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ABSTRACT

The steep continental slope off the Lofoten–Vesterålen islands of northern Norway appears to be the

source of the most intense mesoscale eddy field in all of the Nordic Seas. Here we use linearized two-layer

shallow-water equations to study the stability of the Norwegian Atlantic Current in this region. The study

extends previous works that used linearized quasigeostrophic vertical mode equations to examine the effects

of bottom topography on baroclinic instability here. We find evidence of baroclinic instability in the stacked

shallow-watermodel but also of barotropic instability that is associated with the upper-layer lateral shear. The

calculations give an indication that growth rates of barotropic instability may be comparable to or larger than

those of baroclinic instability over the steepest parts of the continental slope.

1. Introduction

The continental slope off Norway guides the warm and

salty Norwegian Atlantic Current (NwAC) through the

Nordic Seas on its journey toward the Arctic Ocean.

The NwAC loses heat and thereby gets denser as it

flows northward along the coast. The advective heat

fluxes are of major importance to the regional cli-

mate, and nutrient fluxes also impact the marine

ecosystem dramatically (Skjoldal 2004; Drange et al.

2005). As it turns out, most of the cooling of the

NwAC is not caused by local air–sea fluxes over the

slope current itself but rather by lateral heat trans-

port into the interior ocean basins (Isachsen et al.

2012). It is in these basins that the bulk of the heat is

eventually passed onto the atmosphere, the reason

being a combination of larger surface areas and

longer residence times (Isachsen and Nøst 2012;

Koszalka et al. 2013). Since the NwAC itself is heavily

guided by the continental slope, lateral heat exchange

across the slope must be facilitated by mesoscale or

submesoscale eddy fluxes. Indeed, both observations

and models show a mean boundary current that is

also associated with enhanced eddy kinetic energy

(EKE) levels (Poulain et al. 1996; Andersson et al.

2011; Koszalka et al. 2011, 2013; Søiland and Rossby

2013). Time variability of the mean current only makes

up a small part of this EKE, and it is nonlinear flow

features like coherent vortices—eddies—that dominate

(Raj et al. 2015).

For a basic understanding of the cross-slope mixing

processes that take place along the path of the NwAC

one needs to know whether the primary source of the

observed eddy field is barotropic or baroclinic instability

or, possibly, a combination of the two. The former
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extracts kinetic energy from the mean current while the

latter extracts available potential energy associated with

the tilted isopycnals of a large-scale ocean current in

thermal wind balance. Mysak and Schott (1977) in-

vestigated the linear stability of the NwAC off southern

Norway using a quasigeostrophic (QG) two-layer model

and found that the most unstable waves matched fa-

vorably with observations (Horn and Schott 1976). They

concluded that the flow field along that stretch of the

coast is primarily baroclinically unstable. Teigen et al.

(2010, 2011) then investigated the stability of the West

Spitsbergen Current, a branch of the NwAC in the far

north. Using a linearized two-layer shallow-water (SW)

model, these authors argued that the current in the

north, just before it enters the Arctic, is both baro-

tropically and baroclinically unstable.

The most intense eddy activity and lateral cooling of

the NwAC is found off the Lofoten–Vesterålen islands,

along a stretch of the north Norwegian coast that has a

particularly narrow continental slope (Koszalka et al.

2011). The narrowing of the continental slope here in-

tuitively suggests an enhanced lateral current shear that

will be prone to barotropic instability. However, a

quantitative assessment of this possibility has not been

made so far. Isachsen (2015) investigated the nature of

baroclinic instability off Lofoten–Vesterålen using lin-

earized QG vertical mode calculations. The exercise

suggested that the steepest part of the slope is the most

baroclinically unstable (where the fastest unstable

growth takes place). This result may at first appear to be

inconsistent with Eady or two-layer Phillips theory,

which predicts a suppression of baroclinic instability

by a sloping bottom (Blumsack and Gierasch 1972;

Mechoso 1980). Spall (2010) has noted, however, that

high growth rates can still be found over steep topog-

raphy if the isopycnals steepen accordingly. In addition,

the study of Isachsen (2015) also showed fast-growing

unstable modes that were associated with internal po-

tential vorticity (PV) thickness gradients rather than

with top and bottom edge waves. This last effect, which

is not captured by the Eady or two-layer Phillips

frameworks,1 seems to be ubiquitous along large parts of

the continental slopes of the Nordic Seas and Labrador

Sea (Trodahl and Isachsen 2018).

In the current manuscript we shift the perspective

away from vertical mode calculations and the details

of baroclinic instability and instead ask a very basic

question: could the NwAC off Lofoten–Vesterålen also

be barotropically unstable? To do this we will study

linear instability2 in a plane crossing the mean current,

thus allowing an investigation of the joint possibility of

PV gradient sign reversals both in the horizontal and

vertical directions. To allow for large topographic slopes,

we will also leave the QG framework and instead use

two-layer SW equations. Instability of the current will

still be assessed assuming wave mode solutions that are

then solved for by standard eigenvalue methods.

The rest of the paper is organized as follows. In section 2

we present the linearized stability equations and the nu-

merical solutionmethodused.Then, in section 3,wepresent

the results obtained by solving those equations for various

shelf slopes. We thus study the growth dependency on the

topographic steepness and use various measures, including

energy transfer terms, to determine whether baroclinic or

barotropic instability is at play. The paper ends with a brief

discussion of the results and conclusions in section 4.

2. Model formulation

a. The linearized two-layer shallow-water model

The NwAC is a surface-intensified baroclinic jet of

width 40–80 km that is strongly guided by the conti-

nental slope below (Mauritzen 1996; Orvik and Niiler

2002). The jet widens and narrows depending on the

steepness of the slope below, and over the very steep

slope off the Lofoten–Vesterålen islands the current

accelerates to attain surface velocities in excess of

0.5m s21 (Koszalka et al. 2011). There is time variability

involved, especially at the seasonal time scale where

current speeds in winter are almost twice as large as

speeds in summer (Orvik and Skagseth 2003; Skagseth

et al. 2004; Mork and Skagseth 2010). A stability as-

sessment could take account of this time dependence,

for example, by comparing stability during summer and

winter months independently. But for our very basic

question of whether the current is in fact barotropically

unstable (in addition to being baroclinically unstable),

we start by an analysis of time-mean conditions.

Figure 1 shows the bathymetry in the region as well

as the hydrography and flow field extracted from an

800-m-resolution operational regional ocean model

operated by the Norwegian Meteorological Institute

(Albretsen et al. 2011). Figure 1c shows representative

conditions when model data have been averaged over

1 Internal PV thickness gradients correspond to a vertical change

of isopycnal slope. Neither the Eady nor the two-layer Phillips

models include such dynamics (the Phillips model would require a

minimum of three layers).

2We only investigate the possibility of linear instability here. A

nonlinear systemmay also become unstable under finite-amplitude

perturbations even if the linearized version of the dynamics re-

mains stable (Butler and Farrell 1992).
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one year (2009–10) and over several cross-slope transects

(gray region in Fig. 1a). The model is in agreement

with observations in revealing a surface-intensified

baroclinic jet that reaches 0.5m s21 and has a width of

50–60 km. The current extends down approximately to

the su 5 27.7 kgm23 isopycnal, more or less the bottom

of the Atlantic Water layer (Mauritzen 1996; Isachsen

et al. 2007). This bounding isopycnal then intersects the

continental slope underneath the jet maximum at a depth

of a few hundred meters. A weaker current (speed less

than 0.1ms21) below 1000-m depth transports dense wa-

ters around the Nordic Seas (Käse et al. 2009).

To operate with self-consistent fields, we use the time-

averaged hydrography and currents from the opera-

tional model (Fig. 1c) to form the basis for our two-layer

linearized SW model of the region. We use a local

Cartesian coordinate system where the x axis is directed

toward the coast, the y axis is directed along the shore,

and the vertical z axis is positive upward—as sketched in

Fig. 2. In the absence of motion the thicknesses of the

two layers are H1 and H2, where the lower-layer thick-

ness can vary in the x direction due to bottom topogra-

phy. When motion in the two layers is included the

thicknesses are

FIG. 1. The bathymetry and time-mean flow field off the Lofoten–Vesterålen islands:

(a) overviewmapwith the focus region highlighted, (b) the bathymetry along the focus region

and exponential fits (black lines) covering the range of bottom slopes, and (c) time-mean

alongshore flow velocity (colors) and potential density field (contours) from an 800-m-

resolution regional ocean model of the region (Albretsen et al. 2011).
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where h1 is the dynamical free surface displace-

ment (above z 5 0) and h2 is the dynamical displace-

ment of the interface that separates the two layers

(above z 5 2H1). The sea surface and interface dis-

placements are related to horizontal velocities u1 5
u1̂i1 y1 ĵ (top layer) and u2 5u2̂i1 y2 ĵ (bottom layer)

by the shallow-water momentum and continuity

equations
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Here f is the Coriolis parameter, g is the gravitational

acceleration, and g0 5 gDr/r0 is the reduced gravity for

density jump Dr5 r2 2 r1 between the two layers

and reference density r0. We linearize the system

around a geostrophically balanced mean flow follow-

ing the coast. This background flow is allowed to vary

in the x direction and between the two layers. So we

write

f y
1
5 g
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1
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, and (7)
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where h1 and h2 are the mean sea surface and interface

displacements balancing the Coriolis acceleration of

mean flows y1 and y2. Now we allow for wavelike per-

turbations around this mean flow with an amplitude

scale � that is small compared to the mean flow itself.

The variables are then decomposed into basic state parts

and perturbations,
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where the primed quantities are the perturbations. The

linearized equations for the perturbations are (in com-

ponent form)
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where the first-order perturbation terms, that is, O(�)

with � � 1, have been retained, while the nonlinear

perturbation terms O(�2) are neglected.

We look for perturbation solutions that are wavelike

in the y direction and write

[u0
j, y

0
j,h

0
j]5Ref[û

j
(x), ŷ

j
(x), ĥ

j
(x)]ei (ly2vt)g (16)

for each of the two layers (j5 1, 2). Here l and v are

the wavenumber and wave frequency, respectively, and

ûj(x), ŷj(x), and ĥj(x) are horizontal structure functions in

the x direction.With this ansatz, inserting the perturbation

form (16) into the linearized equations (10)–(15) yields

FIG. 2. Configuration of our idealized two-layer shallow-water

model. Horizontal lines along the bottom denote u grid points

while circles with vertical lines denote h and y grid points.
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where the continuity equation for the bottom layer has

been substituted into that for the top layer.

The above equations are discretized on a staggered grid

in the x direction, with u points halfway between h/y

points as shown in Fig. 2. The grid spacing used is 800m,

the same as used in the primitive equation model.We use

centered differences so that, for example, the last two

equations (for ŷ2 and ĥ2) become
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1,j
1 g0ĥ
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where dx is the grid spacing. Variables here are by de-

fault evaluated at their native grid points (either h/y

points or u points), and we use superscripts in the above

expressions to indicate where interpolation onto the

other variable’s grid points has been done.Making these

interpolations explicit gives
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2,j
. (26)

Finally, the above equation set requires lateral bound-

ary conditions. We impose impermeable vertical walls at

x5 0 in the west and x5L in the east. This implies ki-

nematic boundary conditions û1 5 û2 5 0 at x5 0 and

û1 5 0 at x5L. Assuming a wall in the upper layer in the

east is reasonable (modeling the coast). There is, of

course, no justification for assuming awall condition in the

west, and the impact of this will have to be assessed a

posteriori, that is, by inspecting the amplitude of the so-

lution near the western boundary.

The boundary condition for the lower layer in the

east is the more problematic one. As shown in Fig. 2 we

consider a situation in which the interface between the

two layers intersects or ‘‘incrops’’ onto the continen-

tal slope in the east. The correct linearized kine-

matic boundary condition for this problem is derived in

appendix A. It turns out to be equivalent to the volume

conservation equation for the lower layer [(15) and

(22)] but with mean layer depth h2 equal to zero. As-

suming û2 5 0 here as well is only formally correct in

the limit of infinite bottom slope (a vertical wall).

Previous studies have circumvented this issue by

picking an isopycnal light enough that it runs above

the continental slope and thus extends all the way to

the coastal wall (Teigen et al. 2011; Poulin et al. 2014),

or they have made the bottom slope vertical at the

depth of the isopycnal incrop (Mysak and Schott

1977). Then, obviously, û2 5 0 would apply. For our

problem, however, we pick a dividing isopycnal that

incrops onto a nonvertical continental slope (as sug-

gested by Fig. 1). Hence, setting û2 5 0 in the east is,

strictly speaking, not correct. However, calculations

made (see appendix A) suggest that the overall qual-

itative behavior of the unstable modes of our problem

is remarkably insensitive to the choice made for this

lower-layer boundary condition. So in the follow-

ing we proceed with the assumption û2 5 0 at the

incrop point.

The resulting equations form a standard matrix ei-

genvalue problem in xj 5 [ûj, ŷj, ĥj],

M
ij
x
j
5vx

j
, (27)

where the two-dimensional matrix Mij contains the

coefficients in the centered finite-difference representation

of (17)–(22) with kinematic boundary conditions im-

plemented. The wavenumber l is a parameter to be varied

while the complex eigenvalue v5vr 1 ivi is part of the

solution, determining the phase velocity cr 5vr/l and

growth rate vi of the modes. For vi . 0 a given wave is

unstable. We tested our discretization scheme by success-

fully reproducing results reported by Teigen et al. (2011)

and Poulin et al. (2014).
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b. Idealized geometry and flow field for the
Lofoten–Vesterålen region

Figure 1c shows that the continental slope connects a

shelf region of depth less than 200m to an ocean basin of

depth around 2.5 km. In keeping the model as simple as

possible, we made an idealized exponential shelf profile

of form

H(x)5

8><
>:

H
max

, 0# x,B
1
,

H
min

exp[b(B
1
2 x)] , B

1
# x,B

2
,

H
min

, B
2
# x#L .

(28)

Here Hmin 5 180m is the water depth over the conti-

nental shelf, Hmax 5 2500m is the depth over the deep

basin, B1 and B2 are the position of the western and

eastern extents of the slope, and, finally, b is a positive

constant describing the steepness of the slope. For shelf

width B 5 B2 2 B1 this becomes

b5B21 ln
H

max

H
min

. (29)

The shelf width B will be varied in what follows from

about 10 to 120 km. We note that this topography has

discontinuous derivatives at two points. However, sen-

sitivity tests that involved smoothed versions of the

topography showed that these discontinuities have

negligible effects on growth rates.

We then specified a simplified jet that approximately

fits the surface jet seen in Fig. 1c:

y
j
(x)5V

j

x

B
jet

exp

 
x2 x

jet

B
jet

!2

. (30)

Here Vj is the maximum jet velocity in layer j, xjet is the

x position of this maximum, andBjet gives the half-width

of the jet. In what follows, we consider a jet with a typical

width of 2Bjet 5 60km and an upper-layer core velocity

of V1 5 0.45ms21. Below we will mostly study unstable

growth for a lower layer at rest (V2 5 0), but some cal-

culations were also made for weak lower-layer flow.

The two layers were fitted to the geometry defined by

the su 5 27.7 kgm23 isopycnal in Fig. 1c. A reduced

gravity was first estimated from differences in area-

averaged model densities above and below this iso-

pycnal (g0 5 8 3 1023m s22). Then the position of the

interface between the two layers was integrated from the

thermal wind relations, starting at an initial depth of

250m far offshore in the west. The remaining parame-

ters needed to specify our two-layer SW model were

f 5 1.4 3 1024 s21 and g 5 9.8m s22. With these pa-

rameters our model has an internal deformation radius

Rd 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0Heff/f

p
[with Heff 5H1H2/(H1 1H2)] of around

10km, a value in good agreement with estimates made

by Nurser and Bacon (2014, their Fig. 2).

3. Results

In the following we investigate linear unstable growth

in the two-layer shallow-water model as a function of

variable continental slope steepness. The slope steep-

ness impacts instability by changing the thickness PV

gradients near the bottom. In the modified Eady model

and two-layer Phillips model of Blumsack and Gierasch

(1972) and Mechoso (1980), it is not the bottom slope

alone but rather the ratio between bottom slope and

isopycnal slope that governs stability. So for bottom

slope b and isopycnal slope a, the slope parameter is

To[b/a . (31)

For the situation along the Norwegian continental slope

where the isopycnal and bottom slopes have different

signs (Figs. 1, 2), To is negative. For this configuration

the theory predicts both reduced growth rates and

length scales compared to the equivalent flat-bottom

configuration. Below we will see whether this QG pre-

diction carries over to the SW system, which is more

appropriate for large topographic and isopycnal slopes.

But our main objective, as mentioned above, is to see

whether barotropic instability due to the lateral shear in

the surface-intensified current may also be present off

Lofoten–Vesterålen.

a. Growth rates as a function of To

We varied To by changing the bottom slope while

keeping the jet strength and its vertical shear (hence

isopycnal slope) fixed. Most calculations were based on

the configuration where the lower layer is at rest (what

we call a ‘‘passive’’ lower layer), but the effect of a

nonzero lower layer flow (‘‘active’’ lower layer) was also

investigated briefly. Figure 3 shows growth rates of un-

stable modes for our base case, using bounding iso-

pycnal su5 27.7 kgm23, a passive lower layer, and three

different values of To. For comparison with modified

Eady and two-layer Phillips theory, the growth rates in

the plot have been normalized by V0/Rd, where V0 5
jy1 2 yj2 is the velocity jump between the layers, and Rd

is the internal deformation radius (see above). For the

same reason, wavenumbers have been normalized by

ld 5 1/Rd.

Many unstable waves exist, but three modes domi-

nate. We label these modes A, B, and C according to

their lateral scale, with modes A and C having the

smallest and largest scales, respectively. Mode C is
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really a pair of modes that follow each other closely as

To is varied. As it turns out, all three modes show

agreement with the modified Eady model of Blumsack

and Gierasch (1972): they all have a long-wave cutoff

(absent for a flat bottom) and they all grow slower and

attain smaller scales as themagnitude of the topographic

slope grows relative to that of the isopycnal slope. In

fact, for very steep bottom slopes the magnitude of

mode C drops to levels comparable with the general

‘‘noise level’’ of other unstable waves. But all three

modes remain intact over the range of slope parameters

tested here, and modes A and B always dominate.

Figure 4 shows the behavior over a larger range of To.

Shown are maximum growth rates and corresponding

wavenumber (both nondimensionalized) for each of the

three modes as functions of To. The tendencies noted

above are seen to be general, that is, a decrease in both

growth rates and lateral scales for steeper bottom

slopes—both in agreement with modified Eady theory.

Here we show the results for both a passive lower layer

(y2 5 0) and an active lower layer in which y2 5 0:2y1.

Introducing a mean flow in the lower layer does not

impact the results qualitatively but leads to somewhat

larger nondimensional growth rates. Presumably, the

change in growth rates reflects quantitative discrep-

ancies between the SW and QG frameworks for

steep slopes.

So a steeper bottom slope influences growth for all

three unstable modes in qualitatively similar ways.

Nevertheless, there are subtle differences. For both a

passive and active lower layer the scales of modes A and

C show a strong sensitivity to To. This sensitivity is much

smaller for mode B. Conversely, the growth rate of

mode B is more sensitive to To than the other two

modes, and whereas this is the fastest-growing mode for

weak bottom slopes, it grows slower than mode A for

steep slopes. These are indications that the dynamics of

mode B might be distinct from that of modes A and C.

We redid the above calculations using a range of dif-

ferent bounding isopycnals, with corresponding differ-

ing layer depths and reduced gravities. Growth rates and

length scales differed in detail (see an example in Fig. 5),

but the three modes and their qualitative response to

changes in To remained throughout these calculations.

As for the reference case shown here, mode B decays

more rapidly with increasing bottom slope than modes

A and C.

b. Spatial structures of unstable modes

The spatial structures of the three modes, for slope

parameter To525:5, are shown in Fig. 6. We have

plotted the real part of the sea surface displacement,

interface displacement, and all velocity components.

The color scales are arbitrary, but the magnitudes of

variables of the same type can be compared to each

other. Before looking into the details, it is worth noting

that all modes have vanishing structure in the vicinity of

the western boundary. Hence, our using the wall as-

sumption (u0 5 0) at what should really be an open

boundary in the west appears to be justifiable.

Mode B exists only over regions with two layers, dis-

appearing east of the isopycnal incrop point. It also has

bottom-intensified cross-shelf (u) velocities, particularly

near the bottom slope where the lower layer is thinner

than the upper layer. This is to be expected from a

baroclinic instability process that tends to flatten the

FIG. 3. Nondimensional growth rate as functions of nondimensional wavenumber for the base case of bounding isopycnal su 5
27.7 kgm23. Three values for the slope parameter are compared: (a) To524:2, (b) To525:5, and (c) To527:0: Three dominant

unstable modes are labeled (A, B, and C).
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isopycnal by bolus transports that have opposite signs in

the two layers. For equal but opposite layer transports, a

thinner lower layer requires a correspondingly higher

bolus velocity. A larger velocity perturbation in the

lower layer is also predicted, from dynamic consider-

ations, by the modified Eady model when the slope pa-

rameter To is negative, as is the case here (see, e.g.,

Fig. 6 in Isachsen 2015).

FIG. 5. As in Fig. 3, but based on bounding isopycnal su 5 27.6 kgm23.

FIG. 4. (left) An illustration of how To is varied by changing the steepness of the topographic slope (the x coordinate has been scaled by

jet width Bjet). The nondimensional growth rates and corresponding nondimensional wavenumbers for the three fastest-growing modes

for various values of To: (center) passive lower layer (y2 5 0) and (right) active lower layer (y2 5 0:2y1).
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FIG. 6. The spatial structure of modes A, B, and C (extracted from the peaks of the

growth curves) for To525:5: The six top panels show mode A, the middle six show

mode B, and the lower six show mode C. Color scales are arbitrary but are constant for

similar variables. The exception is the sea surface displacement h1, which has been di-

vided by g0/g so that its dynamic effect on layer 2 can be compared with that of the

interface displacement h2.
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Modes A and C, in contrast, have characteristics that

are not obviously consistent with baroclinic instability.

For one, their surface-layer manifestation extends east

of the intersect point, into the region where only one

layer exists. They are also surface-intensified near the

slope, in contradiction to the expected vertical structure

of baroclinic instability for a thinner lower than upper

layer near the intersect point and for To, 0.

c. Checking for evidence of barotropic instability in
the top layer

The examination of the mode structure above is

qualitative and inconclusive, but there is an indication

that mode B reflects baroclinic instability whereas

modes A and C do not, at least not in its pure form. All

modes may of course reflect some form of mixed

baroclinic–barotropic instability, but here we will first

explore the two distinct limits. Thus, to check whether

modes A and C reflect barotropic instability acting on

the lateral velocity shear in the top layer, we did an eigen

calculation where we fixed the interface position, thus

making the lower layer dynamically inactive. In this

configuration the interface acts as a rigid lower boundary,

an ‘‘ocean bottom’’ for the top layer west of the intersect

point. In such a ‘‘thought experiment’’ baroclinic in-

stability, if originally present, would be eliminatedwhereas

barotropic instability acting in the top layer would prevail.

Growth rates and scales of a barotropic instability mode

might be quantitatively affected by a rigid lower interface,

but the underlying source of barotropic instability, the

lateral velocity shear, would be unaffected.

Results of these new calculations, now only involving

variables u1, y1, and h1, are shown in Fig. 7 for the same

To values as used in Fig. 3. We detect two growing

modes that corresponded to the original modesA and C.

The growth rates and scales of the modes, in fact, are

only slightly modified from the original two-layer cal-

culations. So modes A and C basically remain intact in

the one-layer calculation, strongly suggesting that they

are lateral shear or barotropic instabilities. In contrast,

mode B has disappeared completely, again confirming

that this mode requires two layers and reflects baroclinic

instability.

Another indication that lateral shear instability takes

place in the top layer can be found by examining the

Rayleigh–Kuo integral constraint for this layer (Cushman-

Roisin and Beckers 2011). A necessary condition for in-

stability is that the layer PV gradient

Q
x
5

›

›x

 
f 1 z

1

h
1

!
, (32)

changes sign somewhere in the domain (here h1 5
H1 1h1 2h2 is the upper layer thickness with geo-

strophic mean flow included and z1 [ ›y1/›x is the mean-

flow relative vorticity). Figure 8 shows this lateral PV

gradient in the upper layer for a range of To values, that

is, for a range of bottom slopes. The calculation shows

two zero crossings for all To configurations, in agree-

ment with there being two unstable modes (A and C).

Note that the topography is smoothed to avoid discon-

tinuity in the PV gradient at the transition points (at the

interface incrop and where our idealized bottom goes

from being an exponential to being flat). The calculation

thus shows that the upper-layer relative vorticity gradient

is large enough to trigger barotropic instability and that the

layer thickness gradient is not able to avoid PV-gradient

reversals. Apparently, this holds true for a wide range of

FIG. 7. Growth in the one-layer model. Nondimensional growth rate as functions of nondimensional wavenumber for variable shelf

steepness: (left) To524:2, (center) To525:5, and (right) To527:0.
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bottom topographic slopes that we have considered to be

defining the possible realistic parameter range for the steep

slope off Lofoten–Vesterålen.

d. Energy conversions

As a final look into the nature of the various unstable

modes found here, we look at their energy conversion

rates. Pure baroclinic instability extracts mean available

potential energy (MAPE) into eddy available poten-

tial energy (EAPE) while barotropic instability ex-

tracts mean kinetic energy (MKE) into EKE. A mixed

baroclinic–barotropic instability process may then be

defined as one that extracts both MAPE andMKE from

the mean flow (Olbers et al. 2012).

To second order in perturbation quantities, volume-

integrated conversion terms corresponding to extraction

of MAPE and MKE (with mean flow only in the top

layer) are (see appendix B)

C
MAPE/EAPE

5 hg(y
1
2 y

2
)h0

1›h
0
2/›yi , (33)

and

C
MKE/EKE

52

�
h
1
u0
1y

0
1

›y
1

›x

�
, (34)

where the overbars over perturbation quantities, and

the angle brackets indicate integrals over y and x, re-

spectively.MAPE is extracted from the upper-layer flow

if the area-integrated form drag on the interface is

positive. MKE is extracted if Reynolds momentum

fluxes in the top layer are, on average, down the mean

velocity gradient, that is, out of the jet.

We study the situation for a moderately steep slope,

with To525:5 (with eigenvectors for modes A, B, and

C shown in Fig. 6). The contributions to the integrands

in these expressions, for the three dominant modes, are

shown in Fig. 9 and the integrals over all space are given

in Table 1. The absolute magnitude of the eigenvector

(containing the perturbation variables) is arbitrary since

the calculation is based on solutions to the linear

problem. But the relative size between different vari-

ables is dynamically consistent, so comparing the two

expressions will give the relative importance of baro-

clinic (MAPE/EAPE) to barotropic (MKE/EKE)

conversion.

Starting with mode A, we see that eddy y-momentum

fluxes u0
1y

0
1 in a small region west of the jet maximum are

up the mean-flow velocity gradient, a behavior that would

tend to sharpen the jet. However, the integral of this part

is small and completely overwhelmed by downgradient

momentum fluxes everywhere else. Therefore, for this

FIG. 8. The lateral PV gradient in the upper layer for a range of

To values. Blue squares show where the PV gradient changes sign.

Also shown is the ‘‘bottom’’ (the interface) felt by the upper layer

for the same To values. The upper-layer bottom has been

smoothed with a 10-point running-average filter.

FIG. 9. The key quantities going into the energy transformation terms for the passive lower-layer configuration with To525:5.
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mode there is a net release of MKE to EKE, of magni-

tude 1.3 3 1027 (arbitrary units), consistent with baro-

tropic instability (Table 1). The form drag gh0
1›h

0
1/›y is

both negative and positive and sums up to 2.6 3 1029.

The mode thus extracts someMAPE but at a rate that is

50 times smaller than its extraction of MKE. Mode C

shows some more horizontal structure but acts similarly

in an integral sense (extracting 20 times moreMKE than

MAPE). For mode B the situation is reversed. The

conversion terms are only nonzero seaward of the in-

flection point and give a clean picture of what goes on

there. The eddy form drag is positive everywhere and

adds up to 8.3 3 1028, whereas eddy momentum fluxes

are almost entirely into the mean jet and about a factor

20 smaller (24.8 3 1029). Therefore, mode B reflects

pure baroclinic instability, extracting MAPE associated

with the tilted isopycnal. Modes A and C extract both

MKE and MAPE, but considering the relative magni-

tudes of conversion, it is safe to conclude that they pri-

marily reflect barotropic instability.

4. Discussion and conclusions

Themain finding of this study is that that theNorwegian

Atlantic Current (NwAC), as it passes the steepest part of

the Norwegian continental slope off the Lofoten–

Vesterålen islands, is both barotropically and baroclini-

cally unstable. Baroclinic instability has been investigated

earlier with linear QG vertical mode equations (Isachsen

2015), but this is the first assessment of unstable growth

due to the lateral shear. Figure 4 suggests that baroclinic

instability may dominate (have fastest growth rates) for

relatively weak bottom slopes or, more specifically, for

low ratios of the bottom to isopycnal slope (slope pa-

rameter To). But barotropic instability gets progressively

more important and may even dominate for steeper bot-

tom slopes. The same qualitative result was also found by

Poulin et al. (2014) in a stability study of the coastal

Bransfield Current in the Southern Ocean. The stronger

suppression of baroclinic instability over steep bottom

slopesmay be intuitively understood from the fact that this

process requires motion in the lower layer (where the to-

pographic slope impacts the PV gradient), whereas lateral

shear instability in the upper-layer jet does not.

Our study is limited in scope on many accounts. To

begin with, in reality two currents are squeezed together

by the converging isobaths off the Lofoten–Vesterålen
islands: the NwAC and the Norwegian Coastal Current

(NCC), which consists of buoyant coastal waters origi-

nating from the Baltic Sea and Norwegian river runoff

(see schematics of currents in Fig. 1). The NCC flows

shoreward of the NwAC, and the different hydrographic

properties of the twowater types do set up conditions for

additional flow instabilities. Here, essentially, we have

focused on the stability properties of the front that

separates AW from basin waters offshore.

In extending the eigen problem to two dimensions, we

have reduced the vertical resolution to two layers. This

is, of course, an extreme simplification, and it is worth

noting that the study of Isachsen (2015) found growth

rates of baroclinic instability that were higher than those

predicted bymodified Eady or two-layer Phillips theory.

What was observed (with the vertically high-resolution

equations) was a tendency for internal PV gradients to

suppress the bottom stabilization, an effect that requires

at least three layers (see, e.g., Ikeda 1983). We intend to

pursue three layers in future work but have here started

with two SW layers as a simplest-possiblemodel that can

contain a lateral shear instability in the top layer.

We have ignored the possible influence of bottom

friction on instability. Both Lin and Pierrehumbert

(1988) and Stipa (2004) found that adding a bottom

Ekman layer reduces growth rates of baroclinic insta-

bility as well as forces growth toward lower wave-

numbers. Both, however, conclude that bottom friction

is unable to shut down growth entirely. The implication

to our problem here is that bottom friction could reduce

growth rates of the baroclinic instability mode (mode B)

preferentially over the upper-layer lateral shear modes

(A and C), but that all modes would still exist.

Our very simplified geometry, both of bottom topog-

raphy and background flow, also restricts the applica-

bility of the quantitative results to the real situation off

the Lofoten–Vesterålen islands. The simplified geome-

try allowed us to systematically investigate the qualita-

tive effect of the bottom slope (via slope parameter To)

on both types of instability. But other parts of parameter

space were not investigated, for example, cases where

the upper-layer jet is not centered over the isopycnal

incrop. An upper-layer relative vorticity gradient is able

to both enhance and suppress baroclinic instability itself

depending on its horizontal position relative to the

baroclinic shear (McIntyre 1970; Mechoso and Sinton

1981; James 1988).

Finally, we have only calculated growth rates based on

annual-mean fields. As mentioned in the introduction,

conditions vary substantially between summer andwinter.

TABLE 1. The integrated energy transformations (arbitrary units)

for the passive lower layer configuration with To525:5:

Modes

Energy

transformation A B C

CMAPE/EAPE 2.6 3 1029 8.3 3 1028 6.7 3 1029

CMKE/EKE 1.3 3 1027 24.8 3 1029 1.3 3 1027
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Upper-layer flow speeds can be nearly twice as high in

winter compared to summer. And since both the loca-

tion and width of the jet are locked by topography, one

can expect that lateral shears are stronger in winter,

tending to favor barotropic instability. Plots of summer

and winter conditions (not shown) reveal that the lat-

eral density gradient increases in winter while the

vertical stratification decreases (due to cooling). So

winters are associated with steeper isopycnal slopes

and hence smaller (less negative) To parameters. One

would infer from this that baroclinic instability is fa-

vored in winter while barotropic instability is favored

in summer. But such a conclusion needs to be qualified

by the above observation that the lateral velocity shear

is also enhanced during winter. A quantitative study of

summer versus winter conditions is, however, beyond

the scope of this initial study.

Perhaps themost serious technical limitation has been

in the treatment of the eastern boundary condition for

the lower layer, where the bounding isopycnals runs into

the continental slope. As done in several earlier studies,

we have assumed u0
2 5 0 there, a limit only strictly ap-

plicable to a vertical eastern wall. The choice was made

as a matter of convenience since the correct linearized

boundary condition, derived in appendix A, does not

seem to permit solving by eigen methods. We tested the

sensitivity to this choice by comparison with a Robin-

type boundary condition in the appendix. The results,

luckily, suggest that the fundamental findings presented

here are robust with respect to the details of the lower-

layer boundary condition.

To summarize, our calculations have shown that

both baroclinic and barotropic instability are sensitive

to the continental slope steepness, at least in a line-

arized two-layer SW model. Our mode B, represent-

ing pure baroclinic instability, essentially followed the

expected behavior outlined by two-layer QG theory.

That modes A and C, those believed to reflect baro-

tropic instability, also show a similar response to

variations in slope steepness is more surprising. But

we have seen that these modes do have velocity sig-

natures in the lower layer as well. Even if lower-layer

perturbation velocities are weaker than those in the

top layer (as we expect), it is likely that their in-

teraction with the bottom topography impacts growth

rates. Regardless of such details, the calculations give

strong indication that the NwAC is also barotropically

unstable off the Lofoten–Vesterålen islands, with

growth rates that are comparable to or even higher than

those of baroclinic instability over the steepest parts of

the continental slope. This should have an impact on

how we think of and model cross-shelf exchanges in this

ocean region.
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APPENDIX A

The Kinematic Boundary Condition at the
Incrop Point

We here take a closer look at the kinematic condition

at the point where the interface intersects or incrops on

the continental slope. This incrop point will hereafter be

referred to as IP, and we let it be situated at x5 x0, as

depicted in Fig. A1. For the discussion here we let the x

axis run through the IP of the undisturbed interface. The

height of the mean interface (in thermal wind balance

with the mean flow) is then given by z5h2(x) and the

bottom is at z52H2(x). At the IP we have by definition

h2(x0)5 0. Since the interface and the continental shelf

are material surfaces, the exact kinematic boundary

conditions are

D(z2h
2
)

Dt
5 0, z5h

2
, (A1)

D(z1H
2
)

Dt
5 0, z52H

2
, (A2)

where D/Dt denotes the material derivative. Introduc-

ing perturbations and mean values [see (9)], the linear-

ized versions of (A1) and (A2) become

w0
2 5

›h0
2

›t
1u0

2

dh
2

dx
1 y

2

›h0
2

›y
, z5h

2
, (A3)

w0
2 52u0

2

dH
2

dx
, z52H

2
. (A4)

At the IP x5 x0 the two vertical velocities are equal,

giving

›h0
2

›t
52u0

2

dh
2

dx
2 y

2

›h0
2

›y
, z5 h

2
(x

0
) . (A5)

Note that this is equivalent to the lower-layer continuity

equation (15) when the mean layer depth there goes to

zero (at the intersect point). Rewriting to solve for u0
2 gives

2u0
2

dh
2

dx
5

›h0
2

›t
1 y

2

›h0
2

›y
, z5h

2
(x

0
) , (A6)

or, for the assumed wave solution,
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2û
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52ivĥ
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ilĥ

2
, z5h

2
(x

0
) , (A7)

where h2 5H2 1h2. This (rather than û2 5 0) constitutes

the correct linearized boundary condition in the lower

layer at the incrop point.

As it turns out, the implementation of the correct

boundary condition is nontrivial on our staggered grid.

By letting the incrop point fall on a u point, say the Jth u

point, there is no problem in the lower-layer continuity

equation. Since, by definition, h
(u)
2,J 5 0 there, the dis-

cretized form of the equation for ĥ2,J (as well as its

substitution into the equation for ĥ1,J) simply becomes

il(y
2,J
ĥ
2,J

1h
2,J
ŷ
2,J
)2

1

dx

" 
h
2,J21

1 h
2,J

2

!
û
2,J21

#

5 ivĥ
2,J
. (A8)

But the equation for ŷ2,J reads

il(gĥ
1,J

1 g0ĥ
2,J

1 y
2,J
ŷ
2,J
)1

�
û
2,J21

1 û
2,J

2

��
f 1

dy
2

dx J

�

5 ivŷ
2,J
, (A9)

and this requires an expression for û2,J , that is, û2 at the

incrop point. Inserting a discretized form of (A7) here

will introduce the time derivative of h2, making solution

by eigen methods formally impossible. The additional

time derivative may potentially be approximated by

evaluating it at the Jth h/y point, that is, half a grid point

to the west of the incrop. But it is unclear whether

the operation, which involves inserting the lower-layer

continuity equation (with nonzero h2) into the boundary

condition, is formally acceptable.

Here we will instead investigate how sensitive the

fastest-growing unstable modes are to the treatment of the

lower-layer boundary condition (and, specifically, its in-

sertion into the last ŷ2 equation). Two extreme behaviors

of û2 can be expected at the incrop point, namely, û2 5 0

(relevant for an infinite bottom slope, i.e., a vertical wall)

and dû2/dx5 0 (to be expected in the limit of a very weak

slope). Here we will compare the growth obtained when

assuming each of these two extremes and also some be-

havior in between. We do this by implementing a Robin-

type boundary condition (Gustafson 1998),

û
2
1L

dû
2

dx
5 0 , x5 x

0
, (A10)

where the parameter L determines the relative impor-

tance of the two constraints. It seems natural to relate

this to the bottom slope angle b (see Fig. A2). For a near

vertical wall (b/p/2), we should haveL/ 0 to obtain

û2 / 0. For a very small bottom slope (b/ 0), we

should have L/‘ such that dû2/dx/ 0. This makes

sense, since in the last case there is little hindrance for a

particle associated with the perturbation to move hori-

zontally back and forth around the IP.

To express these limiting cases and the transition be-

tween them explicitly, we set L5 L̂dx cotb, where L̂ is a

free parameter (independent of b). Then our boundary

condition becomes

û
2
1 L̂dx cotb

dû
2

dx
5 0 , x5 x

0
, (A11)

or, when discretized,

û
2,J

1 L̂ cotb(û
2,J

2 û
2,J21

)5 0, (A12)

where we have had to evaluate the derivative at the last

h/y point. In terms of û2,J [the quantity that needs to be

substituted into (A9)]:

û
2,J

5
L̂ cotb

11 L̂ cotb
û
2,J21

. (A13)

So for a given value of parameter L̂, û2,J varies smoothly

between zero and û2,J21 depending on the bottom slope.

We investigated the sensitivity of our calculations to

the boundary condition by recalculating the results

shown in Fig. 3b (bottom slope parameter To524:2),

but now for three different values of L̂. For the specific

bottom slope of this problem, choosing L̂5 1:03 1024

essentially gives û2 5 0 at the incrop point while L̂5 1:0

gives dû2/dx5 0, and finally L̂5 1:53 1022 provides an

intermediate condition. Three different sets of markers

FIG. A1. Sketch depicting the coordinate system used to discuss the

kinematic boundary condition associated with the isopycnal incrop.
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have been used in the plot but the growth rates of the

three dominant modes are indistinguishable. The same

result was found for other To values. Hence, we con-

clude that the fastest-growing unstable modes in the

problem studied here are not sensitive to the exact

treatment of the difficult boundary condition at the in-

crop point. Whether this result extends to other config-

urations will be the topic of another study.

APPENDIX B

Energy Transformation

The perturbation or ‘‘eddy’’ energy equations for the

linear stability problem, valid to second order in pertur-

bation amplitudes, can be derived from the linearized

shallow water equations (10)–(15). To find expressions for

EKE, we multiply the layer 1 and layer 2 u-momentum

equations by u0
1 and u0

2, respectively, and the two

y-momentum equations by y01 and y02. Adding the resulting

expressions for each layer gives
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where we have defined the EKE densities ek1 5 (u02
1 1

y021 )/2 and ek2 5 (u02
2 1 y022 )/2. Integrating vertically over

mean layer thicknesses h1 5H1 1h1 2h2 and h2 5
H2 1h2 yields
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or, after rearranging the pressure gradient terms,
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The EAPE equations are found by multiplying layer 1

and layer 2 thickness equations by gh0
1 and g0h0

2, re-

spectively. This gives
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. (B8)

We note three terms that show up both in the EKE

and EAPE equations, involving divergences of the

layer transports. These represent local transfers be-

tween EKE and EAPE that cancel when we add the

equations to obtain an expression for total eddy en-

ergy (Cushman-Roisin and Beckers 2011, chapter 12).

We form such a total eddy energy equation and then,

finally, integrate over all space. The integral in y is

over an integer number of wavelengths and will be

denoted by ( . . . ). The integral in x is from x5 0 to

x5L (or to the incrop point for layer 2 variables) and

will be denoted h ( . . . )i. The periodic boundary con-

ditions in y and the u0 5 0 boundary conditions in x

cause the flux divergence terms to vanish, and we end

up with

FIG.A2. Sensitivity of unstable growth to free parameter L̂ in the

Robin-type boundary condition for To525:0. Blue, green, and

red dots represent growth rates for L̂5 1024 (û2,J ’ 0), L̂5 1022,

and L̂5 1 (û2,J ’ û2,J21), respectively.
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Hence, for the linearized stability problem the time

rate of change of total eddy kinetic plus eddy potential

energy of the system is governed by three terms:

C
MKE1/EKE1

52

�
h
1
u0
1y

0
1

›y
1

›x

�
,

C
MKE2/EKE2

52

�
h
2
u0
2y

0
2

›y
2

›x

�
, and

C
MAPE/EAPE

5

*
g(y

1
2 y

2
)h0

1

›h0
2

›y

+
.

The first two terms release mean kinetic energy from

layer 1 and 2 by an eddymomentum flux out of themean

jet while the third term releases mean available potential

energy via a form drag acting on the interface between the

two layers (Vallis 2017, chapter 3). For perturbations that

are geostrophic this last term may be rewritten (after one

integration by parts) as CMAPE/EAPE 52hg0u0
1h

0
2›h2/›xi,

representing an eddy bolus volume flux in the top layer

that tends to flatten the isopycnal.
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