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ABSTRACT

Columns in sway frames may be divided into laterally “supporting (bracing) sway

columns”, which can resist applied lateral shears, and “supported (braced) sway

columns”, which must have negative shears from the rest of the frame to support

them. The supported sway column acts like a braced column with an initial

displacement of one end relative to the other. The maximum moment will occur

at the end of a supporting sway column, but may occur between the ends of a

supported sway column. Mechanics of such columns, single or part of panels,

are studied using elastic second-order theory. The main objective is to establish

simple, explicit expressions for characteristic points in the moment versus axial

load space. Such results may be useful in teaching, in design practice to assist

in the assessment of the often complicated column response, and also useful as a

supplement to full, second-order structural analyses.
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1 Introduction

Design procedures for slender concrete and steel columns are most often based on

elastic analyses. Studies of elastic behaviour of individual columns are of inter-

est for several reasons: Elastic mechanics serve to demonstrate many aspects of

the mechanics of inelastic behaviour; The complexity of exact second-order ana-

lytical methods often obscures the understanding of the mechanics of individual

subassemblages or members; Design procedures in structural codes for slender

columns are most often based on elastic concepts.

This paper examines columns in elastic frames that are able to displace laterally

under load. Columns in such frames with sideways displacements (sidesway),

may be divided into laterally “supporting sway columns” (“bracing columns”,

“leaned-to columns”), which can resist applied lateral shears, and “supported

sway columns” (“braced”, “leaning columns”), which must have negative shears

from the rest of the frame to support them. A special case of the latter is the

column pinned at both ends. In cases without transverse loading, the maximum

moment will always occur at the end of a supporting sway column in a frame,

but may occur between the ends of a supported sway column. Supported sway

columns act like braced columns with an imposed relative end displacement (of

one end relative to the other). Whether a specific restrained column is to be

classified as one or the other, depends on the column’s flexural stiffness and axial

load.

The major objective of the paper is to study the mechanics of the response of rota-

tionally restrained columns with sidesway, over the full range of axial loads, thus

considering both supporting and supported sway columns. A one-level frame, or

a storey of a multistorey frame, may have both kinds of columns on the same

level. There is a vast literature covering various aspects of this theme. In this

paper, the emphasis is on identifying and establishing simple, novel closed form

expressions defining characteristic points, or behavioural “landmarks”, in the ax-

ial load-moment solution space. Apart from being of importance for the general

understanding of column mechanics, such results may be very useful in the teach-

ing of the subject, and helpful in design practice for correct understanding and

assessment of the often complicated column response, and, finally, useful as a

supplement to full second-order structural analysis.

Towards this goal, and for deriving and assessing approximate results, exact re-

sults are obtained according to second-order (small rotations) theory for an iso-

lated, restrained column, and for a panel with two columns, interacting through
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connecting beams. The columns considered are initially straight before loading

and are rotationally restrained at column ends by beams (surrounding struc-

ture). They have constant cross-sectional properties (EI) and constant axial

load (normal force N) along their lengths. No transverse loads are applied be-

tween columns ends. Shearing and axial deformations are neglected, and torsional

and out-of-plane bending phenomena are not considered.

2 Pseudo-critical loads and load indices

In describing the response of “framed” columns, that may be part of a larger

frame, specific, individual member load indices are often helpful when considering

the columns in isolation and will be used in this paper. These are primarily those

defined below:

αcr =
N

Ncr

; αs =
N

Ncs

; αb =
N

Ncb

; αE =
N

NE

(1 a− d)

where N is the axial force in the column and Ncr is system (storey) critical load of

the column at system instability. Ncs andNcb are critical loads of the column when

considered in isolation from the rest of the frame, but with rotational restraints

(to be assumed) corresponding to the respective bending mode (sway or braced)

of the real frame. Ncs is determined for the column considered completely free

to sway, and Ncb for the column considered fully braced. Except when the frame

consists of a single column, these are strictly pseudo-critical loads. They can be

very useful in column characterization and discussion.

For an elastic, framed member of length L, uniform axial load level and uni-

form sectional stiffness EI along the length, the critical loads above can in the

conventional manner be defined by

Ncr =
NE

β2
; Ncs =

NE

β2
s

; Ncb =
NE

β2
b

; NE =
π2EI

L2
(2 a− d)

Here, NE is the socalled Euler load (critical load of a pin-ended column), and is

a convenient reference load parameter in several contexts. The effective length

factor, β, is equal to βs and βb for the free-to-sway and the braced case, respec-

tively.

As defined, the load indices are interrelated. For instance, αE = αs/β
2
s or αE =

αb/β
2
b . The free-sway critical load is defined by αs = 1.0 or, for instance, αE =

1/β 2
s , and the braced critical load by αb = 1.0 or αE = 1/β 2

b .

3



3 Supporting an supported sway columns

Fig. 1(a) shows a laterally loaded frame that is not braced against sidesway, i.e, it

is free to sway. In the absence of axial forces in the columns, the lateral load (H)

gives rise to a first-order sway displacement ∆0, equal at all column tops when

axial beam deformations are neglected. The lateral load is resisted by column

shears (V 0) that are proportional to the relative lateral stiffness of the columns.

∆ B= S ∆0

2.14 0 −0.54

1 2 3 4

V =2.40

αs =0.1

1 2 3

V =1

∆

0.2 1.0

0

1 1 1

1.2
H=4

H=4

(a) Laterally loaded sway frame −− 1st order analysis

(b) Laterally loaded sway frame −− 2nd order analysis

4

0

Figure 1: Effects of axial loads on column shears in multibay sway frame: (a)

First and (b) second-order analysis (Bs = 2.67).

Under the additional action of axial forces, caused by vertical loads on the frame,

Fig. 1(b), the displacement increases to the total displacement ∆ = Bs∆0. Here

Bs is a sway displacement magnification factor that reflects the global (storey, or

system) second-order effects of axial loads. Had the individual columns, having

different axial load levels, been free to sway independent of each other, some

would sway more (the more flexible ones) and some less (the more stiff ones)

than the the overall frame. Since the interconnected columns are forced to act

together, a redistribution of shears will consequently have to take place, as seen

in Fig. 1(b).

To illustrate, consider for simplicity the lateral stiffness of all the columns in Fig.

1 to be equal, and that axial deformations in the connecting beams are negligible.

Then, a lateral load H = 4.0 causes a (first-order) shear of V0 = H/4 = 1.0 in
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each of the columns (Fig. 1(a)). If vertical loads now are applied, in Fig. 1(b)

given nondimensionally in terms of the free-sway load index αs(= N/Ncs) of each

column, the lateral displacement is increased and a redistribution of shears take

place between the columns, to approximately V1 = 0.9Bs, V2 = 0.8Bs, V3 = 0,

V4 = −0.2Bs (calculated using Eq. (35), presented later). Since the sum of these

shears (
∑
V = 1.5Bs) must equal the applied load H = 4, the displacement

magnifier becomes Bs = H/
∑
V = 2.67, and the final shears as those given in

the figure.

Columns 3 and 4 with αs=1.0 and 1.2, respectively, would fail sideways if they

acted independently. However, sidesway instability of these columns is prevented

by the interaction with the other columns since all the interconnected columns

must undergo an equal lateral displacement, ∆. In this process, the redistribution

of shears will be from the less stiff columns 3 and 4 to the stiffer columns 1 and

2.

In column 4, the shear has reversed direction. This column requires in other

words a negative shear to hold it in the position given by the frame. Rather than

resist the external lateral loads, this column adds to the lateral shears in columns

1 and 2.

In this paper a distinction will be made, as implied above, between

(a) “supporting columns” (bracing, leaned-to columns) which contribute to re-

sisting lateral loads and to bracing of other columns, and

(b) “supported columns”(partially braced, leaning columns) which do not con-

tribute to the lateral resistance and which will need lateral support from the

supporting columns. Such a column may be visualized as being allowed to un-

dergo a given sidesway and then braced against further sway.

In terms of the total shears, V , supporting sway columns are those in which V > 0

and supported sway columns are those for which V < 0.

4 Second-order analysis

4.1 General

Theoretical results will be obtained both for a panel frame, and for individual

columns isolated from a frame. For the latter case, it is of interest to derive
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explicit expressions. A tailor made analysis for this purpose is presented below.

For the panel frame, results are computed using a stiffness formulation of the

second-order theory that incorporates the the slope-deflection equations given

below (Section 4.3). Axial forces in beams are neglected.

4.2 Isolated column with given end displacement

The column studied is shown in Fig. 2(a). It is initially straight and has a

length L, uniform section stiffness EI and rotational end restraint stiffnesses

(equal to the moments required to give a unit rotation of one) labeled k1 and k2,

respectively, at ends 1 (top) and 2 (bottom). The rotational end restraints are

illustrated in the figure by beams rotationally restrained at the far ends. Only

lateral loading and vertical loading causing an axial load N are considered. The

combined effect of these loads is to give a relative lateral displacement ∆ = Bs∆0.

No gravity load induced moments (such as from loading on beams) are included.

V is the shear (lateral loading) required to give a displacement ∆.

∆= S ∆0B

V

N
−M

N

−M

V

∆

+

∆ 0

L EI

V

1

2
v

2θ

θ1

1

2

L

N

EI

b

b

(b)(a)

Figure 2: Column definition and sign convention.

The column can be considered in isolation from a greater frame. If so, the ro-

tational end restraints should reflect the rotational interaction with restraining

beams (“horizontal interaction”) at the joints, and, in multistorey frames, also

with other columns framing into the considered joint (“vertical interaction”).

A discussion on the determination of what end restraints are appropriate for

an isolate column study, is given in Hellesland (2009a) for analyses aimed at

computing moments and shears, and in Hellesland and Bjorhovde (1996a, 1996b)

for critical load analyses. For a brief discussion of the approach adopted in

conjunction with the panel studies in this paper, see Section 7.2
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The rotational restraints can conveniently be represented by nondimensional re-

straint stiffnesses κ, at end j defined by

κj =
kj

(EI/L)
j = 1, 2 (3)

or by other similar factors, such as the well known G factors. Unlike the κ factors,

that are relative stiffness factors, theG factors are relative, nondimensional, scaled

flexibility factors. In their generalized forms (Hellesland and Bjorhovde, 1996a,

1996b) they can be defined by

Gj = bo
(EI/L)

kj
(=

bo
κj

) j = 1, 2 (4)

where bo is simply a scaling (reference, datum) factor by which the relative re-

straint flexibilities are scaled. If the rotational restraints are provided by beams,

such as assumed here, the restraint stiffness can be written

k = kb =
∑

bEIb/Lb

where the summation is over all beams that are restraining the considered column

end (joint), and b is the bending stiffness coefficient. In such cases, the G factor

in Eq. (4) becomes

Gj =
(EI/L)

(
∑

(b/b0)EIb/Lb)j
(5)

Typically, for beams with negligible axial forces, the familiar values of b = 3,

b = 4, b = 2 and b = 6 are obtained for beams pinned at the far end, fixed

at the far end, bent into symmetrical, single curvature bending, and for beams

bent into antisymmetrical, double curvature bending, respectively. Conventional

datum values, as adopted for instance in AISC (2016), ACI (2014), are bo = 6

and bo = 2 for unbraced and braced frames, respectively.

It should be noted that, if not otherwise stated, the reference factor bo = 6 is used

throughout this paper in presentations in terms of G factors. Thus, for cases with

beams bent into double, antisymmetrical curvature, b/bo = 1 in Eq. (5), giving

the well known, conventional G factor expression.

If several columns frame into a joint, such as in multistorey frames, kb must be

“divided between” the columns at the joint (“vertical interaction”). Conven-

tionally this is done by assigning the restraining beam stiffness at a joint to the

attached columns in proportion to their EI/L values . Doing this, a G factor

definition is obtained that also includes a summation sign in the numerator of

Eq. (5). For further discussion, see for instance Hellesland and Bjorhovde (1996a,

1996b) or Hellesland (2009a).
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4.3 Basic slope-deflection equations

For completeness, the major elements of the second-order (small rotations) anal-

ysis for the single column in Fig. 2 are developed in sufficient detail to allow the

establishment of closed form solutions in suitable forms for use and discussion

later in the paper.

The adopted sign convention is shown in Fig. 2. Clockwise acting moments and

rotations are defined to be positive. Consequently, the moments shown in Fig. 2,

acting counter-clockwise, are negative (−M1 and −M2).

The member stiffness relationship, expressed by the slope-deflection equations for

a compression member, can be derived from the column’s differential equation,

and can be given by the matrix equation below.

[
M1

M2

]
=
EI

L

[
C S −(C + S)/L

S C −(C + S)/L

] θ1
θ2
∆

 (6)

Here, the upper case C and S are the socalled stability functions defined by

C =
c2

c2 − s2
; S =

s2

c2 − s2
(7 a, b)

where

c =
1

pL2

(
1− pL

tan pL

)
; s =

1

pL2

(
pL

sin pL
− 1

)
(8 a, b)

and

pL = L
√
N/EI (= π

√
αE) (9)

The functions C and S incorporate the second-order effects of axial forces acting

on the deflection away from the secant through the column ends. In first-order

theory, when the axial force is zero and this effect is not present, and they take

on the familiar values of 4 and 2, respectively.

The formulation above was used by Galambos (1968) and later by Galambos and

Surovek (2008). In the literature, other formulations can be found (e.g., Bleich

(1952), Timoshenko and Gere (1961), Chen and Lui (1991), Livesley (1956, 1975).

The lower case c and s functions are flexibility factors and are equal to 1/3rd of

the corresponding functions (φ and ψ) in Timoshenko and Gere (1961).
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4.4 End moments and shears

From the moment equilibrium requirements at the joints,

M1 + k1θ1 = 0 ; M2 + k2θ2 = 0 (10 a, b)

where k1 and k2 are the rotational stiffnesses of the end restraints (beams), the end

rotations can be expressed by the end moments (e.g., θ1 = −M1/k1). Substitution

of these into Eq. (6) gives[
b11 b12
b21 b22

] [
M1

M2

]
=

[
−(C + S)EI∆/L2

−(C + S)EI∆/L2

]
(11)

from which the total end moments according to second-order theory can be solved

for and expressed by

M1 = −(C + S) (b22 − b12)
b11b22 − b12b21

· EI∆

L2
(12)

M2 = −(C + S) (b11 − b21)
b11b22 − b12b21

· EI∆

L2
(13)

Here, with the rotational stiffness of the end restraints taken as k = 6(EI/L)/G

(Eq. (4) with bo = 6),

b11 = 1 +
CG1

6
; b12 =

SG2

6
; b21 =

SG1

6
; b22 = 1 +

CG2

6

When the determinant D = b11b22 − b12b21 approaches zero, the end moments

M1 and M2 approach infinity. This happens when the axial load approaches the

critical (instability) load. This limit is independent of the lateral displacement .

The shear is found from statics of the displaced column (V L = −(M1 + M2 +

N ∆)). In non-dimensional form it can be written

V

EI ∆/L3
= −M1 +M2

EI ∆/L2
− (pL)2 (14)

First-order results.

It is convenient to present results in terms of first-order results. Such results are

found by substituting C = 4 and S = 2 into Eqs. (12) and (13). The resulting

sway magnified first-order moments (due to the magnified first-order sidesway

Bs∆0s) become

BsM02 = − 6(G1 + 3)

2(G1 +G2) +G1G2 + 3
· EI∆

L2
(15)
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and

BsM01 = BsM02
G2 + 3

G1 + 3
(16)

respectively at end 2 and 1. The corresponding sway modified first-order shear

becomes, from statics,

BsV0 = −Bs (M01 +M02)/L (17)

4.5 Location and magnitude of maximum column moment

The moment expression of the axially loaded column subjected to the total end

moments M1 and M2, can be found from the differential equation (M = −EIv′′
)

and expressed in the familiar form given by

M(x) = M2

[µ t − cos pL

sin pL
sin px+ cos px

]
(18)

where

µt = −M1/M2 (19)

This end moment ratio, between total end moments (from the second-order anal-

ysis), becomes positive when the end moments at the two ends act in opposite

directions (“single curvature”).

From the maximum moment condition, dM(x)/dx = 0, the location xm of the

maximum moment between ends can be obtained as

tan pxm =
µ t − cos pL

sin pL
(20)

Now, by substituting Eq. (20) into Eq. (18), the maximum moment can be solved

for and expressed as

Mmax = BtmaxM2 (21)

where

Btmax =
1

cos pxm
for µt > cos pL (22 a)

Btmax = 1.0 for µt ≤ cos pL (22 b)

The maximum moment may become positive or negative. In practice, it is the

absolute value that is of interest. For a restrained column with N > NE (i.e.,

αE > 1), maximum moment will always be between ends (see also Eq. (42),

Section 6.4).
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Figure 3: Formation of maximum moments at different axial load levels.

Sometimes, details of location(s) and sign of maximum moments are of interest.

Noting that the period of Eq. (20) is π, the maximum moment location(s) can

be obtained from

pxm = arctan
µt − cos pL

sin pL
+ nπ n = 0, 1, .. (23)

If for any value of n (in practice n=0 or 1 for a restrained column, and n=0 for

a pin-ended column),

0 < pxm < pL (24)

then maximum moment is located between ends. If no pxm value can be found

that satisfies Eq. (24), the maximum moment is located at one column end and

is then equal to the largest end moment.

Fig. 3 shows different moment diagrams that may result. The column length

is represented by pL = π
√
αE. In the first case, with pxm < 0, the maximum

moment is at the lower end. In the other three cases, maximum moments occur

between ends. In the third case, two maxima occur, one on either side of the

column. This may occur when end moments are equal or nearly equal and acting

in opposite directions.

Apart from the more general criteria set up above for maximum moment to form

between ends of the column, the above derivation follows that by Galambos (1968)

for pin-ended members, for which αE ≤ 1, and consequently N ≤ NE. For such

columns, taking M2 as the largest end moment, the maximum moment will occur

between ends when µt > cos pL and at end 2 otherwise.

An alternative form of Eq. (21) can be obtained by some trigonometric consid-

erations (see e.g., Galambos 1968). By letting the numerator and denominator

in Eq. (20) be the sides in a right angled triangle, and denoting the hypotenuse

of the triangle by h, then cos pxm = cos pL/h. Calculating h (by Pythagoras),
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and substituting the resulting cos pxm into Eq. (21), the absolute value of Btmax

may be rewritten in the well known form below.

Btmax =

∣∣∣∣∣
√

1 + µ2
t − 2µt cos pL

sin pL

∣∣∣∣∣ (25)

4.6 Presentation of moments and shears

The analysis presented above can be used to compute moments and shears in a

column for different axial loads and restraints as a function of the total relative

lateral displacement ∆ between column ends.

The global (system) second-order effects (“N∆” effects) are here represented by

the sway displacement magnifier

Bs =
∆

∆0

(26)

This magnifier is a function of the axial loads of all members in the frame system.

Other notations for Bs is for instance δ in ACI 318 Building Code (ACI 2014) and

B2 in AISC 360 Specifications (AISC 2016). A review of available Bs expressions

in the literature, incl. codes, and a general Bs proposal that cover both lateral

supporting and lateral supported columns, are given in Hellesland (2009a, 2009b).

The local column second-order (Nδ) effect in an individual column with a spec-

ified sidesway ∆ = Bs∆0, can be quantified by the ratios of results for a given

axial load N and results for N = 0 (first-order). These ratios, or magnifiers, for

maximum moment, end moments at column end 1 and 2, and shear force, are

here denoted as

Bmax =
Mmax(N)

M2(N = 0)
=
Mmax(N)

BsM02

(27)

B1 =
M1(N)

M1(N = 0)
=
M1(N)

BsM01

(28)

B2 =
M2(N)

M2(N = 0)
=
M2(N)

BsM02

(29)

Bv =
V (N)

V (N = 0)
=
V (N)

BsV0
(30)

Above, Mmax is expressed as a function of the first-order moment at end 2, which

per definition is taken as the end with the larger first-order end moment (absolute
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value). Note that Bmax above is different from the Btmax in Eq. (21) (and there

applied to M2 obtained from the second-order analysis).

Since the load effects above are all explicit functions of the lateral displacement

∆ (Eqs. (12), (13), (14)), ∆ will cancel out in the ratios. As a result, Bmax, B1,

B2 and Bv are independent of the magnitude of ∆.

Thus, for frames with sway due to lateral and axial loading only, these coefficients

depend only on (a) the end restraints, which then uniquely define the first-order

moment gradient (Eq. (16)), and on (b) the axial load level defined for instance

by the nondimensional load parameters αE or αs (Eq. (1)).

Mmax = BmaxBsM02 (31)

M1 = B1BsM01 (= (B1M01/M02)BsM02) (32)

M2 = B2BsM02 (33)

V = BvBsV0 (34)

5 Elastic columns in frames with sway

Typical moment and shear response versus increasing axial load of columns with

stationary end restraints, computed with the presented second-order analysis,

are shown in Fig. 4. The column is illustrated by the insert in the upper, left

hand part of the figure, and has flexible rotational end restraints. The column

top is initially displaced laterally by an amount Bs∆0 (”sway-magnified first-order

displacement”), and then kept constant at this value (in a real case, by the action

of the overall frame of which the column may be considered isolated from).

Similar results are shown in Figs. 5 and in Fig. 6 for columns with stiff end

restraints at the top, and very stiff at the base (G = 0.6 and ∞ (fully fixed) at

the base). Fig. 7 gives typical results for a column with very stiff rotational end

restraints.

The moments and shear are shown nondimensionally in terms of the respective

B factors, Eqs. (27) to (30)), and the axial forces are given nondimensionally in

terms of load indices αs and αE (Eq. (1))). All results in the figure are given in

terms of BsM02. Therefore, the B1 response is represented by B1 ·M01/M02
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Figure 4: Moments and shear versus axial load level in column with relative

flexible end restraints (βs = 1.932, βb = 0.785, αE = 0.268αs)

The curves labeled B2,secant are secant approximations, discussed in Section 6.9,

to the end moment curves. The curves labeled Bm, are maximum moment pre-

dictions in accordance with present procedures in major design codes, and are

discussed later in Section 8.

It is seen in the figures that both moments and shears approach infinity (in

either the positive or negative direction) as the axial load approaches the elastic

critical load Ncb of the fully braced column. The corresponding load index at

that instance is αb = 1, or αE = 1/β2
b . For an elastic column, the braced critical

load is independent of whether the column is fully braced at zero or at a non-zero

end displacement.

If the considered column was a part of a larger, unbraced frame, it should be

emphasized that system instability of the frame may be reached for an axial load

(Ncr) in the column that is well below its fully braced value Ncb. Also, lateral

sway magnification (Bs) will most often, but not always, reach large, unacceptable

values well before this load level.
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Figure 5: Moments and shear versus axial load level in column with stiff end

restraints, G1 = 3, G2 = 0.6 (βs = 1.483, βb = 0.678, αE = 0.455αs))

Shears.

In the absence of axial load, a shear V = BsV0 is required to give a sway column

a displacement ∆ = Bs∆0. When an axial load is applied, the initial overturning

moment is increased. This tends to further increase the sway (if it had been free

to sway). To maintain the displacement at the original specified value, V must

decrease. This is seen by the sloping line labeled Bv in the figures.

The value of Bv is 1.0 for zero axial load (αs = 0, or αE = 0). With increasing

load, it decreases to zero at αs = 1 (or αE = 1/β2
s ) and becomes negative as αs

increases further. Zero shear is the instability criterion for a column that is free

to sway. When free sway of the column is not permitted by interaction with other

columns or bracing elements, the column will still be able to resist end moments

and axial loads beyond the free sway critical load if the rest of the structure

provides lateral support, as indicated by change of direction of the shear force.

At αs = 1, the function of the column changes. Columns with αs < 1 are capable

of resisting external lateral loads, and are capable of supporting, or bracing,

columns with higher axial, in excess of αs = 1. As stated earlier, columns with
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Figure 6: Moments and shear versus axial load level in column with stiff end

restraints, G1 = 3, G2 = 0 (βs = 1.373, βb = 0.626)

αs < 1 will be referred to as laterally “supporting sway columns” while those

with αs > 1 will be referred to as laterally “supported sway columns”.

Shear variation.

As seen in the figures, the variation of Bv is almost linear up to and somewhat

beyond αs = 1. In this range, a linear shear variation given by V = BvBsV0 with

Bv = 1− αs (35)

provides an excellent approximation. It becomes increasingly inaccurate (giving

too small negative values) for larger αs values (Hellesland 2009a).

Moment at end 2 (with the stiffer end restraint).

For the laterally loaded columns with given, stationary (invariant) end restraints

considered here, the largest first-order end moment in terms of absolute value

will always develop at the end with the largest rotational restraint stiffness. This

can be seen in the figures, and also in the first-order moment diagram (for N =

0 (αE = 0)) at the bottom Fig. 4.

This end, with the initially largest first-order end moment, is conventionally de-

noted end 2 and the moment M2. So also here.
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M2 (or B2) decreases continuously with increasing load level. At some point, it

becomes zero and changes direction (at about αs = 5.1, or αE = 1.37, in Fig. 4),

and eventually approaches minus infinity (at αb = 1). The response of the stiff

restraint case, Fig. 7, is similar.

As the moment at end 2 changes sign, the column deflection shape changes from

double to triple curvature bending. The last moment diagram at the bottom of

Fig. 4 is for an axial load of 0.998 times the braced critical load. At this stage,

which is of theoretical interest only, the magnitude of the initial, first order end

moments are small compared to the total moments.

Moment at end 1 (with the smaller end restraint).

The M1 response represented by B1 ·M01/M02 in Fig. 4, is typical for cases with

relatively low restraint stiffness at end 1. The end moment at end 1 stays fairly

constant, or increases slowly, until the end moments at the two ends become equal

at αE = 1. From there, it increases more sharply towards infinity at αb = 1.

In the case with unequal, stiff restraints, such as in Fig. 7, both end moments

decrease markedly at first with increasing axial load. The moment factor B1

decreases at a slower rate than B2 till it reaches a minimum. Since the end

restraints at the two ends are not too different, B1 and B2 follow each other fairly

closely up till rather high load levels at which B1 reaches a minimum and then
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starts increasing sharply towards plus infinity as αb = 1 is approached.

Maximum moment.

The maximum moment (Mmax, Bmax) is initially equal to the end moment at

end 2. It stays at end 2 until αs ≥ 1 (see later discussion Section 6.4). For the

column in Fig. 4, this is so until αs = 1.99. The moment diagram for this load

level is seen (bottom, Fig. 4) to have a vertical tangent at the end 2. As the

axial load is increased further, the tangent at end 2 changes direction and the

maximum moment forms between ends. It should be noted that the displayed

moment diagrams are approximate and have been scaled so that the the maximum

moment has a value of unity.

Following an initial decrease, Bmax starts increasing with increasing load level,

and approach plus infinity for axial loads approaching the braced critical load.

Moments in columns with equal or nearly equal end restraints.

When end restraints at the two ends are exactly equal, the end moments will also

be equal. With increasing axial load, the end moments decrease continuously to

zero at the braced critical load (αb = 1). Up to this point, the column deflection

mode is one in antisymmetrical double curvature bending. At αb = 1, the small-

est disturbance will cause the deflected shape to change suddenly from double

curvature bending into the braced buckling mode. In the case of a column pinned

at both ends and subjected to equal and opposite end moments, it will buckle

from double into the lower single curvature bending mode. A restrained column

with equal end restraints, will deflect from perfect antisymmetrical quadruple

bending. At αb = 1, it will, for the smallest disturbance, buckle into the lower

triple curvature buckling mode, causing moments to approach infinity.

This phenomenon is often referred to as unwrapping (Baker et al. 1956) or un-

winding (Ketter 1961). Differences in end restraints will always be present in

practical cases. Thus, for a column with stationary (constant) end restraints

and with moments induced by lateral displacement, the problem of unwinding is

mainly of academic interest only.

Columns with non-stationary restraints Columns in multicolumn-frames

will typically not have stationary end restraints. Such cases are studied in Section

7.
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6 “Landmarks” in single column response

6.1 Characteristics to be considered

Definition of a number of key characteristics, or ”landmarks” in the moment ver-

sus axial load “map”, may be useful for establishing a good understanding of the

mechanics of laterally displaced columns, and for enabling a quick establishment

of moment-axial load relationship. Only restrained, single columns are consid-

ered. Markers (bullets) can be identified with reference to Fig. 4. They are:

(a) When is V = 0 (Bv = 0)?

(b) When does moments approach infinity?

(c) When does Mmax (Bmax) leave the column end?

(d) When does Mmax (Bmax) exceed BsM02 (B2 > 1)?

(e) When does M1 and M2 become equal and what are their values at that point?

(f) When does M2 (B2) at end 2 become zero?

(g) Values of end moments at αs = 1 (supporting column limit)?

6.2 When does the shear force become zero?

The shear resistance of a supporting sway columns becomes zero at αs = N/Ncs =

1. For αs > 1, the column requires lateral support.

The effective length factor βs, defining Ncs (Eq. (2b)) can be determined exactly,

graphically from diagrams such as the well known alignment charts (in terms of

G factors), or from one of the many approximate methods available. A summary

and evaluation of such methods is given in Hellesland (2012). One of these,

derived directly from column mechanics (Hellesland 2007), is defined in a simple

manner by

βs =
2
√
R1 +R2 −R1R2

R1 +R2

(36)

where R1 and R2 are degree-of-rotational-fixity factors at ends j = 1 and j = 2,

respectively, and are equal to zero at a pinned end and 1 at a fully fixed end.

They are defined by

Rj =
kj

kj + cEI/L

(
=

1

1 + (c/b0)Gj

)
(37)

where the c factor is a constant.
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In conjunction with Eq. (36), it is to be taken as c = 2.4. In the second,

alternative formulation above, in terms of G factors, the ratio in the denominator

becomes c/b0 = 2.4/6 = 0.4. Prediction accuracies of Eq. (36) for positive end

restraints (0 ≤ R ≤ 1) is within 0% and +1.7% of exact results.

Application to the case in Fig. 4, with degree-of-end-fixities R1 = 0.294 and

R2 = 0.556, βs = 1.950 is obtained. This corresponds well with the exact βs =

1.932 (0.9 % greater). For the column in Fig. 7, with end fixities R1 = 0.556 and

R2 = 0.962, Eq. (36) gives βs = 1.076 (exact 1.065, Eq. (38)).

An alternative effective length factor expression is given in Hellesland (2012) in

three equivalent forms: either in terms of end moments, G or R factors. In terms

of R factors defined by Eq. (37) with c = 2, it is given by

βs =

[
γsπ

2

12

(
6

(R1 +R2)
− 2

)]1/2
(38)

where

γs = 1 + 0.216 · R1R2 + 4(R1 −R2)
2

(R1 +R2 − 3)2
(39)

Eq. (39) gives results within about 0.1 % of exact results in cases with positive

restraint combinations.

6.3 When does moments approach infinity?

The outer limit of the M − α relationship is defined by αb = 1, representing

braced instability. Similarly to free-sway instability, there is a number of tools

available for determining corresponding effective length factors βb (Eq. (2c)).

One of several alternative formulations (Hellesland 2007, 2012) for this case is

βb = 0.5
√

(2−R1)(2−R2) (40)

where the degree-of-rotational-fixity factors R are identical to those defined by

Eq. (37) with c = 2.4 . This expression is accurate to within -1% and +1.5% for

positive end restraints.

For the case in Fig. 4, βb = 0.785 is obtained from Eq. (40). This is equal to the

exact value. Instability (αb = 1) results at αE = 1/β2
b = 1.62. For the case in

Fig. 7, βb = 0.536 results (exact 0.532).
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6.4 Maximum moment leaves end 2 of the column

The stage at which the maximum moment leaves the end 2 of a column can be

discussed in terms of the moment gradient at the column end. For the column

shown in Fig. 2 it is given by

dM/dx = N θ + V (41)

A positive gradient indicates that the maximum moment (absolute value) is at

the end as shown by the first two moment diagrams in Fig. 4. For zero moment

gradient, the maximum moment is on the verge of leaving the end as shown in the

third moment diagram in Fig.4. A negative gradient indicates that the maximum

moment is away from the end.

Initially, the maximum moment will always be at the end 2 with stiffest restraint

(smallest G). For αs ≤ 1 it will remain at the end since both V and θ are postive

in this case. For the special case with full fixity at the end (G = 0), θ is zero and

the maximum moment leaves the end of the column when V becomes negative,

i.e., as αs exceeds 1.0.

If neither end is fully fixed, the maximimum moment will move away when Nθ =

−V at a higher load index. For the column in Fig. 4, this occurs at αE = 1.99.

The exact value can be found from Eq. (20) as the load at which xm becomes

zero. I.e., for cospL = µt when the origin is taken at the end with the stiffer

restraint. The minimum value is obtained for µt = 0 (for a column pinned at

one end) as pL = π/2 and αE = 0.25. Similarly, the maximum is obtained for a

column with equal end restraints, i.e., with µt = -1 (antisymmetrical curvature),

as pL = π and αE = 1.0 (or αs = β2
s ). These limits are independent of the end

restraints.

In summary, the load index at which the maximum moment starts to form away

from the end of a column will be within the alternative (and equivalent) limits

given by

0.25 ≤ αE ≤ 1.0 and 1.0 ≤ αs ≤ β2
s (42)

respectively, in terms of the column’s αE value and its free-sway stability index

αs.

Comments, non-stationary restraints. These results also provide a reason-

ably good description of the panel columns. See Section 7.
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6.5 Maximum moment exceeds the larger sway-magnified

first-order moment

The axial load level α = αm at which the maximum moment Mmax exceeds

the largest sway magnified end moment BsM02, i.e., when Bmax exceeds 1.0, is

of considerable interest in design. The maximum moment may conservatively

be taken as BsM02 (Bmax = 1) below this load level. Computed second-order

analysis results are given in Fig. 8 and Fig. 9.

Fig. 8 gives free-sway load indices αs,m at which the maximum moment exceeds

the larger magnified first-order moment. Results are given for end restraints at

the two ends varying from G = 0 (fixed end) to about∞ (pinned end). The same
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results are reproduced in Fig. 9 for the braced load index αb,m.

The peaks in the figures are obtained when end restraints are equal, in which cases

moments remain less than BsM02 (Bmax remains less than 1.0) until unwinding

take place at the braced critical load level (αb = 1).

It should be noted that also the G factors in Fig. 9 are defined by Eq. (4)

with b0 = 6, rather than with the more customary b0 = 2 for braced cases (for

instance in conjunction with the use of the alignment chart for effective length

determination. If defined with b0 = 2, the G factors would be one third of those

in Fig. 9.

In practice, it is difficult to obtain perfectly pinned and fully fixed connections.

Practical values of G of 10 and 1, respectively for these cases, are often suggested

(AISC Commentary, 2016). Within such a practical range of G values, it can be

seen that the αs,m curves are gathered within a reasonably narrow band, between

about 3.5 to 5. A conservative lower value would be about αs,m = 3.5. The αb,m

curves (Fig. 9) are more spread out, but with a conservative lower value of αb,m

between 0.5 and 0.6 for G values between 10 and 1.

Based on these results for single columns with stationary (invariant) end re-

straints, it seems reasonable to conclude that

Bmax < 1 for αs < 3.5 or αb < 0.5 (43)

Many codes accept that individual column slenderness effects can be neglected

when the maximum moment does not exceed the larger first-order end moment,

or in the present case, BsM02, by more than 5% to 10%. With such criteria, the

load index limits above would be greater.

Comments, non-stationary restraints. For the panel columns in Section 7 it

is found that

Bmax < 1 for αs < 3 or αb < 0.8 (44)

Although these limits are based on a rather limited number of panel columns,

they are believed to be quite representative. It should be noted, that the αs

and αb values in Eq. (44) are computed with the critical loads Ncs and Ncb,

respectively, of the panel, rather than those of the isolated, single columns with

stationary end restraints (Eq. (43)).

The free-to-sway critical loads Ncs for the two cases are found to be almost iden-

tical. On the other hand, the braced critical loads Ncb of the panel columns
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are lowered considerably below those of the single columns, thereby pressing the

rising, maximum moment branch upwards towards larger values, at lower load

levels. The reason for the reduced critical loads Ncb of the panel columns is the

softening of the beam restraints as the critical load is approached. This is due to

beams that unwinds from double curvature towards the more flexible, single cur-

vature type bending (Fig. 11) for axial loads approaching the braced instability

load.

6.6 Equal end moments, M1 = M2

The load index at which moments at the two column ends become equal, and

the value of these end moments, are of interest. For M1, Eq. (12), and M2,

Eq. (13), to become equal, it can be seen from the moment equations that the

stability functions C and S must become equal, and thus c = s. Rewriting of

the latter results in 2 sin pL − pL cos pL = pL, the solution of which is pL = π.

Consequently,

M1 = M2 for αE = 1 (45)

or in terms of the free-sway critical load index, for αs = αEβ
2
s = β2

s .

By evaluating Eq. (13) for pL = π, an expression for M2 is obtained in terms of

the end restraints and EI∆/L. It is given by

M2 = − 12

G1 +G2 + 2 · 1.216
· EI∆

L2
(46)

The corresponding magnified first-order end moment for ∆ = Bs∆0 is given by

Eq. (15). The B2 and B1 factors at αE = 1 then become

B2 =
M2

BsM02

=
4(G1 +G2) + 2G1G2 + 6

(G1 +G2 + 2.432)(G1 + 3)
(47)

B1 =
M1

BsM01

= B2
G1 + 3

G2 + 3
(48)

Comments, non-stationary restraints. The results above are found to apply

also to the panel columns, except for a rather unrealistic case of a panel with very

large differences in column stiffnesses, in which the critical loading was reached

prior to αE = 1. See Section 7 (Fig. 15).
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6.7 Axial load giving zero end moment, B2 = 0

In order to obtain B2 = 0, or M2 = 0 in Eq. (13), it is required that C − S =

−6/G1. Thus,
1− cos pL

pL sin pL
= −G1

6
(49)

Since M2 = 0, there is as expected no interaction with G2 at end 2.

If accurate solutions are required, it is necessary to solve for pL(= π
√
αE) by

iteration. In order to establish an expression that allows direct establishment of

the axial load level, plots of Eq. (49) were studied. Based on these, a reasonably

simple approximation, that gives results within about± 2 percent, has been found

to be given by

αE =
4 + 1.1G1

1 + 1.1G1

(50)

For the columns in Figs. 4, 6 and 7, B2 can be seen to become zero at about αE

= 1.37, 1.67 and 3.4, respectively. These corresponds well with the comparative

values by Eq. (50) of 1.40, 1.67 and 3.3.

Comments, non-stationary restraints. For the panel columns, zero end mo-

ments are obtained at somewhat smaller αE values. See Section 7.

6.8 End moments at αs = 1 (supporting column limit)

The value of end moments at αs = 1 is of significant interest, in particular

for developing approximate moment relationships for supporting sway columns.

Values of B1 and B2 at αs = 1 are labeled B1s and B2s, respectively. Computed

results for a wide range of end restraint combinations are plotted in Fig. 10.

B2s coincide with B1s in the case with equal end restraints. Results for this case

are shown by the dash-dot borderline (labeled G1 = G2). B1s results, shown by

dashed lines in the figure, and B2s results, shown by solid lines, are located above

and below the borderline, respectively. G2 is by definition taken to represent the

end with the stiffer restraint (with the smaller G value). Corresponding B1s and

B2s curves terminates therefore at the dash-dot curve.

To explain the figure, consider a column with G1 = 2. As G2 increases (along the

abscissa) from zero to 2, B1s is seen to decrease along the dashed line (labeled

G1 = 2) from about 1.02 to 0.98, and B2s increases along the solid line (labeled
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G2 = 2) from about 0.8 to 0.98, i.e., to the same value as B1s terminates at (as

the restraints become equal at the borderline curve). At G2 = 0 (fixed end), B2s

may have values between 0.79 and 0.82, and B1s between about 0.82 and 1.05.

Comments, non-stationary restraints. The results above, and the secant

expressions given below, are also reasonably applicable to the panel columns in

Section 7.

6.9 Secant approximations to column end moments

The results above are informative and can for instance be used to establish useful

secant approximations to the end moment curves at load levels in the range αs=0

to 1.0, and also somewhat beyond 1.0. The secants through the moment points

at αs = 0 and αs = 1 are given by

B1,secant =
M1

BsM01

= 1− (1−B1s)αs (51)

and

B2,secant =
M2

BsM02

= 1− (1−B2s)αs (52)

where, B1,s and B2,s are the moment factor values at αs = 1 shown in Fig. 10 for

a wide combination of end restraints.

For instance, for the restraint combinations (G1, G2) = (6, 2), (3, 0.6), (3, 0) and

(0.3, 0.1), representative for the columns in Figs. 4, 5, 6 and 7, pairs of B1s and
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B2s can be read from Fig. 10 approximately as (1.02, 0.955), (1.03, 0.78), (1.04,

0.79) and (0.89, 0.85), respectively.

Such secants, labeled B2,secant and B1,secant are shown in Figs. 4, 5, 6 and 7, and

are seen to provide close approximations to the end moment curves well beyond

αs = 1.

7 Columns with non-stationary restraints

7.1 General

In the preceding section, end restraint stiffnesses of the single columns were given

as constant (stationary, invariant) values. For frames with more than one col-

umn, the restraints may vary with the axial load level. To illustrate this, panel

frames with two columns are considered, Fig. 11. The two columns are intercon-

nected rigidly at the top and bottom by beams. The panels are initially given

an imposed lateral displacement, ∆ = Bs∆0, and then subjected to increasing

vertical loading. The initial deflection shapes are the typical sidesway shapes,

as shown by the solid lines in the figures. As the axial column loads increase,

the deflection shapes change gradually. Slowly at first, and more rapidly towards

deflection shapes approaching the braced buckling modes as the critical loading

is approached.

The purpose of the panel analyses is in part to study the general mechanics of

behaviour and interaction between the panel columns, and to clarify to what

extent the column behaviour in the panels will affect conclusions reached earlier
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from the single column studies.

Two panels are investigated, labeled Panel 1 and Panel 2. The axial column loads

are the same in the columns of both panels: N1 = N2 = N . Member stiffnesses

for Panel 1 are EI1/L = EI/L, EI2/L = 1.1EI/L, EIb1/Lb = 0.333EI/L and

EIb2/Lb = 1.667EI/L. Since the bottom beam is considerably (5 times) stiffer

than the upper beam, it will attract the larger first-order end moments due to the

sidesway. End 2 of each column is consequently taken to be at the base (bottom).

Compared to Panel 1, Panel 2 has a considerable stiffer Column 2, with EI2/L =

2EI/L, but it has otherwise the same properties as Panel 1.

7.2 End restraints - Isolated column analyses

Column 1 (left hand) and Column 2 (right hand) of each panel will also be

considered in isolation, with appropriate, stationary end restraints (Fig. 2), and

analysed by the theory in Section 4.

In sidesway analyses, the most common approach (e.g., AISC, ACI) in isolated

column analysis is probably to choose beam stiffnesses corresponding to perfect

antisymmetrical bending (giving k = 6EIb/Lb). This is equivalent to assuming a

hinged support at midspan of the beams. With this assumption, k1 = 6EIb/Lb =

2EI/L and k2 = 10EI/L are obtained. Corresponding G values (Eq. (4)) become

(G1, G2)=(3, 0.6) for Column 1 of Panel 1, (3.3, 0.66 ) for Column 2 of Panel 1,

(3, 0.6) for Column 1 of Panel 2 and (6, 1.2) for Column 2 of Panel 2. However,

instead of these, the chosen end restraints were determined by assuming a hinged

support at the real first-order inflection point locations in the beams. Measured

from the top and bottom joint of Column 1, these were 0.498Lb and 0.491Lb ,

respectively, for Panel 1, and 0.491Lb and 0.443Lb, respectively, for Panel 2. The

corresponding G values are given in the figures. For the columns of Panel 1, they

are almost identical to those above. For the columns of Panel 2, the difference is

somewhat larger, but of little practical importance.

Finally, the most rational approach would have been to compute isolated col-

umn end restraints according to first-order theory, e.g. from κ = k/(EIb/Lb) =

6/(2 − (Mf/Mn)), where Mn and Mf are the first-order beam moments at the

end considered and at the far end, respectively (Hellesland 2009). This gives,

for instance, (k1, k2) = (6.05, 6.23) and (G1, G2) = (2.98, 0.58) for Column 1 of

Panel 1. In the considered cases, resulting differences in computed B values will

be minor, and will not alter the conclusions drawn below based on inflection-point
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Column 1 (left hand) of Panel 1. (b) Column 1 in the panel considered in

isolation with approximate restraints.

restraints.

7.3 Results

System instability of the panels will always be initiated in the most flexible col-

umn. This is Column 1, with the highest load index αE of the two columns. Panel

1, with reasonably close load indices, (αE1 = 1.1αE2), represents a more practical

case than Panel 2, with rather big difference in load indices (αE1 = 2αE2).

Results for both columns in the two panels are shown in Figs. 12, 13, 14 and 15.

Panel column results are shown by dashed (blue) lines and the isolated column

results are shown by solid (red) lines. The two cases are shown by inserts in the

upper left corner of the figures. The dash-dot curves labeled Bm,t, representing

present design maximum moment magnifiers, will be discussed later (Section 8).

Results are plotted versus the nominal load indices αE. In addition, abscissas

in terms of the free-sway index αs are added for the convenience of reading and

interpretation of results. The αs abscissa is in each case computed with the free-

sway critical load of the respective isolated columns (αs = αE β
2

s ). Thus, zero
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Figure 13: Moments and shear versus axial load level for two cases: (a)

Column 2 (right hand) of Panel 1. (b) Column 2 in the panel considered in

isolation with approximate restraints.

shear of the isolated columns will always be obtained for αs = 1 in the figures.

Effective lengths of isolated columns:

Panel 1 Column 1: βs = 1.483 and βb = 0.678 (for G1 = 2.99 and G2 = 0.59).

Panel 1 Column 2: βs = 1.522 and βb = 0.688 (for G1 = 3.31 and G2 = 0.67).

Panel 2 Column 1: βs = 1.466 and βb = 0.672 (for G1 = 2.95 and G2 = 0.53).

Panel 2 Column 2: βs = 1.824 and βb = 0.757 (for G1 = 6.11 and G2 = 1.34).

7.4 Response characteristics

The shears in the panel columns and the isolated single columns are seen to

become zero at almost the same load index. The difference is about ± 1% for the

columns of Panel 1, and about ± 3.8% for Panel 2 at αs = 1.

Also, the moments of the panel columns are seen to initially follow the iso-

lated column moments quite closely. Consequently, the panel columns respond

initially with almost stationary end restraints that are nearly equal to the re-

straints employed in the isolated column analyses. For the columns of Panel 1

(EI2 = 1.1EI1)), the difference in maximum moment values is less than 5% for
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Figure 14: Moments and shear versus axial load level for two cases: (a)

Column 1 (left hand) of Panel 2. (b) Column 2 in the panel considered in

isolation with approximate restraints.

axial force levels αb < 0.85, i.e. for force levels less than about 85% of the axial

force at panel instability (Figs. 12, 13).

For the columns of Panel 2, with large difference in column stiffnesses (EI2 =

2EI1), the load level giving 5% difference in moment values is now about 65%

of the panel instability loading (Figs. 14 and 15). This is still a rather high

load level. In design practice, load levels above about 60 % of the system critical

load is believed to be rare, and not to be recommended due to the sensitivity

of compression members to second-order effects at such high load levels. Con-

sequently, the isolated column results can be considered to be representative for

framed columns with practical load levels.

The critical loads of the panel columns are lower than those of the single columns

(with stationary restraints). This is due to the “softening” of the end restraints

provided by the beams with increasing axial column loads. This “softening” is

due to the beams becoming gradually more flexible when they “unwind” from

double curvature towards more single curvature type bending, as illustrated in

Fig. 11.

In the case of Panel 1, Fig. 12, the beam unwinding to single curvature implies a
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Figure 15: Moments and shear versus axial load level for two cases: (a)

Column 2 (right hand) of Panel 2. (b) Column 2 in the panel considered in

isolation with approximate restraints.

reduction in restraint stiffness to about one third of the initial (double curvature)

stiffness. The effect of this is that Column 1, the most flexible of the two columns,

initiates system instability (αb = 1) at a lower load index (1.639 αE1) than that

of the isolated single Column 1 (2.18 αE1). Furthermore, associated with the

unwinding of the beams is a rather sudden reversal (unwinding) of end moments

in the stiffer Column 2. This is seen in Fig. 13, for loads close to the panel critical

load.

In other cases, only a partially unwinding of beams may take place (Fig. 11(b)).

This is the case for Panel 2, with Column 2 being significantly stiffer than the

other (αE2 = αE2/2). For axial loads close to panel instability, the stiff Column

2 unwinds from double to single curvature bending (Fig. 15). Such a bending

reflects a braced effective length factor of Column 2 that is greater than 1.0,

which again implies that Column 2 contributes (together with the beams) to

the restraint of the flexible Column 1. By comparing Fig. 14 to Fig. 12, this

contribution can be seen to have increased the panel critical load, in terms of

αE1, from 1.639αE1 for Panel 1 to 1.805αE1 for Panel 2.
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8 Maximum design moment - Present practice

The maximum moment factor, Bmax, for in-plane bending is commonly approxi-

mated by a factor, here denoted Bm, that can be given by

Bm =
Cm

1− αb

≥ 1.0 (53 a)

where

Cm = 0.6 + 0.4µ0 (53 b)

µ0 = −BsM01

BsM02

= −M01

M02

(53 c)

Above, αb is the critical braced load index (Eq. (1c)), Cm is a first-order moment

gradient factor (that accounts for other than uniform first-order moments), and

µ0 is the first-order end moment ratio taken to be positive when the member is

bent single curvature, and negative otherwise.

This approximation is adopted by a number of major structural design codes such

as for instance ACI 318 (ACI 2014) for concrete structures and AISC 360 (AISC

2016) for steel structures, and there denoted δns and B1, respectively. The same

approximations are given in the European code EC2 (CEN 2004) and is implicit

in EC3 (CEN 2005). These two codes limit Cm to 0.4.

Single restrained columns.

Bm predictions using Eq. (53) are shown in Figs. 4, 5, 6 and 7. These are based

on αb = N/Ncb with Ncb computed for end restraints given in the respective figures

(i.e., with the same restraints used in the laterally displaced column analyses).

The first-order end moment ratios are given by µ0 = −(G2 + 3)/(G1 + 3) (from

Eq. (16)).

As seen, the approximate Bm curves are rather conservative, and particularly

so for columns with nearly equal end restraints (Fig. 7). This is primarily due

to the approximate nature of the moment gradient factor Cm, that tends to be

conservative (too large) in double curvature bending cases, such as the present

cases.

Panel columns.

For a regular multicolumn frame, it is common design practice, and in accordance

with most codes of practice (such as AISC, ACI etc.), to assume that beams bend

into symmetrical, single curvature at braced frame instability. This implies that

the beam deflection has a horizontal tangent at beam midlength, and that the

rotational beam stiffnesses are k = 2EIb/Lb (1/3rd of stiffnesses for beams in
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antisymmetrical curvature bending). Bm factors (Eq. (53)) computed with such

restraints will for the sake of distinction and clarity be denoted Bm,t (subscript t

for tangent.

Such Bm,t are shown in Figs. 12, 13, 14 and 15. The first-order moment ratios

used in the calculations are those obtained from the first-order panel analyses (µ0

= -0.600, -0.585, -0.585, -0.483, respectively, for Column 1 and 2 of Panel 1, and

Column 1 and 2 of Panel 2). These Bm,t predictions are even more conservative

than those found above for the single columns with stationary restraints.

Column 2 of Panel 2 (Fig. 15) represents a case in which the assumption of beam

restraint stiffness k = 2EIb/Lb gives a Ncb that is greater than the braced critical

load of the panel. If Bm had been computed with the latter load, which is an

accepted alternative by the codes, the rising branch would move towards the left,

thus giving even more conservative predictions for this case.

Conclusions.

It is clear that Bm given by Eq. (53) is very conservative for columns in frames

with moments caused by sidesway, in particular in the rising branch region (Bm >

1). Until better design moment formulations become available, and for axial load

indices within the limits given in Section 6.5, the maximum moments can be

taken equal to the larger sway magnified first-order end moment BsM02 (implying

Bm = 1).

Efforts to derive improved moment formulations are under way, and will be pre-

sented in a separate report (Hellesland 2019).

9 Summary and conclusions

Columns in sway frames can be divided into “supporting sway columns” with

axial loads below the free-sway load index (αs < 1), which resist lateral shears,

and “supported sway columns” (αs > 1), which require lateral support in the

form of a negative shear force. A supported sway column acts like a braced

column with an initial displacement of one end relative to the other end.

Second-order theory for such columns with sidesway have been derived in a form

suitable for studying the general member mechanics for increasing axial loads.

Theoretically derived, closed form expressions have been presented for a number
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of member response characteristics that enable quick establishment of typical

moment-axial load curves. These will be useful in education towards providing a

general understanding of the often complicated column response, and also helpful

in practical design work, and as a complement to full second-order analyses.

Laterally displaced single column models, isolated from laterally displaced panels,

and thus with stationary restraints, are found to describe the response of panel

columns very closely up axial load levels close to (0.6-0.85 of)the critical panel

loading.

End moments described by secants through moment points at zero axial load and

the free-sway critical load (αs = 1) provide good end moment approximations over

a wide axial force range.

The maximum column moments due to sidesway may develop between ends, but

will be less than the sway-magnified first-order moment (BsM02) for a wide axial

force range, and particularly so for columns restrained by stiff beams.

For practical frames it is found that the maximum moment is less than BsM02 for

axial loads up to 50% of the fully braced critical load (αb < 0.5) for single columns

(with stationary end restraints), and up to about 80% of the fully braced critical

load of columns with non-stationary restraints (such as in panels, or multibay

frames). Axial forces will most often be lower than these limits. Thus, design

for the sway-magnified first-order moments (BsM02) will thus be conservative in

most practical cases.

The rising branch approximations of the maximum moment curve in present

structural design codes are found to be quite conservative for columns with mo-

ments solely due to sidesway.
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NOTATION

Bm = approximate maximum moment magnification factor;
Bmax = maximum moment magnification factor;
Bs = sway magnification factor;
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B1, B2 = end moment factors, at end 1 and 2;
EI,EIb = cross-sectional stiffness of columns, and beams;
Gj = relative rotational restraint flexibility at member end j;
H = applied lateral storey load (sum of column shears and bracing force);
L,Lb = lengths of considered column and of restraining beam(s);
N = axial (normal) force;
Ncr = critical load in general (= π2EI/(βL)2)
Ncb, Ncs = critical load of columns considered fully braced, and free-to-sway;
NE = Euler buckling load of a pin-ended column (= π2EI/L2)
Rj = rotational degree of fixity at member end j;
V0, V = first-order, and total (first+second-order) shear force in a column;
kj = rotational restraint stiffness (spring stiffness) at end j
αcr = member (system) stability index (= N/Ncr);
αb, αs = load index of column considered fully braced, and free-to-sway;
αE = nominal load index of a column (= N/NE);
β = effective length factor (at system instability);
βb, βs = effective length factor corresponding to Ncb and Ncs;
∆0,∆ = first-order, and total lateral displacement;
κj = relative rotational restraint stiffness at end j (=kj/(EI/L)).
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