A Higher-Level View of
Ontological Modeling

Rule-Based Approaches for Data Transformation,
Modeling, and Maintenance

Dissertation for the degree of Philosophiae Doctor (PhD)

Daniel P. Lupp

University of Oslo
April 2019

© Daniel P. Lupp, 2019

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2108

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

To my friends and family

“We’ve got to have rules [...] After all, we’re not savages.”
— William Golding

Contents

Acknowledgments vii
I Summary 1
I Introduction e 3
1.1 Ontologies and Data Integration 5
1.2 Logic Programming 9
1.3 Brief Summary of Contributions, 11
2 Contributions 13
2.1 RulesoverData 13
2.2 Ontology Templates e 15
2.3 Rulesover Ontologies v i i e 18
24 Overview of Research Papers 19
3 Conclusion and Future Work oo oL oo 23
4 Bibliography 25
IT Published Articles 29
1 Mapping Data to Ontologies with Exceptions Using Answer Set Programming 31
2 Reasonable Macros for Ontology Construction and Maintenance 49
3 Pattern-Based Ontology Design and Instantiation with Reasonable Ontology Templates 69
4 Practical Ontology Pattern Instantiation, Discovery, and Maintanence with Reasonable

AN W

Ontology Templates e 91
Making a Case for Formal Relations over Ontology Patterns 115
Generating Ontologies from Templates: A Rule-Based Approach for Capturing Regu-

larity e e e e 125

Acknowledgments

These last few years have been by far the most taxing years of my life, both on a personal and
professional level. This thesis would not have been possible without the substantial support from
my colleagues, friends, and family to whom I would like to extend my gratitude.

First I would like to thank all of my advisors Evgenij Thorstensen, Henrik Forssell, and Arild
Waaler for their never-ending support and patience as well as understanding in times when things
did not go so well. I wish to thank my primary advisor Evgenij for his critical questions, guidance,
and advice as well as always helping me look at things from different perspectives. I thank Henrik
for his down-to-earth yet optimistic outlook, his uncanny ability to discover counter-examples,
and for always helping me see the connections between our work and my previous studies in
algebra. I would also like to thank Arild for his constant enthusiasm and support, for always
helping me see the big picture, as well as sparking my interest in nonmonotonic reasoning.

I would like to thank all of my co-authors for the opportunity to collaborate with them. In
particular, I would like to thank Martin Skjeveland for inviting me to join the OTTR team.
More generally I wish to extend my gratitude to all of LogID/ASR/SIRIUS for the interesting
discussions and valuable input. Thank you to Mantas Simkus for hosting my 3-month research
visit in Vienna and for the resulting dialogue. Furthermore, a special thanks to my friends, office
mates, and collective “Norwegian mother” Vidar, Leif Harald, and Andreas for making office
and every-day life so enjoyable. Without their patience, my Norwegian would surely never quite
have gotten to where it is today. I would also like to the thank the person(s) at ifi responsible for
the grand piano on the fifth floor as this served as an excellent form of stress relief during long
nights.

Finally, I wish to thank all of my family and friends for their constant support and kindness
despite my failings at describing what it is that I do.

vii

Part |
Summary

Chapter 1
Introduction

The processing of data is becoming an increasingly important and difficult task. Data is stored
using a wide range of different formats and largely requires specialized software in order to be
accessed. The complex information needs of an end-user require in-depth knowledge of how
the data is stored in order to find the desired data. Thus, in addition to their domain of interest,
users must either learn the ins-and-outs of their data stores or be reliant on dedicated IT experts
in order to access the information they need.

To overcome these challenges, data from multiple sources can be integrated under a single,
global schema. In this approach data is extracted from the relevant data sources and transferred
into a database under the global schema. This approach is known as extract, transform, load
(ETL) and is commonly used in data warehousing. The global schema is highly specific to the
original data sources and, in order to ensure efficiency, is highly optimized towards these sources
and the expected information needs. This is by no means a novel approach: since the 1980’s
businesses have employed these techniques in order to transfer data from multiple databases
into a data warehouse. To this day, such solutions greatly benefit industrial decision making and
reporting as it facilitates the aggregating and processing of all relevant data in one place.

In more recent years, however, the sheer amount and heterogeneity of data has changed
substantially. In a press article in 2013, SINTEF researchers estimated that at the time of writing
over 90% of all data ever gathered was generated after 2011.! In addition to the exponential
growth in volume, data is being gathered from a wide variety of both structured and unstructured
sources, e.g., sensors and measurements, social media, as well as structured/unstructured natural
language documents. As a result, the information needs are evolving as well, where companies
attempt to incorporate as much of this new information as possible into their decision making

1h‘c‘cps ://www.sintef.no/en/latest-news/big-data-for-better-or-worse/

https://www.sintef.no/en/latest-news/big-data-for-better-or-worse/

processes.

As the nature of industry-relevant data becomes more and more varied, the ETL approach
of gathering and transferring all of it into a global schema becomes, in general, an expensive
and practically infeasible task. Any newly collected data would need to be translated and
transferred, resulting in enormous runtime costs. Furthermore, a global schema would need to
be highly complex in order to accommodate the large variety of data gathered, ranging from
legacy company databases to streaming data and PDF documents. Maintenance tasks become
infeasible to perform, as every time a new source is added the global schema must be adjusted.
As a result, all existing data must then be re-processed and transferred in order to comply with
the updated schema. This makes maintenance a very expensive task, in addition to making it
extremely difficult for end-users to access the data they need without an IT expert’s help.

Rather than defining a global schema that represents specific data sources, recent research
on data integration has focused on using an external abstract model in place of a global schema
[30]. This abstract model, called an ontology, ideally represents an end-user’s domain of interest
and should be independent of how the data is stored. In ontology-based data access, the data is
not actually transferred into a new database, but rather remains in its original sources. Instead,
the ontology is connected to data sources with the help of mappings which translate between
queries over the ontology to queries over the data sources. As such, the mappings handle the
intricacies of each data source as opposed to the ontology; end-users are ideally not burdened
with technical details on how the data is stored or translated. Thus, they can phrase queries in
a language closer to their understanding of the domain as opposed to a data-specific querying
language. Since no data is actually translated, any change to the ontology or mappings does not
result in all data needing to be re-evaluated.

Adding this extra layer of abstraction over the data has a number of benefits for the end-user.
The ontology should be designed to closely represent the domain they know and understand,
simplifying query formulation tasks. Furthermore, the user queries become data independent,
resulting in a solution that scales well with additional data sources—provided the mappings are
being actively maintained.

Of course, this approach comes with its own difficulties. The construction of a high-quality
ontology is by no means a simple task. In fact, what constitutes a high-quality ontology is
still hotly debated and an active field of research. Nevertheless, it should reflect the end-user’s
understanding of the domain while keeping the information requirements in mind, hence requiring
close collaboration between the intended users and ontology engineers. “What will the ontology
be used for?” is a crucial question to be asked when designing an ontology, as it greatly affects
the decisions on how to model certain relationships and patterns. In addition, the ontology and
mappings should be easily maintainable, allowing for automated processes whenever possible.
This greatly reduces maintenance overhead and eliminates potential sources of human error.

The work presented in this thesis is aimed at addressing issues that arise during the creation
and maintenance of ontologies and mappings. More specifically, the goals are to

1. extend mappings to robustly handle exceptions as well as incomplete data, thus simplifying
mapping maintenance by eliminating the need to explicitly list all exceptions;

2. facilitate the definition and reuse of recurring patterns within an ontology in order to ensure
a uniform modeling approach, thus simplifying ontology creation and maintenance tasks

by separating the modeling and populating of an ontology;

3. provide mechanisms for the detection and removal of redundancies within an ontology and
the patterns it contains, thereby providing semi-automatic tools for ontology maintenance
and pattern discovery;

4. define a formalism that supports the encoding of design choices regarding dependencies
between ontology patterns, thus automating previous manual maintenance and creation
tasks.

To this end, we define suitable rule-based formalisms over (1) the data and (2) over the
ontology. The former provides a new mapping framework that simplifies mapping maintenance
tasks by facilitating robust handling of exceptions and incomplete data (see [P1]). For the latter,
templates for ontology specification are introduced as a means to robustly define and instantiate
recurring patterns within an ontology, while supporting semi-automatic redundancy detection
[P2, P3, P4]. Extending ontology templates are rules called generators, which allow for the
succinct description of dependencies between pattern instantiations in an ontology [P6].

In the remainder of this chapter, we briefly introduce important notions and the context of this
thesis, in particular ontology-based data integration and rule-based formalisms for knowledge
representation. In Chapter 2, we take a closer look at the scientific contributions of the papers
contained in Part II.

1.1 Ontologies and Data Integration

Ontologies

In general, an ontology is a machine-readable model designed to faithfully represent knowledge
of a domain. Such a model provides a way of exploring the domain knowledge as well as
inferring implicit information from data with the help of automated reasoning. Several languages
have been proposed for expressing ontologies. However, since the early to mid 2000’s the
emergence of semantic technologies and standardization efforts such as the Web Ontology
Language (OWL) [5] have ensured that description logics (DL’s) [4] have become the defacto
standard for ontologies in practice. These are a family of logical formalisms designed for
knowledge representation and reasoning in the fields of Al and the Semantic Web. Description
logics model how individuals from an application domain are grouped into classes (called
concepts) and related to one another with binary relations (called roles). Complex concepts and
roles can be built inductively according to the syntax allowed by a specific description logic.
An ontology then relates these concepts, roles, and individuals to one another through inclusion
axioms B C C (resp. R C S) that state that the concept B is a subclass of C (resp. the role R
is a subrole of the S) as well as assertions C(a) (resp. R(a, b)) that state that the individual a
is member of the concept C (resp. a is R-related to b). These formalisms have been defined
with syntactic restrictions in mind: different description logics restrict which complex concepts
and axioms may be constructed. In this manner, different DL’s are designed with specific tasks
in mind, e.g., low complexity of reasoning. For example, in order to retain low complexity
of entailment the DL-Lite family of description logics [6] does not permit axioms of the form

5

A C BUC, ie., it is not permissible to say that a concept is a subclass of a union of other
concepts. Indeed, DL-Lite is an important class; in the following section we discuss how the
complexity of entailment is important in the context of ontology-based data integration, as it is
tightly linked to query rewritability. For details on this as well as an an overview of the DL’s
associated with the OWL profiles, see [20].

We shall use description logic notation for notational convenience throughout this thesis
when discussing example ontologies (for more details see [4]).

Example 1. The statement “every boss is someone’s superior’” can be modeled by the axiom
Boss C dhasSup ™. T where hasSup™ refers to the inverse role of hasSup. This axiom is equiva-
lent to the first-order formula Vx.(Boss(x) — Jy.hasSup(y, x)).

Creating and maintaining a high-quality, large-scale ontology typically involves
1. identifying what concepts and relationships from the domain need to be modeled;

2. deciding on an appropriate way to model these according to the information requirements
given by users; and

3. maintaining the ontology, e.g., ensuring uniformity in modeling, removing unwanted
redundancies.

Steps 1 and 2 above are to a large degree a creative process: Step 1 requires active communication
between ontology engineers and experts from the domain to be modeled, a task which cannot be
fully automated. Step 2 involves finding a best-practice way of modeling the desired relationships.
This is by no means a straightforward task and has evolved into its own area of research called
ontology design patterns (ODP’s). Inspired by software design patterns, ODP’s strive to provide
modeling references for often-occurring and important patterns within ontologies [15]. However,
one of the major challenges faced by the ODP community is a lack of tool-sets geared towards
reuse and maintenance of existing ODP’s [15, 16]. This is not due to a lack of tools and
approaches for ontology engineering, however. Protégé [29] is widely regarded as the gold
standard when it comes to current ontology editors. Indeed, it contains much needed functionality
and due to its extensible environment supports a variety of plugins. Protégé plugins such as
XDP [14] attempt to alleviate some of the issues faced when using recurring patterns, e.g., by
supporting the finding and importing of existing ODP’s. However, it does not address some key
issues when it comes to ontology and pattern maintenance:

Modular view of ontology The ontology when viewed is still an OWL ontology. As such, it is
difficult to determine which axioms constitute an instantiation of a specific pattern.

Change in pattern If a pattern that has been instantiated is changed, each instantiation in the
ontology must be manually updated to incorporate these changes.

Change in ontology If one wishes to remove a pattern instance from the ontology, one must
manually remove each axiom belonging to that instance.

Other frameworks attempt at addressing these issues by defining new languages with which
to specify ontologies. Tawny-OWL [25] and the Ontology Pre-Processing Language (OPPL) [7]
are such formalisms for specifying and manipulating ontologies. Tawny-OWL provides a fully

6

programmatic environment based on the programming language Clojure for creating ontologies
while including strong support for ontology design patterns. OPPL was designed specifically for
capturing patterns and regularities in ontologies, allowing the instantiation of patterns as well as
supporting features such as removing axioms. While these formalisms certainly are powerful and
there are many advantages to using them, they also come with certain drawbacks. For instance,
both require users to learn new syntax for manipulating ontologies. While Tawny-OWL does this
by design (it is intended to be more akin to programming than other previously existing ontology
editing tools), it is nonetheless a hurdle for users who are not familiar with that specific way of
thinking. Furthermore, the semantics of the formalisms are fairly complicated, or even unclear:
OPPL supports a removal action, which unto itself already results in a necessarily non-monotonic
semantics. It is likely that this was not a key factor when designing these formalisms (rather
focusing on having the frameworks support the desired functionality), however having a clear
semantics with decidable (or even tractable) entailment provides much utility for maintenance
tasks.

In [P2, P3, P4], we introduce the OTTR framework, a templating language for the definition
and instantiation of ontology patterns. It is specifically designed to provide a modular view of the
ontology while supporting robust mechanisms for changes in both the pattern and the ontology.
It can be easily adopted without the need to learn an entirely new syntax and has clear semantics,
which permits the semi-automation of certain maintenance tasks such as detecting and removing
redundancies. These contributions are summarized in Section 2.2.

Ontology-based Data Integration

Ontology-based data integration (OBDI) is a specific form of data integration where an ontology
plays the role of the global schema. Such a format allows for a variety of uses, such as data
transformation (where the ontology plays the role of an intermediary, translating theory between
different database schemas) and data access (where the ontology is used as a querying language
over disparate sources). The papers in Part II of this thesis are primarily focused on the data
access setting, though the results are transferable to any OBDI context.

Thus, ontology-based data access (OBDA) [30] utilizes the semantic layer consisting of an
ontology and a set of mappings on top of the data in a database. With the help of mappings,
queries over the ontology are translated into a query over the database language, such as SQL,
which can then be run on the source data. In order to ensure that all relevant data is retrieved, the
query translation consists of two stages: Firstly, the ontology query is rewritten to an equivalent
query which takes ontological knowledge into account. Secondly, the mappings are used to
translate this query into the source query language.

Example 2. Consider a database consisting of precisely one table JOBS_DB with the two columns
<NAME> and <JOB>. Furthermore, consider the ontology {Empl C Person,Boss T Person}.
In the rewriting process, the query Person(x) would be rewritten to Person(x) L Empl(x) U
Boss(x) while in the unfolding step, each of the above disjuncts would be expanded to a
database query using the mapping assertions. For example, if there exist two mapping assertions
JOBS_DB(x, “Accountant”) — Empl(x) and JOBS_DB(x, “I7”) — Empl(x), then the disjunct
Empl(x) would be unfolded as J0BS_DB(x, “I7”) U JOBS_DB(x, “Accountant”).

In general, it is not possible to employ this technique in order to rewrite an arbitrary ontology

7

query to a source query [6, 20]. Hence, one poses certain criteria on the ontology and queries
in order to ensure rewritability. Since the database querying language SQL is very closely
tied to first-order logic [1], a common such criterion is that they are first-order rewritable
(FOL-rewritable); that is, that the ontology rewriting of every permitted query is equivalent
to a first-order formula. However, not all description logics have this property. Indeed, any
description logic where the entailment problem is NLOGSPACE-hard in data complexity? cannot
be FOL-rewritable [20].

A popular class of ontology languages for ontology-based data access is the DL-lite family.
These description logics have been tailored specifically for FOL-rewritability by restricting

ontology axioms in order to ensure low complexity entailment. This makes them ideally suited
for OBDA [6].

Example 2 demonstrates some of the current shortcomings of classical OBDA mappings:
it is impossible to distinguish between inferred knowledge and knowledge that is explicit in
the database. In the above example, in the presence of a mapping assertion JOBS_DB(x,y) —
Person(x) the query Person(x) would have sufficed without any ontology rewriting, since all
desired information was contained in one table. However, while some OBDA implementations
support manual query pruning [18] this can potentially lead to incomplete query answering,
and there is currently no way of formally checking whether it does. As such, the rewriting step
can cause a worst-case exponential blow-up in query size [6]. While this blow-up is necessary
to ensure complete query answering, it can lead to highly redundant database queries, where
the same data is accessed multiple times. Methods for automatic pruning of queries where the
mappings and ontology are anaylzed to determine redundant queries are used in practice [32].
However, due to its foundation in first-order logic, the current logical framework underlying
OBDA does not support the ability to express which queries should be redundant, e.g., that all
Persons should be contained in the JOBS_DB table. Extensions to description logics that support
the necessary non-monotonic features such as extensional constraints [33] or closed predicates
[26] have been proposed. However, due to an increase in data complexity these quickly become
practically infeasible.

Another issue with the current approach is how exceptions and incomplete information
are dealt with. Currently, one must keep track of exceptions manually by explicitly listing all
exceptions to a rule. Thus, if new exceptions must be taken into consideration, all mappings
must be manually updated to ensure sound and complete query answering.

In general, mapping design and maintenance tends to be primarily manual work [3]. This
can be a very laborious task and work on mapping evolution and repair [21] attempts to mitigate
some of these difficulties. A mature method for encoding exceptions without the need to
explicitly list all cases promises to reduce this cost even further. In [P1] we introduce a new
mapping framework called mapping programs designed specifically to address this issue. This is
summarized in Section 2.1.

’Data complexity refers to the complexity when the size of data may vary but the size of the query and ontology
are fixed. If the ontology and query may vary in size one speaks of combined complexity. This result tying data
complexity and FOL-rewritability relies on the fact that the size of the query and ontology are fixed.

1.2 Logic Programming

Datalog and Answer Set Programming

For many decades, logic programming has played an important role within both the knowledge
representation and data integration fields. Since the late 70’s and early 80’s, a declarative fragment
of the logic programming language Prolog known as Datalog has become a prominent query
and data transformation language as it supports features not expressible in the relational calculus,
e.g., recursive queries while maintaining a clear semantics with low complexity reasoning [1].

Datalog programs consist of rules, which are Horn clauses of the form

H <+ Biy,...,Bn,

where H and By, ..., B, are positive literals, i.e., atomic formulas. { H} is referred to as the
the head and { By, . .., B,,} as the body of the rule. Rules with an empty body are called facts,
whereas rules with an empty head are called constraints.

Since Datalog allows for any positive literal in its rules’ bodies, it does not have the same
restriction to binary predicates as description logics have. Furthermore, due to the generality
of such rules, recursive queries can be formulated. This allows for, e.g., checking the transitive
closure in a graph using Datalog rules.

Example 3. Given a graph with a binary edge relation £, the Datalog rule

E(x,z) « E(z,y), E(y, 2)

generates the transitive closure.

The intuition behind the semantics of a Datalog rule is that if By, ..., B,, are true then H
must be true. More formally, the semantics of Datalog are defined using an iterative fixpoint
construction which is guaranteed to terminate for any Datalog program applied to a finite instance
[1]. Indeed, this fixpoint coincides with the minimal model (unique up to isomorphism) when
considering the Datalog program as a first-order theory.

A natural extension to Datalog is allowing for body literals to be negated. Many approaches
exist to introduce negation to Datalog [1]. However we shall focus on one in particular: negation-
as-failure, where “not B” is evaluated to true iff no combination of rules implies B [1]. In-
tuitively, this corresponds to assuming everything but the provably true to be false. This
interpretation of negation follows the closed-world assumption, which is a conceptual decision
on how to handle incomplete information. Intuitively, the closed-world assumption states that
the truth of a statement must be justified; a statement A is considered false in a model of a
Datalog program if no combination of rules imply A. This is in contrast to the open-world
assumption, which states that the truth of a statement need not rely on any justification. The
classical semantics of propositional logic, for example, employs the open-world assumption:
The implication A — B does contain any justification for C' being true, but this does not imply
that C'is false.

Unfortunately, adding negation to rule bodies is not as straightforward as one would like. In

9

particular, we lose model uniqueness. Consider the rules

B + not C.
C + not B.

This program has two distinct minimal models: one where only B is true and one where only C'
is true.

How to choose and compute the desired models has been (and still is to some degree) a
highly-researched field. Certain cases of Datalog programs with negation, such as semipositive
or stratified Datalog, can be given a semantics that distinguish a unique minimal model following
the closed-world assumption [1]. When this unique model does not exist, however, things become
much more difficult and open to debate.

Answer set programming (ASP) is such an approach to adding negation-as-failure to Datalog
with a clear manner of handling multiple models. It is a declarative programming paradigm based
on the stable model semantics first defined in [12] as a means of handling negation-as-failure in
a clear and straightforward manner. It has become one of the more popular logic programming
paradigms, due to, e.g., computational benefits such as guaranteed termination as compared to
resolution in Prolog [22].

An ASP-program P is then a set of rules of the form H < By, ..., B,,,notCy,... notC,.
with ground atoms H, B;, and C;;. The semantics of an ASP program P are defined through a
construction called the Gelfond-Lifschitz reduct. Given an interpretation / of ground atoms, the
Gelfond-Lifschitz reduct P! is a positive program such that [satisfies a rule in P’ if and only if
1 satisfies the corresponding rule in P. Intuitively, this construction is achieved by removing
from P all rules that cannot fire under / and then removing all negative clauses not C' in the
remaining rules (for more details see [12, 22]).

The reduct is a program without any occurrence of negation-as-failure, hence is simply a
positive Datalog program. Thus, there exists a unique minimal model of the reduct. Then an
interpretation [is called a stable model or an answer set of P if it is a C-minimal model of P/,
i.e., it is a C-minimal set that is also the minimal model of P’.

Though the above semantics requires ground atoms, i.e., are essentially propositional, ASP
programs might also contains variables or function symbols. In this general case where function
symbols are allowed, reasoning becomes undecidable [2]. In the function-free case, the first-order
ASP programs are usually first grounded to reduce it to the propositional case. The grounded
programs can then either be solved directly [11] or, e.g., translated to an instance of the Boolean
satisfiability problem (SAT) before being passed on to efficient SAT solvers [24, 13].

The formalisms defined in [P1] and [P6] are extensions of Datalog with negation. The
former introduces mapping programs, an extension of ASP, as a new approach to mapping
data to ontologies in order to robustly handle exceptions in data. The latter is an extension of
Datalog that allows the succinct description of dependencies between ontology patterns. The
contributions of these papers are summarized in Section 2.1 and 2.3, respectively.

10

1.3 Brief Summary of Contributions

The following is a brief summary of the contributions of the included research papers. The
overarching goal of the papers in this thesis is to facilitate robust specification and maintenance
of ontologies and mappings within the OBDA (and more generally the OBDI) setting. Intuitively,
we wish to be able to provide a higher-level view of an OBDI system to ensure better readability,
while simultaneously providing new tools for maintenance tasks. The scientific contributions of
the papers included in this thesis can be divided into three groups: (1) rules over the data, (2)
ontology templates, and (3) rules over ontologies. In the following we briefly summarize the
contributions made to each of these categories. For a more detailed description see Chapter 2 of
this thesis.

Rules over data Current OBDA mappings are first-order implications employing the open-
world assumption. We propose an alternative rule-based formalism, based on answer set program-
ming (ASP), for the mappings linking the data and ontology. By allowing negation-as-failure
under the stable model semantics, this formalism allows for a more robust handling of incom-
plete data and exceptions as compared to its first-order mapping counterparts. Additionally, it is
possible to phrase constraints over the data in the language of the ontology, thus allowing the
encoding of domain and system-specific knowledge into the mappings. This is in contrast to
the current approach, where such information is implicit and not formally checkable within the
system.

Ontology templates We provide a new templating language for DL/OWL ontologies. Re-
curring patterns can be defined as templates, which in turn can be instantiated within an ontology.
The proposed formalism has a formal semantics based on the underlying description logics. This
allows for robust, automatic checking of formal properties such as consistency and redundancy.
Ontologies can be viewed in their expanded form (i.e., as DL ontologies) or unexpanded form.
The latter provides a higher-level view on ontologies, enabling (1) a separation of concerns
within ontology design concerning what relationships are modeled in an ontology and how they
are modeled, and (2) improved readability and maintainability of large-scale ontologies.

Rules over ontologies As opposed to using rules to extend the expressivity of an ontology,
we rather employ logic programming to simplify the specification and maintenance of an ontology
while retaining its expressivity. Generators are an extension of Datalog that allow for describing
the relationships between recurring patterns within an ontology. On the one hand, this ensures a
uniformity in the ontological modeling, inheriting the benefits from ontology templates. On the
other hand, it provides a robust and scalable way of ensuring that ontology design choices are
consistently implemented.

11

Chapter 2
Contributions

As mentioned in Chapter 1, the overarching goal of this thesis is to simplify specification and
maintenance tasks in ontology-based data integration with the help of rule-based formalisms.
The contributions of this thesis can be grouped into three categories: (1) rules over data, (2)
ontology templates, and (3) rules over ontologies. In the remainder of this chapter, we explore
these contributions in greater detail.

2.1 Rules over Data

Combining rules and ontologies is by no means a new field of research. Indeed, several rule-
based formalisms have been proposed specifically for interacting with DL ontologies, such as
DL-safe rules [28], MKNF' knowledge bases [27], and dl-programs [9].

DL-safe rules are a restriction to the Semantic Web Rule Language (SWRL) [17], allowing
for axiom-like rules that are not expressible in standard description logics. While SWRL rules
are in general undecidable, a dl-safe rule employ a safety condition to ensure decidability: any
variable must appear in a non-DL atom in the rule body.! MKNF* knowledge bases were
designed specifically to integrate open-world ontology with closed-world rule-based reasoning.
Its intention is for rules and ontologies to live side-by-side in the same formalism, To that end,
they introduce a rule-language building on the logic of minimal knowledge and negation-as-
failure (MKNF) defined by Lifschitz [23]. The result is a very expressive formalism capable of
expressing ontology axioms as well as nonmonotonic rules. DL-programs add nonmonotonic
reasoning to ontologies by allowing rules to contain queries to an external ontology. These
queries provide a limited amount of interaction between the ontology and rules: a query can

"Mapping programs, as discussed in the following section, employ a similar technique to ensure decidability.

13

temporarily extend the ontology with facts generated by the program. Due to this manner of
interaction, dl-programs are often considered as “rules on top of ontologies:” though they may
query ontologies (and during the querying process incorporate facts gained by the program) a
dl-program does not alter an ontology.

Rather than using rules to alter or extend the expressivity of an ontology in an OBDA system,
we propose using a rule-based formalism in its mappings. In [P1], we define mapping programs
as a rule language for ontology-based data integration based on answer set programming. As
such, each mapping rule contains a database query in its body and an ontology query in its head.
Additionally, rule bodies may contain both positive and negated ontology queries as conditions
for the mapping. Intuitively, a mapping rule

DB_Query(Z), O1(y1),not Oy (y5) — O3(Z, 2)

where y1,y5 C I states that all query answers to DB_Query should be mapped to Oj if the
mapping program and ontology entails O; and not Os.

The variables Z in the head of the rule are considered existentially quantified variables,
and hence such programs need some sort of safety condition to ensure decidability in query
answering. Thus we employ a method akin to the dl-safety condition: Intuitively, a rule may
only fire for “known” individuals. In the OBDI context, this corresponds to rules only being
allowed to fire for tuples within the database. For mapping programs this is achieved through the
presence of a database query within each mapping rule and the GAV condition on the rule head:
that all non-existentially quantified variables in the head of the rule are guarded by DB_Query.

Mapping programs are similar to dl-programs. In fact, if one adds support for existential
quantification in rule heads and a database query in the rule body, they can be translated into an
equivalent dl-program. However, mapping programs are purposely restricted; the full expressivity
of dl-programs is not required for the purposes for which mapping programs were intended.
These restrictions allow, for example, a natural translation from mapping programs to classical
ASP if all ontology queries in the mapping program are conjunctive queries [P1].

By mapping data to ontologies in this manner, OBDA systems benefit in the following ways:

Bridge open and closed world assumptions Being able to handle both open-world and
closed-world reasoning is a popular motivation for combining logic programming with negation
and ontologies [9, 27]. Similar to [8], our approach treats both the ontology and the database
as external sources. With existentially quantified variables in the head and negation-as-failure,
mapping programs can seamlessly translate from the closed-world database to the open-world
ontology without the need for the ontology formalism to be changed. By adding these features to
the mappings as opposed to the ontology, ontology reasoning is not affected and languages with
a low reasoning cost such as DL-Lite can be used.

Handling exceptions Since mapping programs are an extension of answer set programming,
they inherit the ability to express default rules [31, 22]. This allows a robust handling of data
with exceptions or incomplete data: Default values can be attributed to data entries lacking
information. When using classical OBDA mappings, the introduction of a new exception requires
a rewriting of the mappings to take this new exception into consideration. This is not necessary

14

with mapping programs, as exceptions no longer need to be listed explicitly in each mapping,
simplifying maintenance of OBDA mappings.

Example 4. Suppose one has a table SC_TABLE ((<NAME>, <CLEARANCE-CODE>) representing
members in an organization where the first column refers to an individual’s name and the second
columne refers to a code for their security clearance. The mapping rule

SC_TABLE (X, Y),not Cleared(X) — NotCleared(X)

together with the ontology {Cleared C —NotCleared} assigns by default each individual to the
concept NotCleared unless their clearance is otherwise specified; in other words, it specifies the
default rule “individuals usually do not have security clearance”. Exceptions to this rule can be
added without the need to change this rule, e.g., by adding the mapping rule

SC_TABLE(X, "TS") — Cleared(X).

Ontology constraints over the data When constructing an OBDA system, an information
manager encodes their knowledge about the how data and ontologies should be translated into the
mappings. When using classical OBDA mappings, much of this knowledge must be left implicit;
one cannot formulate constraints over the data using the ontology. Being able to formulate
these constraints in a logically sound manner has the potential to greatly improve querying
performance and mapping maintenance. As a case in point, as mentioned in the discussion after
Example 2 of Section 1.1, query rewriting will in general result in an exponential blow-up in size.
In the presence of extra knowledge, such as that every Person must be included in a specific table,
such growth in query size is redundant. The pruning approaches adopted by existing OBDA
implementations [18, 32] prevent this blow-up in certain circumstances, but do not support
checking whether this constraint is satisfied by the system; they essentially only prevent the
ontology rewriting of specific queries. Thus, in this scenario complete query answering is no
longer guaranteed.

Mapping programs introduced in [P1] support such constraints. This allows, for instance,
an information manager to state that every Person must be included in a specific table. More
importantly, if a Person is found who is not from the specified table, the OBDA specification
will be inconsistent. This approach allows for automatic sanity checks, i.e., the ontology and
data work together as intended according to the mappings and constraints.

2.2 Ontology Templates

The idea of using macros or templates in order to simplify repetitive tasks is by no means new.
This concept has been applied in a multitude of domains, be it within programming languages or
even within ontology engineering. As discussed in Section 1.1, various ontology specification
tools such as Tawny-OWL [25] and OPPL [7] support the naming of recurring patterns as well
as instantiating these with suitable names.

15

Description Logic Foundation

Reasonable ontology templates were designed to support definition and instantiation of pat-
terns, while maintaining a formal syntax and semantics familiar to users. Thus, the templating
framework is first described within the context of description logics.

[P2] introduces ontology templates (or templates for short) as named, parameterized on-
tologies. In other words, an ontology template is an ontology O with a given name and list of
designated concept, role, or individual names called parameters. Templates can be instantiated
by substituting each occurrence of its parameters with type-compatible expressions. It is worth
noting here that substitutions in ontology templates not only substitute names for names, but can
substitute names for complex expressions, allowing for more sophisticated reuse of patterns, as
demonstrated in the following example.

Example 5. A template describing a simple part-of relationship can be defined as follows:
PartOf (Part, Whole) :: {Whole C JhasPart.Part}

where PartOf is the template’s name and Part and Whole are its parameters. Then the instance
PartOf (Handle, Hammer) yields the ontology

{Hammer C JhasPart.Handle}

The instantiation of a template is not limited to basic concepts. Thus PartOf can be instantiated
with complex concepts as its arguments. For example, the instance PartOf (Grip, JhasPart.Handle),
yields the ontology

{3hasPart.Handle C JhasPart.Grip}.

Furthermore, templates can be nested, i.e., one template’s pattern can contain an instance of
another template. An instance of template T then yields an ontology via an expansion procedure
where each template instance within the pattern of T is expanded individually. To ensure this
terminates one requires that the dependency graph between templates contains no cycles.

Example 6. Consider the template

ToolWithPart(Name, Part) :: {Name C Tool, PartOf (Part, Name)}.

Then the instance ToolWithPart(Hammer, Handle) would expand to the ontology

{Hammer C Tool, Hammer C JhasPart.Handle}.

Though it is quite simple, this formalism provides a solid basis for a variety of very powerful
ontology specification and maintenance tools. Since ontology templates are simply named and
parameterized DL ontologies they inherit description logic semantics. As such, templates can
be used as queries as well as macros. Thus the query results from one template can be used
to instantiate another. In other words, we are able to describe certain types of dependencies
between patterns within an ontology. This is further explored in [P6], the contributions of which
are discussed in Section 2.3.

16

<http://draft.ottr.xyz/pizza/NamedPizza> a ottr:Template ;
ottr:hasParameter

[ottr:index 1 ; ottr:classVariable :pizza] ,

[ottr:index 2 ; ottr:individualVariable :country;

Margherita © NamedPizza ottr:optional true] ,

Margherita C JhasCountryOfOrigin.ltaly [ottr:index 3 ; ottr:listVariable (:toppings)]
. . ### body:
C .
Marghenta - VhaSTOPng Tomato Ll Mozzarella [1 ottr:templateRef t-owl-axiom:SubClassOf ;
Margherita C JhasTopping. Tomato ottr:withValues (:pizza p:NamedPizza) .

—

ottr:templateRef t-owl-axiom:SubObjectHasValue ;
ottr:withValues (:pizza p:hasCountryOfOrigin :country) .
ottr:templateRef t-owl-axiom:SubObjectAllValuesFrom ;
ottr:withValues (:pizza p:hasTopping _:alltoppings) .
Grandiosa C VhasTopping.Jarlsberg LI Ham LI SweetPepper [] ottr:templateRef t-owl-rstr:ObjectUnionOf ;
ottr:withValues (_:alltoppings (:toppings)) .
. X [] ottr:templateRef t-owl-axiom:SubObjectSomeValuesFrom ;
Grandiosa C ElhaSTOPng'Ham ottr:hasArgument [ottr:index 1; ottr:value :pizza] ,
Grandiosa C JhasTopping.SweetPepper [ottr:index 2; ottr:value p:hasTopping] ,
[ottr:index 3; ottr:eachValue (:toppings)] .

(b) wOTTR serialisation of the NamedPizza tem-
plate.

Margherita C JhasTopping.Mozzarella L
[

—

Grandiosa C NamedPizza

Grandiosa C JhasTopping.Jarlsberg

—

(a) Excerpt from DL Pizza ontology

NAMEDP1zzA(?Name : 1 class, ?Country : ? individual, ?Toppings : + class)
#0TTR prefix

:: SUBCLASSOF(?Name, :NamedPizza), . . .
p http://www.co-ode.org/ontologies/pizza/pizza.owl#

SUBOBJECTHASVALUE(?Name, :hasCountryOfOrigin, ?Country), #0TTR end

SUBOBJECTALLVALUESFrROM(?Name, :hasTopping, _:b1), #0TTR template http://draft.ottr.xyz/pizza/NamedPizza

OBJECTUNIONOF(_:b1, ?Toppings), pizza country toppings
1 2 3

SUBOBJECTSOMEVALUESFROM (?Name, :hasTopping, ?Toppin .

x | SUBOBJECTSOMEVALUESFROM (?Name, :hasTopping, ?Toppings) iri iri iri+

p:Margherita p:Italy p:Tomato|p:Cheese
NAMEDP1zZA (:Margherita, :Italy, (:Tomato, :Mozzerella)) p:Grandiosa p:Tomato|p:Jarlsberg|p:Ham|p:Pepper

#0TTR end

NAMEDP1zzA (:Grandiosa, none, {:Tomato, :Jarlsberg, :Ham, :SweetPepper))

(c) stOTTR serialisation of the NamedPizza template

. (d) tabOTTR instance serialisation
and coresponding instances

Figure 2.1: An example of OTTR serializations, adapted from [P4].

Reasonable Ontology Templates (OTTR)

[P2] gives a formal foundation for Reasonable Ontology Templates (OTTR). The core philosophy
behind OTTR is to enable the definition and reuse of patterns as well as the maintenance of
ontologies as simple and robust as possible [P3, P4]. It is a homo-iconic templating framework
for RDF based on ontology templates. In other words, templates for RDF graphs are themselves
RDF graphs. In that manner users do not need to learn a new syntax in order to define and reuse
patterns; if they so prefer, they can use existing tools and workflows to create OTTR templates.

OTTR strives to separate the modeling and the populating of an ontology. This provides
a separation of concerns: ontology engineers need not understand every minute detail of the
domain and can rather focus on important relationships and patterns; similarly, domain experts
are not required to understand technical details of how the domain is being modeled, and can
rather focus on populating an ontology with the correct concepts and properties. As such, we
define various serialization formats tailored to various users’ expertise: WOTTR (web OTTR) for
creating and instantiating templates within RDF; stOTTR (syntax for terse OTTR) for a more
human-readable, functional syntax for template creation; and tabOTTR (tabular OTTR) for quick
and easy instantiation of templates using a spreadsheet format [P4].

OTTR extends the ontology templates by adding various features: types and cardinalities to
parameters and expansion modes to template instances. Typing parameters permits automatically

17

checking whether a template is being used correctly. Giving parameters a cardinality allows for
optional or mandatory parameters as well as lists, whereas expansion modes provide multiple
options of how to handle list parameters (see [P4] for details).

This extra functionality in addition to its solid formal foundation in ontology templates
provides a rich tool-set for maintaining template libraries as well as ontologies built using OTTR.
Since templates are logical entities with a clear syntax, one can formally analyze different
relationships between templates. This allows, for example, the detection of various forms of
redundancy within template libraries and ontologies [P4]. This promises to be a powerful tool
for creating and maintaining high-quality ontologies.

Indeed, [P5] provides a starting point for further research in this direction. An empirical
use-case study wherein OTTR was applied on a large-scale ontology shows the promise of
using formal relations for (semi-)automated redundancy removal. Thus, in [P5] we define the
necessary and desirable properties any ontology templating framework must have in order to
support interesting formal relations between templates. This is intended as a starting point for
further research.

2.3 Rules over Ontologies

OTTR templates are a useful tool for robustly capturing modeling decisions in the ontology
specification process: rather than leaving it implicit which patterns are being used, they are
explicitly instantiated. Thus, whenever a pattern needs to be changed any ontology using that
pattern is automatically updated. This follows the well-known Don’t-Repeat-Yourself (DRY)
principle. In this section, we discuss how this can be taken even further by introducing rules over
the ontology.

As mentioned previously, when combining rules and ontologies the primary focus in research
has been on extending the expressivity of a formalism. Our goal in [P6] was not to increase the
expressivity of an ontology but rather to create a new framework for explicitly encoding design
choices when creating an ontology with templates. More specifically, the motivation is to be able
to model the regularity between patterns occurring in an ontology.

This approach provides a high-level view of an ontology: instantiations of patterns are
condensed into single instances referring to a specific pattern and relationships between patterns
are explicitly described rather than left implicit. On the one hand this promises to compress
highly regular ontologies substantially, greatly benefiting readability. On the other hand it
provides a more robust framework for maintenance tasks: design choices are explicitly captured
and enforced whenever the ontology is altered.

Intuitively, the formalism is based on the dual nature of templates: they can be viewed both
as queries and as macros. Thus, the query answers of a template Tg can be used to instantiate
another template Ty. Such a pair

TB—>TH

is called a generator; a set of generators is called a GBox. An ontology O satisfies a generator if
for every instance Tgo with O F Tgo then O F Tyo. Here o is a substitution of the parameters
in Tg. The semantics of GBoxes can then be defined analogously to Datalog via a fixpoint

18

operator. However, in order to ensure the existence of a finite model, one must restrict what
expressions can be substituted for parameters.

Example 7. Consider the ontology O = {A C JR.B} and the generator g : Tg — Ty for
Te(X,Y) = {X C3RY}and Ty(X,Y) :: {X C JR.IR.Y}. Then (A, B) is a query answer
to Tg over O, hence g would add {A C JR.3R.B} to O. This generates another query answer
for Tg, namely (A, 3R.B), thus generating an infinite chain. By restricting the language used to
substitute parameters one can avoid this situation and ensure a finite model [P6].

Generators are well suited for describing regularity between ontology patterns. Consider, as
an example, an ontology describing a taxonomy of animals where each subclass of Animal is a
type of animal. The sentiment “each child of an animal is of the same type as its parents” is not
expressible in description logics. Indeed, it must be explicitly written out for any Animal one
wishes to include in the ontology. In particular, if another Animal is added (or discovered by
reasoning), the rule will not apply. Generators alleviate this issue: By defining two templates

T1(X) :: {X C Animal}
T5(Y) :: {Y C VhasChild.Y}

this design choice can be encoded via the generator T1(X) — T(X). In that manner, the rule will
apply to any subclass of Animal and the appropriate template instances will be added whenever
another Animal is added.

Furthermore, we define a semantics for GBoxes which incorporates negation-as-failure in
generator’s bodies. Analogously to other rule-based logics such as Datalog, this results in
non-monotonic behavior with multiple possible models. In order to ensure a unique expansion
of a GBox over an ontology, we define suitable notions of semipositive and stratifiable GBoxes
where a unique expansion can be distinguished.

2.4 Overview of Research Papers

This section gives a brief overview of the papers contained in this dissertation. The relationships
between the papers are illustrated in Figure 2.2

Paper 1: Mapping Data to Ontologies With Exceptions Using Answer Set Pro-
gramming

Authors: Daniel P. Lupp and Evgenij Thorstensen.

In: Proceedings of Norsk Informatikkonfernase (NIK 2018) [P1]. A preliminary version of
this paper was presented at the Workshop for Ontologies and Logic Programming for Query
Answering 2016.

Abstract In ontology-based data access (OBDA), databases are connected to an ontology via
mappings from queries over the database to queries over the ontology. In this paper,
we define an ASP-based semantics for mappings from relational databases to first-order
ontologies, augmented with queries over the ontology in the mapping rule bodies. The
resulting formalism can be described as ”ASP modulo theories”, and can be used to express

19

constraints and exceptions in OBDA systems, as well as being a powerful mechanism for
succinctly representing OBDA mappings. Furthermore, we show that brave reasoning
in this setting has either the same data complexity as ASP, or is at least as hard as
the complexity of checking entailment for the ontology queries. Moreover, despite the
interaction of ASP rules and the ontology, most properties of ASP are preserved. Finally,
we show that for ontologies with UCQ-rewritable queries there exists a natural reduction
from our framework to ASP with existential variables.

Paper 2: Reasonable Macros for Ontology Construction and Maintenance

Authors: Henrik Forssell, Daniel P. Lupp, Martin G. Skj@veland, and Evgenij Thorstensen.
In: Proceedings of the 30th International Workshop on Description Logics (DL 2017) [P2].

Abstract Creating and maintaining ontology knowledge bases are difficult processes that can

be improved by using macro or templating languages that help structure the ontology
engineering task and reduce unnecessary repetitions of ontology patterns. However, since
the templates themselves need to be created and maintained, suitable tool support for
their maintenance is vital in order to ensure the quality of the resulting knowledge base,
and to lower the cost of its construction and maintenance. In this paper, we show that a
simple and powerful macro or templating language for description logic (DL) knowledge
bases can be defined in description logic itself. In other words, DL allows for macros that
are themselves DL knowledge bases; maintenance and debugging for such macros can
therefore be done using existing DL reasoners, and does not require extra tool support.
We define such macros for the DL SROZQ, which underlies the W3C standard OWL 2.
We then show that notions of containment and other problems of interest for such macros
become standard reasoning problems supported by existing reasoners. We explore the uses
of such macros, showcase how they can be used as restricted higher-order queries, and
apply our insights to the setting of data exchange.

Paper 3: Pattern-Based Ontology Design and Instantiation with Reasonable On-
tology Templates

Authors: Martin G. Skjaveland, Henrik Forssell, Johan W. Kliiwer, Daniel P. Lupp, Evgenij
Thorstensen, and Arild Waaler
In: Proceedings of the 8th Workshop on Ontology Design and Patterns (WOP 2017) [P3].

Abstract Reasonable Ontology Templates, OTTRs for short, are OWL ontology macros capable

20

of representing ontology design patterns (ODPs) and closely integrating their use into
ontology engineering. An OTTR is itself an OWL ontology or RDF graph, annotated
with a special purpose OWL vocabulary. This allows OTTRs to be edited, debugged,
published, identified, instantiated, combined, used as queries and bulk transformations,
and maintained—all leveraging existing W3C standards, best practices and tools. We show
how such templates can drive a technical framework and tools for a practical, efficient and
transparent use of ODPs in ontology design and instantiation. The framework allows for a
clear separation of the design of an ontology, typically managed by ontology experts, and

P3 P4

P5 _Ip6

P2 P1

Figure 2.2: This figure depicts the relationships between the papers in this dissertation. A solid
arrow represents that a paper directly builds on its predecessor, whereas a dotted line represents
related topics or approaches.

its bulk content, provided by domain experts. We illustrate the approach by reconstructing
the published Chess Game ODP and producing linked chess data.

Paper 4: Practical Ontology Pattern Instantiation, Discovery, and Maintenance
with Reasonable Ontology Templates

Authors: Martin G. Skjeveland, Daniel P. Lupp, Leif Harald Karlsen, and Henrik Forssell
In: Proceedings of the 17th International Semantic Web Conference (ISWC 2018) [P4].

Abstract Reasonable Ontology Templates (OTTR) is a language for representing ontology
modeling patterns in the form of parameterized ontologies. Ontology templates are
simple and powerful abstractions useful for constructing, interacting with, and maintaining
ontologies. With ontology templates, modeling patterns can be uniquely identified and
encapsulated, broken down into convenient and manageable pieces, instantiated, and used
as queries. Formal relations defined over templates support sophisticated maintenance
tasks for sets of templates, such as revealing redundancies and suggesting new templates
for representing implicit patterns. Ontology templates are designed for practical use; an
OWL vocabulary, convenient serialization formats for the semantic web and for terse
specification of template definitions and bulk instances are available, including an open
source implementation for using templates. Our approach is successfully tested on a
real-world large-scale ontology in the engineering domain.

Paper 5: Making a Case for Formal Relations over Ontology Patterns

Authors: Daniel P. Lupp, Leif Harald Karlsen, and Martin G. Skjeveland
In: Proceedings of the 9th Workshop on Ontology Design and Patterns (WOP 2018) [P5].

Abstract There have recently been multiple frameworks proposed to formalize the definition
and instantiation of recurring patterns for ontology construction and maintenance. Such
formal frameworks can also provide the means necessary for discussing how such patterns
can be related to one another, both syntactically and semantically. This has the potential
for organizing pattern libraries, robust handling of maintenance tasks, such as redundancy

21

removal, and defining heuristics for what constitutes a “good” pattern. This short paper
aims to provide a common ground for discussions on formal relations between ontology
patterns. We discuss interesting relations with motivating examples as well as state open
questions concerning relations for optimizing the creation, instantiation, and maintenance
of ontology patterns

Paper 6: Generating Ontologies from Templates: A Rule-Based Approach for
Capturing Regularity

Authors: Henrik Forssell, Christian Kindermann, Daniel P. Lupp, Uli Sattler, and Evgenij
Thorstensen
In: Proceedings of the 31st International Workshop on Description Logics (DL 2018) [19]. The
version included in Part II is an extended technical report including additional examples and
proofs [P6].

Abstract We present a second-order language that can be used to succinctly specify ontologies
in a consistent and transparent manner. This language is based on ontology templates
(OTTR), a framework for capturing recurring patterns of axioms in ontological modeling.
The language, and our results are independent of any specific DL. We define the language
and its semantics, including the case of negation-as-failure, investigate reasoning over
ontologies specified using our language, and show results about the decidability of useful
reasoning tasks about the language itself. We also state and discuss some open problems
that we believe to be of interest.

Papers not included in this thesis

Martin G. Skjeveland, Henrik Forssell, Johan W. Kliiwer, Daniel P. Lupp, Evgenij Thorstensen,
and Arild Waaler. “Reasonable Ontology Templates: APIs for OWL.” in: International Semantic
Web Conference (Posters, Demos & Industry Tracks). Vol. 1963. CEUR Workshop Proceedings.
CEUR-WS.org, 2017

Martin G. Skjeveland, Leif Harald Karlsen, and Daniel P. Lupp. “Practical Ontology Pattern
Instantiation, Discovery, and Maintanence with Reasonable Ontology Templates - Demo pa-
per.” In: International Semantic Web Conference (P&D/Industry/BlueSky). Vol. 2180. CEUR
Workshop Proceedings. CEUR-WS.org, 2018

22

Chapter 3
Conclusion and Future Work

The work presented in this thesis aims to address difficulties that arise during the creation
and maintenance of ontologies and OBDI systems. The main focus lies in providing logical
frameworks that simplify the specification of ontologies while simultaneously enabling robust,
semi-automatic handling of maintenance tasks. To this end, we define a new mapping framework
that supports proper handling of incomplete data and exceptions within the mappings, allowing
the ontology to be data-agnostic. Furthermore, we propose a new framework for ontology
specification, OTTR, which supports the definition, instantiation, and analyzing of ontology
patterns. This provides a high-level view of the ontology: rather than solely being able to inspect
an ontology on the level of axioms, this additionally enables viewing what is being modeled
as opposed to how. This provides a separation of concerns: designing and modeling within
an ontology as opposed to populating an ontology with the desired concepts and relationships.
Finally, we define an extension of Datalog designed to operate on ontologies. Rather than use
rules to enrich an ontology’s expressivity, they are designed in order to formally specify certain
design choices made during ontology creation. As such, they describe the relationships between
patterns within an ontology. In addition to OTTR this serves to provide an even more abstract
view of the ontology and what design choices were made.
In the following we describe possible directions of future work.

Mapping programs and query rewritability The complexity of mapping programs is, in gen-
eral, very high (NPY-complete data complexity for an ontology with a reasoning oracle
O such that entailment is |O|-complete). This is not feasible for large amounts of data,
hence determining fragments with more manageable complexity would be very useful.
Furthermore, it is not clear how query rewriting akin to classical OBDA would work in this
context. A possible approach could be to restrict mapping programs to positive programs

23

only, and define a suitable notion of stratification on a program’s queries. This and other
approaches should be investigated in order to ensure practical usability of the framework.

Template relations In [P4] and [P5] we show that defining simple relations such as dependency

between templates provides tools for ontology and template maintenance. Interesting
questions for further research are (1) to find more sophisticated methods for the detection
and removal of various forms of redundancy, such as those discussed in [P5]; (2) what
other tasks, such as ontology and template exploration, can benefit from knowledge about
the relations between templates; and (3) which more complex relations are of interest, e.g.,
relations taking types and cardinalities of parameters into account.

OTTR extensions The current implementation of OTTR is entirely syntactic. In particular,

running a template as a query over an ontology returns only exact syntactic matches to
its pattern. However, a template instance can be entailed by the ontology, but not be
syntactically contained. A natural extension to OTTR would be support semantic querying
for templates. This would allow for (1) an implementation of GBoxes in the OTTR
framework, and (2) more fine-grained analysis of (in particular semantic) relationships
between templates.

Existence of a finite GBox expansion As discussed in Section 2.3, the expansion of a GBox

is not guaranteed to be finite. In [P6] we avoid this issue by suitably restricting the
substitutions of parameters. However, even for simple (e.g., DL-Lite) ontologies it appears
to be undecidable to determine whether a finite expansion exists for a given GBox. Thus,
it would be useful to (1) develop sophisticated methods to analyze the decidability of a
finite expansion given an ontology and a GBox and (2) provide sufficient conditions that
guarantee the existence of a finite GBox expansion.

GBox query answering Currently, query answering over an ontology and GBox requires the

construction of the expansion. As this can be a very expensive (even undecidable) task, it
is worth investigating how and when query answers can be determined without the need
for computing the entire expansion.

Nonmonotonic GBoxes In [P6] we define a semantics for negation-as-fallure in generators’

24

bodies. The focus was specifically placed on maintaining the uniqueness of an expansion.
A major difference between Datalog and Gboxes is that generators fire if the body is
entailed by as opposed to contained in an ontology. As a consequence, there is more
potential interaction between generators in a GBox than between standard Datalog rules
(cf. the definition of activation in [P6]). Therefore, in order to capture multiple possible
expansions it would be interesting from a theoretical perspective to investigate whether
GBoxes can be imbued with variations of the well-founded and stable model semantics.

[1]

(2]

[3]

[4]

[5]

[6]

Chapter 4
Bibliography

Serge Abiteboul, Richard Hull, and Victor Vianu, eds. Foundations of Databases: The
Logical Level. 1st. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995. 1SBN: 0201537710.

M. Alviano, F. Calimeri, W. Faber, G. Ianni, and N. Leone. “Function symbols in ASP:
Overview and perspectives.” In: NMR—Essays Celebrating Its 30th Anniversary. College
Publications, 2011, pp. 1-24.

Natalia Antonioli, Francesco Castano, Spartaco Coletta, Stefano Grossi, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, Emanuela Virardi, and Patrizia Castracane. “De-
veloping ontology-based data management for the Italian public debt.” In: 22nd Italian
Symposium on Advanced Database Systems, SEBD 2014. Universita Reggio Calabria and
Centro di Competenza (ICT-SUD), 2014, pp. 353-360. ISBN: 9781634391450.

Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to Descrip-
tion Logic. English. United Kingdom: Cambridge University Press, Apr. 2017. 1SBN:
9780521695428.

Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuin-
ness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web Ontology Language
Reference. 2004.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. “Tractable Reasoning and Efficient Query Answering in Description
Logics: The DL-Lite Family.” In: J. Autom. Reasoning 39.3 (2007), pp. 385—429. DOTI:
10.1007/s10817-007-9078-x.

25

http://dx.doi.org/10.1007/s10817-007-9078-x

[7]

[8]

[9]

[P6]

[P2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

26

Mikel Egaina, Robert Stevens, and Erick Antezana. ‘“Transforming the Axiomisation of
Ontologies: The Ontology Pre-Processor Language.” In: Apr. 2008.

T. Eiter, M. Fink, T. Krennwallner, and C. Redl. “Domain expansion for ASP-programs
with external sources.” In: Artif. Intell. 233 (2016), pp. 84—121.

T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. “Combining answer
set programming with description logics for the Semantic Web.” In: Art. Intel. 172.12-13
(2008), pp. 1495-1539. 1SSN: 0004-3702. DOI: http://dx.doi.org/10.1016/j.artint.
2008.04.002.

Henrik Forssell, Christian Kindermann, Daniel P. Lupp, Uli Sattler, and Evgenij Thorstensen.
“Generating Ontologies from Templates: A Rule-Based Approach for Capturing Regu-
larity.” In: CoRR abs/1809.10436 (2018). arXiv: 1809.10436. URL: http://arxiv.org/
abs/1809.10436.

Henrik Forssell, Daniel P. Lupp, Martin G. Skjaveland, and Evgenij Thorstensen. “Rea-
sonable Macros for Ontology Construction and Maintenance.” In: Description Logics.
Vol. 1879. CEUR Workshop Proceedings. CEUR-WS.org, 2017.

Fabien Garreau, Laurent Garcia, Claire Lefevre, and Igor Stéphan. “3-ASP.” In: Proceed-
ings of the Joint Ontology Workshops 2015 Episode 1: The Argentine Winter of Ontology
co-located with the 24th International Joint Conference on Artificial Intelligence (1JCAI
2015), Buenos Aires, Argentina, July 25-27, 2015. 2015.

M. Gebser, B. Kaufmann, and T. Schaub. “Conflict-driven Answer Set Solving: From
Theory to Practice.” In: Artif. Intell. 187-188 (Aug. 2012), pp. 52—-89. 1SSN: 0004-3702.
DOI: 10.1016/j.artint.2012.04.001.

M. Gelfond and V. Lifschitz. “The Stable Model Semantics For Logic Programming.” In:
ICLP ’88. MIT Press, 1988, pp. 1070-1080.

C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. “Satisfiability solvers.” In: Found.
Art. Intel. 3 (2008), pp. 89—-134.

Karl Hammar. “Ontology Design Patterns in WebProtege.” In: Proceedings of the ISWC
2015 Posters & Demonstrations Track co-located with the 14th International Semantic
Web Conference (ISWC-2015), Bethlehem, PA, USA, October 11, 2015. Ed. by Serena
Villata, Jeff Z. Pan, and Mauro Dragoni. Vol. 1486. CEUR Workshop Proceedings. CEUR-
WS.org, 2015. URL: http://ceur-ws.org/Vol-1486/paper%s5C_50.pdf.

Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz, Adila Krisnadhi, and Valentina Pre-
sutti, eds. Ontology Engineering with Ontology Design Patterns - Foundations and Appli-
cations. Vol. 25. Studies on the Semantic Web. IOS Press, 2016. ISBN: 978-1-61499-675-0.

Pascal Hitzler and Cogan Shimizu. “Modular Ontologies as a Bridge Between Human
Conceptualization and Data.” In: Graph-Based Representation and Reasoning. Ed. by
Peter Chapman, Dominik Endres, and Nathalie Pernelle. Cham: Springer International
Publishing, 2018, pp. 3-6. ISBN: 978-3-319-91379-7.

Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and
Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission. May 2004. URL: http://www.w3.0rg/Submission/SWRL/.

http://dx.doi.org/http://dx.doi.org/10.1016/j.artint.2008.04.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.artint.2008.04.002
http://arxiv.org/abs/1809.10436
http://arxiv.org/abs/1809.10436
http://arxiv.org/abs/1809.10436
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://ceur-ws.org/Vol-1486/paper%5C_50.pdf
http://www.w3.org/Submission/SWRL/

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[P5]

[P1]

[26]

D. Hovland, D. Lanti, M. Rezk, and G. Xiao. “Enabling SPARQL Queries over Enterprise
Relational Data (Extended Version).” In: preprint (2015). arXiv:1605.04263v2 [cs.DB].

Christian Kindermann, Daniel P. Lupp, Uli Sattler, and Evgenij Thorstensen. “Generating
Ontologies from Templates: A Rule-Based Approach for Capturing Regularity.” In: Pro-
ceedings of the 31st International Workshop on Description Logics (DL). (Tempe, Arizona,
US, Oct. 27-29, 2018). Ed. by Magdalena Ortiz and Thomas Schneider. CEUR Workshop
Proceedings 2211. Aachen, 2018. URL: http://ceur-ws.org/Vol-2211/#paper-22.

Roman Kontchakov and Michael Zakharyaschev. “An Introduction to Description Logics
and Query Rewriting.” In: Reasoning Web. Reasoning on the Web in the Big Data Era: 10th
International Summer School 2014, Athens, Greece, September 8-13, 2014. Proceedings.
Ed. by Manolis Koubarakis, Giorgos Stamou, Giorgos Stoilos, Ian Horrocks, Phokion
Kolaitis, Georg Lausen, and Gerhard Weikum. Cham: Springer International Publishing,
2014, pp. 195-244. DOI: 10.1007/978-3-319-10587-1_5. URL: https://doi.org/10.
1007/978-3-319-10587-1_5.

Domenico Lembo, Riccardo Rosati, Valerio Santarelli, Domenico Fabio Savo, and Evgenij
Thorstensen. “Approaching OBDA Evolution through Mapping Repair.” In: Proceedings
of the 29th International Workshop on Description Logics, Cape Town, South Africa, April
22-25, 2016. 2016.

V. Lifschitz. “What Is Answer Set Programming?” In: Proceedings of AAAI 2008. Ed. by
D. Fox and C. P. Gomes. AAAI Press, 2008, pp. 1594—1597. URL: http://www.aaai.
org/Library/AAAI/2008/aaai08-270.php.

Vladimir Lifschitz. “Minimal Belief and Negation as Failure.” In: Artif. Intell. 70 (1994),
pp. 53-72.

F. Lin and Y. Zhao. “ASSAT: computing answer sets of a logic program by SAT solvers.”
In: Art. Intel. 157.1-2 (2004). Nonmonotonic Reasoning, pp. 115-137. 1SSN: 0004-3702.
DOI: http://dx.doi.org/10.1016/j.artint.2004.04.004.

Phillip Lord. “The Semantic Web takes Wing: Programming Ontologies with Tawny-
OWL.” In: OWLED. Vol. 1080. CEUR Workshop Proceedings. CEUR-WS.org, 2013.

Daniel P. Lupp, Leif Harald Karlsen, and Martin G. Skjeveland. “Making a Case for For-
mal Relations over Ontology Patterns.” In: Proceedings of the 9th Workshop on Ontology
Design and Patterns (WOP 2018) co-located with the 17th International Semantic Web
Conference (ISWC 2018), Monterey, CA, October 9, 2018. Vol. 2195. CEUR Workshop
Proceedings. CEUR-WS.org, 2018.

Daniel P. Lupp and Evgenij Thorstensen. “Mapping Data to Ontologies with Exceptions
Using Answer Set Programming.” In: Norsk Informatikkonferanse. Open Journal Systems.
2018. URL: http://0js.bibsys.no/index.php/NIK/article/view/499.

Carsten Lutz, Inan¢ Seylan, and Frank Wolter. “Ontology-based Data Access with Closed
Predicates is Inherently Intractable (Sometimes).” In: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence. IJCAI *13. Beijing, China: AAAI
Press, 2013, pp. 1024-1030. 1SBN: 978-1-57735-633-2.

27

http://ceur-ws.org/Vol-2211/#paper-22
http://dx.doi.org/10.1007/978-3-319-10587-1_5
https://doi.org/10.1007/978-3-319-10587-1_5
https://doi.org/10.1007/978-3-319-10587-1_5
http://www.aaai.org/Library/AAAI/2008/aaai08-270.php
http://www.aaai.org/Library/AAAI/2008/aaai08-270.php
http://dx.doi.org/http://dx.doi.org/10.1016/j.artint.2004.04.004
http://ojs.bibsys.no/index.php/NIK/article/view/499

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[P3]

[34]

[35]

[P4]

28

B. Motik and R. Rosati. “Reconciling Description Logics and Rules.” In: J. ACM 57.5
(June 2010), 30:1-30:62. 1SSN: 0004-5411. DOI: 10.1145/1754399.1754403

Boris Motik, Ulrike Sattler, and Rudi Studer. “Query Answering for OWL-DL with rules.”
In: J. Web Sem. 3.1 (2005), pp. 41-60. DOI: 10.1016/j .websem.2005.05.001. URL:
https://doi.org/10.1016/j .websem.2005.05.001.

Mark A. Musen. “The protégé project: a look back and a look forward.” In: AI Matters 1.4
(2015), pp. 4-12. DOI: 10.1145/2757001.2757003. URL: https://doi.org/10.1145/
2757001.2757003.

Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. “Journal on Data semantics X.” In: Journal on Data
Semantics X. Ed. by Stefano Spaccapietra. Berlin, Heidelberg: Springer-Verlag, 2008,
pp- 133—173. 1SBN: 978-3-540-77687-1.

R. Reiter. “A Logic for Default Reasoning.” In: Artif. Intell. 13.1-2 (1980), pp. 81-132.
DOI: 10.1016/0004-3702(80)90014-4.

Mariano Rodriguez-Muro and Diego Calvanese. “High Performance Query Answering
over DL-Lite Ontologies.” In: KR. 2012.

Riccardo Rosati. “Prexto: Query Rewriting under Extensional Constraints in DL - Lite.” In:
The Semantic Web: Research and Applications - 9th Extended Semantic Web Conference,
ESWC 2012, Heraklion, Crete, Greece, May 27-31, 2012. Proceedings. 2012, pp. 360-374.
DOI: 10.1007/978-3-642-30284-8_31. URL: https://doi.org/10.1007/978-3-642-
30284-8%5C_31.

Martin G. Skjaveland, Henrik Forssell, Johan W. Kliiwer, Daniel P. Lupp, Evgenij
Thorstensen, and Arild Waaler. “Pattern-Based Ontology Design and Instantiation with
Reasonable Ontology Templates.” In: Proceedings of the S8th Workshop on Ontology
Design and Patterns (WOP 2017) co-located with the 16th International Semantic Web
Conference (ISWC 2017), Vienna, Austria, October 21, 2017. 2017.

Martin G. Skjeveland, Henrik Forssell, Johan W. Kliiwer, Daniel P. Lupp, Evgenij
Thorstensen, and Arild Waaler. “Reasonable Ontology Templates: APIs for OWL.” In:
International Semantic Web Conference (Posters, Demos & Industry Tracks). Vol. 1963.
CEUR Workshop Proceedings. CEUR-WS.org, 2017.

Martin G. Skjeveland, Leif Harald Karlsen, and Daniel P. Lupp. ‘“Practical Ontology
Pattern Instantiation, Discovery, and Maintanence with Reasonable Ontology Templates
- Demo paper.” In: International Semantic Web Conference (P&D/Industry/BlueSky).
Vol. 2180. CEUR Workshop Proceedings. CEUR-WS.org, 2018.

Martin G. Skj@veland, Daniel P. Lupp, Leif Harald Karlsen, and Henrik Forssell. “Practi-
cal Ontology Pattern Instantiation, Discovery, and Maintenance with Reasonable Ontol-
ogy Templates.” In: The Semantic Web — ISWC 2018. Ed. by Denny Vrandeci¢, Kalina
Bontcheva, Mari Carmen Sudrez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou,
Lucie-Aimée Kaftee, and Elena Simperl. Springer International Publishing, 2018, pp. 477-
494. 1SBN: 978-3-030-00671-6.

http://dx.doi.org/10.1145/1754399.1754403
http://dx.doi.org/10.1016/j.websem.2005.05.001
https://doi.org/10.1016/j.websem.2005.05.001
http://dx.doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
http://dx.doi.org/10.1016/0004-3702(80)90014-4
http://dx.doi.org/10.1007/978-3-642-30284-8_31
https://doi.org/10.1007/978-3-642-30284-8%5C_31
https://doi.org/10.1007/978-3-642-30284-8%5C_31

Part Il

Published Articles

Paper 1

Mapping Data to Ontologies
with Exceptions Using
Answer Set Programming

Daniel P. Lupp and Evgenij Thorstensen. “Mapping Data to Ontologies with Exceptions Using
Answer Set Programming.” In: Norsk Informatikkonferanse. Open Journal Systems. 2018. URL:
http://0js.bibsys.no/index.php/NIK/article/view/499 [P1]

31

http://ojs.bibsys.no/index.php/NIK/article/view/499

32

Mapping Data to Ontologies With Exceptions Using
Answer Set Programming

Daniel P. Lupp and Evgenij Thorstensen

Abstract

In ontology-based data access (OBDA), databases are connected to
an ontology via mappings from queries over the database to queries
over the ontology. In this paper, we define an ASP-based semantics for
mappings from relational databases to first-order ontologies, augmented
with queries over the ontology in the mapping rule bodies. The resulting
formalism can be described as ” ASP modulo theories”, and can be used
to express constraints and exceptions in OBDA systems, as well as being
a powerful mechanism for succinctly representing OBDA mappings.
Furthermore, we show that brave reasoning in this setting has either
the same data complexity as ASP, or is at least as hard as the complexity
of checking entailment for the ontology queries. Moreover, despite the
interaction of ASP rules and the ontology, most properties of ASP are
preserved. Finally, we show that for ontologies with UCQ-rewritable
queries there exists a natural reduction from our framework to ASP
with existential variables.

1 Introduction

Ontology-based data access (OBDA) [25] is a method for data integration, utilizing
a semantic layer consisting of an ontology and a set of mappings on top of a
database. An ontology is a machine-readable model designed to faithfully represent
knowledge of a domain independently of the structure of the database; it is
comprised of concepts and relationships between these concepts. These ontologies
are often formulated using description logics (DLs), a class of decidable logics, due
to their desirable computational properties [6].

With the help of mappings, users’ queries over the ontology are rewritten into a
query over the database language, such as SQL, which can then be run on the source
data. To ensure that this rewriting is always possible, one requires the ontology
to be first-order rewritable (FOL-rewritable); that is, that every allowed query is
equivalent to a first-order formula. However, not all description logics have this
property. A common class of ontology languages used in OBDA is the DL-lite
family. These description logics have been tailored towards FOL-rewritability and
tractable query answering, making them ideally suited for OBDA [6].

Unfortunately, the rewriting step can cause a worst-case exponential blow-up in
query size [6]. While this blow-up is necessary to ensure complete query answering,
it can lead to highly redundant database queries. Robust pruning of redundant

This paper was presented at the NIK-2019 conference; see http://www.nik.no/.

33

34

queries without nonmonotonic features such as extensional constraints [27] or
closed predicates [23] is practically infeasible. Furthermore, mapping design and
maintenance is usually manual work [2]. This can be a very laborious task, and
recent work on mapping evolution and repair [19] attempts to alleviate some of
the difficulties involved. However, currently OBDA mappings are interpreted as
tirst-order implications. As a consequence, they lack the expressivity to succinctly
handle these issues: for instance, exceptions must be stated explicitly, possibly in
multiple mapping assertions.

Example 1 Let TABLE1 (<ID>,<DATA>, <CONF>) be a table whose third column indicates
a measure of confidentiality of the given entry, ranging from 1 (highly confidential) to 5
(not confidential). Furthermore, let Ac T A be an axiom in the ontology T, where Ac
represents the confidential individuals in A. The mapping assertions

VX, YAZ:TABLE1(X,Y,Z) NY = "“a" N(Z# “1" NZ# “2" NZ# “3") ~» A(X)
VX, Y3Z :TABLE1(X,Y,Z) NY =“a" N (Z="1"\V Z="2"\ Z="3") ~» Ac(X)
express that any entry whose DATA column contains “a” is a member of the concept A or
Ac depending on the confidentiality level. Changing what constistutes “confidential” to
for instance “any data with confidentiality level 2 or above” can represent a major challenge
for mapping maintenance: exceptions are listed explicitly and therefore must be changed in
every relevant mapping assertion. Such code lists (exceptions depending on the value of
a given column) are a common practice in database applications, yet are very prone to
error since (1) changes must be made to potentially many mapping assertions and (2) it is

entirely manual work, without robust consistency checking.

Allowing for negation-as-failure as well as ontology queries in the mapping bodies
alleviates these issues:the following mapping rules map the data in the same manner, yet
have a more succicnt and robust manner of handling exceptions.

VX, YAZ :TABLE1(X,Y,Z) NY = “a”,not Ac(X) — A(X)
VX, YAZ:TABLE1(X,Y,Z) NY ="“a" N(Z="1"V Z="2"VvV Z="3") = Ac(X).

In this paper, we propose a new framework for OBDA mappings called mapping
programs where mappings are not interpreted as first-order implications. Instead,
they are rules containing a database query as well as (positive and negative)
ontology queries in their bodies, allowing for existential quantification in both the
body and the head of a rule. The ontology queries in rule bodies are evaluated
with respect to both the answer sets of the mapping program and the ontology.

This integration of ontology queries into rules allows our formalism to express
ontological epistemic constraints, for example extensional constraints [27] and
thus a method of pruning redundant queries. Furthermore, by being able to
express default rules, mapping programs serve as a powerful abbreviation tool for
mapping maintenance (cf. Example 1). This enables the addition of nonmonotonic
teatures to OBDA while retaining the desirable complexity of ontology reasoning.
Furthermore, the semantics for OBDA with mapping programs is capable of
capturing both the open-world reasoning of the ontology as well as the closed-
world reasoning of the database. This was previously not possible with classical
mappings, as they are interpreted as first-order theories and thus are inherently
open-world.

Related work

Current research on extending OBDA with nonmonontonic capabilities has focused
on the ontology side, e.g., through modal description logics or by inclusion of
closed predicates [8, 23]. However, the modal semantics can be quite unintuitive.
In this setting, modal ontology axioms do not behave well in the presence of
nonmodal axioms. Furthermore, extending ontologies with closed predicates
quickly results in intractability, cf. [23].

Using a rule-based framework for mappings in OBDA is no new notion; indeed,
[3] considers mappings as Datalog programs (possibly with stratified negation)
rather than first-order implications. However, this and to our knowledge all
previously proposed mapping frameworks are monotonic and thus suffer from the
issues illustrated in Example 1.

Since our goal is to connect data to an ontology, we require that each mapping
rule contains a database query acting as a guard on the rule. Thus, existential
witnesses generated by rules are not further propagated by the mapping program.
This is in contrast to the more general existential rules frameworks of tuple-
generating dependencies, where existentials in heads of rules may propagate
[5, 4]. The decidability of mapping program reasoning therefore reduces entirely to
decidability of ontology reasoning.

There have been several approaches to combining rule-based formalisms and
description logic ontologies in contexts other than data transformation, be it by
constructing a hybrid framework integrating both rules and ontology axioms
into the same semantics [24] or by adding rules “on top” [10] of ontologies in the
form of DL-programs. Here, rules can interact with an existing knowledge base by
including special ontology queries in the rule bodies.

Both DL-programs and mapping programs are special cases of a more general
framework called HEX programs [11]. These contain, in addition to regular atoms,
queries to external sources in rule bodies which are evaluated with the help of
oracles. While extending HEX programs with existential variables in the heads and
negative bodies of rules, mapping programs restrict external source queries to
database queries (in the positive body of rules, at least one such query must be
present in each rule) and ontology queries (in the positive and negative body of
rules). These restrictions guarantee that mapping programs are very well-behaved
as opposed to general HEX-programs [9]: Despite existential quantification in rules,
the presence of database queries ensures very limited and nonrecursive value
invention (introduction of new constants), guaranteeing a finite grounding of every
mapping program. This provides a solid foundation for query answering and data
transformation, as it guarantees termination.

Paper overview

In the following, we define and analyze the general mapping program framework.
We discuss the complexity of reasoning in our framework (NP©-complete, if there
exists an ontology reasoning oracle O). Thus, despite the seemingly self-referential
definition of satisfiability in mapping programs,1 mapping program reasoning
separates entirely, i.e., mapping programs can be described as “ASP modulo
theories” [17] where for most reasoning tasks the ontology is treated as an external

Entailment of rule bodies depends on both the ontology and the answer sets of the mapping
program.

35

36

black box. As a result, many results from classical ASD, e.g., properties of stratified
programs, are directly applicable to this setting. Finally, we consider a special
case where the body ontology queries are UCQ-rewritable with respect to the
ontology. Using this property, mapping programs can be reduced to classical ASP
in a straightforward manner.

2 Preliminaries
OBDA Mappings

Let X7 and Zgs be disjoint signatures containing ontology predicate symbols, and
source predicate symbols respectively. Furthermore, let C be a set of constants. A
source schema S is a relational schema containing relational predicates in Zs as well
as integrity constraints. A legal database instance D over S is a set of ground atoms
from ~s and C that satisfies all integrity constraints in S. A first-order formula
with free variables is called a query, if it has no free variables it is called a boolean
query. An ontology T is a set of first-order formulas over 7. In practice, description
logics are often used to express ontologies. Thus, though the results in this paper
focus on the general case of FOL ontologies, we will use common DL notation
throughout the examples in this paper for notational convenience [6].

Example 2 The axiom Boss T ZJhasSup~ is equivalent to the first-order formula
Vx(Boss(x) — Jy.hasSup(y, x)). Here, hasSup™ refers to the inverse role of hasSup.

Following [18], an OBDA specification is a tuple (D, M, T') consisting of a
database instance D legal over a schema S, a FOL-rewritable ontology 7 and a
set M consisting of mapping assertions of the form m : ¢ ~ 1, where ¢ and) are
queries over the data source and ontology, respectively. Then a model Z of an
OBDA specification (D, M, T) is a first-order model over LU X s UC that satisfies
both 7 and M. Here we say that a first-order model 7 satisfies a mapping M if
T & 1(t) for every mapping assertion m : ¢ ~» 1p and every tuple t € eval(gp, D).

Example 3 Consider a database consisting of precisely one two-column table
JOBS_DB(<NAME>, <JOB>). Furthermore, consider the ontology T = {Empl C
Person, Boss T Person}. In the rewriting process, the query Person(x) would be rewrit-
ten to Person(x) U Empl(x) U Boss(x) while in the unfolding step, each of the above
disjuncts would be expanded to a database query using the mapping assertions. For
example, if there exist two mapping assertions JOBS_DB(x, “ Accountant”) ~» Empl(x)
and JOBS-DB(x,”“IT”) ~~ Empl(x), then the disjunct Empl(x) would be unfolded as
JOBS_DB(x,“IT"”) V JOBS_DB(x,“ Accountant”).

Example 3 demonstrates some of the current shortcomings of classical OBDA
mappings: due to its inherent, first-order nature, it is impossible to distinguish
between inferred knowledge and knowledge that is explicit in the database. In the
above example, in the presence of a mapping assertion JOBS_DB(x, i) ~+ Person(x)
the query Person(x) would have sufficed without any ontology rewriting, since
all desired information was contained in one table. However, while some OBDA
implementations [16] support manual query pruning, i.e., the user is able to decide
which concepts should not be rewritten, this can potentially lead to incomplete
query answering, and there is currently no way of formally checking whether it

does. Thus, to ensure complete query answering we have a (potentially redundant)
worst-case exponential blow-up in query size.

Another issue with the current aproach is how exceptions and a lack of
information are dealt with. Currently, one must keep track of exceptions manually
by explicitly listing all exceptions to a rule. Furthermore, due to the closed-world
assumption (CWA) in the database, a lack of knowledge is interpreted as knowledge
itself, e.g., if something is not contained in the JOBS_DB table, it is not a Person.

Answer Set Programming

Answer set programming (ASP) is a declarative programming paradigm based
on the stable model semantics first defined in [14] as a means of handling default
negation in a straightforward manner. It has become one of the more popular logic
programming paradigms, due to, e.g., computational benefits such as guaranteed
termination as compared to resolution in Prolog [20].

An ASP-program P s a set of rules of the form H < By, ..., By, notCy, ..., notCy.

with ground atoms H, B;, and C;. The head of a rule r is Head(r) = H and the body
consists of a two parts, the negative body body~ () = {Cy, ...C,} and the positive
body body™(r) = {Bi,..., Bu}. The Herbrand base HBp of a program P is the
set of all possible ground atoms using predicate symbols, function symbols and
constants occuring in P. Then for a subset I C HBp, the Gelfond-Lifschitz reduct
P! of P is the set of rules in P after applying the following changes: (1) If C; € I for
some i, remove the rule (this corresponds to rules that cannot be applied); (2) in all
remaining rules, remove the negative clauses not C; (this corresponds to removing
all negative clauses that will evaluate to true).

This reduct is a program without any occurence of negation-as-failure. An
interpretation I C HBp is called a stable model or an answer set of P if it is a
C-minimal model of P!, i.e., it is C-minimal and satisfies all rules in P!.

Though the above semantics require ground atoms, i.e., are essentially
propositional, ASP programs might also contains variables or function symbols.
In this general case where function symbols are allowed, reasoning becomes
undecidable [1]. In the function-free case, the first-order ASP programs are usually
tirst grounded to reduce it to the propositional case. The grounded programs can
then either be solved directly [13] or, e.g., translated to an instance of the Boolean
satisfiability problem (SAT) before being passed on to efficient SAT solvers [22, 15].

3 OBDA Mapping Programs

In this section we introduce the syntax and semantics for a new framework for
OBDA mappings called mapping programs. These programs consist of rules that,
intuitively, map database queries Q° to ontology queries H” provided that certain
conditions J* and]~ are met. Thus, mapping programs extend classical OBDA
mappings with default reasoning.

A mapping rule is a rule of the form

H (x,2) « J{ (y1), - J; (¥, mot i (y1), ..., not i (yx), Q° (x).

where y;, y;. C x for all 7, j. Here, the head H T(x, z) is a first-order formula over X

where z denotes possible existential variables. The body of a mapping rule consists
of J.-,]JTL, respectively called the negative and positive justifications and the source

37

38

query Q5. Here, | . and];r are first-order formulas over the language of 7, and

the source query QS is a first-order formula over Zs. A set M of mapping rules is
called a mapping program.

Example 4 Consider a database consisting of one table Jobs_DB (<NAME>, <JOB>). Let
Y7 = {Empl, hasSup,depHeadOf} with a unary relation Empl of employees and
two binary relations hasSup and depHeadOf, describing a supervising relation and a
department head relation, respectively. The default rule “employees, of whom we do not
know that they are the head of a department, have a supervisor” can be expressed through
the following mapping:

mq : dZ.hasSup(X,Z) + Empl(X),not dY.depHea X,Y), Jobs_DB(X, P).
3Z.hasSup(X, Z) pl(X),not3Y.depHeadOf(X,Y) (X, P)

Then a generalized OBDA specification is a triple (D, M, T), where D is a legal
database instance over a schema S, M is a mapping program, and 7 is an ontology.

Definition 1 (Skolem program, following [12]) Let M be a mapping program. The
Skolem rule sk(m) associated to a rule m € M is obtained by replacing each existential
variable v in Head(m) by a new Skolem function symbol sk, (s), where s is an ordered
sequence of universal variables in Head(m) . Then the Skolem program of M is
sk(M) = {sk(m) | m € M}.

A mapping interpretation A is a consistent subset of HB(,¢), the Herbrand base

over the Skolem program sk(M). Such an interpretation is said to satisfy or model a
positive Skolemized mapping rule

m e HT (x,kz(x)) < Jf (94 I} (91), Q5 ().

written A F m, if it satisfies the head or does not satisfy the body. It satisfies
the body of a rule m if the following holds: for every tuple t € eval(QS, D), every
interpretation [with I F 7 U A satisfies];r [t] for all j < I. Here, eval(Q®, D)

denotes the set of tuples t that are answers to the query Q° over D.

Remark 1 In this framework, the database query Q acts as a guard on the mapping rule
m. It is in general a first-order query. Since Q° is interpreted solely over D, mapping rules
are not applicable to existential witnesses generated by mapping rule heads. In particular,
the database query T (x) is a shorthand for every tuple x occuring in the database.

For brevity, we write M instead of sk(M) by abuse of notation. Indeed, in the
following we only consider the Skolemized mapping program.

An interpretation A is said to satisfy or model a positive mapping program M,
written A E M, if it satisfies all mapping rules contained in M.

Example 5 Consider the mapping from Example 4. By Skolemizing, we get the mapping
program:

hasSup(X, sk, (X)) <— Empl(X),not3Y.depHeadOf(X,Y), Jobs_DB(X, P).

Definition 2 (Partial ground program, following [12]) The partial grounding
PG(m) of a mapping rule m is the set of all partial ground instances of m over constants
in Lp for those variables that are not existential variables in the negative justifications. The
partial ground program of a mapping program M is the set PG(M) = U,,e pq PG(m).

Example 6 Consider the database and mapping from Examples 4 and 5. If the set of
constants occuring in the database is {a, b}, then PG(sk(my)) consists of the four mapping
rules for u,v € {a,b}:

hasSup(u, sk, (u)) <— Empl(u),not3Y.depHeadOf (u,Y), Jobs_DB(u,v).

Remark 2 (Finite partial grounding) Though the above definition is seemingly
identical to that given in [12], the partial ground program of a mapping program is
guaranteed to be finite due to the presence of the database guard Q< in every mapping rule.
This guard is evaluated solely over the domain of the database. In contrast, 3-programs are
partially ground using Skolem symbols as well, causing the partial ground program to be
infinite as soon as any rule contains an existential head variable.

Definition 3 (T -reduct) Given an ontology T, define the T-reduct PG(M)A of a
partial ground mapping program PG(M) with respect to an interpretation A as the
mapping program obtained from PG (M) after applying the following:

1. Remove all mapping rules m where there exists some i < k such that T U A F]

2. Remove negative justifications from the remaining rules.

Example 7 Continuing with our running example, let T = {Boss = JdepHeadOf,
Boss T 3hasSup~ }. Add the mapping rules my : Boss(X) < Jobs_DB(X,b) and

m3 : Empl(X) < Jobs_DB(X, P). Then for A = {Jobs_DB(a,b), Empl(a), Boss(a)},
the rules

hasSup(a,sk;(a)) <— Empl(a), not3Y.depHeadOf(a,Y), Jobs_DB(a,v).

for v € {a,b} are removed in the T-reduct PG(M)A construction, since T U A
3Y.depHeadOf (a,Y). Then the T -reduct w.r.t. A consists of all groundings of the
following rules:

hasSup(b, sk, (b)) < Empl(b), Jobs_DB(b,Y).
Boss(X) < Jobs_DB(X, D).
Empl(X) < Jobs_DB(X, P).

A mapping interpretation A is called a T -answer set of M if it is a C-minimal
model of the T-reduct PG(M)#. Then a tuple (Z, A) consisting of a first-order
model Z and a mapping interpretation A is a model of a generalized OBDA specification
(D,M,T)ifZETUAand Aisa T-answer set of M. For a given ontology 7,
a mapping program M is said to entail a formula @, written M Er ¢, if every T -
answer set of M entails ¢. Similarly, a generalized OBDA specification (D, M, T)
entails a formula ¢, written (D, M, T) E ¢, if every model of (D, M, T) entails ¢.

Example 8 It is easily verifiable that the set A given in Example 7 is in fact a T -answer
set. It does not, however, entail T, as the ontology axiom Boss T 3hasSup~ is not satisfied.
Thus, to obtain a model of the generalized OBDA specification, any model T must satisfy
this axiom, in addition to the assertions in A.

39

40

Remark 3 (Extensional constraints) Mapping programs are capable of expressing
extensional constraints over the OBDA specification, i.e., constraints over the ontology
language on the database and mappings [27]. For instance, the extensional constraint
C C. D, which can be intuitively read as “if C(a) is contained in the ABox, then D(a)
is contained in the ABox as well.” Such a constraint is expressible with the mapping
1 < notD(X),C(X), T(X), where L is bottom and T is the query top of appropriate
arity. This guarantees that any T -answer set of M must satisfy this constraint. Thus,
queries containing the disjunction C U D can be pruned, as querying for C in addition to
D yields no new information. It is worth noting that, while this is similar to integrity
constraints over the database, it is not entirely the same: the database schema might differ
greatly from the structure of the ontology, thus allowing the possibility of describing
database constraints on an ontology level.

Complexity Analysis

In the general case, where the heads and bodies of mapping rules are allowed
to contain arbitrary first-order formulas, reasoning over mapping programs is
obviously undecidable. Indeed, consider an empty 7 and the mapping program
M = {R(a) < T,H(x) < ¢,R(x)} for some arbitrary first-order formula ¢.
Then M E H(a) if and only if ¢ is a tautology, which is known to be undecidable
for arbitrary first-order ¢. This is summarized in the following theorem.

Theorem 1 The problem of checking M E A for a given mapping program M and a
ground atom A is undecidable.

Corollary 1 Let (D, M, T) be a generalized OBDA specification and A be a ground
atom. Then the problem of checking (D, M, T) E A is undecidable.

Now consider the case where T = () and L is the set of all ground atoms over
the language of 7. In this case, the oracle O 7) must only check membership
in A, hence it is linear in the size of A. In this case, a partially ground Skolem
mapping program is simply a classical ASP program. Therefore, brave reasoning
over partially ground Skolemized mapping programs is at least as hard as classical
ground ASD, i.e., is NP-hard [20].

More generally, let (7, £) be a pair consisting of an ontology 7 and a set £ of
formulas over the signature X+ such that 7 -entailment of any ¢ € £ is decided by
an oracle O(7). In the following we consider mapping programs M where the
queries in rules are formulas from £. Then to construct a 7-answer set, we can
employ a variant of the guess-and-check algorithm for ASP: By definition, a set A
is a T-answer set of M if and only if it is a C-minimal model of the T-reduct M.
Both the construction of M and the satisfiability-checking are done following
their respective definitions. For C-minimality, it suffices to check co-satisfiability of
A\ {a} for every a € A, since M is a positive program and hence monotonic.

The complexity of the guess-and-check method is dominated by the oracle
O(T,r): indeed, the oracles O) and co-O 1 1) (the oracle that checks if a formula
in L is not entailed by 7) are called a number of times polynomial in the size of M.

More specifically, for a given oracle O () brave reasoning over mapping

programs is NPO<Tfﬁ>-Complete.

Theorem 2 Let (T, L) be a pair consisting of a first-order ontology T and a set of
formulas L over the language of T such that T -entailment is |O) |-hard for an oracle

O(,z)- Then for a partially ground Skolemized mapping program M where the head and
all justifications are formulas from L, T -answer set existence is NPO(T/Q—complete.

Note that, by the preceding theorem, a partially ground Skolemized mapping
program satisfying the conditions of Theorem 2 can be rewritten into an ASP
program with oracle calls in the rule bodies. Therefore, mapping programs can
be considered as “ASP modulo theories.” The resulting ASP program, however,

bears little resemblance to the original program, as it is the encoding of an NPO(T.c)
Turing machine.

Properties of Mapping Programs

In the previous section, we have seen that reasoning with mapping programs
separates in the sense that a candidate 7-answer set A can be checked rule by
rule using an ontology reasoning oracle. Therefore, many properties obtainable
by syntactic restrictions on ASP transfer automatically to mapping programs. As
an example, we show that the proof of answer set uniqueness of stratified ASP
programs can be directly transferred to the mapping program setting.

Definition 4 A mapping program M is said to be stratified if there exists a number
I (called the length of M) such that each query Q contained in a rule M can be
associated to a natural number v(Q) < I where for any rule r in M v(Head(r)) >

maxoepody*(r) (Q), and v(Head(r)) > maxgepoay-(r) 0(Q) hold.

Then the proof of the following theorem is entirely analogous to its classical /DL-
program counterparts [26, 10]. Indeed, using the iterative model sematics [26], a
stratification gives rise to a perfect model A\ of M. It is then easily shown that
this model must be a 7-answer set, and conversely that any 7 -answer set is in
turn a perfect model of M.

Theorem 3 Let (D, M, T) be a generalized OBDA specification with a stratified
mapping program M. Then M has a unique T -answer set iff M is satisfiable.

UCQ-Rewritable Justifications

We now analyze a restriction of mapping programs that admits a natural reduction
to classical ASP for query answering and reasoning. To this end, let 7 be an
ontology over a decidable fragment of first-order logic. We say a formula ¢ over
L1 is UCQ-rewritable with respect to T if the T -rewriting of ¢ is equivalent to a
union of conjunctive queries [7].

Then for a mapping program M where all justifications are UCQ-rewritable
with respect to T, let M, called the T -rewritten program, denote the mapping
program obtained from M by replacing every justification with its rewriting with
respect to 7. The T -rewritten program M is equivalent to a program containing
only atoms as positive justifications and CQs as negative justifications, by well-
known logic program equivalence transformations [21]. By abuse of notation, M
will in the following denote this equivalent program.

Let us first establish the connection between mapping programs and 3-ASP.
Recall that a mapping rule can be applied to every tuple t € eval(QS, D) where
T U AE J*[t] for all positive justifications]].+ and 7"U A] [t] for all negative

41

42

justifications Ji- If the TBox 7 is empty, this reduces to checking whether the
justifications are certain answers w.r.t. A and hence simply checking containment in
A. This is, however, precisely the semantics of ASP with existential variables. Hence,
mapping programs can be seen as an extension of 3-ASP [12], both semantically
and syntactically. This result is summarized in the following theorem.

Theorem 4 Let M be a partially ground Skolem program where all justifications are
conjunctive queries. Then a set A is a ()-answer set of M iff it is a F-answer set of M.

The following lemma describes the relationship between 7 -rewritten programs
and reducts w.r.t. A, which is particularly useful when analyzing the connection
between 3-ASP and mapping programs, as discussed in Theorem 5.

Lemma1 Forany A C HBg a1y we have MA = MA, where MA denotes the T -
rewritten program of M.

Theorem 5 Let M be a partially ground Skolem program where all justifications are
UCQ-rewritable with respect to an ontology T. A set Ais a T -answer set of M iff it is an
()-answer set of M.

As a direct consequence of the preceding theorem, the following corollary
describes how query answering over an OBDA specification using a UCQ-
rewritable mapping program can be reduced to query answering over an equivalent
OBDA specification with an empty ontology.

Corollary 2 Let (D, M, T) be an OBDA specification, M the T -rewritten program
of M, q a query over L1, and q its rewriting with respect to T. Then (D, M, T) &
qlt] <= (D, M, 0) Eq[t].

Therefore, by Corollary 2 and Theorem 4 we find that every UCQ-rewritable
mapping program M is equivalent (w.r.t. answer sets) to an 3-ASP program.
Then, by results in [12], this can be reduced to a classical ASP program. This is
summarized in the following theorem.

Theorem 6 For an OBDA specification (D, M, T), where the justifications in M are
UCQ-rewritable with respect to T, there exists an ASP program M’ such that for a query
gover T (D,M,T)Eq[t] < M’ E qlt], i.e., query answering over (D, M, T)
reduces to cautious reasoning over M.

4 Conclusion and Future Work

In this paper, we propose a new mapping framework for ontology-based data
access (and data transformation in general) that is both very expressive and
controllable with respect to computational complexity. Our framework allows
for default reasoning as well as the expression of epistemic properties over the
database and ontology. We show that mapping programs can be described as
“ASP modulo theories,” treating the ontology as an external black box. The loose
coupling of ASP and ontological reasoning allows us to transfer existing results
about ASP to this setting.

While various highly optimized ASP solvers do exist, the data complexity
involved is rather undesirable in the context of real-world OBDA and big data.

Therefore, one of the greatest priorities regarding future work is to determine how
and when the complexity can be reduced; the mapping program should not be
run on the entire data set. Furthermore, there appears to be a strong connection
between mapping programs and satisfiability modulo theories (SMT). We believe
that mapping programs with ontologies supported by SMT solvers should be
translatable into SMT instances in the same manner as ASP programs can be
translated into SAT instances. If true, this could allow for very efficient query
answering in certain OBDA settings. As such, investigating this connection is a
clear goal for future work.

References

[1] M. Alviano, F. Calimeri, W. Faber, G. Ianni, and N. Leone. Function symbols
in ASP: Overview and perspectives. In NMR—Essays Celebrating Its 30th
Anniversary, pages 1-24. College Publications, 2011.

[2] N. Antonioli, F. Castan, S. Coletta, S. Grossi, D. Lembo, M. Lenzerini, A. Poggi,
E. Virardi, and P. Castracane. Developing ontology-based data management
for the italian public debt. In 22nd Italian Symposium on Advanced Database
Systems, SEBD 2014, pages 353-360. Universita Reggio Calabria and Centro di
Competenza (ICT-SUD), 2014.

[3] R. Barilaro, N. Leone, F. Ricca, and G. Terracina. Distributed ontology based
data access via logic programming. In Proceedings of RR 2012, pages 205-208,
Berlin, Heidelberg, 2012. Springer-Verlag.

[4] A. Cali, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. J. Artif. Intell. Res. (JAIR), 48:115-174,
2013.

[5] A.Cali, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework
for tractable query answering over ontologies. |. Web Sem., 14:57-83, 2012.

[6] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite
tamily. J. Autom. Reasoning, 39(3):385-429, 2007.

[7] E Di Pinto, D. Lembo, M. Lenzerini, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi,
and D. F. Savo. Optimizing query rewriting in ontology-based data access. In
Proceedings of EDBT 2013, pages 561-572, New York, NY, USA, 2013. ACM.

[8] F.M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge
and negation as failure. ACM Trans. Comput. Logic, 3(2):177-225, April 2002.

[9] T. Eiter, M. Fink, T. Krennwallner, and C. Redl. Domain expansion for ASP-
programs with external sources. Artif. Intell., 233:84-121, 2016.

[10] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining
answer set programming with description logics for the semantic web. Art.
Intel., 172(1213):1495 — 1539, 2008.

[11] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of
higher-order reasoning and external evaluations in answer-set programming.
In Proceedings of IJCAI 2005, pages 90-96, San Francisco, CA, USA, 2005.
Morgan Kaufmann Publishers Inc.

43

44

[12] E Garreau, L. Garcia, C. Lefévre, and I. Stéphan. 3-ASP. In Proceedings of JOW
2015 co-located with the IJCAI 2015, Buenos Aires, Argentina, July 25-27,, 2015.

[13] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving:
From theory to practice. Artif. Intell., 187-188:52-89, August 2012.

[14] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In ICLP 88, pages 1070-1080. MIT Press, 1988.

[15] C.P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability solvers.
Found. Art. Intel., 3:89-134, 2008.

[16] D. Hovland, D. Lanti, M. Rezk, and G. Xiao. Enabling SPARQL
queries over enterprise relational data (extended version). preprint, 2015.
arXiv:1605.04263v2 [cs.DB].

[17] J. Lee and Y. Meng. Answer set programming modulo theories and reasoning
about continuous changes. In Proceedings of the I[CAI 2013, pages 990-996.
AAAI Press, 2013.

[18] D. Lembo,]J. Mora, R. Rosati, D. F. Savo, and E. Thorstensen. Mapping analysis
in ontology-based data access: Algorithms and complexity. In Proceedings of
ISWC 2015, pages 217-234, 2015.

[19] D. Lembo, R. Rosati, V. Santarelli, D. E. Savo, and E. Thorstensen. Approaching
OBDA evolution through mapping repair. In Proceedings of DL 2016., 2016.

[20] V. Lifschitz. What is answer set programming? In D. Fox and C. P. Gomes,
editors, Proceedings of AAAI 2008, pages 1594-1597. AAAI Press, 2008.

[21] V. Lifschitz, L. R. Tang, and H. Turner. Nested expressions in logic programs.
Ann. Math. Art. Intel., 25(3):369-389, 1999.

[22] F Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by SAT
solvers. Art. Intel., 157(12):115 — 137, 2004. Nonmonotonic Reasoning.

[23] C. Lutz, I. Seylan, and F. Wolter. Ontology-based data access with closed
predicates is inherently intractable (sometimes). In Proceedings of JCAI 2013,
pages 1024-1030. AAAI Press, 2013.

[24] B. Motik and R. Rosati. Reconciling description logics and rules. J. ACM,
57(5):30:1-30:62, June 2010.

[25] A.Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. In S. Spaccapietra, editor, J. Data Sem. X, pages
133-173. Springer-Verlag, Berlin, Heidelberg, 2008.

[26] T. C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In J. Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193-216. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1988.

[27] R. Rosati. Prexto: Query rewriting under extensional constraints in DLLite.
In E. Simperl, P. Cimiano, A. Polleres, O. Corcho, and V. Presutti, editors,
The Semantic Web: Research and Applications, volume 7295 of Lecture Notes in
Computer Science, pages 360-374. Springer Berlin Heidelberg, 2012.

Appendix

In this appendix we include the proofs omitted from [P1].

Theorem 2. Let (T, L) be a pair consisting of a first-order ontology 7 and a set of formulas £
over the language of 7 such that 7 -entailment is O z)|-hard for an oracle O . Then for
a partially ground Skolemized mapping program M where the head and all justifications are
formulas from £, T -answer set existence is NPO(7.2)-complete.

Proof. Membership in NP®7-¢ can be seen via a guess-and-check method. Verifying that a
certificate A is a T -answer set of M requires (1) constructing the reduct M4 and (2) checking
that A is the C-minimal model of M. Constructing the reduct requires a number of calls to
O bounded by the number of negative justifications in M. Since M is a positive program its
minimal model can be constructed using an iterated fixpoint construction analogous to classical
Datalog [1] and compared to .4, thus requiring a number of calls to Or polynomial in the size
of M4,

For hardness, consider an NP7 oracle machine S with transition function §. We can encode
0 as a mapping program in the same way an NP Turing machine can be encoded as a propositional
ASP program (which must exist since propositional ASP is NP-complete): the Turing machine
halts in an accepting configuration iff the corresponding program has an answer set. For all
transitions that do not result in an oracle call are translated analogously to classical ASP. Let
C1, Cy, C5 be encodings of configurations of S such that §(C) = Csy if O »(Cy) = TRUE and
d(Ch) = Cs if O7 £(C4y) = FALSE. This transition is captured by the mapping rules

1,01 — Oy
T,notC’l — (.

45

]

Theorem 3. Let (D, M, T) be a generalized OBDA specification with a stratified mapping
program M. Then M has a unique 7 -answer set iff M is satisfiable.

Proof. The stratification of M gives rise to a partitioning M, ..., M, of M, where each M,
contains all mapping rules m with v(Head(m)) = i. Then the proof of the existence of a perfect
model is entirely analogous to the stratified Datalog case: M is a positive program and hence
has as a unique minimal model. M5 is semi-positive with respect to M, i.e., the negative
justifications within rules in M cannot occur in a head in M. Hence M has a unique minimal
model. Iterating this argument gives the perfect model A, of M.

By a similar argument, it is easily shown that any 7 -answer set of M must contain A .
However, T-answer sets cannot properly contain a model of M (this would contradict the
minimality condition of 7 -answer sets), proving uniqueness. 0

Theorem 4. Let M be a partially ground Skolem program where all justifications are conjunctive
queries. Then a set A is a ()-answer set of M iff it is a 3-answer set of M.

Proof. If T is empty, checking satisfaction of a justification J~ reduces to checking whether it
is a certain answer w.r.t. A, i.e., checking containment in A. This corresponds precisely to the
semantics of 3-ASP. [

Lemma 1. For any A C H B\ we have MA = M4, where M# denotes the T -rewritten
program of M4,

Proof. Let m be a mapping rule removed from M in the construction of the T -reduct M4, i.e.,
there exists some i < k such that 7 U A F J. . This is equivalent to (), A F J_Z_ where J_Z_ is the
T -rewriting of .J;. Thus 7 is removed from M in the construction of the 7 -reduct M. Hence
m e M ift m € MAiff m € MA, O

Theorem 5. Let M be a partially ground Skolem program where all justifications are UCQ-
rewritable with respect to an ontology 7. A set A is a T-answer set of M iff it is an ()-answer
set of M.

Proof. Let A C H Bgjaq) and let

v HTIt, sk, (t)] < JF[E], ..., T[]

be any rule in M. We shall prove the statement by separately showing (1) the equivalence of
rule satisfaction in M+ and MA and (2) that A E M- is minimal iff A MA is minimal.

46

1. Satisfaction:

AETr

s if AF Q[t]and A, T F J[t] foralli < k
then A = H[t, sk, (t)].

& if AEQS[t] and A, 0 = JF[t] forall i < k
then A E H[t, sk, (t)].

SAET

2. Minimality: Assume A’ C A is a model of M“. By 1, this is the case if and only if
A" E MA. Finally, Lemma 1 yields the desired result that A’ = M

]

Corollary 2. Let (D, M, T) be an OBDA specification, M the T -rewritten program of M, ¢ a
query over Y7, and § its rewriting with respect to 7. Then (D, M, T) E q[t] <= (D, M, () E

qlt).
Proof. Direct consequence of Theorem 5. [

Theorem 6. For an OBDA specification (D, M, T'), where the justifications in M are UCQ-
rewritable with respect to 7, there exists an ASP program M’ such that for a query ¢ over T
(D, M, T) Eq[t] < M’ Eq[t], i.e., query answering over (D, M, T) reduces to cautious
reasoning over M.

Proof. By Theorem 4 and Corollary 2, M is equivalent to an 3-ASP program P. By Proposi-
tion 8 in Garreau et al ! this can further be reduced to a classical ASP program. [

!Fabien Garreau, Laurent Garcia, Claire Lefévre, and Igor Stéphan. “3-ASP.” in: Proceedings of the Joint
Ontology Workshops 2015 Episode 1: The Argentine Winter of Ontology co-located with the 24th International
Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, July 25-27, 2015. 2015

47

Paper 2

Reasonable Macros for
Ontology Construction and
Maintenance

Henrik Forssell, Daniel P. Lupp, Martin G. Skj@veland, and Evgenij Thorstensen. “Reasonable
Macros for Ontology Construction and Maintenance.” In: Description Logics. Vol. 1879. CEUR
Workshop Proceedings. CEUR-WS.org, 2017 [P2]

49

50

Reasonable Macros for Ontology
Construction and Maintenance

Henrik Forssell, Daniel P. Lupp, Martin G. Skjeeveland, and Evgenij
Thorstensen

Department of Informatics, University of Oslo
{jonf,danielup,martige,evgenit}@ifi.uio.no

Abstract. Creating and maintaining ontology knowledge bases are
difficult processes that can be improved by using macro or templating
languages that help structure the ontology engineering task and reduce
unnecessary repetitions of ontology patterns. However, since the templates
themselves need to be created and maintained, suitable tool support for
their maintenance is vital in order to ensure the quality of the resulting
knowledge base, and to lower the cost of its construction and maintenance.
In this paper, we show that a simple and powerful macro or templating
language for description logic (DL) knowledge bases can be defined in
description logic itself. In other words, DL allows for macros that are
themselves DL knowledge bases; maintenance and debugging for such
macros can therefore be done using existing DL reasoners, and does not
require extra tool support. We define such macros for the DL SROZQ,
which underlies the W3C standard OWL 2. We then show that notions
of containment and other problems of interest for such macros become
standard reasoning problems supported by existing reasoners. We explore
the uses of such macros, showcase how they can be used as restricted
higher-order queries, and apply our insights to the setting of data exchange.

1 Introduction

Like any knowledge representation task, creating ontologies is a
difficult and time-consuming process that requires the utmost diligence
of the ontology engineer. Ontology design patterns (ODPs) are a
proposed solution to improve the ontology engineering process by,
in part, providing reusable favourable ontology building blocks to
recurrent ontology modelling problems, thus avoiding common pitfalls
and introducing best modelling practices |9, 14|. Many tools and
languages exist for building ontologies using patterns, macros or
templates, e.g., [17,18,22,24,30]. However, they in turn incur the
cost of needing tool support to manage and debug the macros or
templates as well as the ontologies themselves. The latter is easier,
since OWL is a standard with a lot of tool support available. In fact,

51

52

to our knowledge, existing ontology construction tools rely completely
on the resulting OWL ontology for checking the ontological quality of
the templating mechanism, if this is addressed at all.

The goal of our paper is to show that a powerful macro language
for ontologies expressed in common description logics (DLs) can be
defined using the description logics themselves. In other words, we
present the simple, but novel idea of using ontologies to represent
macros for description logics, and call such macros ontology templates
or just templates. A template is itself an ontology in the given DL
language. Templates may have parameters, may be defined from
other templates, and are instantiated by substituting parameters with
suitable concept expressions, role expressions, and constants in the
ontology. A template defined from other templates may be expanded
by recursively replacing template expressions with the ontology they
represent. Thus, an expanded template represents the semantics of
the pattern in the form of a prototypical ontology.

A set of templates can actively be used in the ontology engineering
process as an abstraction interface for representing ontological state-
ments at a suitable level of granularity, i.e., using its unexpanded form.
The templates themselves may be constructed and maintained, both in
isolation and as an expanded ontology, using available ontology editors
and reasoners. One can imagine the design of an ontology relying
completely on a (relatively small) set of well-organised templates
managed by ontology experts, while the bulk content of the ontology
is represented as a (large) set of template instances, typically managed
by domain experts.

The construction, maintenance and debugging of templates require
little additional tool support, as templates may be built using existing
ontology editors, and problems related to redundancy and correctness
become standard reasoning problems that are supported by existing
ontology reasoners. What does require additional tool support, is the
process of instantiating templates. A prototype implementation is
available which specifies an OWL vocabulary for expressing templates
and instances, and software to interpret the vocabulary and produce
expansions, queries, transformations and data input formats from the
templates [1].

Example 1. To build some intuitions, we give an informal example
before formally defining templates and operations on templates. The
following expression P(x,y) — {x C JR.y} represents a template

P with parameters x and y. We may instantiate P with concepts
C, D, written P(C, D), to obtain the instance {C' C 3R.D}. Using
the template P, we can now define the complex template Q as
Q(x,y,z) — {P(x,y),P(y,z),x C ¥S.z}. Expanding Q(x,y, z) gives the
ontology {x C FR.y,y C dR.z,x C VS.z}.

Any macro or templating language can also be viewed as a query
language, where a macro producing an object given values becomes a
query asking for values that would produce a given object. In our case,
a template is a knowledge base that takes individual names as well as
concept and role expressions as input. Using it as a query over another
knowledge base is then a way of extracting from this knowledge base
concept and role expressions and individuals of interest. This is both
a tool for exploring large ontologies and for ontology transformation
and maintenance. Due to the fact that templates are also ontologies,
problems such as query containment become standard DL reasoning
problems.

By exploiting the duality between templates as macros and tem-
plates as queries, we show that templates find natural use in data
exchange and ontology approximation. Pairs of templates can be seen
as specifying fairly rich mappings between different ontologies. Since
templates are themselves ontologies, existing reasoners can be used
to good effect in computing properties of interest. We want to further
exploit this fact to explore the different relationships between patterns
represented as templates which are useful for their maintenance and
use, cf. [11].

1.1 Related work

A predecessor and inspiration to the current form of templates was
presented in [19]. To our knowledge, the idea of representing macros
for description logics as ontologies is not previously discussed in the
literature. However, it is related both to various macro approaches in
use, as well as to notions from the field of data exchange.

In a paper from 2005 [29], Vrandeti¢ introduces the concept of
macros for OWL ontologies and discusses advantages and disadvan-
tages of macros, and their possible applications and implementations.
Here, a macro is defined as a symbol, possibly with parameters, and
is expanded according to a set of rules. Our papers share many ideas,
but Vrandeci¢’s exposition is less detailed; for instance the format

53

54

of the rules is left unspecified. Also, it is not clear if macros can be
composed from other macros, which is a core feature of our templates.

Mappings in the field of data exchange are also related, where
queries over source data or knowledge bases are mapped to queries
over a target schema or ontology [2,4,21]. In a sense, the target
queries are used as macros to produce an (incomplete) database
or ABox from data retrieved by the source queries. Our approach
differs in that templates, when viewed as queries, are a restricted case
of higher-order queries, as concept and role expressions are part of
the answers. In data exchange, queries are furthermore supposed to
produce, as far as possible, a ground database or ABox, as opposed
to a full theory in some logical language.

Viewed as queries, templates are a very restricted kind of higher-
order queries; they return concept and role expressions in addition to
individual names. Higher-order queries for DL knowledge bases have
been investigated for OWL [23], but usually with very expressive
semantics based on entailment |7]. We recognise the merits of such an
approach, but the drawback is that very careful and strong restrictions
are required to control decidability and complexity. In our case, the
reliance on substitution allows us to bypass these problems.

Many practical tools and languages for constructing knowledge
bases using template or macro mechanisms exist; a few of these are the
following: R2RML [6], OPPL [17] M? [24], XDP [10, 12| Ontorat |30,
Populous [18], XLWrap [20], RDF123 [13], Tawny-OWL [22], Thea 28]
and InfixOWL |[25].

2 Preliminaries

We take as our starting point the expressive description logic language
SROZIQ that underlies the W3C standard OWL 2 [16]. Many other
well-studied and used DL languages (e.g. DL-Liteg [5] and ££, [3],
which underlie OWL 2 profiles) can be defined in terms of syntactic
restrictions on SROZQ. Our definitions of SROZQ templates will
therefore carry over to these languages in a straightforward manner.

SROTIQ uses a vocabulary N = No U N U N; with countable
sets of concept names N¢, role names Ng, and indiwvidual names Nj.
Complex concepts and complex roles are defined as the smallest sets
containing all concepts and roles that can be inductively constructed
using the concept and role constructors in Fig. 1, where C, D are

concepts, P, R are atomic or inverse roles, S, () are any roles including
role chains, a,b are individual names, and n a positive integer. A
SROZQ knowledge base (KB) is a finite set of axioms of the form
shown in Fig. 1. Further restrictions apply, so that not every finite set
of axioms of this form is a SROZQ knowledge base!. For instance,
S-@Q C R and Dis(P, R) is an illegal combination of axioms. See [16]
for further details.

Expression Syntax Semantics Subst. app.
Complement -C AN ¢! —(Co)
Intersection cnbD c'np! Co M Do
Union cubD cluD! CoU Do
Exist. restr. iR.C {z | Iylz,y) € RT Ay c CT} I(Ro).(Co)
Univ. restr. VR.C {z | Vy({z,y) € RT -y e C"} V(Ro).(Co)
Card. restr. >nR.C {z|#{y| (z,y) e RR Ay C'} >n} >n(Ro).(Co)
Self restr. JR.Self {z|({(zx,z) € R'} I(Ro).Sel f
Nominal {a} {a'} {ac}

Inv. role R~ {{y,x) | {z,y) € R} (Ro)™
Univ. role, conc. U, T AT x AT AT U, T (invar.)
Empty conc. 1 0 L (invar.)
Chain (w) S-Q STo Q! So - Qo
Axiom Syntax Semantics Subst. app.
Conc. incl. cCCD ctc D! Co C Do
Role incl. wC R w! CR! wo C Ro
Reflexivity assert. Ref(R) R! is reflexive Ref(Ro)
Role disjointness Dis(P,R) PPN R =) Dis(Po, Ro)
Concept assert. C(a) a e’ Co(ao)
Role assert. R(a,b) {(a’,b") € RT Ro(ao, bo)
Neg. role assert. —R(a,b) (a’,b') & R! —Ro(ac,bo)

Fig. 1. Syntax, semantics, and substitution application for SROZQ

A DL interpretation is a pair (A!, 1) where Al # () and ! is a
function such that af € A! for all a € N¥, AT C A for all A € Ng,
and RT C Al x Al for all R € Np. Interpretation of concept and role
expressions is inductively defined as given in Fig. 1. An axiom ¢ is
satisfied by I if I satisfies the respective constraint in Fig. 1, and a
knowledge base K is satisfied by [if I satisfies every axiom in K.

Substitutions. Let L be a description logic language. An L-substitution
o is a function from the sets of concept, role, and individual names

! Since we do not distinguish between terminological axioms and assertions in this
paper, we also use “knowledge base” and “ontology” interchangeably.

55

56

to, respectively, the sets of concept expressions, role expressions, and
individual names allowed in L. Given a set of concept, role, and
individual names S, the restriction of a substitution o to the elements
of S is denoted o|g, given by o|g(z) = o(z) if x € S, and o(x) = x
otherwise.

Let 0 be an L-substitution. We recursively define the result of
applying an L-substitution ¢ to the concepts, roles, and axioms in
the DL SROZQ according to Fig. 1. The result of applying ¢ to an
L-knowledge base K is the set of axioms Ko obtained by applying o
to every axiom in K.

Closure under substitutions. Let L, K, and o be as above. Since there
may be restrictions on what set of (L-)axioms form L-knowledge
bases, Ko may not be an L-knowledge base, even though K is. We say
that Ko is a legal instance for L if Ko is an L-knowledge base. When
L is understood from context, we will simply say that Ko is legal. We
say that L is closed under substitutions if applying an L-substitution
to an L-knowledge base always produces a legal instance.

Working with substitutions and notions based on substitutions in a
description logic which is not closed under substitutions is necessarily
somewhat more intricate. In particular, the notions of containment
presented in Sec. 4 can behave counterintuitively in this case. In this
paper we therefore restrict ourselves to fragments of SROZQ that
are closed under substitutions. The general case will be presented in
future work.

SROILQ itself is not closed under substitutions. However, any set
of SROZQ axioms that do not mention role chains is a legal SROZQ
knowledge base (see [16]). Accordingly, ALCHOZQ, the fragment of
SROIZQ that does not allow role chains, is closed under substitutions.
SHZQ [15] and EL++ [3] are not closed under substitutions, while
ALC |27] is.

3 Ontology Templates

Let L be a DL language. An L-template is an L-knowledge base
T together with a set param(7) of distinguished concept names,
role names, and constants from 7' called the parameters. Given an
L-substitution o, we define the instance To of T' to be T'0|param(1)-

Ezxample 2. We write PartOf (part, whole) — {whole C JhasPart.part}

to designate the template PartOf which has a single axiom knowledge

base {whole T JhasPart.part} where hasPart is a role name and

the concept names part and whole are parameters. Let ¢ be the

substitution {part — Steering Wheel,whole — Car}, then PartOfc =

PartOf (SteeringWheel, Car) is the following instance of PartOf: {Car C
JdhasPart.SteeringWheel}. Note that also PartOf(part, whole) is an

instance of PartOf with the identity function as substitution; this

instance is {whole C JhasPart.part}.

If several templates have been defined, it would be convenient
to re-use existing templates to create new ones. To that end, we
define a complex template as a template that, in addition to axioms,
contains one or more (complex) template instance statements. To
avoid circular templates that cannot meaningfully be expanded, we
demand that the digraph given by one complex template containing
an instance statement of another template be acyclic. In addition,
to ensure unique expansions we pose requirements essentially to the
effect that parameters in a complex template do not occur as non-
parameters in its descendants. Instantiating a complex template T’
using a substitution o is then defined as before, with the application
of 0 to an instance statement 77 being T'ro. It is clear that a
complex template can be re-written into an equivalent non-complex
template, by recursively replacing each template instance statement
with the corresponding instance. Doing so is called expanding a
complex template. For the remainder of the paper, we assume that
all templates are expanded, i.e., non-complex, unless noted otherwise.

Example 3. Let QualityValue be the template

QualityValue(x, hasQuality, uom, val) —

{x C JhasQuality.(VhasDatum.(IhasUOM .{uom} M JhasValue.{val}))}

which intuitively expresses that x has a quality with a given value
val with a given unit of measure uom. Using this template and the
PartOf template from Ex. 2, we can define the complex template
PartLength as

PartLength(whole, part, length) — {PartOf(part, whole),
QualityValue(part, hasLength, meter, length)}

57

58

which expresses that the whole has a part with a given length measured
in meters. An example instance of the template is

PartLength(Porsche123, SoftTop, 3.40)

stating that (the car) Porschel23 has a softtop (roof) of length 3.40
meters. The expansion of PartLength(whole, part, length) is

{whole T JhasPart.part,
part C JhasLength.(YhasDatum.(3hasUOM.{meter}
M 3hasValue.{length}))}.

A clear motivation for using templates as ontology macros is as a
practical implementation for applying and composing ontology pat-
terns when engineering ontologies, as mentioned in Sec. 1. Currently,
ODPs offer little framework for actually using the patterns in the
construction of an ontology other than importing and/or copying and
extending the ontology representation of the pattern manually. There
is no prescribed way of representing if and how a pattern has been
used.

By regarding an ODP as a template where the relevant concepts,
roles and individuals are marked as parameters, we can simply instan-
tiate the pattern to get a customised copy of it fit for the ontology
engineering task at hand. The template instance expression serves as
documentation of how the template pattern is used. Creating new
patterns using the techniques in [12,26], e.g., specialising, cloning, com-
posing and templating, is made simple with templates, as illustrated
by the examples above. A set of ODPs represented as templates can
actively be used in the ontology engineering process as an abstraction
interface for representing ontological statements at a suitable level of
granularity, i.e., possibly in their unexpanded form. The templates
themselves may be constructed and maintained, both in isolation
and as an expanded ontology, using available ontology editors and
reasoners.

3.1 Templates as Queries

A template T can also be viewed as a query, retrieving from some
knowledge base O all concept and role expressions as well as individuals
that, when used as input to T, would produce a subset of O — a
notion dual to that of a template instance.

Formally, the result of evaluating 7" on O is the set of substitutions
eval(T,0) = {0|param(r) | T'o a satisfiable instance such that To C
O}. We require satisfiability to make templates as queries well-
behaved even in the case of an unsatisfiable KB O. This becomes
particularly useful when O is unsatisfiable due to axioms that have
nothing to do with 7.

Example 4. Let PartLength be the template as defined in Ex. 3. To
get all lengths of the parts of a Porschel23, we can use the following
template as query: PartLength(Porschel23, part,length). Evaluating
this template over an ontology containing the example instance
in Ex. 3 will give an answer set containing the single substitution
{part — SoftTop,length — 3.40}.

Using templates as queries for extracting pattern instances may
be useful in many cases; for instance, representing an ontology as a
set of template instances, rather than its DL axioms, should convey
a better picture of the contents of the ontology to a human user.
Also, there is a case to made for using templates both as macros
and as queries in data exchange settings and for translating between
different ontology languages. This is discussed further in Sec. 5. When
querying an ontology O with a template 7" one might be interested
in answers which are, e.g., semantically entailed by O, rather than
syntactically stated in O. We point to this issue again in Sec. 6.
For our current, expository, purposes, however, the simpler syntactic
definition of eval(T, O) is sufficient.

Complexity. Deciding whether there exists a substitution such that
To C O is NP-complete. Membership is obvious, while for hardness,
we reduce from 3-colourability by using axioms of the form AMMB C T
to simulate the edges of the input graph, where A, B are vertices.
Let this KB be the template 7', with every vertex a parameter. We
likewise encode K3, the complete graph on three vertices, and call it
O. 1t is clear that the input graph is 3-colourable if and only if there
exists a substitution o such that To C O.

Therefore, the complexity of deciding whether eval(T, O) is empty
is the greater of NP and the complexity of checking whether a
candidate substitution o is such that T'o is a satisfiable instance. The
complexity of checking satisfiability depends on the language of T',
and is a well-studied topic; see [8] for an overview.

59

60

4 Reasoning about Templates

Whether viewing templates as macros or queries, it would be useful to
be able to discuss and decide various relationships between them. For
templates, a natural idea is to consider notions of containment between
the instances produced by two templates. Below, we define two such
notions, one based on set inclusion and corresponding to containment
of templates as queries, and one based on logical consequence. For
the latter, we will show in Sec. 5 how it can be applied to the setting
of data exchange.

Furthermore, we consider the question of whether a template T’
can be used to describe a given knowledge base. Being able to decide
this is important when considering the practical usability of a set of
templates, and show a simple characterisation for it.

In the following, we assume that T} and T are L-templates such
that param(77) C param(75). We say that T} is syntactically contained
in Ty, written T C, Ty, if Ty C Tho for every substitution o. It is
worth noting that the the requirement param(77) C param(75) is only
seemingly restrictive to this definition: in fact, syntactic containment
implies parameter containment.

The following theorem characterises the relationship between
syntactic containment and the template parameters.

Theorem 1. Let 17 and Ty be L-templates. Then the following are
equivalent:

1T G Ty

2. Ty €Ty and no axiom or assertion in Ty contains a parameter
from param(T5) \ param(7})

3. Tyo' C Tyo'!, where o' maps each concept, role, or individual name
to a new, previously unused name.

Proof. 1 — 2 : Choosing ¢ as the identity shows that 77 C T5. Let
©(P,) be an axiom or assertion in T such that P, € param(T3) \
param(7y). Then po|r, (P2) € Tio for every o. Choose o’ such that
o'(Py) = P, for a new and previously unused symbols Py and the
identity otherwise. Applying o’|7, to ¢(P,) yields @o'|r, (P2), while
o7, yields @o’|r, (Py). In particular, po'|r, (P2) ¢ Too’ and therefore
Tl()'/ Z TQO'/.

2 — 3 : Let ¢’ be as described in the theorem and let ¢ € T} be an
axiom or assertion. Applying o'|7, to ¢ yields the same as applying

o'|r, to @: if ¢ does not contain parameters, then o’ = ¢ in both
templates; if it contain parameters they must come from param(7}),
and hence po'|r, = wd'|r,. Hence Tio" C Tho'.

3 — 1: Proof by contraposition: Assume o is a substitution such
that @o|r, is not in Tho for some axiom or assertion ¢ € Ty. If ¢ & T,
then Tyo' Tyo' for o’ as defined in the theorem. If ¢ € T, then
¢ must contain a parameter P from param(75) \ param(7}), since
wo|p, € Teo. Thus @o'|7, still contains P, since o'|r, acts as the
identity on names not in param(7}). P is not in the image of o’'|r,
and therefore po'|1, & Tho', i.e., Tyo! L Tho'.

Similarly to above, we say that a template T} is entailment con-
tained in Ty, written Ty C, Ty, if Too |= Tio for every substitution
0.

Theorem 2. Let T and Ty be L-templates where param(Ty) C
param(T3). Then Ty C. Ty if and only if Too' = Tio', where o’ is a
substitution that maps each concept, role, and individual name to a
fresh, previously unused name.

Proof. We need only prove the “if” direction, which we show by
contradiction. Assume there exists a substitution o and a model M
such that M |= Tyo and M [~ Tio. We expand this model to M’ by
taking into account the fresh names from o’: define M'(Po’) = M (Po)
for parameters P € param(7,). Then by the standard inductive
constructions, we get M'(p0’|param(12)) = M (00 |param(1,)) and hence
M’ |=Tyo" and M' }=Tio'.

Since templates as macros and templates as queries are dual to
each other, the fundamental notion of feeding the answers of one
query into another (used in many applications for first-order queries)
becomes more powerful. In the following, we define this operation
formally and give examples of its use.

First, we will need a convenient bit of notation. Given a set of
substitutions S, define instst (7, .S) = (J{T'o | T'o satisfiable,o € S}.
Then a template T is said to produce a knowledge base O if there
exists a set of substitutions S such that O = inste(7,S). Now,
we define the move or materialise operator as follows: Let T} and
T, be two L-templates with param(7}) C param(73), and let O be
a knowledge base. We define M (O, Ty, Ty) = instg (1o, eval(17, O)).
This operator can be used to decide whether a knowledge base O is

61

62

comprised entirely of instances of a given template T}, by checking
whether M(O,T,,T1) = O. The axioms in O \ M (0O, Ty, Ty), if not
empty, are the ones that do not match any axioms in the template.
This is summarised in the following theorem.

Theorem 3. Let T be a template and O a knowledge base. T can
produce O if and only if M(O,T,T) = O.

5 Using Templates for Data Exchange

Templates can be used for data exchange. In particular, observe that
two L-templates T's and T with param(7r) = param(Ts) define an
implicit mapping from any satisfiable instance Tso to the instance
Tro. This observation can be exploited for data exchange.

Let Og be a source knowledge base, and T a template describing
the concepts, roles, and individuals from Og that we wish to transfer
to a different setting (e.g., into some other knowledge base). To do so,
we use a target template T, potentially by renaming parameters in
an existing template that we have used to build other parts of our
target KB. We can now use Ts and 17 as the body and head of a
data exchange mapping. The result of applying such a mapping is
precisely captured by the operator M defined in Sec. 4.

FExample 5. Assume that the knowledge base O¢ models partonomy
relationships (between car components) using the role isComponentOf
and suppose we want to translate these relations into using the
hasPart role used by the PartOf template as defined in Ex. 2. This
can be achieved by the following data exchange setting using the
PartOf template as query and the following template as macro:
CMPT (part, whole) — {part C JisComponentOf .whole}. The materi-
alisation of the exchange is

M (O¢, PartOf, CMPT) = instg,:(CMPT, eval(PartOf, O)).

Let Or = M(Os,Ts, Tr). 1t is possible that T is more restrictive
than Ts when it comes to satisfiable instances. If so, then some of the
substitutions retrieved by T’s create unsatisfiable instances of 177, which
are then discarded. We can check whether this occurs by reversing
the materialisation, and considering the KB O = M (O, Tr, Ts).
Since Og may have a lot of statements not retrieved by Tg in the first

place, the two are not comparable. However, consider the subset of
Ogs that Ts does retrieve, that is, M (Og,Ts,Ts) C Os.

It is always the case that M(Or,Tr,Ts) C M(Og,Ts,Ts), since
for every axiom ¢ in M(Op,Tr,Ts) we have that there exists a
substitution ¢ such that ¢ € Tso. Then, we have that Tro C
Or = M(Os,Ts,Tr), and hence that Tso C Og. Therefore, o €
eval(Og, Ts), and hence ¢ € M(Og,Ts,Ts).

If this inclusion is an equality, then in terms of concepts retrieved
and inserted, we have lost no information. In fact, we have kept the
syntactic form of the axioms as they appear in the templates. When
is this always the case, i.e., M(Op, Tr,Ts) = M(Og,Ts,Ts) for every
Og4? Recall that we assumed that L is closed under substitutions —
it follows that this becomes a question of conditional satisfiability.
We want the following property: For every o, if Tso is satisfiable,
then so is Tro. If the DL language we are working in allows un-
restricted equivalence axioms, then this problem is equivalent to
checking whether there exists a set of equivalence axioms S = {A =
¢ | A € param(Ts), ¢ a concept/role expression or individual name}
such that T's U S is satisfiable but 77 U S is not. This is a difficult
problem, but as a preliminary result, we can show that entailment
containment is sufficient, and hence that syntactic containment is
also.

Theorem 4. Let L be a DL language, and Ts, T be L-templates with
param(Ts) = param(Tr). We have that M(Op, Ty, Ts) = M(Og,Ts, Ts)
for every L-KB Og if Ty C. Ts. The converse is false.

Proof. Let Tg(A) = {A C B} and Tr(A) = {A C C}. It is clear that
for any Og, all substitutions for A create satisfiable instances of both
Ts and Tr. Equally, it is clear that there is no containment between T
and Tr. On the other hand, let Og be arbitrary. If Tr C, Ty, then for
every o € eval(Og, Ts), Tro is satisfiable, and hence Trro C Op. Then,
we have that o € eval(Tr, Or), and thus that Tgo C M(Og,Ts, Ts).

The above notion of not losing information is rather restric-
tive. More natural is the semantic notion, whether M (Or, Tr,Ts) =
M(Og,Ts,Ts). Since equality implies entailment, the above result ap-
plies also to this case. However, we do not yet have a characterisation
for the general case.

63

64

6 Conclusion and Future Work

We have presented ontology templates, a notion of ontology macros
for the DL SROZQ. We have shown how such macros can be used
to assist knowledge base creation and maintenance, in particular
by treating templates as queries as needed. We have also presented
preliminary results on relationships between templates, and argued
that they have a use within data exchange. In addition to extending
our preliminary results, we plan to investigate the areas below.

Closure under substitution. As specified in Sec. 2, we have restricted
ourselves to description logics that are closed under substitutions.
Several notable description logics, including SROZQ itself, do not
have this property. Thus extending our scope to such DLs is an
important current and future consideration. In particular, we are
investigating suitable conditions on substitutions that guarantee that
an instance of an L-template is always an L-ontology for relevant
descriptions logics L. We hope that such conditions will allow us to
compare templates across DL languages. For the rest of this section
we continue to assume that L is closed under substitution, that all
substitutions are L-substitutions, and that all templates T and KBs
O are in L. However, the research questions below have natural
extensions to description logics that are not closed under substitution.

Queries and entailment relations. Recall from Sec. 3.1 that a template
T can be used as a query on a KB O. Intuitively, such a query searches
O for instances of the pattern expressed by 7. According to the
definition in Sec. 3.1, the query returns the parameter substitutions
o such that To C O and T'o is satisfiable.

Since this is formulated in terms of set inclusion, evaluating 71" over
O returns only the instances of T' that are explicitly in O. However,
one might also be interested in instances that are entailed by O,
for whatever notion of entailment one finds relevant. For semantic
entailment, for instance, the results of the query would be parameter
substitutions o such that T'o is satisfiable and O F To.

Ezample 6. Let T be the template P(x,y) — {x C y} and O the
KB {A C B, B C C}. The result of querying O with 7" with
respect to set inclusion and semantic entailment, respectively, are
eval(T,0) = {{x — A,y — B},{z — B,y — C}}andeval-(T,0) =
{{z — ¢,y — ¥} | ¢,9 L-concept expressions, and O F ¢ C }.

In particular, {z — A,y — C} is not in eval(T,0), but it is in
eval- (7, 0).

In general, eval-(7T, O) is an infinite set, containing “redundant”
concept and role expressions such as A A, as well as concept names
that do not occur in O. Thus on the one hand, eval(T,O) is too
restrictive. On the other hand, eval-(7', O) is too permissive, resulting
in an infinite set on the trivial ontology of Ex. 6, and allowing clearly
redundant answers. We plan to investigate notions of evaluation of a
template over an ontology that lie between these two extremes.

Knowledge base translations and templates. Let - be an entailment
relation between L-ontologies, such as set inclusion or semantic
entailment. Together with the notion of L-substitution, this induces a
mapping, or translation, between ontologies. A translation f : O — O’
is a substitution ¢ with the properties that 1) for any name x, if
o(x) # x then x occurs in O and f(x) is an expression constructed
from names occurring in O, and 2) O’ + Oc. Such translations
compose, and so form a category, i.e. a formal system of morphisms.
Although well-known, such translations do not seem to have been
studied in the DL context.

Templates lend themselves well to be studied in the setting of
formal systems of ontologies and translations. First, they can be
defined there, as simply a special kind of translation between two
ontologies. Second, the operations involving templates, e.g. extending
an ontology by a template instance and querying an ontology with a
template, can be represented using basic categorical operations.

In general, the study of templates in the system of ontology
translations provides a flexible and formal language and framework
for the representation of templates and the formulation and study of
their relations. Further operations that naturally suggest themselves in
this setting are, in particular, allowing for the parameters themselves
to form an ontology, different from the template ontology. This allows
for conditional extensions of ontologies by template instances; the
template first queries the ontology for an instance of the parameter
pattern, and if one is found, it extends this pattern with an instance
of the template pattern. It also becomes possible to use templates
as a form of constraint, expressing that whenever an instance of the
parameter pattern is present in an ontology, the ontology must also
witness the corresponding instance of the template pattern.

65

66

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Ontology templates. http://swtmp.gitlab.io.

M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros. Foundations of schema mapping
management. In J. Paredaens and D. V. Gucht, editors, Proceedings of the 29th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS’10), pages 227-238. ACM, 2010.

F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In L. P. Kaelbling
and A. Saffiotti, editors, IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 -
August 5, 2005, pages 364-369. Professional Book Center, 2005.

M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. Ontology-based data access: A
study through disjunctive datalog, csp, and mmsnp. In Proceedings of the 32Nd
Symposium on Principles of Database Systems, PODS ’13, pages 213-224, New
York, NY, USA, 2013. ACM.

D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The di-lite family. J.
Autom. Reasoning, 39(3):385—429, 2007.

S. Das, S. Sundara, and R. Cyganiak. R2rml: Rdb to rdf mapping language.
Technical report, W3C, 2012.

G. De Giacomo, M. Lenzerini, and R. Rosati. Higher-order description logics for
domain metamodeling. In W. Burgard and D. Roth, editors, Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11, 2011. AAAI Press, 2011.

F. M. Donini. Complexity of reasoning. In F. Baader, D. Calvanese, D. L.
McGuinness, D. Nardi, and P. F. Patel-Schneider, editors, The Description Logic
Handbook: Theory, Implementation, and Applications, pages 96-136. Cambridge
University Press, 2003.

A. Gangemi and V. Presutti. Ontology Design Patterns, pages 221-243. Springer,
2009.

K. Hammar. Ontology Design Patterns in WebProtege. In Proceedings of the ISWC
2015 Posters & Demonstrations Track, 2015.

K. Hammar et al. Collected Research Questions Concerning Ontology Design
Patterns, chapter 9, pages 189-198. Volume 025 of Hitzler et al. [14], 2016.

K. Hammar and V. Presutti. Template-Based Content ODP Instantiation. Workshop
on Ontology and Semantic Web Patterns, WOP 2016.

L. Han, T. Finin, C. Parr, J. Sachs, and A. Joshi. A.: Rdf123: from spreadsheets to
rdf. In ISWC. Springer, 2008.

P. Hitzler et al., editors. Ontology Engineering with Ontology Design Patterns:
Foundations and Applications, volume 025. I0S Press, Amsterdam, 2016.

I. Horrocks. Practical reasoning for very expressive description logics. In Journal of
the Interest Group in Pure and Applied Logics 8, pages 293—-323, 2000.

I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In KR,
pages 57-67. AAAI Press, 2006.

L. Tannone, A. L. Rector, and R. Stevens. Embedding Knowledge Patterns into
OWL. In ESWC, pages 218-232, 2009.

S. Jupp et al. Populous: a tool for building OWL ontologies from templates. BMC
Bioinformatics, 13(S-1):S5, 2012.

J. W. Kliwer, M. G. Skjaeeveland, and M. Valen-Sendstad. ISO 15926 templates and
the Semantic Web. W3C Workshop on Semantic Web in Oil & Gas Industry, 2008.
A. Langegger. Xlwrap — querying and integrating arbitrary spreadsheets with
sparql. In ISWC, pages 359-374, 2009.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

D. Lembo, J. Mora, R. Rosati, D. F. Savo, and E. Thorstensen. Mapping analysis in
ontology-based data access: Algorithms and complexity. In International Semantic
Web Conference (1), volume 9366 of Lecture Notes in Computer Science, pages
217-234. Springer, 2015.

P. Lord. The Semantic Web takes Wing: Programming Ontologies with Tawny-OWL.
In OWLED, 2013.

B. Motik. On the properties of metamodeling in OWL. J. Log. Comput., 17(4):617—
637, 2007.

M. J. O’Connor, C. Halaschek-Wiener, and M. A. Musen. M2: A Language for
Mapping Spreadsheets to OWL. In OWLED, 2010.

C. Ogbuji. Infixowl: An idiomatic interface for owl. In OWLED, 2008.

V. Presutti and A. Gangemi. Content Ontology Design Patterns As Practical
Building Blocks for Web Ontologies. In ER, pages 128-141. Springer, 2008.

M. Schmidt-Schaufs and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48(1):1 — 26, 1991.

V. Vassiliadis, J. Wielemaker, and C. Mungall. Processing owl2 ontologies using thea:
An application of logic programming. In OWLED, pages 89-98. CEUR-WS.org,
2009.

D. Vrandeci¢. Explicit knowledge engineering patterns with macros. In Proceedings
of the Ontology Patterns for the Semantic Web Workshop at the ISWC 2005, 2005.
Z. Xiang, J. Zheng, Y. Lin, and Y. He. Ontorat: automatic generation of new
ontology terms, annotations, and axioms based on ontology design patterns. Journal
of Biomedical Semantics, 6(1):4, 2015.

67

Paper 3

Pattern-Based Ontology
Design and Instantiation with
Reasonable Ontology
Templates

Martin G. Skj@veland, Henrik Forssell, Johan W. Kliiwer, Daniel P. Lupp, Evgenij Thorstensen,
and Arild Waaler. “Pattern-Based Ontology Design and Instantiation with Reasonable Ontology
Templates.” In: Proceedings of the 8th Workshop on Ontology Design and Patterns (WOP 2017)
co-located with the 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria,
October 21, 2017. 2017 [P3]

69

70

Pattern-Based Ontology Design and
Instantiation with Reasonable Ontology
Templates

Martin G. Skjeveland!, Henrik Forssell!, Johan W. Kliiwer?, Daniel
Lupp!, Evgenij Thorstensen®, and Arild Waaler!

1 Department of Informatics, University of Oslo
{martige, jonf,danielup,evgenit,arild}@ifi.uio.no
2 DNV GL, Norway
johan.wilhelm.kluewer@dnvgl.com

Abstract. Reasonable Ontology Templates, OTTRs for short, are OWL ontology
macros capable of representing ontology design patterns (ODPs) and closely
integrating their use into ontology engineering. An OTTR is itself an OWL ontology
or RDF graph, annotated with a special purpose OWL vocabulary. This allows
OTTRS to be edited, debugged, published, identified, instantiated, combined, used
as queries and bulk transformations, and maintained—all leveraging existing W3C
standards, best practices and tools. We show how such templates can drive a
technical framework and tools for a practical, efficient and transparent use of ODPs
in ontology design and instantiation. The framework allows for a clear separation
of the design of an ontology, typically managed by ontology experts, and its bulk
content, provided by domain experts. We illustrate the approach by reconstructing
the published Chess Game ODP and producing linked chess data.

1 Introduction

Ontology-based methods have matured to where they offer knowledge
workers practical solutions for data management. In particular, tools that
support W3C recommendations, such as reasoning tools for OWL ontolo-
gies, are sufficiently stable and efficient to allow wide-scale industrial
use. However, from the perspective of product vendors and consultancy
companies in the IT industry, ontologies are still viewed as a fringe tech-
nology. Hence ontology-based solutions are rarely proposed to enterprise
customers, and support from the software industry is quite limited. One
factor that impedes uptake is the high cost of establishing and maintaining
a high-quality ontology. In part this is due to the scarcity of ontology
experts, with availability in most cases below critical mass.

Ontology design patterns (ODPs) [9] serve the purpose of alleviating
some of the difficulties involved with creating ontologies by offering

71

72

reusable, best-practice building blocks and structures for ontology con-
struction, commonly implemented and published as small OWL ontolo-
gies. Methods for combining and instantiating ODPs are described [20,8],
and a methodology for building ontologies using patterns exists [1].
However, while ODPs are often presented as “practical building blocks”
[20], we argue that ODPs in their current form, i.e., as found on http:
//ontologydesignpatterns.org/ featuring a graphical representation, a
description and a “reusable OWL building block™, are not practical enough,
especially for the development of large ontologies—as using and adapting
ODPs to a particular modelling task currently often require considerable
manual work. What is needed are better tool supported methods for apply-
ing ODPs in ontology engineering. Efficient tool support is imperative to
industrial scale deployment of ontology-based methods.

The work reported on in this paper has the potential to remedy the situ-
ation; Reasonable Ontology Templates (OTTRs) are simple, but powerful,
templates or macros for ontologies, cf. [21], represented in OWL using a
dedicated OWL vocabulary. An OTTR can be viewed as a parameterised
ontology which can be nested, i.e., defined using other OTTRs, and instan-
tiated by providing arguments to fit the parameters of the template. By
recursively expanding an OTTR by replacing any containing OTTR with
the pattern it represents, we obtain a regular OWL ontology. Using this
feature, we can reason both on the OTTR specification and its expansion,
and additionally leverage existing W3C languages and tools for different
ontology engineering tasks—all driven by OTTRs. Specifically, the implicit
mapping between an OTTR’s parameters and its pattern may be exploited
to generate various format descriptions and transformation specifications,
e.g., queries for extracting pattern instances and transformations between
tabular input formats and OTTR pattern instances that may be processed
by readily available desktop tools. The only additional tool support that
is needed to make use of OTTRs, are tools that can perform the relatively
simple operation of template expansion and instantiation.

In addition to supporting the work of the ontology engineer, we believe
OTTRs can provide a framework whereby a few ontology experts can serve
a large number of domain experts and put these in position to actively
contribute to the development and maintenance of ontologies. This is
achieved by clearly separating the design of an ontology and its bulk
content: The ontology expert designs and combines patterns represented as
OTTRs to provide user-facing patterns on a level of abstraction suitable for

the domain experts. From the user-facing OTTRs a simple input format is
generated together with a transformation specification of the input format
to ontology format. The task of the domain expert is then “only” to provide
instance arguments to the input format.

Sec. 2 defines OTTR templates and introduces the OTTR OWL vocabulary
for expressing them for use on the semantic web. Furthermore, we explain
how OTTRs may be used for driving a technical framework for different
ontology engineering tasks, and also give a prototype implementation that
can serve the various specifications for such a framework. Sec. 3 discusses
the particular application of OTTRs for using ODPs for ontology design
and instantiation, illustrated on the Chess Game ODP, and for linked data
publication. In Sec. 4 we discuss the benefits and shortcomings for OTTRs
and compare with related work. We conclude with Sec. 5.

2 Reasonable Ontology Templates

In the following we introduce the core concepts template, template instance
and expansion through examples and by alluding to basic description logic
concepts; see [6] for a more formal and thorough description.

A template T is a knowledge base O and a list of parameters
param(7) = (p1,...,pn) of distinguished concept, role, or individual
names from 0. We write a template as

T(p1,---,pn) :: OF.

and refer to the left side as the head and the right side as the body. For a
list of parameters (qi, . . .,q,) we call T (qi, ..., qn) a template instance.
Intuitively, a template instance is shorthand for representing a specific
occurrence or instance of a pattern. More precisely, the expansion of
T(q1,--.,qy) is the ontology O (g1, - - ., q,) obtained by replacing each
parameter occurrence of p; in O with the argument ¢;, forall 1 <1 < n.

Example 1. PartOf(part, whole) :: {whole C JhasPart.part} is the tem-
plate PartOf which has a single axiom knowledge base {whole C
JhasPart.part} where hasPart is a role name and part and whole are
parameters. PartOf(SteeringWheel, Car) is an instance of PartOf rep-
resenting the ontology {Car C JhasPart.SteeringWheel }. Note that also
PartOf (part, whole) is an instance of PartOf, where the parameter names
are substituted for themselves; its ontology is {whole T JhasPart.part}.

73

74

In addition to ontology axioms, a template may also contain template
instances in its body. The notion of template instance expansion is then
extended to a recursive operation where any template instances in the
template body are expanded tail-recursively. Cyclic template definitions
are not allowed.

Example 2. Let QualityValue be the template

QualityValue(x, hasQuality, uom, val) ::
{x C JhasQuality.(VhasDatum.(3hasUOM.{uom} M JhasValue.{val}))}

which intuitively expresses that x has a quality with a given value val with
a given unit of measurement uom. Using this template and the PartOf
template from Ex. 1, and fixing some of the parameters, the template
PartLength is defined as

PartLength(whole, part, length) :: {PartOf(part, whole),
QualityValue(part, hasLength, meter, length)}

which expresses that the whole has a part with a given length measured in
meters. An example instance of the template is PartLength(2CV, SoftTop,
1.40) stating that (the car) 2CV has a softtop (roof) of length 1.40 meters.
The expansion of the instance PartLength(whole, part, length) is

{2CV C 3hasPart.SoftTop,
SoftTop C JhasLength.(VhasDatum.
(FhasUOM.{meter} M JhasValue.{1.40}))}.

2.1 The OTTR OWL vocabulary

We adapt ontology templates to the semantic web by serialising them using
RDF with the OTTR? OWL vocabulary defined specifically for this task. A
template is associated with an RDF graph [3] (document) available at the
IRI of the template.* The RDF graph contains both the head, identifying the
template and its parameters, and the body of the template. The template
body may contain template instances and other ontology axioms, which

3 We use OTTR to designate the vocabulary. All other unprefixed, inline typewriter font words
refer to OTTR vocabulary elements.
* Similarly as for OWL ontologies [17, section 3.2 Ontology Documents]

*

withVariables
[Resource]

x
var'lable

\

hasParameter 0..*
Template > Parameter

lndeX

/ |

templateRef A xsd:int
1“¢e$

1

hasArgument (. *
TemplateInstance Argument

Value

/

withValues

» [Resource]

Fig. 1: High-level overview of the 0TTR OWL vocabulary.

are expressed using regular RDF/OWL serialisation [19]. (Note that the
RDF graph need not represent an OWL ontology. In fact, templates may
be used in a more generic way as “RDF macros”. However, we prefer to
call them OWL macros in order to clearly indicate their applicability to
ontology engineering, reasoning and ontology design patterns.) Parameters
and arguments are represented as named variables and named values,
respectively, where the name is represented in RDF as an IRI, and variables
and values may be any RDF resource, i.e., any IRI or literal [3].

The most prominent elements of the OTTR vocabulary are the following,
see also Fig. 1 for a graphical overview. A Template has zero or more
Parameters. Each Parameter is consecutively numbered by an integer
valued index, starting at 1, and has a variable which represents the pa-
rameter in the template body. The existence of a Template in an RDF graph
declares the graph as a template, and an RDF graph specifying a template
must contain only one Template object. A TemplateInstance must refer
to a single Template via a templateReference, and have Arguments to
match the Parameters of the Template. An Argument must have a value
and refer a Parameter by using the same index value as the Parameter’s.
The range of the variable and value properties is any RDF resource. These
conditions and more are represented in OWL using the OTTR vocabulary
available from http://ns.ottr.xyz/.

We differentiate between the head and the body of a template repre-
sented in RDF using the concept of graph neighbourhood, which informally
are all the outgoing triples from the template and parameter individuals.

Definition 1. Let G be an RDF graph (represented as a set of triples), and
r an IRI. We define the out-neighbourhood of 7 in G, denoted out(r, G) as
the set of triples (r,x,y) € G. Let G be the RDF graph associated with a
template with IRI t and parameter IRIS p1, . . . , p,. We define the head of

75

76

the template in G as head(t) = |
tin G as body(t) = G \ head(t).

oy oUL(z, G), and the body of

we{t7p17"'

A template instance is expanded by copying the template RDF graph® to
which the instance refers and for each template parameter substituting all
occurrences of the parameter variable in the RDF graph with its matching
argument value. The expansion is applied recursively.

Example 3. The PartOf template from Ex. 1 is represented is the OTTR
vocabulary as follows:®

@prefix ottr: <http://ns.ottr.xyz/templates#> .
@prefix partOf: <http://www.ontologydesignpatterns.org/cp/owl/partof.owl#> .
@prefix : <http://draft.ottr.xyz/il7/partof#> .

head:

<http://draft.ottr.xyz/il7/partof> a owl:Ontology , ottr:Template ;
owl:imports <http://www.ontologydesignpatterns.org/cp/owl/partof.owl> ;
ottr:hasParameter [ottr:index 1; ottr:variable :Whole] ,

[ottr:index 2; ottr:variable :Part] .
body:

:Part a owl:Class .

:Whole a owl:Class ;
rdfs:subClassOf [a owl:Restriction ;

owl:onProperty partOf:hasPart ; owl:someValuesFrom :Part] .

Observe that the RDF graph is a regular OWL ontology using the OTTR
vocabulary to identify the template and its parameters: The template
contains a head and body as indicated by the comments, and specifies
two parameters with respectively the variables :Whole and :Part. These
variables are used in the template body as regular RDF resources. An
instance of this template, reflecting the instance in Ex. 1, is represented as
follows.

[] ottr:templateRef <http://draft.ottr.xyz/il7/partof> ;
ottr:hasArgument [ottr:index 1 ; ottr:value ex:Car] ,
[ottr:index 2 ; ottr:value ex:SteeringWheel] .

The instance refers to the template with templateRef, and each argument
refers to a parameter of the template using indices. The expansion of the
instance is created by replacing, in a copy of the template RDF graph, all
occurrences of :Whole with ex:Car, and :Part with ex:SteeringlWheel.

3 Also useful is the expansion procedure that only copies the template body.
® Note that all example templates are published at their IRI address.

In order to support a more terse specification of templates and instances,
the OTTR vocabulary allows for the use of RDF lists [3] to specify template
parameters and instance arguments. Since the RDF list structure is reserved
for the serialisation of OWL and therefore not permissible for use in
valid OWL2 DL ontologies, the OTTR vocabulary also defines a linked list
structure [4], called List. Lists may be serialised using either RDF lists or
OTTR’s Lists. The list feature may be used for directly giving the parameter
variables of a template, using withVariables; and the argument values of
an instance, using withValues.

Example 4. Using the RDF list format, the template PartLength given in
Ex. 2 can be compactly represented:
<http://draft.ottr.xyz/il7/partLength> a owl:Ontology , ottr:Template ;
ottr:withVariables (:Whole :Part 99)
[1] ottr:templateRef <http://draft.ottr.xyz/il7/partof> ;
ottr:withValues (:Whole :Part) .

[1 ottr:templateRef <http://draft.ottr.xyz/il7/qualityvalue> ;
ottr:withValues (:Part ex:hasLength ex:meter 99).

Lists may also be used as argument values, supporting patterns which
naturally permit variable sized input. Expanding an instance of a template
allowing list input, will for each list valued argument replace all occur-
rences of lists in the template with the same contents as the matching
parameter value list.

Example 5. The EquivObjectUnionOf template takes two arguments, a

class U and a list of classes, and defines the union of the list of classes as

equivalent to U.

<http://candidate.ottr.xyz/owl/axiom/EquivObjectUnionOf> a ottr:Template ;
ottr:withVariables (:U (:A :B)).

:U rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ; owl:unionOf (:A :B)] .

Notice that we here use the list format both to specify the template’s two
variables, and the second parameter’s list variable. An example instance of
this template is the following.

[1 ottr:templateRef <http://candidate.ottr.xyz/owl/axiom/EquivObjectUnionOf> ;
ottr:withValues (ex:Fruit (ex:Apple ex:Orange ex:Melon)).

When expanding the instance, all occurrences of lists with the contents
:A :Bin the template will be replaced with a list (copy) containing the
elements ex:Apple ex:Orange ex:Melon.

77

78

In addition to providing a vocabulary for expressing templates, the
OTTR ontology includes axioms that allows regular ontology reasoners
to check the consistency of OTTR templates, such as domain and range
axioms, and functional and key constraints of properties. Also, each
parameter variable may be assigned a type using different “variable”
properties, such as classVariable, which informally are subproperties of
the variable property.’ The available types reflect the generic classes from
the RDF(S) [2] and OWL [19] vocabularies and are arranged in a taxonomy
accordingly, where many types are made incompatible using disjoint
property ranges; consult the OTTR vocabulary for details. This simple
type checking feature is very useful when constructing templates which
typically pass on parameters as arguments to other templates, allowing
a parameter to be assigned multiple, and possibly incompatible, types.
An ontology reasoner will reveal such an inconsistency by reasoning on
the OTTR vocabulary of the expanded template. An implementation of the
template mechanism should also exploit the type information to check
whether instance arguments respect the type of their matching parameter.

Example 6. Assume the PartOf template from Ex. 3 types both parameter
variables as classes, using the classVariable property, here showing only
the head:

<http://draft.ottr.xyz/il7/partof> a owl:Ontology , ottr:Template ;
ottr:hasParameter [ottr:index 1; ottr:classVariable :Whole] ,
[ottr:index 2; ottr:classVariable :Part] .

Now assume the variable of the first parameter of the PartLength template
in Ex. 4 is (wrongly) typed as an annotation property using annotationPro-
pertyVariable. Then PartLength is inconsistent, since its : Whole variable
is classified as the disjoint classes Class and AnnotationProperty.

The OTTR ontology is defined by two ontology documents: templates-
lite and templates-core. The former declares only the vocabulary with
domain and range axioms and is useful when the task is primarily to
instantiate templates, hence reasoning over template specifications is
usually not required. The latter ontology imports the first and enables the
reasoning capabilities presented above.

7 We say “informal” since, in order to support reasoning, the specialisations of the OWL annotation
property variable are either object properties or datatype properties, and these OWL property
types are mutually disjoint.

1. OTTR template

OWL
2. Inputdata 4~ M - “--a 7. Ontology
format 4. Input data . prototype
XSD + SAWSDL ‘.-’ format - A OwWL
ShEX :
Rl 3. lifting AE[*. 5. expansion i
7 | XSLT ~ SPARQL |
2 e 10. Tem Ia?Q |
8. Data ., 9. Data mstan?:e 11. Ontology
XLS XML ~—— A ~— OwWL
6. lowering
SPARQL/+XSLT

Fig.2: OTTR-driven ontology construction. The nodes in the diagram
each represent a document used in the process. All data format and
transformation W3C specifications (2—7) are generated from a template
specification, as indicated by the dotted edges. The dashed edges indicate
an “instance of” relation, and the solid edges show the flow of the ontology
bulk data, highlighting the main routes. The XSD document (2) specifies a
“tabular” template instance data input format for XML data (9) that is also
supported by some spreadsheet applications (8). The XML data is lifted [5]
using XSLT transformations (3) to either the RDF/OWL template instance
format (10) which may be validated by a ShEx shape expression (4), or
directly to a regular OWL ontology (11). Instances (10) may also be expanded
with generated SPARQL queries (5), and be extracted and lowered [5] with
SPARQL and XSLT (6) to OWL/RDF and XML format, respectively. The lifting
(3) and lowering (6) scripts are identified using SAWSDL in (2).

2.2 Ontology Construction Framework

A core feature of OTTR templates is the ability to relate a simple tabular
input format, the template head, to a rich ontological structure in the

template body, possibly specified via compositions of other templates.

The fact that a template specifies both a tabular input format, an output
ontology, and a mapping between the two formats may be exploited by
leveraging the capabilities of existing W3C standards and implementations:
In addition to specifying an ontology representing a prototypical ontology
of the template (the expanded template) in OWL, a template can specify
tabular and graph input format specifications using, e.g., XSD and ShEX,
and transformations to and from (liftings and lowerings [5]) the ontology
output format using, e.g., XSLT and SPARQL. This means that data can be
captured in bulk using XML- or XSD-aware client tools, and efficiently

79

80

processed using XSLT and/or SPARQL processors, all of which are driven
by specifications generated from a template. The process is illustrated and
explained in Fig. 2.

Using this framework the ontology engineering task can be split in
two more or less distinct responsibilities: one managed by the ontology
engineer and the other by the domain matter expert. The main task of the
ontology engineer is to design and maintain a library of interconnected
templates capable of capturing the knowledge of the domain matter expert
at the correct abstraction level and using a vocabulary and format recognis-
able by the expert. The specificity needed for the ontology engineering
task at hand is achieved by iteratively combining and composing basic and
more complex templates to result in user-facing templates. From such
templates, tabular input format specification and transformations may be
generated from the template specification, presenting a simple tabular
format for the user to fill in which can be transformed directly to OWL
ontology format using readily available desktop tools.

This process ensures uniformity and completeness of the captured
domain knowledge: completeness, as the template specifies all the at-
tributes that are necessary and variable; and uniformity as the template
instances are guaranteed to expand to the desired patterns. The correctness
of templates may be secured by consistency checking the prototype on-
tology resulting from expanding the template, as well as for each of the
comprising templates in isolation. Additional syntactic constraints on the
input data may be specified for the input formats which also can be used
to check completeness of the input data, provided the format specification
works under closed-world semantics.

2.3 Implementation

A prototype implementation that interprets the OTTR vocabulary and pro-
vides parts of the technical framework presented in Sec. 2.2 is available
as an online web application and as a feature-limited standalone Java
application from http://www.ottr.xyz.

Provided an OTTR template, specified with the IRI query parameter
7tpl, the web implementation serves a variety of specifications and in-
stances over HTTP: the template specification, the expansion, lifting and
lowering queries as different types of SPARQL queries, and a simple XSD
format and XML sample. Some services allow template instances to be
created by providing argument values as IRI query parameters. With these

services, the template and its different format specifications may be di-
rectly identified and used by other specifications, e.g., in OWL ontology
owl:import statements.

Example 7. We encourage the reader to visithttp://osl.ottr.xyz/info/
?tpl=http://draft.ottr.xyz/il17/partlength for a display of the
PartLength template of Ex. 4. The service lists the template’s parameters
with type information and containing template instances, together with
links to all the other available services of the web application.

3 Ontology Design Patterns vs. Ontology Templates

As argued in the introduction, we believe that ODPs in their current form
are not practical ontology building blocks, in the sense of being actively
and directly applicable in the engineering of OWL ontologies. Rather they
are conceptual building blocks that (only®) represent best practices of
common modelling challenges—which of course is extremely useful.
The practical ways of using an ODP in OWL ontology development are
however limited: the natural possibilities are either to import its OWL
implementation, which includes the whole pattern as-is, or by cloning
(parts of) it. The included pattern may be further engineered with different
techniques such as specialisation and generalisation [20]. The XDP [7] tool
offers the possibility to instantiate ODPs using so called template-based
and specialisation-based techniques [8]. However, in all these cases the
process is largely manual and does not scale.

Reasonable Ontology Templates offer a technical framework that
allows patterns, as represented by ODPs, to be applied to OWL ontology
engineering in an efficient and transparent manner, avoiding unnecessary
manual intervention. Comparing ODPs and OTTRs to software engineer-
ing, we believe that ODPs play the role of software engineering patterns,
“representing general reusable solution to a commonly occurring problem
within a given context[, but] not a finished design that can be transformed
directly into source or machine code” [22]. In contrast, we think of a set of
OTTRs as representing an application programming interface (API) for OWL
ontology engineering, like the OpenGL API° does for graphics rendering,

8 In the literature ODPs are often represented as both best practice modelling patterns and practical
building blocks.
° URL: https://www.opengl.org/

81

82

providing precise and transparent abstractions over the underlying OWL
syntax that are directly applicable in the construction of OWL ontologies.
The idea of an API for OWL patterns has been implemented by repre-
senting the structural specification of OWL 2 to RDF graphs [19] as a set of
OTTR templates. The purpose is to demonstrate that OWL ontologies may
be represented completely by a set of OTTR instances, which, in its terse
list input format, are arguably more readable than the RDF serialisation of
OWL axioms. The EquivObjectUnionOf of Ex. 5 is an example of an OTTR
template of an OWL axiom. Other examples are found in Fig. 3a. These
templates, including other templates of different maturity, are published
in an online library of OTTRs available at http://library.ottr.xyz and
backed by open git repositories at http://www.gitlab.com/ottr.

3.1 Building Ontologies and Linked Datasets with OTTRs

To illustrate how OTTRs can be applied for ontology modelling and pub-
lication of linked data, we now demonstrate how OTTRS can be used to
construct the Chess Game ODP [15] and to produce linked data representa-
tions of chess games, cf. [14].

The Chess Game ODP [15] is presented as a worked example for
modelling with ODPs, using them to construct a chess game ontology
intended to be used for describing chess games, i.e., who the players
were, the end result, the list of moves, the chess opening, and where the
game took place. To this end, the authors use adapted versions of the
Agent Role and Event ODP, where the Event ODP extends the Agent Role
ODP. They also make use of implicit OWL axiom macros for expressing
scoped domains and ranges, and regular axioms like cardinality restrictions.
Although the exposition and the graphical depictions of the chess game
pattern are clear, its axiomatisation, and hence its OWL implementation,10
reveals shortcomings of the presentation. These problems stem mainly
from the fact that no abstraction mechanism that can encapsulate patterns
and present clear interfaces for use is available: The agent role and event
patterns are not clearly identified and encapsulated, and it is not clear
which axioms belong to which patterns. (This is only made clear by
the document formatting.) These patterns are also specialised, but it is
difficult to identify exactly how, e.g., for which parts of the pattern are

10 See http://ontologydesignpatterns.org/wiki/Submissions:ChessGame

specialisations introduced. The scoped domain and range axioms are often
used, and usually in pairs, but this is not easy to spot.

A sample of the OTTR templates used to reconstruct the Chess Game
pattern is found in Fig. 3. The ScopedDomainRange template in Fig. 3b
illustrates the how to basic OWL axiom templates (found in Fig. 3a) can
be combined. The Event;, template succinctly presents that its defini-
tion relies on the AgentRoles template and other templates, some which
represent regular OWL axioms like existential restrictions (7c (-, -, *)).
Note that all of these OTTR templates represent template-based instanti-
atations [8], which can be seen by the fact that all vocabulary elements
are parameterised; the user can (and must) introduce the vocabulary,
the only fixed vocabulary is the logical vocabulary. Fig. 3c contains
two specialisation-based [8] OTTR templates, where (some) fixed non-
logical vocabulary elements are specialised by template arguments. In
our modelling of the chess game pattern we use template-based OTTRs
to introduce the basic vocabulary of the pattern. This vocabulary is
then used in specialisation-based OTTRs to provide the user with pat-
terns which do not necessarily represent any “‘self-contained semantic
unit”, but merely represents a combination of often used axioms pack-
aged in a template to avoid tedious repetitions. From this observation
it follows that template-based OTTRs arguably better fit the idea of a
publicly available API, while specialisation-based OTTR templates are
naturally closer tied to specific ontology models. The complete Chess
Game OTTR can be found at http://osl.ottr.xyz/info/?tpl=http:
//draft.ottr.xyz/chess/ChessGame.ttl.

Krisnadhi et al. [14] demonstrate how linked data representations can
be supported by ODPs with the central operations of pattern flattening and
view expansion (in Sec. 2.2 we call these operations lowering and lifting)
implemented using SPARQL UPDATE queries to transform compact linked
data formats (views) to pattern representations, and vice versa. They also
show how graph pattern conformance can be checked using SHACL [13].

This resembles the framework described in Sec. 2.2. However, a ben-
efit of our approach is that, while all queries and format descriptions
in the referenced work appears to be hand-crafted, similar lifting and
lowering format descriptions and transformation can be automatically
generated given an appropriate template specification. To demonstrate
the abilities of OTTR templates for linked data publication, we have built
the user-facing iChessGameReport template with which individual chess

83

84

games may be expressed. (This template, and its nested templates, are
equal in form to the Chess Game pattern templates, but are designed to
take individuals and data values as input, rather then classes and proper-
ties.) The template may be found at http://osl.ottr.xyz/info/?tpl=
http://draft.ottr.xyz/chess/iChessGameReport. From this page dif-
ferent lifting and lowering queries and formats are available, as de-
scribed in Sec. 2.3. Using the template instance format we can now
compactly represent chess game instances which may be expanded to a
full OWL pattern. Fig. 3d contains an instance of the iChessGameReport
template, available at http://osl.ottr.xyz/info/?tpl=http://draft.
ottr.xyz/chess/iChessGameReportExample. Note that template instances
can be regarded as “standardised” pattern views, representing patterns
in a compact format using a specific vocabulary. We do recognise that
this format may not be fit for linked data publication and that user-defined
template views are necessary; see also the future work section in Sec. 5.

Finally, we note that OTTR templates can also be used to identify pattern
instantiations or template instances. For instance, using the generated
SPARQL query from the ScopedDomainRange we can successfully extract
all the macro applications from the published version of the Chess Game
ODP [14].

4 Discussion and Related Work

We now highlight the main benefits and shortcomings that are inherent to
the template mechanism and the representation language of OTTRs, and
compare them with related work. As for benefits:

— OTTRs provide a simple, but powerful abstraction mechanism based on
the well-known concept of nested non-cyclic macros and syntactic sub-
stitutions. This allows complex ontology expressions to be compactly
represented by a naturally compositional structure which we believe
supports more efficient construction and maintenance of ontologies
following “don’t repeat yourself”” (DRY) principles.

— OTTR templates lets patterns to be explicitly identified as such and
clearly encapsulated. This improves provenience and interoperability
between ontologies using the same or related templates, as patterns
need not be discovered.

— The implicit mapping between the template head and the body provides
the basics for an extensible framework for handling semantic data that

can represent and transform data on and between different formats and
abstractions.

Templates are formally defined as parameterised ontologies. This
allows the semantics of the pattern to be verified using regular ontology
reasoners. Furthermore, it makes the organisation of templates and the
study of relations between them essentially an extension of the same
well-studied issues regarding ontologies, and familiar terminology and
theoretical machinery can be reused.

OTTRs can be compactly represented in RDF as OWL ontologies using
the OTTR vocabulary. This allows us to leverage the stack of existing
W3C languages and tools, such as ontology editors and reasoners.

As the expansion mechanism is based on syntactic substitutions, tem-
plates can take any RDF resource as input, i.e., classes, properties,
individuals and data values, including even the resources from the
“logical” OWL and RDF(S) vocabularies.

As for shortcomings, some of the benefits have a negative dual side:

The simple nature of syntactic macros leaves our templates mecha-
nism with limited expressivity: for instance, they do not contain loop
structures or conditionals and they do not return values. For a specific
example, we cannot currently apply a template to all the subclasses of
a given class. Current and future work is directed at allowing for more
complex expressions, and at precisely delimiting the expressive power
of OTTRs.

The compact representation of OTTR templates as RDF graphs using
the notion of graph neighbourhood, results in a somewhat implicitly
defined head and body of the template. This again requires that an RDF
document can only contain a single template. It would be convenient to
be able to collect multiple templates in one document, and to package
templates which only are used by one ontology together with that
ontology.

In the RDF representation of OTTRs regular RDF resources play the
role of variables. This means that special care must be taken when
minting parameter variables, since upon instantiating the template
all occurrences of the parameter variable will be replaced with the
argument value. Elements from established vocabularies, such as the
OWL vocabulary [19], should be avoided as variables or used with
extreme care. Less obvious potential problem variable values are

85

86

literals, where the same value may unintentionally be used in different
contexts, e.g., as cardinality restrictions on properties.

A predecessor and inspiration to the current form of templates dates
back to 2008 [12]. A recent paper by authors of the current paper presents
a formal definition of templates and investigates their formal properties:
using templates as macros, queries, and for data exchange; and reasoning
over templates [6]. The paper at hand is the first account of the practical
aspects of OTTR templates.

The Ontology Pre-Processor Language (OPPL) [11] is similar in func-
tion, but different in form to OTTRs. Like OTTRs, OPPL patterns are param-
eterised ontology expressions which can be nested and can specify pattern
instances and patterns directly in OWL ontologies. OPPL is a more powerful
language than the template mechanism allowing OPPL patterns to return
values, which supports a more elegant composition of patterns. On the
other side, as OPPL was originally designed as an ontology manipulation
language for adding and removing ontology axioms, OPPL patterns are
expressed as a series of OWL axiom insertions. This, and the fact that
the OPPL pattern is represented “in verbatim” as an OPPL script in OWL
annotation properties, places the pattern out of reach for ontology reasoners
and requires the correctness of the pattern to be checked by reasoning on
the effects of applying the pattern, rather that the pattern itself. Also, it
is not clear if formal semantics for OPPL patterns are developed. The ap-
plication focus of OPPL is somewhat different from OTTRs: OPPL patterns
are intended to be fully expanded once they are used in the ontology. In
contrast, we believe that OTTR template instances can appear in ontologies
as instances lifted or lowered to the abstraction level suited for the given
user. For instance, an ontology expert may prefer to examine an ontology
formatted as a set of OWL axiom OTTR templates, while the domain experts
might prefer to see only the user-facing template instances. Additionally,
OPPL patterns are limited to OWL expressions in Manchester syntax [10],
while OTTRs supports RDF macros and is designed to be applicable in a
larger framework, cf. Sec. 2.2.

XDP [7], built on top of WebProtégé, provides a convenient graphical
tool for selecting and instantiating templates using a template-based or
specialisation-based approach, but does not offer additional capabilities
for ODP instantiation at scale.

The M? mapping language [18] extends the OWL Manchester syn-
tax [10] with ontology pattern descriptions to include direct references into

spreadsheets for translating spreadsheet data into ontologies. It has hence
a more narrow focus than OTTRs, but makes direct use of the underlying
representation language in a similar manner as OTTRS.

Taking a broader approach, Tawny-OWL [16] provides an environment
for building OWL ontologies using Clojure, with all the advantages of
using a fully fledged programming language.

5 Conclusion and Future Work

We have presented the simple, but novel technique of using RDF(S) and
OWL for representing Reasonable Ontologies Templates (OTTRs). OTTRS
are ontology macros or templates that provide an extensible and transparent
framework for creating and using ontology design patterns in the design
and construction of ontologies. Templates are in essence n-ary relations
that relate a simple tabular input format, defined by its template head, to
a rich ontological structure in the template body, possibly via composi-
tions of other templates. From the template head, different tabular data
input formats may be generated. This allows ontology experts to design
“user-facing” templates for the purpose of collecting domain knowledge
from expert users on tabular format. The ontological definition of the
template is produced by expanding the template to a regular ontology. Bulk
transformation specifications of the input data to ontology format may also
be generated from the template. Templates are formulated in OWL using a
special purpose OTTR OWL vocabulary. By virtue of being OWL ontologies,
templates may be shared, reused, and debugged using existing semantic
web technologies and tools. Additionally, the OTTR vocabulary supports
simple type checking and terse formats for template specifications. A pro-
totype implementation for expanding and generating various specifications
from templates is available online at http://www.ottr.xyz.

Future work. The present proposal for templates has been developed
in close interaction with industrial user communities, and we intend to
apply it to various existing enterprise ontologies in the immediate future.
This will serve to evaluate, verify and refine the concept, and will help us
develop an efficient and reliable set of tools and web services. We believe
that templates can be important for development and use of open, validated
modelling patterns, as is required for shared models, and for enabling
ontology-based collaboration. In order to develop templates that cover

87

88

typical needs of industrial users, we will work with standardisation bodies
and make these templates available through a public repository. This
should lower the cost of translating existing data into ontology, opening
up the benefits of ontology-based methods to new users.

To support this work, tools and methods for constructing, structuring
and managing templates are necessary. To this end, we intend to further
develop the prototype implementation to support more input representa-
tion and validation formats, such as spreadsheets and RDF graph shape
validations, and to develop a Protégé plugin for developing and applying
OTTR templates to ontology development.

We also intend to continue the initial efforts on the logical properties
of templates as is found in [6]. A template can dually be regarded as a
macro or as a (higher-order) query; whether one is asking for a pattern to
be added to an ontology or asking for occurrences of the pattern in the
ontology is a difference of use of the template, and not of the template itself.
Furthermore, this duality makes it easy to extend the use of templates to
adding a pattern conditionally on another pattern occurring in the ontology,
or to use templates as constraints on ontologies. The latter observation
can for instance be used to implement pattern views, allowing template
instances to be specified using a custom vocabulary. A different problem
is if this possible to (elegantly) represent in OWL.

References

1. E. Blomgqvist, K. Hammar, and V. Presutti. Engineering Ontologies with Patterns — The
eXtreme Design Methodology, chapter 2, pages 23-50. Volume 025 of Hitzler et al. [9], 2016.

2. D. Brickley and R. Guha. RDF Schema 1.1. Technical report, W3C, 2014.

3. R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 Concepts and Abstract Syntax. Technical
report, W3C, 2014.

4. N. Drummond et al. Putting OWL in Order: Patterns for Sequences in OWL. In OWLED,
2006.

5. J. Farrell and H. Lausen. Semantic Annotations for WSDL and XML Schema. Technical
report, W3C, 2007.

6. H. Forssell, D. P. Lupp, M. G. Skj®veland, and E. Thorstensen. Reasonable Macros for
Ontology Construction and Maintenance. In DL Workshop, 2017.

7. K. Hammar. Ontology Design Patterns in WebProtege. In Proceedings of the ISWC 2015
Posters & Demonstrations Track, 2015.

8. K. Hammar and V. Presutti. Template-Based Content ODP Instantiation. Workshop on
Ontology and Semantic Web Patterns, WOP 2016.

9. P. Hitzler et al., editors. Ontology Engineering with Ontology Design Patterns: Foundations
and Applications, volume 025. 10S Press, Amsterdam, 2016.

10. M. Horridge and P. F. Patel-Schneider. OWL 2 Web Ontology Language Manchester Syntax.

Technical report, W3C, 2012.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. L. Iannone, A. L. Rector, and R. Stevens. Embedding Knowledge Patterns into OWL. In

ESWC, pages 218-232, 2009.

J. W. Kliiwer, M. G. Skjeveland, and M. Valen-Sendstad. ISO 15926 templates and the
Semantic Web. W3C Workshop on Semantic Web in Oil & Gas Industry, 2008.

H. Knublauch and D. Kontokostas. Shapes Constraint Language (SHACL). Technical report,
W3C, 2017.

A. Krisnadhi et al. Ontology Design Patterns for Linked Data Publishing, chapter 10, pages
201-232. Volume 025 of Hitzler et al. [9], 2016.

A. Krisnadhi and P. Hitzler. Modeling With Ontology Design Patterns: Chess Games As a
Worked Example, chapter 1, pages 3-21. Volume 025 of Hitzler et al. [9], 2016.

P. Lord. The Semantic Web takes Wing: Programming Ontologies with Tawny-OWL. In
OWLED, 2013.

B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 Web Ontology Language Structural
Specification and Functional-Style Syntax. Technical report, W3C, 2012.

M. J. O’Connor, C. Halaschek-Wiener, and M. A. Musen. M2: A Language for Mapping
Spreadsheets to OWL. In OWLED, 2010.

P. F. Patel-Schneider and B. Motik. OWL 2 Web Ontology Language Mapping to RDF Graphs.

Technical report, W3C, 2012.

V. Presutti and A. Gangemi. Content Ontology Design Patterns As Practical Building Blocks
for Web Ontologies. In ER, pages 128-141. Springer, 2008.

D. Vrandeci¢. Explicit knowledge engineering patterns with macros. In Proceedings of the
Ontology Patterns for the Semantic Web Workshop at the ISWC 2005, 2005.

Wikipedia. Software design pattern—Wikipedia, the free encyclopedia, 2017. [Online;
accessed 27-July-2017].

89

Tca(AR,B) : {AC3IRB} T23(A,R,B) : { 3RBCA}
Tew(AR,B) : { ACVRB} Tav(AR,B) : { VRBC A}
Te—(A,i,R,B) : {AC = RB} Ta—(A,i,R,B) = { = RBC A}

DisjointClasses({C1, Co, ...)) :: { DisjointClasses(Ci, Co,...) }

(a) Basic OWL axioms represented as OTTR templates.

ScopedDomainRange(R, A, B) :: { T2,3(A,R,B), Tc v(A,R,B) }

AgentRoles (AgentRole, RoleProvider, providesRole, Agent, performedBy) :: {
Range(providesRole, AgentRole),
ScopedDomainRange(performedBy, AgentRole, Agent),
Tc,3(AgentRole, providesRole ™, RoleProvider)
Tc 3(AgentRole, performedBy, Agent),
DisjointClasses({AgentRole, Agent))}

Eventio(Event, subEventOf, AgentRole, providesRole, Agent, performedBy,

Place, atPlace, TemporalExtent, atTime) :: {

AgentRoles (AgentRole, Event, providesRole, Agent, performedBy)

Tc,3(Event, atPlace, Place),

7Tc,3(Event, atTime, TempExt),

ScopedDomainRange(atPlace, Event, Place),

ScopedDomainRange(atTime, Event, Time),

ScopedDomainRange(subEventOf, Event, Event),

DisjointClasses((Event, Place, TempExt, AgentRole, Agent))}

(b) Template-based OTTR templates: ScopedDomainRange, AgentRole and Event.

AgentRole; (xAgentRole, xRoleProvider) :: {
xAgentRole C AgentRole,
Tc,3(xRoleProvider, providesAgentRole, xAgentRole),

Tc,=(xAgentRole, 1, providesAgentRole ~, xRoleProvider) }
Event,(xEvent, xAgentRole) :: {

xEvent C Event,
AgentRole; (xAgentRole, xEvent) }

(c) Specialisation-based OTTR templates for AgentRole and Event patterns.
[1 ottr:templateRef <http://draft.ottr.xyz/chess/iChessGameReport> ;

ottr:withValues ("WCh 2013" "Chennai IND" "2013.11.09" "Carlsen, Magnus"
"Anand, Viswanathan" "1/2-1/2" "2870" "2775" "A07" ("Nf3" "d5" [...]1 D)) .

(d) OTTR template instance of the ChessGameReport template, including only two chess moves.

Fig. 3: OTTR templates used for the Chess Game pattern and for linked
data publication.

Paper 4

Practical Ontology Pattern
Instantiation, Discovery, and
Maintanence with Reasonable
Ontology Templates

Martin G. Skjeveland, Daniel P. Lupp, Leif Harald Karlsen, and Henrik Forssell. “Practical On-
tology Pattern Instantiation, Discovery, and Maintenance with Reasonable Ontology Templates.”
In: The Semantic Web — ISWC 2018. Ed. by Denny Vrandeci¢, Kalina Bontcheva, Mari Carmen
Sudrez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou, Lucie-Aimée Kaffee, and Elena
Simperl. Springer International Publishing, 2018, pp. 477-494. 1SBN: 978-3-030-00671-6
[P4]

91

92

Practical Ontology Pattern Instantiation,
Discovery, and Maintenance with Reasonable
Ontology Templates

Martin G. Skjeveland, Daniel P. Lupp, Leif Harald Karlsen, and Henrik
Forssell

{martige,danielup,leifhka, jonf}@ifi.uio.no
Department of Informatics, University of Oslo

Abstract. Reasonable Ontology Templates (OTTR) is a language for representing
ontology modelling patterns in the form of parameterised ontologies. Ontology
templates are simple and powerful abstractions useful for constructing, interacting
with, and maintaining ontologies. With ontology templates, modelling patterns
can be uniquely identified and encapsulated, broken down into convenient and
manageable pieces, instantiated, and used as queries. Formal relations defined
over templates support sophisticated maintenance tasks for sets of templates, such
as revealing redundancies and suggesting new templates for representing implicit
patterns. Ontology templates are designed for practical use; an OWL vocabulary,
convenient serialisation formats for the semantic web and for terse specification
of template definitions and bulk instances are available, including an open source
implementation for using templates. Our approach is successfully tested on a
real-world large-scale ontology in the engineering domain.

1 Introduction

Constructing sustainable large-scale ontologies of high quality is hard.
Part of the problem is the lack of established tool-supported best-practices
for ontology construction and maintenance. From a high-level perspec-
tive [12], an ontology is built through three iterative phases:

1. Understanding the target domain, e.g., the domain of pizzas

2. Identifying relevant abstractions over the domain, e.g., “Margherita is
a particular Italian pizza with only mozzarella and tomato”

3. Formulating the abstractions in a formal language like description
logics; here an adapted excerpt taken from the well-known Pizza

93

94

ontology tutorial:!

Margherita C NamedPizza M 3 hasCountryOfOrigin.{ltaly} (D)
Margherita C 1 hasTopping.Mozzerella 1 3 hasTopping.Tomato (2)
Margherita C V hasTopping.(Mozzerella LI Tomato) 3)

This paper concerns the third task and targets particularly the large gap
that exists between how domain knowledge facts are naturally expressed,
e.g., in natural language, and how the same information must be recorded
in OWL. The cause of the gap is the fact that OWL at its core supports only
unary and binary predicates (classes and properties), and offers no real
mechanism for user-defined abstractions with which recurring modelling
patterns can be captured, encapsulated, and instantiated. The effect is that
every single modelled statement no longer remains a coherent unit but
must be broken down into the small building blocks of OWL. And as there
is no trace from the original domain statement to the ontology axioms, the
resulting ontology is hard to comprehend and difficult and error-prone to
manage and maintain.

As a case in point, the Pizza ontology contains 22 different types of
pizzas, all of which follow the same pattern of axioms as the encoding of
the Margherita pizza seen above. For both the user of the ontology and
the ontology engineer this information is opaque. The axioms that make
out the instances of the pattern are all kept in a single set of OWL axioms
or RDF triples in the same ontology document. Since the pizza pattern is
not represented as a pattern anywhere, tasks that are important for the
efficient use and management of the ontology, such as finding pattern
instances and verifying consistent use of the pattern, i.e., understanding
the ontology and updating the pattern, may require considerable repetitive
and laborious effort.

In this paper we present Reasonable Ontology Templates (OTTR), a
language for representing ontology modelling patterns as parameterised
ontologies, implemented using a recursive non-cyclic macro mechanism
for RDF. A pattern is instantiated using the macro’s succinct interface.
Instances may be expanded by recursively replacing instances with the
pattern they represent, resulting in an ordinary RDF graph. Section 2
presents the fundamentals of the OTTR language and exemplifies its use
on the pizza pattern. Ontology templates are designed to be practical and

1 https://protege.stanford.edu/ontologies/pizza/pizza.owl

versatile for constructing, using and maintaining ontologies; the practical
aspects of using templates are covered in Section 3. Section 4 concerns the
maintenance of ontology template libraries. It presents methods and tools
that exploit the underlying theoretical framework to give sophisticated
techniques for maintaining template libraries and ultimately the ontologies
built from those templates. We define different relations over templates
and show how these can be used to define and identify imperfections in
a template library, such as redundancy, and to suggest improvements of
the library. We believe ontology templates can be an important instrument
for improving the efficiency and quality of ontology construction and
maintenance. OTTR templates allow the design of the ontology, represented
by a relatively small library of templates, to be clearly separated from the
bulk content of the ontology, specified by a large set of template instances.
This, we believe, supports better delegation of responsibility in ontology
engineering projects, allowing ontology experts to build and manage a
library of templates and domain experts to provide content in the form of
structurally simple template instances. To support this claim we report in
Section 5 from successful experiments on the use of ontology templates
to build and analyse Aibel’s large-scale Material Master Data (MMD)
ontology. We compare our work with existing approaches in Section 6
and present ideas for future work in Section 7.

2 Reasonable Ontology Templates Fundamentals

In this section we develop the fundamentals for OTTR templates as a
generic macro mechanism adapted for RDF.

An OTTR template T consists of a head, head(T), and a body, body(T).
The body represents a parameterised ontology pattern, and the head speci-
fies the template’s name and its parameters, param(T). A template instance
consists of a template name and a list of arguments that matches the tem-
plate’s specified parameters and represents a replica of the template’s
body pattern where parameters are replaced by the instance’s arguments.
The template body comprises only template instances, i.e., the template
pattern is recursively built up from other templates, under the constraint
that cyclic template dependencies are not allowed. There is one special
base template, the TRIPLE template, which takes three arguments. This
template has no body but represents a single RDF triple in the obvious way.
Expanding an instance is the process of recursively replacing instances

95

96

with the pattern they represent. This process terminates with an expres-
sion containing only TRIPLE template instances, hence representing an
RDF graph.

Example 1. The SuBCLAssOF template is a simple representation of the
rdfs:subClassOf relationship. It has two parameters, ?sub and ?super, and
a body containing a single instance of the TripLE template.

head body
[1 [1
ISUBCLASSOFl(?sub, ?super) :: TRIPLE(?sub, rdfs:subClassOf, ?super) .
L | L |
name parameters instance

An example instance of this template is SuBCLASSOF(:Margherita,
:NamedPizza); it expands, in one step, to a single TRIPLE instance which
represents the (single triple) RDF graph (:Margherita, rdfs:subClassOf,
:NamedPizza).

Each template parameter has a type and a cardinality. (If these are not
specified, as in Ex. 1, default values apply.) The type of the parameter
specifies the permissible type of its arguments. The available types are
limited to a specified set of classes and datatypes defined in the XSD, RDF,
RDFS, and OWL specifications, e.g,. xsd:integer, rdf:Property, rdfs:Resource
and owl:ObjectProperty. The OWL ontology at ns.ottr.xyz/templates-
-term-types.owl declares all permissible types and organises them in a
hierarchy of subtypes and incompatible types, e.g., owl:ObjectProperty is a
subtype of rdf:Property, and xsd:integer and rdf:Property are incompatible.
The most general and default type is rdfs:Resource. This information
is used to type check template instantiations; a parameter may not be
instantiated by an argument with an incompatible type.

The cardinality of a parameter specifies the number of required argu-
ments to the parameter. There are four cardinalities: mandatory (written
1), optional (?), multiple (+), and optional multiple (+), which is shorthand
for ? and + combined. Mandatory is the default cardinality. Mandatory
parameters require an argument. Optional parameters permit a missing
value; none designates this value. If none is an argument to a mandatory
parameter of an instance, the instance is ignored and will not be included
in the expansion. A parameter with cardinality multiple requires a list as
its argument. Instances of templates that accept list arguments may be
used together with an expansion mode. The mode indicates that the list

OBJECTALLVALUESFROM(?X : 1 nonlLiteral, ?P : 1 property, ?R : 1 nonLiteral)

;o (?X, rdf:type, owl:Restriction), (?X, owl:onProperty, ?P), (?X, owl:allValuesFrom, ?R) .

SUBOBJECTALLVALUESFROM(?X : 1 class, ?P : 1 objectProperty, ?R : 1 class)

;1 SUBCLASSOF(?X, _:b1), OBJECTALLVALUESFROM(_:b1, ?P, ?R) . “4)

OBJECTUNIONOF(?X : 1 nonLiteral, 2union : + class)

;1 (?X, rdf:type, owl:Class), (?X, owl:unionOf, ?union) .

Fig. 1: Basic OWL OTTR templates

arguments will in the expansion be used to generate multiple instances
of the template. There are two modes: cross (written x) and zip (z). The
instances to be generated are calculated by temporarily considering all
arguments to the instance as lists, where single value arguments become
singular lists. In cross mode, one instance per element in the cross product
of the temporary lists is generated, while in zip mode, one instance per
element in the zip of the lists is generated. List arguments used without
an expansion mode behave just like regular arguments. Parameters with
cardinality optional multiple also accept none as a value.

Example 2. Fig. 1 contains three examples of OTTR templates that capture
basic OWL axioms or restrictions, and exemplify the use of types and car-
dinalities. The template SUBOBJECTALLVALUESFROM represents the pattern
?X E V?P.?R and is defined using the SUBCLASSOF and OBJECTALLVALUES-
FroM templates. Note that we allow a TRIPLE instance to be written with-
out its template name. The parameters of SUBOBJECTALLVALUESFROM are
all mandatory, and have respectively the types class, objectProperty and
class. The OBJECTUNIONOF template represents a union of classes. Here
the parameter types are nonLiteral and class, where the latter has cardinality
multiple in order to accept a list of classes. The type of the first parameter,
nonLiteral, prevents an argument of type literal.

Example 3. The pizza pattern presented in the introduction is represented
as an OTTR template in Fig. 2(a) together with two example instances.
The template takes three arguments: the pizza, its optional country of
origin, and its list of toppings. The cross expansion mode (x) on the
SUBOBJECTSOMEVALUESFROM instance causes it to expand to one instance
per topping in the list of toppings, e.g., for the first example instance:

97

98

— SUBOBJECTSOMEVALUESFROM(:Margherita, :hasTopping, :Mozzarella) and

— SUBOBJECTSOMEVALUESFrROM(:Margherita, :hasTopping, :Tomato),
creating an existential value restriction axiom for each topping, which
results in the set of axioms seen in (2) of the pizza pattern in Section 1. By
joining SUBOBJECTALLVALUESFrROM and OBJECTUNIONOF with a blank node
(_b1), we get the universal restriction to the union of toppings (3). Note
that the list of toppings is used both to create a set of existential axioms
and to create a union class. The optional ?Country parameter behaves so
that the SUBOBIECTHASVALUE instance is not expanded but removed in the
case that ?Country is none. The first NAMEDPI1zzA instance in the figure
represents exactly the same set of axioms as the listing in Section 1.

We conclude this section with the remark that it is in principle pos-
sible to choose a “base” other than RDF for OTTR templates, with suit-
able changes to typing and to which templates are designated as base
templates. For instance, we could let templates such as SUBCLASSOF,
SUBOBJECTALLVALUESFROM, etc. be our base templates, to form a foun-
dation based on OWL. These templates could then be directly translated
into corresponding OWL axioms in some serialisation format. (An OTTR
template can also be defined as a parameterised Description Logic knowl-
edge base [2].) We have chosen here to base OTTR templates on RDF as
this makes a simpler base, and broadens the application areas of OTTR
templates, while still supporting OWL.

3 Using Ontology Templates

In this section we present the resources available to enable efficient and
practical use of ontology templates: serialisation formats for templates and
template instances, tools, formats and specifications that can be generated
from templates, and online resources.

Languages. There are currently three serialisation formats for represent-
ing templates and template instances: stOTTR, wWOTTR, and tabOTTR.

stOTTR? is the format used in the examples of Section 2 and is devel-
oped to offer a compact way of representing templates and instances that
is also easy to read and write.

2 URL: https://gitlab.com/ottr/language/stOTTR/

NAMEDPIZZA(

?Name : 1 class,

?Country : ? individual,

?Toppings : + class)

SUBCLASSOF(?Name, :NamedPizza)4

SUBOBJECTHASVALUE(7Name, :hasCountryOfOrigin, ?Country),

SuBOBIECTALLVALUESFROM(?Name, thasTopping, _:b1),

OB3ecTUNIONOF(_:b1, ?Toppings),

x | SUBOBJECTSOME\/‘ALUESFROM(?Name, :hasTopping, ?Toppings) .

NAMEDPlzzA(:Margherita, :ltaly, <:Tomato, :Mozzerel|a>)

NAMEDPlzzA(:Grandiosa, none, <:Tomato4 :Jarlsberg, :Ham, :SweetPepper>)

(a) stOTTR serialisation and instances

:pizza rdfs:subClassOf p:NamedPizza ,

[a

owl:onProperty
owl:someValuesFrom

[a

owl:onProperty

owl:Restriction ;
p:hasTopping ;
rtoppings] ,

owl:Restriction ;

owl:allValuesFrom [

a

owl:unionOf

[a

owl:onProperty p:hasCountryOfOrigin ;

owl:Class ;

owl:hasValue rcountry]

p:hasTopping

a owl:ObjectProperty .
p:hasCountryOfOrigin a owl:ObjectProperty .

p:hasTopping

(:toppings) 11,
owl:Restriction ;

:toppings a owl:Class .
(c) Expanded RDF graph
?paraml ?param3item ?param2
p:Margherita p:MozzarellaTopping
p:Margherita p:TomatoTopping

p:Mushroom
p:Mushroom
p:Mushroom
p:Napoletana
p:Napoletana
p:Napoletana
p:Napoletana
p:Napoletana

p:MozzarellaTopping
p:MushroomTopping
p:TomatoTopping
p:AnchoviesTopping
p:CaperTopping
p:MozzarellaTopping
p:OliveTopping
p:TomatoTopping

p:Italy
p:Italy
p:Italy
p:Italy
p:Italy

(e) Excerpt query results

<http://draft.ottr.xyz/pizza/NamedPizza> a ottr:Template ;
ottr:hasParameter
[ottr:index 1 ; ottr:classVariable :pizza] ,
[ottr:index 2 ; ottr:individualVariable :country;
ottr:optional true] ,
[ottr:index 3 ; ottr:listVariable (:toppings)]
body:
[] ottr:templateRef t-owl-axiom:SubClassOf ;
ottr:withValues (:pizza p:NamedPizza) .

[] ottr:templateRef t-owl-axiom:SubObjectHasValue ;

ottr:withValues (:pizza p:hasCountryOfOrigin :country) .

[] ottr:templateRef t-owl-axiom:SubObjectAllValuesFrom ;
ottr:withValues (:pizza p:hasTopping _:alltoppings) .
ottr:templateRef t-owl-rstr:ObjectUnionOf ;
ottr:withValues (_:alltoppings (:toppings)) .
ottr:templateRef t-owl-axiom:SubObjectSomeValuesFrom ;
ottr:hasArgument [ottr:index 1; ottr:value :pizza] ,
[ottr:index 2; ottr:value p:hasTopping] ,
[ottr:index 3; ottr:eachValue (:toppings)] .

(b) wOTTR serialisation

SELECT *
{ ?paraml rdfs:subClassOf p:NamedPizza ,
[owl:onProperty p:hasTopping ;
owl:someValuesFrom param3item ;
rdf:type owl:Restriction] ,
[owl:allValuesFrom [owl:unionOf ?param3 ;
rdf:type owl:Class] ;
owl:onProperty p:hasTopping ;
rdf:type owl:Restriction]
OPTIONAL {
?paraml rdfs:subClassOf [
owl:hasValue ?param2 ;
owl:onProperty p:hasCountryOfOrigin ;
rdf:type owl:Restriction]
}
?param3 (rdf:rest)*/rdf:first ?param3item
}
(d) SPARQL SELECT query
#0TTR prefix

p http://www.co-ode.org/ontologies/pizza/pizza.owl#

#0TTR end

#0TTR template http://draft.ottr.xyz/pizza/NamedPizza

pizza country toppings

1 2 3

iri iri iri+

p:Margherita p:Italy p:Tomato|p:Cheese

p:Grandiosa p:Tomato|p:Jarlsberg|p:Ham|p:Pepper
#0TTR end

(f) tabOTTR instance serialisation

Fig.2: NaMEDP1zzA template and example instances in different serialisa-

tions

However, to enable truly practical use of OTTR for OWL ontology engi-
neering, we have developed a special-purpose RDF/OWL vocabulary, called
wOTTR, with which OTTR templates and instances can be formulated. This
has the benefit that we can leverage the existing stack of W3C languages

99

100

and tools for developing, publishing, and maintaining templates. The
WOTTR format supports writing TRIPLE instances as regular RDF triples.
This means that a pattern represented by an RDF graph or RDF/OWL on-
tology can easily be turned into an OTTR template by simply specifying
the name of the template and its parameters with the wOTTR vocabulary.
Furthermore, this means that we can make use of existing ontology editors
and reasoners to construct and verify the soundness of templates. The
WOTTR representation has been developed to closely resemble stOTTR.
It uses RDF resources to represent parameters and arguments, and RDF
lists (which have a convenient formatting in Turtle syntax) for lists of
parameters and arguments. The vocabulary is published at ns.ottr.xyz.
A more thorough presentation of the vocabulary is found in [13].

tabOTTR? is developed particularly for representing large sets of tem-
plate instances in tabular formats such as spreadsheets, and is intended
for domain expert use.

Generated queries and format specifications. A template may not only be
used as a macro, but also, inversely, as a query that retrieves all instances
of the pattern and outputs the result in the tabular format of the template
head. From a template we can generate queries from both its expanded
and unexpanded body. The expanded version allows us to find instances
of a pattern in “vanilla” RDF data, while the unexpanded version can be
used to collect and transform (in the opposite direction than of expansion)
a set of template instances into an instance of a larger template. The latter
form is convenient for validating the proper usage of templates within a
library, which we present in Section 4.

We are also experimenting with generating other specifications from
a template, for instance XSD descriptions of template heads, and trans-
formations of these formats, e.g., XSLT transformations. The purpose of
supporting other formats is to allow for different data input formats and
leverage existing tools for input verification and bulk transformation of
instance data to expanded RDF, such as XSD validators and XSLT transfor-
mation engines.

Tools and Online Resources. Lutra, our Java implementation of the OTTR
template macro expander, is available as open source with an LGPL licence
at gitlab.com/ottr. It can read and write templates and instances of the

3 URL: https://gitlab.com/ottr/language/tabOTTR/

formats described above and expand them into RDF graphs and OWL
ontologies, while performing various quality checks such as parameter
type checking and checking the resulting output for semantic consistency.
Lutra is also deployed as a web application that will parse and display
any OTTR template available online. The template may be expanded and
converted into all the formats mentioned above, including SPARQL SELECT,
CONSTRUCT and UPDATE queries, XSD format, and variants of expansions
which include or exclude the head or body.

Also available, at library.ottr.xyz, is a “standard” set of ontology
templates for expressing common RDF, RDFS, and OWL patterns as well
as other example templates. These templates are conveniently presented
in an online library that is linked to the online web application.

Example 4. Fig. 2 contains different representations of the NAMEDP1zzA
template. Fig. 2(b) contains the published version of the template, avail-
able at its IRI address: http://draft.ottr.xyz/pizza/NamedPizza.
Fig. 2(c) contains the expansion of the template body. Fig. 2(d) displays
the generated SPARQL query that retrieves instances of the pizza pattern;
an excerpt of the results applying the query to the Pizza ontology is given
in Fig. 2(e). Fig. 2(f) contains a tabOTTR representation of the two in-
stances seen in Fig. 2(a). We encourage the reader to visit the rendering
of the template by the web application at

osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/pizza/NamedPizza

and explore the various presentations and formats displayed. An example-
driven walk-through of the features of Lutra can be found at
ottr.xyz/event/2018-10-08-iswc/.

4 Maintenance and Optimisation of OTTR Template
Libraries

In this section, we present an initial list and analysis of some of the
more central relations between OTTR templates, and discuss their use
in template library optimisation. We focus in particular on removing
redundancy within a library, where we distinguish two different types of
redundancy: a lack of reuse of existing templates, as well as recurring
patterns not captured by templates within the library. We present an
efficient and automated technique for detecting such redundancies within
an OTTR template library.

101

102

4.1 OTTR template relations

Optimisation and maintenance of OTTR template libraries is made pos-
sible by its solid formal foundation. OTTR syntax makes it possible to
formally define relations between OTTR templates which can tangibly
benefit the optimisation of a template library. Naturally, there are any
number of ways templates can be “related” to one another, and the “opti-
mal” size and shape of a template library is likely to be highly domain and
ontology-specific. As such, we do not aspire to a best-practice approach to
optimising a template library. Instead, we illustrate the point by defining
a few central template relations and demonstrating their usefulness for
library optimisation and maintenance, independently of the heuristics
used. Here, we limit ourselves to template relations defined syntactically
in terms of instances, and do not consider, e.g., those defined in terms of
semantic relationships between full expansions of templates. We consider
the following template relations:

directly depends (DD) S directly depends on T if S’s body has an in-
stance of T.

depends (D) depends is the transitive closure of directly depends.

dependency-overlaps (DO) S dependency-overlaps T if there exists a
template upon which both S and T directly depend.

overlaps (O) S overlaps T if there exist template instances is, i in body(S)
and body(T) and substitutions p and 7 of the parameters of S and T
resp. such that p(is) = it and n(it) = is.

contains (C) S contains T if there exists a substitution p of the parameters
of T such that p(body(T)) C body(S).

equals (E) S is equal to T if S contains T and vice versa.

Each of the listed relations is, in a sense, a specialisation of the pre-
vious one (except for DO, which is a specialisation of DD as opposed to
D). For instance, DO imposes no restrictions on the instance arguments,
whereas O intuitively requires parameters to occur in compatible positions
of ig and it.

Example 5. Consider the template library given in Fig. 3(a). All but
the BURGERMEAL template contain an instance of SUBCLASSOF, hence
all pairs of templates except for (ANNOTATEDP1ZZA, BURGERMEAL) have
a dependency-overlap. Closer inspection reveals that BURGER contains
SUBOBJECTALLVALUESFrROM (4, Fig. 1), due to the instances

NAMEDP1zzA(?Name : 1 class, ?Country : ? individual, ?Toppings : + class) (cf. Fig. 2(a)) .

ANNOTATEDP1ZZA(?Name : 1 class, ?Label : + literal, ?PrefLabel : ? literal, ?Definition : ? literal)
1 SUBCLASSOF(?Name, :Pizza),

% | (?Name, rdfs:label, ?Label), (?Name, skos:prefLabel, ?PrefLabel), (?Name, skos:definition, ?Definition) . 5)

BURGER(?Name : 1 class, ?Condiments : + class, ?Label : + literal, ?PrefLabel : ? literal, ?Definition : ? literal)
1 SUBCLASSOF(?Name, :Burger),

X | SUBOBJECTSOMEVALUESFrROM(?Name, :hasCondiment, ?Condiments),

SUBCLASSOF(?Name, _:b2), OBJECTALLVALUESFROM(_:b2, :hasCondiment, _:b3), (6)
OBJECTUNIONOF(_:b3, ?Condiments), 7
X | (?Name, rdfs:label, ?Label), (?Name, skos:prefLabel, ?PrefLabel), (?Name, skos:definition, ?Definition) . 8)

BURGERMEAL(?Name : 1 class, ?Sides : + class)
1 SUBOBJECTSOMEVALUESFROM(?Name, thasMain, :Burger),

SUBOBJECTALLVALUESFROM(?Name, :hasSide, _:b4), OBJECTUNIONOF(_:b4, ?Sides) .)

(a) OTTR template library with redundancies and lack of re-use

NAMEDP1zzA(?Name : 1 class, ?Country : ? individual, ?Toppings : + class)
:: SUBOBJECTHASVALUE(?Name, :hasCountryOfOrigin, ?Country),

NaMEDFooD(?Name, :NamedPizza, ?Toppings, :hasTopping) - (%)

ANNOTATEDP1ZZA(?Name : 1 class, ?Label : + literal, ?PrefLabel : ? literal, ?Definition : ? literal)
1 SUBCLASSOF(?Name, :Pizza),

ANNOTATION(?Name, ?Label, ?PrefLabel, ?Definition) . (%)

BURGER(?Name : 1 class, ?Condiments : + class, ?Label : + literal, ?PrefLabel : ? literal, ?Definition : ? literal)
1 NaMEDFoobp(?Name, :Burger, ?Condiments, :hasCondiment), (%)

ANNOTATION(?Name, ?Label, ?PrefLabel, ?Definition) . (%)

BURGERMEAL(?Name : 1 class, ?Sides : + class)
:: SUBOBJECTSOMEVALUESFROM(?Name, :hasMain, :Burger),

SUBOBJECTALLVALUESFROMUNION(?Name, :hasSide, ?Sides) . (%)
New OTTR templates representing previously uncaptured patterns:

NaMmeDFoobp(?Name : 1 class, ?Category : 1 class, ?Extras : + class, ?hasExtra : 1 objectProperty) (10)
1 SUBCLASSOF(?Name, ?Category),
X | SUBOBJECTSOMEVALUESFROM(?Name, ?hasExtra, ?Extras),

SUBOBJECTALLVALUESFROMUNION(?Name, ?hasExtra, ?Extras)

ANNOTATION(?Name : 1 class, ?Label : + literal, ?PrefLabel : ? literal, ?Definition : ? literal) (11)

;1 x| (?Name, rdfs:label, ?Label), (?Name, skos:prefLabel, ?PrefLabel), (?Name, skos:definition, ?Definition) .

SUBOBJECTALLVALUESFROMUNION(?x : 1 class, ?Property : 1 objectProperty.?RangeList : + class) (12)

1 SUBOBJECTALLVALUESFROM(?x, ?Property, _:b1), OBJECTUNIONOF(_:b1, ?RangeList) .

(b) A refactored version of the templates in Fig. 3(a). The refactored templates from Fig. 3(a) are
listed first, where a star (%) indicates a dependency to a new template, found at the bottom.

Fig. 3: OTTR template library before and after redundancy removal

103

104

— SUBCLASSOF(?Name, _:b2)

— OBIECTALLVALUESFrROM(_:b2, :hasCondiment, _:b3)
in BURGER (6). (Numbers refer to numbered lines in the figures.) Finally,
ANNOTATEDP1ZZA and BURGER overlap, since they both directly depend
on the same TripLE templates (5)(8). These relationships are depicted
in the graph below (dependency relationships omitted for the sake of
legibility). Directed/undirected edges depict nonsymmetric/symmetric
relations, respectively.

DO
NAMEDPI1ZZA — BURGERMEAL

DO‘ m ‘DO

ANNOTATEDPI1ZZA o BURGER T» SUBOBIJECTALLVALUESFROM

We wish to discuss these relations in the context of redundancy re-
moval within an OTTR template library. More specifically, we discuss two
types of redundancy:

Lack of reuse is a redundancy where a template S has a contains rela-
tionship to another template T, instead of a dependency relationship to
T. That is, S duplicates the pattern represented by T, rather than instan-
tiating T. This can be removed by replacing the offending portion of
body(S) with a suitable instance of T. A first approach to determining
such a lack of reuse makes use of the fact that templates can be used as
queries: template S contains T iff T as a query over S yields answers.
Uncaptured pattern is a redundancy where a pattern of template in-
stances is used by multiple templates, but this pattern is not repre-
sented by a template. In order to find uncaptured patterns one must
analyse in what manner multiple templates depend on the same set
of templates. If multiple templates overlap as defined above, this is a
good candidate for an uncaptured pattern. However, an overlap does
not necessarily need to occur for an uncaptured pattern to be present:
as demonstrated in the following example, a dependency-overlap can
describe an uncaptured pattern that is relevant for the template library.

Example 6. Continuing with our previous example of the library in
Fig. 3(a), we find that it contains both an instance of lack of reuse and mul-
tiple instances of uncaptured patterns. The containment of SUBOBJECTALL-
VALUESFROM in BURGER indicates a lack of reuse, and the overlap of

BURGER and ANNOTATEDPIzzA is an uncaptured pattern which we refac-
tor into the template ANNoTATION (11). By repairing the lack of reuse in
BURGER (6) with an instance of SUBOBJECTALLVALUESFROM, there are two
dependency-overlaps that represent uncaptured patterns: the instances
(6,7)(9), which are refactored into a new template SUBOBJECTALLVALUES-
FromUNION (12), and the dependency-overlap between BURGER and
NaMEDPi1zzA, which is described by the NamEpFoobp template (10). These
new templates as well as the updated template definitions for the pre-
existing ones are given in Fig. 3(b).

4.2 Efficient redundancy detection

Naive methods for improving a template library using the relations as
described in the previous section quickly become infeasible for large
knowledge bases, as they require expensive testing of unification of all
template bodies. We have developed an efficient method for finding lack
of reuse and uncaptured patterns, which over-approximates the results of
unification. The method uses the notion of a dependency pair, which intu-
itively captures repeated use of templates without considering parameters:
a dependency pair (I, T) is a pair of a multiset of templates / and a set of
templates T, such that T is the set of all templates that directly depend on
all templates in 7, and have at least as many directly depends relationships
to each template in / as they occur in /. The idea is that / represents a
pattern used by all the templates in 7. In order to also detect patterns
containing different TRIPLE instances, we will in this section treat a TRIPLE
instance (s, p, 0) as a template instance of the form p(s, o) and thus treat
p as a template. Note that for a set of dependency pairs generated from a
template library, the first element in the pair, i.e., the /, is unique for the
set, while the T is generally not unique.

Example 7. Three examples of dependency pairs from the library in
Fig. 3(a) are

1. {({SuBCLASSOF, SUBCLASSOF, rdfs:label}, {BURGER})
2. {({SuBCLASSOF, OBJECTALLVALUESFROM},
{SUBOBJECTALLVALUESFROM, BURGER})
3. {{skos:definition, rdfs:label, skos:prefLabel}, { ANNOTATEDP1ZZA, BURGER})

105

106

The first pair indicates that BURGER is the only template that directly de-
pends on two occurrences of SUBCLAsSOF and one occurrence of rdfs:label.
Note that BUrRGER directly depends on other templates too, and these will
give rise to other dependency pairs. However there is no other template
than BURGER that directly depends on this multiset of templates. The sec-
ond example shows that SUBOBJECTALLVALUEsFrROM and BURGER directly
depend on the templates SUBCLASSOF and OBJECTALLVALUESFROM.

One can compute all dependency pairs by starting with the set of
dependency pairs of the form ({i : n}, T) where all templates in 7 have at
least n instances of i, and then compute all possible merges, where a merge
between two clusters (/1,7T}) and (I, T») is (I} U I, T; N T;). We have
implemented this algorithm with optimisations that ensure we compute
each dependency pair only once.

The set of dependency pairs for a library contains all potential lack
of reuse and uncaptured patterns in a library. However, note that in the
dependency pairs where either I or T has only one element, the depen-
dency pair does not represent a commonly used pattern: If / has only one
element then it does not represent a redundant pattern. If 7 has only one
element then the pattern occurs only once. If on the other hand both sets
contain two or more elements then the dependency pair might represent a
useful pattern to be represented as a template, and we call these candidate
pairs.

For a candidate pair, there are three cases to consider: 1. the set of
instances does not form a pattern that can be captured by a template, as
the usage of the set of instances does not unify; 2. the pattern is already
captured by a template, in which case we have found an instance of lack
of reuse; otherwise 3. we have found one or more candidates (one for each
non-unifiable usage of the instances of 7) for new templates. The two first
cases can be identified automatically, but the third needs user interaction
to assess. First, a user should verify for each of the new templates that it
is a meaningful pattern with respect to the domain; second, if the template
is meaningful, a user must give the new template an appropriate name.

To remove the redundancy a candidate pair (/, T') represents, we can
perform the following procedure for each template t € T and 77 = T \ {¢t}.
First we check for lack of reuse of #: this may only be the case if #’s
body has the same number of instances as there are templates in /. We
verify the lack of reuse by checking if ' € T’ contains ¢; this is done

by verifying that ¢ used as a query over t’s body yields an answer. If
there is no lack of reuse, we can represent the instances of I as they are
instantiated in ¢, as the body of a new template where all arguments are
made into parameters. Again, we need to verify that the new template is
contained in other templates in 7’ before we can refactor, and before any
refactoring is carried out, a user should always assess the results.

Example 8. Applying the method for finding candidates to the library
in Fig. 3(a), gives 19 candidate pairs, two of which are the 2nd and 3rd
candidate pair of Ex. 7. The 1st dependency pair of Ex. 7 is not a candidate
pair since the size of one of its elements ({BURGER}) is one.

By using the process of removing redundancies as described above,
we will find that for the 2nd candidate pair of Ex. 7 we have a lack of
reuse of SUBOBIECTALLVALUESFROM in BURGER, as discussed in previous
examples. The two instances of SUBCLASSOF and OBJECTALLVALUESFROM
in BURGER (see Ex. 5) can be therefore be replaced with the single instance:
SUBOBJECTSOMEVALUESFROM(?Name, :hasCondiment, _:b3).

From the 3rd candidate pair in Ex. 7 there is no lack of reuse, but we
can represent the pattern as the following template:

<NAME>(?x1, ?x2, ?x3, ?x4)
;2 (?x1, rdfs:label, ?x2), (?x1, skos:prefLabel, ?x3),

(?x1, skos:definition, ?x4) .

The template and parameters should be given suitable names and parame-
ters given a type, as exemplified by the ANNoTaTION template (11) found
in Fig. 3(b). The procedure of identifying dependency pairs and lack of
reuse is implemented and demonstrated in the online walk-through at
ottr.xyz/event/2018-10-08-iswc/.

For large knowledge bases, the set of candidate pairs might be very
large, as it grows exponentially in the number of template instances in
the worst case. This means that manually assessing all candidate pairs
is not feasible, and smaller subsets of candidates must be automatically
suggested. We have yet to develop proper heuristics for suggesting good
candidates, but the cases with the the most common patterns (the candi-
dates with largest T-sets), the largest patterns (the candidates with the
largest I-sets), or large patterns that occur often could be likely sources for

107

108

patterns to refactor. The latter of the three can be determined by maximis-
ing a weight-function, for instance of the form f({I,T)) = wy|I| + wa|T]|.
However, these weights might differ from use-case to use-case. Another
approach for reducing the total number of candidates to a manageable size,
is to let a user group some or all of the templates according to subdomain,
and then only present candidates with instances fully contained in a single
group. The idea behind such a restriction is that it seems likely that a
pattern is contained within a subdomain. We give an example of these
techniques in the following section.

5 Use Case Evaluation

In this section we outline an evaluation of OTTR templates in a real-world
setting at the engineering company Aibel, and demonstrate in particular
our process of finding and removing redundancies over a large, generated
template library.

Aibel is a global engineering, procurement, and construction (EPC)
service company based in Norway best known for its contracts for building
and maintaining large offshore platforms for the oil and gas industry.
When designing an offshore platform, the tasks of matching customer
needs with partly overlapping standards and requirements as well as
finding suitable products to match design specifications are highly non-
trivial and laborious. This is made difficult by the fact that the source
data is usually available only as semi-structured documents that require
experience and detailed competence to interpret and assess. Aibel has
taken significant steps to automate these tasks by leveraging reasoning
and queries over their Material Master Data (MMD) ontology. It integrates
this information in a modular large-scale ontology of ~200 modules and
~80,000 classes and allows Aibel to perform requirements analysis and
matching with greater detail and precision and less effort than with their
legacy systems. Since the MMD ontology is considered by Aibel as a
highly valuable resource that gives them a competitive advantage, it is not
publicly available.

The MMD ontology is produced from 705 spreadsheets prepared by
ontology experts and populated by subject matter experts with limited
knowledge of modelling and semantic technologies. The column head-
ers of the spreadsheets specify how the data is to be converted into an
ontology, and the translation is performed by a custom-built pipeline of

30 _— ———T — 6
'counts.data'u1:2:3 @ 1x10

20 - T 100000
o 20T R 7 10000
[0} ° . o o
[$) . . o o
& 15+ . e e e _
w . . e o o 1000
c I
E . . L] e o

10 - A . 100

51 : B 10

. - : e - 5 1

1 10 100
#Templates

Fig. 4: A scatter plot of the sizes of the two sets for all candidate pairs from
Aibel use case. The colour shade denotes the logarithm of the number of
candidates at each point.

custom transformations, relational databases, and SPARQL CONSTRUCT
transformations. The growing size and complexity of the system, the
simple structure of the spreadsheets and lack of common modelling pat-
terns make it hard to keep an overview of the information content of the
spreadsheets and enforce consistent modelling across spreadsheets. The
absence of overarching patterns also represents a barrier for Aibel’s wish
to extend the ontology to cover new engineering disciplines, as there are
no patterns that are readily available for reuse.

The aim of our evaluation is to test whether OTTR templates and the
tools presented in this paper can replace Aibel’s current in-house built sys-
tem and improve the construction and maintenance of the MMD ontology.
By exploiting the simple structure of the spreadsheets we automatically
generated OTTR templates: one for each spreadsheet (705 templates), one
for each unique column header across spreadsheets (476 templates), and
one for each axiom pattern used, e.g., existential restriction axiom (4
templates).

To analyse the large template library, we applied the algorithm for
finding candidate pairs described in Sec. 4.2, giving a total of 54,795,593
candidate pairs. The scatter plot in Fig. 4 shows the distribution of sizes for
the two sets; the largest number of instances and templates for a given can-
didate is 24 and 474, respectively. The large number of candidates makes

109

110

it impossible to manually find potential templates, thus we employed
the semi-automatic method described in the previous section to suggest
possible improvements to the library. In order to demonstrate the process,
we selected the candidates that contain a specific template, the template
modelling a particular type of pipe elbows from the AMSE B16.9 standard,
which is an often-used example from the MMD ontology. This template
occurs in a total of 12,273 candidates. To reduce the number of candidates
further, we removed candidates with instances of a generic character, such
as rdfs:label, to end up with candidates with domain-specific templates.
By using a weight function, we selected the candidate with the largest
set of templates and at least 6 instances. From this candidate, with 33
templates and 7 instances, we obtained a template suggestion that we were
able to verify is contained by all of the 33 templates in 7, by using the
template as a query over the templates in 7. We added this new template
to the library and refactored it into all the 33 templates using its pattern.

Fixing this single redundancy reduced the total number of candidates
by over 1.8 million. This great reduction in candidates comes from the
fact that fixing a redundancy represented by a candidate C can also fix the
redundancies of candidates having a pattern that is contained in, contains,
or overlaps C’s pattern. This indicates that, despite a very large number
of candidates, small fixes can dramatically reduce the overall redundancy.
Furthermore, by automatically refactoring all lack of reuse in the entire
library, the number of candidates decreases to under 3 million. The average
number of instances per template went from 5.6 down to 2.7 after this
refactoring. In addition to the redundancies fixed above, we were also able
to detect equal templates (pairs of templates both having a lack of reuse of
the other). Out of the 931 templates we analysed, only 564 were unique.
Thus, we could remove a total of 367 redundant templates from the library.
Note that all of the improvements made above should be reviewed by a
user, as discussed in Sec. 4.2, to ensure that the new template hierarchy
properly represents the domain.

The use case evaluation indicates that OTTR templates and tools can re-
place Aibel’s custom built approach for transforming spreadsheets into on-
tologies. Indeed, OTTR greatly exceeds the expressivity of Aibel’s spread-
sheet structure and provides additional formal structure that can be used
to analyse and improve the modelling patterns used to capture domain
knowledge. As future evaluation, we want to work with Aibel’s domain
experts in order to identify promising heuristics for finding the best shared

patterns. We believe that these new patterns and user requirements from
Aibel may foster new ideas for added expressivity and functionality of
OTTR languages and tools. Furthermore, we want to evaluate whether
we can replace Aibel’s hand-crafted queries with queries generated from
templates. This would avoid the additional cost of maintaining a large
query library, while benefiting from already existing templates and OTTR’s
compositional nature and tools for building and analysing the generated
queries.

6 Related Work

Modularised ontologies, as well as the use and description of ontology
design patterns, have attracted significant interest in recent years, as
demonstrated by the multitude of languages and frameworks that have
emerged. However, a hurdle for the practical large-scale use of ontology
design patterns is the lack of a tool supported methodology; see [4] for
a discussion of some of the challenges facing ontology design patterns.
In this section we present selected work related to our approach that we
believe represents the current state of the art.

An early account of the features, benefits and possible use-cases for a
macro language for OWL can be found in [14].

The practical and theoretical aspects of OTTR templates were first
introduced in [13] and [2]. This paper presents a more mature and usable
framework, including formalisation and use of template relations, real-
world evaluation, added expressivity in the form of optional parameters
and expansion modes, and new serialisation formats.

GDOL [9] is an extension of the Distributed Ontology, Modelling, and
Specification Language (DOL) that supports a parametrisation mechanism
for ontologies. It is a metalanguage for combining theories from a wide
range of logics under one formalism while supporting pattern definition,
instantiation, and nesting. Thus it provides a broad formalism for defining
ontology templates along similar lines as OTTR. To our knowledge, GDOL
has yet to investigate issues such as dependencies and relationships be-
tween patterns, optional parameters, and pattern-as-query (the latter being
listed as future work). A protege plugin for GDOL is in the works and DOL
is supported by Ontohub (an online ontology and specification repository)
and Hets (parsing and inference backend of DOL).

111

112

Ontology templates as defined in [1] are parameterised ontologies in
ALC description logic. Only classes are parameterised, and parameter
substitutions are restricted to class names. This is quite similar to our ap-
proach, yet it is not adapted to the semantic web, and nested templates and
patterns-as-queries are not considered. Furthermore, it appears this project
has been abandoned, as the developed software is no longer available.

OPPL [6] was originally developed as a language for manipulating OWL
ontologies. Thus it supports functions for adding and removing patterns
of OWL axioms to/from an ontology. It relies heavily on its foundations in
OWL-DL and as such can only be used in the context of OWL ontologies.
Despite this, the syntax of OPPL is distinct from that of RDF, thus requiring
separate tools for viewing and editing such patterns, though a Protégé
plugin does exist, in addition to a tool called Populous [7] which allows
OPPL patterns to be instantiated via spreadsheets. By allowing patterns
to return a single element (e.g., a class) OPPL supports a rather restricted
form of pattern nesting as compared to OTTR.

Tawny OWL [10] introduces a Manchester-like syntax for writing ontol-
ogy axioms from within the programming language Clojure, and allows
abstractions and extensions to be written as normal Clojure code alongside
the ontology. Thus the process of constructing an ontology is transformed
into a form of programming, where existing tools for program develop-
ment, such as versioning, testing frameworks, etc. can be used. The main
difference from our approach is that Tawny OWL targets programmers and
therefore tries to reuse as much of the standards and tools used in nor-
mal Clojure development, whereas we aim to reuse semantic technology
standards and tools.

OPLa [5] is a proposal for a language to represent the relationships
between ontologies, modules, patterns, and their respective parts. They
introduce the OPLa ontology which describes these relationships with
the help of OWL annotation properties. This approach does not, however,
attempt to mitigate issues arising with the use of patterns, but focuses
more on the description of patterns, than on practical use.

There are other tools and languages such as XDP [3], built on top of
WebProtégé as a convenient tool for instantiating ODPs, the M? mapping
language [11] that allows spreadsheet references to be used in ontology
axiom patterns, and RDF shape languages, such as SHACL [8], that may be
used to describe and validate patterns. Although these have similarities

with OTTR, we consider these more specialised tools and languages, where
for example analysis of patterns is beyond their scope.

7 Conclusion and Future Work

This paper presents OTTR, a language with supporting tools for represent-
ing, using and analysing ontology modelling patterns. OTTR has a firm
theoretical and technological base that allows existing methods, languages
and tools to be leveraged to obtain a powerful, yet practical instrument
for ontology construction, use and maintenance.

For future work, the natural next step with respect to template library
optimisation is to continue and expand the analysis of Section 4, both for
existing and new template relations. In particular, it is natural to compare
templates both syntactically using their full expansion and in terms of their
semantic relationship. The latter would allow us, e.g., to answer questions
about consistency and whether a given library is capable of describing a
certain knowledge pattern. We also want to develop specialised editors
for OTTR templates, such as a plugin for Protégé, and extend support for
more input formats, such as accessing data from relational databases.

Acknowledgements. We would like to thank Per @yvind @verli from
Aibel, and Christian M. Hansen from Acando for their help with the
evaluation of OTTR. The second and fourth author were supported by
Norwegian Research Council grant no. 230525.

References

1. M. Blasko, P. Kremen, and Z. Kouba. Ontology evolution using ontology templates. Open
Journal of Semantic Web (OJSW), 2:15-28, 01 2015.

2. H. Forssell et al. Reasonable macros for ontology construction and maintenance. In Proc. of
the 30th International Workshop on Description Logics, 2017.

3. K. Hammar. Ontology Design Patterns in WebProtege. In Proc. of the ISWC 2015 Posters &
Demonstrations Track, 2015.

4. K. Hammar et al. Collected research questions concerning ontology design patterns. In
P. Hitzler et al., editors, Ontology Engineering with Ontology Design Patterns, pages 189—198.
10S Press, 2016.

5. P. Hitzler et al. Towards a simple but useful ontology design pattern representation language.
In Proc. of the 8th Workshop on Ontology Design and Patterns, 2017.

6. L. Iannone, A. L. Rector, and R. Stevens. Embedding Knowledge Patterns into OWL. In
ESWC, pages 218-232, 2009.

113

114

10.

11.

12.
13.

14.

S. Jupp et al. Populous: a tool for building OWL ontologies from templates. BMC Bioinfor-
matics, 13(S-1):S5, 2012.

H. Knublauch and D. Kontokostas. Shapes constraint language (SHACL), 2017. W3C
recommendation.

B. Krieg-Briickner and T. Mossakowski. Generic ontologies and generic ontology design
patterns. In Proc. of the 8th Workshop on Ontology Design and Patterns, 2017.

P. Lord. The Semantic Web takes Wing: Programming Ontologies with Tawny-OWL. In
OWLED, 2013.

M. J. O’Connor, C. Halaschek-Wiener, and M. A. Musen. M2: A Language for Mapping
Spreadsheets to OWL. In OWLED, 2010.

C. K. Ogden and I. A. Richards. The Meaning of Meaning. Harvest Book, 1946.

M. G. Skjeveland et al. Pattern-based ontology design and instantiation with reasonable
ontology templates. In Proc. of the 8th Workshop on Ontology Design and Patterns, 2017.
D. Vrandeci¢. Explicit knowledge engineering patterns with macros. In Proc. of the Ontology
Patterns for the Semantic Web Workshop at the ISWC 2005, 2005.

Paper 5

Making a Case for Formal
Relations over Ontology
Patterns

Daniel P. Lupp, Leif Harald Karlsen, and Martin G. Skjeveland. “Making a Case for Formal
Relations over Ontology Patterns.” In: Proceedings of the 9th Workshop on Ontology Design
and Patterns (WOP 2018) co-located with the 17th International Semantic Web Conference
(ISWC 2018), Monterey, CA, October 9, 2018. Vol. 2195. CEUR Workshop Proceedings.

CEUR-WS.org, 2018 [P5]

115

116

Making a Case for Formal Relations over Ontology Patterns

1

Daniel P. Lupp, Leif Harald Karlsen, and Martin G. Skjeveland

Department of Informatics, University of Oslo
{danielup,leifhka,martige}@ifi.uio.no

Abstract. There have recently been multiple frameworks proposed to formalize
the definition and instantiation of recurring patterns for ontology construction and
maintenance. Such formal frameworks can also provide the means necessary for
discussing how such patterns can be related to one another, both syntactically and
semantically. This has the potential for organizing pattern libraries, robust handling
of maintenance tasks, such as redundancy removal, and defining heuristics for
what constitutes a “good” pattern. This short paper aims to provide a common
ground for discussions on formal relations between ontology patterns. We discuss
interesting relations with motivating examples as well as state open questions
concerning relations for optimizing the creation, instantiation, and maintenance of
ontology patterns.

Templating Framework for Ontology Patterns

Recently, multiple frameworks have been proposed for the creation and use
of ontology patterns [3,2]. This more formal approach enables the study of
how patterns are related to one another in ways that permit automatic analy-
sis and repair. In order to adequately discuss formally defined relationships
between patterns, we employ the notion of a templating mechanism for
patterns using the following generic definitions: An (ontology) pattern
is a set of OWL axioms or RDF triples; a templating framework has the
following characteristics, where we consider the first three mandatory and
the remaining optional:

1.

oW

identifiable patterns, called templates;

2. declaration of fixed and variable template parameters;
3.
4. support for nested template definitions, i.e., templates defined using

precise instantiation of templates;

other templates;

typed parameters;

cardinality for parameters, e.g,. optional and mandatory;
inherited semantics of the underlying language.

117

118

head, identifying template and parameters body, representing the pattern

1

T 1 T
‘SUBCLASSOF‘(?SUb : 1 class, ?super : 1 class) :: {TrRiPLE(?sub, rdfs:subClassOf, ?super)} .
L | L |

name parameters with type and cardinality instance with fixed and variable arguments

Fig. 1: Reasonable Ontology Templates (OTTR) exemplified.

The discussion is motivated by our work with Reasonable Ontology
Templates (OTTR) [3,1] which implements these features. Figure 1 gives
a schematic example of an OTTR template, for more details we refer
to [3]. The OTTR template framework has been successfully verified for
construction and maintenance tasks on Aibel’s large-scale Material Master
Data (MMD) ontology. There approximately 1000 templates were used to
represent the spreadsheet formats created and populated by the project to
capture the domain knowledge for generating an ontology of ca. 80,000
classes. Experimental analysis of these templates based on simple relations
has revealed a considerable potential for optimization of their design. We
believe that a richer set of template relations is both possible and required
in order to gain a more fine-grained and effective characterization of
templates and template libraries.

In this paper we discuss the benefit and challenges of defining formal
relations between ontology templates and identify future directions of
research in this area, with an agnostic perspective as to which templating
formalism is used. As such, the intention is for the reader to quickly be able
to translate the discussion and examples given into the formalism of their
choosing. Section 2 shows how simple relations may be used to identify
redundancies in a template library. Section 3 presents the possibilities and
potential for defining new relations over ontology templates.

2 Simple and Useful Template Relations

Using only the first four characteristics of a template framework given in
Section 1, we can define some basic relationships between templates:

directly depends S is said to directly depend on T if S contains an instance
of T in its definition.

depends depends is the transitive closure of directly depends.

dependency-overlaps S dependency-overlaps T if there exists a template
upon which both S and T directly depend.

BURGER1(?Name : 1 class, ?Condiments : + class)
: SUBCLASSOF(?Name, :Burger), OBJECTUNIONOF(_:b3, ?Condiments),

SUBCLASSOF(?Name, _:b2), OBJECTALLVALUESFrROM(_:b2, :hasCondiment, _:b3). (1)

SUBOBJECTALLVALUESFROM(?x : 1 class, ?Property : 1 objectProperty, ?Range : 1 class)

i SUBCLASSOF(?x,_:b1), OBJECTALLVALUESFROM(_:b1, ?Property, ?Range) . ?2)

(a) Example of lack of reuse.

BURGER2(?Name : 1 class, ?Condiments : + class)
: SuBCLASSOF(?Name, :Burger), OBJECTUNIONOF(_:b1, ?Condiments), 3)

SUBOBJECTALLVALUESFrROM(?Name, :hasCondiment, _:b1). “4)

Pizza(?Name : 1 class, ?Toppings : + class, ?Country : ? individual)
:: SUBCLASSOF(?Name, :NamedPizza), OBJECTUNIONOE(_:b1, ?Toppings), 5)
SUBOBJECTALLVALUESFrOM(?Name, :hasTopping, _:b1), (6)

SUBOBJECTHASVALUE(?Name, :hasCountryOfOrigin, ?Country).

(b) Example of uncaptured pattern.

Foop1(?Name : 1 class, ?Type : 1 class, ?Ex : + class, ?hasEx : 1 objProp)
: SUBCLASSOF(?Name, ?:Type), OBJECTUNIONOF(_:b1, ?Ex),

SUBOBJECTALL\/ALUESFROM(?Name7 ?:hasEx, _b1).

(c) Captured pattern.

FO0D2(?Name 11 class, ?Type : 1 class, ?Ex : + class, ?hasEx : 1 objProp, ?Country : ? individual)
it SUBCLASSOF(?Name, ?:Type), OBIECTUNIONOF(_:b1, ?Ex),
SUBOBJECTALLVALUESFrROM(?Name, ?:hasEx, _:b1),

SUBOBJECTHASVALUE(?Name, :hasCountryOfOrigin, ?Country).

(d) Captured pattern with optionals.

Fig.2: Templates demonstrating different redundancies and suggested
solutions.

overlaps S overlaps T if there exist template instances ig, 71 in the defini-
tion of S and T and substitutions p and 7 of the parameters of S and T
resp. such that p(is) = i and n(iy) = s.

contains S contains T if there exists a substitution p of the parameters of
T such that p applied to the pattern of T is a subset of the pattern of S.

These relations can be used to identify redundancies in a set of tem-
plates. In [3], two types of redundancies are considered: lack of reuse
and uncaptured pattern. Lack of reuse occurs when a template dupli-
cates the pattern of another template rather than instantiating it. This

119

120

is exemplified by the two templates in Figure 2(a); BURGER] contains
SUBOBJECTALLVALUESFrROM (see (1) and (2)). The template BURGER2 in
Figure 2(b) is the result of fixing this redundancy (replacing (1) with (4)).
Uncaptured pattern is the case when multiple templates make use of a
pattern which is not represented by a template. This is illustrated by the
two templates of Figure 2(b); these templates dependency-overlap, as seen
in (3)—(4) and (5)—(6). This is not an occurrence of lack of reuse, as Pizza
cannot instantiate BURGER2 given they both use different fixed parameter
resources (e.g., hasCondiments (4) and hasTopping (6)). The uncaptured
pattern may be refactored out as a separate template; this is implemented
by Foopl1 in Figure 2(c).

In the analysis of the ~1000 templates used for Aibel’s MMD ontology,
ca. 55 million potential redundancies were identified and 367 possibly
superfluous templates found. When deciding how to refactor the template
library we used a manual approach, targeting large templates that model
specific domain facts. Fixing a single redundancy reduced the total number
of potential redundancies by more than 1.8 million. Although the analysis
is clearly useful and shows promising results, we believe these large figures
show that one has yet to find precise, effective means to characterize and
repair template libraries.

3 Defining New Ontology Template Relations

The relations defined in the previous section use only a few of the ba-
sic characteristics for a templating mechanism given in Section 1. The
following is a non-exhaustive list of building blocks for defining formal
relations between templates using both the characteristics of a templating
framework and of the underlying language. The list is presented along
with a brief summary of what kind of functionality each provides and
typical examples of possible relations defined using these characteristics:

Syntax and semantics of framework These allow syntactic and seman-
tic relations such as containment, entailment, and consistency, e.g., two
templates could be said to be inconsistent if for any substitutions of
their parameters the use of both in conjunction yields an inconsistent
ontology.

Parameters This allows for relations that take into consideration the
number of parameters, their types, and whether they are optional or

not. For instance, one could say that T strengthens the typing of S if T
directly depends on S and additionally requires a more specific type
for at least one of its parameters.

Expansion This allows for relations over both unexpanded and expanded
templates. For example, expanded containment could be defined to
hold between T and S if the expansion of 7" contains the expansion of
S.

Metrics Characteristics such as the template’s arity (the number of pa-
rameters), width (the size of its pattern) and depth (the height of its
expansion tree).

Syntax and semantics of used vocabulary It is useful to distinguish be-
tween templates that are completely generic (all parameters are vari-
able) and those that use a specific vocabulary, be it a “logical” vocab-
ulary like RDF or OWL or a more special purpose vocabulary. As for
semantic relations such as consistency, these can be set to consider or
ignore the semantics of “external” ontologies.

These building blocks give many possibilities for characterizing tem-
plates and template libraries. We are particularly interested in identifying
relations that are useful for structuring template libraries for maintenance
tasks, such as redundancy removal, and that make it easier for the user to
find the relevant template for the modeling task at hand. In addition, finding
heuristics with which libraries can be optimized according to specific
metrics, which may vary from case to case, could be a valuable asset.
Ideally, the relations and heuristics should be efficiently computable and
be easily understood by the user. Finding these requires more theoretical
and empirical study. We conclude this section by demonstrating some of
the challenges of such studies.

When defining relations using the above building blocks, one should
proceed with caution as some of them are incredibly powerful. For in-
stance, allowing parameters to be optional provides more possibilities
for discovering candidates for uncaptured patterns, as demonstrated in
Figure 2: Consider the Pizza and BURGER2 templates from Figure 2(b).
Without allowing optional parameters, a suitable template that describes
the uncaptured pattern can be seen in Figure 2(c). With optionals, however,
the BURGER2 and P1zza templates can be generalized into a single template
by declaring ?Country as an optional parameter, seen in Figure 2(d). Op-
tionals thus provide a lot of useful functionality; however, in general they

121

122

X

VRN
X1 Y Ty
RN /N
il X, Ty Y Ty X
/\ RN /N
T Ts T T Ts T, Ts

Fig.3: A complex case of lack of reuse. Templates are schematically
represented by trees where an edge represents a direct dependency. On
the left, there is a lack of reuse between the templates X, and Y, which, if
fixed (by replacing 7, and 75 in Y with X5), introduces a new lack of reuse
between Y and X;. Fixing also this redundancy (replacing 73 and X, in X;
with Y) results in the configuration of templates seen on the right.

allow for any set of templates to be summarized into a single template.
As this is likely counter-productive in most circumstances, it would be
important to identify heuristics for when optionals should or should not be
used when defining templates for uncaptured patterns.

Other complex relationships can occur during the fixing of lack of reuse
or uncaptured pattern. An example that illustrates this is shown in Figure 3,
where fixing one instance of lack of reuse in Y introduces a new lack of
reuse in X;. This indicates a more complex form of lack of reuse between
X, and Y in the original library, but also, more generally, that repairing
redundancies is an iterative process. This type of composition of relations
opens the door to new types of complex relationships. Furthermore, if
the template definitions have type and cardinality restrictions set on the
parameters, finding possible optimizations or redundancies becomes even
more involved: for instance, if parameter types are too strict then the
possible reuse of these templates is reduced.

4 Conclusion and Future Work

In this paper, we introduce an abstract templating framework and the
building blocks with which formal relations over ontology patterns and
templates may be defined. We give examples of formal relations that have
a demonstrable benefit to template library maintenance (by removing
redundancy) as well as provide useful functionality for tools geared towards
template creation, documentation, and discovery.

The framework, relations and building blocks described in this paper
serve primarily as a basis for discussion. We believe it important to identify
(1) what functionality we desire for improved usability and in maintenance
and creation tools, (2) what relations these require, and (3) what properties
aside from the aforementioned building blocks a templating framework
should support.

References

1. H. Forssell, D. P. Lupp, M. G. Skj@veland, and E. Thorstensen. Reasonable macros for ontology
construction and maintenance. In Proc. of 30th DL Workshop, 2017.

2. B. Krieg-Briickner and T. Mossakowski. Generic ontologies and generic ontology design
patterns. In Proc. of the 8th Workshop on Ontology Design and Patterns, 2017.

3. M. G. Skjeveland, D. P. Lupp, L. H. Karlsen, and H. Forssell. Practical ontology pattern
instantiation, discovery, and maintanence with reasonable ontology templates. Accepted for
ISWC 2018 research track, 2018.

123

Paper 6

Generating Ontologies from
Templates: A Rule-Based
Approach for Capturing
Regularity

Henrik Forssell, Christian Kindermann, Daniel P. Lupp, Uli Sattler, and Evgenij Thorstensen.
“Generating Ontologies from Templates: A Rule-Based Approach for Capturing Regularity.” In:
CoRR abs/1809.10436 (2018). arXiv: 1809.10436. URL: http://arxiv.org/abs/1809.10436
[PO]

125

http://arxiv.org/abs/1809.10436
http://arxiv.org/abs/1809.10436

126

Generating Ontologies from Templates: A
Rule-Based Approach for Capturing
Regularity

Henrik Forssell Christian Kindermann Daniel P Lupp
Uli Sattler Evgenij Thorstensen

Technical Report

Contents

1

Introduction
1.1 Examples e

Preliminaries
Generators and GBoxes

Results
4.1 GBox containment and equivalence
4.2 GBoxeswithnegation

Related work

Future work

10
13
15

20

21

127

128

Abstract

We present a second-order language that can be used to succinctly
specify ontologies in a consistent and transparent manner. This language
is based on ontology templates (OTTR), a framework for capturing re-
curring patterns of axioms in ontological modelling. The language, and
our results are independent of any specific DL.

We define the language and its semantics, including the case of negation-
as-failure, investigate reasoning over ontologies specified using our lan-
guage, and show results about the decidability of useful reasoning tasks
about the language itself. We also state and discuss some open problems
that we believe to be of interest.

1 Introduction

The phenomenon of frequently occurring structures in ontologies engineering
(OE) has received attention from a variety of angles. One of the first accounts
is given in [6], where repeated versions of general conceptual models are iden-
tified. Similar observations gave rise to the notion of Ontology Design Patterns
(ODP) as abstract descriptions of best practices in OE [15, 4, 22]. Another
view, emphasizing common ontological distinctions, led to the emergence of
Upper Ontologies which aim to categorize general ideas shareable across dif-
ferent domains [16]. Orthogonal to such conceptual patterns, the existence of
syntactic regularities in ontologies has been noted and some aspects of their
nature have been analyzed [30, 29, 31].

In this paper, we propose a new language that allows expressing patterns
of repeated structures in ontologies. This language is rule-based and has both
a model-theoretic and a fixpoint semantics, for which we show that they co-
incide. In contrast to other rule languages “on top of” DLs, in this language,
firing a rule results in the addition of TBox and/or ABox axioms, with the
goal to succinctly describe ontologies, thereby making them more readable
and maintainable.

Given that DL ontologies are sets of axioms, an ontology provides no means
to arrange its axioms in a convenient manner for ontology engineers. In partic-
ular, it is not possible to group conceptually related axioms or indicate interde-
pendencies between axioms. While ontology editors such as Protégé' display
an ontology through a hierarchy of its entities, conceptual interdependencies
between axioms are hidden and the underlying structural design of an ontology
remains obfuscated.

https://protege.stanford.edu/

Example 1.1 Consider the ontology

0, = {Jaguar C Animal, Jaguar C VhasChild.Jaguar, (1)
Tiger C Animal, Tiger C YhasChild. Tiger, (2)
Lion £ Animal, Lion C VhasChild.Lion} 3

Then, an ontology editor will group the entities Jaguar, Tiger and Lion under
Animal according to their class hierarchy.

However, O; contains no indication that every subclass X of Animal can
have only children of the same class X. Assume this regularity is no coinci-
dence but a desired pattern that should hold for any subclass of Animal. Cur-
rently, ontology engineers have no means of expressing or enforcing such a
pattern other than dealing with the ontology as a whole, inspecting all axioms
separately, and making necessary changes manually. O

Expressing patterns such as in Example 1.1 explicitly has a potential to
reveal some aspects of the intentions for the design of an ontology.

Example 1.2 Consider the ontology
O, = {Jaguar E Animal, Tiger E Animal, Lion C Animal} O
In addition, consider the rule
g: ?XC Animall—>£?X C VhasChild.?X},

T v
Body Head

where ?X is a variable. We can interpret the body of this rule as a query which,
when evaluated over the ontology O,, returns substitutions for ?X. These sub-
stitutions can then be used to instantiate the axioms in the head of the rule. Fir-
ing the above rule over O, would add all those resulting axioms to O,, thereby
reconstructing O; from Example 1.1.

In the following, we will call such rules generators. The possible benefits
of generators are threefold. Firstly, O, in combination with g is easier to un-
derstand because g makes a statement about all subconcepts of Animal that
the type of an animal determines the type of its children. This is a kind of meta-
statement about concepts which a user of an ontology can usually only learn
by inspecting (many) axioms in an ontology. Secondly, O, in combination with
g is easier to maintain and extend compared to O;, where a user would have
to manually ensure that the meta-statement continues to be satisfied after new
concepts have been added. Thirdly, conceptual relationships captured in a
generator such as g are easy to reuse and can foster interoperability between
ontologies in the spirit of ontology design patterns.

We close this section with more elaborate examples to demonstrate the
benefits generators such as g can provide.

3

129

130

1.1 Examples

Example 1.3 (Composition) Assume we want to model typical roles in groups
of social predatory animals. One such a role would be that of a hunter. A chal-
lenge for representing such knowledge is that different collective nouns are
used for different animals, e.g. a group of lions is called a “pride”, a group
of wild dogs is called a “pack”, a group of killer whales is called a “pod”, etc.
Therefore, a mechanism that can conveniently iterate over all these group for-
mations would be beneficial.
Consider the following query Q;:

Q, = {?X C Animal, (€))]
?X C Jeats.Animal, (5)

?X C Fhunts.Animal, (6)

?Y C SocialGroup, 7

?X C JsocialisesIn.?Y, 8)

?Y C FhasMember.?X, 9
socialisesln = hasMember™} (10)

O

Lines 4-6 bind the variable ?X to a predatory animal. Line 7 binds the vari-
able ?Y to a type of social group and lines 8-10 associate a particular type of
animal with its respective social group. Given the bindings for ?X and ?Y it is
straightforward to express that a particular type of predator ?X is a hunter in
its respective social group, namely: ?Y C JhasHunter.?X. A generator such as
in Example 1.2 could capture this relationship:

g21:Q; — {?Y C JhasHunter.?X}

Example 1.4 (Extension) Extending generator g; from Example 1.3 to cap-
ture more specialised knowledge is straightforward. Consider predatory ants
of the family Formicidae. These ants generally live in colonies with an elabo-
rate social organisation consisting of workers, drones, queens, etc.

First, we extend query Q; with the following axioms:

Q, =Q, U{?X C Formicidae, (11)
?2Z C?Y (12)
?X C 3JsocialisesIn.?Z} (13)

4

Axiom 11 requires ?X to bind to a type of Formicidae, e.g. ?X = SafariAnt.
According to query Q,, the variable ?Y binds to a general SocialGroup, e.g.
?Y = AntColony. Then, axiom 12 binds ?Z to a more specialised subgroup of
a ?Y. Finally, axiom 13 ensures that this subgroup ?Z is associated with ?X.
So for ?X = SafariAnt we get ?Z = SafariAntColony.

Next, we can specify the generator to add all desired axioms based on
matches of query Q, specialised for ants:

821 Q=
{?Z C JhasHunter.?X,
?Z C JhasWorker.?X,
?Z C JhasDrone.?X,
?Z C JhasQueen.?X}

Note how the body and head of generator g; from Example 1.3 have been
reused and extended only by set unions. O

Example 1.5 (Negative Guards) Often, general relationships are subject to
exceptions. While most ants hunt and feed cooperatively, there are some gen-
era of ants, e.g. Myrmecia, that do not. Therefore, g, in Example 1.4 would
generate an undesired axiom, namely

MyrmeciaAntColony C hasHunter.MyrmeciaAnt

. This motivates guards in the body of generators that may not only specify
positive constraints but also negative ones:

Q; =Q, U {not ?X C MyrmeciaAnt,
not ?Z C MyrmeciaAntColony}

83: Qs —
{?Z C JhasHunter.?X,
?Z C JhasWorker.?X,
?Z C JhasDrone.?X,
?Z C JhasQueen.?X}

One might argue that the effect of negative guards could also be achieved by
positive guards using negated concepts in DL, i.e. ?X C =MyrmeciaAnt instead

131

132

of not?X C MyrmeciaAnt. However, this approach would necessitate the intro-
duction of a potentially large number of axioms of type ?X & —-MyrmeciaAnt
in the given ontology. This can be avoided by using g;.

Another advantage of negative guards is the possibility to explicitly express
default assumptions for lack of better knowledge. An ant colony of a certain
genus usually consists of only ants of this genus, e.g.

SafariAntColony C YhasMember.SafariAnt. (14)

However, some genera of ants are social parasites that enslave other ant
species. In such a case, the default assumption about the homogeneity of an
ant colony is wrong and the axiom 14 should not be added.

Q. = {?X C Ant,
?Y C AntColony,
?Y C FhasMember.?X,
?Z C Ant,
?X E=?Z,
not ?X C Jenslaves.?Z,
not ?Y C JhasMember.?Z,}

24 Q4 — {?Y E YhasMember.?X} -

Example 1.6 (Recursion) Contagious diseases may be transmitted between
animals sharing a habitat. Overlapping habitats of infected animals may result
in a propagation of diseases across habitats.

Assume there is an overlap between habitats H,, H,, H; such that there is
no overlap between H; and H,, H,, describes the overlap between H; and H,,
and H,; describes the overlap between H, and H; (see Figure 1). Then, a
disease infected animal living in H; may affect an animal in H, which in turn
may affect an animal in H;. Such an iterative process may be captured by
repeatedly applying a single generator.

Consider the following query:

(06

Figure 1: Overlapping Habitats

Qs = {?X C Animal, (15)
?Y C Animal, (16)
?D C ContagiousDisease, (17)
?H C Habitat, (18)
?X C JsuffersFrom.?D, (19)
?Y C VisSusceptibleTo.?D, (20)
?X C FlivesIn.?H, (21)
?Y C 3livesIn.?H} (22)

Axioms 19 and 20 express the requirements for a disease to be transmitted
between animals while axioms 21 and 22 capture the requirement of a shared
environment. Using query Qs, we can represent the propagation of a disease
between animals across habitats:

gs : Qs — {?Y C JsuffersFrom.?D} O

Clearly, the generation of an instance of ?Y T JsuffersFrom.?D could yield a
new match for Qs in the body of g.. Therefore, generator g has to be applied
repeatedly until a fixpoint is reached.

Example 1.7 (Encapsulation) Inspecting the queries Q,,Q,, and Q4 in Exam-
ples 1.3-1.5, it is apparent that different parts in the queries correspond to dif-
ferent conceptual ideas. For example, in query Q; the axioms can be grouped

7

133

134

into ones about predators and others about social groups. Such a grouping
would provide valuable information for an ontology engineer to indicate con-
ceptual relationships between certain sets of axioms:

{?X C Animal,
?X C Jeats.Animal, Predator
?X C Jhunts.Animal}

{?Y C SocialGroup,
?X C JsocialisesIn.?Y,
?Y C JhasMember.?X,

socialisesIn = hasMember™}

Social Group

Reasonable ontology templates [38, 14], OTTR for short, introduced a frame-
work for indicating such conceptual relationships. A template is defined as a
named ontology with a set of variables. The variables can be instantiated with
concept and role expressions to yield a set of valid axioms. Moreover, templates
may be composed to give rise to more complex templates. Choosing intention-
revealing names for templates and composing appropriately named templates
may improve ontology comprehension by making the structural design of an
ontology visible.

A template, i.e. a set of axioms with variables, can also be interpreted as
a query, asking for concept and role expressions in an existing ontology that
match the pattern represented by the template. These expressions can then,
in principle, be fed into a different template to produce new axioms. This idea
captures conceptual interdependencies between templates or, more generally,
axiomatic patterns.

Clearly, it is straightforward to integrate OTTR as part of a preprocessing
step into our rule language. This has not only the potential to foster the reuse of
conceptually related set of axioms in an intention-revealing manner, but can
also to further improve the maintainability of generators by the principle of
information hiding. A change in a template will be propagated automatically
to all instances of the use of the template. O

2 Preliminaries

Let N;, N, and Ny be sets of individual, concept, and role names, each con-
taining a distinguished subset of individual, concept, and role variables V,, V,
and V;. A concept (resp. role) is either a concept name (resp. role name) or a

concept expression (resp. role expression) built using the usual DL construc-
tors [2]. Since we do not distinguish between TBoxes and ABoxes, an axiom
is either an assertion of the form C(a) or R(a,b) for a concept C, role R, and
individual names a, b or an inclusion statement C C D for concepts or roles C
and D. A theory is a (possibly infinite) set of axioms, whereas an ontology is
a finite set of axioms. A set £ of individuals, concepts, and roles is called a
language.

A template T is an ontology, and we write T(V') for V C V, UV, U V4 the set
of variables occurring in T. For the sake of brevity, we occasionally omit the
variable set V when it is either clear from context or nonvital to the discussion.
Templates can be instantiated by applying a substitution to them. A substitution
o is a function that maps individual, concept, and role variables to individuals,
concepts, and roles respectively. We require that substitutions respect the type
of a variable, so that the result of instantiating a template is a well-formed
ontology. For £ a language, an L-substitution is one whose range is a subset of
L. The L-evaluation of T over O, written eval(T, O, £), is the set of substitutions
defined as follows:

eval(T, O, £) = {o an L-substitution | O = To},

where T o is the instantiation of T with o. Furthermore, we define eval(@, O, £)
to be the set of all £-substitutions.

Finally, we say that an ontology O is weaker than O’ if O’ |= O, and strictly
weaker if the reverse does not hold.

3 Generators and GBoxes

In this section we define the syntax and semantics of generators and GBoxes
and discuss some examples.

Definition 3.1 A generator g is an expression of the form Ty(V) — Ty (Vy),
for T5(Vy), Ty(Vy) templates with V; € V. Ty and Ty are respectively called
the body and head of g, and we write B(g) and H(g) to denote them. O

Example 3.2 g: {?X C Animal} — {?X C VhasChild.?X} is a generator, with
a single variable ?X. O

Next, we define the semantics for generators and sets of generators based
on entailment to ensure that generators behave independent of the syntactic
form of an ontology. In this choice we diverge from the work done on OTTR
[38], as OTTR template semantics is defined syntactically.

135

136

Definition 3.3 Let g: T(Vz) — Ty(Vy) be a generator. A theory O satisfies g
wrt. L if, for every L-substitution o such that O |= Tzo, we have O |= Ty0.

Example 3.4 Consider the generator g from Example 3.2. The theory
0, = {Turtle & Mammal,Mammal © Animal, Turtle & VhasChild.Turtle,
Mammal C VhasChild.Mammal} satisfies g, while the theory O, = {Turtle C
Mammal, Mammal E Animal} does not. -

A set G of generators is called a GBox. Furthermore, we define the set B(G)
(resp. H(G)) as the set of all bodies (resp. heads) occurring in G, i.e., they are
sets of ontologies.

Definition 3.5 Let G be a GBox, O an ontology, and £ a language. The expan-
sion of O and G in L, written Exp(G, O, L), is the smallest set of theories O’
such that

(1) O o0,
(2) O’ satisfies every g € G w.r.t. £, and

(3) O’ is entailment-minimal, i.e. there is no O” strictly weaker than O’
satisfying (1) and (2). O

We call the theories in Exp(G, O, £) expansions. This definition corresponds to
the model-theoretic Datalog semantics, with consequence rather than set in-
clusion. Since axioms can be rewritten to be subset-incomparable, entailment-
minimality is used rather than subset minimality. For example, consider {A C
B,B C C} and {A C C}: the second one is not a subset of the first one, but
weaker than it.

Example 3.6 Recall the generator g from Example 3.2, and let G be a GBox
consisting of g alone. Let O = {Turtle © Mammal, Mammal C Animal}, and
let £ be the set of all concept names. Then {Turtle E Mammal, Mammal C
Animal, Turtle © VhasChild. Turtle, Mammal C VhasChild. Mammal} €
Exp(G, O, L). O

4 Results

We show that the semantics defined in the previous section coincides with a
fixpoint-based one, investigate the role played by the language £, and investi-
gate generators with negated templates.

10

Theorem 4.1 Forevery G, O, and L, we have that any two O, O, € Exp(G, O, L)
are logically equivalent. O

Proof Assume for contradiction that this is not the case. Then there exist
0,0, € Exp(G, O, £) such that O, [~ O, [~ O, because otherwise, one would
be strictly weaker than the other, contradicting the definition of Exp(G, O, £).
In particular, there exist a and 3 such that:

0, Fa, O, [a (23)
(92 |: /3’ 01 l# /3 (24)

Now consider the set of axioms T = {7 | O; =T A O, |= 7}. Since both O,
and O, entail O and satisfy every g € G, it is clear that so does T. However,

T = O, (25)
T |F O, (26)

due to the entailments a (Eq. 23) and 8 (Eq. 24). Hence T is strictly weaker
than both O; and O,. This contradicts the initial assumption of 0,,0, €
Exp(G, O, L). n

Hence applying a GBox G to an ontology O results in a theory that is unique
modulo equivalence, but not necessary finite. As a consequence, we can treat
Exp(G, O, L) as a single theory when convenient.

Our definition of Exp(G, O, L) is strictly semantic, i.e., does not tell us how
to identify any O’ € Exp(G, O, £). In order to do that, we define a 1-step
expansion.

Definition 4.2 The 1-step expansion of O and G in L, written 1Exp(G, O, L), is
defined as follows:

1Exp(G,0,£)=0U |] {Tyo|o €eval(T;,0,0)}.

Ty—THEG

In other words, we add to O all instantiated heads of all generators appli-
cable in O. Of course, this extension may result in other generators with other
substitutions becoming applicable, and so on recursively.

Lemma 4.3 If O, C O,, then 1Exp(G, 04, £) C 1Exp(G, O,, L).

Proof Simple consequence of Def. 3.3 and eval(B(g), 0, £) € eval(B(g), 0,, L)
for any generator g. -

11

137

138

Definition 4.4 The n-step expansion of O and G in L, written 1Exp"(G, O, L),
is defined as follows:

1Exp"(G, 0, L) = 1Exp(...1Exp(G, O, L)...).
—_

ntimes

We use 1Exp*(G, O, £) to denote the least fixpoint of 1Exp(G, O, £). O

Theorem 4.5 For finite L, the least fixpoint 1Exp*(G, O, L) exists and belongs
to Exp(G, O, L). O

Proof Since L is finite, the set of all £-substitutions for the variables occurring
in G is finite. Let X, be this set, and consider the set H = QU U Tyo,
Ty—TyE€G,0€3,

that is, O as well as all axioms obtained from the heads of instances of gener-
ators in G. This set is also finite.

It is easily verified that 1Exp is an operator on the powerset of H. Since
1Exp is monotone, the least fixpoint 1Exp*(G, O, L) exists, and belongs to
Exp(G, O, £) by construction.

In other words, our fully semantic definition of Exp(G, O, £) coincides with
the operational semantics based on the fixpoint computation.

Size of the fixpoint For a generator g with variables V, there are at most
|£|V! different £-substitutions. The size of the fixpoint is therefore bounded
by |G| x |£|", where n is the maximum number of variables in any g € G. In
the worst case we need to perform entailment checks for all of them, adding
one instantiation at a time to O. Hence determining 1Exp*(G, O, £) involves
up to (|G| x |£]™)? entailment checks. For finite £ and provided we have a fixed
upper bound for n, determining 1Exp*(G, O, £) involves a polynomial number
of entailment tests and results in a 1Exp*(G, O, £) whose size is polynomial in
the size of G and £ .

Finite vs infinite L

The next examples illustrate the difficulties an infinite language £ can cause.
The first example shows how an infinite £ can lead to infinite expansions.

Example 4.6 Consider the ontology O = {A C JR.B}, the generator g : {?X C
dR.?Y} — {?X C 3JR.IR.?Y}, and L the set of all ££-concept expressions.
Clearly, 1Exp*(G, O, £) is infinite, and so is each expansion in Exp(G, O, £).

The next example shows that this does not necessarily happen.

12

Example 4.7 Consider the ontology © = {3R.A C A}, the generator
g : {3R.?X C?X} — {dR.JR.?X C JR.?X}, and L the set of all £L-concept
expressions. Clearly, 1Exp*(G, O, £) is infinite, but there is a finite (and equiv-
alent) ontology to this fixpoint in Exp(G, O, £), namely O itself. O

While having to explicitly specify £ may seem to be cumbersome, it is not
very restrictive. In fact, it is easy to show that, for finite languages, generators
can be rewritten to account for concepts, roles, or individuals that are missing
from a given language by grounding the generators.

Definition 4.8 Let g : T; — Ty be a generator, and £ a finite language. The £-
grounding of g is the finite set of generators {T,0 — Ty 0 | o an L-substitution}.

Using £-grounding, we can compensate for a smaller language £, & £, by
L, \ L£,-grounding generators, thereby proving the following theorem.

Theorem 4.9 Let £, C L, be finite languages. For every GBox G there exists a
Gbox G’ such that, for every O, O,, O, we have that O, € Exp(G’, O, L) and O, €
Exp(G, O, L,) implies O; = O,. o

Proof Take G’ to be the union of the £,-groundings of every generator in G.g

Of course, grounding all the generators is a very wasteful way of accounting
for a less expressive language. A more clever rewriting algorithm should be
possible: for example, if we allow binary conjunctions of names in £, but not
in £;, we can add copies of each generator where we replace variables ?X with
?2X,M?X,.

4.1 GBox containment and equivalence

Having defined GBoxes, we now investigate a suitable notion for containment
and equivalence of GBoxes.

Definition 4.10 (£L-containment) Let G, and G, be GBoxes, and £ a lan-
guage. G, is L-contained in G, (written G; X, G,) if

EXp(GZJ O: ‘C) |: EXP(GIJ Oa ‘C)
for every ontology O. O

The following lemma relating the entailment of theories and the entailment
of expansions holds as a direct consequence of the monotonicty of description
logics.

13

139

Lemma 4.11 Let G be a GBox, T, T’ two theories and L a language. If T |= T’
then Exp(G, T, L) |= Exp(G, T’, £). O

Furthermore, the following is a rather straightforward consequence of the
definition of the semantics of generators.

Lemma 4.12 Let T be a theory, G a GBox, O an ontology, and L a language. If
T = O and T satisfies every generator g € G then T |= Exp(G, O, L). O

Using Lemmas 4.11 and 4.12, £-containment can be shown to be decidable,
and in fact efficiently so, using a standard freeze technique from database the-

ory.

Theorem 4.13 Let G, and G, be GBoxes, and L a language. G, is L-contained
in G, if and only if Exp(G,, Ty, L) = Ty for every Ty — Ty € G;. O

Proof The only-if direction follows directly. For the other direction, by Lemma 4.12
we need to show that if Exp(G,, Ty, £) = Ty for all Ty — Ty € G, then for any
ontology O

Exp(G,, O, L) = g for all g € G4, 27)
Exp(G,, 0, L) E O. (28)

By Lemma 4.12, (27) and (28) imply Exp(G,, O, £) |= Exp(G,, O, L), which is
the definition of G, being £-contained in G,. (28) is an immediate consequence
of the definition of the expansion, hence we only need to show (27).

In the following we slightly abuse notation: Exp(G, O, £) for a GBox G,
ontology O and language £ shall refer to an ontology as opposed to a set of
possible expansions; by Theorem 4.1, they are all logically equivalent.

Let T; — Ty € G, be fixed but arbitrary. Furthermore, let o € eval(Ty,
Exp(G,, O, L)).

Then, by the definition of eval,

EXp(GZ: O: E) |: TBO-' (*)
Applying Lemma 4.11 to (*) yields Exp(G,, Exp(G,, O, £), L) |= Exp(G,, Tzo, L).
But Exp(G,, Exp(G,, O, L), L) = Exp(G,, O, L) (otherwise Exp(G,, O, L) would
not be an expansion) and hence
EXp(G23 O: E) |: EXP(GZJ TBO-: C) (29)

Thus what remains is to show that

14

140

EXP(GZ: TBO-J £) |: THO-: (30)

since (29) and (30) together yield

EXP(G23 O: ﬁ) |: THO'. (*%)

which together with (*) implies that Exp(G,, O, L) satisfies Ty — Tj.
Using compositionality of L-substitutions and the iterative fixpoint con-
struction of the expansion, it is straightforward to show that

Exp(G,, Tzo, L) = Exp(G,, Ty, L)o. (31)

By the assumption of the theorem, Exp(G,, Ty, £) = Ty which in turn im-
plies that Exp(G,, Ty, £L)o |= Tyo. This together with (31) yields

EXP(G2> TBO-: E) |: (Exp(G23 TB: £)0- |: THO-) (32)
thus proving (30) and thereby (**), as desired. -

It follows that £-containment is decidable for arbitrary £ (even infinite),
since we can restrict ourselves to the language of all subexpressions of B(G,).
Furthermore, the complexity is the same as that of computing an expansion of
a GBox.

4.2 GBoxes with negation

In this section we introduce negation-as-failure to GBoxes. We extend the
definition of the expansions defined in Section 3, define suitable notions of
semi-positive GBoxes and semantics for stratified GBoxes, and prove the cor-
responding uniqueness results.

To do so, a generator is now a rule of the form T, (V;), not T, (V) — T (V3),
for T, (V;), T, (V,), T;(V3) templates with V3 € V; UV,. For the sake of nota-
tional simplicity, we restrict ourselves here to generators with at most one tem-
plate in the negative body. It is worth noting, however, that all definitions and
results in this section are immediately transferable to generators with multiple
templates in the negative bodies (multiple templates in the positive body can
of course be simply merged into a single template).

The following definition, together with Definition 3.5 of Exp(G, O, L), pro-
vides a minimal model semantics for GBoxes with negation:

15

141

142

Definition 4.14 An ontology O satisfies a generator g : T, (V;),not T, (V,) —
Ty(V3) wrt. L if, for every o € eval(T,,0,£) \ eval(T,, O, L) we have O |=
Tyo. 0

Unsurprisingly, adding negation results in the loss of uniqueness of the ex-
pansion Exp(G, O, L) (cf. Theorem 4.1), as illustrated by the following exam-
ple.

Example 4.15 Let £L={A,B,C,s}, O = {A(s)} and G = {A(?X),notB(?X) —
C(?X)}. Then Exp(G, O, £) contains the two non-equivalent expansions {A(s),
B(s)} and {A(s), C(s)}. .

Next, we extend the definition of the 1-step expansion operator from Defini-
tion 4.2 to support negation. However, as Example 4.17 will show, a fixpoint
does not always correspond to an expansion in Exp(G, O, £).

Definition 4.16 The 1-step expansion of O and G in L of a GBox G with nega-
tion, written 1Exp™ (G, O, £), is defined as follows:

1Exp (G,0,L)=0u | {Tyo|oeeval(Ty,0,L)\eval(T,, 0, L)}

+ -
Ty notTy —>TyeG

Example 4.17 Consider the ontology O = {Single C Person, Spouse C Person,
Single E —Spouse, Person(Maggy)} and the following GBox G

G={ {Person(?X)},not{Single(?X)} — {Spouse(?X)},
{Person(?X)},not{Spouse(?X)} — {Single(?X)}}

The expansion Exp(G, O, £) contains the two non-equivalent ontologies OU
{Single(Maggy)} and OU{Spouse(Maggy)}. Furthermore, the iterated fixpoint
(1Exp)*(G,0, L) is O U {Single(Maggy), Spouse(Maggy)}; this is, however,
not an ontology in Exp(G, O, £) as it is not entailment-minimal. O

A natural question arising is whether we can identify or even characterize
GBoxes with negation that have a unique expansion. To this end, we define
suitable notions of semi-positive GBoxes and stratified negation. These are
based on the notion of multiple templates affecting others, as formalized next.

Definition 4.18 Let £ be a language, S = {S,,...,S;} a set of templates, O
an ontology, and T a template. We say that S activates T with respect to O
and L if there exist £-substitutions o,...0; such that O U| JS;0; = To for
some L-substitution o. For brevity we omit O and L if they are clear from the
context. O

16

In contrast to standard Datalog with negation, the entailment of a template in
the body of a generator is not solely dependent on a single generator with a
corresponding head firing. Instead, multiple generators might need to fire and
interact with O in order to entail a body template. Hence we use the set S of
templates in the definition of activation.

Example 4.19 Consider the GBox containing g;: T;(?X) — {?X T A},
g2,: T,(?Y) — {?Y C B} and g5: not{?Z C AN B} — T;(?Z). Then H(g,)
and H(g,) activate {?Z T A B} with respect to any O and £, indicating that
the firing of g; depends on the combined firing of g; and g,. O

Activation can then be used to define a notion of semi-positive GBoxes,
which is analogous to semi-positive Datalog programs.

Definition 4.20 (Semi-positive GBoxes) Let G be a GBox with negation, £ a
language, and O an ontology. G is called semi-positive w.r.t. O and L if no
negative body template T, of a generator g € G is activated by H(G). O

As seen in Example 4.15, even semi-positive GBoxes result in multiple non-
equivalent expansions. In that example, neither the ontology O nor any pos-
sible firing of G can yield B(s). As such, we wish to restrict the theories in
Exp(G, O, £) to containing only facts derivable from O and G. To that end, the
following definition suitably restricts the entailment of expansions.

Definition 4.21 Let G be a GBox, O an ontology, and £ a finite language. We
say that an expansion O" € Exp(G, O, L) is justifiable w.r.t. (G,O, L) if the
following holds: if @’ |= To for some template T and substitution o, then
O |= To or H(G) activates T o with respect to O and £. We write simply O’ is
justifiable when G, O, and L are clear from the context. O

Using this notion, we can show that, indeed,a GBox being semi-positive implies
that its semantics is unambiguous when restricted to justifiable expansions.

Theorem 4.22 Let G be a semi-positive GBox, O an ontology, and L a finite
language. Then the fixpoint (1Exp~)*(G, O, L) exists, is the unique fixpoint of
1Exp~, and is contained in Exp(G, O, L). O

Proof Since 1Exp™ (G, O, £) is an inflationary operator and L is finite, there
exists an iterative fixpoint O* = (1Exp~)*(G, O, £). By construction, O* satisfies
O and all generators g € G and is justifiable w.r.t. (G, O, £). We simultaneously
prove uniqueness and membership in Exp(G, O, £) by showing that O’ = O*
for an arbitrary justifiable expansion O’ € Exp(G, O, £). Let O, = O and O; =
1Exp (G,0;_;, L) fori>1,then O =0, C ... C O, = O* for some k. Assume

17

143

144

O, |= To for some L-substitution o and T € H(G). Then either O = To (in
which case O’ |= To) or there exists a generator

+ a—
T,,notT, —»T

such that o € eval(T;, 0, £) and o € eval(T,, O, £). Since G is semi-positive,
H(G) cannot activate T, i.e., there exists no set of generators that, together
with the ontology O, could fire in a way that would entail T, 0. Since O’ is
entailment-minimal and justifiable, it must be the case that O" & T, o and
hence O’ |= To. Thus, O’ |= 0;.

The same argument can be applied inductively to show that O’ = O; for
i > 1, thus showing O’ = O*. Since O’ was chosen arbitrarily, this proves both
the uniqueness and membership claims. -

The following is a direct corollary of the proof of Theorem 4.22.

Corollary 4.23 Let G be a semi-positive GBox, O and ontology and L a finite
language. All justifiable ontologies in Exp(G, O, £) are logically equivalent.

For a GBox to be semi-positive is a very strong requirement. Next, we intro-
duce the notion of a stratified GBox: this does not ensure that all expansions
are equivalent, but it ensures that we can determine one of its expansions by
expanding strata in the right order. Again, we use H(G) to denote the set of
templates in heads of generators in G, and B(G) for the set of templates in
(positive or negative) bodies of generators in G.

Definition 4.24 (Stratification) Let £ be a language and O an ontology. A
GBox G is stratifiable w.r.t. O and L if there exists a function v : H(G)UB(G) —
N such that, for every generator T, ,not T, — T, € G the following holds:

L v(Ty) 2 v(T),
2. v(Ty) > v(Ty),

3. for every C-minimal S; C H(G) that activates T, v(T,) > max v(S)),
=

4. for every C-minimal S, € H(G) that activates T, v(T;) > max v(§). o
/e 5

The first two conditions in the previous definition are analogous to stratified
Datalog, which intuitively states that a body literal must be evaluated (strictly,
in the case of negative literals) before head literals. The second two conditions
tailor the stratification to generators: generators allow for more interaction
amongst their components. As opposed to Datalog, multiple heads combined

18

might be needed to entail a body template. Thus, a body template must be
defined in a higher stratum than any possible set of templates that could entail
1t.

Following this definition, a stratification v of a GBox G w.r.t. an ontology O
gives rise to a partition G, ... fo of G, where each generator g : T, ,not T, —
Ty is in the stratum G

For a GBox G, an ontology O and a language £, we can define the precedence
graph G; o, . as follows: nodes are the templates occuring in G and

1. if T ,not T, — Ty isin G, then G; ,, » contains the positive edge (T, , Ty;)
and the negative edge (T, , Ty);

2. for a template T that occurs in the positive (resp. negative) body of a

generator and any C-minimal set {S;,...,S;} € H(G) that activates T
w.rt. O and £, G; o contains the positive (resp. negative) edges (S;, T)
for1<i<k.

We then get the following classification of stratified GBoxes, the proof of which
is entirely analogous to the Datalog case.

Proposition 4.25 Let £ be a language and O an ontology. A GBox G is strati-
fiable w.r.t. O and L iff its precedence graph G; o , has no cycle with a negative
edge. O

Given such a stratification, we can thus define a semantics for stratified nega-
tion.

Definition 4.26 (Stratified semantics) Let O be an ontology, £ a language,
and G a GBox stratifiable w.r.t. O and £. For a stratification v of G and the
induced partition G/, ..., Gf of G, we define O"*(G, O, £) as follows:

1. 0l =0,

2. Oi =1Exp" (G 1,0’ Y, L) for1 < j <k,

3. Oitrat(G’ O, ﬁ) = O"f i
Theorem 4.27 Let O be an ontology, L a finite language, and G be a GBox

stratifiable w.rt. O and L. Then OSY(G,0, L) exists, is independent of the
choice of v, and contained in Exp(G, O, L). O

19

145

146

Proof Let G ,..., G’v‘ be the partitioning of G w.r.t. to a stratification v. By
Definition 4.24, each Gi is a semi-positive GBox. Hence Theorem 4.22 guaran-
tees the existence of O"**(G, O, £). By construction O3"*(G, O, £) satisfies O
and all generators in G. Furthermore, there cannot exist an ontology O’ such
that O5"™(G, 0, L) |= O’ satisfying O and all generators in G, as this would
contradict the entailment-minimality of the O).

The proof for the independence of the stratification v is entirely analogous
to the Datalog case: the strongly connected components of G; , » provide the
most granular stratification, which can then be used to prove the equivalence
of all stratifications (cf. [1] for a proof for stratified Datalog). -

Remark 4.28 It is worth noting that, although the stratified semantics pro-
vides a unique model, stratified GBoxes do not necessarily have a unique ex-
pansion. For example, the GBox from Example 4.15 is stratifiable yet has mul-
tiple distinct expansions. Moreover, just as in Datalog, there exist nonstratified
GBoxes that have a unique expansion.

5 Related work

When combining rules with DL ontologies, the focus has thus far primarily been
on (1) encoding ontology axioms in rules for efficient query answering and
(2) expanding the expressivity of ontologies using rules. In contrast, GBoxes
are designed as a tool for ontology specification by describing instantiation
dependencies between templates.

Datalog™ [5] falls into the first category: it provides a formalism for uni-
fying ontologies and relational structures. Datalog™ captures ontology axioms
as rules, and these cannot “add” new axioms.

dl-programs [13] and DL-safe rules [34] fall into the second category: dl-
programs add nonmonotonic reasoning by means of stable model semantics,
whereas DL-safe rules allow for axiom-like rules not expressible in standard DL.
However, none of these formalisms adds new TBox axioms to the ontology.

Tawny-OWL? and the Ontology Pre-Processing Language® (OPPL) are
formalism for manipulating OWL ontologies [27, 12]. While OPPL was de-
signed to capture patterns and regularities in ontologies, Tawny-OWL is a more
general programmatic environment for authoring ontologies that includes pow-
erful support for ontology design patterns. It is part of future work to see

2https://github.com/phillord/tawny-owl
3http://oppl2.sourceforge.net/index.html

20

whether GBoxes can be faithfully implemented in Tawny-OWL (OPPL lacks
the recursion required).

Another question is whether metamodeling in DL, in particular the encod-
ing scheme from [18] can be faithfully captured by (an extension of) GBoxes:
this would require replacing axioms in O with others which is currently not
supported.

Ontology Design Patterns (ODPs) have been proposed to capture best
practices for developing ontologies [15, 4], inspired by Software Design Pat-
terns. While some ODPs are easily expressible in GBoxes, it is part of ongoing
work to investigate extensions required to capture others.

Reasonable Ontology Templates® (OTTR) [38, 14] provide a framework
for macros in OWL ontologies, based on the notion of templates. In contrast
to GBoxes, “matching” of templates is defined syntacically and non-recursively,
but they can be named and composed to give rise to more complex templates.

The Generalized Distributed Ontology, Modelling and Specification Lan-
guage (GDOL) [24] is a formalism facilitating the template-based construction
of ontologies from a wide range of logics. In addition to concepts, roles, and
individuals, parameters may be ontologies which act as preconditions for tem-
plate instantiation: for a given substitution, the resulting parameter ontology
must be satisfiable in order to instantiate the template. Thus these precondi-
tions serve only as a means to restrict the set of allowed instantiations of a
template, whereas in GBoxes, an ontology triggers such substitutions.

6 Future work

We have presented first results about a template-based language for capturing
recurring ontology patterns and using these to specify larger ontologies. Here,
we list some areas that we would like to investigate in the future.

Finite representability In general, the semantics of GBoxes is such that the
expansion of a GBox and ontology can be infinite if the substitution range given
by £ is infinite. A natural question arising is whether/which other mechanisms
can ensure that some expansion is finite, and how can we compute such a
finite expansion? Furthermore, given G, O, £, when can we decide whether an
ontology in Exp(G, O, £) is finite?

Controlling substitutions So far, we have only considered entailment for
generators when determining matching substitutions. Consider the ontology

“http://ottr.xyz

21

147

148

O ={A C B,B E C} and the template ?X C C. The resulting substitutions in-
clude concepts A and B, but also a multitude of possibly unwanted, redundant
concepts, e.g., {ATA,AMNB,...}. Hence restricting substitutions to “reason-
able” or possible “parametrizable” (e.g., maximally general) ones is part of
future work.

Entailment problems for ontologies with Gboxes The expansion of a Gbox
over an ontology is itself an ontology and can be used as such for standard
reasoning tasks. A question of interest is whether/how reasoning on the input
ontology and GBox directly, without computing an expansion, can improve
reasoning efficiency.

Furthermore, there are plenty of reasoning tasks about GBoxes which natu-
rally reduce to reasoning tasks over ontologies. For example, checking whether
a single generator g: Ty — Ty always leads to inconsistency is equivalent to
checking whether T U T} is inconsistent. This generalizes to similar questions
over entire GBoxes: To check whether there exists an ontology O such that
every generator g in a GBox G fires, it suffices to check that the union of the
generators’ bodies is consistent.

However, there are also global properties of Gboxes that do not reduce to
individual templates. For example, do two GBoxes G, and G, specify equivalent
ontologies? While Section 4.1 contains some results about such problems, we
believe there is more to do here.

Extensions to generators Another area of future work is motivated by our
preliminary analysis of logical ontology design patterns [17]. We found that a
number of rather straightforward, seemingly useful such pattern require some
form of ellipses and/or maximality. Consider, for example, the role closure
pattern on the role hasTopping: if O entails that MyPizza C FhasTopping.X; M
...3hasTopping.X, and n is maximal for pairwise incomparable X;, then we
would like to automatically add MyPizza E VhasTopping.(X; U...UX,). Ex-
tending generators to capture some form of ellipses or unknown number of
variables and maximality conditions on substitutions for variables will be part
of future work.

For GBoxes to be indeed intention revealing, we will also support named
generators and named sets of axioms in the body or the head of generators, as
in OTTR [38].

22

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter E Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press,
2003.

Eva Blomgvist. Fully automatic construction of enterprise ontologies us-
ing design patterns: Initial method and first experiences. In OTM Con-
ferences (2), volume 3761 of Lecture Notes in Computer Science, pages
1314-1329. Springer, 2005.

Eva Blomgqvist and Kurt Sandkuhl. Patterns in ontology engineering:
Classification of ontology patterns. In ICEIS (3), pages 413-416, 2005.

Andrea Cali, Georg Gottlob, Thomas Lukasiewicz, and Andreas Pieris.
Datalog+/- : A family of languages for ontology querying. In Oege
de Moor, Georg Gottlob, Tim Furche, and Andrew Jon Sellers, editors,
Datalog Reloaded - 1st International Workshop, Datalog 2010, Oxford, UK,
March 16-19, 2010. Revised Selected Papers, volume 6702 of Lecture Notes
in Computer Science, pages 351-368. Springer, 2011.

Peter Clark. Knowledge patterns. In EKAW, volume 5268 of Lecture Notes
in Computer Science, pages 1-3. Springer, 2008.

Ricardo de Almeida Falbo, Monalessa Perini Barcellos, Julio Cesar Nardi,
and Giancarlo Guizzardi. Organizing ontology design patterns as ontol-
ogy pattern languages. In ESWC, volume 7882 of Lecture Notes in Com-
puter Science, pages 61-75. Springer, 2013.

Ricardo de Almeida Falbo, Monalessa Perini Barcellos, Fabiano Borges
Ruy, Giancarlo Guizzardi, and Renata S. S. Guizzardi. Ontology pattern
languages. In Ontology Engineering with Ontology Design Patterns, vol-
ume 25 of Studies on the Semantic Web, pages 133-159. IOS Press, 2016.

Ricardo de Almeida Falbo, Glaice Kelly Quirino, Julio Cesar Nardi, Mona-
lessa Perini Barcellos, Giancarlo Guizzardi, Nicola Guarino, Antonella
Longo, and Barbara Livieri. An ontology pattern language for service
modeling. In SAC, pages 321-326. ACM, 2016.

23

149

150

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. Higher-
order description logics for domain metamodeling. In AAAI. AAAI Press,
2011.

Erica Ferreira de Souza, Ricardo de Almeida Falbo, and Nandamudi L.
Vijaykumar. Using ontology patterns for building a reference software
testing ontology. In EDOC Workshops, pages 21-30. IEEE Computer So-
ciety, 2013.

Mikel Egafia, Robert Stevens, and Erick Antezana. Transforming the
axiomisation of ontologies: The ontology pre-processor language. In
OWLED (Spring), volume 496 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008.

Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman
Schindlauer, and Hans Tompits. Combining answer set programming
with description logics for the semantic web. Artificial Intelligence,
172(12):1495 - 1539, 2008.

Henrik Forssell, Daniel P Lupp, Martin G. Skjaeveland, and Evgenij
Thorstensen. Reasonable Macros for Ontology Construction and Mainte-
nance. In DL Workshop, 2017.

Aldo Gangemi. Ontology design patterns for semantic web content. In
International Semantic Web Conference, volume 3729 of Lecture Notes in
Computer Science, pages 262-276. Springer, 2005.

Aldo Gangemi, Nicola Guarino, Claudio Masolo, and Alessandro Oltra-
mari. Understanding top-level ontological distinctions. In OIS@IJCAI,
volume 47 of CEUR Workshop Proceedings. CEUR-WS.org, 2001.

Aldo Gangemi and Valentina Presutti. Ontology design patterns. In Hand-
book on ontologies, pages 221-243. Springer, 2009.

Birte Glimm, Sebastian Rudolph, and Johanna Volker. Integrated meta-
modeling and diagnosis in OWL 2. In International Semantic Web Confer-
ence (1), volume 6496 of Lecture Notes in Computer Science, pages 257—
272. Springer, 2010.

Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter E
Patel-Schneider, and Ulrike Sattler. OWL 2: The next step for OWL. J.
Web Sem., 6(4):309-322, 2008.

24

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Giancarlo Guizzardi. Ontological patterns, anti-patterns and pattern lan-
guages for next-generation conceptual modeling. In ER, volume 8824 of
Lecture Notes in Computer Science, pages 13-27. Springer, 2014.

Karl Hammar, Eva Blomgqvist, David Carral, Marieke van Erp, Antske
Fokkens, Aldo Gangemi, Willem Robert van Hage, Pascal Hitzler,
Krzysztof Janowicz, Nazifa Karima, Adila Krisnadhi, Tom Narock, Roxane
Segers, Monika Solanki, and Vojtech Svatek. Collected research questions
concerning ontology design patterns. In Ontology Engineering with On-
tology Design Patterns, volume 25 of Studies on the Semantic Web, pages
189-198. IOS Press, 2016.

Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz, Adila Krisnadhi, and
Valentina Presutti, editors. Ontology Engineering with Ontology Design
Patterns - Foundations and Applications, volume 25 of Studies on the Se-
mantic Web. 1I0S Press, 2016.

Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz, Adila Alfa Krisnadhi,
and Valentina Presutti. Towards a simple but useful ontology design pat-
tern representation language. In WOP@ISWC, volume 2043 of CEUR
Workshop Proceedings. CEUR-WS.org, 2017.

Bernd Krieg-Briickner and Till Mossakowski. Generic ontologies and
generic ontology design patterns. In WOP@ISWC, 2017.

Adila Krisnadhi, Yingjie Hu, Krzysztof Janowicz, Pascal Hitzler, Robert A.
Arko, Suzanne Carbotte, Cynthia Chandler, Michelle Cheatham, Douglas
Fils, Timothy W. Finin, Peng Ji, Matthew B. Jones, Nazifa Karima, Ker-
stin A. Lehnert, Audrey Mickle, Thomas W. Narock, Margaret O’Brien,
Lisa Raymond, Adam Shepherd, Mark Schildhauer, and Peter Wiebe. The
geolink modular oceanography ontology. In International Semantic Web
Conference (2), volume 9367 of Lecture Notes in Computer Science, pages
301-309. Springer, 2015.

Petra Kubincovd, Jan Kluka, and Martin Homola. Expressive descrip-
tion logic with instantiation metamodelling. In KR, pages 569-572. AAAI
Press, 2016.

Phillip Lord. The semantic web takes wing: Programming ontologies
with tawny-owl. In OWLED, volume 1080 of CEUR Workshop Proceedings.
CEUR-WS.org, 2013.

25

151

152

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Catalina Martinez-Costa, Daniel Karlsson, and Stefan Schulz. Ontology
patterns for clinical information modelling. In WOP, volume 1302 of
CEUR Workshop Proceedings, pages 61-72. CEUR-WS.org, 2014.

Eleni Mikroyannidi, Luigi Iannone, Robert Stevens, and Alan L. Rector.
Inspecting regularities in ontology design using clustering. In Interna-
tional Semantic Web Conference (1), volume 7031 of Lecture Notes in Com-
puter Science, pages 438-453. Springer, 2011.

Eleni Mikroyannidi, Nor Azlinayati Abdul Manaf, Luigi lannone, and
Robert Stevens. Analysing syntactic regularities in ontologies. In OWLED,
volume 849 of CEUR Workshop Proceedings. CEUR-WS.org, 2012.

Eleni Mikroyannidi, Manuel Quesada-Martinez, Dmitry Tsarkov, Jesu-
aldo Tomds Ferndndez-Breis, Robert Stevens, and Ignazio Palmisano. A
quality assurance workflow for ontologies based on semantic regulari-
ties. In EKAW, volume 8876 of Lecture Notes in Computer Science, pages
288-303. Springer, 2014.

Till Mossakowski. The distributed ontology, model and specification lan-
guage — DOL. In Phillip James and Markus Roggenbach, editors, Recent
Trends in Algebraic Development Techniques, pages 5-10, Cham, 2017.
Springer International Publishing.

Boris Motik. On the properties of metamodeling in OWL. J. Log. Comput.,
17(4):617-637, 2007.

Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl
with rules. Web Semantics: Science, Services and Agents on the World Wide
Web, 3(1):41 — 60, 2005. Rules Systems.

Regina Motz. OWL extended with meta-modelling. In ISW-
LOD@IBERAMIA, volume 1807 of CEUR Workshop Proceedings, pages 55—
60. CEUR-WS.org, 2016.

Martin O’Connor, Holger Knublauch, Samson Tu, Benjamin Grosof, Mike
Dean, William Grosso, and Mark Musen. Supporting rule system inter-
operability on the semantic web with swrl. In Yolanda Gil, Enrico Motta,
V. Richard Benjamins, and Mark A. Musen, editors, The Semantic Web —
ISWC 2005, pages 974-986, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

26

[37]

[38]

[39]

[40]

[41]

Glaice K. S. Quirino, Monalessa Perini Barcellos, and Ricardo
de Almeida Falbo. OPL-ML: A modeling language for representing on-
tology pattern languages. In ER Workshops, volume 10651 of Lecture
Notes in Computer Science, pages 187-201. Springer, 2017.

Martin G. Skjeveland, Daniel P Lupp, Leif Harald Karlsen, and Henrik
Forssell. Practical ontology pattern instantiation, discovery, and main-
tanence with reasonable ontology templates. Accepted for ISWC 2018
research track, 2018.

Steffen Staab, Michael Erdmann, and Alexander Maedche. Engineering
ontologies using semantic patterns. In OIS@IJCAI, volume 47 of CEUR
Workshop Proceedings. CEUR-WS.org, 2001.

Ondrej Svab-Zamazal, Vojtech Svdatek, and Luigi lannone. Pattern-
based ontology transformation service exploiting OPPL and OWL-API. In
EKAW, volume 6317 of Lecture Notes in Computer Science, pages 105-119.
Springer, 2010.

Eduardo Zambon and Giancarlo Guizzardi. Formal definition of a general
ontology pattern language using a graph grammar. In FedCSIS, pages 1-
10, 2017.

27

153

	Frontmatter
	Title page
	Copyright
	Dedication
	Contents
	Acknowledgments

	I Summary
	1 Introduction
	1.1 Ontologies and Data Integration
	1.2 Logic Programming
	1.3 Brief Summary of Contributions

	2 Contributions
	2.1 Rules over Data
	2.2 Ontology Templates
	2.3 Rules over Ontologies
	2.4 Overview of Research Papers

	3 Conclusion and Future Work
	4 Bibliography

	II Published Articles
	1 Mapping Data to Ontologies with Exceptions Using Answer Set Programming
	2 Reasonable Macros for Ontology Construction and Maintenance
	3 Pattern-Based Ontology Design and Instantiation with Reasonable Ontology Templates
	4 Practical Ontology Pattern Instantiation, Discovery, and Maintanence with Reasonable Ontology Templates
	5 Making a Case for Formal Relations over Ontology Patterns
	6 Generating Ontologies from Templates: A Rule-Based Approach for Capturing Regularity

