
A Physical Intelligent Instrument
using Recurrent Neural Networks

Torgrim Rudland Næss

Thesis submitted for the degree of
Master in Robotics and Intelligent Systems

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2019

A Physical Intelligent
Instrument using Recurrent

Neural Networks

Torgrim Rudland Næss

© 2019 Torgrim Rudland Næss

A Physical Intelligent Instrument using Recurrent Neural Networks

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Composing and playing music generally requires knowledge of music the-
ory and exercise in instrument training. While traditional musical instru-
ments often require years of arduous practice to master, intelligent musical
systems can provide an easier introduction into music creation for novice
users. This thesis describes the design and implementation of a novel intel-
ligent instrument for interactive generation of music with recurrent neural
networks, allowing users with little to no musical experience to explore
musical ideas.

Even though using neural networks for music composition is not a new
concept, most previous work in this field does not ordinarily support user
interaction, and is often dependent on general-purpose computers or ex-
pensive setups to implement. The proposed instrument is self-contained,
running an RNN-based generative music model on a Raspberry Pi single-
board computer for continuous generation of monophonic melodies that
are sonified using a built-in speaker. It supports real-time interaction where
the user can modify the generated music by adjusting a set of high-level
parameters: sampling temperature (diversity), tempo, volume, instrument
sound selection, and generative model selection.

A user study with twelve participants was conducted to see the impact
the different high-level parameter controls can have on a participant’s
perceived feeling of control over the musical output from the instrument,
and to evaluate the generative models trained on different datasets in terms
of musical quality. The numerical ratings and open-ended answers were
analyzed both quantitatively and qualitatively. The results show that the
perceived feeling of control over the music was quite high, and the high-
level parameter controls allowed participants to creatively engage with the
instrument in the music-making process.

i

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Research Methods . 2
1.4 Thesis Outline . 3

2 Background 5
2.1 New Interfaces for Musical Expression 5
2.2 Music on Embedded Devices 6

2.2.1 Single-Board Computers 8
2.3 Machine Learning in Music Technology 8

2.3.1 Magenta . 10
2.4 Musical Interaction with Machine Learning 10
2.5 Artificial Neural Networks for Music Generation 12

2.5.1 Recurrent Neural Networks 12
2.5.2 Sequence Learning Architectures 14

3 Design and Implementation 17
3.1 Design Requirements . 17
3.2 Prototype 1 . 18

3.2.1 Instrument Controls 18
3.2.2 Hardware . 19

3.3 Prototype 2 . 22
3.3.1 Additional Instrument Controls 23
3.3.2 Additional Hardware 24

3.4 Generative Model . 26
3.4.1 Architecture . 26

3.5 Datasets . 28
3.5.1 Bach Chorales . 28
3.5.2 Ryan’s Mammoth Collection 29
3.5.3 Final Fantasy 7 . 29

3.6 Data Pre-processing . 31
3.6.1 Note Encoding . 31
3.6.2 Transposition . 32
3.6.3 Creating Subsequences 33
3.6.4 Removing Empty Sequences 34

3.7 Training . 34

iii

3.8 Sampling and Playback . 36
3.8.1 Temperature . 37
3.8.2 Tempo Control . 38

3.9 User Interaction . 38

4 Testing and Evaluation 41
4.1 Generative Models . 41

4.1.1 Bach Chorales Model 42
4.1.2 Ryan’s Mammoth Collection Model 42
4.1.3 Final Fantasy 7 Model 43
4.1.4 Effects of Different Sampling Temperatures 43

4.2 System Design . 46
4.2.1 Evaluation based on Design Requirements 46
4.2.2 Experiences from NIME 2019 47

4.3 User Study . 47
4.3.1 Session Overview . 47
4.3.2 Data Analysis . 49
4.3.3 Results . 51

4.4 Discussion . 57
4.4.1 Feeling of Control and Interactivity 57
4.4.2 Musical Quality and Model Preference 58
4.4.3 Methodological Considerations 59
4.4.4 Design Considerations 59

5 Conclusion 61
5.1 Future Work . 62

5.1.1 Design Improvements 62
5.1.2 Additional Functionality 63

Appendices 65

A NIME Paper 67

iv

List of Figures

1.1 System overview of the intelligent musical instrument. A
single-board computer (SBC) runs a music generation model
to automatically generate and play melodies while the user
can interact with controls to change high-level parameters of
sampling and playback. 2

2.1 Sverm-resonans, a musical installation using Bela. Sound
is generated by vibrations in the guitar body caused by
an attached actuator and it is controlled by the absence of
motion from the performer [17]. 7

2.2 A Raspberry Pi 3 Model B+ single-board computer. Photo by
Gareth Halfacree, licenced under CC BY-SA 2.0. 8

2.3 Piano Genie, a recurrent neural network-based system that
allows users to improvise on the piano [43]. 11

2.4 Robojam is a touch-screen music app where the system can
generate musical responses to the performer’s compositions
[49]. 12

2.5 RNN unfolded across time. Illustration by François Deloche,
licenced under CC BY-SA 4.0 13

2.6 LSTM architecture. Illustration by François Deloche, li-
cenced under CC BY-SA 4.0 14

2.7 An example of an RNN encoder-decoder architecture used
to translate English sentences into French. The input
sentence is encoded into a fixed-length state vector that the
decoder uses as its initial state when generating the output
sentence. Illustration by Francois Chollet [61] 15

3.1 A close-up view of the first prototype. The instrument has
a built-in speaker and two knobs to control volume and
sampling ’temperature’. 18

3.2 System diagram of the first prototype. A generative model
runs on a Raspberry Pi single-board computer. The audio
output goes through an amplifier with a potentiometer
volume control and is played back on the built-in speaker.
An analog-to-digital converter reads the voltage across a
second potentiometer to control the sampling temperature.
The user can interact with the system by adjusting the two
potentiometers. 19

v

3.3 The hardware inside the enclosure. Hardware components
consist of a Raspberry Pi Model B+ single-board computer,
an analog-to-digital converter, two potentiometers, an audio
amplifier, and a speaker. 20

3.4 A standard potentiometer with three terminals. The voltage
output is changed by adjusting the ’wiper’ (in this case, a
rotating shaft). Photo by Evan Amos, [Public domain], via
Wikimedia Commons. 21

3.5 The second prototype. This version of the instrument has
five knobs to control the sampling temperature, playback
tempo, instrument sounds, volume and to switch between
multiple generative models. It also has an integrated display
in addition to the speaker. 22

3.6 System diagram of the second prototype. A generative
model runs on a Raspberry Pi single-board computer. The
audio output goes through an amplifier with a poten-
tiometer volume control and is played back on the built-in
speaker. An analog-to-digital converter reads the voltage
across two other potentiometers to control sampling temper-
ature and playback tempo. Two rotary encoders are used to
switch between multiple generative models and instrument
sounds. A display shows which generative model is cur-
rently active. 23

3.7 The hardware inside the enclosure of the second prototype.
The system is implemented on a Raspberry Pi Model
B+ single-board computer. Other components include an
analog-to-digital converter, rotary encoders, potentiometers,
an audio amplifier, speaker, and an OLED display. 25

3.8 The display on the instrument. Lines 1 and 2 show the active
generative model. Lines 3 and 4 show the next model to be
activated. 26

3.9 The architecture of the generative model. It contains an
embedding layer, two LSTM layers with 256 units each, and
a dense layer on the output. By returning the output of
the RNN to the input, a continuous stream of notes can be
generated. 27

3.10 Part of a Bach Chorale with four-part harmony for SATB
vocalists. Chorales are typically divided into phrases, where
the end can be identified by the pause signs in all four voices,
as seen in measure three. 28

3.11 An example of a tune from Ryan’s Mammoth Collection. The
songs in this dataset are short, monophonic, and generally
quite fast, with a majority of sixteenth notes. 29

vi

3.12 Part of a score from the Final Fantasy 7 collection. There
are multiple instrument parts, some of which are silent
for longer periods of time. Note also that the topmost
violin plays the melody, while the bottom three violins play
repetitive patterns to support the melody, and many of the
other instruments act only as chord harmonizations when
played together. 30

3.13 Integer representation of notes, each with a duration of one
sixteenth note. The numbers 66, 68, 69, 71, 73 and 74
represent MIDI note pitches. 129 means no change, so the
previously played note will be held until either a new note
is played, or a value of 128 turns the note off. 31

3.14 One note from the sixteenth note triplet (marked with red
(a)) is lost during the encoding (b). 32

3.15 32nd notes from the original melody (a) are lost during the
encoding (b). 32

3.16 Transposing a piece of music up three half steps from the key
of F# minor to the key of A minor. The intervals between
the notes remain the same, so a human listener will hear the
same melody, but in a different pitch. 33

3.17 Splitting a note sequence into three shorter subsequences. In
this example, the subsequences have a length of six notes,
and the window moves with a stride of four steps. 33

3.18 Training loss when training the LSTM network on the
Bach chorales dataset. The model begins to converge after
approximately 40 epochs. The increasing validation loss
after 20 epochs indicates that the model is beginning to
memorize the input sequences. 35

3.19 Training loss when training the LSTM network on the Ryan’s
Mammoth Collection dataset. As with the training of the
Bach chorales model, this model also begins to converge
after approximately 40 epochs. Similarly, this model begins
to overfit quite early, but the validation loss is somewhat
higher than for the Bach model. 35

3.20 Training loss when training the LSTM network on the Final
Fantasy 7 dataset. Unlike the Bach- and Ryan’s Mammoth
Collection models, which converge to approximately zero,
the Final Fantasy 7 model stabilizes at a training loss of
around 0.1. However, the validation loss is a little lower than
for Bach and Ryan’s Mammoth Collection. 36

3.21 Prediction of note sequences. Sampled notes are added to
the output sequence, which is fed back to the input to be
used for further predictions. 37

3.22 A user interacting with the five control knobs on the
instrument during a performance. 39

vii

4.1 Music sampled from the Bach chorales model with the
temperature set to 1.0. The predicted melody clearly
contains stylistic elements from the original dataset, such as
resemblance of ending phrases (marked in red). 42

4.2 Sample from the Ryan’s Mammoth Collection model, taken
with a temperature set to 1.0. Visual comparison of the
model output with the example from the dataset (Figure
3.11) shows that there is a clear resemblance of the musical
structure. It is noteworthy how measure one resembles
measures nine and ten in Figure 3.11, with 14 sixteenth notes
followed by one eighth note. 42

4.3 Two samples drawn from the The Final Fantasy 7 model.
This model produces highly repetitive and uninteresting
results when the temperature is set to 1.0 (a). Increasing
the temperature setting to 2.0 (b) results in somewhat more
interesting musical output, but the repetitiveness is still an
issue. 43

4.4 Sampling the generative model trained on Bach chorales at
different temperatures. At temperature 0.1 (a), the melodies
are highly repetitive. Temperatures of 1.0 to 3.0 (b and c)
generate melodies that sound close to the training examples.
At 5.0 and above (d, e and f), the results begin to sound
virtually random. 45

4.5 Results from the questionnaire on instrument controls. For
each control knob, the questionnaire stated that the knob
gives a feeling of control over the generated music. The
participants rated the statements on a 5-point Likert scale,
where 1 is Strongly disagree and 5 is Strongly agree. All ratings
were relatively high, but the Kruskal–Wallis H test did not
indicate any statistically significant differences between their
ratings. 52

4.6 Responses to the statement The generated music sounds good
for each generative model. The ratings were given on
a 5-point Likert scale, where 1 is Strongly disagree and 5
is Strongly agree. Bach and Ryan’s Mammoth Collection
have somewhat higher ratings than Final Fantasy 7, but the
differences are not large enough to be considered statistically
significant. 53

4.7 Responses to the statement The generated music makes musical
sense for each generative model. The ratings were given
on a 5-point Likert scale, where 1 is Strongly disagree and
5 is Strongly agree. The generative models trained on
Bach chorales and Ryan’s Mammoth Collection were rated
significantly higher than Final Fantasy 7, but the differences
between the two are insignificant. 54

viii

4.8 A heatmap of pairwise comparisons of the group medians
for the ratings of the models on the statement The generated
music makes musical sense. The axis labels indicate the
different generative models: 1 - Bach chorales, 2 - Ryan’s
Mammoth Collection, and 3 - Final Fantasy 7. It is evident
that the ratings of Bach chorales and Ryan’s Mammoth
Collection are significantly different from the ratings of Final
Fantasy 7, but the former two are not different from each other. 54

4.9 The model preferences indicated by the participants in the
user study. The generative model trained on the Ryan’s
Mammoth Collection dataset is a clear winner chosen as the
favorite by eight out of twelve participants. 55

ix

x

List of Tables

3.1 The average time it takes to sample one note from networks
of different sizes on the Raspberry Pi, calculated from 500
samples. Size 3x512 was not measured since 2x512 had
already failed the timing requirements. 27

3.2 The number of training subsequences and validation sub-
sequences for the three datasets. 34

4.1 User study: Session structure 48

xi

xii

Abbreviations

ADC Analog-to-Digital Converter

ANN Artificial Neural Network

BPM Beats Per Minute

CNN Convolutional Neural Network

DAW Digital Audio Workstation

DMI Digital Musical Instrument

LSTM Long Short-Term Memory

MIDI Musical Instrument Digital Interface

NIME New Interfaces for Musical Expression

RNN Recurrent Neural Network

SBC Single-Board Computer

xiii

xiv

Acknowledgements

I want to thank my supervisor, Charles Martin, for his ideas, guidance, and
motivational speeches that kept me going during my work with this thesis.
I also want to thank my parents for financial and emotional support, and
my roommates, Magna Karina and Thomas, for being there and cheering
me on when I had self-doubts. Most of all, I want to thank my fiancée,
Aistė, for invaluable help and emotional support, and for keeping me sane
during the writing process. I could not have done this without you!

xv

xvi

Chapter 1

Introduction

1.1 Motivation

Music has always had an important role in our society. Singing and
dancing are often central elements of parties and gatherings, and music
provides us with an excellent tool for the expression of feelings. While
composing and playing instruments have generally required knowledge of
music theory and instrument training, recent advances in computer techno-
logy have opened up a world of possibilities for the creation of new kinds
of music and musical instruments [1]. Digital Audio Workstations (DAWs)
allow anyone with access to basic computer equipment to record and make
music of their own. The increased processing power of single-board com-
puters (SBCs) also makes it possible to create cheap, portable embedded
devices that can be used for musical performances.

While regular instruments are often expensive and time consuming to
master, inexpensive computer hardware and intelligent algorithms give the
potential to provide an easier introduction to music for novice users. The
use of machine learning algorithms for musical applications, such as music
generation [2] and gestural interpretation [3], has generated wide interest
among researchers in recent years. With the availability of existing machine
learning models from resources such as Magenta [4], it is now easier than
ever to delve into the field of computer-generated music.

This thesis presents a self-contained interactive instrument that uses
recurrent neural networks to generate continuous monophonic music in
real-time, which the user can manipulate using different parameters. This
contrasts with most of the previous work in the field of music generation,
which tends to be focused on offline creation of musical scores [5], rather
than interactive music generation. An overview of the system is shown in
Figure 1.1. It has a generative model running on a single-board computer,
and an attached speaker to make it self-contained. A set of controls allow
for adjustment of high-level parameters to change the musical output.

1

Figure 1.1: System overview of the intelligent musical instrument. A single-
board computer (SBC) runs a music generation model to automatically
generate and play melodies while the user can interact with controls to
change high-level parameters of sampling and playback.

1.2 Goals

The purpose of this thesis is two-fold: to explore the potential of intelligent
musical instruments on embedded devices using novel machine learning
algorithms to generate music, and to build an interactive environment for
users to explore musical ideas. There are two main goals:

• Explore the potential of machine learning algorithms to generate
music and investigate how high-level parameters can be used to
shape the musical output.

• Design and build a self-contained intelligent musical instrument on
an embedded device.

1.3 Research Methods

The work done in this thesis is evaluated using two different approaches.
The first is a subjective evaluation of the generative models and how the
instrument meets a set of pre-determined design requirements. This is
performed by the author. The second approach is a user study to get
feedback from multiple performers. In the study, participants explore
the instrument and provide feedback through a set of questionnaires with
Likert scale evaluations and open-ended queries. The answers are analyzed
both quantitatively and qualitatively using statistics and thematic analysis.

2

1.4 Thesis Outline

This thesis consists of five chapters: introduction, background, design and
implementation, testing and evaluation, and conclusion. Chapter 2 is an
overview of related work and machine learning concepts relevant to the
development of the instrument. Chapter 3 includes a description of the
design and implementation process, including physical design and the
machine learning approach used for generating melodies. Two instrument
prototypes are presented here: an earlier version with only a few high-level
parameter controls, and an improved version with more functionality for
music creation. The former is featured in an article the author presented
at the New Interfaces for Musical Expression (NIME) [6] conference 2019
in Porto Alegre (See Appendix A). Chapter 4 covers the methods for
evaluation of the instrument, including a user study for quantitative
and qualitative evaluation. Results of the evaluation and discussion of
their implications are also included in this chapter. Finally, Chapter 5 is
comprised of the conclusions of the thesis in addition to ideas for future
work and design improvements.

3

4

Chapter 2

Background

This chapter provides an overview of previous work and concepts relevant
to the development of the instrument presented in this thesis. An
introduction to New Interfaces for Musical Expression (NIMEs) and
embedded music systems is presented first, followed by a review of
machine learning algorithms for music applications, interactive music
systems using machine learning, and finally some background theory of
artificial neural networks (ANNs) relevant for music systems.

2.1 New Interfaces for Musical Expression

Inexpensive computing hardware and modern software allowing to syn-
thesize and manipulate real-time sound have made computer instruments
common in musical performances [7]. Development of such systems has
piqued the interest of many researchers worldwide, who present their work
at the New Interfaces for Musical Expression (NIME) conference. The con-
ference started as a workshop at the Conference on Human Factors in Com-
puting Systems (CHI) in 2001, and has since become an annual interna-
tional conference. NIME research includes novel music systems such as
gestural interfaces [8], and musical games [9] and installations [10].

Some NIMEs use algorithmic composition software to allow people
with limited musical background to create and play music without spend-
ing years mastering a traditional instrument. An example of such a sys-
tem is a public display created by Gilbert Beyer and Max Meier [11]. The
user can only manipulate a few parameters, and the software makes sure
that the generated music is perceived as harmonic and resembles known
musical themes. The parameters are extracted from the user’s movements
with optical tracking. Music is generated with two parameters: pitch
(high/low) and energy (fast/slow). The only musical skill needed is the
ability to make rhythmic movements. These kinds of easy-to-use music
systems have also been tested in music therapy, allowing patients to ex-
press themselves through music even if intellectual learning disabilities or
lack of fine-motor skills would otherwise prevent them from mastering tra-
ditional musical instruments [12], [13].

5

The instrument presented in this thesis can be considered a NIME,
since it uses machine learning for automatic melody generation in an
interactive manner, and the use of machine learning algorithms for musical
applications is becoming a common topic at the conference.

2.2 Music on Embedded Devices

Desktop computers and laptops are a well-established central component
of digital musical instruments, but the use of single-board computers and
embedded systems is becoming increasingly common. With increasing
computing power and availability of single-board computers and micro-
controllers, new platforms for creating digital musical instruments appear.
These platforms make it easy to prototype embedded instruments for per-
formances and installations [10].

One such platform is Bela [14], which is an expansion board for the
BeagleBone Black embedded computer [15]. The hardware of the Bela plat-
form provides powerful real-time processing with low latency. Bela meets
all requirements of a self-contained device, providing a high number of
I/Os, power output for speakers and a fair amount of processing power,
making it an excellent choice to use for embedded digital musical instru-
ments [16]. All hardware and software is open source, and there is also a
community where musicians and developers can share ideas and inspira-
tion.

Sverm-resonans (Figure 2.1) [10] is an example of a music installation us-
ing Bela. Six acoustic guitars are each equipped with a Bela, IR distance
sensor, an actuator, and a battery pack. There are no external speakers at-
tached; the actuator vibrates the body of the guitar to generate sound. An
interesting aspect of this system is that the instruments are ’inverse’, where
the performance is controlled by the absence of motion. The presence of
a person is detected by infrared sensors, and the collected data is used to
control the generated sound. The inverse relationship between detected
motion and amplitude of the sound means that more sound is generated
while the person stands still for extended periods of time.

6

Figure 2.1: Sverm-resonans, a musical installation using Bela. Sound is
generated by vibrations in the guitar body caused by an attached actuator
and it is controlled by the absence of motion from the performer [17].

Satellite CCRMA [18] is another platform designed for musical interac-
tion and sound synthesis. It is built to enable easy design and creation of
NIMEs and sound installations, and is completely sufficient to synthesize
and generate sound on its own. The platform is based on a Beagle Board
embedded computer running Linux, with a microcontroller and bread-
board allowing for simple expansion and reconfiguration with new hard-
ware. These properties make it ideal for prototyping new kinds of instru-
ments and it has been used for teaching courses and workshops. Support
for Raspberry Pi has also been added to reduce the cost of the kit [19].

Self-contained, or embedded, instrument designs come with several ad-
vantages over the use of, for example, a laptop and simple microcontroller-
based interface. The increased processing power of single-board computers
allows more computationally intensive tasks to be performed natively than
on a microcontroller, eliminating the need for external computers. Remov-
ing general-purpose computers that are not dedicated to the instrument
prototype from the system can also increase longevity, as changes in other
software might affect its functionality [20]. In addition, reducing the re-
quired amount of wires means that prototypes can operate longer with
reduced maintenance requirements [21]. Other advantages include stabil-
ity and portability [10], which suggests that they can be useful to artists
who apply them within instrumental setups during live performances, or
in their studios.

7

2.2.1 Single-Board Computers

Single-board computers (SBCs) have all the features required of a func-
tional computer, such as microprocessors, memory, and inputs/outputs,
but they are implemented on a single circuit board. Low power consump-
tion and versatility along with low cost, make them ideal for prototyping
mobile and portable systems [22]. It is common for SBCs to run open-
source operating systems like Linux, and there are often large communities
and forums where people can discuss projects and share source codes.

There are many different SBCs on the market. One of the most widely
used is the Raspberry Pi (Figure 2.2) [23], which is a collection of credit-card
sized SBCs developed by the Raspberry Pi Foundation. Other examples
include Asus Tinkerboard [24], which is more powerful than a Raspberry
Pi, but also more expensive, and BeagleBone Black, which is popular in
embedded music applications because of the Bela expansion. Some SBCs
are better suited for machine learning purposes because they are equipped
with powerful GPUs, more RAM and faster CPUs, such as the Nvidia
Jetson series [25]. The latter, however, is much more expensive.

Figure 2.2: A Raspberry Pi 3 Model B+ single-board computer. Photo by
Gareth Halfacree, licenced under CC BY-SA 2.0.

2.3 Machine Learning in Music Technology

The use of machine learning algorithms for musical applications has gen-
erated wide interest among researchers in recent years. Artificial neural
networks (ANNs) can, for example, be applied to the synthesis of musical
audio waveform data [26], or translation of music across musical instru-
ments, genres, and styles [27]. Because neural networks can be trained
to produce data learned from real-world examples, they are good candid-
ates for the creation of musical scores or performances without the need to
manually program the rules of music theory.

8

Since music can be seen as a sequence of notes, the network must be
able to predict notes based on both the current input and on what has
been played earlier for the generated output to have musical coherency.
Architectures such as Recurrent Neural Networks (RNNs) are designed for
the purpose of working with data sequences. Mozer’s CONCERT network
[28], which generates music on a note-by-note basis, is one example of an
RNN managing this task. Despite the RNNs theoretical ability to ’remem-
ber’ previously played notes, the music generated by CONCERT lacked
structure. While a standard RNN is, in theory, able to capture long-term
dependencies, it is in practice limited by vanishing gradients. Long Short-
Term Memory (LSTM), introduced by Hochreiter in 1997 [29], is an RNN
architecture designed to deal with the vanishing gradient problem. Both
standard RNNs and LSTMs will be discussed further in section 2.5.1.

In 2002, Eck et al. [30] demonstrated that LSTM recurrent neural net-
works could be used to successfully compose well-structured music, where
earlier attempts with standard RNNs tended to lack coherence. Their sys-
tem learned to compose blues music with timing and structure appropriate
for the style. In recent years, LSTM RNNs have been used in a variety of
applications, such as generating monophonic melodies resembling specific
musical styles [31], [32], automatic generation of chord progressions and
harmonies to a melody [33], [34], and creating polyphonic music with ex-
pressive timing and dynamics [5].

Some other systems for music generation include Markov models,
which are used to model temporal sequential processes. Markov models
conceptualize randomly changing systems as a set of distinct states and
transitions between those states, and model the system by calculating the
probabilities of transitions from one state to another [35, pp. 213–226]. Us-
ing Markov models to generate musical structure was first applied around
1950 [36, p. 71] and has since been a common method in musical applic-
ations, such as computer-aided composition [2] and harmonization [37].
This method is used in SongSmith [38], a system that produces accompani-
ment for vocal melodies by automatically generating appropriate chords.
The user only needs to sing into a microphone, and the system chooses
chords accordingly allowing both expert and novice musicians to experi-
ment with different musical genres and chord progressions.

One disadvantage of using Markov models for generating coherent
musical output is that they tend to ’forget’ the earliest states and are
therefore unable to capture the complete structure of a musical piece,
which often entails distant data dependencies [32]. Learning such distant
dependencies also requires large transition matrices. In addition, Markov
models can only reproduce learned examples [39]. RNNs, on the other
hand, are able to make ’fuzzy’ predictions, i.e., instead of attempting to
match training examples precisely, they interpolate between them [40].

9

2.3.1 Magenta

Magenta is a research project under Google’s direction, initiated by mem-
bers of the Google Brain team, with the aim to examine how machine learn-
ing can be used in the process of creating art, including music [4]. Their
research involves both development of new intelligent algorithms for the
generation of creative material like music, images, and drawings, and cre-
ation of tools that artists and musicians can use to aid them in their craft.
Another important aspect of Magenta is the community of artists, coders,
and machine learning experts who use the open-source models developed
by the Magenta team and released on GitHub. The Magenta team recently
released a large dataset dataset comprising over 200 hours of piano concert
preformances by skilled pianists [41] as well, which can be used to train
machine learning models.

2.4 Musical Interaction with Machine Learning

Some musical systems incorporate machine learning and artificial intelli-
gence to aid musicians in their musical performances, or to simplify the
music-making process for novice musicians. There is now potential to em-
bed neural networks within smart musical instruments [42], or to create
self-contained ANN music generators that could be used on stage or in the
studio. The Magenta team has created physical instruments such as Piano
Genie (Figure 2.3) [43], which is a recurrent neural network-based system
that allows users to improvise on the piano by mapping 88-key piano se-
quences onto 8-button sequences, and NSynth Super [44], a synthesizer us-
ing deep neural networks to synthesize sound. Neural networks can also
be used to aid musicians in live performances, such as intelligent drum ma-
chines that are able to generate variants of rhythmic patterns provided as
input by the musician [45].

10

Figure 2.3: Piano Genie, a recurrent neural network-based system that
allows users to improvise on the piano [43].

Other musical systems use the input provided by a musician to con-
tinue the performance. For example, Continuator [46] is a digital musical
instrument (DMI) that uses Markov models to learn the stylistic patterns
of an individual’s performance and uses them to continue playing once the
performer stops. Besides Markov models, Deep RNN models have also
proven to be able to tackle this task, as demonstrated in AI Duet [47]. It
is a system that allows users to play a duet with the computer by using a
keyboard (whether computer or MIDI).

Another possible application of machine learning is ensemble interac-
tions to emulate the experience of collaborating with other musicians. Mar-
tin et al. demonstrate how LSTM recurrent neural networks can be used
to create free-form ensemble improvisations using touchscreen apps [48].
Similarly, Robojam (Figure 2.4) [49] uses an interface on a touchscreen to al-
low users to compose brief music samples that can be shared with other
users. If desired, Robojam can respond to the user’s input by providing
musical feedback based on the user’s improvisation.

11

Figure 2.4: Robojam is a touch-screen music app where the system can
generate musical responses to the performer’s compositions [49].

2.5 Artificial Neural Networks for Music Generation

The basic building blocks of ANNs are artificial neurons that take multiple
input values, multiply them by respective weights, and produce an output
value. The input values can represent anything from pixels in an image
to note values. Large numbers of these neurons are interconnected and
arranged in a series of layers to form a network that can be trained for
different applications such as pattern recognition and image classification.
During training, the network is exposed to large numbers of examples with
input values and expected output values. Based on the errors encountered
in processing these examples, the network will adjust its weights to adapt
to the training data.

2.5.1 Recurrent Neural Networks

A recurrent neural network (RNN) is a neural network designed to process
a sequence of values [50, p. 196]. It has a hidden state that depends not only
on the input at the current time step but also on the state from the previous
time step, allowing the network to remember things it saw in the past.

A way to view a recurrent neural network is to unfold it across time
(Figure 2.5). At each point in the sequence, we feed in the next input value
x(t)and the previous hidden state h(t−1) and compute the next state h(t).
The state at time t can contain information from all past time steps, which
makes an RNN able to learn temporal structures [30]. By sharing para-
meters across the sequence, it is possible to generalize across sequences of
different lengths as opposed to only those seen during training. Parameter
sharing is especially important if a sequence can contain the same piece
of information at multiple positions, for example, in language modeling
where two sentences might have the same meaning even if the words are
arranged in a different order.

Connections in the network are parametrized by weight matrices U (in-
put to hidden connections), W (hidden-to-hidden recurrent connections)

12

and V (hidden-to-output connections). b and c are bias vectors. With an
initial state set to h(0), equations 2.1-2.4 [51, p. 374] are applied for every
time step t during forward propagation of the network.

a(t) = b + Wh(t−1) + Ux(t) (2.1)

h(t) = gh(a(t)) (2.2)

o(t) = c + Vh(t) (2.3)

ŷ(t) = gy(o(t)) (2.4)

A common algorithm for efficient calculation of gradients for RNNs is
backpropagation through time (BPTT) [52]. This works much in the same
manner as normal backpropagation for a feedforward network, except
that the error is calculated for each time step and then accumulated to a
combined value. The total gradient then becomes the sum of the gradients
at each time step. One weakness with a standard RNN is that long-term
dependencies become difficult to learn due to vanishing gradients. Because
parameters are shared across time steps, the chain rule products will
become very long as the number of steps increases, causing the gradients
to either decrease or increase exponentially [30].

Figure 2.5: RNN unfolded across time. Illustration by François Deloche,
licenced under CC BY-SA 4.0

Long Short-Term Memory

Long short-term memory (LSTM) is a commonly used variant of RNNs
that is able to capture much longer sequences than a standard RNN, which
has a tendency to forget information when the sequences become longer
[50, pp. 202-204]. The LSTM achieves this by having an additional internal
state called a ’cell state’, which can be visualized as a conveyor belt (the
horizontal line at the top of the diagram in Figure 2.6) where information
is allowed to flow unchanged. The LSTM can also remove or add inform-
ation to the cell state by using multiplicative gates. There are three gates:
an input gate, an output gate, and a ’forget gate’. The input gate controls

13

the information added to the cell state, making sure that irrelevant inputs
do not pass through. Similarly, the output gate makes sure that irrelevant
content is not passed along to the next time step. The forget gate allows
LSTM cells to reset when the content is no longer needed. The output of
these gates are vectors with values between 0 and 1, where the number de-
termines how much of the information should be allowed to pass through.
Cell state updates are based on addition; therefore, backpropagation does
not result in a large chain rule product, thus mitigating the problem with
vanishing gradients.

Figure 2.6: LSTM architecture. Illustration by François Deloche, licenced
under CC BY-SA 4.0

2.5.2 Sequence Learning Architectures

Character-Level Language Models

Speech and language processing tasks, such as speech recognition, machine
translation, and text prediction, employ language models which may be
based on RNNs [53]. Text prediction (or language modeling) in particu-
lar is often done using recurrent neural networks and can be applied both
at the word-level [54] and character-level [55], [56] alike. Although word-
level models have been shown to produce better results in text prediction
than character-level models [40], the latter is more relevant when it comes
to sequence generation since it produces original output by allowing the
network to invent novel words and strings. After being trained on a suf-
ficiently large amount of text, the RNN language model uses a sequence
of preceding characters to calculate the probability distribution of the fol-
lowing characters, thus constructing a new text one character after another.
Character-level models are of special interest in this thesis because they are
directly applicable to music generation tasks since symbolic music data can
be modeled in the same way as text, with one character token representing
a single note. Such architectures are able to generate monophonic melodies
[31], [57] and chord progressions [58].

14

Sequence to Sequence Models

In applications such as machine translation, it is preferable to employ a
model that can return a target sequence given an input sequence. This
can be achieved with encoder-decoder architectures using RNNs [59], [60].
They are implemented using two separate RNNs: an encoder and a de-
coder (Figure 2.7). The input sequence is encoded into a fixed-length state
vector which is used as the initial state in the decoder. This results in an
output conditioned on the input sequence. As with the standard RNN
character-level language model, this architecture can also be used for mu-
sical purposes, such as generating harmonies to an input melody [34].

Figure 2.7: An example of an RNN encoder-decoder architecture used to
translate English sentences into French. The input sentence is encoded into
a fixed-length state vector that the decoder uses as its initial state when
generating the output sentence. Illustration by Francois Chollet [61]

15

16

Chapter 3

Design and Implementation

This chapter describes the design and implementation of the instrument.
The physical design is presented first with descriptions of the hardware
and functions of the two instrument prototypes created for this thesis.
It is followed by a description of the generative model used to generate
melodies, the datasets and pre-processing, training of the generative
model, and the concepts of sampling and playback in the instrument.
Finally, an explanation of how the performer can interact with the
instrument is provided. A video of the instrument with a demonstration
of the controls is available on YouTube 1, and the Python scripts used in the
instrument are available on GitHub 2.

3.1 Design Requirements

Based on the background outlined in Chapter 2, four design requirements
were set for the instrument:

• Interactive music generation
Many previous examples of music systems with neural networks
focus on offline generation of music or creating musical scores.
Therefore, one of the main points of focus in designing the instrument
was to construct a system that is interactive. This requires that the
machine learning algorithm is able to quickly respond to the user’s
inputs and generate music in real-time.

• Feeling of control
The system is intended for users with little to no experience
to provide an opportunity to play music without a considerable
investment of time required to learn a traditional instrument. Because
of this, the instrument must be able to generate music as well as
provide a feeling of control and ownership over the musical output
to the user.

1https://www.youtube.com/watch?v=ya4gcIvtaEE
2https://github.com/edrukar/intelligent_instrument

17

https://www.youtube.com/watch?v=ya4gcIvtaEE
https://github.com/edrukar/intelligent_instrument

• Self-contained
Most systems using machine learning to generate music require
powerful computers to do so. A self-contained system on an
embedded device comes with several advantages such as portability
and lower maintenance requirements, as discussed in section 2.2. The
performer will not have to rely on desktop computers or external
hardware.

• Inexpensive
The system should be easy to reproduce without investing money on
expensive hardware.

3.2 Prototype 1

The first prototype (Figure 3.1) was the first attempt at creating a self-
contained instrument during the earlier stages of the thesis work. It was
assembled to be presented in a paper written for the NIME 2019 conference
[62].

Figure 3.1: A close-up view of the first prototype. The instrument
has a built-in speaker and two knobs to control volume and sampling
’temperature’.

3.2.1 Instrument Controls

The prototype has two controls: Sampling ’temperature’ and volume, with
sampling temperature being the most important for demonstrating the ef-
fect of adjusting parameters to shape the music and giving a feeling of con-
trol over the generated melody. Figure 3.2 shows an overview of the sys-
tem.

18

Figure 3.2: System diagram of the first prototype. A generative model runs
on a Raspberry Pi single-board computer. The audio output goes through
an amplifier with a potentiometer volume control and is played back on the
built-in speaker. An analog-to-digital converter reads the voltage across a
second potentiometer to control the sampling temperature. The user can
interact with the system by adjusting the two potentiometers.

Sampling Temperature

Implementing a control for sampling temperature was chosen to be able to
manipulate the output of the generative model and explore the effects this
will have on the musical output. The sampling temperature is a parameter
that can be adjusted to control the randomness of predictions. The model is
more conservative at low temperatures, making it less likely to sample from
unlikely notes, while higher temperatures allow the model to choose notes
with a lower probability more often. Predictions with higher temperatures
are more diverse, but can also have more mistakes. This is discussed
further in section 3.8.1.

Volume

Volume control is an essential part of any music system. The volume is
adjusted by using a variable voltage divider circuit to control the amplitude
of the audio signal before the amplifier stage. The voltage divider is
created using a potentiometer. Because the human perception of volume
is logarithmic, not linear, a potentiometer following a logarithmic control
law [63, p. 219] is used.

3.2.2 Hardware

Figure 3.3 shows the hardware inside of the prototype. The plastic
encasement is from a local hardware store, modified to fit the hardware
and painted using black spray paint. It contains the following components:

19

• A single-board computer to run the software

• Two potentiometers to control temperature and volume

• An analog-to-digital converter to read the potentiometers

• An audio amplifier

• A speaker

Figure 3.3: The hardware inside the enclosure. Hardware components
consist of a Raspberry Pi Model B+ single-board computer, an analog-to-
digital converter, two potentiometers, an audio amplifier, and a speaker.

Single-board Computer

In order to make it self-contained, the system was implemented on an
embedded device. The low-cost design requirement was based on the
intention to create a system that does not require expensive hardware and
is therefore easily reproducible by anyone. Most single-board computers
are relatively low-priced, but their differing processing capacities imply
differences in price. Four SBCs were considered as options for the
instrument: Nvidia Jetson, BeagleBone Black, Asus Tinker Board, and
Raspberry Pi 3 B+. Nvidia Jetson is powerful and well equipped for
machine learning tasks, but was discarded due to its high cost. Similarly,
BeagleBone Black, equipped with the Bela expansion board, and Asus
Tinker Board, with more memory, did not meet the low-cost requirement
and therefore Raspberry Pi 3 B+ was chosen to run the software. Since
Raspberry Pi is aimed at promoting education in computer science [23],

20

besides its low cost, it has a large community providing resources for
both novices and expert programmers. It is also officially supported by
TensorFlow framework [64], which is an open-source platform for machine
learning [65].

Potentiometers

A potentiometer (Figure 3.4) is an adjustable variable resistor with three
terminals that functions as a voltage divider where voltage output is
determined by the position of the ’wiper’ [66]. This makes it an ideal
component for controlling the sampling temperature since the voltage can
be mapped onto a continuous temperature value. The same is true for the
volume control, where a variable voltage divider can be used to control the
amplitude of the audio signal.

Figure 3.4: A standard potentiometer with three terminals. The voltage
output is changed by adjusting the ’wiper’ (in this case, a rotating shaft).
Photo by Evan Amos, [Public domain], via Wikimedia Commons.

Analog-to-digital Converter

An analog-to-digital converter (ADC) converts the analog voltage signal
measured across the potentiometer into a digital signal. An ADS1115 [67]
ADC is used in the prototypes because it has four channels, allowing it
to read multiple potentiometers separately, and an I²C interface, making
it easy to control it with the Raspberry Pi. There is also a Python library
available for this particular device provided by Adafruit industries.

Audio Amplifier

The audio signal is taken from the Raspberry Pi’s 3.5 mm jack connection.
However, this signal is not strong enough to drive the speaker. Therefore, a
PAM8302 [68] 2.5 W mono audio amplifier is included to amplify the signal.

21

Speaker

The instrument has a built-in speaker to make it completely self-contained.
The current prototype speaker was salvaged from an old monitor due to its
size, which is ideal for the encasement. The sound quality was not a top
priority; therefore, although it is not high, it is considered acceptable for
the purposes of the current work. In addition, the built-in speaker can be
easily disconnected and exchanged for an external speaker or headphones.

3.3 Prototype 2

The ability to control multiple parameters of the music increases its
complexity and enriches the musical experience. Since the first prototype
had to be assembled to meet the deadline of the article for the NIME
conference, it has a limited number of features. Even though it can
demonstrate the concept of manipulating musical predictions in real-
time, more functionality was necessary to make it a complete and usable
instrument. The second prototype (Figure 3.5) builds on the same
principles as the previous version but includes additional hardware and
software to allow for several additional instrument controls.

Figure 3.5: The second prototype. This version of the instrument has five
knobs to control the sampling temperature, playback tempo, instrument
sounds, volume and to switch between multiple generative models. It also
has an integrated display in addition to the speaker.

22

3.3.1 Additional Instrument Controls

Three additional controls were added to the second prototype: generative
model selection, tempo control, and instrument sound selection. An over-
view of the complete system is illustrated in Figure 3.6.

Figure 3.6: System diagram of the second prototype. A generative model
runs on a Raspberry Pi single-board computer. The audio output goes
through an amplifier with a potentiometer volume control and is played
back on the built-in speaker. An analog-to-digital converter reads the
voltage across two other potentiometers to control sampling temperature
and playback tempo. Two rotary encoders are used to switch between
multiple generative models and instrument sounds. A display shows
which generative model is currently active.

Generative Model Selection

A way to make the device more versatile is implementing the ability
to generate melodic lines in multiple musical styles and quickly switch
between them during a performance. Users can choose and activate
different trained models at any time during playback by using one of the
rotary encoders. The weights of each model are assigned an index number,
which can be incremented or decremented by turning one of the rotary
encoders. The new model is activated by pressing the push-button on the
rotary encoder, which loads the chosen weights into the LSTM network
and resets the cell states of the network before resuming sampling and
playback. There is no specified limit to how many different sets of weights
the instrument can support, so users are free to train models on datasets
in their preferred genres and include them in the instrument. The current
system has three generative models trained on different datasets.

23

Tempo

The tempo is a fundamental part of any musical piece on a par with melody,
harmony, and rhythm, among others. The same melody played at different
tempos can make it sound anything from somber to comical. Therefore,
a third potentiometer was added to the prototype to control the playback
tempo. The voltage signal sampled by the ADC is converted into a value of
milliseconds used for time delays corresponding to beats per minute (BPM)
value.

Instrument Sound Selection

Having the ability to switch between different sounds makes the instru-
ment much more flexible by giving it the potential to adapt to the musi-
cian’s current needs, for example, to play in an ensemble with other instru-
ments during a performance or in a studio setting. The instrument sounds
are from the FluidR3 SoundFont, which contains 128 instrument sounds,
following the General MIDI sound set [69]. Some of the instrument produ-
cing low volume outputs were discarded, leaving a total of 56 instruments
to choose from. Users can switch between instrument sounds using one of
the rotary encoders.

3.3.2 Additional Hardware

Figure 3.7 shows the inside of the second prototype. The plastic encasement
was modified and painted in the same way as for the first prototype. The
additional hardware used in order to support the added functionality of
the instrument includes:

• A third potentiometer to control playback tempo

• An OLED display to show which generative model is active

• Two rotary encoders to switch between generative models and
instrument sounds

Rotary Incremental Encoders

When switching between generative models and instrument sounds, it
is convenient to have a control that measures discrete steps instead of
continuous values. Rotary incremental encoders [70] are well suited for
this type of task. They are electromechanical devices that resemble the
potentiometer in Figure 3.4, but instead of outputting a variable voltage
value controlled by the rotating shaft position, they generate pulses in
response to incremental movements of the shaft. Each time the shaft is
turned one step, a counter value is updated, serving as an index for models
or instrument sounds.

24

Figure 3.7: The hardware inside the enclosure of the second prototype. The
system is implemented on a Raspberry Pi Model B+ single-board computer.
Other components include an analog-to-digital converter, rotary encoders,
potentiometers, an audio amplifier, speaker, and an OLED display.

Display

Since the second prototype supports multiple generative models, it is
convenient to have a display showing which model is active. A 0.96"
128x64 OLED display with an SSD1306 driver [71] was implemented for
this purpose. This display was chosen because it is easily controlled via
I²C, and Adafruit provides a Python library for the SSD1306 driver. The
display (Figure 3.8) shows which model is active and which is the next to
be activated.

25

Figure 3.8: The display on the instrument. Lines 1 and 2 show the active
generative model. Lines 3 and 4 show the next model to be activated.

3.4 Generative Model

The core of the instrument is a generative model that is able to generate a
continuous sequence of musical notes. There were two main requirements
that affect the choice of architecture: it must be simple enough to make note
sampling in real-time possible (sampling time must not exceed the note
length), and it has to remember what it has played previously to achieve
coherency in the generated sequences. Language models using recurrent
neural networks, and character-level models in particular (discussed in
section 2.5.2) are well fit for this task. They were chosen due to their
relative simplicity and ability to predict single characters (or notes) at each
sampling step.

3.4.1 Architecture

The generative model (Figure 3.9) uses a character-level language model ar-
chitecture with recurrent neural networks, as described in section 2.5.2. It
is implemented in Keras [72], a high-level Python API for neural networks,
running on top of Tensorflow. The model consists of two LSTM layers with
256 units each, an embedding layer on the input, and a dense layer with
a softmax activation function on the output. The embedding layer trans-
forms the input integer representation of notes into vectors of fixed size
that the two LSTM layers can process hierarchically. The dense layer with
softmax activation then projects the output from the LSTM layers back into
probability distributions over possible note values.

26

Figure 3.9: The architecture of the generative model. It contains an
embedding layer, two LSTM layers with 256 units each, and a dense
layer on the output. By returning the output of the RNN to the input, a
continuous stream of notes can be generated.

A common network size for monophonic music generation is three
LSTM layers with 512 units each [5], [31]. However, since the model runs on
an embedded device with limited processing power, it is also necessary to
account for sampling times, which will increase with the number of layers
and units. At maximum playback tempo (120 BPM), one sixteenth note
lasts 125 ms. To maintain a constant tempo, the time it takes to sample
a single note from the model must always be lower than 125 ms. Table
3.1 shows the average sampling times with different network sizes on the
Raspberry Pi. The results are based on an experiment where 500 samples
were drawn from each of the network architectures.

Table 3.1: The average time it takes to sample one note from networks of
different sizes on the Raspberry Pi, calculated from 500 samples. Size 3x512
was not measured since 2x512 had already failed the timing requirements.

Network size Sampling time (ms)

2x256 60

3x256 82

1x512 63

2x512 181

As can be seen from the table, multiple layers of 512 units give sampling
times that are too high. Although one layer of 512 units is an option, deeper
networks with fewer units in each layer have been shown to perform
better than fewer layers with more units [73]. Two layers of 256 units are
used, even though three layers also meet the time requirements. Some
experimentation with both architectures indicated that the models with

27

two layers were better at capturing the musical structure of the datasets
used in this thesis.

3.5 Datasets

There are three datasets from different music genres: chorales, traditional
Irish music, and video game music. The chorales and traditional Irish
music are available as part of a corpus of freely distributable music
contained in the Music21 toolkit [74], while the video game music is a
collection of MIDI files downloaded from the Midi Shrine [75]. These
datasets are used in part because of accessibility, but also to test datasets
of varying quality. Audio samples from the datasets presented here are
available on Zenodo 3.

3.5.1 Bach Chorales

The first dataset is a set of 405 chorales composed by Johann Sebastian
Bach. They consist of four separate voices: soprano, alto, tenor, and bass
(SATB). Although it is the melody sung by soprano that is often perceived
as the most prominent, and the three lower voices have a more supporting
role by creating harmonization, all the voices can act as monophonic
melodies on their own. Most of the time, they follow the same rhythmic
patters, so combinations of different voices should not be a problem for the
coherency of music generated by a model trained on different voices. It
is therefore expected that the Bach dataset is well suited for training the
generative model. Each voice is used as a single melody during training,
giving a total of 1620 training examples of monophonic melodies. An
example from the dataset is shown in Figure 3.10.

Figure 3.10: Part of a Bach Chorale with four-part harmony for SATB
vocalists. Chorales are typically divided into phrases, where the end can
be identified by the pause signs in all four voices, as seen in measure three.

3https://doi.org/10.5281/zenodo.3333505

28

https://doi.org/10.5281/zenodo.3333505

3.5.2 Ryan’s Mammoth Collection

The second dataset is also taken from the Music21 corpus. It is a set
of traditional Irish music pieces titled Ryan’s Mammoth Collection [76],
containing 1059 pieces of relatively short length. All the melodies
are monophonic, which is an advantage since they do not rely on
harmonization from other instruments. For this reason, Ryan’s Mammoth
collection is expected to be the dataset best suited for the generative model.
Most of the tunes have a majority of sixteenth notes (Figure 3.11), making
the melodies from this dataset sound much faster compared to the Bach
chorales, which consist mostly of quarter notes and eighth notes.

Figure 3.11: An example of a tune from Ryan’s Mammoth Collection. The
songs in this dataset are short, monophonic, and generally quite fast, with
a majority of sixteenth notes.

3.5.3 Final Fantasy 7

The final dataset is comprised of music from the popular role-playing
video game, Final Fantasy 7. It is included as an example of how users
can download and train their own datasets from the internet. Even
though it contains only 85 music pieces, it is still much larger than the
two previous datasets, since the music pieces are much longer, and they
all contain multiple instrument parts. There is a total of 1008 melody
lines after separating the instruments. This dataset is less ideal for the
purpose of training a network on monophonic melodies because the
different instruments rely on each other much more than in the previous
two datasets. An example of a score is illustrated in Figure 3.12. Note
that the topmost violin plays the melody, while the bottom three violins
play repetitive patterns to support the melody, and many of the other
instruments act only as chord harmonizations when played together.

29

Figure 3.12: Part of a score from the Final Fantasy 7 collection. There are
multiple instrument parts, some of which are silent for longer periods of
time. Note also that the topmost violin plays the melody, while the bottom
three violins play repetitive patterns to support the melody, and many
of the other instruments act only as chord harmonizations when played
together.

30

3.6 Data Pre-processing

Some pre-processing is necessary to transform raw MIDI data into a
representation that can be used to train the recurrent neural network.

3.6.1 Note Encoding

The system encodes music using 1D vectors of integers, which is a common
type of note encoding for music generation with RNNs [57], [77]. The
integers are in the range of 0–129, as shown in Figure 3.13. The encoded
interpretations are as follows:

• 0–127: NOTE_ON

• 128: NOTE_OFF

• 129: NO_EVENT

0–127 are pitches from the standard MIDI format, 128 tells the system to
stop the note that was playing, and 129 represents no change. Each integer
event has a duration of one sixteenth note, which is one sixteenth of a whole
note (the length of one bar in a piece of music with a 4

4 time signature).
When encoding music in Python, MIDI files are converted into stream
objects with the Music21 toolkit, and then to integer vectors.

Figure 3.13: Integer representation of notes, each with a duration of one
sixteenth note. The numbers 66, 68, 69, 71, 73 and 74 represent MIDI note
pitches. 129 means no change, so the previously played note will be held
until either a new note is played, or a value of 128 turns the note off.

Some simplifications are made when encoding MIDI into the integer
representation: chords are simplified to only the highest notes, and
complex rhythms are simplified to sixteenth note versions. This means that
some notes are lost in the process. In Figure 3.14 we can see that one note
from a sixteenth note triplet is lost. A sixteenth note triplet is three sixteenth
notes played with the same duration as two sixteenth notes (or one eighth
note). Due to the sixteenth note quantization, 32nd-notes are also lost, as
seen in Figure 3.15.

31

(a) Original melody with triplets.

(b) Melody after encoding.

Figure 3.14: One note from the sixteenth note triplet (marked with red (a))
is lost during the encoding (b).

(a) Original melody with 32nd-notes.

(b) Melody after encoding.

Figure 3.15: 32nd notes from the original melody (a) are lost during the
encoding (b).

3.6.2 Transposition

The act of transposition [78], visualized in figure 3.16, involves shifting
a musical sequence to a higher or lower pitch. To the human ear,
transposing a sequence will not make much of a difference; as long as
the intervals, or relationships between notes in a sequence, are the same,
we will recognize the sequence as the same as well. For example, the
sequences (C E G C) and (A C# E A) will, by the human listener,
be categorized as the same sequence. The same is not true for the RNN.
Unlike convolutional neural network (CNN) architectures, which can have
invariant properties along multiple directions [79], an RNN is not spatially
invariant (or in this case, note invariant) [80]. The word “music” is
very different from “nvwjd”, where each character is shifted up one step.
Similarly, the sequences (4 8 11 16) and (1 5 8 13), which are the
integer representations of the previous sequences, will produce completely
different outputs. The goal for the RNN is to learn the relative relationships
between the notes in the melodies to retain structural similarities to the
original pieces and achieve clearer stylistic patterns. Due to a limited
number of training examples, it was decided to transpose all of them to
the same musical key. The Bach- and Ryan’s Mammoth Collection datasets
have melodies in 19 and 15 different keys, respectively. All major keys were
therefore transposed to C major, and all minor keys were transposed to A
minor prior to training.

32

Figure 3.16: Transposing a piece of music up three half steps from the key
of F# minor to the key of A minor. The intervals between the notes remain
the same, so a human listener will hear the same melody, but in a different
pitch.

3.6.3 Creating Subsequences

Songs from the datasets were split into shorter subsequences of 33 notes,
where the first 32 notes served as the input sequence, and the last note
served as the target value. There is some overlap in the subsequences, as
illustrated in Figure 3.17. For each subsequence, the window slides nine
steps. Because the songs have varying lengths, the shorter stride makes
sure that less data is lost. The number of subsequences for each dataset is
listed in Table 3.2. During training, 10 percent of the sequences were used
as validation sets.

Figure 3.17: Splitting a note sequence into three shorter subsequences. In
this example, the subsequences have a length of six notes, and the window
moves with a stride of four steps.

33

Table 3.2: The number of training subsequences and validation sub-
sequences for the three datasets.

Dataset Total Training Validation

Bach chorales 35292 31762 3530

Ryan’s Mammoth Collection 19229 17306 1923

Final Fantasy 7 51075 45968 5107

3.6.4 Removing Empty Sequences

One challenge that can often be encountered with datasets of more complex
music downloaded from the internet, such as the Final Fantasy 7 dataset, is
that some instrumental lines can often have long periods of silence, which
means that NO_EVENTs are over-represented in certain melody lines. To
mitigate this problem, subsequences that contain only NO_EVENTs were
removed from the Final Fantasy 7 dataset. This reduced the number of sub-
sequences from 77023 to 51075. Another challenging aspect of such music
is percussive lines, which tend to repeat single notes over and over. No
attempts were made to remove these instrument tracks at this stage, but it
could be addressed in future work.

3.7 Training

Training of the LSTM models was done using gradient descent with a batch
size of 64 and sparse categorical cross-entropy as the loss function. Adam
[81] was used as the optimizer, with the parameters provided as default
values in Keras. These are the same as in the paper that originally pro-
posed the Adam optimizer. Weights were saved locally using the Keras
callback function ModelCheckpoint so that they can be loaded into the gen-
erative model.

As can be seen in Figure 3.18 and 3.19, the training loss starts to con-
verge after approximately 40 epochs in the Bach and Ryan’s Mammoth Col-
lection models, while the Final Fantasy 7 model (Figure 3.20) begins to con-
verge after approximately 20 epochs. However, only the Bach- and Ryan’s
Mammoth Collection models converge to approximately zero, while the
Final Fantasy 7 model stabilizes around 0.1. It is possible that the number
of parameters in the network is high enough for the two smallest datasets
but too low for the Final Fantasy 7 dataset. The models also begin to over-
fit after 20 epochs for the Bach and Ryan’s Mammoth Collection datasets,
and ten epochs for the Final Fantasy 7 dataset, as indicated by the increas-
ing validation loss. This is not necessarily a bad thing. Predicted music
should sound pleasing to the human ear, and since overfitting means that

34

the model has begun, to some extent, to memorize the input sequences, it
can be expected that the musical output will be better at following the struc-
ture of the training examples. Although overfitting is usually undesirable,
the effect can be mitigated by the adjustable sampling temperature. As the
user increases the temperature, predictions will begin to deviate from the
possible learned training examples.

Figure 3.18: Training loss when training the LSTM network on the Bach
chorales dataset. The model begins to converge after approximately 40
epochs. The increasing validation loss after 20 epochs indicates that the
model is beginning to memorize the input sequences.

Figure 3.19: Training loss when training the LSTM network on the Ryan’s
Mammoth Collection dataset. As with the training of the Bach chorales
model, this model also begins to converge after approximately 40 epochs.
Similarly, this model begins to overfit quite early, but the validation loss is
somewhat higher than for the Bach model.

35

Figure 3.20: Training loss when training the LSTM network on the Final
Fantasy 7 dataset. Unlike the Bach- and Ryan’s Mammoth Collection
models, which converge to approximately zero, the Final Fantasy 7 model
stabilizes at a training loss of around 0.1. However, the validation loss is a
little lower than for Bach and Ryan’s Mammoth Collection.

Adding Dropout

Since overfitting can be mitigated by adjusting the sampling temperature
on the instrument, it was not considered a problem. Therefore, optimiza-
tion of the training was not central to the current work. Nonetheless, an ex-
periment using dropout between the recurrent layers was performed. The
concept of dropout is to randomly remove units and their incoming and
outgoing connections from the network during training, and it has been
shown to be an effective technique to reduce overfitting [82]. A relatively
low dropout of 0.2 was applied. It reduced overfitting by a small amount,
but it also affected the melodic structure of predictions. Musical quality in
the current work is deemed to be more important than optimization of the
training; therefore, training with dropout was excluded.

3.8 Sampling and Playback

Sampling from the model returns a vector of probability distributions over
all possible note values. From this distribution, the most probable next
note can be found based on previously predicted notes in the sequence, as
illustrated in Figure 3.21. Two processes—one for sampling, and one for
playback—run in parallel. When sampling, the model is given a seed note
as a starting point that it uses to predict the next notes in the sequence.
At the start, the default value is set to 60, which is a middle C. After
each prediction, values of 128 (NOTE_OFF) and 129 (NO_EVENT) are
filtered out, and the last element in the sequence is stored and used as
the seed for the next prediction. This allows the instrument to play a
continuous melody. The playback process sends notes over an internal

36

MIDI connection for synthesis via the Timidity++ software synthesizer and
FluidR3 SoundFont. Each time it begins to play a sample, the sampling
process is notified and starts to draw a new sample from the model. This
allows the system to predict musical sequences in real-time. Temperature
and tempo values are read from the ADC before each sample so that the
controls take immediate effect.

Figure 3.21: Prediction of note sequences. Sampled notes are added to
the output sequence, which is fed back to the input to be used for further
predictions.

3.8.1 Temperature

There are several ways to choose the next token in a sequence. The
simplest of them is greedy sampling, which assigns a certain token within
a probability distribution the probability of 1 and the remaining tokens a
probability of 0. This approach will always choose the most likely next
token and output sequences that are repetitive and predictable. Stochastic
sampling, or sampling process that includes more random probabilities,
can produce more interesting results [83]. A parameter called temperature
is used to control the amount of randomness, or entropy, in the probability
distribution when sampling stochastically. A temperature factor of 1 has
the same effect as applying regular softmax (eq. 3.1) to the output of
the dense layer of the network. When the temperature T is changed, the
distribution is reweighted by scaling each element in the output vector z,
resulting in a new distribution q with a different entropy (eq. 3.2).

so f tmax(zi) =
exp(zi)

∑j exp(zj)
(3.1)

qi =
exp(zi/T)

∑j exp(zj/T)
(3.2)

37

By increasing the temperature, the entropy of the distribution will
rise, allowing more variation in the predicted sequences. Sufficiently high
temperatures, however, will in practice ignore the predictions of the trained
model and choose completely random outputs instead, as each element
in the distribution will have approximately the same probability of being
chosen. Similarly, a temperature below one will make the predictions more
greedy. The current system uses a temperature range of 0–10. Having a
maximum temperature higher than ten does not seem to be useful because
the resulting samples are almost completely random at this temperature
value.

3.8.2 Tempo Control

When a note is played, it is held for a time equal to the note length, corres-
ponding to the chosen BPM. The note length is specified in milliseconds:
60,000 ms (one minute) / Tempo (BPM) = note length in ms for quarter-
notes. Dividing this result by four yields the length of sixteenth notes that
are used in this system. Users can adjust the lengths of the notes using
one of the potentiometers on the instrument. The minimum and maximum
note lengths are 125 ms and 1125 ms, corresponding to a BPM range of
13–120.

3.9 User Interaction

When the instrument is turned on, it automatically starts to play a
continuous monophonic melody sampled from the generative model. The
user can see which model is active on the display, and scroll through a list
of the models with the knob attached to the rotary encoder on the bottom
left. The next model on the list is shown also shown at the bottom of the
display, and is activated by pressing the knob down, which triggers the
push-button integrated in the rotary encoder. If the current instrument
sound is not preferred, it can be easily changed by turning the other rotary
encoder. The instrument sound is updated immediately with each rotation
increment. To have more diversity in the generated melodies, the user can
adjust the sampling temperature by turning the temperature knob. The
diversity ranges from predicting only the most likely next notes, to almost
completely random note choices. In addition, the playback tempo can be
increased or decreased with the tempo knob. This combination of output
control parameters makes it possible to create unique performances with
little effort.

38

Figure 3.22: A user interacting with the five control knobs on the
instrument during a performance.

39

40

Chapter 4

Testing and Evaluation

The term evaluation can have different meanings. In NIME literature, the
term is commonly used to outline the procedure for collecting information
from users on how to improve a prototype, whether to determine if the
device is suitable for particular tasks, or to compare several devices us-
ing some common characteristics [84]. Different interests with regards to
DMI design often result in different requirements to instrument prototypes
[85]. A performer may focus on playability, as well as its reliability dur-
ing live performances, while the audience may only be interested in how it
sounds. The designer’s primary objective can instead be whether the pro-
totype serves its intended purpose.

The evaluation in this thesis was done mainly from the designer’s and
the performer’s perspective. The former was performed by the author
with a subjective evaluation of the generative models and an assessment
of whether and how the instrument meets the pre-determined design
requirements. The latter involves a user study where the participants were
introduced to the instrument and provided feedback by responding to a set
of questions.

4.1 Generative Models

There are essentially no “wrong” choices of notes in a melody since the
experience of music is highly subjective, and it usually comes down to
personal preference. Because metrics for evaluating music sequences
created by generative models are very limited, subjective evaluation is left
as the most viable choice [86]. This section presents sample sequences
generated by the three generative models, which are compared to the
dataset samples in section 3.5 by visual examination of the sheet music and
by listening to the audio. All audio samples are available on Zenodo 1.

1https://doi.org/10.5281/zenodo.3333505

41

https://doi.org/10.5281/zenodo.3333505

4.1.1 Bach Chorales Model

Figure 4.1 shows eight measures sampled from the model trained on the
Bach chorales dataset. A visual comparison of the original sheet music, a
piece of which can be seen in Figure 3.10, and sheet music of the generative
model, shows that the musical structure is very similar to the dataset, and it
is easy to hear Bach chorale elements in the predicted melody. Particularly
noteworthy is the C going up three half-steps to an F (marked in red)
before creating natural pauses in the melody. The same can be observed
in Bach chorales, where this stylistic feature is used to divide the melody
into phrases. The interval of three half steps is of the same type as in the
bass line before the phrase ends in Figure 3.10. In the author’s opinion, the
generated music is enjoyable with melodies of clearly recognizable musical
structure.

Figure 4.1: Music sampled from the Bach chorales model with the
temperature set to 1.0. The predicted melody clearly contains stylistic
elements from the original dataset, such as resemblance of ending phrases
(marked in red).

4.1.2 Ryan’s Mammoth Collection Model

The Ryan’s Mammoth Collection model is also able to reproduce many
stylistic elements from the original dataset, containing fast melodies with
mostly sixteenth notes (Figure 4.2). Particularly notable is how measure
one resembles measures nine and ten in Figure 3.11, with 14 sixteenth notes
followed by one eighth note. The predicted melody sounds very much like
the tunes from the dataset and is of a standard similar to the Bach chorales
model in the author’s opinion.

Figure 4.2: Sample from the Ryan’s Mammoth Collection model, taken
with a temperature set to 1.0. Visual comparison of the model output
with the example from the dataset (Figure 3.11) shows that there is a clear
resemblance of the musical structure. It is noteworthy how measure one
resembles measures nine and ten in Figure 3.11, with 14 sixteenth notes
followed by one eighth note.

42

4.1.3 Final Fantasy 7 Model

Two samples taken from the Final Fantasy 7 model can be seen in Figure
4.3. We can see that at a temperature of 1.0, there is little variation in the
melody since the output contains mostly repeating sixteenth notes with
only some minor variations. An increase in sampling temperature gives
a slightly more varied melody, but the same notes tend to be repeated
here as well. This can be expected from a dataset containing drums and
percussion tracks because they have notation for rhythmic patterns, which
do not include any change in pitch. It is more challenging to compare the
musical output from this model to the original dataset, as there are many
instrument voices, and the network is trained on all of them. However,
the predictions in Figure 4.3b somewhat resemble the two topmost violins
in the sample from the dataset in Figure 3.12. It is worth noting that all
samples taken from the generative models are played at a tempo of 120
BPM in the audio files on Zenodo, whereas the original dataset example,
in this case, is much slower at 57 BPM. The music generated by the Final
Fantasy 7 model is, in the author’s opinion, less enjoyable than that of
Ryan’s Mammoth Collection and Bach due to less coherent melodies and
more repetitiveness.

(a) Temperature 1.0

(b) Temperature 2.0

Figure 4.3: Two samples drawn from the The Final Fantasy 7 model.
This model produces highly repetitive and uninteresting results when the
temperature is set to 1.0 (a). Increasing the temperature setting to 2.0 (b)
results in somewhat more interesting musical output, but the repetitiveness
is still an issue.

4.1.4 Effects of Different Sampling Temperatures

Figure 4.4 shows a set of samples drawn from the generative model trained
on Bach chorales model at different temperatures. With the temperature

43

set to 0.1, which is quite close to a greedy sampling strategy, the melody
has a tendency to become very repetitive. The melody begins to sound
quite close to the training examples when setting the temperature to 1.0. In-
creasing the temperature to 3.0 introduces more randomness to the melody
while still retaining the general structural elements from the training ex-
amples. This gives the resulting melody a more “jazzy” sound. When the
temperature is set to 5.0, any resemblance to the training examples is diffi-
cult to hear. Higher temperatures than 5.0 produce melodies that are virtu-
ally random. This shows that the optimal temperature values for retaining
the musical structure of the training examples while still allowing for some
creativity are between 1.0 and 3.0.

44

(a) Temperature 0.1

(b) Temperature 1.0

(c) Temperature 3.0

(d) Temperature 5.0

(e) Temperature 8.0

(f) Temperature 10.0

Figure 4.4: Sampling the generative model trained on Bach chorales at
different temperatures. At temperature 0.1 (a), the melodies are highly
repetitive. Temperatures of 1.0 to 3.0 (b and c) generate melodies that sound
close to the training examples. At 5.0 and above (d, e and f), the results
begin to sound virtually random.

45

4.2 System Design

This evaluation of the system design is based on the author’s experience
with the instrument, with regards to the four design requirements outlined
in section 3.1. This assessment is considered to be from both the designer’s
and performer’s perspective since the author fills both roles. However, the
focus lies on the actual design, and whether and how the instrument is able
to perform the tasks it is intended for.

4.2.1 Evaluation based on Design Requirements

Interactive Music Generation

The instrument is capable of predicting and playing samples from the
generative model in real-time. The value of the temperature and tempo
is read from the ADC before each prediction, so it is possible to change
these parameters and hear the effect almost instantly. The only exception
is at the slowest tempo, where a sixteenth note lasts 1.1 seconds. In this
case, the performer has to wait for the sample to finish playing before the
changes take effect. However, this is not seen as a big concern, and it can
likely be fixed by modifying the code if necessary.

Feeling of Control

All of the instrument controls affect the musical output to some degree.
Switching between multiple generative models, for example, lets the user
decide which musical style to use at any point during a performance.
Being able to change the tempo and synth have a large effect on the sound
and general feel of the musical output as well. In the author’s opinion,
however, the temperature is the most important control since it affects
musical predictions and not only sound and playback. The instrument
can follow the structure of the datasets at lower temperatures, or generate
melodies that are akin to experimental jazz at higher temperatures. The
author argues that having the option to control the diversity of the
generated melody provides the user with a sense of ownership over the
music, resulting in a more enjoyable and rewarding experience. Another
important effect of the temperature is the ability to “reset” the LSTM model
if it becomes overly repetitive. Increasing the sampling temperature to a
higher value for a few seconds will ensure that the model includes some
unlikely notes, thus creating a more random sequence at the model’s input
which can then be used for further predictions.

Self-contained

Implementing the system on a single-board computer and integrating all
the necessary hardware for interaction and sound inside the enclosure
makes the system completely self-contained. The only required external
input is power through the Raspberry Pi’s micro USB port. It can even be
connected to a USB power bank to make it portable. This proved to be

46

particularly useful at the NIME 2019 conference, where no power outlets
near the poster stand could be found for the demonstration.

Cost

Reducing the cost as much as possible was an important requirement
in order to make the instrument easily reproducible without any major
investments. The total cost of the instrument, including all of its
components, is approximately 100 USD. This can be reduced further with
the access to a 3D printer to create the encasement, or by buying cheaper
components on websites such as eBay.

4.2.2 Experiences from NIME 2019

The instrument was presented during a poster session at the NIME
conference 2019 in Porto Alegre since the article dealing with the first
prototype was accepted for publication in the conference proceedings. The
decision to present the second prototype was made with the desire to gain
further insight into how users may interact with the current instrument.
During the poster session, conference participants were welcome to test the
instrument. Unfortunately, the session was too busy to take detailed notes;
therefore, only general impressions were noted down after the session.
The reactions to the instrument were exclusively positive and received
multiple comments expressing appreciation of how the instrument is built
and what it does. Many questions addressed the temperature control,
and several participants thought it had something to do with the actual
temperature of the room. After receiving an explanation, the majority of
those who tried the instrument seemed to enjoy the temperature control
the most, especially at higher values. This was expressed mostly with body
language, such as nodding as in approval of the musical output, and in
some cases verbal expressions of favoring the temperature parameter, such
as “I love the temperature.”

4.3 User Study

A user study was conducted to evaluate the instrument from a performer’s
perspective, which is arguably the most important [85]. The goal of the
study was to see the impact the different high-level parameter controls can
have on a participant’s perceived feeling of control over the musical output
from the instrument, and to evaluate the three trained generative models
in terms of musical quality.

4.3.1 Session Overview

The sessions were split into four parts, listed in Table 4.1. Part A was an
introduction with a brief explanation of sequence generation and how to
operate the instrument. In the remaining parts, the participants explored
the instrument and answered questions about their experience with the

47

instrument controls and generative models, as well as shared general
thoughts about the instrument.

Table 4.1: User study: Session structure

Part Activities

Part A Introduction

Part B Free play

Part C Model evaluation

Part D Interview

Part A: Introduction

The first part of the session was a brief introduction to the instrument.
This included a quick introduction to generative models and how they
can be used to create music, the three datasets the models were trained
on, how the instrument works by sampling the model and playing back
the notes in real-time, and an explanation of the different instrument
controls. Participants were from different educational and occupational
backgrounds with varying degrees of knowledge about machine learning
and music, so the time spent on the introduction was assumed to
vary between sessions. Nevertheless, the participants were expected to
understand the basic concepts of the system within the first few minutes.

Part B: Free Play

The second part of the study addressed how the participants engage with
the instrument control knobs in general, and whether they felt some degree
of control over the generated music in particular.

After the introduction, participants spent some time exploring the in-
strument to familiarize with the instrument and its functionality to get a
feeling of how it can be used to make music. It was expected that the aver-
age participant would spend approximately 5–10 minutes for this purpose.
The participants were asked to tell the interviewer when they felt they had
become sufficiently familiar with the functionality. They were then asked
to answer a questionnaire about the instrument controls. The questionnaire
had three queries, listed below. They were answered on a 5-point Likert
scale, where 1 is Strongly disagree, and 5 is Strongly agree.

1. The temperature knob gives a feeling of control over the generated music.

2. The tempo knob gives a feeling of control over the generated music.

3. Changing the synth gives a feeling of control over the generated music.

48

Part C: Model Evaluation

The third part of the study was an evaluation of the generative models. This
evaluation was performed in order to understand how users perceive the
output produced by the different generative models, to find out whether
there are any perceived differences between the music generated by the
models trained on different datasets, and whether the participants’ percep-
tions match up with the expectations of the dataset qualities.

The participants spent a few minutes exploring each of the three gener-
ative models. Since studies show that serial positions of performances can
have an impact on whether they are judged positively or negatively [87],
and that they are also influenced by previous performances [88], the gen-
erative models were presented to the participants in a randomized order.
After each model, they rated its performance with regards to the structural
quality of the output and personal preference on a 5-point Likert scale:

1. The generated music sounds good.

2. The generated music makes musical sense.

Finally, once all three generative models were rated, the participants
were asked to indicate which model was their favorite, and provide the
reason behind their choice.

Part D: Interview

The final part of the session was a questionnaire with three open-ended
queries listed below. The users were also asked to provide any additional
comments they had that the previous questions did not cover.

1. What did you like about instrument, and why?

2. What did you dislike about the instrument, and why?

3. Do you have any ideas for improvements?

4.3.2 Data Analysis

The data resulting from parts B and C of a session were used for
quantitative analysis. The answers to the question of which model was
their favorite and why were also subjected to qualitative analysis. Due to
the relatively small sample size of twelve participants, the main focus lies
in the qualitative analysis.

Quantitive Analysis

The author employed statistical analysis for the Likert scale answers from
session parts B and C to identify whether some of the instrument controls

49

or generative models were higher rated than the others, and to establish
whether this difference was statistically significant. The analysis was done
three times: once for each category of answers, which address the feeling of
control given by the instrument controls, and whether the music generated
by the models sounds good and makes musical sense.

First, a Kruskal–Wallis H test [89] was performed. The objective of the
test is to see if it is possible to reject the null hypothesis, i.e., the medians
of the ratings on the separate questions are equal. If they are equal, it
indicates that the medians are from identical populations, and there is
no evidence that any of the groups is different from the others. To reject
the null hypothesis, the probability value (p-value) should be less than
or equal to a significance level, usually chosen to be 0.05 [90]. If this is
true, it shows that at least one group, or collection of ratings on a single
question, dominates at least one other group. This test, however, does not
indicate where does the dominance occur. Therefore, a Wilcoxon signed-
rank test [91] was performed for pairwise comparisons on items where it
was possible to reject the null hypothesis. This allowed identifying which
pairs have significantly different median values.

Qualitative Analysis

To better understand the experience of interaction with the instrument, the
interview questionnaires included four open-ended queries addressing the
models the instrument was trained on and the instrument itself, in addi-
tion to a section for additional comments. Since this type of data, as well as
the subjective experience of the users itself, cannot be easily quantifiable,
the author employed thematic analysis to the data collected from the afore-
mentioned questions.

Thematic analysis is a qualitative method used to identify patterns in
the data and organize them in meaningful thematic units describing the
results in detail and allowing for data interpretation. This method is used
extensively in psychology and is argued to be “a foundational method for
qualitative analysis” [92, p. 78]. Thematic analysis has also been used in
NIME community [93] due to increasing attention to the importance of
user- or performer evaluation.

The dataset for the analysis consists of answers to the queries provided
by twelve participants, making a total of sixty answers. Of these, four re-
spondents did not provide any content in the “additional comments” sec-
tion; therefore, the total of answers considered in the analysis was fifty-six.
The process of analysis followed the six phases described by Braun and
Clarke [92, p. 87]: familiarisation with data, coding data items, generating initial
themes, reviewing themes, defining themes, and reporting.

Since the interviews were done in English with non-native English
speakers, some grammatical and lexical corrections of the text were made,

50

for instance, “componist” was translated to “composer.”

The coding phase was subdivided into three sub-phases: across-subject
analysis of model preference, across-subject analysis of instrument feed-
back, and within-subject analysis of the entire dataset for all questions, in-
cluding quantitative ratings. During the across-subject analysis of model
preference, feedback on each of the three models was first analyzed sep-
arately to get insight into which qualities the participants found most “at-
tractive” about it. It was followed by the analysis of feedback on all models
together to extract the criteria the participants placed the greatest import-
ance on in their evaluation of the performance. Across-subject analysis of
instrument feedback was divided into three parts, considering first the an-
swers to “what did you like about the instrument, and why?”, “what did
you dislike about the instrument, and why?” and “do you have any ideas
for improvements?” separately, and then all four questions, including ad-
ditional comments, together. Finally, a within-subjects analysis of the entire
dataset was conducted twice: first, for instrument feedback only, and then
for both instrument feedback and model preference. This was done in an
attempt to refine the initial themes by looking at the broader context of each
data item.

Data items were coded according to multiple criteria, such as, which
superordinate concept captured them best, what latent meanings could be
grasped by the analyst, and the focus of the answer among others. For ex-
ample, such items as “was more fun” and “It makes happy music” were
coded as enjoyment, whereas “could change the feel of everything very eas-
ily” was coded four times as agency (the participant interacted actively),
control (the participant liked that s/he could control it), effort (very easily),
and focus on musical output (the feel of everything). These codes were then
grouped according to apparent commonalities between them, and initial
themes were generated. For example, codes like irritation and enjoyment
were grouped as belonging to a more general theme of emotions. These
themes were refined by re-examining all the data extracts belonging to a
particular theme and within the context of each participant to finalize and
define the thematic categories.

4.3.3 Results

Quantitative Analysis

Figure 4.5 shows the results from the questionnaire regarding instrument
controls. All of the controls are rated fairly high with the majority
of answers 4 or above, indicating that most participants felt that the
controls gave them some degree of ownership over the generated music.
The Kruskal–Wallis test gave a p-value of 0.37, which means that there
is no statistically significant difference between the temperature, tempo
and instrument sound selection with regards to how much control the

51

participants felt the different controls gave them.

Figure 4.5: Results from the questionnaire on instrument controls. For
each control knob, the questionnaire stated that the knob gives a feeling of
control over the generated music. The participants rated the statements on
a 5-point Likert scale, where 1 is Strongly disagree and 5 is Strongly agree. All
ratings were relatively high, but the Kruskal–Wallis H test did not indicate
any statistically significant differences between their ratings.

When the participants were asked if the generated music sounds good,
most participants rated the output music trained on Bach chorales and
Ryan’s Mammoth Collection positively (Figure 4.6). The ratings provided
on the output trained on the Final Fantasy 7 dataset, on the other hand,
show slightly more varied results. Nevertheless, the differences between
the ratings of the models are not substantial. Bach and Ryan’s Mammoth
seem to have the edge over Final Fantasy 7, having received more ratings
of 4 and 5, but the Kruskal–Wallis test gives a p-value 0.11, which is not
sufficiently low to conclude that there is a significant difference between
their ratings.

52

Figure 4.6: Responses to the statement The generated music sounds good
for each generative model. The ratings were given on a 5-point Likert
scale, where 1 is Strongly disagree and 5 is Strongly agree. Bach and Ryan’s
Mammoth Collection have somewhat higher ratings than Final Fantasy
7, but the differences are not large enough to be considered statistically
significant.

The differences were more discernible when the participants were
asked if the music generated by the three models made musical sense. Both
Bach chorales and Ryan’s Mammoth Collection were rated quite high, with
almost all participants giving them a rating of 3 or above, while the same is
true for only half of the ratings given to the Final Fantasy 7 model (Figure
4.7). The Kruskal-Wallis test gave a p-value of 0.03, which is low enough
to assume that at least one group’s median is significantly different from
at least one other group’s median. Bach and Ryan’s Mammoth Collection
received significantly higher ratings than Final Fantasy 7, but the two are
not significantly different from each other, as seen in Figure 4.8, which
shows the results of pairwise comparisons of the medians of the three
populations using a Wilcoxon signed-rank test.

53

Figure 4.7: Responses to the statement The generated music makes musical
sense for each generative model. The ratings were given on a 5-point Likert
scale, where 1 is Strongly disagree and 5 is Strongly agree. The generative
models trained on Bach chorales and Ryan’s Mammoth Collection were
rated significantly higher than Final Fantasy 7, but the differences between
the two are insignificant.

Figure 4.8: A heatmap of pairwise comparisons of the group medians for
the ratings of the models on the statement The generated music makes musical
sense. The axis labels indicate the different generative models: 1 - Bach
chorales, 2 - Ryan’s Mammoth Collection, and 3 - Final Fantasy 7. It is
evident that the ratings of Bach chorales and Ryan’s Mammoth Collection
are significantly different from the ratings of Final Fantasy 7, but the former
two are not different from each other.

Answers to the question on model preference clearly show that Ryan’s
Mammoth Collection is the winner, the preferred model of eight out of
twelve participants (Figure 4.9). Three of the four remaining participants
preferred the Bach chorales model, whereas Final Fantasy 7 was preferred
by a single participant.

54

Figure 4.9: The model preferences indicated by the participants in the user
study. The generative model trained on the Ryan’s Mammoth Collection
dataset is a clear winner chosen as the favorite by eight out of twelve
participants.

Qualitative Analysis

Qualitative analysis resulted in three themes based on how people engaged
with or perceived the prototype:

• The prototype as an instrument for live performance

• The prototype in between an instrument and a playback device

• The prototype as a playback device

Live performance. One participant saw the prototype as an instrument
that could be used in live performances. S/he clearly felt in control of
the music and seemed to be creatively engaged by it suggesting that “It
would be nice to use it in a live setting together with other musicians
and instruments {...},” and perceived it as original and providing the
opportunity to improvise. The participant also appreciated that it did not
require any experience with traditional instruments in order to do this.
The focus on the live setting was also apparent in addressing what was
disliked about the instrument by noting that “Changing models is not very
smooth, particularly in a live setting it would be problematic.” S/he also
saw the generative models’ tendency to become repetitive as a creative
opportunity:

“It was really cool to use the repeating notes as a build-up
before change in melody, by slowly increasing tempo and then
changing the temperature!”

This participant expressed a desire for more complexity in the produced
output in terms of polyphony or possibility for a harmonious combination
of different models, and mentions alternative positioning of the controls to
give easier access to the most used controls. This participant is henceforth

55

referred to as the performer.

Instrument-playback device. Four participants seemed to perceive the
prototype as something in between an instrument and a playback device.
Oftentimes, their comments on design considerations included desires for
the ability to record or repeat certain parts of the generated music, although
it was not clear whether they saw that as important for a live setting, re-
cording session, or private use. They also expressed a feeling of ownership
over the produced music and enjoyed that this did not require experience
in music composition. In the words of one such participant, “I liked the
possibility of being my own composer, without knowing that much about
composing music.” Quite like the aforementioned performer, they gener-
ally seemed to feel in control of the music and wanted more complexity
both in terms of model variety and the number of controls. They also saw
the prototype as original, interesting, and were highly positive about it with
remarks such as “So much fun, super innovative!” and “Tuning capabilit-
ies were various and thus gave a very flexible configuration of the song
adapting it to everyone’s taste.” They also provided detailed feedback for
improvements, such as better speaker quality, lowpass filter, and even “a
visual representation of the sound wave.”

Playback device. Six participants seemed to perceive the prototype more
as a playback device. They could be characterized as not feeling so much in
control over the resulting music even though they gave conflicting quantit-
ative ratings of control. One particularly difficult to interpret participant
gave mid-high quantitative ratings of control (4 for temperature, 4 for
tempo, and 3 for synth), yet answered the question “What did you dis-
like about the instrument?” with “I didn’t feel I had that much control over
the result {...}”. Participants in this group also seemed to be more focused
on listening to the output rather than creating something with it, as in “{...}
it was calming to listen to in a “mindful” kind of way.” and comparing it to
other music.

The majority of the so far mentioned participants perceived the proto-
type as interactive, for example, in answering what was liked about the
instrument, one participant answered “The ability to rapidly change the
controls and hear the result in real-time / very fast.”

Finally, one participant did not fit any of the aforementioned groups be-
cause s/he did not seem to grasp the concept of the prototype in general,
and the temperature control in particular, saying “I did not understand the
temperature.” Answering the question “What did you like about the instru-
ment?” the participant answered “it was fun,” which may be an indication
that s/he perceived it as a toy, but feedback is rather limited to allow any
further conclusions.

The reasons for why the participants preferred one or the other model
were quite varied. In describing Ryan’s Mammoth Collection model,

56

participants expressed enjoyment (particularly with the word “fun” or
“makes happy music”), interest, coherency, and realness as main criteria
for preference. Bach Chorales seemed to be more preferred due to personal
tastes, with comments such as “Biased answer, into classical music” and
“{...} reminds me of music I’ve heard before.” The single participant
who preferred Final Fantasy 7 said that “it sounded more epic,” which is
difficult to interpret.

4.4 Discussion

4.4.1 Feeling of Control and Interactivity

Although participants’ ratings of control are mid-high, the same is not
entirely reflected in the qualitative analysis. Sense of control seems to be
most related to how they saw the prototype. Those who felt most in control
were able to interact with it in a creative way and utilize the functions to
produce output that they themselves rated as enjoyable, interesting, and
original. Those who felt a lack of control, on the other hand, seemed less
engaged with the instrument. Their interaction was rated as somewhat
less positive, some even expressing high levels of irritation. There may be
several reasons for the differing levels of perceived control. First, musical
knowledge may have a strong impact. Although the user survey was
anonymous and the author had no way to determine which participants
provided which feedback, it is not implausible that the participants who
were more engaged with the prototype might have some experience with
music. The temperature knob presumes that the user has at least implicit
understanding of relationships between notes in a melody and what
changing them does to the output. A somewhat related reason may be
the motivation to engage in creative musical activities in general. The
performer, in particular, seemed to be motivated to use the opportunities
provided by the instrument and used concrete examples from the session
to describe the interaction. This shows that the instrument might be
particularly relevant to people who wish to get an easy introduction to
music-making. Finally, subjective taste in music has to be taken into
account. The instrument was pre-trained on three datasets that have
particular stylistic elements to them, which may not necessarily be liked
by everyone. It is possible to train the instrument on datasets chosen by the
user, effectively solving this problem. The code is available for anyone to
use, and different datasets can be found online, for example, in the Music21
corpus.

Instrument Controls

The different control features provided by the instrument are high-
level, essentially changing the general style and “feel” of the output.
The quantitative analysis did not find any significant differences in the
level of control provided by the different knobs. Somewhat similarly,
qualitative analysis is not entirely straightforward in this regard either.

57

The participants who saw the prototype as an instrument or something in
between an instrument and a playback device mentioned more often that
they liked all the controls and appreciated the effects adjusting them had on
the general output. The participants who seemed to perceive the prototype
largely as a playback device only, however, appeared to be somewhat
more preoccupied with the instrument sound knob. This may be because
the instrument sound knob produces the most easily identifiable changes
in the generated output and largely depends on the personal taste of a
particular participant or user. The temperature knob, on the other hand,
provides a high-level control of lower-level characteristic of the musical
output, that is, the melodic pattern, or relationships between the notes,
which creates changes in the output somewhat less obvious. As noted in
the discussion of the feeling of control and interactivity, this may indicate
that some basic understanding of musical knowledge is required. This may
also be one of the reasons why the temperature was preferred by most
at the NIME conference. Since NIME is a music technology conference,
the audience was probably more motivated to engage with the creative
opportunities the temperature control provides. It may also be that they
have a higher tolerance for “unconventional” music than the average user
study participant. Another explanation can be that the temperature is more
appealing to someone who is interested in technology or machine learning,
who might enjoy the fact that it is possible to control musical predictions
made by a computer.

4.4.2 Musical Quality and Model Preference

The quantitative ratings of whether the music generated by the models
makes musical sense showed that Ryan’s Mammoth Collection and Bach
chorales were rated significantly better than Final Fantasy 7. This is not
unexpected since the Final Fantasy 7 dataset is less suited for monophonic
music. Many of the instruments in the dataset scores have supportive roles
and depend on other instruments to create pleasing harmonies. The Fi-
nal Fantasy 7 dataset is likely better suited for a model architecture that
allows generation of polyphonic music, or at least would require more pre-
processing in order to make it work. The training loss of this model is also
a little higher than the other two, indicating that it might have had more
difficulties learning from the training examples. This is likely due to the
dataset being less balanced. Ryan’s Mammoth Collection and Bach chor-
ales have a more similar musical structure in all training examples, while
the sequences created from the Final Fantasy 7 dataset are more erratic. An-
other factor might be that the number of training sequences is much higher,
and the relatively small number of parameters in the LSTM network is too
low for this dataset, but high enough for Ryan’s Mammoth Collection and
Bach chorales.

Although the quantitative analysis showed that the differences between
the ratings are not significant, Bach chorales and Ryan’s Mammoth
Collection datasets were more often rated with 4 or 5 than Final Fantasy 7

58

with regards to perceived musical quality. It is likely that the quality of the
datasets had some impact on these results in the same way as for ratings
addressing musical structure. However, what “sounds good” is a highly
subjective measure and does not necessarily depend on the music-making
sense. In fact, the ratings for whether a model sounds good and makes
musical sense were sometimes quite inconsistent: the same participant
may rate the musical quality as high, yet rate coherency as rather low.
The current analysis does not lend itself to further interpretation of this
discrepancy; however, it may well be that not all participants understood
“music makes sense” in the same way.

4.4.3 Methodological Considerations

Although the user survey has provided insight into positive and negative
aspects of the instrument, some methodological considerations must be
taken into account. Although the survey was anonymous, the interviews
were conducted by the designer of the prototype itself, making participants
susceptible to demand characteristics. It might have been more beneficial
to have an independent interviewer present the prototype. In addition,
the statement formulations in the quantitative rating section may have
influenced the answers provided to the open-ended queries. However,
since it was desirable to acquire feedback in relation to the design
requirements, it is not considered an issue in this thesis. In addition, the
participants were told what dataset the training models were trained on.
This may have influenced participants’ perceptions of the generated music
significantly, making them try to recognize familiar themes or compare
the melody to the originals, instead of focusing on the instrument and
the opportunities provided by it. Not revealing to the participants what
datasets were used for training may have revealed more detailed feedback
on the instrument and the musical quality. Finally, no information about
the participants was collected. It would be beneficial to find out about
the musical background, experience in information technologies, musical
preferences, etc., in order to determine more easily who would benefit from
the instrument most.

4.4.4 Design Considerations

There are two mentions of difficulty changing models, which can likely be
explained by a loose connection that sometimes makes the rotary encoder
non-responsive. One participant also mentioned that it was hard to select
instrument sounds. This can possibly be because of the same reason as
for changing models, but another explanation could be that the display
does not show which instrument sound is currently active. Having the
display show which instrument is active was one of the things participants
mentioned most often, particularly those who saw the prototype as a
playback device. Two of these participants also requested labels on the
control knobs. It is possible that this would reduce the effort required to
engage with the prototype.

59

60

Chapter 5

Conclusion

This thesis has introduced a novel self-contained intelligent instrument that
uses a deep recurrent neural network to generate music and supports real-
time user interaction. It demonstrates that real-time generation of music
using recurrent neural networks is feasible on an embedded device with
limited processing power.

There were two main goals of this thesis: to explore the potential of
machine learning algorithms to generate music and investigate how high-
level parameters can be used to shape the musical output, and to design
and build a self-contained intelligent musical instrument on an embedded
device.

The chosen machine learning algorithm for music generation is a
character-level language model using LSTM recurrent neural networks. It
is able to predict the next note in the musical sequence based on what it has
already played, thus allowing for the generation of continuous melodies.
Where most previous work on music generation is focused on offline gen-
eration of musical scores, this system can predict and play notes in real-time
and is able to quickly respond to user manipulations, making it interactive.
Users can tune five different parameters of the system: sampling temperat-
ure (diversity), tempo, volume, instrument sound selection, and generative
model selection. Three generative models were trained on different data-
sets in order to have the option to choose from multiple musical styles.

Two instrument prototypes were made: an early version with ba-
sic functionality (sampling temperature and volume control), and an im-
proved version with all the aforementioned instrument controls. They are
both fully self-contained, with all the hardware necessary to create and con-
trol the music integrated into the encasement. The LSTM network runs on a
Raspberry Pi single-board computer, and the control knobs are implemen-
ted using potentiometers and rotary incremental encoders.

A user study was performed to see the impact the different high-level
parameter controls can have on a participant’s perceived feeling of con-
trol over the musical output from the instrument, and to evaluate the three

61

trained generative models in terms of musical quality. The study included
both Likert scale answers and open-ended queries, and it was evaluated
both quantitatively and qualitatively. The study shows that participants
felt a good amount of ownership over the music by using the control knobs
on the prototype. The participants could be categorized into three groups
according to how they seemingly perceived the prototype: as an instru-
ment that can be used in a live setting, as something in between an instru-
ment and a playback device, and as a playback device. The first category
was able to become creatively engaged and utilize all the control knobs,
and saw the potential for using the prototype in a live setting. The second
group was also creatively engaged, but to a lesser extent than the former.
However, both of these groups expressed a high feeling of control over the
generated music and enjoyed that they did not have to be experienced in
music composition to use the prototype. The last group was more passive
and expressed lesser feel of control, although all ratings were mid-high in
the quantitative analysis.

Although the prototype is aimed at beginners, it seems that some
amount of understanding of music, as well as a desire to engage in the
music-making process, is needed in order to get the most out of the tem-
perature control. This was especially apparent by comparing the results
from the user study with observations at the NIME conference. The NIME
audience, which consists mostly of musicians and people interested in mu-
sic technology, were clearly more focused on the temperature than parti-
cipants in the user study.

Experience with the sampling temperature suggest that this interaction
may help overcome some of the limitations of RNN music generation; in
particular, the propensity for such models to become caught up in repetit-
ive sequences. The fact that the RNN is made interactive may compensate
for a model that is somewhat overtrained on a limited dataset. One of the
participants in the user study was able to utilize this in a creative manner
by letting the predictions become repetitive and use the repetitiveness as a
build-up before increasing the temperature for more diverse predictions.

5.1 Future Work

5.1.1 Design Improvements

Hardware

The prototype was designed using a breadboard circuit which tended to
have somewhat insecure connections (i.e., wires that would fall out) which
could result in loss of function in the controllers if the instrument is handled
carelessly. This could possibly be fixed by using some form of adhesive, but
ideally, a printed circuit board (PCB) should be created. It was not priorit-
ized due to time limitations but could be a beneficial upgrade to make the

62

instrument more robust.

Controls

Although it has not been tested, it should be possible to use the instrument
in a studio setting. However, since songs are often recorded at a specific
tempo, it can be challenging to find the exact BPM using the potentiometer
tempo control since it makes the tempo scale continuous instead of
discrete. Using a rotary incremental encoder instead, where each increment
corresponds to a tempo increase of precisely one BPM, might be a better
choice in this case. The BPM would also need to be shown on the display,
especially since the rotary encoders can be turned 360 degrees, so the
marker on the knob does not give any indication of the current tempo.

Generative Models

Hyperparameter optimization in order to improve the training and reduce
overfitting of the LSTM models was not prioritized in this work, but is def-
initely a task that can be addressed in the future. The same is true for data
pre-processing, especially for datasets like Final Fantasy 7, which would
benefit from having a way of filtering out percussion tracks.

Two participants mentioned that they disliked the high-pitched notes
that often appear at higher temperatures. This could be adjusted by limit-
ing the range of possible pitches in the embedding layer and output layer,
or by transposing high-pitched notes down one or two octaves during play-
back. However, the former would require that all datasets are within the
same pitch range.

It would also be interesting to see whether it is possible to expand the
model architecture so that it can play polyphonic music on the Raspberry
Pi.

5.1.2 Additional Functionality

A possible upgrade to the instrument could be to have a MIDI output in
addition to the speaker, allowing the instrument to act as a MIDI controller
that can be connected to a desktop computer or laptop. In a studio
setting, this would make it possible to use the instrument in combination
with a DAW where the MIDI sequences can be sonified using a variety
of instrument plugins. A MIDI interface where the user can connect a
keyboard to play along with the prototype would also be an interesting
function to investigate.

63

64

Appendices

65

Appendix A

NIME Paper

67

A Physical Intelligent Instrument using Recurrent Neural
Networks

Torgrim R. Næss
Department of Informatics
University of Oslo, Norway

torgrirn@ifi.uio.no

Charles P. Martin
RITMO and Department of Informatics

University of Oslo, Norway
charlepm@ifi.uio.no

ABSTRACT
This paper describes a new intelligent interactive instrument,
based on an embedded computing platform, where deep
neural networks are applied to interactive music generation.
Even though using neural networks for music composition is
not uncommon, a lot of these models tend to not support
any form of user interaction. We introduce a self-contained
intelligent instrument using generative models, with support
for real-time interaction where the user can adjust high-level
parameters to modify the music generated by the instrument.
We describe the technical details of our generative model
and discuss the experience of using the system as part of
musical performance.

Author Keywords
Embedded instruments, recurrent neural networks, genera-
tive models, interaction.

CCS Concepts
•Applied computing → Sound and music comput-
ing; •Computing methodologies→ Neural networks;
•Human-centered computing → Interaction paradigms;

1. INTRODUCTION
The use of machine learning algorithms to create musical
compositions is a growing field of study. A lot of recent
generative models applying deep neural networks, however,
do not support direct human interaction, particularly in
real-time during musical performance. Introducing ways for
the user to manipulate the musical output will allow for such
systems to be used in new kinds of intelligent interactive
instruments, and to be explored through musical improvisa-
tion. Such instruments can be used by people with little or
no previous experience to easily play around with musical
ideas without the investment of time and money to learn a
“real” instrument.

The main contribution of this research is a novel embedded
device for interactively generating music with a recurrent
neural network (RNN). This contrasts with many previous
examples of music generation with neural networks that
focus on offline, rather than interactive, generation of music,
or require a powerful computer. Our device demonstrates
that it is feasible to implement RNN-based music generation

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’19, June 3-6, 2019, Federal University of Rio Grande do Sul,
Porto Alegre, Brazil.

Figure 1: A user interacting with our physical in-
telligent instrument: a device that continually gen-
erates and performs music using a recurrent neural
network. The system is self-contained with controls
for volume and sampling “temperature” as well as a
built-in speaker for sonifying generated notes.

on a self-contained embedded platform, and explores manip-
ulation of the continuous note sampling process as the main
interactive function. This small device could be applied
within many different musical scenarios and in setups with
other instruments or equipment. This paper presents the
design and implementation of an instrument prototype (Fig-
ure 1), and discusses the user experience along with some
design considerations and ideas for future improvements.

2. BACKGROUND
The use of artificial neural networks (ANNs) to create music
and art has generated wide interest in recent years. ANNs
can learn to transform any given picture to look like a paint-
ing created with different painting styles [9], and generate
images that are practically indistinguishable from real pho-
tos [10]. ANNs can also be applied to synthesise musical
audio waveform data [8], or translate music across musical
instruments, genres, and styles [15].

Because neural networks can be trained to produce data
learned from real-world examples, they can be good candi-
dates for producing musical scores or performances without
the need to program the rules of music theory manually.
Deep Artificial Composer [5] can for example generate mono-
phonic melodies resembling specified musical styles, and
Performance RNN [17] can create polyphonic music with ex-
pressive timing and dynamics. Recently, interactive systems
including ANN music generation have started to appear, e.g.,
RoboJam [13], a touchscreen music app that performs re-

68

sponses to short improvisations, and Piano Genie [7], which
allows non-musicians to improvise on the piano. Neural nets
can also be used to aid musicians in live performances, such
as intelligent drum machines able to generate variants of
rhythmic patterns provided as input by the user [19]. There
is now potential to embed neural nets within smart musi-
cal instruments [18], or to create self-contained ANN music
generators that could be used on stage or in the studio.

2.1 Artificial Neural Networks
ANNs were originally designed to imitate, in a simple way,
the functionality of neurons in a real brain [4]. The basic
building blocks are artificial neurons that take multiple input
values, multiply them by respective weights and produce an
output value. The input values can represent anything from
pixels in an image to MIDI note values. Large numbers of
these neurons are interconnected and arranged in a series
of layers to form a network that can be trained for different
applications such as pattern recognition and image classi-
fication. During training, the network is exposed to large
numbers of examples with input values and expected output
values. Based on the errors encountered in processing these
examples, the network will adjust its weights to adapt to
the training data.

2.1.1 Recurrent Neural Networks
Since music can be represented as a sequence of notes, the
network must be able to predict this sequence based on
both current and previous inputs; otherwise, the generated
music will have no musical coherency. Recurrent neural
networks (RNNs), are designed for the purpose of working
with data sequences, and have been demonstrated to manage
this task. The output of an RNN depends not only on its
current inputs, but also on an internal state value that holds
information from previous time steps, which allows it to
learn to make decisions based on information it has seen in
the past.

2.1.2 Long Short-Term Memory
Long short-term memory (LSTM) is a commonly used vari-
ant of RNNs that is able to capture much longer sequences
than a regular simple RNN, which has a tendency to forget
information when the sequences become longer. The LSTM
achieves this by having an additional internal state called a
“cell state” where information can be allowed to pass freely
to later time steps, and by using a set of multiplicative gates
to control the flow of information. There are three gates: an
input gate, an output gate and a “forget gate”. The input
gate controls the information added to the cell state, making
sure that irrelevant inputs do not pass through. Similarly,
the output gate makes sure that irrelevant content is not
passed along. The forget gate allows LSTM cells to reset
when the content is no longer needed.

2.2 Music on Embedded Devices
Desktop computers and laptops are a well-established cen-
tral component of digital musical instruments, but the use
of single-board computers and embedded systems is becom-
ing increasingly common. With the growing computing
power and availability of single-board computers and mi-
crocontrollers, new platforms for creating digital musical
instruments appear [14, 3]. Such platforms make it easy
to prototype embedded instruments for performances and
installations [16].

Self-contained, or embedded, instrument designs come
with several advantages over the use of, for example, a laptop
and simple microcontroller-based interface. The increased
processing power of single-board computers allows more

Figure 2: Close-up view of the physical intelligent
instrument. The system has a built-in speaker and
two knobs to control volume and sampling “temper-
ature.”

Figure 3: Diagram of the system. A generative mu-
sic RNN model runs on a Raspberry Pi. The audio
output goes through an amplifier with a potentiome-
ter volume control and is played back on the built-in
speaker. An analog-to-digital converter reads the
voltage across a second potentiometer to control
sampling temperature. The user can interact with
the system by adjusting the two potentiometers.

computationally intensive tasks to be performed natively
than on a microcontroller, eliminating the need for external
computers. Removing the use of general-purpose computers
that are not dedicated to the instrument prototype can
also increase longevity, as changes in other software might
affect the functionality of the system [2]. The stability and
portability of these systems suggest that they can be useful
to artists who apply them within instrumental setups in live
performance, or in their studios.

3. DESIGN AND IMPLEMENTATION
Our physical intelligent instrument system, shown in Figure
2, consists of a box with a speaker and two knobs that
the user can use to adjust certain parameters of musical
predictions and playback. The system is designed to run
music generation RNN models, and continually synthesise
and sonify generated notes through an on-board speaker.

Figure 3 shows an overview of the system. The software
runs on a Raspberry Pi Model 3 B+ single-board computer.
An analog-to-digital converter (ADS1115) reads the voltage
across a potentiometer to control the sampling temperature,
and a 2.5 W mono audio amplifier (PAM8302), with another
potentiometer for gain control, drives the speaker. The
inside of the instrument is shown in Figure 4.

69

Figure 4: Hardware inside the enclosure. Hardware
components consist of a Raspberry Pi, an analog-
to-digital converter, two potentiometers, an audio
amplifier and a speaker.

Figure 5: Notes are represented as integers with
sixteenth note duration. 60, 64, 66 and 67 represent
MIDI note numbers. 129 means no change, so the
previous note will be held until a new note is played,
or a value of 128 turns the note off.

3.1 Musical Representation
The system encodes music using sequences of integers in
the range 0–129. 0–127 are pitches from the standard MIDI
format, 128 tells the system to stop the note that was playing,
and 129 represents no change. Each integer event has a
duration of one sixteenth note. An example of the encoding
is shown in Figure 5.

3.2 Network Architecture
The music generation RNN for the system is implemented
in Python, using the Keras deep learning framework [4].
The RNN is in an auto-regression configuration, having
been trained to predict the next in a sequence of notes. By
returning the output of the RNN to the input, a continuous
stream of musical notes can be generated.

The model consists of two LSTM layers with 256 cells
each, an embedding layer on the input, and a dense layer
with a softmax activation function on the output. The em-
bedding layer transforms the input integer representation
of notes into vectors of fixed size that the two LSTM layers
can process hierarchically. The dense layer with softmax
activation then projects the output from the LSTM lay-
ers back into probability distributions over possible note
values. This style of neural network has been effectively
used for creative sequence-learning tasks such as character-
level text generation (CharRNN [11]), and music generation
(MelodyRNN [1]).

3.3 Training
The training data is a set of 405 Bach chorales from the
Music21 toolkit [6]. These chorales were split into four

separate voices (soprano, alto, tenor and bass), and each
voice was used as a single melody during training, giving
a total of 1620 training examples of monophonic melodies.
All melody lines were transposed to C major and A minor
prior to training.

We trained the model for approximately 150 epochs with
the Adam optimizer [12] and sparse categorical cross-entropy
loss function, using a 90/10 training/validation split. Train-
ing was performed on an Nvidia GTX1070ti GPU. Due to
the small size of the dataset, the model began to overfit
before converging to a low loss value. It can be argued
that this is not a big problem for this type of system, as
the generated music should be perceived as pleasing to the
human ear.

3.4 Sampling and Playback
When we sample from the model, it returns a vector of
probability distributions over all possible note values. From
this distribution, we can find the most probable next note
based on previously predicted notes in the sequence. Two
processes—one for sampling, and one for playback—run in
parallel. The model is given a seed note as a starting point
that it uses to predict the next notes in the sequence. After
each prediction, the last note of the previous sequence is
stored to be used as the seed for the next. This allows the
model to play a continuous melody. The playback process
sends notes over an internal MIDI connection for synthesis
via the Timidity++ software synthesiser and FluidR3 sound-
font. A shell script is used to ensure that the instrument
processes are automatically started on boot. This, and the
built-in speaker and controls, means that the instrument is
completely self-contained and requires only USB power for
performance.

3.5 User Interaction
After booting, the instrument will automatically start to play
a continuous monophonic melody sampled from the LSTM
network. By turning the two knobs on the instrument, the
user can adjust two parameters of the system: volume and
temperature. Temperature in this context is a hyperparame-
ter that can be used to control the randomness of predictions
by scaling outputs from the LSTM before applying softmax
to calculate the probability distribution. A low temperature
makes the model more conservative, making it less likely
to sample from unlikely notes, while a higher temperature
softens the probability distribution and allows the model to
choose notes with a lower probability more often. Predic-
tions with higher temperatures are more diverse, but can
also have more mistakes. We use a temperature range of
0–10 in our model.

4. DISCUSSION
To give the feeling of real-time response from the instrument,
we wanted to make sure the temperature adjustments begin
to take effect as quickly as possible. Even though the system
is fast enough to predict and play single notes, we found
that predicting a sequence of two notes instead reduces
the overhead without making any noticeable change in the
response time from the temperature adjustment controls.
This is not a big concern at this time, but might become
more important when expanding the instrument with more
functionality in the future.

The most important interaction in this context is the tem-
perature control, which has a big impact on the generated
melodies. At a temperature of 1, we can hear that the LSTM
network has learned the structure and important musical
elements of Bach chorales. When we increase the temper-
ature to mid-range, the music begins to sound more like

70

experimental jazz, while still retaining some of the chorale
elements. At higher temperatures, the music sounds like
completely random notes, especially at max temperature
where there is almost no coherency or structure. At the
lowest temperature, the music tends to get stuck at a single
note or pattern very quickly. We would argue that having
the option to control the diversity of the generated melody
results in a more enjoyable and rewarding user experience.
There is another advantage of having a way to control the
sampling temperature. When generating longer sequences,
an LSTM network will often converge to a fixed state and
become very repetitive. If this happens, the user can increase
the temperature to make sure the model will include some
more unlikely notes.

In our experience, the instrument is quite fun to use, and
it grants the feeling of having some control over the music,
even though it is generated by the LSTM model. However,
more ways of interaction could be added in order to make
this prototype a complete instrument, as it can become a
little monotonous after a while. Possible extensions could
be tempo control, choice of software synthesisers, or a MIDI
interface where the user can connect a keyboard to play along
with the instrument. It could also be useful to implement a
way of choosing between multiple models trained on different
data sets. If the users wants to train and test their own
models, being able to switch between them would result in
a more versatile instrument.

Experience with this system so far suggests that music
generation RNNs could be a useful tool in music-making
for both unskilled and expert users. Our system allows
the sampling process to be explored in real-time during
improvisation. As our system is self-contained, it can easily
be integrated with other music-making devices, such as
hardware synthesisers, or commercial music controllers.

5. CONCLUSIONS
In this paper, we have introduced a self-contained, physi-
cal, intelligent instrument that uses a deep recurrent neural
network to generate music and supports real-time user in-
teraction. Our work so far has demonstrated that real-time
generation of music using an RNN is feasible on an embed-
ded instrument using a Raspberry Pi. This system allows
sampling diversity, or temperature, of the neural network
model to be explored in real-time performance. Our initial
explorations with the system suggest that this interaction,
albeit simple, may help over some of the limitations of RNN
music generation; in particular, the propensity for such mod-
els to become caught up in repetitive sequences. The fact
that the RNN is made interactive may compensate for a
model that is somewhat overtrained on a limited dataset. In
future work we seek to understand how this system could
form part of everyday music-making setups, and what kind
of music it could afford or suggest. We are currently ex-
perimenting with an enhanced system that allows users to
switch between different trained RNN models, between dif-
ferent software synthesisers, and to change tempo. This
allows music from different styles or idioms to be generated.
Code and schematics for both instrument versions is openly
accessible on GitHub.1

6. ACKNOWLEDGMENTS
This work is supported by The Research Council of Norway
as part of the Engineering Predictability with Embodied
Cognition (EPEC) project #240862, the Collaboration on
Intelligent Machines (COINMAC) project #261645, and the
Centres of Excellence scheme, project #262762.
1https://github.com/edrukar/intelligent instrument

7. REFERENCES
[1] D. Abolafia. A recurrent neural network music

generation tutorial. [Magenta Project Blog Post], 2016.

[2] E. Berdahl. How to make embedded acoustic
instruments. In Proc. NIME ’14, pages 140–143, 2014.

[3] E. Berdahl and W. Ju. Satellite CCRMA: A musical
interaction and sound synthesis platform. In Proc.
NIME ’11, pages 173–178, 2011.

[4] F. Chollet. Deep learning with Python. Manning
Publications Co, 2018.

[5] F. Colombo, A. Seeholzer, and W. Gerstner. Deep
artificial composer: A creative neural network model
for automated melody generation. In Computational
Intelligence in Music, Sound, Art and Design, pages
81–96. Springer, 2017.

[6] M. S. Cuthbert and C. Ariza. Music21: A toolkit for
computer-aided musicology and symbolic music data.
In ISMIR, pages 637–642. International Society for
Music Information Retrieval, 2010.

[7] C. Donahue, I. Simon, and S. Dieleman. Piano genie.
In Proc. IUI, 2019. doi:10.1145/3301275.3302288.

[8] J. Engel, C. Resnick, A. Roberts, S. Dieleman, D. Eck,
K. Simonyan, and M. Norouzi. Neural Audio Synthesis
of Musical Notes with WaveNet Autoencoders. In Proc.
ICML, 2017.

[9] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style
transfer using convolutional neural networks. In Proc.
CVPR, pages 2414–2423, 2016.

[10] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and
D. Wierstra. Draw: A recurrent neural network for
image generation. In Proc. ICML, volume 37, pages
1462–1471, 2015.

[11] A. Karpathy. The unreasonable effectiveness of
recurrent neural networks. Published on Andrej
Karpathy’s blog, May 2015.

[12] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. ICLR 2015, 2015.

[13] C. P. Martin and J. Torresen. RoboJam: A musical
mixture density network for collaborative touchscreen
interaction. In Computational Intelligence in Music,
Sound, Art and Design: International Conference,
EvoMUSART, 2018.
doi:10.1007/978-3-319-77583-8_11.

[14] A. McPherson and V. Zappi. An environment for
submillisecond-latency audio and sensor processing on
beaglebone black. In Audio Engineering Society
Convention 138. Audio Engineering Society, 2015.

[15] N. Mor, L. Wolf, A. Polyak, and Y. Taigman. A
universal music translation network. ArXiV ePrint,
2018. arXiv:1805.07848.

[16] V. E. G. Sanchez, A. Zelechowska, C. P. Martin,
V. Johnson, K. A. V. Bjerkestrand, and A. R.
Jensenius. Bela-based augmented acoustic guitars for
inverse sonic microinteraction. In Proc. NIME ’18,
page 324–327, 2018.

[17] I. Simon and S. Oore. Performance rnn: Generating
music with expressive timing and dynamics. [Magenta
Project Blog Post], June 2017.

[18] L. Turchet. Smart musical instruments: Vision, design
principles, and future directions. IEEE Access,
7:8944–8963, 2019.

[19] R. Vogl and P. Knees. An intelligent drum machine for
electronic dance music production and performance. In
Proc. NIME ’17, pages 251–256, 2017.

71

72

Bibliography

[1] I. Poupyrev, M. J. Lyons, S. Fels and T. Blaine (Bean), ‘New interfaces
for musical expression’, in CHI ’01 Extended Abstracts on Human
Factors in Computing Systems, ser. CHI EA ’01, Seattle, Washington:
ACM, 2001, pp. 491–492. DOI: 10.1145/634067.634348.

[2] S. Dubnov, G. Assayag, O. Lartillot and G. Bejerano, ‘Using machine-
learning methods for musical style modeling’, Computer, vol. 36,
no. 10, pp. 73–80, Oct. 2003. DOI: 10.1109/MC.2003.1236474.

[3] B. Caramiaux and A. Tanaka, ‘Machine learning of musical gestures’,
in Proceedings of the International Conference on New Interfaces for
Musical Expression, Daejeon, Republic of Korea, May 2013, pp. 513–
518.

[4] Magenta, Magenta. [Online]. Available: https://magenta.tensorflow.
org/ (visited on 30/07/2018).

[5] S. Oore, I. Simon, S. Dieleman, D. Eck and K. Simonyan, ‘This
time with feeling: Learning expressive musical performance’, Neural
Computing and Applications, Nov. 2018. DOI: 10 . 1007 / s00521 - 018 -
3758-9.

[6] NIME – The International Conference on New Interfaces for Musical
Expression. [Online]. Available: https://www.nime.org/ (visited on
31/05/2019).

[7] P. R. Cook, ‘Principles for designing computer music controllers’, in
Proceedings of the International Conference on New Interfaces for Musical
Expression, Seattle, WA, 2001, pp. 3–6.

[8] T. Mitchell and I. Heap, ‘Soundgrasp : A gestural interface for
the performance of live music’, in Proceedings of the International
Conference on New Interfaces for Musical Expression, Oslo, Norway,
2011, pp. 465–468.

[9] O. Bown and S. Ferguson, ‘A musical game of bowls using the
diads’, in Proceedings of the International Conference on New Interfaces
for Musical Expression, vol. 16, Brisbane, Australia, 2016, pp. 371–372.

[10] V. E. Gonzalez Sanchez, C. P. Martin, A. Zelechowska, K. A. V.
Bjerkestrand, V. Johnson and A. R. Jensenius, ‘Bela-based augmented
acoustic guitars for sonic microinteraction’, in Proceedings of the
International Conference on New Interfaces for Musical Expression,
Blacksburg, Virginia, USA, Jun. 2018, pp. 324–327.

73

https://doi.org/10.1145/634067.634348
https://doi.org/10.1109/MC.2003.1236474
https://magenta.tensorflow.org/
https://magenta.tensorflow.org/
https://doi.org/10.1007/s00521-018-3758-9
https://doi.org/10.1007/s00521-018-3758-9
https://www.nime.org/

[11] G. Beyer and M. Meier, ‘Music interfaces for novice users : Compos-
ing music on a public display with hand gestures’, in Proceedings of the
International Conference on New Interfaces for Musical Expression, Oslo,
Norway, 2011, pp. 507–510.

[12] M. Hölzl, G. Denker, M. Meier and M. Wirsing, ‘Constraint-muse:
A soft-constraint based system for music therapy’, in Algebra and
Coalgebra in Computer Science, Berlin, Heidelberg, 2009, pp. 423–432.

[13] M. Luhtala, T. Kymäläinen and J. Plomp, ‘Designing a music
performance space for persons with intellectual learning disabilities’,
in Proceedings of the International Conference on New Interfaces for
Musical Expression, Oslo, Norway, 2011, pp. 429–432.

[14] A. McPherson and V. Zappi, ‘An environment for submillisecond-
latency audio and sensor processing on beaglebone black’, in Audio
Engineering Society Convention 138, Jan. 2015, pp. 965–971.

[15] BeagleBoard.org - black. [Online]. Available: https://beagleboard.org/
black (visited on 25/03/2019).

[16] G. Moro, A. Bin, R. H. Jack, C. Heinrichs and A. P. McPherson,
‘Making high-performance embedded instruments with bela and
pure data’,

[17] V. E. Gonzalez Sanchez, C. P. Martin, A. Zelechowska, K. A. V.
Bjerkestrand, V. Johnson and A. R. Jensenius, Sverm-Resonans at
Ultima - RITMO Centre for Interdisciplinary Studies in Rhythm, Time and
Motion. [Online]. Available: https://www.uio.no/ritmo/english/
projects/all/sverm/events/2017/ultima/index.html (visited on
31/07/2019).

[18] E. Berdahl and W. Ju, ‘Satellite ccrma: A musical interaction and
sound synthesis platform’, in Proceedings of the International Conference
on New Interfaces for Musical Expression, Oslo, Norway, 2011, pp. 173–
178.

[19] E. Berdahl, S. Salazar and M. Borins, ‘Embedded networking and
hardware-accelerated graphics with satellite ccrma’, in Proceedings
of the International Conference on New Interfaces for Musical Expression,
Daejeon, Republic of Korea, May 2013, pp. 325–330.

[20] E. Berdahl and C. Chafe, ‘Autonomous new media artefacts
(autonma)’, in Proceedings of the International Conference on New In-
terfaces for Musical Expression, Oslo, Norway, 2011, pp. 322–323.

[21] E. Berdahl, ‘How to make embedded acoustic instruments’, in
Proceedings of the International Conference on New Interfaces for Musical
Expression, London, United Kingdom, 2014, pp. 140–143.

[22] A. Pajankar, ‘Introduction to single board computers and raspberry
pi’, in Raspberry Pi Image Processing Programming: Develop Real-Life
Examples with Python, Pillow, and SciPy. Berkeley, CA: Apress, 2017,
pp. 1–24, ISBN: 978-1-4842-2731-2.

74

https://beagleboard.org/black
https://beagleboard.org/black
https://www.uio.no/ritmo/english/projects/all/sverm/events/2017/ultima/index.html
https://www.uio.no/ritmo/english/projects/all/sverm/events/2017/ultima/index.html

[23] Raspberry Pi — Teach, Learn, and Make with Raspberry Pi. [Online].
Available: https://www.raspberrypi.org/ (visited on 25/03/2019).

[24] Tinker Board | Single Board Computer | ASUS Global. [Online].
Available: https://www.asus.com/Single-Board-Computer/Tinker-
Board/specifications/ (visited on 25/03/2019).

[25] Embedded Systems Developer Kits, Modules, & SDKs | NVIDIA Jetson.
[Online]. Available: https://www.nvidia.com/en-us/autonomous-
machines / embedded - systems - dev - kits - modules/ (visited on
25/03/2019).

[26] J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D.
Eck and K. Simonyan, ‘Neural audio synthesis of musical notes
with wavenet autoencoders’, in Proceedings of the 34th International
Conference on Machine Learning - Volume 70, Sydney, NSW, Australia,
2017, pp. 1068–1077.

[27] N. Mor, L. Wolf, A. Polyak and Y. Taigman, ‘A universal music
translation network’, ArXiV ePrint, 2018. arXiv: 1805.07848.

[28] M. C. MOZER, ‘Neural network music composition by prediction:
Exploring the benefits of psychoacoustic constraints and multi-scale
processing’, Connection Science, vol. 6, no. 2-3, pp. 247–280, 1994. DOI:
10.1080/09540099408915726.

[29] S. Hochreiter and J. Schmidhuber, ‘Long short-term memory’, Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. DOI: 10.1162/neco.
1997.9.8.1735.

[30] D. Eck and J. Schmidhuber, ‘Finding temporal structure in music:
Blues improvisation with lstm recurrent networks’, in Proceedings of
the 12th IEEE Workshop on Neural Networks for Signal Processing, Sep.
2002, pp. 747–756. DOI: 10.1109/NNSP.2002.1030094.

[31] B. L. Sturm, J. F. Santos, O. Ben-Tal and I. Korshunova, ‘Music
transcription modelling and composition using deep learning’, in
Proceedings of the 1st Conference on Computer Simulation of Musical
Creativity, 2016.

[32] F. Colombo, A. Seeholzer and W. Gerstner, ‘Deep artificial composer:
A creative neural network model for automated melody generation’,
in Computational Intelligence in Music, Sound, Art and Design, Cham,
2017, pp. 81–96.

[33] H. Lim, S. Rhyu and K. Lee, ‘Chord generation from symbolic
melody using BLSTM networks’, in Proc. ISMIR, 2017. arXiv: 1712.
01011.

[34] A. Faitas, S. E. Baumann, T. R. Næss, J. Torresen and C. P. Martin,
‘Generating convincing harmony parts with simple long short-term
memory networks’, in Proceedings of the International Conference on
New Interfaces for Musical Expression, Porto Alegre, Brazil, Jun. 2019,
pp. 325–330.

75

https://www.raspberrypi.org/
https://www.asus.com/Single-Board-Computer/Tinker-Board/specifications/
https://www.asus.com/Single-Board-Computer/Tinker-Board/specifications/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
http://arxiv.org/abs/1805.07848
https://doi.org/10.1080/09540099408915726
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/NNSP.2002.1030094
http://arxiv.org/abs/1712.01011
http://arxiv.org/abs/1712.01011

[35] G. Grimmett and D. Stirzaker, Probability and random processes,
ser. Oxford science publications. Clarendon Press, 1985, ISBN:
9780198531852.

[36] G. Nierhaus, Algorithmic Composition: Paradigms of Automated Music
Generation, eng. Vienna: Springer Vienna, 2009, ISBN: 9783211755396.

[37] M. Allan and C. K. I. Williams, ‘Harmonising chorales by probabil-
istic inference’, in Advances in Neural Information Processing Systems,
vol. 17, 2005.

[38] I. Simon, D. Morris and S. Basu, ‘Mysong: Automatic accompaniment
generation for vocal melodies’, in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, Florence, Italy, 2008, pp. 725–
734. DOI: 10.1145/1357054.1357169.

[39] P. M. Todd and G. Loy, ‘A connectionist approach to algorithmic
composition’, in Music and Connectionism. MITP, 2003, ISBN: 9780262285032.

[40] A. Graves, ‘Generating sequences with recurrent neural networks’,
ArXiv, vol. abs/1308.0850, 2013.

[41] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-Z. A. Huang, S.
Dieleman, E. Elsen, J. Engel and D. Eck, ‘Enabling factorized piano
music modeling and generation with the MAESTRO dataset’, in
International Conference on Learning Representations, 2019.

[42] L. Turchet, ‘Smart musical instruments: Vision, design principles,
and future directions’, IEEE Access, vol. 7, pp. 8944–8963, 2019.

[43] C. Donahue, I. Simon and S. Dieleman, ‘Piano genie’, in Proceedings
of the 24th International Conference on Intelligent User Interfaces, Marina
del Ray, California, 2019, pp. 160–164. DOI: 10.1145/3301275.3302288.

[44] NSynth Super. [Online]. Available: https://nsynthsuper.withgoogle.
com/ (visited on 25/06/2019).

[45] R. Vogl and P. Knees, ‘An intelligent drum machine for electronic
dance music production and performance’, in Proceedings of the
International Conference on New Interfaces for Musical Expression,
Copenhagen, Denmark, 2017, pp. 251–256.

[46] F. Pachet, ‘The continuator: Musical interaction with style’, Journal of
New Music Research, vol. 32, pp. 333–341, Aug. 2010. DOI: 10.1076/
jnmr.32.3.333.16861.

[47] Play a duet with a computer, through machine learning, Google, 16th Feb.
2017. [Online]. Available: https://www.blog.google/technology/
ai / play - duet - computer - through - machine - learning/ (visited on
01/08/2018).

[48] C. P. Martin, K. O. Ellefsen and J. Torresen, ‘Deep models for
ensemble touch-screen improvisation’, in Proceedings of the 12th
International Audio Mostly Conference on Augmented and Participatory
Sound and Music Experiences, London, United Kingdom, Aug. 2017.
DOI: 10.1145/3123514.3123556.

76

https://doi.org/10.1145/1357054.1357169
https://doi.org/10.1145/3301275.3302288
https://nsynthsuper.withgoogle.com/
https://nsynthsuper.withgoogle.com/
https://doi.org/10.1076/jnmr.32.3.333.16861
https://doi.org/10.1076/jnmr.32.3.333.16861
https://www.blog.google/technology/ai/play-duet-computer-through-machine-learning/
https://www.blog.google/technology/ai/play-duet-computer-through-machine-learning/
https://doi.org/10.1145/3123514.3123556

[49] C. P. Martin and J. Torresen, ‘Robojam: A musical mixture density
network for collaborative touchscreen interaction’, in Computational
Intelligence in Music, Sound, Art and Design, 2018, pp. 161–176. DOI:
10.1007/978-3-319-77583-8_11.

[50] F. Chollet, Deep Learning with Python. Manning, Nov. 2017, ISBN:
9781617294433.

[51] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[52] G. Chen, ‘A gentle tutorial of recurrent neural network with error
backpropagation’, CoRR, vol. abs/1610.02583, 2016. arXiv: 1610 .
02583. [Online]. Available: http://arxiv.org/abs/1610.02583.

[53] L. Verwimp, J. Pelemans, H. V. hamme and P. Wambacq, ‘Character-
word lstm language models’, in Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics, 2017,
pp. 417–427.

[54] P. P. Barman and A. Boruah, ‘A rnn based approach for next
word prediction in assamese phonetic transcription’, eng, Procedia
Computer Science, vol. 143, pp. 117–123, 2018.

[55] I. Sutskever, J. Martens and G. Hinton, ‘Generating text with
recurrent neural networks’, in Proceedings of the 28th International
Conference on International Conference on Machine Learning, Bellevue,
Washington, USA, 2011, pp. 1017–1024.

[56] T. Mikolov, I. Sutskever, A. Deoras, L. Hai Son, S. Kombrink and J.
Cernock, ‘Subword language modeling with neural networks’, Jun.
2012.

[57] D. Abolafia, A recurrent neural network music generation tutorial,
[Magenta Project Blog Post], 2016. [Online]. Available: https : / /
magenta.tensorflow.org/2016/06/10/recurrent- neural- network-
generation-tutorial.

[58] K. Choi, G. Fazekas and M. B. Sandler, ‘Text-based lstm networks for
automatic music composition’, in Proceedings of the 1st Conference on
Computer Simulation of Musical Creativity, 2016.

[59] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk and Y. Bengio, ‘Learning phrase representations using
RNN encoder–decoder for statistical machine translation’, in Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Doha, Qatar, Oct. 2014, pp. 1724–1734. DOI: 10.
3115/v1/D14-1179.

[60] I. Sutskever, O. Vinyals and Q. V. Le, ‘Sequence to sequence
learning with neural networks’, in Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2,
Montreal, Canada, 2014, pp. 3104–3112.

77

https://doi.org/10.1007/978-3-319-77583-8_11
http://www.deeplearningbook.org
http://arxiv.org/abs/1610.02583
http://arxiv.org/abs/1610.02583
http://arxiv.org/abs/1610.02583
https://magenta.tensorflow.org/2016/06/10/recurrent-neural-network-generation-tutorial
https://magenta.tensorflow.org/2016/06/10/recurrent-neural-network-generation-tutorial
https://magenta.tensorflow.org/2016/06/10/recurrent-neural-network-generation-tutorial
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179

[61] F. Chollet, A ten-minute introduction to sequence-to-sequence learning in
Keras. [Online]. Available: https : / / blog . keras . io / a - ten - minute -
introduction - to - sequence - to - sequence - learning - in - keras . html
(visited on 31/07/2019).

[62] T. R. Næss and C. P. Martin, ‘A physical intelligent instrument
using recurrent neural networks’, in Proceedings of the International
Conference on New Interfaces for Musical Expression, Porto Alegre,
Brazil, Jun. 2019, pp. 79–82.

[63] D. Self, Small signal audio design. amsterdam: Elsevier, 2010, ISBN:
9780240521770.

[64] TensorFlow 1.9 Officially Supports the Raspberry Pi - Medium. [Online].
Available: https : / / medium . com / tensorflow / tensorflow - 1 -
9 - officially - supports - the - raspberry - pi - b91669b0aa0 (visited on
26/06/2019).

[65] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogen-
eous systems, Software available from tensorflow.org, 2015. [Online].
Available: http://tensorflow.org/.

[66] Potentiometer. [Online]. Available: http://www.resistorguide.com/
potentiometer/ (visited on 11/07/2019).

[67] ADS1115 16-Bit ADC - 4 Channel with Programmable Gain Amplifier.
[Online]. Available: https : / / www. adafruit . com / product / 1085
(visited on 26/06/2019).

[68] Adafruit Mono 2.5W Class D Audio Amplifier - PAM8302. [Online].
Available: https ://www.adafruit . com/product/2130 (visited on
21/06/2019).

[69] GM 1 Sound Set. [Online]. Available: https : / / www . midi . org /
specifications - old / item / gm - level - 1 - sound - set (visited on
26/06/2019).

[70] Introduction to Incremental Encoders. [Online]. Available: http : / /
www.sensoray.com/support/appnotes/encoders.htm (visited on
26/06/2019).

[71] Monochrome 0.96 128x64 OLED graphic display. [Online]. Available:
https://www.adafruit.com/product/326 (visited on 21/06/2019).

[72] F. Chollet et al., Keras, https://keras.io, 2015.

[73] A. Graves, A.-r. Mohamed and G. E. Hinton, ‘Speech recognition with
deep recurrent neural networks’, 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 6645–6649, 2013.

[74] M. S. Cuthbert and C. Ariza, Music21: A Toolkit for Computer-Aided
Musicology and Symbolic Music Data, 2010.

[75] The Midi Shrine peps - Game Music MIDI files. [Online]. Available: http:
//www.midishrine.com/ (visited on 25/03/2019).

[76] P. Sky, Ryan’s Mammoth Collection of Fiddle Tunes. Mel Bay Publica-
tions, Inc, Sep. 1995, ISBN: 0-7866-0300-3.

78

https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://medium.com/tensorflow/tensorflow-1-9-officially-supports-the-raspberry-pi-b91669b0aa0
https://medium.com/tensorflow/tensorflow-1-9-officially-supports-the-raspberry-pi-b91669b0aa0
http://tensorflow.org/
http://www.resistorguide.com/potentiometer/
http://www.resistorguide.com/potentiometer/
https://www.adafruit.com/product/1085
https://www.adafruit.com/product/2130
https://www.midi.org/specifications-old/item/gm-level-1-sound-set
https://www.midi.org/specifications-old/item/gm-level-1-sound-set
http://www.sensoray.com/support/appnotes/encoders.htm
http://www.sensoray.com/support/appnotes/encoders.htm
https://www.adafruit.com/product/326
https://keras.io
http://www.midishrine.com/
http://www.midishrine.com/

[77] C. Martin, Cpmpercussion/creative-prediction v1.0 [Git Repository], Nov.
2018. DOI: 10.5281/zenodo.1494040.

[78] G. Mazzola, ‘Symmetries and Morphisms’, in The Topos of Music I:
Theory: Geometric Logic, Classification, Harmony, Counterpoint, Motives,
Rhythm, Cham: Springer International Publishing, 2017, pp. 113–144,
ISBN: 978-3-0348-8141-8.

[79] D. Scherer, A. Müller and S. Behnke, ‘Evaluation of pooling opera-
tions in convolutional architectures for object recognition’, in Artifi-
cial Neural Networks – ICANN 2010, Berlin, Heidelberg, 2010, pp. 92–
101.

[80] J. Liu, A. Shahroudy, D. Xu and G. Wang, ‘Spatio-temporal lstm with
trust gates for 3d human action recognition’, in Computer Vision –
ECCV 2016, Cham, 2016, pp. 816–833.

[81] D. P. Kingma and J. Ba, ‘Adam: A method for stochastic optimiza-
tion’, in Proc. ICLR, 2015. arXiv: 1412.6980.

[82] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R.
Salakhutdinov, ‘Dropout: A simple way to prevent neural net-
works from overfitting’, Journal of Machine Learning Research, vol. 15,
pp. 1929–1958, 2014.

[83] A. Karpathy, The unreasonable effectiveness of recurrent neural networks,
Published on Andrej Karpathy’s blog, May 2015. [Online]. Available:
http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

[84] J. Barbosa, J. Malloch, M. M. Wanderley and S. Huot, ‘What does
“Evaluation” mean for the NIME community?’, in NIME 2015 - 15th
International Conference on New Interfaces for Musical Expression, May
2015, pp. 156–161.

[85] S. O’Modhrain, ‘A framework for the evaluation of digital musical
instruments’, Computer Music Journal, vol. 35, pp. 28–42, Mar. 2011.
DOI: 10.1162/COMJ_a_00038.

[86] L.-C. Yang and A. Lerch, ‘On the evaluation of generative models in
music’, Neural Computing and Applications, Nov. 2018. DOI: 10.1007/
s00521-018-3849-7.

[87] W. Bruine de Bruin, ‘Save the last dance for me: Unwanted serial po-
sition effects injury evaluations’, Acta psychologica, vol. 118, pp. 245–
60, Apr. 2005. DOI: 10.1016/j.actpsy.2004.08.005.

[88] L. Damisch, T. Mussweiler and H. Plessner, ‘Olympic medals
as fruits of comparison? assimilation and contrast in sequential
performance judgments’, Journal of experimental psychology. Applied,
vol. 12, pp. 166–78, Oct. 2006. DOI: 10.1037/1076-898X.12.3.166.

[89] Kruskal-Wallis H Test in SPSS Statistics. [Online]. Available: https://
statistics . laerd .com/spss- tutorials/kruskal - wallis - h- test - using-
spss-statistics.php (visited on 13/07/2019).

79

https://doi.org/10.5281/zenodo.1494040
http://arxiv.org/abs/1412.6980
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://doi.org/10.1162/COMJ_a_00038
https://doi.org/10.1007/s00521-018-3849-7
https://doi.org/10.1007/s00521-018-3849-7
https://doi.org/10.1016/j.actpsy.2004.08.005
https://doi.org/10.1037/1076-898X.12.3.166
https://statistics.laerd.com/spss-tutorials/kruskal-wallis-h-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/kruskal-wallis-h-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/kruskal-wallis-h-test-using-spss-statistics.php

[90] Alpha Level (Significance Level): What is it? [Online]. Available: https:
//www.statisticshowto.datasciencecentral.com/what-is-an-alpha-
level/ (visited on 28/07/2019).

[91] Wilcoxon Signed Rank Test: Definition, How to Run. [Online]. Available:
https : / / www. statisticshowto . datasciencecentral . com / wilcoxon -
signed-rank-test/ (visited on 13/07/2019).

[92] V. Braun and V. Clarke, ‘Using thematic analysis in psychology’,
Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–101, 2006. DOI:
10.1191/1478088706qp063oa.

[93] A. Tanaka, A. Parkinson, Z. Settel and K. Tahiroglu, ‘A survey and
thematic analysis approach as input to the design of mobile music
guis’, in Proceedings of the International Conference on New Interfaces for
Musical Expression, Ann Arbor, Michigan, 2012.

80

https://www.statisticshowto.datasciencecentral.com/what-is-an-alpha-level/
https://www.statisticshowto.datasciencecentral.com/what-is-an-alpha-level/
https://www.statisticshowto.datasciencecentral.com/what-is-an-alpha-level/
https://www.statisticshowto.datasciencecentral.com/wilcoxon-signed-rank-test/
https://www.statisticshowto.datasciencecentral.com/wilcoxon-signed-rank-test/
https://doi.org/10.1191/1478088706qp063oa

	Introduction
	Motivation
	Goals
	Research Methods
	Thesis Outline

	Background
	New Interfaces for Musical Expression
	Music on Embedded Devices
	Single-Board Computers

	Machine Learning in Music Technology
	Magenta

	Musical Interaction with Machine Learning
	Artificial Neural Networks for Music Generation
	Recurrent Neural Networks
	Sequence Learning Architectures

	Design and Implementation
	Design Requirements
	Prototype 1
	Instrument Controls
	Hardware

	Prototype 2
	Additional Instrument Controls
	Additional Hardware

	Generative Model
	Architecture

	Datasets
	Bach Chorales
	Ryan’s Mammoth Collection
	Final Fantasy 7

	Data Pre-processing
	Note Encoding
	Transposition
	Creating Subsequences
	Removing Empty Sequences

	Training
	Sampling and Playback
	Temperature
	Tempo Control

	User Interaction

	Testing and Evaluation
	Generative Models
	Bach Chorales Model
	Ryan’s Mammoth Collection Model
	Final Fantasy 7 Model
	Effects of Different Sampling Temperatures

	System Design
	Evaluation based on Design Requirements
	Experiences from NIME 2019

	User Study
	Session Overview
	Data Analysis
	Results

	Discussion
	Feeling of Control and Interactivity
	Musical Quality and Model Preference
	Methodological Considerations
	Design Considerations

	Conclusion
	Future Work
	Design Improvements
	Additional Functionality

	Appendices
	NIME Paper

