a performance in each of the four musical traditions. As explained
in the previous chapter, vocal melodies hold a closer relationship to the body,
and they are often described in terms of our ability to hum them.

=> Experiment! => Dataset 1

Stimulus Set

—Experiment 2,__, Dataset 2
2.1,2.2 Dataset 3

Figure 5.1: A stimulus set containing 16 melodies was used for two motion
capture experiments, resulting in three data sets: one for melody—motion pairs,
the second for repetitions in sound-tracings, and the third for singing back
melodies after one hearing.
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We specifically chose vocals without lyrics to avoid participants’ perception
of contours being influenced by words and word meanings. In most studies
dealing with melodic contours, the role of text and lyrics has not been explicitly
explored. However, the inter-dependency of prosody and text has been studied
in compositional contexts.

Here, we also selected stimuli with little to no accompaniment, in order to
maintain the focus of the experiment on melodic contour and the monodic line
only.

Melody 1: Hindustani Melody 2: Hindustani Melody 3: Hindustani Melody 4: Hindustani

\/;__ﬂ,_\—v,/’ ——— e

c4
c3
o Melody 5: Joik Melody 6: Joik Melody 7: Joik Melody 8: Joik
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o M w AN
Ca frory
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Figure 5.2: The 16 melodies used as the stimulus set for all the experiments in
the thesis come from four different music cultures and contain no words. The
X-axis represents time, and Y-axis represents pitch height in MIDI notation.

5.2.1 Descriptions of the Musical Styles

Here I will explain the cultural contexts of the musical styles chosen. The
four musical systems were some where there is a tradition of singing without
words. This was to make sure that melody occupies the central position in the
composition.

North-Indian Classical Music At the foundation of North-Indian classical
music, lies concept of a ‘raga’, which includes a scale and a grammar to guide and
aid improvisation. In the modern system of ‘khyal’ singing, musicians improvise
with the raga by establishing the grammatical form, and then singing over it on
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a vowel. Nonsense syllables such as ‘re-ne-na-tom’ are also used in some schools
of music in the tradition, and in forms related to khyal singing, such as drupad,
which relies on long improvisations.

The phrases chosen for the stimulus set come from lecture demonstrations
by Pt K. G. Ginde, available in the University of Washington Ethnomusicology
Archives (of Washington Ethnomusicology Archives| [1991)). The raga that of the
melodic stimuli is Bhoopali.

Joik The joik is a song style of the Sdmi people from northern Norway, Sweden,
Finland, and parts of Russia. The joik is a sung, melodic form that is meant to
evoke an element in the landscape, a person, an animal, or any other kind of
entity. A joik might be composed based on any number of characteristics of the
entity being evoked. Usually, a joik is sung without words, using syllables to aid
and propel the melody.

The joiks chosen for this data set come from the Smithsonian Folkways
collection, Lappish Joik Songs from Northern Norway, produced and recorded
by Wolfgang Laade and Dieter Christensen (1956). The three pieces chosen are
by Per Henderek Haetta (Quarja), Inga Susanne Haetta (Markel Joavna Piera),
and Nils N. Eira (Track 49) (Laade and Christensen), [1956)).

Jazz Scat Scatting is a technique in jazz singing in which meaningless syllables
are sung to improvised melodies. Some trace the origins of scatting to people
attempting to recreate percussion patterns using the voice. The syllables used
and their composition within improvisations depend on individual performance
techniques, time periods in scat singing, and other factors.

The scat stimuli used for this thesis come from Ella Fitzgerald’s recording of
“One Note Samba”, composed by Antonio Carlos Jobim, from a 1969 recording
at the Montreaur Jazz Festival. The scat sections in this performance have little
to no accompaniment.

Vocalize A vocalize is a piece or set of exercises in the western classical singing
tradition that is explicitly sung without words. Western classical music is, more
often than not, composed with words. However, some improvised sections, such
as the coda—a passage that functions as an extended cadence—use this technique
of singing a vowel without text.

For this stimulus set, we used excerpts from the piece, “Si, Ferite Il Chieggo”,
from Rossini’s 1820 opera, Maometto I1. The chosen recording is sung by soprano,
June Anderson, in a performance with the Ambrosian Philharmonic Orchestra
in 1983.
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. Stimulus
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Figure 5.3: Experimental flow for experiment 1.

5.3 Experiments

5.3.1 Experiment 1: Melodic Tracings

A total of 32 subjects (17 female and 15 male) were recruited, with a mean age
of 31 years (SD = 9 years). The participants were mainly university students
and employees, with and without musical training. Their musical experience was
quantified using the OMSI (Ollen Musical Sophistication Index) questionnaire
; they were asked about their familiarity with the musical genres,
and their dancing experience. The mean OMSI score was 694 (SD = 292),
indicating that the general musical proficiency of the subjects in this data set
was quite high. The average familiarity with western classical music was 4.03
out of a possible 5 points, 3.25 for jazz music, 1.87 for joik, and 1.71 for Indian
classical music. Thus, two genres (vocalize and scat) were more familiar than the
two others (North indian and joik). All participants provided written consent
before they participated in the study, and they were free to withdraw at any
point during the experiment. The study obtained ethical approval (on 22 August
2016; project code 49258) from the Norwegian Centre for Research Data (NSD).

Procedure Fach subject participated in the experiment alone; the total
duration was around 10 minutes. Participants were instructed to move their
hands as if to create the melody with their movements. The use of the term
‘creating’, instead of 'representing’, was purposeful, as in earlier studies
let al., 2012} [2013), to avoid the terms playing or singing. Subjects could stand
freely, anywhere in the room, and face whichever direction they liked; nearly all
of them faced the speakers and chose to stand in the center of the lab. The room
lighting was dimmed to help the subjects feel comfortable and to encourage them
to move as they pleased. The stimuli were played at a comfortable listening
level on two Genelec 8020 speakers, placed 3 m in front of the subjects at a
height of approximately 1.5 m. Each session consisted of an introduction, two
example sequences, 32 trials, and a conclusion, as shown in Figure 2. Each
melody was played twice, with a two-second pause between instances. During
the first presentation, participants were asked to listen to the stimuli; during the
second presentation, they were asked to trace the melody. A long beep preceding
the melody indicated the first presentation of the stimulus; a short beep indicated
the repetition of the stimulus. All the instructions and required guidelines were
recorded and played back through the speaker so as not to interrupt the flow of
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Figure 5.4: Flow of Experiment 2. The repetitions and sung sections are included
in this experiment.

the experiment as illustrated in Figure [5.3]

5.3.2 Experiment 2: Melodic Tracings, Tracing Repetitions,
Singing Melodies

For this data set, 20 subjects participated twice in the same experiment described
above, with eight stimuli, which were chosen randomly each time. As such, there
were two responses to each tracing by each participant in this data set. There
were 9 male and 11 female participants in this study; the mean age was 28 years
(SD = 7.4 years). They were mainly university students and employees, with
and without musical training. Their musical experience was quantized using the
OMSI questionnaire , and they were asked about their familiarity
with the four musical genres, and dancing experience. The mean OMSI score
was 540.89 (SD = 342.92). The average familiarity with the four genres was as
follows: 3.62, 2, 1,87, 2.93. All participants provided written consent before they
participated in the study, and they were free to withdraw at any point during
the experiment. The study obtained ethical approval (on 26 June 2017; project
code 54653) from the Norwegian Centre for Research Data (NSD).

The flow of the experiment is as shown in Figure [5.3] The details of
the laboratory environment and the playback are the same as explained for
Experiment 1 in Paragraph This second experiment included two sub-
parts that were not included in the first experiment:

1. All 20 participants traced eight of the melodies in their stimulus set twice
during the experiment. Although there have been several studies on sound-
tracings in general, very few have looked at whether people repeat their own
tracings.

2. Ten participants were chosen at random to perform another task, in
which they repeated eight melodies in the experiment, by singing them back
after one hearing. The melodies are complex, and hard for even trained singers
to remember in their entirety after hearing them just once. The singing was
recorded using a microphone in the lab. Motion capture was used to determine
whether participants naturally tended to use body movements to remember and
reproduce the melodies. One participant had to be excluded due to technical
problems with recording quality.
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5.4 Data Sets Used

Data Set 1: Melody—Motion Correspondences through Sound-Tracings

This data set was collected in two stages, during which participants traced 16
melodies freely with their hands in two conditions; participants had 21 markers
on their bodies, and were recorded using eight infrared motion capture cameras.
The data set contains a total of 32 subjects (17 female and 15 male), with a
mean age of 31 years (SD = 9 years). They were mainly university students
and employees, with and without musical training. Their musical experience
was quantized using the OMSI questionnaire , and they were asked
about their familiarity with the musical genres, and their dancing experience.
The mean OMSI score was 694 (SD = 292), indicating that the general musical
proficiency in this data set was on the higher side. The average familiarity with
western classical music was 4.03 out of a possible 5 points, 3.25 for jazz music,
1.87 for joik, and 1.71 for north Indian music. All participants provided written
consent before they participated in the study; they were free to withdraw at any
point during the experiment.

After post-processing, this data set contained a total of 794 tracings; it has

been released as supplementary material in the article, ‘Analyzing Free-Hand
Tracings of Melodic Phrases’ (Kelkar and Jensenius, 2018).

Data Set 2: Repetitions of Sound-Tracings

This dataset consists of 20 participants tracing eight melodies in two iterations.
The eight melodies were randomly selected from the stimulus set. The repetitions
occur at the end after tracing all 32 stimuli first.

Data Set 3: Singing Complex Melodies Back After One Hearing

For this data set, nine participants sang into a microphone eight randomly
selected melodies from the 32 melodic fragments in the main stimulus set. Only
eight melodies were selected, in order to limit the duration of the experiment. A
total of 72 melodic fragments were obtained as a result. There were 9 participants
in this study; 6 male and 3 female. The mean age was 27 years (SD = 5.8 years).
They were mainly university students and employees, with and without musical
training. Their musical experience was quantized using the OMSI questionnaire
, and they were asked about their familiarity with the four musical
genres, and dancing experience. The mean OMSI score was 540.89 (SD = 342.92).
The average familiarity with the four genres was as follows: 3.78, 2.33, 1.89, 3.
All participants provided written consent before participation, and they were
free to withdraw at any time during the experiment.

The post-processed data set contained the pitch extracted from each of the
recorded phrases.
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5.5 Summary

In this section, I described the stimulus set, experiments, and data collected.
The same stimulus set was used to perform two experiments, which resulted in
three data collections. The experiments involve participants listening to melodies
twice, and in the second iteration, moving to the melody. Examining these data
involves analyzing melodic material, motion capture data, and the comparisons

and correlations between melody—motion pairs. This is described in detail in
Chapter [6]
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Chapter 6
Methods

“..if an algorithm performs well on a certain class of problems then it
necessarily pays for that with degraded performance on the set of all remaining
problems.”

— (Wolpert et al 1997, p.1)

6.1 Introduction

The data types and analysis methods used in the papers included in the thesis
are elaborated on within this chapter. Since the work handles two types of
data—music data as sound signals and movement data gathered from an infrared
motion capture system—as explained in Section [6.2] and Section [6.3] the analysis
methods for each of the two data types are separate, but there are several ways
to analyze them together, as explained in Section [6.4] Figure explains a
summary of the signals, representations, analysis methods, and outputs that are
explained in this chapter.

6.2 Sound Analysis

The stimulus material and the analysis of melodies in this thesis depend upon
the analysis of sound and music in various formats of representation—primarily
audio files and symbolic data. The stimuli are presented as audio and recorded
material. There are several audio file formats.

For a deeper analysis of melody and melodic contour, we extract the
fundamental melody from each of these audio files using the YIN algorithm
(De Cheveigné and Kawaharal [2002)). It has been shown that melodic contours
are an abstraction of pitch and pitch patterns in music. There is little reason
to suggest that sheet music should be the ideal source of comparison to rely on
contour models, as the perception of contour does may or may not correspond
to the algorithmic representation of pitch height, and melody may or may not
be understood only as discrete pitches.

6.2.1 Computational Representation and Features of Melody

Computational work in music hinges on the representation of music as data,
and the way in which this is done determines and limits how research can be
conducted. That which is often considered ‘noise’ in one data set may have a
lot of meaning, relevance, and applicability in another analysis or interpretation.
For example, the insights we gain from score-based representations of musical
traditions that do not use scores to encode or perform music may be limited.
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Toolboxes Features
Melody =  Lirosa, Pich ==  Pitch, Dynamic
Detection Algorithms Curves, etc
i Toolboxes Features
Motion ==  Mocap Toolbox, = Quantity of Motion,
MoCapPy Acceleration, etc
Melody-Motion Methods Results
Pai —==> CCA, Time-series <= Correlation,
airs alignment, etc Classification, etc

Figure 6.1: An illustration of different levels of data handling and analyses in
the experiments. The three types of data each have their own signal

That said, the kind of representation is usually chosen to address and answer
specific questions.

|Aucouturier and Bigand, (2012) have put forth a dilemma of human and
machine listening, and their pitfalls and merits in their paper. This question is
very important to try to answer as the fields of music information retrieval and
music psychology progress.

To analyze melodies from musical material, one of two approaches are typically
used to represent musical material: symbolic or signal-based methods. Symbolic
methods rely on transcribing melodies into their constituent pitch values using
one of many notation types. This may include transcribing pitch into western
notation, describing pitch classes, transcribing relative interval distances in
semitones, and so on. Signal-based analysis of melodic material involves analyzing
music or melodic features from recorded material using signal processing. Both
these approaches have strengths and weaknesses. While a symbolic model allows
for generalizations by pointing out exactly what we want to see in the data, the
signal-based approach allows us to see the musical content as more than just the
notes that we have deemed important. These two approaches were developed
with completely different applications in mind. Symbolic data-based methods
are popular in the analysis of western classical music because the practice of
creating symbolic notation is common and accessible for that type of music.
However, signal-based approaches allow for us to truly expand our data sets
to include music from anywhere in the world, and for non-musical material to
be analyzed as music. The development of many symbolic notation methods
confines the region of interest considerably, as most music in the world do not
use notation as the main pedogogical or representational method. In this section,
I will describe both of these approaches in detail, focusing on how they facilitate
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melodic contour analysis.

A melody can be represented in many ways: a musical excerpt sung, played,
recorded, or recorded and played back; its structural features (such as notes);
extracted contours; approximations or deviations of other typological shapes; a
structural operation like transposition; or as belonging to a family of melodic
groups like modes, ragas, and so on. Each of these melodic families excludes
something that could be important for another melodic family. For example, a
mode and a raga both have scale properties, but do not share the same concept of
melodic grammar. What forms a melodic family is both culturally and musically
determined. All of these features together describe the concept of a melody, but
how we choose to represent melody in research is a deliberate choice.

Deciding on the level of representation is the first and most crucial choice in
any empirical work related to music analysis. In Languages of Art,
(1968)) emphasizes that representing artistic or musical material is an act of
curation, which includes breaking down the features and picking ones that
we desire in our system, and leaving behind undesirable ones. In western
classical music, for example, it is commonplace to think of a score as a faithful
representation of that which is most important to music—in a way, the skeletal
or formative representation of that which is music. This idea translates poorly
to another musical cultures; for example, in North Indian music, to confine
the pitch continuum into the chosen discrete representations on a musical staff
would be to take away from the essence of that music. Therefore, the act of
choosing a method of representation also determines what is important or worthy
of analysis, and by extension, might disregard the cultural values of another
musical system.

How does the choice of representation of music relate to our perceptual
apparatus? Research in pitch and pitch organization has focused on pitch with
and without musical context. In his chapter, ‘Pitch and Pitch Structures’,
Schmuckler argues for ecologically valid perceptual contexts in pitch perception
studies (Schmuckler] 2004), arguing that studying pitch outside its musical
context presents only half the picture. Arguing in favor of the same contextual
setup, for the studies in this thesis, using melodies in all kinds of contexts are
important for us to formulate an ecologically valid picture. Therefore, I focused
on analyzing material directly from musical recordings, as opposed to generating
isotonic melodic material specifically for testing purposes. One consequence of
this approach is that without reliable tools to describe this musical material, its
analysis and comparison are impossible. Music information retrieval and signal
processing have come a long way in understanding musical content; we use that
body of knowledge as the basis for understanding all of our musical stimuli.

6.2.2 Symbolic Approaches

The history of musicology in the West relies on the study and analysis of scores
that are part of a symbolic system. Notes are transcribed into discrete time,
timbre, and pitch units. Rhythmic notation separates into discrete time units
related to beat length; pitch units are separated into diatonic note positions,
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defined by a one-to-one relation with an absolute frequency; and timbre is
typically written for certain instrument or instrument families. The evolution of
this notation led first to the representation of the ornaments over certain notes in
the music, at which point only specific ornaments could be represented, and later
more were added in response to the need to notate more complex intonation, and
freer rhythm and dynamic qualities. The expansion of western notation in this
way does not mean that it stops being symbolic, but that the types of symbols
and the relations between them expand. While the opposite of a symbolic
approach would be accurate signal-based representation, the latter cannot really
be classified as notation. A notational system lies in the representational
space somewhere between actualization and abstraction, allowing for enough
abstraction to represent the intentions of the composer, but not to the extent
that different versions of a piece are impossible.

This history is important because western notation informs, to a large extent,
conceptions we have about musical abstraction—for instance, how information
is stored and manipulated for experimentation in musicology, psychology, and
computer science. The reason a discussion of symbolic musical systems is
important to this thesis is because a large amount of research done on melodic
contour analysis and melodic grammars relies on symbolic music.

Using symbolic data for melodic analysis involves feeding notes into a
computer. This process divides musical time into discrete units using one
of many available options. Using MIDI scores is a very common way of inputting
symbolic musical data. MIDI music in its early days made it possible for
electronic instruments to be able to communicate with each other. In a review,
|Wiggins et al| (1993) presented a framework for the analysis of symbolic notation
systems popular at the time (many of them still survive) on two axes: structured
generality, and expressive completeness. In any notation system, there is a
trade-off between expressive completeness and structured generality.

Annotation and Transcription

Symbolic methods mainly rely on annotation and transcription. When corpuses
contain data in the form of music that was written first, such as classical music,
it is easier than dealing with, for example, improvisation and other musical forms.
In trying to analyze folk music—even European folk music—(Van Kranenburg|
, symbolic approaches rely on annotations of folk melodies. However,
in the living tradition, these melodies are not necessarily played exactly as they
are notated, and taught more often by ear than by reading score.

Symbolic Music and Contour Analysis

Several studies focusing on melodic contour analysis begin by analyzing symbolic
data in the form of western notation, pitch class, or interval numbers. Contour
analysis methods developed with symbolic music in mind often use up and down,
or + and — signs, to represent the direction each note takes in relation to the
previous. Although this method is primarily used for western music analysis, it
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is often applied to other types of music as well (Eerola et al., 2006; [Eerola and|

Bregman 2007).

6.2.3 Music Information Retrieval

Music information retrieval (MIR) is an interdisciplinary domain that draws from
signal processing, electrical engineering, machine learning, and music cognition,
among other fields, to build a computational understanding of musical content.
As a domain, MIR represents a scope of problems that can together help us
solve a magnitude of cross-comparison based issues with finding, searching for,
and indexing music and music metadata. The MIR domain of problems is
most widely used by music libraries and digital music servicing platforms that
connect millions of listeners to millions of songs. The most common use case
for several applications is building recommendation systems, but the impact of
these systems on music psychology studies cannot be understated.

Some examples of the use of MIR techniques include studies on emotional
affect using mood detection algorithms (Juslin et al. [2014), where the MIR
toolbox (Lartillot and Toiviainen| 2007)) is used to enumerate the acoustic
characteristics of the stimulus set, which are evaluated against listeners’ ratings
of affect. [Knox et al.| (2011) analyzed pain relieving music using MIR techniques
to study acoustic characteristics. [Malandrakis et al.| (2011]) used MIR techniques
for emotion tracking in film music. MIR-based methods and tools are used on
both symbolic and signal-based data sets.

explains the facets of MIR systems and their challenges.
The simplest and the first challenge involves transcription of pitch from audio
recordings. This includes melodic extraction from polyphonic recordings, to
their generating accurate transcriptions, and matching or comparison of melodic
contours from one another. The temporal challenges include detection and
identification of pitch durations, and beat durations. A level above, there are
challenges with tempo detection, detection of non-standard tempo behavior such
as rubato or accelerandos, and so on. The harmonic facet includes problems of
detection of harmony from sound recordings, or from score. The difficulties in
this domain mainly lie in the diversity of harmonic content, and also the window
of interpretation of harmonic analysis. The timbral facet deals with the ability to
identify between several instruments, but can also be thought of as important for
detecting instrumental expressivity. The editorial challenges include retrieving
information from details of the sound signal. For example markings on a score
that could be possible to detail from hearing. This may include dynamic changes,
annotations of song sections, identification of structure and its tagging, and
so on. The textual facet includes detection of lyrics, synchronising lyrics with
sound recordings or scores, matching melodies to text translations, and so on
are typical problems within this domain. Finally the bibliographic challenges
include curation of metadata and information about the ontologies and tagging
of sound files.

These challenges are further complicated by a range of problems associated
with using MIR algorithms in several different scenarios. Downie underlines
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some of them 2003k

1. Multi-representational challenge: Music data has many formats including
sound recordings, score, metadata, and motion data. Within each data
type, there are several encoding standards, several physical formats such
as tapes, CDs; and digital formats. To have these data types be accessible
in different types of analyses presents a challenge of representation.

2. Multicultural challenge: Although the majority of early MIR algorithms
and interests serve the western classical canon, it is obvious that different
musical cultures with their own epistemologies and data pose a range of
challenges in the umbrella of MIR.

3. Multi-experiential challenge: Creative users of music, both musicians and
users of a range of applications developed for musical interaction, can use
MIR-like methods in a range of generative or creative applications. This
invites comparisons of music data with a large quantity of other kinds of
data, such as physiological, meta annotations, and so on.

4. Multi-disciplinarity challenge: Inherently, MIR represents an area of
interest in music information, rather than a range of techniques and
methods. This means that multi-disciplinarity is an ever-present challenge,
even though a range of MIR tasks and procedures have been standardized
and accepted by the MIR community.

It is most important to remember that no single algorithm or group of
algorithms can ‘solve’ these tasks in the way that we are able to, with our ears
and brain, enumerate a range of information from an auditory stream. However,
it is promising how far music information tasks have come, and how much they
have diversified by integrating with techniques such as Al

Motion Capture and MIR

In their 2009 paper, Godoy and Jensenius make a case for a body movement
based model for MIR tasks. The authors suggest that bodily sensations are a
key feature of understanding musical style. In order for us to be able to harness
this model of music listening for music-retrieval, movement-inducing cues, and
taxonomies of multimodal responses to music. This thesis takes a step towards
this goal by modeling body movement to melody.

6.2.4 Extraction of Pitch Contours and Contour Analysis

A pitch detection algorithm is used to estimate the fundamental pitch or frequency
of a sound signal or musical recording. Generally speaking, pitch detection
algorithms are in the time or frequency domains, or in both. Pitch detection
algorithms vary considerably, depending on the task at hand. Extracting pitch
from a monophonic signal is a relatively simpler task than extracting melodic
contours from recordings of many instruments playing together, for which a
variety of other strategies are used (Bittner et al., 2017} [Salamon et al |2012).
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6.2.5 Pitch Detection Algorithms

Generally, two approaches can be taken towards pitch detection: time-domain
and frequency-domain analysis. The following is an overview of some commonly
used algorithms and their descriptions:

1.

6.

Zero crossing: The simplest idea for pitch detection for a quasi—periodic
signal in the time domain is created by low-pass filtering the signal and
then detecting peaks, or zero crossings. Linear predictive coding is often
used to calculate fO using this method.

Auto-correlation: This method implements the auto-correlation method

of (1993) and is available in Praat. Essentially, this algorithm

involves computing correlation of a signal with a delayed copy of itself.
Here, r is the autocorrelation function, w

T(T):/Oox(t)x(t+7')dt

— 00

Cepstrum: is obtained by computing the inverse Fourier transform of the
logarithm of the estimated spectrum of a signal, as defined below.

C (1) = |F (log | F(z(t))?])|

Average Magnitude Difference Function:The AMDEF pitch detector forms a
function which is the compliment of the autocorrelation function, in that
it measures the difference between the waveform and a lagged version of
itself.
o0
(= [ ) =xte+ P dtb=1

— 00

Spectral subharmonic summation: This method, also available in Praat, is
described as a spectral subharmonic summation according to an algorithm

by (1998). The idea of this algorithm is to arrive at a summation

of each of the subharmonic components in the spectrum.

eSRPD: Enhanced super resolution pitch detector algorithm by (Bagshaw]
1993).

YIN: YIN pitch estimator is an improvement on the autocorrelation function
with an additional step of a cumulative mean normalized difference function.

For the stimuli in the experiments, we use the YIN algorithm. The methods
described above are to arrive at a representation of the pitch in a melody. Methods
to model the contour, however, have to have a more general understanding of
pitch trajectories.
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6.2.6 Contour Analysis Methods

Although melodic contour has been established as an interesting and important
feature of musical processing, only a few quantitative models or formal
descriptions of contour have been proposed. I will outline some of them here:
1. Parson’s Code for Contour Description Parson’s directory for
melodic indexing is based on the idea that every subsequent note in a melody can
be represented using just three letters to denote direction: up (U), down (D), and
repeat (R), to generate a unique contour description for each melody
. The book, which represents several thousand melodies in this way, claims
to help people easily identify a piece of music from its melodic identity. For
example, Parson’s code for the theme of Beethoven’s Fifth Symphony would be:

*RRD URRD

This seemingly parsimonious model is surprisingly good at identifying a large
number of melodies, given all the possible permutations and combinations of a
long enough phrase. This model is also used in Musipedia, an online repository
with many in-built melodic search algorithms .

2. Adam’s Contour Typology Adam’s contour typology, proposed in 1976,
provides a way to think about melodic contours using the following features: the
relative positions of the initial (I), final (F), highest (H), and lowest (L) pitches
in a melodic line. These are described as the minimal boundaries of a melodic
segment. Using these minimal boundaries, it is possible to identify a typology of
12 different ways in which these four features relate to each other, where three
kinds of relationships are possible between each pair: <, >, or =. Using these 12
relationships, he defines a set of primary features of melodies: slope, deviation,
and reciprocal. Here, slope is the relationship between the initial and final notes
of a melody; deviation is a change of direction in the slope of the contour; and
reciprocal is defined in terms of the first and only deviation. This gives us a total
of 15 different primary features for melodic shape. Secondary melodic features
or contour shapes contain finer details about a melodic fragment; the author
explains this as being the difference between describing any rectangle, versus
listing the properties of a particular rectangle. Repetition and the descriptions of
minimal boundaries form secondary melodic features. The author also proposes
the use of graphs to further elaborate melodic contours.

3. Morris’ Model of Contour Relations This model presents an
algorithm for reducing a complex melody to its salient contour, similar to
the Urline of Schenkerian analysis , but without tonality as the
central defining concept . This model presents 25 typologies of
frequently occurring melodic contour patterns and another combination model.

4. Quinn’s Combinatorial Model for Pitch Contour Quinn’s
combinatorial model creates a matrix representation of all note transitions
to one another. These matrices can then be compared with each other using
matrix similarity related methods, giving us a model of melodic similarity that
does not rely upon accurate pitches being described.
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5. Friedmann’s Contour Adjacence Series (CAS) and Contour
Class model (CC) Both these models rely on creating a matrix for all the
constituent notes in a melodic phrase, looking at their transitional probabilities
from one to another.

6. Time Pitch Beat Model Time-pitch-beat, or a TPB number triplet
is coded in this model for each melodic fragment. Subsequently, a resolution
vector @, records the intervallic changes between each consecutive note. Q is
therefore an n dimimensional vector, for n+1 notes in the melody
2000). The TPB vector is then used to find melodic similarities.

7. Fourier Analysis Techniques Schmuckler| (1999)) proposes conducting
a Fourier analysis of the sound signal as a method to compare the contours
of different melodies. Since it shifts contour perception from the time to the
frequency domain, and in the experiments, it has worked well. In Paper I, I
analyze the melodies in the stimulus set using some of these models, to try to
compare if they would work simultaneously for tracings and melodies.

6.3 Motion Analysis

Motion capture, often shortened as MoCap is a general term referring to a group
of methods used to measure motion. There are a number of techniques that
can be thought of as motion capture, and a recent overview can be found at
. Verbal descriptions and annotations of movement are the
simplest ways to capture motion; codes for describing gestures are often used
in annotating gestures accompanying speech . Photography, video
analysis, and light-sensing have also been used to capture motion
. The following methods for motion tracking are most important, and have

been detailed by (Nymoen, 2013]):

1. Acoustical tracking: The use of phase differences to measure reflections of

sound, and hence, the changing distance of a moving object (Bishop et al.
2001)).

2. Mechanical tracking: Tracking or measuring the angles between two
mechanical parts that are changes the length of a resistor to infer the
distance or angle of the tracked object, for example as used by
. A joystick is a good example of this.

3. Magnetic tracking: Tracking the magnetic field of a moving electromagnet,

measuring its distance from a stationary electromagnet (Bishop et al.
2001)).

4. Inertial tracking: Using accelerometers and gyroscopes to track the position
of an object based on its interaction with gravity (Bishop et al., [2001)).
Intertial Motion Units (IMU) are an example of this type of tracking
(Tanenhaus and Lipeles| 2009)), as are, for example Xsens suits.
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Figure 6.2: Pictures from the FourMs MoCap Lab where the experiments are
conducted. On the left is the lab with the cameras and speakers mounted as
shown, on the right is a participant wearing reflective markers.

5. Optical tracking: Using infrared (IR), regular video, stereo video, thermal,
or depth cameras to estimate an object’s position in space. Using optical
tracking requires post-processing using computer vision algorithms.

The main methods for motion capture in this thesis revolve around the
infrared capture of motion data. Optical tracking systems with infrared cameras
transmit and receive infrared light, measuring the location coordinates of
light reflective markers. Motion capture systems work calibrating a known
configuration of distances between markers and the shape of the layout, to
lay down a grid. Thereafter, new markers can be introduced and computed
by calculating distances as determined by each of the different cameras. This
produces a time-sensitive trace of the infrared markers as seen by all of the
cameras to measure movement accurately in space and time. Motion capture
is used extensively to create geometric models of three-dimensional beings for
animation and computer-generated graphics (CGI). Owing to its precision and
sensitivity, it has been a great tool to analyze performing bodies.

6.3.1 Tracking Data through Infrared Motion Capture Systems

In infrared motion capture systems, tracking data are usually recorded as three-
dimensional (3D) coordinates for every point that is tracked by reflective markers.
The coordinate axes should be situated in space using calibration kits. The
calibration kits are pre-programmed for the system to understand their placement
and calculate the tracking of all other points using a camera system based on this
calibration. This initial placement of the calibration kit results in the creation
of a local three-dimensional coordinate system. Once this framework is in place,
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the subsequent tracking of markers in the motion capture system is recorded
along this three-dimensional local coordinate system (LCS), sometimes called
the laboratory coordinate system.

On entering the lab, a participant is required to wear a MoCap suit, which
is dark; reflective markers, representing the points that need to be tracked, are
placed on the suit.

6.3.2 Details for the Experiments in the thesis

The experiments conducted in this thesis were carried out in the fourMs motion
capture lab at the University of Oslo using a Qualisys Infrared Motion Capture
System. The system consists of eight Oqus 300 cameras surrounding the space,
and one regular video camera (Canon XF 105). In Qualisys, the LCS is usually
a Cartesian coordinate system—the XY plane is usually the floor, and the Z
axis represents vertical motion.

For the experiments conducted in this thesis, each participant wore a MoCap
suit with 21 reflective markers on joints (Figure [6.3.3). The labeling scheme
is explained in detail in Appendix[A] Most of the studies in this thesis involve
analyzing hand marker positions; however, the full body was tracked in order
to retain additional information, in case of further analyses, and for qualitative
analysis and visualizations of the entire body.

The system captures data up to 500 Hz. For these experiments, we used
a capture rate of 200 Hz, because it is sufficient to record movement in this
context. We also made a video recording of all the participants, so that we could
hear the sounds played in the lab during post-processing.

6.3.3 Post Processing

Once the data were recorded, they were post-processed and cleaned before
analysis. The post-processing phase consisted of marker labeling, removal of
ghost markers, gap-filling, and smoothing. Thereafter, the data were exported
to a file format that I discuss below.

Marker Labeling Marker labeling is essential to understanding which joint or
part of body each marker represents. This was done using a list of codes—a
shorthand system to easily understand which body part each marker refers to,
and on which side of the body, as shown in Figure [6.3.3] The complete list of
labels is explained in Appendix [B]

Ghost Markers A MoCap system might often track ghost markers, mistaking
small glitches or reflections as markers; these must be removed manually. Many
ghost markers are present for very short amounts of time, making it easy to
remove them.

75



6. Methods

>

Figure 6.3: An example of a post-processed motion capture stick figure. A
detailed list of marker labels can be found in Appendix

Gap Filling Lastly, MoCap recordings may contain missing frames in the
data because of tracking errors, drops in the data packets sent over a network,
occlusions, a moving body part overlapping a marker at a certain time point.
Usually, these gaps are only a few frames long, and can be filled using interpolation
and smoothing.

Common techniques for gap-filling include nearest neighbor interpolation,
linear interpolation, or polynomial interpolation. Nearest neighbor interpolation
looks for the nearest points around the gap, and does a step-interpolation between
them. Linear interpolation aims to connect the available points before and after
a gap using an interpolated line that passes through the points on either side of
the gap.

In the post-processing of this data set, polynomial interpolation was used for
gap-filling to ensure smooth trajectories.

6.3.4 File Formats for Motion Capture Files

Once the data are labeled, cleaned, and gap-filled, they can be exported into
one of many formats for analysis. The Qualisys Track Manager (QTM) system
is a tool offers visualizations of the data for inspection, but detailed analysis
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Figure 6.4: An illustration of the flow of mocap data. The mocap files are
exported from QTM, imported into python. Normalized files are re-exported,
and analyzed in python for obtaining features.

requires exporting the files into a scripting or programming environment. Below,
I list some common file formats used for handling MoCap data.

1. TSV (tab-separated values): The output of this file format includes a list
of captured attributes, such as capture rate, number of markers, length of
capture, and marker list. Below these details, this format outputs a column
per axis per marker of data. Each row represents a frame of capture.

2. C3D (coordinate 3D): C3D is commonly used as a standard file format
in biomechanical research. The C3D specification expects physical
measurements to be one of two types—positional information (3D
coordinates) or numeric data (serial information). Each 3D coordinate is
stored as raw (X, Y, Z) data samples with information about the sample—
accuracy (the average error or residual) and camera contribution (which
specific cameras were used to produce the data).

3. MAT (MATLAB files): The .MAT file format can be used to export data
so that it is easily readable into MATLAB. The data are output in a
STRUCT file, with matrices for the 3D coordinates of each point.

4. AVI (audio video interleave): Video files can be output from QTM into
AVI. These are useful in video analyses.

5. BVH (bioVision hierarchy): Although QTM does not currently output to
it, BVH is a common file format for 3D animation. BVH is compatible
with a variety of software that use motion capture for artistic or animation
purposes.

For our analysis, we chose to export data as TSV files. this made it easy
to import them into Python, or Matlab, and analyze easily. Since the released
dataset contains hand movement data, TSV also makes for a compact format.
Figure illustrates the flow of data for mocap through this whole process.
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6.3.5 Feature Extraction

The motion capture data were imported into Python (v2.7.12) and MATLAB
(R2013b, MathWorks, Natick, MA., USA). All of the 10-minute recordings were
segmented using automatic windowing, and each of the segments were manually
annotated for further analysis .

It is useful to understand the features from motion capture recordings to
grasp how motion data can be processed and analyzed. In my own work, I like to
differentiate between physical and perceptual features of motion. This is similar
to the physical and psychoacoustic properties of sound features. While physical
attributes refer to mathematical formulae directly applied to motion capture
data, the perceptual features of motion identify something about the quality
with which a movement is performed; for example, the perceived smoothness of
a movement. For this analysis, we focus on physical features and not perceptual
ones.

There may also be features that relate particularly to the task at hand. For
example, in the experiments conducted for this thesis, most people used the
hands as the ‘primary effectors’ for movement representations of melodies. This
meant that the distances between hands, the symmetry between hands, and
so on were important features that needed to be measured. For example, we
compute the following features:

1. Velocity: The first derivative of position data describes the velocity of a
marker. This can be described along any of the three dimensions.

2. Acceleration: The second derivative from position data describes the
acceleration of a marker.

3. Jerk: The third derivative of position data describes the ‘jerk’. Jerk data
typically represents sudden changes in acceleration.

4. Jounce: The fourth derivative from position data describes the jounce,
describing sudden changes in jerk.

5. Quantity of motion (QoM): This describes the level of movement. It is
calculated as the average of the vector magnitude for each sample.

6. Range: The range of a marker describes the minimum and maximum
values of a marker for the duration of calculation across each axis.

7. Cumulative distance: The cumulative distance traveled is calculated as
the summation of the Euclidean distance that each marker travels.
Features for Hand Markers

Table [6.1] includes a description of features specifically developed to analyze
the motion data of hand markers. In Table[6.2] features are made specifically
considering the nature of strategies used in data exploration, as is explained in
Paper II.
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Motion Features Description

1 VerticalMotion z-axis coordinates at each instant of each hand
Range (min, max) tuple for each hand

3 Hand Distance The Euclidean distance between the 2D

coordinates of each hand
4 Quantity of Motion The sum of absolute velocities of all the

markers

5  Distance Traveled Cumulative Euclidean distance traveled by
each hand per sample

6  Absolute Velocity Uniform linear velocity of all dimensions

7 Absolute Acceleration The derivative of the absolute velocity

8  Smoothness The number of knots of a quadratic spline
interpolation fitted to each tracing

9  VerticalVelocity The first derivative of the z-axis in each

participant’s tracing
10  CubicSplinel0Knots 10 knots fitted to a quadratic spline for each
tracing

Table 6.1: The features extracted from the motion capture data to describe hand
movements.

6.3.6 Toolboxes for MoCap Data

The BTK (Biomechanical ToolKit) has a stand-alone application—Mokka, or
Motion Kinematic and Kinetic Analyzer —Which facilitates easy
analysis of MoCap data on a graphical user interface. This application has tools
for 2D and 3D visualizations. Mokka is built with Java, and provides a timeline
view. C3D files can be imported, and Electromyography or EMG analysis can
be integrated into Mokka.

MoCap Toolbox for MATLAB

The MoCap Toolbox, developed at the University of Jyvéskyld, includes a variety
of possible algorithms for feature extraction from MoCap data. This toolbox
was developed especially for working with music or dance related motion; it can
be used to calculate several motion features.

Python Toolboxes Overview

Several toolboxes in Python have been written specifically to analyze MoCap
data. A small overview is listed below:

1. BTK/Biomechanical ToolKit: It was developed as a Python wrapper along
with the stand-alone application Mokka.
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# Strategy Distinguishing Description
Features

1 Dominant Right hand QoM much | QoM (LHY) »\/
hand as | greater than left QoM «QoM(RHY)
needle

2 Changing Root  mean  squared | RMS(LHX) -
inter-palm difference of left and right | RMS(RHX)
distance hands in x

3 Lateral Nearly constant difference | RHX — LHX = C
symmetry between left and right
between hands
hands

4 Manipulating | Right and left hands follow | RH (z, y, z) = LH (z,
a small | similar trajectories in x y, z2) + C
object

5 Drawing arcs | Fit of (z, y, 2) for left and | 22 + y? + 22
along circles | right hands to a sphere

6 Percussive Dynamic time warp of (z, | dtw (RH (z, y, z), LH
asymmetry y, z) of left, right hands (z, y, 2))

Table 6.2: Quantitative motion capture features that match the qualitatively

observed strategies. QoM refers to quantity of motion.

2. PyMo: This toolbox was created by Omid Alemi. It is a Python library
for machine learning research on motion capture data. The analysis tools

are written to process Blender BVH files.

3. C3D wrapper: This toolbox reads and writes C3D data into Python.

Additional Contributions

As a part of this thesis, I built a motion capture toolbox in Python. It is not
fully developed yet, but I have included its data structures and functions in

Appendix

6.4 Motion-Sound Analysis

Up until this point, I have described the analysis methods for (1) motion capture
data and (2) audio files and music related data. In the next section, I will
describe the methods used to interpret the data as melody—motion pairs, as

suggested in (Godgy and Jensenius, 2009)).
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6.4.1 Visual Inspection and Visualization

Visualization and visual inspection are powerful tools for understanding
multimodal data, especially while analyzing them together. While developing
techniques to analyze new data, visualization is often the first method used
to consider the possible patterns in the data. Good visualization techniques
also help communicate the quantitative findings more comprehensively, both for
other researchers and a general interested audience. Figure [6.4.1] demonstrates
visualization of Quantities of motion for different melodies by the same
participant.

In sound-tracing and other data handled in this thesis, the development of
new models to analyze and explain the data depends upon how we can first
explore and understand what lies in the data. In order to understand the critical
elements present in data, visualization is an important first step. Motion data
visualization can be tricky but important. The first reason for this is that the
data are inherently multidimensional, and interpreting them requires us to resist
seeing the motion tracings as human movements alone, but also to look at the
nuances of the tracings. The second reason is that we often consider combining
meta-level analytical features from these data to understand what is going on.
For example, a simple 3D visualization may not bring out what an acceleration
plot can.

[Toiviainen and Eerolal (2006]) present an overview of visualization methods
for various music information related tasks. Visualization techniques can also
include methods such as principal component analysis (PCA) visualization,
which offers a better interpretation of trends in the data. The authors then
use self-organizing maps (SOMs), an unsupervised learning method to organize
melodies in a hyperspace. An SOM calculates and arranges data points with
respect to each other in the learning space.

6.4.2 Statistical Testing

Statistical hypothesis testing is a method of statistical inference drawn from
a series of mathematical measures to accept or reject a hypothesis. There are
many tests, and which test should be chosen according to the type of data, and
the distribution of data. Since I have used t-testing in evaluating a portion of
the data in Paper II, T describe this method shortly below.

t-testing

A t-test is one of the simplest tools to calculate whether the difference between
random samples from two populations is statistically significant. The process
involves defining a null hypothesis and stating that the means of the populations
are equal; then, the null hypothesis is supported or rejected by the t-test. The
power of a t-test lies in its ability to test competing hypotheses on a smaller
sample set, by approximating the normal distribution function of the data set.
A i-test that shows statistical significance will be able to establish a difference
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Figure 6.5: Visualizations of quantities of motion. Visual inspection

between two sample sets. The t-statistic is calculated using the following formula:

Here, t is the test statistic, p stands for the population mean, o, the standard
deviation, where X is the sample mean from X1,X2,...,Xn are n samples
in the data. From the t-statistic, the standard deviation and mean values are
calculated. In statistical significance testing, the p-value is used to determine
statistical significance by comparing a known probability distribution to the
statistics obtained from the data, at a significance level that is most meaningful
for the analysis. Typical levels for statistical significance are between 0.001
and 0.05, which gives us a confidence rating of 99 to 95 percent that the null
hypothesis can be rejected.

6.4.3 Machine Learning and Artificial Intelligence

Broadly, machine learning describes a set of mathematical paradigms for
performing discrimination and pattern recognition tasks. In the simplest of
these tasks, a machine can tell apart two different categories of data, as could a
basic perceptron machine, which was invented in the late 1950s. The evolution
of algorithms and techniques within machine learning, an exponential growth in
computational power, and an ever improving range of data sets have enabled
this field to grow exponentially.

A widely quoted definition of machine learning is by (1959), [Machine
Learning is a] “Field of study that gives computers the ability to learn without
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being explicitly programmed”. The notion of explicit programming is to find
conditionals in the data such that the computer can execute code without a
model of the categories it is able to discriminate among.

Machine learning problems deal with data sets, which are representations of
real world phenomena in terms of data. These data can come in many possible
formats, and a learning task may be in one of several different classes of problems.
The objective for learning a particular quality of the data also might vary—we
might need to predict a variable in comparison to another, detect the presence of
a certain characteristic, generate a string of words based on a prompt, and so on.
The only reason all of these various classes of problems are included under the
umbrella of learning is because, instead of explicit instructions, some variables,
features, weights, or other paradigms are approximated by the computer. Feature
sets are thus commonly encountered in this paradigm, referring to the properties
of each data element. Machine learning pipelines often include ‘training’ and
‘testing’ phases—training is carried out on a smaller portion of the same data
set, and the performance of the algorithm is tested on the rest of it.

Broadly speaking, here are some categories of machine learning methods

b3)

1. Supervised learning: These methods include pipelines where the training
set includes category labels. This means that the learning happens through
examples.

2. Unsupervised learning: When category labels are absent in the training,
learning methods are described as unsupervised.

3. Reinforcement learning: This set of methods is based on the idea that
an agent in the world learns from positive and negative feedback on its
decisions.

The following can be described as typical learning problems:

1. Classification: An example of a classification task is to distinguish between
different categories, given some features. The simplest task is a binary
classification; for example, to differentiate between two instruments based
on their sound streams. A classification task with multiple classes, for
example to classify handwritten digits.

2. Regression: An example of a regression task is to predict the change of a
variable with respect to a different variable. An example of a regression task
is to analyze the correlation between melodic data and motion trajectories,
to measure their covariance.

3. Clustering: A clustering task is an unsupervised method to represent
the data in a hyperspace so that it separates into & clusters. An ideal
clustering task would involve maximizing the distances between clusters
and minimizing their distances from their respective centroids.
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4. Retrieval: An example of this type of task is to find a melody, given
a contour profile; for example, as seen on Musipedia, where a user can

input a contour profile based on Parson’s code 1975)) of contour
directions to retrieve melodies that fit the contour profile 2008)).

Neural Networks and Deep Neural Networks A neural network is an
architecture of artificial ‘neurons’ that simulates the inter-connectedness of
neurons in the brain. Neural network architectures are a particular class of
learning algorithms. Neural networks have also been applied for generating new
material; for example, interpolated faces, or melodic material.

A neural network must be trained for a classification or generation task using
a sufficient number of data examples. Usually, differences among architectures is
how the error is propagated through the different neuronal ‘layers’ (the error
can be passed forwards, backwards, in both directions, and so on), and other
sub-networks can be added to specific layers. A deep neural network represents
the addition of many more layers to the network architecture. The presence of
several additional layers means that a network is better equipped to deal with
more non-linearity.

Multimodal retrieval For the data sets and experiments described in the
previous chapter, the analysis compares two types of data. In computation,
this is referred to as multimodal analysis; for example, the joint analysis of
image and text pairs. In the multimodal retrieval paradigm, different types of
data are handled together. The objective is to learn a set of mapping functions
that project the different modalities onto a common metric space, to be able to
retrieve relevant information in one modality through a query in another. This
paradigm is often used in the retrieval of image from text and text from image.
The multimodal retrieval method relevant to this thesis is primarily canonical
correlation analysis or CCA, explained in detail in Section [6.4.5

6.4.4 Time Series Distance Metrics

A simple way to analyze sound-tracing related movement data would be to
compare different time series. Several tasks in the appended papers involve
measuring the distance between two time series. In essence, time series are
matrices. Several methods have been proposed for time series distance matching,
which can be imagined as the extent of the variance between two different time
series. Broadly, the methods can be classified as follows:

1. Reduced dimensionality measures: These are useful when time series
are large or tightly sampled and therefore, time series distance cannot
be measured by sample-to-sample distances. Reduced dimensionality
measures can include, for example, discrete Fourier transform, and then
a comparison between the transforms. Discrete cosine transform (DCT),
Chebyshev polynomials are some ways to measure time series distance
using reduced dynamics.
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2. Distance measures: The easiest way to think about distance measures is to
calculate the Euclidean or edit distance, which would be the distance per
sample between each series. Edit distance measures can also be improved
by introducing edit distance penalties, or using a weighted alignment before
distance is calculated.

3. Longest common subsequence (LCS): LCS is a set of problems to detect the
longest common subsequences in any two sequences of data. This problem
can be adapted to string commonalities and continuous time series.

4. Data adaptive measures: Data adaptive measures try to fit first to the series
data before computing distance; for example, polynomial interpolation or
regression using piecewise polynomials or splines. In these methods, the
approximated functions are then compared to find distances. For symbolic
data, such methods can include substrings, case modification, or other
kinds of approximation.

5. Non data adaptive measures: Wavelet transforms, spectral measures such
as discrete Fourier transform (DFT), DCT, and piecewise aggregation
approximation methods can be used.

Time Series Similarity Measures

We can also take another approach; instead of trying to find the distance
between two time series in a hyperspace, we can measure their similarities.
Broad classifications of similarity measures are as follows:

1. Lock step measures: Distance measures such as L1 L2 norms.

2. Elastic measures: DTW, LCS, edit distance, and sequence weighted
alignment can be thought of as elastic distance measures because they aim
to match subsequences or subsections of data.

3. Threshold based measures: TQuEST or the threshold query execution
method.

4. Pattern based measures: Spatial assembling distribution, also called
SpADe.

6.4.5 Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) is a common tool used to investigate
linear relationships among two sets of variables. In a review paper, Wang et
al. analyze several models for cross-modal retrieval (Wang et al., [2016). Firstly,
CCA allows us to approach the data through real-value based methods. The
method also allows us to approach the data in a pairwise retrieval paradigm.
Just like unsupervised methods, the CCA method uses similar pairs to learn
meaningful distance metrics between different modalities. CCA has also been
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Fa(a,X) fb(b,Y) I

Figure 6.6: A representation of the CCA algorithm used; fa and fb represent the
two different data sets—melodic and motion features, respectively.

used previously to show music and brain imaging inter-relationships
land Dmochowskil, [2017)).

A previous study analyzing tracings to pitched and non pitched sounds also
used CCA to understand sound—motion relationships. In the paper, the authors
describe the inherent non-linearity in the mappings, despite finding intrinsic
sound-action relationships (Nymoen et al., 2011)). This work was extended in
a new paper, where CCA is used to interpret how different features correlate
(Nymoen et all 2013]). Pitch and vertical motion have linear relationships in
this analysis, although it is important to note that the sound samples used were
short and synthetic.

CCA has also been used in research related to the analysis and retrieval of
music-motion (Nymoen et all, 2011} [2013} [Caramiaux et all, 2009} [Caramiaux|
land Tanakal, 2013). The biggest reservations in analyzing music-motion data
using CCA is that non-linearity cannot be represented, and the method is highly
dependent on time synchronization. The temporal evolution of motion and
sound remains linear over time (Caramiaux and Tanaka), 2013)). To get around
this, kernel-based methods can be used to introduce non-linearity.
present a study that used kernel-based CCA methods to analyze
motion and music features together using video sequences from classical ballet,
and optical flow based clustering. Bozkurt et al. present a CCA based system
to analyze and generate speech and arm motion for a prosody-driven synthesis
of the ‘beat gesture’, which is used to emphasize prosodically salient points in
speech (Bozkurt et all, [2016). CCA is used to explore the data sets in this thesis
due to the previous successes associated with using this family of methods. The
same data are also analyzed using deep CCA, a neural network approximation
of CCA, to better understand the non-linear mappings.

CCA is a statistical method used to find linear combinations of two variables,
X = (z1,22,...,2,) and Y = (y1, Y2, ..., Yn), with n and m independent variables
as vectors, a and b, such that their correlation, p = corr(aX,bY), of the
transformed variables is maximized. Furthermore, more linear vectors, a’ and b/,
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can be found—they maximize the correlation and are not correlated with the
previous transformed variables. This process can be repeated till d = min(m,n)
dimensions.

6.4.6 Deep CCA

Deep CCA is a neural network based approximation of CCA. By introducing
neuronal layers, we are able to approximate non-linearity in the problem. The
CCA can be extended to include non-linearity by using a neural network to
transform the X and Y variables, as in the case of deep CCA
. Given the network parameters, 6; and 65, the objective is to maximize
the correlation, corr(f(X,01), f(Y,02)). The network is trained by following the
gradient of the correlation objective as estimated from the training data.

6.4.7 Template Matching

Template matching represents a series of methods from image processing that
are used for tasks where a stimulus is chosen as a template to match to other
query images. This ensures that the algorithm retains some robustness as a
result of searching only for relevant template-related features; it helps to avoid
such problems as noisy backgrounds. In Miiller’s book on information retrieval
for motion data, a method is described for using motion data to create motion
templates, which act as compact and explicit matrix representations of motion

data for a search and retrieval algorithm (Miiller} |2007)).

6.5 Summary

In this chapter, I present a summary of the methods used first in sound analysis,
then motion analysis, and in a joint analysis of sound and motion. Sound analysis
deals with several levels, starting with storing the data as sound files, signal
processing algorithms for pitch detection, and methods for contour representation
analysis. I summarize motion capture technologies, focusing on infrared motion
capture, and how data is obtained and analyzed. To cross-correlate the data, I
use a range of methods from statistical hypothesis testing to canonical correlation
analysis. Other methods for comparing multimodal time-series data have also
been explained for context. I have presented an overview of the computational
tools and possibilities, and their contributions to this thesis. Using these
technologies, the datasets are analyzed, and a summary of the papers, and
a discussion of the results is laid out in the next chapter.
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Chapter 7
Conclusions

Embodied cognition is all fine, but tell me
whose body are we talking about?
- A well-meaning friend

7.1 Research Summary

Using the methods as described above, four papers form the core of this
thesis, and are appended towards the end. Each of the four papers explores
a dimension of melodic contour: verticality, motion metaphors, body use, and
multi-feature correlational analysis. Some emergent findings from the data are
also discussed in detail, relating to: verticality, imagery, voice, body use, and
cultural considerations. I hope the analysis can inform some areas for research
in melodic perception, as well as building systems for indexing, and generating
music.

7.1.1 Paper |

Reference: Kelkar, T., & Jensenius, A. R. (2017). Exploring melody and
motion features in “sound-tracings”. In Proceedings of the 14th Sound and
Music Computing Conference (pp. 98-103). Aalto University.

Abstract

Pitch and spatial height are often associated when describing music. In this
paper, we present results from a sound-tracing study in which we investigated
such sound-motion relationships. Subjects were asked to move as if they were
creating the melodies they heard, and their motion was captured with an infrared,
marker-based camera system. The analysis focused on calculating feature vectors
typically used in melodic contour analyses. We used these features to compare
melodic contour typologies with motion contour typologies. This is based
on using proposed feature sets that were made for melodic contour similarity
measurements. We applied these features to the melodies and motion contours
to establish whether there is a correspondence between the two, and to find the
features that match the most. We found a relationship between vertical motion
and pitch contour when evaluating according to features, rather than simply
comparing contours.
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Discussion

The first question we explored was whether models of melodic contour that
have been explored in previous research [Schmuckler| (2010, [1999) can be applied
to movement data. The reasoning behind this is to test the assumption of
pitch verticality in a full-body free hand sound—tracing study. We test three
contour features that describe many contour models: 1. Signed interval distances,
describing the directions of subsequent notes; 2. Intial, final, highest, lowest
vector containing these four notes from the melody, and 3. Signed relative
distances, including the intervals in semitones and the directions. We try
to perform a simple retrieval experiment for the 3rd feature with k-nearest
neighbors, and find that the recognition accuracy is not significant for any
contour profile. Although these features appear in many contour models, vertical
motion alone does not sufficiently explain tracings drawn by the participants. In
qualitative observations we notice that people use several types of metaphorical
representations instead. This is investigated in Paper II.

7.1.2 Paperll

Reference: Kelkar, T., & Jensenius, A. R. (2017, June). Representation
strategies in two-handed melodic sound-tracing. In Proceedings of the 4th
International Conference on Movement Computing (p. 11). ACM.

Abstract

This paper describes an experiment in which subjects participated in a sound-
tracing task to vocal melodies. They could move their hands freely in the air;
their motion was captured using an infrared, marker-based system. We present
a typology of the distinct strategies that the participants used to represent their
perception of the melodies. These strategies appear to be ways to represent
time and space through the finite motion possibilities of two hands moving
freely in space. We observed these strategies and present their typologies
through qualitative analysis. Then, we numerically verified the consistency of
these strategies by conducting tests of significance between labeled and random
samples.

Discussion

In this paper, we describe the main strategies used by most participants to
express melodic contour in motion metaphors. As discussed in the previous
paper, vertical motion is related but not sufficient to describe sound-tracings
of participants. This is because people use various metaphors to represent the
changes they hear in melodic motion. By metaphors, I am referring to the
use of bimanual movement as if the two hands were carrying or manipulating
objects having different properties. We isolate 6 metaphorical strategies used, and
demonstrate how these can be quantitatively differentiated from one another. We
perform automated windowing of tracings in the motion data of each participant,
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and using statistical hypothesis testing, calculate how different metaphors can
be identified.

7.1.3 Paper lll

Reference: Kelkar, T., & Jensenius, A. (2018). Analyzing free-hand sound-
tracings of melodic phrases. Applied Sciences, 8(1), 135.

Abstract

In this paper, we report on a free-hand motion capture study in which 32
participants ‘traced’ 16 melodic vocal phrases in the air with their hands, in two
experimental conditions. Melodic contours are often thought of as correlating
with vertical movement (up and down) in time—this was our initial expectation.
We found an arch shape in most of the tracings, although this did not directly
correspond to the melodic contour. Furthermore, the representation of pitch in
the vertical dimension was but one of a diverse range of movement strategies used
to trace melodies. Six different mapping strategies were observed; these strategies
were quantified and statistically tested. The conclusion is that metaphorical
representation is much more common than a ‘graph-like’ rendering in such a
melodic sound-tracing task. Other findings include a clear gender difference in
some of the tracing strategies, and the unexpected representation of melodies in
terms of a small object for some of the north Indian music examples. The data
also show a tendency of participants to move within a shared ‘social box’.

Discussion

In this article, we analyze Dataset 1 further in order to understand the
distribution of the strategies of motion metaphors identified in the previous
article. We find that there is a clear arch shape when looking at the averages of
the motion capture data, regardless of the general shape of the melody itself.
This may support the idea of a motor constraint hypothesis that has been used
to explain the similar arch-like shape of sung melodies. I will explain this in
more detail in section We find a gender difference for some of the strategies.
This was most evident for representing small objects using both hands, which
women performed more than men. The use of this strategy was also found to
be more common for melodies from north Indian music even when participants
who had no or little exposure to this musical genre. This type of metaphor
has previously been reported to have been used by practitioners of this genre
(Clayton|, 2001). The data show a tendency of moving within a shared ‘social
box’. This may be thought of as an invisible space that people constrain their
movements to, even without any exposure to the other participants’ tracings.
We find an inverse relationship between the participants’ heights and the use of
the extreme periphery of the body to represent the highest notes of the melodic
stimuli.
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7.1.4 Paper IV

Reference: Kelkar, T., Roy, U., & Jensenius, A. R. (2018). Evaluating a
collection of Sound-Tracing Data of Melodic Phrases. In Proceedings of the 19th
International Society for Music Information Retrieval Conference, Paris, France.
(pp. 74-81)

Abstract

Melodic contour—the ‘shape’ of a melody—is a common way to visualize and
remember a musical piece. Studies on sound-tracings investigate the relationship
between people’s ability to draw such melodic contours on paper or in the
air. Understanding such relationships between music and motion is interesting
from a cognitive perspective, and it can also be useful in the development of
retrieval systems. The purpose of this paper was to explore the building blocks
of a future ‘gesture-based’” melody retrieval system. We present a data set
containing 16 melodic phrases from four musical styles, with a large range of
contour variability. This is accompanied by full-body motion capture data of 26
participants performing sound-tracing to the melodies, which have multiple label
sets. The data set was examined using canonical correlation analysis (CCA), and
its neural network variant (deep CCA), to understand how melodic contours and
sound-tracings correlate. The analyses reveal non-linear relationships between
sound and motion. The link between pitch and verticality does not appear strong
enough for complex melodies. We also found that descending melodic contours
have the lowest correlations with tracings.

Discussion

In this paper, we analyze Dataset 1 from a multimodal retrieval approach. This
method has been used in previous studies to analyze sound tracings
. We introduce a new feature for calculating the longest run lengths
of individual tracings to improve the correlations of the system. We test different
category labels for melodies. Genres show the least amount of agreeability
and improvement. With all melody and all motion features, we find an overall
correlation of 0.44 with Deep CCA, for both the longest ascend and longest
descend features. This supports the view that non-linearity is inherent to tracings.
This will be explained further in

7.2 Discussion

In Chapter 1, I established that the key research question of the thesis was
to understand the role of embodiment in melodic contour perception using
sound-tracing as the experimental methodology. I elaborate on the findings
below.
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RQ1. How do listeners represent melodic motion through body
movement, and how can we analyze motion representations of
melodic contours?

From the experiments conducted, we find that both expert musicians and non-
experts are able to trace melodies that they hear. The relative ease of the task
points to the fact that representing melodic stimuli through visual and gestural
imagery is not a task that requires specialized training or access to musical
knowledge. Most participants reported that the task became rather intuitive to
them as the experiment progressed, even if they anticipated it being difficult.
This confirms the findings of previous studies, as well as the hypothesis that
the connection between visual or motor imagery and melodic stimuli is quite
obvious. All participants were able to perform every melody, outliers in the data
sets are purely results of marker dropouts or other technical difficulties.

In Paper III, while doing qualitative analysis of the data, we found differences
in body use that had little to do with the experiments themselves. That body
height influences how participants trace melodies is a new finding, where height
negatively correlates with the perceived pitch—height of the highest musical note.
Previous sound-tracing studies have often looked at tracings on a tablet, thus
missing the context associated with representing melodic movement using the
whole body.

RQ2. What are characteristics, and applications of motion
representations of melodic contour?

An important characteristic of sound tracings in this context is the representation
of melodies as metaphors, where the movement resembles an interaction with
imaginary object that act as stand-ins for the perceived movement in the music.

In Paper I and II, I analyze and quantify metaphors found in melodic sound-
tracings. Specifically, in the Paper I, I compare symbolic contour typologies and
motion features in sound-tracings to see if vertical motion justifiably explains
the shape of contour tracings. Evidently, when the paradigm of melodic
representation moves from vertical placement to motion representation, contour
representations change.

Although much of the literature points to correlations between melodic pitch
and vertical movement, our findings reveal a much more complex picture. For
example, relative pitch height appears to be more important than absolute
pitch height. People seem to think about vocal melodies as actions, rather than
interpreting pitch purely in one (vertical) dimension over time. The literature on
contour features emphasizes that while tracing melodies through an allocentric
representation of the listening body, the notion of pitch height representation
matter much less than previously thought. Therefore, contour features cannot
be extracted merely from cross-modal comparisons of two data sets. We propose
that other strategies can be used for the analysis of contour representations, but
this will have to be developed in future research.
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One interesting finding is that there are gender-based differences in
participants’ sound-tracing strategies. Women seem to show a greater diversity
of strategies in general, and they use object-like representations more often than
do men.

RQ 3: How can we test if motion related to melodic contours is
consistent: a) within participants, and b) across participants?

In visual inspection of the data set, we find that body use within participants is
significantly different, depending upon a variety of factors. To study this, we
perform a correlational analysis of many features with each other: melody labels,
contour profile, genre, presentation (recorded vs resynthesized melodies), and to
detect the presence of motivic repetition and vibrato.

In Paper IV, we study the correlations among all participants for the above
mentioned categories of stimuli. Through these patterns we find that the highest
agreement was for representation of a virbrato, motivic repetition, and for melody
labels. This means that within participants, these are the features that are most
similarly traced.

In Paper III, we also present a frequency diagram for representation strategies
used by participants for tracing melodies, and find that there are some general
trends with some melodies represented more often by some strategies.

The control of various melodic features seems to follow a hierarchy in most
participants. Vowel changes are most often represented by palm shapes, whereas
melodic leaps are more often represented at the shoulder joint level. The scale
at which melodies are represented relative to the body is also consistent across
participants.

In |B] T explain the python functions created to analyze the features of the
melody—motion pairs.

RQ 4: Can we build a system to retrieve specific melodies based
on sound-tracings?

In Paper IV, I present the beginnings of a CCA-based system to retrieve melodies
from sound-tracings. I have tried to integrate the findings from the empirical
experiments with an experiment on melodic indexing and contour retrieval
through body movement. Two versions of canonical correlation analysis are
used to demonstrate the highly correlating factors between melodies and their
respective motions.

Previous studies in this area include shorter sound stimuli or synthetically
generated isochronous music samples. The strength of this particular study is
in its use of shorter melodies, and that the performed tracings are not iconic
or symbolic, but spontaneous. As such the data set might bring us closer to
understanding contour perception in melodies. Hopefully the data set will prove
useful for pattern mining—it presents the community with novel multi-modal
possibilities, and could be employed in user-centric retrieval interfaces.
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7.3 General Discussion

This thesis has tied experimental methods in embodied music cognition to
computational analysis of melody. Within computational musicology, methods
that use sheet music or symbolic data exclusively limit us to certain musical styles,
kinds of analysis pertaining to certain inferences drawn from tonality, and so on.
There is also a significant bias toward working with music data sets in generative
and interactive music as these data sets are more available. Despite the fact
that most extensive data sets are available in MIDI and symbolic notation, I
have specifically addressed the limitations of studying contour perception using
symbolic methods in Paper I of this thesis.

I will now discuss four main aspects of the findings: 1. Verticality, 2. Imagery,
3. Voice, and 4. The Body, and discuss their details.

7.3.1 Verticality

Arch-Shape In Paper III, we plot the average vertical trajectory of each
melody, to discover that the the average vertical trajectories all resemble an arch
shape. It has been speculated before (Savage et al. [2017) that an arch shape
represents the shape that would support the motor constraint hypothesis, that
the effort required to produce songs would follow an arch shaped trajectory. It
is interesting to note that this shape is found even in purely ascending or purely
descending melodies.

Having said this, there are differences within the contour and acceleration
profiles of what is drawn between the ascent and descent. A significant thing to
note here is that this shape is observed only for the vertical profile of contour
tracing. Although vertical profile is where we suspect the most amount of motion
corresponding to contour, this is not what we actually see in the data.

Extreme Periphery How close to the body do traced melodies lie? We find
that the use of the space around the body is closely related to pitch height.
However, we find an inverse relationship between the participants’ heights and
the use of the extreme periphery of the body to represent the highest notes of
the melodic stimuli. It is interesting to note that this region around our bodies is
reserved for the very highest notes, and some participants also reach beyond this
region by extending their toes, for example. Similarly, melodies seldom extend
below the center of mass, there are very few examples in the data of participants
stopping down to represent contour.

Relative vs Absolute Representation For sound tracings relative pitch
height appears to be more important than absolute pitch height. This means
that the same height in space might be used to represent two very different
pitches depending upon the ambit and the context of the melodic fragment that
is traced. Our ability to zoom-in on context is highlighted by this result. This
could tie back into the arch-shaped average tracings, because in essence every
sung phrase occupies then, the same procession of events.

95



7. Conclusions

Research points towards gesture and body movement encoding an ‘effort’
dimension. As we ascend up in our own pitch range, we need more effort to be
able to reach higher, and this effort can be perceived both in the sound as well
as the movement. Representing relative as opposed to absolute pitch might be
related to the perception of effort in a singular phrase.

Non-Linearity In Paper IV, we present a CCA of various features of the
melodies. Nymoen et al.| (2013) previously highlighted non-linearity in sound
tracing features. This points towards two things: 1. Features take precedence
over one another, given that sound tracing is already an act of dimensionality
reduction, and 2. Context-sensitive features make absolute correlational analysis
not yield good results.

When trying to model tracings, a non-linear network gave better results than
a vanilla version, as described in Paper IV.

Contour Properties The above results indicate that verticality in contour
tracings is not the most important aspect, at least in sound tracings. Previous
studies have shown that verticality is just one dimension of pitch-mapping for us,
and variations over languages and cultures exist (Eitan and Timmers| [2010). In
observations of tracings, we find that the general arch shape also exists as phrase-
termination annotation—the hands are placed at a location that represents
the beginning of the phrase, and brought down once the phrase is completed.
However, contour features are represented in the middle of a sharp initial ascent
and a sharp final descent in the movement. In order to focus on contour features,
acceleration and jerk plots are more useful to analyze.

7.3.2 Imagery

Experience with dance, sign language, or musical traditions with simultaneous
musical gestures (such as conducting) all contribute to the interpretation of
music as motion. Had we chosen participants from any one pool of experience
with music-motion, it may have been easier to model sound-tracings, but despite
the diversity of participants’s experiences, there is a considerable amount of
consistency between subjects. Research has also shown that the representation
of time itself depends upon linguistic factors—speakers of different languages
conceive the physical representation of a ‘timeline’ very differently from each other
(Boroditskyl [2000; [Fuhrman et al., 2011). The agreement of which directions
around the speaker time seems to travel could influence how melodies traveling
through time are represented and shaped.

Canvas We see that positing a ‘timeline’ relative to the body is implicitly
imagined while performing this task. Some might adopt the strategy of a timeline
ahead of them, much like a sketchbook or a graph, while others might imagine a
cylindrical canvas around their bodies. This allocentric placement of melody on
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a canvas in front of the body is consistent for each participant’s tracing data,
but varies across participants.

Metaphor The idea of movement as metaphor, in the context of this discussion
borrows a lot from the conceptual metaphors in speech-gestures. The idea is that
we refer to conceptual objects as if they had spatial properties and locations.
We might say ‘this idea’, indicating to something as if it were present in our
hands. In the qualitative observations of the study, it became clear that melodic
movement could easily be represented in this form.

In Papers I and II, T have delved deeper into the gestural metaphors used to
represent the sense of movement in melody. The use of metaphorical gestural
representations, as shown, is not unusual in the sound-producing movements of
some vocal styles (Paschalidou et al.| 2016} [Pearsonl, [2016]).

According to the gestural affordances of musical sound theory ,
several gestural representations can exist for the same sound, but there is a limit
to how much they can differ. In other words, gestural representations might
vary a lot, but that does not mean that any gestural representation response can
perfectly fit a single stimulus. Our data support this idea of a number of possible
and overlapping action strategies. Several spatial and visual metaphors are used
by a wide range of people, such as the use of objects with various properties
such as rigidity, elasticity, and so on.

Looking at the features of Melody 4, the intervals steadily descend, then they
ascend, and finally come down again in the same step-lengths. This arguably
resembles an object that slips smoothly along a slope, and could be a probable
reason for the overwhelming representation of this particular melody as an object.
In future studies, it would be interesting to see whether we can recreate this
mapping in other melodies, or understand how perceived melodic motion can
resemble the sounds generated by physical motion of objects around us.

7.3.3 Voice

We expected musical genre to have some impact on the results. For example,
given that western vocalizes are sung in a higher pitch range than the rest of the
genres in this data set, as expected, on average, people represent western vocalize
tracings spatially higher than tracings in the other genres. In acceleration plots
for each melody, this difference is stark.

Motif As explained in the appendix, some melodies had a repeating motif.
In Paper IV, CCA analysis reveals that one of the best performing indices of
the network is for distiction between phrases containing motifs and those not
containing motifs. Motivic repetition reflected in tracings is an indication of
consistency in the imagery of contour.

Vowels Participants were tasked with imagining as if their movements are
sound-producing, which can have some connotations of ‘control’ through
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movement embedded in it. We find that typically, palm shapes are used to
identify changes in vowels of the melody, whereas pitch leaps are represented in
joints closer to the body, such as the shoulders. When vowels became absent, as
in the case of resynthesized melodies, the formant shape is interpreted as being
small and narrow.

Vibrato We found that melodies with the maximum amount of vibrato
(Melodies 14 and 16 in Figure are represented with the largest changes in
acceleration in the motion capture data. This implies that although the pitch
deviation in this case is not so large, the perception of a moving melody is a
much stronger influence on contour shape compared to melodies that have larger
pitch changes. It could be argued that both Melodies 4 and 16 contain motivic
repetitions that cause this pattern. However, repeating motifs are as much a
part of Melodies 6 and 8 (joik). The effect of the vowels used in these melodies
can thus be negated, due to the similarities between the tracings for original and
resynthesized stimuli. There are some melodies that stand out for use of certain
hand strategies. Melody 4 (north Indian) is, curiously, primarily represented as
a small object.

Phrasing What constitutes a melodic phrase, and how to define the boundary
conditions of melodic phrases is a problem with many possible solutions. If we
were to use sound-tracing as an annotation system for not only non-western, but
also non-standard or non-notatable musical pieces, we would be able to create a
model of melodic phrasing that is more related to how we listen rather than to
just understanding rules about tonality and pitch relationships.

7.3.4 Body

It is worth noting the several limitations of the current experimental methodology
and analysis. Any laboratory study of this kind should present subjects with an
unfamiliar and non-ecological environment. The results are presumably also, to
a large extent, influenced by the habitus of body use in general—the direction
of written scripts in the native languages of the participants, their familiarity
with scientific graphs, and so on.

The extreme periphery of the body, reached in this case by extending the
shoulders, seems to be infrequently used simply for participants that are taller.
In Paper III, T call this effect as a ‘social box’ wherein people try to occupy the
same space regardless of the differences in their own body dimensions.

Gender We found some differences between the tracings belonging to men
and women. Women had a greater diversity of hand strategies in general, as
demonstrated in Paper III. Moreover, some strategies are used more frequently
by women than men, most interestingly that of representing the movement in
melodies as an imaginary small object. It is unclear why this might be, and
beyond the scope of this project.
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7.3.5 Cultural Considerations

Despite using melodic stimuli from different musical cultures, the objective was
not to find cultural differences or musical universals. The research presents
embodied cognition as an approach that can help situate melodic perception in
the body. I have tried to address the why of studying contour typologies earlier
by examining what makes them interesting for study.

I would like to borrow the why of studying contour typologies to further
discuss the intentions of data collection practices in computational musicology
that might have underpinnings that we might forget to consider while analyzing
the data. The fields of computer science and systematic musicology are currently
diversifying and there is a growing interest in understanding ‘other’ cultures. In
an ever growing, more frequently migrating world, our need to apply theory to
every kind of practice is urgent. This means that the links between methods and
models, and their origins and history, weaken over time as technology advances.
The original motivations for building systems for musical indexing and melodic
modelling, are very different from the contexts in which the data are currently
used—primarily to find cultural differences or musical universals.

In his 1983 book, The Study of Ethnomusicology, Nettl reminds us that the
study of musical universals was popular among nineteenth century musicologists,
such as Wilhelm Wundt; this line of inquiry made a comeback around the
1970-80s. The idea of looking for universals persists strongly in computational
musicology, which offers several tools to understand the ‘feature dispersion’ of
the musics of the world.

The methodical study of melodic contour extends further back in history than
modern computational methods, which model pitch contours in different ways
and apply the results to generalize and generate music. Early researchers have
noted that melodic contour is the most stable element in differentiating melodic
identities, styles, and canons . Melodic contour typologies
have also been proposed in several of these early works, along with generalized
descriptions of contour behaviors. Much of the early literature on melodic contour
analyzed them using cultural tropes such as ‘white’ or ‘primitive’ music, as is
seen in many works in ethnomusicology (Nettl, [1956; [Sachs| [2012}; [Roberts] [1922)).
Curt Sachs’s work on melodic contours and ideas about melodic cascades,
in the Wellsprings of Music, have since fallen out of fashion. The book did not
age well because of the presence of many misguided cultural meta-theories in
the writing. Susanne Youngerman critiqued his work in a detailed article that I
paraphrase in this section Youngerman'’s article still serves as a concise
warning, against using culture as a broad term to mean different methods of
aesthetic appreciation. A longer description of various challenges can be found
in Appendix [A]

In studies of cultural differences in early ethnomusicology, most analyses
are conducted with the help of notated music, whether or not notated music
applies to the musical form or musical culture in question. Contour typologies
of all kinds are based on fixed note positions, even if the instrument does not
produce notes in that manner, for example, the voice. This aspect of the study of
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melodic contours stays with us even today. Through the methods in this thesis,
I have demonstrated that looking at melodic contours from the perspectives of
sound-signal and body motion can provide insight on various perceptual patterns
associated with melodic listening.

While trying to understand the history of contour classification, we cannot
adopt a perspective that elides the goal of contour typologies—to essentialize
cultural-melodic phenotypes through qualitative methods, one of which is contour
typologies. I would like to state that developing contour typologies is not a goal
of the research conducted for this thesis. It is instead to see how contours are
understood and represented as shapes.

7.4 Impact and Future Work

The studies conducted for this thesis could inform several areas: 1. research in
melody and prosody perception, 2. search and retrieval systems for music, 3.
interactive music generation

7.4.1 Research in Melody and Prosody Perception

Treating sound-tracings as annotation material provides a new way of thinking
about music analysis and studies on segmentation and phrasing. Through the
experiments conducted, I have shown that people demonstrate a remarkable
amount of consistency in their spatial and motor representations of music and
sonic objects.

Experiments akin to the ones conducted for this thesis could inform our
understanding of melodic phrasing, and the differences in people’s phrasing
boundaries in various musical contexts. This could help us build a more
sophisticated understanding of pitch perception in musical or melodic contexts.

7.4.2 Search and Retrieval Systems

Several projects on melodic content retrieval using intuitive and multimodal
representations of musical data have been developed for use on different data
sets. The oldest example of this is the 1975 project, ‘Directory of Tunes and
Musical Themes’, in which the author used a simplified contour notation method
involving letters to denote contour directions to create a dictionary of musical
themes, from which one may look up a tune they remember .
The descriptions of this book suggested that people would always be able to
look up a tune stuck in their head so long as they could describe the contour
direction of the melody.

Parsons’ model has been adopted for melodic contour retrieval by Musipedia
2008). Another system has been proposed in the recent project called
SoundTracer, in which the motion of a user’s mobile phone is used to retrieve
tunes from a music archive . A critical difference between
these approaches is how they handle contour and musical mappings, especially
variations in time scales and time representations. Most of these methods do
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not have ground truth models of contours, and instead use one of several ways
of mappings, each with its own assumptions.

7.4.3 Interactive Music Generation

Interactive systems to generate music—that fill in the gaps, as it were, from
skeletal notions of melodic contour—are popular. Typically, the interface involves
a way for a user to generate a contour, on to which generative models are mapped,
to give a possible musical solution. Several studies on embodied music cognition
investigate the idea of drawing or tracing as a method of understanding the
mappings of shapes and lines to musical material. Common modes of interaction
for explicitly melodic interfaces include tracing, drawing, sketching, and hand-
waving for contour depiction. Mappings from these contour depictions take
various forms.

Generated melodies are usually harder to evaluate for goodness and fit in
music generation, than, for example harmonic adherence to a particular style.
Depending on the task at hand, melodic generation tasks may or may not require
continuity and development, and some idea of self-similarity—a musical piece
generally has a sense of identity maintained through variations that within
a range of thematic . Although melodic generation spans a large range of
mathematical, parametric, and learning methods, generally melodic generation
is constrained to the symbolic domain. Majority of the systems for generation
are thus in the symbolic domain, and inapplicable to musical cultures and styles
where either datasets for symbolic music do not exist; or symbolic generation is
insufficient to capture the musical style.

Typically, gesture-melody interfaces start with some assumption of melodic
grammars, goals, strategies, styles; gestural interfaces start with some baseline
measurements of user actions. There is a mid-level representation of the input
and output, at which point mapping might be carried out. The goals of some
of these instruments might either be the real-time generation of melodies or
complete songs based on one or a few factors mapped from the gesture. There
are also differences in generation, based on whether MIDI output is preferred to
continuous-pitch output. Continuous and particularly on-the-fly interfaces often
do not even use a melodic model, preferring instead to map a range of inputs to
pitch and timbre characteristics, which places the interface control fully in the
hands of the user. There is, therefore, a spectrum from fully generative systems
with little mapping control to fully mapped systems with no generation model,
between which gesture-melody interfaces lie.

The arrival of Magenta pre-trained melodic generation models has made
the mid-level of melodic generation more accessible to several post-Magenta
papers. A proof-of-concept for exploring this was recently published as part of
Google’s Magenta project offshoots (Donahue et all [2018); contour enumeration
happens through a series of press buttons, reducing the 81 piano keys to four,
and mapping improvisation using generation on top of these contours. A system
of sketching melodies on paper is also described in [Kitahara et al|(2017), where
people use a tablet to draw melodic contours, on a grid that resembles the

101



7. Conclusions

piano roll format. TrAP uses a tablet-based interface to map four types of
contour profiles by segmentation . The MicroJam application
by Martin et al. includes a sketch-based interface to input melodies and rhythm;
the application can also be used for collaborative performances and modeling
(Martin and Tgrresenl, [2017)).

He is an interface for generating melodic material based on brush calligraphy
(Kang and Chienl [2010)). The system uses computer vision techniques to analyze
brush stroke features and ink thickness and map them on to a pentatonic scale.
The Melodic Brush interface by Huang et al. is another example of the use of
calligraphy inputs, with the specific intention of generating Chinese music, using
a kinect depth camera (Huang et al.| 2012).

Interactive interfaces for generating music use multimodal and movement-
based methods very often. Hopefully the material in this thesis provides new
ideas in this area. To extend some of the work in this thesis is also my personal
goal for future work.

7.4.4 Future Work

The analysis of Dataset 2 and Dataset 3 have not yet been published yet in the
time constraint available. In the future, I plan to analyze these and publish them.
I also plan to release the results of the full body data collected. The tools and
notebooks released as a part of the thesis also will be improved to accommodate
various use cases of motion capture data for musical motion. Similarly, I am in
the process of exploring the movement of other body parts except the hands,
and what we can infer from, for example mirroring of hand movements with
head movements, and so on.

Although canonical correlation is a way to model and understand
correspondences between melody and movement, there is no gold standard,
or right answer for what movement is to be performed, and how much does it
fit. The only way we know when we see a cartoon film where music accompanies
motion, and so on, is that some features in the sound and movement become
naturally corresponded to us. In order to bring this out in the sound tracing
paradigm, I wish to create a system to synthesize melody—motion pairs by
training a network to analyze this data set, and to conduct a study in which users
evaluate system generated music—motion pairs in a forced—choice paradigm.

Speech prosody and its relationship with musical melody is also an area that
I have grazed upon several times, but not in the experiments. In the future, I
would like to incorporate some of the findings related to metaphorical movement
back into analysis of speech gesture.
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ABSTRACT

Pitch and spatial height are often associated when describ-
ing music. In this paper we present results from a sound-
tracing study in which we investigate such sound—motion
relationships. The subjects were asked to move as if they
were creating the melodies they heard, and their motion
was captured with an infra-red, marker-based camera sys-
tem. The analysis is focused on calculating feature vec-
tors typically used for melodic contour analysis. We use
these features to compare melodic contour typologies with
motion contour typologies. This is based on using pro-
posed feature sets that were made for melodic contour sim-
ilarity measurement. We apply these features to both the
melodies and the motion contours to establish whether there
is a correspondence between the two, and find the features
that match the most. We find a relationship between verti-
cal motion and pitch contour when evaluated through fea-
tures rather than simply comparing contours.

1. INTRODUCTION

How can we characterize melodic contours? This ques-
tion has been addressed through parametric, mathemati-
cal, grammatical, and symbolic methods. The applica-
tions of characterizing melodic contour can be for finding
similarity in different melodic fragments, indexing musical
pieces, and more recently, for finding motifs in large cor-
pora of music. In this paper, we compare pitch contours
with motion contours derived from people’s expressions of
melodic pitch as movement. We conduct an experiment
using motion capture to measure body movements through
infra-red cameras, and analyse the vertical motion to com-
pare it with pitch contours.

1.1 Melodic Similarity

Marsden disentangles some of our simplification of con-
cepts while dealing with melodic contour similarity, ex-
plaining that the conception of similarity itself means dif-
ferent things at different times with regards to melodies
[1]. Not only are these differences culturally contingent,
but also dependent upon the way in which music is repre-
sented as data. Our conception of melodic similarity can
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be compared to the distances of melodic objects in a hy-
perspace of all possible melodies. Computational analyses
of melodic similarity have also been essential for dealing
with issues regarding copyright infringement [2], “query
by humming” systems used for music retrieval [3, 4], and
for use in psychological prediction [5].

1.2 Melodic Contour Typologies

Melodic contours serve as one of the features that can de-
scribe melodic similarity. Contour typologies, and build-
ing feature sets for melodic contour have been experimented
with in many ways. Two important variations stand out —
the way in which melodies are represented and features
are extracted, and the way in which typologies are derived
from this set of features, using mathematical methods to
establish similarity. Historically, melodic contour has been
analysed in two principal ways, using (a) symbolic no-
tation, or (b) recorded audio. These two methods differ
vastly in their interpretation of contour and features.

1.3 Extraction of melodic features

The extraction of melodic contours from symbolic features
has been used to create indexes and dictionaries of melodic
material [6]. This method simply uses signs such as +/-/=,
to indicate the relative movement of each note. Adams pro-
poses a method through which the key points of a melodic
contour — the high, low, initial, and final points of a melody
— are used to create a feature vector that he then uses to
create typologies of melody [7]. It is impossible to know
with how much success we can constrain melodic con-
tours in finite typologies, although this has been attempted
through these methods and others. Other methods, such
as that of Morris, constrain themselves to tonal melodies
[8], and yet others, such as Friedmann’s, rely on relative
pitch intervals [9]. Aloupis et. al. use geometrical repre-
sentations for melodic similarity search. Although many
of these methods have found robust applications, melodic
contour analysis from notation is harder to apply to diverse
musical systems. This is particularly so for musics that
are not based on western music notation. Ornaments, for
example, are easier to represent as sound signals than sym-
bolic notation.

Extraction of contour profiles from audio-based pitch ex-
traction algorithms has been demonstrated in several recent
studies [10,11], including specific genres such as flamenco
voice [12, 13]. While such audio-based contour extraction
may give us a lot of insight about the musical data at hand,
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Figure 1. Examples of Pitch features of selected melodies,
extracted through autocorrelation.

the generalisability of such a method is harder to evaluate
than those of the symbolic methods.

1.4 Method for similarity finding

While some of these methods use matrix similarity com-
putation [14], others use edit distance-based metrics [15],
and string matching methods [16]. Extraction of sound sig-
nals to symbolic data that can then be processed in any of
these ways is yet another method to analyse melodic con-
tour. This paper focuses on evaluating melodic contour
features through comparison with motion contours, as op-
posed to being compared to other melodic phrases. This
would shed light on whether the perception of contour as a
feature is even consistent, measurable, or whether we need
other types of features to capture contour perception.

Yet another question is how to evaluate contours and their
behaviours when dealing with data such as motion responses
to musical material. Motion data could be transposed to
fit the parameters required for score-based analysis, which
could possibly yield interesting results. Contour extrac-
tion from melody, motion, and their derivatives could also
demonstrate interesting similarities between musical mo-
tion and melodic motion. This is what this paper tries to
address: looking at the benefits and disadvantages of us-
ing feature vectors to describe melodic features in a multi-
modal context. The following research questions were the
most important for the scope of this paper:

1. Are the melodic contours described in previous stud-
ies relevant for our purpose?

2. Which features of melodic contours correspond to
features extracted from vertical motion in melodic
tracings?
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In this paper we compare melodic movement, in terms
of pitch, with vertical contours derived from motion cap-
ture recordings. The focus is on three features of melodic
contour, using a small dataset containing motion responses
of 3 people to 4 different melodies. This dataset is from a
larger experiment containing 32 participants and 16 melodies.

2. BACKGROUND
2.1 Pitch Height and Melodic Contour

This paper is concerned with melody, that is, sequences of
pitches, and how people trace melodies with their hands.
Pitch appears to be a musical feature that people easily re-
late to when tracing sounds, even when the timbre of the
sound changes independently of the pitch [17-19]. Melodic
contour has been studied in terms of symbolic pitch [20,
21]. Eitan explores the multimodal associations with pitch
height and verticality in his papers [22,23]. Our subjective
experience of melodic contours in cross cultural contexts
is also investigated in Eerola’s paper [24].

The ups and downs in melody have often been compared
to other multimodal features that also seem to have up-
down contours, such as words that signify verticality. This
attribute of pitch to verticality has also been used as a fea-
ture in many visualization algorithms. In this paper, we fo-
cus particularly on the vertical movement in the tracings of
participants, to investigate if there is, indeed, a relationship
with the vertical contours of the melodies. We also want
to see if this relationship can be extracted through features
that have been explored to represent melodic contour. If
the features proposed for melodic contours are not enough,
we wish to investigate other methods that can be used to
represent a common feature vector between melody and
motion in the vertical axis. All 4 melodies in the small
dataset that we create for the purposes of this experiment
are represented as pitch in Figure 1.
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Figure 2. Example plots of some sound-tracing responses
to Melody 1. Time (in frames) runs along the x-axes, while
the y-axes represent the vertical position extracted from the
motion capture recordings (in millimetres). LH=left hand,
RH=right hand.
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=

Figure 3. A symbolic transcription of Melody 1, a sus-
tained vibrato of a high soprano. The notated version dif-
fers significantly from the pitch profile as seen in Figure
2. The appearance of the trill and vibrato are dimensions
that people respond through in motion tracings, that don’t
clearly appear in the notated version.

Feature 1 Feature 3
Melodyl [+, -,+, -+,  [0,4,-4,2,-2,4,0,-9],
-1,
Melody2 [+, -, -] [0,2,-2,-2,0,0],
Melody3 [+,-, -, - -~ [0,-2,-4,-1,-1,-1,-4,-2,
-1, -3,0,0,01,

Melody4 [+, -, +, -, -,
+, -, -

[0,-2,2,-4,2,-2,4,-2,-2]

Table 1. Examples of Features 1 and 3 for all 3 melodies
from score.

2.2 Categories of contour feature descriptors

In the following paragraphs, we will describe how the fea-
ture sets selected for comparison in this study are com-
puter. The feature sets that come from symbolic notation
analysis are revised to compute the same features from the
pitch extracted profiles of the melodic contours.

2.2.1 Feature 1: Sets of signed pitch movement direction

These features are described in [6], and involve a descrip-
tion of the points in the melody where the pitch ascends or
descends. This method is applied by calculating the first
derivatives of the pitch contours, and assigning a change
of sign whenever the spike in the velocity is greater than or
less than the standard deviation of the velocity. This helps
us come up with the transitions that are more important to
the melody, as opposed to movement that stems from vi-
bratos, for example.

2.2.2 Feature 2: Initial, Final, High, Low features

Adams, and Morris [7, 8] propose models of melodic con-
tour typologies and melodic contour description models
that rely on encoding melodic features using these descrip-
tors, creating a feature vector of those descriptors. For this
study, we use the feature set containing initial, final, high
and low points of the melodic and motion contours com-
puted directly from normalized contours.

2.2.3 Feature 3: Relative interval encoding

In these sets of features, for example as proposed in Fried-
man, Quinn, Parsons, [6,9, 14], the relative pitch distances
are encoded either as a series of ups and downs, combined
with features such as operators (j,=,) or distances of rel-
ative pitches in terms of numbers. Each of these meth-
ods employs a different strategy to label the high and low

=== ]

Figure 4. Lab set-up for the Experiment with 21 mark-
ers positioned on the body. 8 Motion capture cameras are
hanging on the walls.

points of melodies. Some rely on tonal pitch class distri-
bution, such as Morris’s method, which is also analogous
to Schenkerian analysis in terms of ornament reduction;
while others such as Friedmann’s only encode changes that
are relative to the ambit of the current melodic line. For the
purposes of this study, we pick the latter method given as
all the melodies in this context are not tonal in the way that
would be relevant to Morris.

3. EXPERIMENT DESCRIPTION

The experiment was designed so that subjects were instructed
to perform hand movements as if they were creating the
melodic fragments that they heard. The idea was that they
would “shape” the sound with their hands in physical space.
As such, this type of free-hand sound-tracing task is quite
different from some sound-tracing experiments using pen
on paper or on a digital tablet. Participants in a free-hand
tracing situation would be less fixated upon the precise
locations of all of their previous movements, thus giving
us an insight of the perceptually salient properties of the
melodies that they choose to represent.

3.1 Stimuli

We selected 16 melodic fragments from four genres of mu-
sic that use vocalisations without words:

1. Scat singing

2. Western classical vocalise
3. Sami joik

4. North Indian music

The melodic fragments were taken from real recordings,
containing complete phrases. This retained the melodies in
the form that they were sung and heard in, thus preserving
their ecological quality. The choice of vocal melodies was
both to eliminate the effect of words on the perception of
music, but also to eliminate the possibility of imitating the
sound-producing actions on instruments (’air-instrument”
performance) [25].

There was a pause before and after each phrase. The
phrases were an average of 4.5 seconds in duration (s.d.
1.5s). These samples were presented in two conditions: (1)
the real recording, and (2) a re-synthesis through a saw-
tooth wave from an autocorrelation analysis of the pitch
profile. There was thus a total of 32 stimuli per participant.
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The sounds were played at comfortable listening level
through a Genelec 8020 speaker, placed 3 metres ahead
of the participants at a height of 1 meter.

3.2 Participants

A total of 32 participants (17 female, 15 male) were re-
cruited to move to the melodic stimuli in our motion cap-
ture lab. The mean age of the participants was 31 years
(SD=9). The participants were recruited from the Univer-
sity of Oslo, and included students, and employees, who
were not necessarily from a musical background.

The study was reported to and obtained ethical approval
from the Norwegian Centre for Research Data. The par-
ticipants signed consent forms and were free to withdraw
during the experiment, if they wished.

3.3 Lab set-up

The experiment was run in the fourMs motion capture lab,
using a Qualisys motion capture system with eight wall-
mounted Oqus 300 cameras (Figure 3.1, capturing at 200
Hz. The experiment was conducted in dim light, with no
observers, to make sure that participants felt free to move
as they liked. A total of 21 markers were placed on the
body of the participants: the head, shoulders, elbows, wrists,
knees, ankles, the torso, and the back of the body. The
recordings were post-processed in Qualisys Track Man-
ager (QTM), and analysed further in Matlab.

3.4 Procedure

The participants were asked to trace all 32 melody phrases
(in random order) as if their hand motion was ‘producing’
the melody. The experiment lasted for a total duration of
10 minutes. After post processing the data from this ex-
periment, we get a dataset for motion of 21 markers while
the participants performed sound-tracing. We take a subset
of this data for further analysis of contour features. In this
step, we extract the motion data for the left and the right
hands from a small subset of 4 melodies performed by 3
participants. We focus on the vertical movement of both
the hands given as this analysis pertains to verticality of
pitch movement. We process these motion contours along
with the pitch contours for the 4 selected melodies, through
3 melodic features as described in section 2.2.

4. MELODIC CONTOUR FEATURES

For the analysis, we record the following feature vectors
through some of the methods mentioned in section 1.2.
The feature vectors are calculated as mentioned below:

Feature 1 Signed interval distances: The obtained motion
and pitch contours are binned iteratively to calcu-
late average values in each section. Mean vertical
motion for all participants is calculated. This mean
motion is then binned in the way that melodic con-
tours are binned. The difference between the values
of the successive bins is calculated. The sign of this
difference is concatenated to form a feature vector
composed of signed distances.
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Example of post-processed Motion Capture
Recording. The markers are labelled and their relative po-
sitions on the co-ordinate system is measured.

Figure 5.

Feature 2 Initial, Final, Highest, Lowest vector: These
features were obtained by calculating the four fea-
tures mentioned above as indicators of the melodic
contour. This method has been used to form a typol-
ogy of melodic contours.

Feature 3 Signed relative distances: The obtained signs
from Feature 1 are combined with relative distances
of each successive bin from the next. The signs and
the values are combined to give a more complete pic-
ture. Here we considered the pitch values at the bins.
These did not represent pitch class sets, and there-
fore made the computation “genre-agnostic.”

Signed relative distances of melodies are then compared
to signed relative distances of average vertical motion to
obtain a feature vector.

5. RESULTS
5.1 Correlation between pitch and vertical motion

Feature 3, which considered an analysis of signed relative
distances had the correlation coefficient of 0.292 for all 4
melodies, with a p value of 0.836 which does not show a
confident trend. Feature 2, containing a feature vector for
melodic contour typology, performs with a correlation co-
efficient of 0.346, indicating a weak positive relationship,
with a p value of 0.07, which indicates a significant posi-
tive correlation. This feature performs well, but is not ro-
bust in terms of its representation of the contour itself, and
fails when individual tracings are compared to melodies,
yielding an overall coefficient of 0.293.
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Figure 6. Plots of the representation of features 1 and 3. These features are compared to analyse similarity of the contours.

5.2 Confusion between tracing and target melody

As seen in the confusion matrix in Figure 7, the tracings are
not clearly classified as target melodies by direct compar-
ison of contour values itself. This indicates that although
the feature vectors might show a strong trend in vertical
motion mapping to pitch contours, this is not enough for
significant classification. This demonstrates the need for
having feature vectors that adequately describe what is go-
ing on in music and motion.

6. DISCUSSION

A significant problem when analysing melodies through
symbolic data is that a lot of the representation of texture,
as explained regarding Melody 2, gets lost. Vibratos, or-
naments, and other elements that might be significant for
the perception of musical motion can not be captured effi-
ciently through these methods. However, these ornaments
certainly seem salient for people’s bodily responses. Fur-
ther work needs to be carried out to explain the relationship
of ornaments and motion, and this relationship might have
little or nothing to do with vertical motion.

We also found that the performance of a tracing is fairly
intuitive to the eye. The decisions for choosing particular
methods of expressing the music through motion do not
appear odd when seen from a human perspective, and yet
characterizing what are significant features for this cross-
modal comparison is a much harder question.

Our results show that vertical motion seems to correlate
with pitch contours in a variety of ways, but most signifi-
cantly when calculated in terms of signed relative values.
Signed relative values, as in Feature 3, also maintain the
context of the melodic phrase itself, and this is seen to
be significant for sound-tracings. Interval distances matter

less than the current ambit of melody that is being traced.

Other contours apart from pitch and melody are also sig-
nificant for this discussion, especially timbral and dynamic
changes. However, the relationships between those and
motion were beyond the scope of this paper. The inter-
pretation of motion other than just vertical motion is also
not handled within this paper.

The features that were shown to be significant can be ap-
plied for the whole dataset to see relationships between
vertical motion and melody. Contours of dynamic and tim-
bral change can also be interesting to compare with the
same methods against melodic tracings.
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Abstract: In this paper, we report on a free-hand motion capture study in which 32 participants
‘traced” 16 melodic vocal phrases with their hands in the air in two experimental conditions.
Melodic contours are often thought of as correlated with vertical movement (up and down) in time,
and this was also our initial expectation. We did find an arch shape for most of the tracings,
although this did not correspond directly to the melodic contours. Furthermore, representation
of pitch in the vertical dimension was but one of a diverse range of movement strategies used to
trace the melodies. Six different mapping strategies were observed, and these strategies have been
quantified and statistically tested. The conclusion is that metaphorical representation is much more
common than a ‘graph-like’ rendering for such a melodic sound-tracing task. Other findings include
a clear gender difference for some of the tracing strategies and an unexpected representation of
melodies in terms of a small object for some of the Hindustani music examples. The data also show
a tendency of participants moving within a shared ‘social box’.

Keywords: motion; melody; shape; sound-tracing; multi-modality

1. Introduction

How do people think about melodies as shapes? This question comes out of the authors” general
interest in understanding more about how spatiotemporal elements influence the cognition of music.
When it comes to the topic of melody and shape, these terms often seem to be interwoven. In fact,
the Concise Oxford Dictionary of Music defines melody as: “A succession of notes, varying in pitch,
which has an organized and recognizable shape.” [1]. Here, shape is embedded as a component in
the very definition of melody. However, what is meant by the term “melodic shape’, and how can we
study such melodic shapes and their typologies?

Some researchers have argued for thinking of free-hand movements to music (or ‘air instrument
performance’ [2]) as visible utterances similar to co-speech gestures [3-5]. From the first author’s
experience as an improvisational singer, a critical part of learning a new singing culture was the
physical representation of melodic content. This physical representation includes bodily posture,
gestural vocabulary and the use of the body to communicate sung phrases. In improvised music,
this also includes the way in which one uses the hands to guide the music and the expectation of
a familiar audience from the performing body. These body movements may refer to spatiotemporal
metaphors, quite like the ones used in co-speech gestures.

In their theory of cognitive metaphors, Lakoff and Johnson point out how the metaphors
in everyday life represent the structure through which we conceptualize one domain with the
representation of another [6]. Zbikowski uses this theory to elaborate how words used to describe
pitches in different languages are mapped onto the metaphorical space of the ‘vertical dimension’ [7].
Descriptions of melodies often use words related to height, for example: a ‘high’- or ‘low’-pitched
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voice, melodies going ‘up’ and ‘down’. Shayan et al. suggest that this mapping might be more
strongly present in Western cultures, while the use of other metaphors in other languages, such as thick
and thin pitch, might explain pitch using other non-vertical one-dimensional mapping schemata [8].
The vertical metaphor, when tested with longer melodic lines, shows that we respond non-linearly
to the vertical metaphors of static and dynamic pitch stimuli [9]. Research in music psychology has
investigated both the richness of this vocabulary and its perceptual and metaphorical allusions [10].
However, the idea that the vertical dimension is the most important schema of melodic motion is
very persistent [11]. Experimentally, pitch-height correspondences are often elicited by comparing
two or three notes at a time. However, when stimuli become more complex, resembling real melodies,
the persistence of pitch verticality is less clear. For ‘real’ melodies, shape descriptions are often used,
such as arches, curves and slides [12].

In this paper, we investigate shape descriptions through a sound-tracing approach. This was done
by asking people to listen to melodic excerpts and then move their body as if their movement was
creating the sound. The aim is to answer the following research questions:

1. How do people present melodic contour as shape?
How important is vertical movement in the representation of melodic contour in sound-tracing?
3. Are there any differences in sound-tracings between genders, age groups and levels of musical
experience?
4. How can we understand the metaphors in sound-tracings and quantify them from the data obtained?

The paper starts with an overview of related research, before the experiment and various analyses
are presented and discussed.

2. Background

Drawing melodies as lines has seemed intuitive across different geographies and time periods,
from the Medieval neumes to contemporary graphical scores. Even the description of melodies as
lines enumerates some of their key properties: continuity, connectedness and appearance as a shape.
Most musical cultures in the world are predominantly melodic, which means that the central melodic
line is important for memorability. Melodies display several integral patterns of organization and
time-scales, including melodic ornaments, motifs, repeating patterns, themes and variations. These are
all devices for organizing melodic patterns and can be found in most musical cultures.

2.1. Melody, Prosody and Memory

Musical melodies may be thought of as closely related to language. For example, prosody,
which can also be described as ‘speech melody,” is essential for understanding affect in spoken
language. Musical and linguistic experiences with melody can often influence one another [13]. Speech
melodies and musical melodies are differentiated on the basis of variance of intervals, delineation and
discrete pitches as scales [14]. While speech melodies show more diversity in intonation, there is lesser
diversity in prosodic contours internally within a language. Analysis of these contours is used for
recognition of languages, speakers and dialects in computation [15].

It has been argued that tonality makes musical melodies more memorable than speech melodies [16],
while contour makes them more recognizable, especially in unfamiliar musical styles [17]. Dowling et al.
suggest that adults use contour to recognize unfamiliar melodies, even when they have been transposed
or when intervals are changed [16]. There is also neurological evidence supporting the idea that
contour memory is independent of absolute pitch location [18]. Early research in contour memory
and recognition demonstrated that acquisition of memory for melodic contour in infants and children
precedes memory for intonation [17,19-22]. Melodic contour is also described as a ‘coarse-grained’
schema that lacks the detail from musical intervals [14].
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2.2. Melodic Contour

Contour is often used to refer to sequences of up-down movement in melodies, but there are
also several other terms that in different ways touch upon the same idea. Shape, for example, is more
generally used for referring to overall melodic phrases. Adams uses the terms contour and shape
interchangeably [23] and also adds melodic configuration and outline to the mix of descriptors.
Tierney et al. discuss the biological origins and commonalities of melodic shape [24]. They also note
the predominance of arch-shaped melodies in music, the long duration of the final notes of phrases,
and the biases towards smooth pitch contours. The idea of shapes has also been used to analyze
melodies of infants crying [25]. Motif, on the other hand, is often used to refer to a unit of melody that
can be operated upon to create melodic variation, such as transposition, inversion, etc. Yet another
term is that of melodic chunk, which is sometimes used to refer to the mnemonic properties of melodic
units, while museme is used to indicate instantaneous perception. Of all these terms, we will stick
with contour for the remainder of this paper.

2.3. Analyzing Melodic Contour

There are numerous analysis methods that can be used to study melodic contour, and they may
be briefly divided into two main categories: signal-based or symbolic representations. When the
contour analysis uses a signal-based representation, a recording of the audio is analyzed with
computational methods to extract the melodic line, as well as other temporal and spectral features
of the sound. The symbolic representations may start from notated or transcribed music scores
and use the symbolic note representations for analysis. Similar to how we might whistle a short
melodic excerpt to refer to a larger musical piece, melodic dictionaries have been created to index
musical pieces [26]. Such indexes merit a thorough analysis of contour typologies, and several contour
typologies were created to this end [23,27,28]. Contour typology methods are often developed from
symbolic representations and notated as discrete pitch items. Adam’s method for contour typology
analysis, for example, codes the initial and final pitches of the melodies as numbers [23]. Parson’s
typology, on the other hand, uses note directions and their intervals as the units of analysis [26].
There are also examples of matrix comparison methods that code pitch patterns [27]. A comparison of
these methods to perception and memory is carried out in [29,30], suggesting that the information-rich
models do better than more simplistic ones. Perceptual responses to melodic contour changes have
also been studied systematically [30-32], revealing differences between typologies and which ones
come closest to resembling models of human contour perception.

The use of symbolic representations makes it easier to perform systematic analysis and
modification of melodic music. While such systematic analysis works well for some types of
pre-notated music, it is more challenging for non-notated or non-Western music. For such non-notated
musics, the signal-based representations may be a better solution, particularly when it comes to
providing representations that more accurately describe continuous contour features. Such continuous
representations (as opposed to more discrete, note-based representations) allow the extraction of
information from the actual sound signal, giving a generally richer dataset from which to work.
The downside, of course, is that signal-based representations tend to be much more complex, and hence
more difficult to generalize from.

In the field of music perception and cognition, the use of symbolic music representations,
and computer-synthesized melodic stimuli, has been most common. This is the case even though
the ecological validity of such stimuli may be questioned. Much of the previous research into the
perception of melodic contour also suffers from a lack of representation of non-Western and also
non-classical musical styles, with some notable exceptions such as [33-35].

Much of the recent research into melodic representations is found within the music information
retrieval community. Here, the extraction of melodic contour and contour patterns directly from the
signal is an active research topic, and efficient algorithms for extraction of the primary melody have been
tested and compared in the MIREX (Music Information Retrieval Evaluation Exchange) competitions
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for several years. Melodic contour is also used to describe the instrumentation of music from audio
signals, for example in [36,37]. It is also interesting to note that melodic contour is used as the first step
to identify musical structure in styles such as in Indian Classical music [38], and Flamenco [39].

2.4. Pitch and the Vertical Dimension

As described in Section 1, the vertical dimension (up-down) is a common way to describe
pitch contours. This cross-modal correspondence has been demonstrated in infants [40], showing
preferences for concurrence of auditory pitch ‘rising,” visuospatial height, as well as visual ‘sharpness’.
The association with visuospatial height is elaborated further with the SMARC (Spatial-Musical
Association of Response Codes) effect [11]. Here, participants show a shorter response time for lower
pitches co-occurring with left or bottom response codes, while higher pitches strongly correlated with
response codes for right or top. A large body of work tries to tease apart the nuances of the suggested
effect. Some of the suggestions include the general setting of the instruments and the bias of reading
and writing being from left to right in most of the participants [41], as contributing factors to the
manifestation of this effect.

The concepts of contour rely upon pitch height being a key feature of our melodic multimodal
experience. Even the enumeration of pitch in graphical formats plays on this persistent metaphor.
Eitan brings out the variety of metaphors for pitch quality descriptions, suggesting that up and down
might only be one of the ways in which cross-modal correspondence with pitch appears in different
languages [9,10]. Many of the tendencies suggested in the SMARC effect are less pronounced when
more, and more complex, stimuli appear. These have been tested in memory or matching tasks,
rather than asking people to elicit the perceived contours. The SMARC effect may here be seen in
combination with the STEARC (Spatial-Temporal Association of Response Codes) effect, stating that
timelines are more often perceived as horizontally-moving objects. In combination, these two effects
may explain the overwhelming representation of vertical pitch on timelines. The end result is that we
now tend to think of melodic representation mostly in line-graph-based terms, along the lines of what
Adams ([23], p. 183) suggested:

There is a problem of the musical referents of the terms. As metaphoric depictions, most
of these terms are more closely related to the visual and graphic representations of music
than to its acoustical and auditory characteristics. Indeed, word-list typologies of melodic
contour are frequently accompanied by ‘explanatory’ graphics.

This ‘problem’ of visual metaphors, however, may actually be seen as an opportunity to explore
multimodal perception that was not possible to understand at the time.

2.5. Embodiment and Music

The accompaniment of movement to music is understood now as an important phenomenon
in music perception and cognition [42]. Research studying the close relationship between sound
and movement has shed light on the mechanism to understand action as sound [43] and sound as
action [44,45]. Cross-modal correspondence is a phenomenon with a tight interactive loop with the
body as a mediator for perceptual, as well as performative roles [46,47]. Some of these interactions
show themselves in the form of motor cortex activation when only listening to music [48]. This has
further led to empirical studies of how music and body movement share a common structure that
affords equivalent and universal emotional expression [49]. Mazzola et al. have also worked on
a topological understanding of musical space and the topological dynamics of musical gesture [50].

Studies of Hindustani music show that singers use a wide variety of movements and gestures that
accompany spontaneous improvisation [4,51,52]. These movements are culturally codified; they appear
in the performance space to aid improvisation and musical thought, and they also convey this
information to the listener. The performers also demonstrate a variety of imaginary ‘objects’” with
various physical properties to illustrate their musical thought.

140



Appl. Sci. 2018, 8,135 50f21

Some other examples of research on body movement and melody include Huron’s studies
of how eyebrow height accompany singing as a cue response to melodic height [53], and studies
suggesting that especially arch-shaped melodies have common biological origins that are related to
motor constraints [24,54].

2.6. Sound-Tracings

Sound-tracing studies aim at analyzing spontaneous rendering of melodies to movement,
capturing instantaneous multimodal associations of the participants. Typically, subjects are asked to
draw (or trace) a sound example or short musical excerpt as they are listening. Several of these
studies have been carried out with digital tablets as the transducer or the medium [2,44,55-59].
One restriction of using tablets is that the canvas of the rendering space is very restrictive.
Furthermore, the dimensionality does not evolve over time and represents a narrow bandwidth
of possible movements.

An alternative to tablet-based sound-tracing setups is that of using full-body motion capture.
This may be seen as a variation of ‘air performance’ studies, in which participants try to imitate the
sound-producing actions of the music to which they listen [2]. Nymoen et al. carried out a series of
sound-tracing studies focusing on movements of the hands [60,61], elaborating on several feature
extraction methods to be used for sound-tracing as a methodology. The current paper is inspired by
these studies, but extending the methodology to full-body motion capture.

3. Sound-Tracing of Melodic Phrases

3.1. Stimuli

Based on the above considerations and motivations, we designed a sound-tracing study of
melodic phrases. We decided to use melodic phrases from vocal genres that have a tradition of singing
without words. Vocal phrases without words were chosen so as to not introduce lexical meaning as
a confounding variable. Leaving out instruments also avoids the problem of subjects having to choose
between different musical layers in their sound-tracing.

The final stimulus set consists of four different musical genres and four stimuli for each genre.
The musical genres selected are: (1) Hindustani (North Indian) music, (2) Sami joik, (3) scat singing,
(4) Western classical vocalize. The melodic fragments are phrases taken from real recordings, to retain
melodies within their original musical context. As can be seen in the pitch plots in Figure 1,
the melodies are of varying durations with an average of 4.5 s (SD = 1.5 s). The Hindustani and joik
phrases are sung by male vocalists, whereas the scat and vocalize phrases are sung by female vocalists.
This is represented in the pitch range of each phrase as seen in Figure 1. The Hindustani and joik
melodies are mainly sung in a strong chest voice in this stimulus set. Scat vocals are sung with
a transition voice from chest to head. The Vocalizes in this set are sung by a soprano, predominantly in
the head register. Hindustani and vocalize samples have one dominant vowel that is used throughout
the phrase. The Scat singing examples use traditional ‘shoobi-doo-wop’ syllables, and joik examples
in this set predominantly contain syllables such as ‘la-la-lo’.

To investigate the effects of timbre, we decided to create a ‘clean” melody representation of each
fragment. This was done by running the sound files through an autocorrelation algorithm to create
phrases that accurately resemble the pitch content, but without the vocal, timbral and vowel content of
the melodic stimulus. These 16 re-synthesized sounds were added to the stimulus set, thus obtaining
a total of 32 sound stimuli (summarized in Table 1).
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Figure 1. Pitch plots of all the 16 melodic phrases used as experiment stimuli, from each genre.
The x axis represents time in seconds, and the y axis represents notes. The extracted pitches were
re-synthesized to create a total of 32 melodic phrases used in the experiment.

Table 1. An overview of the 32 different stimuli: four phrases from each musical genre, all of which
were presented in both normal and re-synthesized versions.

Type Hindustani Joik Scat Vocalize
Normal 4 4 4 4
Re-synthesized 4 4 4 4

3.2. Subjects

A total of 32 subjects (17 female, 15 male) was recruited, with a mean age of 31 years
(SD =9 years). The participants were mainly university students and employees, both with and
without musical training. Their musical experience was quantized using the OMSI (Ollen Musical
Sophistication Index) questionnaire [62], and they were also asked about the familiarity with the
musical genres, and their experience with dancing. The mean of the OMSI score was 694 (SD = 292),
indicating that the general musical proficiency in this dataset was on the higher side. The average
familiarity with Western classical music was 4.03 out of a possible 5 points, 3.25 for jazz music, 1.87 with
joik, and 1.71 with Indian classical music. Thus, two genres (vocalize and scat) were more familiar than
the two others (Hindustani and joik). All participants provided their written consent for inclusion
before they participated in the study, and they were free to withdraw during the experiment. The study
obtained ethical approval from the Norwegian Centre for Research Data (NSD), with the project code
49258 (approved on 22 August 2016).

3.3. Procedure

Each subject performed the experiment alone, and the total duration was around 10 min.
They were instructed to move their hands as if their movement was creating the melody. The use of
the term creating, instead of representing, is purposeful, as in earlier studies [60,63], to avoid the act of
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playing or singing. The subjects could freely stand anywhere in the room and face whichever direction
they liked, although nearly all of them faced the speakers and chose to stand in the center of the lab.
The room lighting was dimmed to help the subjects feel more comfortable to move as they pleased.

The sounds were played at a comfortable listening level through a Genelec 8020 speaker, placed
3 min front of the subjects. Each session consisted of an introduction, two example sequences, 32 trials
and a conclusion, as sketched in Figure 2. Each melody was played twice with a 2-s pause in between.
During the first presentation, the participants were asked to listen to the stimuli, while during the
second presentation, they were asked to trace the melody. A long beep indicated the first presentation
of a stimulus, while a short beep indicated the repetition of a stimuli. All the instructions and required
guidelines were recorded and played back through the speaker to not interrupt the flow of the
experiment.

. Stimulus
Intro —» 2 Trial —) Beep Stimulus Play Azl Replay + ——4 Ending
Seqs Alert Traci
racing
32 Randomized Trials
40s 40s 8 Minutes 10s

Figure 2. The experiment flow, with an approximate total duration of 10 min

The subjects” motion was recorded using an infrared marker-based motion capture system
from Qualisys AB (Gothenburg, Sweden), with 8 Oqus 300 cameras surrounding the space (Figure 3a)
and one regular video camera (Canon XF105 (manufactured in Tokyo, Japan)), for reference.
Each subject wore a motion capture suit with 21 reflective markers on each joint (Figure 3b). The system
captured at a rate of 200 Hz. The data were post-processed in the Qualisys Track Manager software
(QTM, v2.16, Qualisys AB, Gothenburg, Sweden), which included labeling of markers and removal of
ghost-markers (Figure 3c). We used polynomial interpolation to gap-fill the marker data, where needed.
The post-processed data was exported to Python (v2.7.12 and MATLAB (R2013b, MathWorks, Natick,
MA, USA) for further analysis. Here, all of the 10-min recordings were segmented using automatic
windowing, and each of the segments were manually annotated for further analysis in Section 6.

@ (b) (©)

Figure 3. (a) The motion capture lab used for the experiments. (b) The subjects wore a motion capture
suit with 21 reflective markers. (c) Screenshot of a stick-figure after post-processing in Qualisys Track
Manager software (QTM).
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4. Analysis

Even though full-body motion capture was performed, we will in the following analysis only
consider data from the right and left hand markers. Marker occlusions from six of the subjects were
difficult to account for in the manual annotation process, so only data from 26 participants were used
in the analysis that will be presented in Section 5. This analysis is done using comparisons of means
and distribution patterns. The occlusion problems were easier to tackle with the automatic analysis,
so the analysis that will be presented in Section 6 was performed on data from all 32 participants.

4.1. Feature Selection from Motion Capture Data

Table 2 shows a summary of the features extracted from the motion capture data. Vertical velocity
is calculated as the first derivative of the z-axis (vertical motion) for each tracing over time. ‘Quantity
of motion’ is a dimensionless quantity representing the overall amount of motion in any direction from
frame to frame. Hand distance is calculated as the euclidean distance between the x,y,z coordinates for
each marker for each hand. We also calculate the sample-wise distance traveled for each hand marker.

Table 2. The features extracted from the motion capture data.

Motion Features Description
1 VerticalMotion z-axis coordinates at each instant of each hand
2 Range (Min, Max) tuple for each hand
3 HandDistance The euclidean distance between the 2d coordinates of each hand
4 QuantityofMotion The sum of absolute velocities of all the markers
5 DistanceTraveled Cumulative euclidean distance traveled by each hand per sample
6  AbsoluteVelocity Uniform linear velocity of all dimensions
7  AbsoluteAcceleration The derivative of the absolute velocity
8  Smoothness The number of knots of a quadratic spline interpolation fitted to each tracing
9  VerticalVelocity The first derivative of the z-axis in each participant’s tracing
10  CubicSplinel0Knots 10 knots fitted to a quadratic spline for each tracing

4.2. Feature Selection from Melodic Phrases.

Pitch curves from the melodic phrases were calculated using the autocorrelation algorithm in
Praat (v6.0.30, University of Amsterdam, The Netherlands), eliminating octave jumps. These pitch
curves were then exported for further analysis together with the motion capture features in Python.
Based on contour analysis from the literature [23,30,64], we extracted three different melodic features,
as summarized in Table 3.

Table 3. The features extracted from the melodic phrases.

Melodic Features Description
1 SignedIntervalDirection Interval directions (up/down) calculated for each note
2 InitialFinalHighestLowest ~ Four essential notes of a melody: initial, final, highest, lowest

3  SignedRelativeDistances Feature 1 combined with relative distances of each successive note
from the next, only considering the number of semitones for each
successive change.

5. Analysis of Overall Trends

5.1. General Motion Contours

One global finding from the sound-tracing data is that of a clear arch shape when looking at
the vertical motion component over time. Figure 4 shows the average contours calculated from the
z-values of the motion capture data of all subjects for each of the melodic phrases. It is interesting
to note a clear arch-like shape for all of the graphs. This fits with suggestions of a motor constraint
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hypothesis suggesting that melodic phrases in general have arch-like shapes [24,54]. In our study,
however, the melodies have several different types of shapes (Figure 1), so this may not be the best
explanation for the arch-like motion shapes. A better explanation may be that the subjects would
start and end their tracing from a resting position in which the hands would be lower than during
the tracing, thus leading to the arch shapes seen in Figure 4.

Melody 1: Hindustani ~ Melody 2: Hindustani ~ Melody 3: Hindustani ~ Melody 4: Hindustani

2 g

o

>

<

8

£

g o

- Melody 5: Joik Melody 6: Joik Melody 7: Joik Melody 8: Joik

5 8

E .

[} n

>

5 A A A

= -

8

£

g o

- Melody 9: Scat Melody 10: Scat Melody 11: Scat Melody 12: Scat
(=3

5} ~

>

3 A A ’ \

=

8

£

g o

- Melody 13: Vocalise Melody 14: Vocalise Melody 15: Vocalise Melody 16: Vocalise
(=3

[

>

<

= .

8

5

> ° 6 6

) 6 0 ) 6 0 ) 0 .
Time (s) Time (s) Time (s) Time (s)

Figure 4. Average contours plotted from the vertical motion capture data in mm (z-axis) for each of
the melodies (red for the original and blue for the re-synthesized versions of the melodies). The x-axis
represents normalized time, and the y-axis represents aggregated tracing height for all participants.

5.2. Relationship between Vertical Movement and Melodic Pitch Distribution

To investigate more closely the relationship between vertical movement and the distribution of
the pitches in the melodic fragments, we may start by considering the genre differences. Figure 5
presents the distribution of pitches in each genre in the stimulus set. These are plotted on a logarithmic
frequency scale to represent the perceptual relationships between them. In the plot, each of the
four genres are represented by their individual distributions. The color distinction is on the basis of
whether the melodic phrase has one direction or many. Phrases closer to being ascending, descending,
or stationary are coded as not changing direction. We see that in all of these conditions, the vocalize
phrases in the dataset have the highest pitch profiles and the Hindustani phrases have the lowest.

If we then turn to look at the vertical dimension of the tracing data, we would expect to see
a similar distribution between genres as that for the pitch heights of the melodies. Figure 6 shows the
distribution of motion capture data for all tracings, sorted in the four genres. Here, the distribution of
maximum z-values of the motion capture data shows a quite even distribution between genres.
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Figure 5. Pitch distribution for each genre based on mean pitches in each phrase. If movement tracings
were an accurate representation of absolute pitch height, movement plots should resemble this plot.
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Figure 6. Plots of the maximum height of either hand for each genre. The left/pink distributions
are from female subjects, while the right/blue distributions are from the male subjects. Each half of
each section of the violin plot represents the probability distribution of the samples. The black lines
represent each individual data point.

5.3. Direction Differences

The direction differences in the tracings can be studied by calculating the coefficients of variation
of movement in all three axes for both the left (LH) and right (RH) hands. These coefficients are
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found to be LHvar (x,y,z) = (63.7,45.7,26.6); RHvar (x,y,z) = (56.6,87.8,23.1), suggesting that the amount
of dispersion on the z-axis (the vertical) is the most consistent. This suggests that a wide array of
representations in the x and y-axes are used.

The average standard deviations for the different dimensions were found to be LHstd = (99 mm,
89 mm, 185 mm); RHstd = (110 mm, 102 mm, 257 mm). This means that most variation is found in the
vertical movement of the right hand, indicating an effect of right-handedness among the subjects.

5.4. Individual Subject Differences

Plots of the distributions of the quantitiy of motion (QoM) for each subject for all stimuli show
a large degree of variation (Figure 7). Subjects 4 and 12, for example, have very small diversity in
the average QoM for all of their tracings, whereas Subjects 2 and 5 show a large spread. There are
also other participants, such as 22, who move very little on average for all their tracings. Out of the
two types of representations (original and re-synthesized stimuli), we see that there is in general
a larger diversity of movement for the regular melodies as opposed to the synthesized ones. However,
the statistical difference between synthesized and original melodies was not significant.

3000
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[1 Resynthesized Melodies

2750

N
3
=}
s}

N
g

i I H\Hn i
/I Y | /‘I\‘\‘\
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N
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 20 21 22 26 26 28 30 31 3

Participant

Figure 7. Distribution of the average quantity of motion for each participant. Left/red distributions
are of the synthesized stimuli, while the right/green distributions are of the normal recordings.

5.5. Social Box

Another general finding from the data that is not directly related to the question at hand, but that
is still relevant for understanding the distribution of data, is what we call a shared ‘social box” among
the subjects. Figure 6 shows that the maximum tracing height of the male subjects were higher
than those of the female subjects. This is as expected, but a plot of the ‘tracing volume’ (the spatial
distribution in all dimensions) reveals that a comparably small volume was used to represent most of
the melodies (Figure 8). Qualitative observation of the recordings reveal that shorter subjects were
more comfortable about stretching their hands out, while taller participants tended to use a more
restrictive space relative to their height. This happened without there being any physical constraints of
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their movements, and no instructions that had pointed in the direction of the volume to be covered by
the tracings.

—2000
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=~ 500

500

-1000 -
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Figure 8. A three-dimensional plot of all sound-tracings for all participants reveal a fairly constrained
tracing volume, a kind of ‘social box” defined by the subjects. Each color represents the tracings of
a single participant, and numbers along each axis are milimetres.

It is almost as if the participants wanted to fill up an invisible ‘social box,” serving as the collective
canvas on which everything can be represented. This may be explained by the fact that we share
a world together that has the same dimensions: doors, cars, ceilings, and walls are common to us
all, making us understand our body as a part of the world in a particular way. In the data from this
experiment, we explore this by analyzing the range of motion relative to the heights of the participants
through linear regression. The scaled movement range in the horizontal plane is represented in
Figure 9. and shows that the scaled range reduces steadily over time as the height of the participants
increases. Shorter participants occupy a larger area in the horizontal plane, while taller participants
occupy a relatively smaller area. The R? coefficient of regression is found to be 0.993, meaning that this
effect is significant.
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Figure 9. Regression plot of the heights of the participants against scaled (x, y) ranges. There is a clearly
decreasing trend for the scaled range of movements in the horizontal plane. The taller a participant,
the lower is their scaled range.

5.6. An Imagined Canvas

In a two-dimensional tracing task, such as with pen on paper, the ‘canvas’ of the tracing is both
finite and visible all the time. Such a canvas is experienced also for tasks performed with a graphical
tablet, even if the line of the tracing is not visible. In the current experiment, however, the canvas is
three-dimensional and invisible, and it has to be imagined by the participant. Participants who trace
by just moving one hand at a time seem to be using the metaphor of a needle sketching on a moving
paper, much like an analogue ECG (Electro CardioGram) machine. Depending on the size of the
tracing, the participants would have to rotate or translate their bodies to move within this imagined
canvas. We observe different strategies when it comes to how they reach beyond the constraints of
their kinesphere, the maximum volume you can reach without moving to a new location. They may
step sideways, representing a flat canvas placed before them, or may rotate, representing a cylindrical
canvas around their bodies.

6. Mapping Strategies

Through visual inspection of the recordings, we identify a limited number of strategies used in
the sound-tracings. We therefore propose six schemes of representation that encompass most of the
variation seen in the hands’ movement, as illustrated in Figure 10 and summarized as:

One outstretched hand, changing the height of the palm

Two hands stretching or compressing an “object”

Two hands symmetrically moving away from the center of the body in the horizontal plane
Two hands moving together to represent holding and manipulating an object

Two hands drawing arcs along an imaginary circle

N N .

Two hands following each other in a percussive pattern
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(2) Changing inter-palm distance  (3) Hands as mirror images

7 A

(4) Manipulating small objects  (5) Drawing arcs along circles (6) Asymmetric percussive action

Figure 10. Motion history images exemplifying the six dominant sound-tracing strategies. The black
lines from the hands of the stick figures indicate the motion traces of each tracing.

These qualitatively derived strategies were the starting point for setting up an automatic extraction

of features from the motion capture data. The pipeline for this quantitative analysis consists of the
following steps:

1.

Feature selection: Segment the motion capture data into a six-column feature vector containing
the (x,y,z) coordinates of the right palm and the left palm, respectively.

Calculate quantity of motion (QoM): Calculate the average of the vector magnitude for
each sample.

Segmentation: Trim data using a sliding window of 1100 samples in size. This corresponds to
5.5 s, to accommodate the average duration of 4.5 s of the melodic phrases. The hop size for the
windows is 10 samples, to obtain a large set of windowed segments. The segments that have the
maximum mean values are then separated out to get a set of sound-tracings.

Feature analysis: Calculate features from Table 4 for each segment.

Thresholding: Minimize the six numerical criteria by thresholding the segments based on
two-times the standard deviation for each of the computed features.

Labeling and separation: Obtain tracings that can be classified as dominantly belonging to one of
the six strategy types.
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Table 4. Quantitative motion capture features that match the qualitatively selected strategies. QoM,
quantities of motion.

#  Strategy Distinguishing Features Description Mean SD
1 Dominant hand as needle Right hand QoM much greater than left QoM QoM(LHY) »\/ «QoM(RHY) 050  0.06
2 Changing inter-palm distance Root mean squared difference of left, right hands in x RMS(LHX) — RMS(RHX) 064 012
3 Lateral symmetry between hands  Nearly constant difference between left and right hands RHX — LHX =C 034 011
4 Manipulating a small object Right and left hands follow similar trajectories in x RH(x,y,z) = LH(x,y,z) + C 072 0.07
5 Drawing arcs along circles Fit of (x,y,z) for left and right hands to a sphere x2+y?+ 22 017  0.04
6  Percussive asymmetry Dynamic time warp of (x,y,z) of Left, Right Hands dtw(RH(xyz), LH(xyz)) 056  0.07

After running the segmentation and labeling on the complete data set, we performed a t-test to
determine whether there is a significant difference between the labeled samples and the other samples.
The results, summarized in Table 5 show that the selected features demonstrate the dominance of
one particular strategy for many tracings. All except Feature 4 (manipulating a small ‘object’) show
significant results compared to all other tracing samples for automatic annotation of hand strategies.
While this feature cannot be extracted from the aforementioned heuristic, the simple feature for
euclidean distance between two hands proves effective to be able to explain this strategy.

Table 5. Significance testing for each feature against the rest of the features.

Strategy # p-Value

Strategy 1 vs. rest 0.003
Strategy 2 vs. rest 0.011
Strategy 3 vs. rest  0.005
Strategy 4 vs. rest  0.487
Strategy 5 vs. rest ~ 0.003
Strategy 6 vs. rest  0.006

In Figure 11, we see that hand distance might be an effective way to compare different hand
strategies. Strategy 2 performs the best on testing for separability. The hand distance for Strategy 4,
for example is significantly lower than the rest. This is because this tracing style represents people who
use the metaphor of an imaginary object to represent music. This imaginary object seldom changes its
physical properties—its length and breadth and general size is usually maintained.

Taking demographics into account, we see that the distribution of the female subjects” tracings for
vocalizes have a much wider peak than the rest of the genres. In the use of hand strategies, we observe
that women use a wider range of hand strategies as compared to men (Figure 11). Furthermore,
Strategy 5 (drawing arcs) is done entirely by women. The representation of music as objects is also
seen to be more prominent in women, as is the use of asymmetrical percussive motion. Comparing the
same distribution of genders for genres, we do not find a difference in overall movement or general
body use between the genders. If anything, the ‘social box effect’ makes the height differences of
genres smaller than they are.

In Figure 12, we visualize the use of these hand strategies for every melody by all the participants.
Strategy 2 is used in 206 tracings, whereas Strategy 5 is used for only 8 tracings. Strategies 1, 3, 4 and 5
are used 182, 180, 161 and 57 times,respectively. Through this heat map in 12, we also can find some
outliers for the strategies that are more infrequently used. For example, we see that Melodies 4, 13 and
16 show specially dominant use of some hand strategies.
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Figure 11. Hand distance as a feature to discriminate between tracing strategies.
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Figure 12. Heat map of representation of hand strategy per melody.

7. Discussion

In this study, we have analyzed people’s tracings to melodies from four musical genres. Although
much of the literature points to correlations between melodic pitch and vertical movement, our findings
show a much more complex picture. For example, relative pitch height appears to be much more
important than absolute pitch height. People seem to think about vocal melodies as actions, rather than
interpreting the pitches purely in one dimension (vertical) over time. The analysis of contour features
from the literature shows that while tracing melodies through an allocentric representation of the
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listening body, the notions of pitch height representations matter much less than previously thought.
Therefore contour features cannot be extracted merely by cross-modal comparisons of two data sets.
We propose that other strategies can be used for contour representations, but this is something that
will have to be developed more in future research.

According to the gestural affordances of musical sound theory [65], several gestural representations
can exist for the same sound, but there is a limit to how much they can be manipulated. Our data support
this idea of a number of possible and overlapping action strategies. Several spatial and visual metaphors
are used by a wide range of people. One interesting finding is that there are gender differences between
the representations of the different sound-tracing strategies. Women seem to show a greater diversity
of strategies in general, and they also use object-like representations more often than men.

We expected musical genre to have some impact on the results. For example, given that Western
vocalizes are sung with a pitch range higher than the rest of the genres in this dataset (Figure 5), it is
interesting to note that, on average, people do represent vocalize tracings spatially higher than the
rest of the genres. We also found that the melodies with the maximum amount of vibrato (melodies
14 and 16 in Figure 5) are represented with the largest changes of acceleration in the motion capture
data. This implies that although the pitch deviation in this case is not so significant, the perception
of a moving melody is much stronger by comparison to other melodies that have larger changes in
pitch. It could be argued that both melody 4 and 16 contain motivic repetition that cause this pattern.
However, repeating motifs are as much parts of melodies 6 and 8 (joik). The values represented by these
melodies are applicable to their tracings as original as well as synthesized phrases. The effect of the
vowels used in these melodies can also thus be negated. As seen in Figure 12, there are some melodies
that stand out for some hand strategies. Melody 4 (Hindustani) is curiously highly represented as
a small object. Melody 12 is overwhelmingly represented by symmetrical movements of both hands,
while Melodies 8 and 9 are overwhelmingly represented by using 1 hand as the tracing needle.

We find it particularly interesting that subjects picked up on the idea of using small objects as
a representation technique in their tracings. The use of small objects to represent melodies is well
documented in Hindustani music [52,66-68]. However, the subjects’ familiarity score with Hindustani
music was quite low, so familiarity can not explain this interesting choice of representation in our study.
Looking at the melodic features of melody 4, for example, it is steadily descending in intervals until
it ascends again and comes down the same intervals. This may be argued to resemble an object that
smoothly slips on a slope, and could be a probable reason for the overwhelming object representation
of this particular melody. In future studies, it would be interesting to see whether we can recreate this
mapping in other melodies, or model melodies in terms of naturally occurring melodic shapes born
out of physical forces interacting with each other.

It is worth noting that there are several limitations with the current experimental methodology
and analysis. Any laboratory study of this kind would present subjects with an unfamiliar and
non-ecological environment. The results would also to a large extent be influenced by the habitus of
body use in general. Experience in dance, sign language, or musical traditions with simultaneous
musical gestures (such as conducting), all play a part in the interpretation of music as motion. Despite
these limitations, we do see a considerable amount of consistency between subjects.

8. Conclusions

The present study shows that there are consistencies in people’s sound-tracing to the melodic
phrases used in the experiment. Our main findings can be summarized as:

e There is a clear arch shape when looking at the averages of the motion capture data, regardless of
the general shape of the melody itself. This may support the idea of a motor constraint hypothesis
that has been used to explain the similar arch-like shape of sung melodies.

e The subjects chose between different strategies in their sound-tracings. We have qualitatively
identified six such strategies and have created a set of heuristics to quantify and test
their reliability.
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o  There is a clear gender difference for some of the strategies. This was most evident for Strategy 4
(representing small objects), which women performed more than men.

e The ‘obscure’ strategy of representing melodies in terms of a small object, as is typical in Hindustani
music, was also found in participants who had no or little exposure to this musical genre.

e The data show a tendency of moving within a shared ‘social box’. This may be thought of as
an invisible space that people constrain their movements to, even without any exposure to the
other participants’ tracings. In future studies, it would be interesting to explore how constant such
a space is, for example by comparing multiple recordings of the same participants over a period
of time.

In future studies, we want to investigate all of these findings in greater detail. We are particularly
interested in taking the rest of the body’s motion into account. It would also be relevant to use
the results from such studies in the creation of interactive systems, ‘reversing’ the process, that is,
using tracing in the air as a method to retrieve melodies from a database. This could open up some
exciting end-user applications and also be used as a tool for music performance.

Supplementary Materials: The following are available online at Available online: http:/ /www.mdpi.com /2076-
3417/8/1/135/s1, supplementary archive consists of data files of the following nature: segmented motion tracings
of 26 participants annotated with participant number, melody traced, and hand strategy used. The melodies are
from 1 to 16, and the pitch data and sound stimuli are separately provided as well. More information about the
same and code can be provided upon request.
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ABSTRACT

Melodic contour, the ‘shape’ of a melody, is a common
way to visualize and remember a musical piece. The pur-
pose of this paper is to explore the building blocks of a fu-
ture ‘gesture-based’ melody retrieval system. We present
a dataset containing 16 melodic phrases from four musi-
cal styles and with a large range of contour variability.
This is accompanied by full-body motion capture data of
26 participants performing sound-tracing to the melodies.
The dataset is analyzed using canonical correlation analy-
sis (CCA), and its neural network variant (Deep CCA), to
understand how melodic contours and sound tracings re-
late to each other. The analyses reveal non-linear relation-
ships between sound and motion. The link between pitch
and verticality does not appear strong enough for complex
melodies. We also find that descending melodic contours
have the least correlation with tracings.

1. INTRODUCTION

Can hand movement be used to retrieve melodies? In this
paper we use data from a ‘sound-tracing’ experiment (Fig-
ure 1) containing motion capture data to describe music—
motion cross-relationships, with the aim of developing a
retrieval system. Details about the experiment and how
motion metaphors come to play a role in the representa-
tions are presented in [19]. While our earlier analysis was
focused on the use of the body and imagining metaphors
for tracings [17, 18], in this paper, we will focus on mu-
sical characteristics and study music—motion correlations.
The tracings present a unique opportunity for cross-modal
retrieval, because a direct correspondence between tracing
and melodic contour presents an inherent ‘ground-truth.’

Recent research in neuroscience and psychology has
shown that action plays an important role in perception. In
phonology and linguistics, the co-articulation of action and
sound is also well understood. Theories from embodied
music cognition [22] have been critical to this exploration
of multimodal correspondences.

© Tejaswinee Kelkar, Udit Roy, Alexander Refsum Jense-
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License (CC BY 4.0). Attribution: Tejaswinee Kelkar, Udit Roy,
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Figure 1. An example of post-processed motion capture
data from a sound-tracing study of melodic phrases.

Contour perception is a coarse-level musical ability
that we acquire early during childhood [30, 33, 34]. Re-
search suggests that our memory for contour is enhanced
when melodies are tonal, and when tonal accent points of
melodies co-occur with strong beats [16], making melodic
memory a salient feature in musical perception. More gen-
erally, it is easier for people to remember the general shape
of melody rather than precise intervals [14], especially if
they are not musical experts. Coarse representations of
melodic contour, such as with drawing or moving hands
in the air may be intuitive to capturing musical moments
of short time scales [9, 25].

1.1 Research Questions

The inspiration for our work mainly comes from several
projects on melodic content retrieval using intuitive and
multi-modal representations of musical data. The oldest
example of this is the 1975 project titled ‘Directory of
Tunes and Musical Themes,” where the author uses a sim-
plified contour notation method, involving letters for de-
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noting contour directions, to create a dictionary of musi-
cal themes where one may look up a tune they remem-
ber [29]. This model is adopted for melodic contour re-
trieval in Musipedia.com [15]. Another system is proposed
in the recent project SoundTracer, in which a user’s mo-
tion of their mobile phone is used to retrieve tunes from a
music archive [21]. A critical difference between these ap-
proaches is how they handle mappings between contour in-
formation and musical information, especially differences
between time-scales and time-representations. Most of
these methods do not have ground-truth models of con-
tours, and instead use one of several ways of mappings,
each with its own assumptions.

Godgy et al. has argued for using motion-based, graphi-
cal, verbal, and other representations of motion data in mu-
sic retrieval systems [10]. Liem et al. make a case for using
multimodal user-centered strategies as a way to navigate
the discrepancy between audio similarity and music simi-
larity [23], with the former referring to more mathematical
features, and the latter to more perceptual features. We
proceed with this as the point of departure for describing
our dataset and its characteristics, to approach the goal of
making a system for classifying sound-tracings of melodic
phrases with the following specific questions:

1. Are the mappings between melodic contour and mo-
tion linearly related?

2. Can we confirm previous findings regarding correla-
tion between pitch and the vertical dimension?

3. What categories of melodic contour are most corre-
lated for sound-tracing queries?

2. RELATED WORK

Understanding the close relationship between music and
motion is vital to understanding subjective experiences of
performers and listeners, [7, 11, 12]. Many empirical ex-
periments aimed at investigating music—motion correspon-
dences deal with stimulus data that is made to explicitly
observe certain mappings, for example pitched and non-
pitched sound, vertical dimension and pitch, or player ex-
pertise [5,20,27]. This means that the music examples
themselves are sorted into types of sound (or types of mo-
tion). We are more interested in observing how a variety
of these mapping relationships change in the content of
melodic phrases. For this we use multiple labeling strate-
gies as explained in section 3.4. Another contribution of
this work is the use of musical styles from various parts of
the world, including those that contain microtonal inflec-
tions.

2.1 Multi-modal retrieval

Multi-modal retrieval is the paradigm of information re-
trieval used to handle different types of data together. The
objective is to learn a set of mapping functions that project
the different modalities into a common metric space, to
be able to retrieve relevant information in one modality
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through a query in another. We see that this paradigm is
used often in the retrieval of image from text and text from
image. Canonical Correlation Analysis (CCA) is a com-
mon tool for investigating linear relationships of two sets
of variables. In the review paper by Wang et al. for cross
modal retrieval [35], several implementations and models
are analyzed. CCA is also previously used to show music
and brain imaging cross relationships [3].

A previous paper analyzing tracings to pitched and
non pitched sounds also used CCA to understand music—
motion relationships [25], where the authors describe in-
herent non-linearity in the mappings, despite finding in-
trinsic sound-action relationships. This work was extended
in [26], in which CCA was used to interpret how different
features correlate with each other. Pitch and vertical mo-
tion have linear relationships in this analysis, although it
is important to note that the sound samples used for this
study were short and synthetic.

The biggest reservations in analyzing music—motion
data through CCA is that non-linearity cannot be repre-
sented, and the dependence of the method on time syn-
chronization is high. The temporal evolution of motion
and sound remains linear over time [6]. To get around
this, kernel-based methods can be used to introduce non-
linearity. Ohkushi et al., present a paper that uses Kernel-
based CCA methods to analyze motion and music features
together using video sequences from classical ballet, and
optical flow based clustering. Bozkurt et al. present a CCA
based system to analyze and generate speech and arm mo-
tion for prosody-driven synthesis of the ’beat-gesture’ [4],
which is used for emphasizing prosodically salient points
in speech. We explore our dataset through CCA due to
the previous successes of using this family of methods.
‘We will analyze the same data using Deep CCA, a neural-
network approximation of CCA, to understand better the
non-linear mappings.

2.2 Canonical Correlation Analysis

CCA is a statistical method to find a linear combina-
tion of two variables X = (z1,22,...,2,) and ¥ =
(y1, Y2, ---, Ym ) wWith n and m independent variables as vec-
tors a and b such that their correlation p = corr(aX,bY)
of the transformed variables is maximized. Linear
vectors a’ and o can be found such that o’,b' =
argmax  corr(a’ X, bTY). We can then find the second

a,b
set of coefficients which maximize the correlation of the
variables X’ = aX and Y’ = bY with the additional con-
straint to keep (X, X’) and (Y, Y”) uncorrelated. This pro-
cess can be repeated till d = min(m, n) dimensions.

The CCA can be extended to include non-linearity by
using a neural network to transform the X and Y variables
as in the case of Deep CCA [2]. Given the network param-
eters 0, and 6, the objective is to maximize the correla-
tion corr(f(X,61), f(Y,02)). The network is trained by
following the gradient of the correlation objective as esti-
mated from the training data.
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3. EXPERIMENT DESCRIPTION
3.1 Procedure

The participants were instructed to move their hands as if
their movement was creating the melody. The use of the
term ‘creating,” instead of ‘representing,’ is purposeful, as
shown in earlier studies [26,27], to be able to access sound-
production as the tracing intent. The experiment duration
was about 10 minutes. All melodies were played at a com-
fortable listening level through a Genelec 8020 speaker,
placed 3m in front of the subjects. Each session consisted
of an introduction, two example sequences, 32 trials and
a conclusion. Each melody was played twice with a 2s
pause in between. During the first presentation, the partic-
ipants were asked to listen to the stimuli, while during the
second presentation, they were asked to trace the melody.
All the instructions and required guidelines were recorded
and played back through the speaker. Their motions are
tracked using 8 infra-red cameras from Qualisys (7 Oqus
300 and 1 Oqus 410). We then post-process the data in
Qualisys Track Manager (QTM) first by identifying and
labeling each marker for each participant. Thereafter, we
create a dataset containing Left and Right hand coordinates
for all participants.

Six participants in the study had to be excluded due to
too many marker dropouts, giving us a final dataset con-
taining 26 participants tracing 32 melodies: 794 tracings
for 16 melodic categories.

3.2 Subjects

The 32 subjects (17 females, 15 males) had a mean age
of 31 years (SD = 9 years). They were mainly univer-
sity students and employees, both with and without musi-
cal training. Their musical experience was quantized using
the OMSI (Ollen Musical Sophistication Index) question-
naire [28], and they were also asked about the familiarity
with the musical genres, and their experience with dancing.
The mean of the OMSI score was 694 (SD = 292), indicat-
ing that the general musical proficiency in this dataset was
on the higher side. The average familiarity with Western
classical music was 4.03 out of a possible 5 points, 3.25 for
jazz music, 1.87 with Sami joik, and 1.71 with Hindustani
music. None of the participants reported having heard any
of the melodies played to them. All participants provided
their written consent for inclusion before they participated
in the study, and they were free to withdraw during the ex-
periment. The study design was approved by the National
ethics board (NSD).

3.3 Stimuli

In this study, we decided to use melodic phrases from vocal
genres that have a tradition of singing without words. Vo-
cal phrases without words were chosen so as to not intro-
duce lexical meaning as a confounding variable. Leaving
out instruments also avoids the problem of subjects having
to choose between different musical layers in their sound-
tracing. The final stimulus set consists of four different

Hindustani 1 Hindustani 2 Hindustani 3 Hindustani 4
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Figure 2. Pitch plots of all the 16 melodic phrases used as
experiment stimuli, from each genre. The x axis represents
time in seconds, and the y axis represents notes. The ex-
tracted pitches were re-synthesized to create a total of 32
melodic phrases used in the experiment.

musical genres and four stimuli for each genre. The mu-
sical genres selected are: (1) Hindustani music, (2) Sami
joik, (3) jazz scat singing, (4) Western classical vocalise.
The melodic fragments are phrases taken from real record-
ings, to retain melodies within their original musical con-
text. As can be seen in the pitch plots in Figure 2, the
melodies are of varying durations with an average of 4.5 s
(SD = 1.5 s). The Hindustani and joik phrases are sung by
male vocalists, whereas the scat and vocalise phrases are
sung by female vocalists. This is represented in the pitch
range of each phrase as seen in Figure 2.
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Figure 3. Contour Typologies discussed previously in
melodic contour analysis. This figure is representative,
made by the authors.

Melodic contours are overwhelmingly written about in
terms of pitch, and so we decided to create a ‘clean’ pitch—
only representation of each melody. This was done by
running the sound files through an autocorrelation algo-
rithm to create phrases that accurately resemble the pitch
content, but without the vocal, timbral and vowel content
of the melodic stimulus. These 16 re-synthesized sounds
were added to the stimulus set, thus obtaining a total of 32
sound stimuli.
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| ID | Description

1] Al 16 Melodies

2 | ISV 4 Genres

3 | ADSC Ascending, Descending,
Steady or Combined

4 | OrigVSyn Original vs Synthesized

5 | VibNonVib Vibrato vs No Vibrato

6 | MotifNonMotif | Motif Repetition Present vs
Not

Table 1. Multiple labellings for melodic categories: we
represent the 16 melodies using 5 different label sets. This
helps us analyze which features are best related to which
contour classes, genres, or melodic properties.

3.4 Contour Typology Descriptions

We base the selection of melodic excerpts on the descrip-
tions of melodic contour classes as seen in Figure 3. The
reference typologies are based on the work of Seeger [32],
Hood [13], Schaeffer [8], Adams [1], and the Hindustani
classical Varna system. Through these typologies, we hope
to cover commonly understood contour shapes and make
sure that the dataset contains as many of them as possible.

3.4.1 Multiple labeling

To represent the different contour types and categories that
these melodies represent, we create multiple labels that ex-
plain the differences. This enables us to understand how
the sound tracings actually map to the different possible
categories, and makes it easier to see patterns from the
data. We describe these labels as seen in Table 3.4.1. Mul-
tiple labels allow us to see what categories does the data
describe, and which features or combination of features
can help retrieve which labels. Some of these labels are
categories, while some are one-versus-rest. Category la-
bels include individual melodies, genres, and contour cat-
egories, while one-versus-rest correlations are computed
for finding whether vibrato, motivic repetitions exist in the
melody, and whether the melodic sample is re-synthesized
or original.

4. DATASET CREATION
4.1 Preprocessing of Motion Data

We segment each phrase that is traced by the participants,
label participant and melody numbers, and extract the data
for left and right hand markers for this analysis, since the
instructions asked people to trace using their hands. To
analyze this data, we are more interested in contour fea-
tures and shape information than time-scales. We therefore
time-normalize our datasets so that every melodic sample
and every motion tracing is the same length. This makes it
easier to find correlations between music and motion data
using different features.
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Figure 4. Feature distribution of melodies for each genre.
We make sure that a wide range of variability in the fea-
tures, as described in Table 2 is present in the dataset.

Feature Calculated by
1 | Pitch Autocorrelation function using
PRAAT
2 | Loudness | RMS value of the sound using
Librosa

3 | Brightness
4 | Number
of Notes

Spectral Centroid using Librosa
Number of notes per melody

Table 2. Melody features extracted for analysis, and de-
tails of how they are extracted.

5. ANALYSIS
5.1 Music

Since we are mainly interested in melodic correlations, the
most important feature describing melodies is to extract
pitch. For this, we use autocorrelation algorithm avail-
able in the PRAAT phonetic program. We use Librosa
v0.5.1 [24] to compute the RMS energy (loudness), and
the brightness using Spectral Centroid. We transcribe the
melodies to get the number of notes per melody. The dis-
tribution of these features can be seen for each genre in
the stimulus set in Figure 4. We have tried to be true to
the musical styles used in this study, most of which do not
have written notation as an inherent part of their pedagogy.

5.2 Motion

For tracings, we calculate 9 features that describe vari-
ous characteristics of motion. We record only X and Z
axes, as maximum motion is found along these directions.
The derivatives of motion (velocity, acceleration, jerk) and
quantity of motion (QoM) which is a cumulative velocity
quantity are calculated. Distance between hands, cumula-
tive distance, and symmetry features are calculated as indi-
cators of contour-supporting features, as found in previous
studies.
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| Feature
1 | X-coordinate (X)

| Description

Axis corresponding to the
direction straight ahead of
the participant

Axis corresponding to the
upwards direction

First derivative of vertical
position

Second derivative of vertical
position

Sum of absolute velocities

2 | Z-coordinate (Z)
3 | Velocity (V)
4 | Acceleration (A)

5 | Quantity of Mo-

tion for all markers
6 | Distance between | Sample-wise Euclidean dis-
Hands tance between hand markers
7 | Jerk Third derivative of vertical

position

Euclidean distance traveled
per sample per hand
Difference between the left
and right hand in terms of
vertical position and hori-
zontal velocity

8 | Cumulative Dis-
tance Traveled
9 | Symmetry

Table 3. Motion features used for analysis. 1-5 are for the
dominant hand, while 6-9 are features for both hands.

5.3 Joint Analysis

In this section we present our analysis on our dataset with
these two feature sets. We analyze the tracings for each
melody as well as utilize the multiple label sets to discover
interesting patterns in our dataset which are relevant for a
retrieval application.

5.3.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a method to align se-
quences of different lengths using substitution, addition
and subtraction costs. It is a non-metric method giving us
the distance between two sequences after alignment.

In recent research, vertical motion has been shown to
correlate with pitch in the past for simple sounds. Some
form of non-alignment is also observed between the mo-
tion and pitch signals. We perform the same analysis on
our data: compute the correlation between pitch and mo-
tion in the Z axis before and after alignment with DTW
for the 16 melodies and plot their mean and variance in
Figure 5.

5.3.2 Longest Run-lengths

While observing the dataset, we find that longest ascend-
ing and descending sequences in the melodies are most
often reliably represented in the motions, although vari-
ances in stationary notes, and ornaments is likely to be
much higher. To exploit this feature in tracings, we use
“Longest Run-lengths” as a measure. We find multiple
subsequences following a pattern which can possess dis-
criminative qualities. For our analysis, we use the ascend-
ing and descending patterns, thus finding the subsequences
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0.000

Correlation

—0.025
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Figure 5. Correlations of pitch with raw data (red) vs after
DTW-alignment (blue). Although a DTW alignment im-
proves the correlation, we observe that correlation is still
low suggesting that vertical motion and pitch height are
not that strongly associated.

from the feature sequence which are purely ascending or
descending. We then rank the subsequences and build a
feature vector from the lengths of the top NV results. This
step is particularly advantageous when comparing features
from motion and music sequences as it captures the overall
presence of the pattern in the sequence remaining invariant
to the mis-alignment or lag between the sequences from
different modalities. As an example, if we select the Z-
axis motion of the dominant hand and the melody pitch as
our sequences and retrieve top 3 ascending subsequence
lengths. To make the features robust, we do a low pass
filtering of the sequence as a preprocessing step.

We analyze our dataset by computing the features for
few combinations of motion and music features for ascend-
ing and descending patterns. Thereafter, we perform CCA
and show the resulting correlation of first transformed di-
mension in Table 4. We utilize the various label categories
generated for the melodies, and show the impact of the fea-
tures on the labels from each category in Tables 4 and 5.
We select the top four run lengths as our feature for each
music—motion feature sequence. For Deep CCA analysis,
we use a two layered network (same for both motion and
music features) with 10 and 4 neurons. A final round of
linear CCA is also performed on the network output.

6. RESULTS AND DISCUSSION

Figure 5 shows correlations with raw data and after DTW
alignment between the vertical motion and pitch for each
melody. Overall, the correlation improves after DTW
alignment, suggesting phase lags and phase differences be-
tween the timing of melodic peaks and onsets, and those of
motion. We see no significant differences between genres,
although the improvement in correlations for the vocalize
examples is the least pre and post DTW. This could be be-
cause of the continuous vibrato in these examples, causing
people to use more ‘shaky’ representations which are most
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Motion | Music | All

| ADSC

\ | sV

Ascend Pattern ‘

| CCA | Deep CCA | CCA

‘ Deep CCA ‘ CCA

‘ Deep CCA

Z Pitch  0.19 0.23 0.250.160.090.05 0.240.170.120.13  0.16-0.130.01 0.37  0.19 0.21 0.08 0.36

Z+V Pitch 021 0.27 0.26 0.090.150.10  0.300.030.050.17 0.22-0.13-0.01 0.35 0.24 0.250.15 0.34

All All 033 044 0.310.140.190.29  0.440.290.01 0.36  0.300.280.230.42  0.38 0.430.27 0.52
Descend Pattern ‘ ‘ ‘

Z Pitch  0.18 0.21 0.16-0.110.150.20 0.170.190.090.19 0.220.21-0.040.23  0.220.18 0.08 0.28

Z+V Pitch 021 031 0.230.030.140.22  0.280.280.300.32 0.260.230.100.24  0.420.180.340.17

All All 035 044 0.390.120.200.25  0.380.020.370.37 0.350.250.120.36  0.400.220.14 0.52

Table 4. Correlations for all samples in the dataset and the two major categorizations of music labels, using ascend and
descend patterns as explained in Section 5.3.2, and features from Tables 3 and 2

Motion | Music | MotifNonMotif | | OrgSyn | | VibNonVib |

Ascend Pattern | | cca | Deep CCA | CCA | Deep CCA | CCA | Deep CCA
z Pitch | 0.050.23 0.13026 | 0.190.19 | 022025 | 033007 | 0.330.13
Z+V Pitch | 0.100.24 0.17031 | 0.190.22 | 024031 | 0.330.09 | 0.320.20
All All 0.290.34 0.36047 | 030035 | 042045 | 038029 | 0.490.40
Descend Pattern |

z Pitch | 0.200.17 0.19021 | 0200.16 | 0.230.18 | 0200.17 | 0.240.18
Z+V Pitch | 0.220.22 032029 | 024020 | 035026 | 022022 | 0.140.34
All All 0.250.40 0.37045 | 038033 | 045044 | 033035 | 0.540.35

Table 5. Correlations for two-class categories, using ascend and descend patterns as explained in Section 5.3.2
with features from Tables 3 and 2

consistent between participants. The linear mappings of
pitch and vertical motion are limited, making the dataset
challenging. This also means that the associations between
pitch and vertical motion, as described in previous stud-
ies, are not that clear for this stimulus set, especially as
we use musical samples that are not controlled for being
isochronous, nor equal tempered.

Thereafter, we conduct CCA and Deep CCA analysis
as seen in Tables 4, 5. Overall, Deep CCA performs better
than its linear counterpart. We find better correlation with
all features from Table 3, as opposed to just using verti-
cal motion and velocity. With ascending and descending
longest run-lengths, we are able to achieve similar results
for correlating all melodies with their respective tracings.
However, descending contour classification does not have
similar success. There is more general agreement on con-
tour with some melodies than others, with purely descend-
ing melodies having particularly low correlation. There is
some evidence that descending intervals are harder to iden-
tify than ascending intervals [31], and this could explain a
low level of agreement in this study amongst people for de-
scending melodies. Studying differences between ascend-
ing and descending contours requires further study.

‘While using genre-labels (IJSV) for correlation, we find
that scat samples show the least correlation, and the least
improvement. Speculatively, this could be related to the
high number of spoken syllables in this style, even though
the syllables are not words. Deep CCA also gives an over-
all correlation of 0.54 for recognizing melodies containing
vibrato from the dataset. This is an indication that sonic
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textures are well represented in such a dataset.

With all melody and all motion features, we find an
overall correlation of 0.44 with Deep CCA, for both the
longest ascend and longest descend features. This supports
the view that non-linearity is inherent to tracings.

7. CONCLUSIONS AND FUTURE WORK

Interest in cross-modal systems is growing in the context of
multi-modal analysis. Previous studies in this area include
shorter time scales or synthetically generated isochronous
music samples. The strength of this particular study is
in using musical excerpts as are performed, and that the
performed tracings are not iconic or symbolic, but spon-
taneous. This makes the dataset a step closer to under-
standing contour perception in melodies. We hope that
the dataset will prove useful for pattern mining, as it
presents novel multimodal possibilities for the community
and could be used for user-centric retrieval interfaces.

In the future, we wish to create a system to synthe-
size melody—motion pairs based on training a network to
this dataset, and conducting a user evaluation study, where
users evaluate system generated music—motion pairs in a
forced—choice paradigm.
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Appendix A

Details of the Experiments

AA

For the 21 markers place on the body, the following are the codes:
1.

2.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

Marker Labeling

RTOE: Right foot marker

LTOE: Left foot marker

RKNE: Right knee marker

LKNE: Left knee marker

RHEAD: Right head marker
LHEAD: Left head marker

STRN: Sternum marker

RSHO: Right shoulder marker
LSHO: Left shoulder marker
RBAK: Right back marker (asymmetric)
RWRA: Right wrist inside marker
RWRB: Right wrist outside marker
LWRA: Left wrist inside marker
LWRB: Left wrist outside marker
RH: Right palm marker

LH: Left palm marker

RELB: Right elbow marker

LELB: Left elbow marker
LowBAK: Tailbone marker

RHIP: Right hip marker

LHIP: Left hip marker
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A. Details of the Experiments

Melody 1: Hindustani Melody 2: Hindustani Melody 3: Hindustani Melody 4: Hindustani
cs
c4

T IR Ve VAR VAR N AN

c3 _\I"ﬂf
s Melody 5: Joik Melody 6: Joik Melody 7: Joik Melody 8: Joik
cs
c4 W J\w JI\“-\/VJ\"*J
- M
s Melody 9: Scat Melody 10: Scat Melody 11: Scat Melody 12: Scat
cs5
o /J\”W WWJ\J w”\\«&\ '\/v\’\,\.
c3

Melody 13: Vocalise Melody 14: Vocalise Melody 15: Vocalise Melody 16: Vocalise

WA A e JW"‘

cs e PENGVENY S
c4

Figure A.1: The 16 melodies used as the stimulus set for all the experiments in
the thesis come from four different music cultures and contain no words.

A.2 List of Melodic Stimuli

1. North Indian singing: All four melodies are sung by Ginde (of Washington
I[Ethnomusicology Archives| |1991)). The individual features are mentioned
below.

e Melody 1: stationary contour profile, lowest note of the stimulus set
e Melody 2: ascending contour profile
e Melody 3: stationary contour profile
e Melody 4: motivic repetition
2. Joik: The individual features are mentioned below.
o Melody 5: Per Henderek Haetta (Quarja), antecedent
o Melody 6: Per Henderek Haetta (Quarja), consequent
o Melody 7: Nils N. Eira (Track 49), audible vocal break

o Melody 8: Inga Susanne Haetta (Markel Joavna Piera, motivic
repetition

3. Jazz Scat: All four melodies are sung by Fitzgerald as described in
Chapter [5 The individual features for the choices are mentioned below.

172



File Formats for Symbolic Music Notation

e Melody 9: descending contour profile
e Melody 10: no clear contour direction, rhythmic play
e Melody 11: descending contour profile
e Melody 12: ascending contour profile
4. Vocalise: All four melodies are sung by June Anderson, as described in
Chapter [}] The individual features are mentioned below.
e Melody 13: ascending contour profile
e Melody 14: extreme vibrato of a whole tone
e Melody 15: stationary contour profile

e Melody 16: motivic repetition, highest sustained note of the stimulus
set

A.3 File Formats for Symbolic Music Notation

Some symbolic representation languages that inform melodic data sets are as
follows:

1. MIDI Music exchange digital interface: This is a standard interchange
format for music data, that carries event messages specifying, pitch,
duration, velocity, vibrato, panning, and clock signals to set the tempo.
MIDI messages have made it possible for digital musical instruments to
communicate with each other.

2. MusicXML : This is an XML based representation of music notation for
the web.

3. Humdrum Syntax: Humdrum is a protocol created by David Huron in
1980, that is now widely used as a set of command line tools fur music
analysis.

4. Pitch class: set of pitches described as numbers.

5. Music Encoding Initiative (MEI): MEI is is a standard for encoding
symbolic musical data

6. Notation Interchange File Format (NIFF): This is a file format to be able
to use notation in various types of software for reading music notation
seamlessly.
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Appendix B

List of implemented functions and
features

The datasets and codes can be found on
http://tejaswineek.github.io
As a part of the code developed for this thesis, the following functions have been

implemented for mocap data:

B.1 Dependencies

The python toolbox in progress has dependencies in numpy, scipy, matplotlib,
pandas.

B.2 Data Types

The datasets are a collection of tsv files. Each file encodes the following

information: [Participant ID, Stimulus ID, Strategy ID].

B.3 Functions

B.3.1 Motion Features

1. Quantity of Motion
2. Range

3. Hand Distance

4. Upsampling

5. Downsampling

6. Velocity

7. Acceleration

8. Jerk

9. Normalize

We are able to plot the data in the following ways:
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B. List of implemented functions and features

1. 2D plotting

2. 3D plotting

Additional functions for analysis:
1. Spline Interpolation

2. Movement Plane

3. Peak Detection
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