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Abstract. We discuss the relation between the strength of the self-interaction of
dark matter particles and the predicted properties of the inner density distributions
of dark matter haloes. We present the results of N-body simulations for 28 galaxy
cluster sized haloes performed with the same initial conditions for cold dark matter
and for self-interacting dark matter with cross-sections ranging from 0.1 to 10 cm?/g.
We provide a simple phenomenological description of these results and compare them
to the semi-analytical model typically used in the literature. We find that some of the
assumptions made in this model are not satisfied in the simulations. We identify the
reasons for this disagreement and improve the semi-analytical model correspondingly.
We discuss how simulation results can be properly compared with observations and in
particular how quantities like the core radius and the inner dark matter surface density
depend on the self-interaction cross-section.
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1 Introduction

The Cold Dark Matter (CDM) paradigm has been proven to be very successful in
describing the large-scale distribution of galaxies and serves as a cornerstone of our
current understanding of galaxy formation and evolution (e.g. [1-4]). Self-interacting
dark matter (SIDM) [5] is an interesting and well-motivated hypothesis, both from the
astrophysics and particle physics perspectives of dark matter (e.g. [6-27] or see [28]
for a review). It currently stands as a viable alternative to the CDM paradigm, and
as such, the task of constraining the strength of self-interactions from astrophysical
observations remains of paramount importance.

Often quoted upper bounds on the SIDM transfer cross-section per unit mass are
at around 1—2 cm?/ g, derived from e.g. the structural properties of elliptical galaxies
or galaxy clusters, or from the Bullet cluster and other merging systems (e.g. [29-33]).



However, we note that the robustness of current constraints on the SIDM cross-section
is still debated, in particular due to difficulties in relating observables to quantities that
constrain the cross-section (e.g. due to the impact of gas and stars on structure for-
mation or due to projection effects) or in properly measuring such observables directly
(e.g. the offsets between the dark matter distribution and luminous matter in merging
clusters). A lower bound of around 0.1 cm?/ g can be derived from the requirement
that the self-interaction is strong enough for SIDM to be distinct from CDM on small
scales (see e.g. |28, 34, 35| for a review), in particular, in order to change the inner
structure of dark matter (DM) haloes distinctly from CDM and explain the sizes of DM
density cores (e.g. [36-38|), if the latter are robustly confirmed by observations [39].
Apart from systematic errors in observational data and the uncertainties in modeling
baryonic effects [39-41], the properties of the haloes and, in particular, the sizes of the
cores (if they exist) are expected to have significant scatter, due to individual merger
history and specific initial conditions, see e.g. [42] and references therein.

In order to use observational data to determine (or constrain) an intrinsic quantity
of DM particles such as its self-interaction cross-section, it is perhaps more efficient to
fit the data to the whole ensemble of haloes at the same time. Such a procedure was
discussed in [43], where the inner DM surface density, a quantity obeying a well-known
scaling law [44, 45] for a halo mass range spanning 6 orders of magnitude, was used
to compare SIDM predictions for different cross-sections with observations. The main
theoretical uncertainty of this type of analysis is the relation between the observable
quantity, the core radius 7o, where the DM density is close to constant p(0), and
the radius rgipy;, where self-interactions become important and the velocity dispersion
of DM particles is expected to be close to constant. While the former radius, rope, is
more directly connected to observations, the latter, rgipy, is more directly predicted by
theory [26, 39, 46]. The explicit relation between these two radii for every cross-section
has not been discussed in detail in the literature. In order to take into account this
theoretical uncertainty, a free phenomenological parameter k,

k= p(0)/{p(rsipm)) , (1.1)

was introduced in Ref. [43]. Here p(0) is the central halo density and (p(rsipm)) is the
average density of the halo within the radius g, i.e. (p(rsm)) = M (rsiom)/ (37r8mm) -
In this article, we use numerical simulations to remove this uncertainty as far as pos-
sible.

The main goal of this work is to develop and test an (spherical) analytical phe-
nomenological model that predicts (potentially) observable properties of pure SIDM
haloes for arbitrary values of the self-interaction transfer cross-section per unit mass
o/m and to compare this with the semi-analytical models typically used in the liter-
ature. In particular, by knowing the density profile of a given halo at large radii we
would like to predict the inner structure of the same halo for a given value of the cross-
section. As the properties of SIDM haloes are believed to be the same as for CDM
haloes at large radii, we can calibrate the model by taking as an input the properties
of a simulated CDM halo and predict the DM density and velocity dispersion profiles
of the SIDM halo forming from the same initial conditions for a given value of o/m.



We do not discuss here the effects of baryons on SIDM haloes, as we would like to
check the phenomenological description for the DM only case first. For discussion in
this direction, see instead |26, 47-50], as well as a recent SIDM review [28]. We would
like to remark that the model presented in this paper is an improvement over previous
models discussed in the literature [39, 47].

This article is organized as follows. We start, in Section 2, by describing the
numerical simulations we performed and provide a brief overview of the results, i.e. how
SIDM halos differ from their CDM counterparts. In Section 3, we develop an analytic
model to describe SIDM halos, which we further refine in Section 4. We then compare
predictions of our model to that commonly adopted in the literature, in Section 5,
before presenting our conclusions in Section 6. In three Appendices we provide further
technical details about the simulation results that support the discussion in the main
part of the article.

2 Simulations

2.1 Setup

The initial simulation suite used in this work was performed using the AREPO code [51],
with an added module for dark matter self-interactions [19, 24]. This simulation suite
is described in detail in [37]; in the following we briefly summarize the main aspects
relevant for this work. The suite consists of a sample of zoom-in simulations of massive
cluster-sized haloes with initial conditions generated with the MUSIC code! [52] at a
redshift of z = 50, with an effective resolution of 5123 particles, a softening length of
€ = 5.4 kpc h™! and particle mass m, = 1.271 x 10° Mg, h~!. In addition, one halo was
also simulated with a factor of 2 better resolution. The suite presented in [37| consists
of 3 x 28 haloes (and additional 3 x 1 halo at the higher resolution level) in a CDM
and SIDM cosmology, with cross-sections of o/m = 0.1 and 1 cm?/g, starting from
matching initial conditions. For this work, we expand on that suite by re-simulating all
28 haloes with a cross-section of o /m = 0.5 cm?/g, as well as 10 of those haloes with
cross-sections of o/m =5 cm?/g and o/m = 10 cm?/g. Finally we also re-simulated 3
haloes in the sample at the higher resolution level for the CDM and SIDM cosmologies
with cross-sections o/m = 0.1, 0.5 and 1 cm?/g.

All simulations were computed with a cosmology consistent with Planck [53]:
with contributions to the energy density of the universe from matter €2, = 0.315 and
cosmological constant €2y = 0.685, dimensionless Hubble parameter h = 0.673, root-
mean-square amplitude of perturbations in 8 Mpc h~! spheres today og = 0.83, and
tilt of the primordial power spectrum ng = 0.96.

The haloes we study were identified with the SUBFIND algorithm [54] and are very
massive dynamically relaxed? cluster-sized haloes in the mass range Magy ~ 0.5 — 1.9
10 Mg, h~! and radius Rogy ~ 1300 — 2000 kpc h~!, with a peak in the distribution
at around Magg ~ 0.9 x 10" My A~! and Ragg ~ 1550 kpe h™! (see Fig. Al of [37]),

Thttps://www-n.oca.eu/ohahn/MUSIC/
ZWe used the relaxation criteria of [55], see Section 3.1 of [37] for details.
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Figure 1: The dependence of reoe (left) and the surface density (right) in SIDM
haloes on the self-interaction strength. The data is presented for 2 mass bins with
approximately equal scatters of masses. Error bars represent the statistical spread in
our suite of simulated haloes and correspond to one standard deviation.

where Rggo denotes the radius within which the average density is 200 times the critical
density of the universe today, p. = 3HZ/(87G), and My the enclosed mass within
this radius.

2.2 Properties of SIDM haloes

In a ACDM cosmology, DM haloes are expected to have a cuspy density profile that is
well described by the universal form suggested by Navarro, Frenk and White (NFW)

[56, 57]
ps

pxEw (1) = )
(r/ro) (1 + (r/r5))?
where p, and 7y are referred to as the scale density and radius, respectively. An

alternative pair of parameters to describe such profiles is given by the virial mass Msgg
and the halo concentration

(2.1)
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c= (2.2)
where 7_5 is the radius where the logarithmic slope of the density profiles equals —2
(i.e. r_g = ry for the NFW profile). As it turns out, these two parameters (concentra-
tion and mass) are not independent of each other but strongly correlated (which, for
example, explains the observed scaling of surface densities [43]). Our simulated CDM
haloes follow exactly these general expectations.

If DM is self-interacting, on the other hand, the inner part of a DM halo should
develop a core of constant density instead of a cuspy profile, while the outer part of the
halo should be unaffected and hence follow the standard NFW profile [5]. We confirm
this general expectation in all our simulated SIDM haloes. As shown in the left panel
of Fig. 1 we also confirm the general expectation that the core radius should grow with
the interaction strength. Here and in the following we use the following definition of
the core radius 7cgre:

psiom(0) = peom(Teore) - (2.3)



The core radius is thus defined as the radius at which the central DM density (from our
SIDM simulations or observations) equals the DM density in the CDM case, parame-
terized here as NF'W profile. The advantage of this definition is that it is in principle
observable and independent of the functional form that is used to parameterize the
cored profile. A more direct observable quantity that can serve to distinguish between
CDM and SIDM haloes is the surface density ¥ at this radius [43]. In the right panel
of Fig. 1 we show this quantity as a function of the interaction strength. In Fig. 1
we have grouped both 7oe(0/m) and 3(o/m) into two mass bins. We see that both
quantities saturate around o/m ~ 5 cm?/g, the maximal 7. being larger for haloes
with larger masses.

In the remainder of this article, we will critically assess, and improve, analytical
models commonly used in the literature to predict the behaviour shown in Fig. 1 in
order to constrain DM self-interactions from observations. While we defer a detailed
discussion to later, we can already at this point draw two important conclusions directly
from inspection of this figure:

e The core radius shows a relatively weak dependence on the interaction strength.
This implies that a small error in estimating the former results in a significant
error when deriving constraints on the latter.

e [t is fundamentally impossible to constrain cross sections larger than a given
limiting value from observations of the core size. For the cluster-sized objects that
we have simulated here, this applies to interaction strengths of o/m = 3 cm?/g.
This is because the core has a maximum size set roughly by the radius where
the velocity dispersion peaks. Once the core size reaches this value, it becomes
insensitive to larger cross sections.

Let us stress that these conclusions are directly based on simulation data, and
hence independent of the analytical model that is used to describe self-interactions. In
particular, the first point motivates the main goal of this article, which is to obtain a
detailed modelling of the effect of DM self-interactions on halo profiles.

3 Analytical model of SIDM haloes

If DM particles interact with each other, the scattering probability decreases with
the density and hence the distance from the halo centre, becoming negligible at large
enough distances. At these distances, SIDM particles essentially behave as collisionless
particles, the same as in the CDM model [6, 19, 20, 30, 36, 48, 58, 59|. At the radii
where collisions occur frequently we expect that thermal equilibrium has been estab-
lished. To model these two regimes, we can define a characteristic radius, rsipy, which
separates the two regions of interest (see 28] for a review): outside rgipym collisions
are insignificant and the collision integral in the Boltzmann equation can be neglected;
inside rsipm we assume that interactions are efficient enough to establish thermal equi-
librium and the collision integral also vanishes. Therefore, in both regions, one can use



the Jeans equation relating the 3-dimensional DM velocity dispersion o,(r) and the
density profile p(r):
d (012, r?dp

—(2——] = —4nGr?p. 1
dr \ 3 pdr) G (3:1)

In SIDM haloes, the mean-free path A between collisions is expected to be quite
large, much larger than the radius rsipm:

A= g48km:(1cmyg)(lM@®§). (3.2)

(o/m)p o/m p

This implies that if a kinetic equilibrium can be established within rgipy, this can
only be a global equilibrium, with the same velocity dispersion for all r < rgppu.
Nevertheless, as we see from the simulations, a few collisions per particle in a Hubble
time are sufficient to redistribute energy resulting in an isothermal core (constant
velocity dispersion) within rgpy. With this condition, the Jeans equation becomes

o2 d (7"2@

dr ?dr

W ) = —4nGr?p, (3.3)

where the constant &, describes the average value of the velocity dispersion o, inside
rsipm- Lhis equation has solutions with different asymptotic behaviour at the centre.
We anticipate that we do not consider the unphysical solutions where the density
goes to zero. We note that the thermalization of the inner core in SIDM haloes is
only a quasi-stable configuration. Given enough time, collisions eventually trigger a
runaway instability of the core, analogous to the well-known gravothermal catastrophe
in globular clusters [60]. The collapse of the core results in a central density profile
that is even cuspier than in CDM haloes |61, 62]. For this process to be relevant within
a Hubble time, however, large cross sections 2> 10 cm? /g are required. Our model does
not cover this regime since it is not relevant for the purposes of this work. We will be
looking for solutions to the Jeans equation that have a constant density at the center,
which is the quasi-stable configuration for relevant cross sections as shown by SIDM
simulations in the past. In this model, as we mentioned before, the collision integral
is equal to zero on both sides of rgipy, for different reasons in each regime. In reality,
however, there is an intermediate region where the collisions cannot be neglected, but
they are still not frequent enough to establish thermodynamical equilibrium. In other
words, the model implicitly assumes that the thickness of the intermediate region is
much smaller than rgipy and that it can be approximated by a thin spherical shell at
the radius rgipym. In this simple, but often adopted model the central region r < rempm
is then in thermodynamical equilibrium and the outer region r > rgipym, where DM
particles are effectively collisionless, is connected to the inner region by some boundary
conditions at rgipym. It is clear that in this approximation some quantities will be
continuous at rsipy, but not necessarily all.

The solution to the Jeans equation (3.3) with a core (p'(0) = 0) depends on 2
parameters: &, and py = p(0). Therefore, we need two boundary conditions to fix the
SIDM profile within rgipy that we choose by considering the following approximations,



which will be verified below by direct comparison with simulation data. Let us assume
that despite self-interactions, DM particles will not leave the radius rspy, but will
only be redistributed within it. This means that we can choose, as the first boundary
condition, the requirement that the mass at rgpy is the same in the SIDM halo as in
the CDM halo:

Msipm(rsiom) = Mepm(Tsipu) - (3.4)

As for the second boundary condition, we will assume that the kinetic energy defined

as
r

Exin(r) = QW/pCDM(T)ag(r)rzdr (3.5)
0
is equal inside rgmpy for CDM and SIDM

Eg™(rsom) = Egn™ (rsiowm) - (3.6)

These two boundary conditions for the Jeans equation, together with the requirement
of a constant density at the centre, allow one to fix the constant velocity dispersion
0, and find a unique solution for the DM density profile. We would like to emphasize
that the ansatz where the isothermal profile (3.3) inside the radius rsipy is connected
to a CDM profile at larger radii was already used previously |28, 39, 47|. However, as
motivated by a direct comparison with our simluation data, we use different boundary
conditions compared to earlier works (see also Section 5).

3.1 Verifying the model assumptions with numerical simulations

To verify the validity of the simple model formulated above, we need to explicitly
check whether there exists a radius for the simulated haloes inside which, to a certain
precision, (i) the masses of CDM and SIDM haloes are equal to each other; (ii) the total
kinetic energies of CDM and SIDM haloes are equal; (iii) the velocity dispersions for
the SIDM haloes become flat. In this subsection, we will check these assumptions with
simulated data for different cross-sections and demonstrate that such a radius exists.
In the next subsection, we will check if the Jeans equation (3.3) with our boundary
conditions at this radius indeed describes the inner density profile correctly.

We start by defining rj; as the radius where, for a given halo, the masses in SIDM
and CDM are equal (see Appendix C for examples of 7y, for different cross-sections),
and check the hypothesis of equal kinetic energies at this radius. The ratio between
kinetic energies in SIDM and CDM simulations is shown in Fig. 2, as a function of the
halo concentration as defined in Eq. (2.2). One can see that the kinetic energies of
SIDM and CDM profiles inside radius r); agree with an accuracy of < 5% for most of
the haloes.

The assumed boundary conditions on equal kinetic energies and masses result in
the following average velocity dispersion &, in SIDM haloes:

(5.pred)2 _ 2ESEM(TM> .
v MCDM(TM)

(3.7)
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Figure 2: Ratio of kinetic energies of SIDM haloes to those of the corresponding
CDM haloes at the radius of equal masses r; for different values of the self-interaction
cross-section o/m as a function of halo concentration.
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Figure 3: Left panel: Total velocity dispersion profile for an example of a halo in
our simulation suite: CDM (black) and SIDM (blue) with ¢/m = 1 cm?/g. The red
point represents the radius where the enclosed mass is equal in both cases. Right
panel: The constant central velocity dispersion &, refers to the average value of the
velocity dispersion inside 7, (blue) and the predicted value (gray) obtained from the
assumption of equal mass and kinetic energy at rys, see Eq. (3.7). The SIDM case with
o/m =1 cm?/g is shown as a function of halo concentration.

The predicted value of the velocity dispersion is compared with the simulation data
for ¢/m =1 cm?/g in the right panel of Fig. 3 where we can see that the agreement is
quite good for most haloes. Another assumption we would like to check is the flatness
of the velocity dispersion inside r); (see Fig. 3, left panel). Fig. 4 shows the deviation
from the best fit constant value of 7,, averaged over all radii within r;;, for a given
halo as a function of its concentration. We can see that for most of the haloes this
deviation is < 1% for o/m > 1 cm?/g and < 5% for smaller cross-sections.

We can thus conclude that rj; is indeed a good proxy for rgipy and our boundary
condition (kinetic energy conservation) is also a reasonable assumption that provides
a good prediction for the constant velocity dispersion in SIDM haloes, using CDM
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Figure 4: The average deviation of the total velocity dispersion in SIDM simulations
from the best fit constant value of 7, inside r,; for different values of the self-interaction

cross-section o/m as a function of halo concentration.
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Figure 5: Left panel: Density profiles for a SIDM halo with ¢/m = 1 ¢m?/g from
simulations (blue) and the prediction from our isotropic (dashed gray line). Right
panel: Ratio between central density and enclosed density at r); for the ensemble of
SIDM haloes with o/m = 1 cm?/g as a function of halo concentration.

data only as input. This means that we have all elements required to predict the DM
density profile as a solution of the Jeans equation with constant velocity dispersion a,,.
This prediction will provide a validity check of our model.

3.2 Verifying the model prediction for the density profile

An example of a predicted SIDM density profile for o/m = 1 cm?/g is given in the left
panel of Fig. 5. It is clear that the predicted central density is lower than the simulation
data. The right panel of the same figure shows that the predicted density for o/m =1
cm? /g is systematically too low for all haloes (see Eq. (1.1) for the definition of ). On
average, (K)sim/(K)pred = 1.6. A similar behaviour is observed for other cross-sections
as well (see Fig. 6). The reason for this systematic discrepancy, as detailed in the
next section, is the fact that the velocity dispersion still remains anisotropic in SIDM
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Figure 6: The ratio of k = p(0)/(p(rr)) between simulated and predicted values for
our isotropic model versus halo concentration in SIDM haloes for different values of
the self-interaction cross-section o/m.
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Figure 7: Velocity anisotropy profiles 3(r) = 1 — (05 + 03)/(207) from simulations
for CDM (black) and SIDM (cyan, blue and orange for o/m = 0.1, 1 and 5 cm?/g,
respectively) for two different example haloes. The vertical green line marks the 7y,
radius.

haloes.

3.3 Anisotropy of the velocity dispersion

A perfect equilibrium would imply that all components of the velocity dispersion are
isotropic. Therefore the anisotropy of the velocity dispersion

_03+0q23

2
207}

plr)=1

(3.8)

should be equal to zero, where 4 4 are the velocity dispersions in the tangential direc-
tions, while o, is the radial velocity dispersion. However, in the simulations, we observe
that the anisotropy g for SIDM haloes does not vanish inside the radius r,;, where full
equilibrium has been assumed. This is shown in Fig. 7. In fact, the anisotropy remains

~10 -



Best fit values of 8 = Aln(r/rs)

o/m lem®/g] | A | rglkpc]
CDM [ 0.067 | 137
0.1 0.074 | 218
0.5 0.089 |  50.1
1 0.102 | 764
5 0.124 | 194
10 0.166 | 387

Table 1: The best fit values for the anisotropy profile 5(r) (Eq. 3.9) from simulated
haloes in CDM and SIDM for different cross sections.
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Figure 8: Velocity anisotropy versus radius for the CDM haloes. Black dots are mean

values for the given radius bin and error bars represent the standard deviation. The
red line is the best fit with ansatz (3.9) (see Table 1 for values of the fit parameters).

comparable to that of CDM haloes and does not drop to zero fast enough inside r; to
be neglected, which means that thermal equilibrium is not fully established; at least
not for o/m < 1 ecm?/g.

The velocity anisotropy of DM particles is of course not directly observable. To
make our model less dependent on simulation input, we would like to come up with
a prescription which can be applied not only to simulated data, where we know all
quantities but to observational data in the future. We have found that a simple two-

parametric ansatz
_ JAln(r/rg), forr >
Blr) = { 0, for r <rg (3.9)

describes [(r) for a given cross-section reasonably well, for both the SIDM and CDM
cases. The best fit values of the parameters A and 75 are presented in Table 1, see also
Appendix A for more details. The quality of the fit for the ensemble of CDM haloes
is shown in Fig. 8.
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Figure 9: Left panel: Density profiles versus radius for a SIDM halo with o/m =1
cm?/g from simulations (blue) and the prediction for the SIDM profile from our
isotropic (dashed gray line) and anisotropic models (orange line). The red dot indicates
the rys radius. Right panel: k = p(0)/{p(ru)) as a function of halo concentration calcu-
lated from the simulation data for o /m = 1 cm? /g (blue), and our isotropic/anisotropic
model (gray/orange).

We will use the above ansatz for 5(r) to improve our model and predict the density
for SIDM using the anisotropic Jeans equation in the following.

3.4 Prediction for the density profile with anisotropic Jeans equation

Although there is no equilibrium inside 7,;, we can still use the Jeans equation if we
take into account the velocity anisotropy S(r). The anisotropic Jeans equation for the
radial velocity dispersion o, is [63]

d

2d
- (r—— (po?) + 2rﬁaf) = —47Grip, (3.10)

p dr
where the radial velocity dispersion o, is connected to the total velocity dispersion o,
as

oy =0.+0,+0,=0.(3—20). (3.11)
In Eq. 3.10 we can still use the assumption that the total velocity dispersion is a
constant as this is consistent with the simulated data. With the addition of velocity
anisotropy into the Jeans equation, we significantly improve the accuracy of our model
(see Fig. 9). Moreover, the predictions for the SIDM density profiles using our ansatz
for B(r) now becomes very similar to using the actual velocity anisotropy directly from
each simulated halo.

As demonstrated in Fig. 10, the prediction for the density profile with the anisotropic
Jeans equation for the other SIDM cross sections is also consistent with the simulated
data. This indicates a good agreement between the anisotropic modelling and the
simulations. We note, however, that the modelling is less accurate at smaller cross sec-
tions, particularly for o/m ~ 0.1 cm?/g, where the central SIDM halo is farther from
equilibrium. This is reflected in the dependence of the parameter k = p(0)/{p(rar))
with cross section, see Fig. 10.
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Figure 10: Left panel: The ratio of the simulated x values in SIDM haloes to the
predicted ones for our anisotropic model for different values of the self-interaction
cross-section o/m as a function of halo concentration. Right panel: The value kg, =
p(0)/{p(rrr)) in our SIDM haloes for different values of the self-interaction cross-section
o/m. The central point is the mean kg, value for a given cross-section in simulations,
while error bars correspond to one standard deviation.

3.5 Connecting our model to the CDM NFW parameters

Now we can try to emulate an actual data analysis with a more realistic approach.
At large radii, SIDM profiles are well fitted by NFW profiles and, in this region, we
usually have the best observational data. Therefore, we would like to only use the
NFW profile to predict the SIDM density profiles for a given cross-section. The only
input we will then need from simulations is the radius rsipy, which we showed above
to be well represented by the radius of equal masses r);. Predicting r), for every
asymptotic NFW profile and each value of the cross-section is a non-trivial task and
we leave it for the next section.

The method described and tested above also requires the velocity dispersion profile
for the corresponding CDM halo as input. We can obtain it by using the NFW profile
and solve the anisotropic Jeans equation (see Appendix B) with the anisotropy [(r)
described by the ansatz (3.9) (the same for each CDM halo, similarly to what we did
for SIDM), see Table 1. As a result of this procedure, we can obtain the velocity
dispersion profile for a given CDM halo (for an example, see the left panel of Fig. 11).
Using the CDM velocity dispersion profile for a given halo, we predict the constant
value for the corresponding central SIDM velocity dispersion o5'PM | see right panel of
Fig. 11.

After this, we solve the anisotropic Jeans equation (3.10) with the average velocity
anisotropy ansatz for a given cross-section to obtain the prediction of our model. We
show the comparison between the x values in SIDM simulations and from this model
in Figure 12. We see that the results are as good as Fig. 10, where we used the SIDM
simulation data directly. Therefore, for a cross-section of 1 cm? /g we are able to predict
the density at the center of the SIDM halo with an average accuracy of about 10%,
with a similar distribution for simulated and predicted k. Like in the previous case, for
the cross-sections o /m = 0.1 cm?/g and 0.5 cm? /g the disagreement with simulations

~ 13—



2000

oo | 2600"

L] L .
1900¢ - ° 1 400l ° 0 ® Sim.
1800 o Pred.
w 1800} % 2200}
= °
£ 1700} 2000 o g g $ .
b> s s @ [ ] ‘. '. L] 8 w
1600¢ lo 1800 °
e CDM . ) o
1500 — Pred. ] 1600 ag/m=1 cm2/g ]
1400 1400(g ]
50 100 500 1000 40 45 50 55 60 65 7.0
rlkpc] c

Figure 11: Left panel: Total velocity dispersion profile for an example of a simulated
CDM halo (black points) and the predictions based on the NFW density profile and the
anisotropic Jeans equation (blue line). Right panel: Central total velocity dispersion
0, inside 7y as a function of concentration in simulated SIDM haloes (blue), and
predicted values (gray) for the case o/m =1 cm?/g. To make this prediction, we have
used the NF'W parameters of the corresponding CDM halo; see text for details.
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Figure 12: Left panel: The ratio between simulated and predicted values of k in
SIDM haloes as a function of halo concentration for our anisotropic model using as
input only the NF'W parameters of the corresponding CDM haloes. Right panel: Den-
sity ratios s versus halo concentrations, for o/m = 1 cm?/g, taken directly from our
simulations (blue), from our anisotropic model using data from the SIDM simulations
(gray), and with our full model using only the NFW parameters of the corresponding
CDM simulations as input (green).

is a bit more significant. The reason is that for these smaller cross-sections equilibrium
is not as well established as for larger cross-sections, and a constant &, is not a good
enough approximation for the simulated data (see Fig. 4).
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Figure 13: The dependence of r); on the cross-section. The error bars represent the
standard deviation of the distribution.

4 From the cross section to the radius r),

Ideally, we would like to directly connect the observationally accessible core radius
defined in Eq. (2.3), see also Fig. 1, to the predictions from our SIDM model. In the
previous sections, we have checked that the radius rsipy, where equilibrium is assumed
to be established, could be chosen as the radius rj;, where the enclosed mass and kinetic
energy in SIDM haloes are the same as in their CDM counterparts. The dependence
of rj; on cross-section is shown in Fig. 13. Using this radius, one is able to predict,
with sufficient accuracy (see the discussion in the previous section), the density profile
for a SIDM halo using the data for a CDM halo with the same initial conditions. This
means that we can relate the "observed" core radius to rgipy. To complete the picture,
we now need to connect rgipy with the self-interaction cross section o/m.

In the literature (see e.g. |28, 39]), the relation between these quantities is often
defined by the requirement of having at least one collision per particle inside rgipw,
over the halo age t,ge. We would like to check to what extent this condition is satisfied
in simulations, so we show in Fig. 14 the average number of collisions per particle
at radius ryp;. This clearly demonstrates that Ng,. (ra) varies significantly in our
simulation suite. We also find that Ny, (ra) does not scale exactly linearly with o/m,
instead we find the best-fit slope of the power law to be 0.75 (right panel of Fig. 14).

In Refs. |28, 39] the number of collision per particles at radius r is estimated as

o
Ni(r) = —p(r)o(r)tage (4.1)

where v(r) is the average relative velocity of DM particles at radius r and t,e we take
as half-mass formation time, see Ref. [43] for details. The condition of one collision
per particle per halo age thus translates to the often quoted

o
EP(TSIDM)U(TSIDM)tage =1. (4.2)

Substituting v(r) = (4/v/37)e>PM(r), we have compared the values of Nj(ry) pre-
dicted from Eq. (4.1) with the simulation results. We find reasonable agreement for
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Figure 14: Left panel: The average number of collisions at radius r,; as a function of
halo concentration for o/m = 1 cm?/g. Right panel: The average number of collisions
at radius r); for different cross-sections. The black line shows the best fit power law
dependence, N(ry;) o< (a/m)%".

cross-sections 5 cm?/g and 10 cm?/g (the latter is shown in the top right panel of
Fig. 15), but the predictions from Eq. (4.1) are systematically lower for smaller cross-
sections (see top left panel of Fig. 15 for the case with o/m = 1 cm?/g). In the bottom
panel of Fig. 15 we furthermore show typical examples of the radial dependence of the
number of collisions, N(r), found in the simulations. Clearly, Eq. (4.1) provides an
incorrect prediction of this dependence.

Following Ref. [43] we have also checked a modified Eq. (4.2) for the number of
collisions per particle inside rsipm,

= p(rsion))o(rsipw)tage = 1. (43)

where (p(rsipm)) = 3M (rsiom)/ (47r3my) i the average density of the core. In analogy
to Eq. (4.1), we thus have

N(r) = —(p(r))v(r)tage , (4.4)

We repeated the same analysis for the average number of collision inside the radius 7/,
(N(< ra)), and found results similar to the previous case, see Fig. 16. We conclude
that neither Eq. (4.1) nor Eq. (4.4) can be reliably used to connect rgipy with o/m.
Below, we discuss a simple toy model that improves upon this situation by qualitatively
explaining the behaviour of N(r) at large radii.

319

4.1 Radial infall model for how the number of collisions depends on the
radius

Let us for simplicity consider the case of a stationary halo in which the DM particles
are only moving on radial orbits. The orbit period 7', with maximal radius ryay, is
then determined by the gravitational field as

T(rmax) = 2/Ormax % ) (45)
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Figure 15: The average number of collisions inside radius ry; (dots) and at radius 7y,
(triangles) versus halo concentration for o/m = 1 cm?/g (top left) and 10 cm?/g (top
right). The lower panels show example halos with o/m = 1 cm?/g (lower left) and 10
cm? /g (lower right) where we plot, as a function of radius r, the number of collisions
inside (dots) and at r (triangles). Blue and red points are the simulation data, while
the grey dots (upper panels) and grey lines (lower panels) are the predictions from
Eq. (4.1). The green dashed line in the lower panels marks the radius ;.

where the velocity v(r) follows from energy conservation as

”2;7”) with  U(r) = /0

During the halo age t,g, a particle travels through the center of a halo tee/T
times. The average number of scatterings per center crossing is

NT(rmax) = 2/
0

where we neglected the change of the particle trajectory after scattering. Therefore,
the total number of collisions for this particle during its lifetime is

"GM(r)

r2

U(rmax) = U(r) + dr. (4.6)

p(r)dr, (4.7)

o
m

tage

T ) (48)

Nmax (Tmax) =

NT<TmaX> .
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Figure 16: Left panel: Average number of collisions inside radius r); as a function
of halo concentration for o/m = 1 cm?/g. Right panel: Average number of collisions
inside 7,; for different cross-sections. The black line shows the best fit power-law
dependence, (N (< 7)) o< (o/m)63.

Eq. (4.8) gives the number of collisions for a particle with the maximal radius
max, While from the simulations we can extract the average number of collisions per
particle for particles that are found at a given radius r at z = 0. To connect these two
numbers we determine the maximal radius of a particle with a given velocity ryax(r, v),
using (4.6), and then average over the velocity distribution of the DM particles f(r,v)
at radius r,

N(r) = /Nmax(rmax(r, v)) f(r,v)dv. (4.9)

This formula reduces to Eq. (4.1) in the case v(r) = const, p(r) = const.

Since the velocity distribution f(r,v) is not known a priory in our modelling,
however, we are in general forced to use the radial velocity dispersion o, instead of
averaging as in Eq. (4.9). This introduces an uncertainty which can be parameterized
by an unknown factor C' of order one:

Nour(r) = CNmax(Tmax(rv Jr)) : (410)

In Fig. 17 we show an example of how well this ansatz works for C' = 2.5 and o/m =
1 cm?/g. We generally find that the ansatz (4.10) provides a good description for the
average number of collisions inside a given radius (Ngm (< 7)) (left panel), while it
works not so well for the number of collisions at a given radius Ny, () (right panel).
Although the qualitative behaviour of the simulations is well described by this simple
ansatz, it is clear that it requires improvement for a fully quantitative description.

4.2 Phenomenological modelling for the radial profile of the number of
collisions

Since the model described above is not accurate enough to describe N(r), we can
try instead to use directly the profile N(r) measured in the simulations to make a
connection with rgipy (or 737) and thus relate it to o /m phenomenologically. Looking
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Figure 17: The average number of collisions per particle inside (left) and at (right)

radius r for 0/m = 1 cm?/g (blue points). The red line is the prediction from a simple
radial infall model, see Eq. (4.10).
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Figure 18: Left panel: Tlustration of how we have defined the radius ry (black dashed
line) for the number of collisions profile N(r), as the radius where the asymptotic
behaviour (modeled as power laws) of the small and large radii cross each other (black
solid lines). The blue points are the average number of collisions inside a given radius
for o/m = 1 cm?/g. Right panel: The dependence of the radius ry on the cross-
section for our simulated suite. The error bars represent the standard deviation of the
distribution.

at the simulation results, we observe that the radial dependence on N(r) is very flat,
hence, conditions of the type N (7)) = const would always produce a large uncertainty
on the estimated value of ry;. However, N(r) seems to have a characteristic radius
rn, where the slope of the profile changes substantially. This scale can be defined,
for example, as the radius where the power laws of the asymptotic behaviour at small
and large radii cross each other. An illustration of this definition of ry is shown in
the left panel of Fig. 18, where we used the average number of collisions inside a given
radius (Ngm.(< 7)) as a proxy for N(r) in simulations. The scaling of ry with the
cross section is shown in the right panel of the same figure. Although the behaviour is
similar to the behaviour of r); as a function of o/m (see Fig. 19), rp; and ry do not
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Figure 19: The cross-section dependence of the ratio of the two radii rn (connected
to the radial dependence of the average number of collisions) and r); (defined as the
radius within which the mass and kinetic energy are the same as in for CDM). The
error bars represent the standard deviation of the distribution.

coincide. The necessary conditions for a single scaling radius rgipy; in our SIDM model,
which we discussed in Section 3.1, are satisfied more poorly at r than they are at r,,,
hence, we cannot replace r; by ry. Moreover, the ratio between ry and r,; depends
on the cross-section (see Fig. 19). In turn, the dependence of rj; on the cross-section
is rather weak (see Fig. 13) and it cannot be used to define o/m with confidence: a
small error in estimating ry; results in a large uncertainty for the estimated o/m.

We conclude that, although we are able to construct an improved model that can
relate the radius rgipy in SIDM haloes to observables (the inner density profile and,
in particular, the core radius), we can still not robustly relate this radius (and hence
a potential observable) to the self-interaction cross-section o/m. This limitation is
caused by a complex dependence of the properties of simulated SIDM haloes on the
value of the cross-section, which conflicts with the simple estimate used in previous
analytical models in the literature, based on a constant average number of collisions
per particle and halo time in the SIDM halo core.

5 Comparison with previous approaches

Let us finally compare predictions from our method with those based on the method
commonly adopted in the literature [28], with a focus on observationally accessible
quantities like the core radius. As a reminder of our discussion in Section 3, the Jeans
equation requires two boundary conditions (and has one free parameter 7, ), which we
choose as p/(0) = 0 (cored solution) and Mcpym(rsipm) = Msmm(rsipv). This still
leaves the determination of the transition scale rgipy. In the method used in this work
both predicted psipm(0) and &, agree with simulations (see e.g. Figs. 3 and 10).

An alternative approach is to use the isotropic Jeans equation (as in Ref. [28])
and impose the equal mass boundary condition at rgipy defined by “one collision per
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Figure 20: We compare the core radius (2.3) from simulation data (red), our predic-
tions from this work (blue) and the predictions obtained by following what we describe
as method A in the text (green), using an isotropic Jeans equation and imposing the
equal mass boundary condition at the “one collision per particle” radius.
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Figure 21: Density ratios of simulated SIDM and CDM halos, at radius rsipy, versus
cross-section.

particle” and halo time, cf. Eq. (4.2). To fix the density profile we also need to know &,,,
which we take directly from the SIDM simulations. We call this approach method A.
In Fig. 20, we compare simulated core radii with those predicted by the two methods.
Here, we choose our standard definition of the core radius, Eq. (2.3), but stress that
the qualitative features of this figure would not change with alternative definitions.
Clearly, the predictions from method A are not consistent with the simulation data. Our
method, on the other hand, is in excellent agreement with the data for o/m,, 2 1cm?/g;
for smaller cross sections, it slightly overpredicts the expected core size.

The approach actually implemented in Ref. 28], and largely followed in the liter-
ature, is to implicitly fix 7, by an additional boundary condition rather than taking it
from simulations. Concretely, this additional condition is to assume a continuous den-
Sity proﬁle at T"SIDM , 1.e. imposing pCDM(TSIDM) = pSIDM(TSIDM> (where rsiDM is again
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Figure 22: Left panel: Ratio between core radii of SIDM halos predicted from CDM
halo profiles using the commonly adopted method in the literature (method B) and
core radii in SIDM simulations versus cross-section. Right panel: Average velocity
dispersion inside rgipy for simulation data (red) and predictions (cyan) for method B.

defined by the “one collision per particle” condition). We call this approach method B.
Let us remark that the condition of a continuous density profile must be satisfied iff the
transition zone between the region of equilibrium (which is well described by the Jeans
equation) and the outer region (described by a standard CDM halo) is infinitely thin.
In reality, one would expect a more extended transition region where self-interactions
neither fully thermalize the halo nor leave it completely unaffected. Around the point
rsipm Where the boundary is formally placed, both the solution of the Jeans equa-
tion and the outer (typically NFW) profile are then only extrapolations that do not
describe the actual density profile; hence, it is not obvious why these profiles should
match exactly at » = rgipym). An explicit comparison with simulations, as shown in
Fig. 21, reveals that this is indeed not the case. In the left panel of Fig. 22, we plot
the ratio of the core radius obtained with method B to that found in our simulations.
As pointed out previously, e.g. Refs. [20, 30, 39|, this leads to very good agreement.
However, as demonstrated in the right panel of Fig. 22, the predictions for the velocity
dispersion &, are clearly not compatible with the simulation results. In view of the
failures to correctly reproduce both &, and the density ratio at the transition point,
we are thus lead to conclude that the success of method B in predicting the core radii
is at least partially based on a numerical coincidence.

In other words, the success of the commonly adopted method to correctly describe
core sizes as a function of the self-interaction cross section in DM-only simulations
can not be taken as supporting evidence that the method adequately captures the
underlying dynamics of SIDM halos. This is particularly relevant when extending
this method to more realistic halos that also include baryons, simply by replacing
the gravitational potential due to DM with the total (DM + baryonic) gravitational
potential in the Jeans equation [26, 39, 46, 47]. While we do not offer an alternative
way of modelling the effect of baryons, our findings suggest that existing conclusions
about o /m that are derived from the observation of systems where the effect of baryons
is important should, at this point, also be interpreted with care.
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6 Summary and conclusion

In order to constrain the SIDM cross-section from observed dynamical properties of
galaxies or clusters of galaxies, one can adopt either of the following two methods:

e Use a large number of numerical simulations and a careful mapping between
direct observables and simulated quantities. This approach captures the relevant
physical processes and gives a full prediction for the structure of SIDM haloes.

e Use an analytical model that accurately captures the effect of dark matter self-
scattering on observables. This approach has the advantage of requiring much
less computational time, while being able to compare models to data for a wide
range of halo masses, but requires a physically motivated model with several
assumptions, which are tuned and tested against simulations.

In this paper, we have taken a revised look at the second approach, with the
goal of improving the analytical modelling of SIDM haloes. A summary of our main
findings is as follows:

e The models currently used in the literature do not explain the simulation results
in a satisfactory manner. In particular the basic underlying formula (4.2) for one
collision per particle and halo age is not supported by simulations, see Figures 14
and 15. Also, we found that the velocity anisotropy is not zero (see Fig. 7), which
significantly changes the predictions for the density profiles (see Figures 9, 10).

e We have introduced an improved model, which takes as input the large radii
behaviour of SIDM haloes that asymptotically reaches the CDM predictions
(parameterized with the NFW profile), and matches it to the solution of the
anisotropic Jeans equation with a constant velocity dispersion at a radius rsmpum
(see Fig. 20 for the comparison of our analytical results with the data and analyt-
ical predictions made by the isotropic Jeans equation with equal mass boundary
conditions at “one collision per particle radius”), see Section 5 for details. For a
given halo with fixed NFW parameters, our model gives a good prediction of the
properties of the corresponding SIDM halo (core size and density) as a function
of the cross section if the radius rgipym is taken from the simulated halo. The
boundary condition imposed to define rgmpy in our model is to match the mass
of the CDM and SIDM haloes within rsipy. A second boundary condition, im-
posing the same kinetic energy within rgipy, fixes the central velocity dispersion,
which finally closes the system allowing us to find a unique SIDM profile.

o We have checked that the assumptions of our model are to a good approximation
satisfied in the simulated SIDM haloes. Inside rsipy, the total velocity dispersion
profile is flat enough, (do,)/7, ~ 0.01 (on average, see Fig. 4), with a scatter
that becomes smaller for larger cross-section, but even for o/m = 0.5 cm?/g it
is small enough ((do,)/7, ~ 0.02 — 0.03). Masses and kinetic energies of SIDM
and CDM haloes are also the same inside rgmpy, with a precision of about 5%.
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e Our model improves upon isotropic models by allowing for a radially-dependent
velocity anisotropy [(r), taking into account that the SIDM simulations show
a non-zero anisotropy within rgmpy for o/m < 5 cm?/g. Indeed, 38 could be up
to 0.2 in the region of interest. This demonstrates that equilibrium is not fully
established inside rsipy, even if the total velocity dispersion is quite close to
constant. We have taken this effect into account by using a simple ansatz for the
velocity anisotropy, which is the same for all haloes (but with parameters that
depend on the cross-section and are fitted to the simulations; see Table 1).

Our model would be complete if, for each halo and for a given cross-section, we
could predict rsipy. This has been done by fixing the (radially-dependent) number of
collisions per particle N(r), as N(rsipm) = 1. We have found, however, that we could
not complete our model, in this sense, for the following reasons:

e In the simulations, N(rsipy) is not equal to 1, but instead depends on the con-
centration of the halo and on the cross-section. N(r) in simulated haloes is a
slowly-varying monotonic function of radius, flattening at the center. Because of
this, a condition like N(rgipy) ~ 3 — 5 would fix rgipy with an uncertainty of
up to an order of magnitude. Therefore, even if we were able to measure rsipum
from observations, this would not help us to fix the cross-section, o/m, as the
uncertainty in the relation between rgipy and o/m via N(r) = const. is too large.

e We have tried to model the radial dependence of the number of collisions by
defining a scale radius ry where the slope of N(r) changes most abruptly, ef-
fectively separating a central flat behaviour from an outer power law. Although
this radius correlates strongly with the cross-section, the ratio of ry and rgppum
also changes with the cross-section. Because of this, although we built a simple
model that roughly explains the radial dependence of N(r), we ultimately cannot
relate o/m to observables (e.g the core size) in an accurate way.

e This limitation seems to be fundamentally driven 7) on the low-end of the cross-
sections studied here by the lack of full thermalization of the core (up to the
maximum size it can take), and i) at the high-end of the cross sections due
to the saturation of the core and the triggering of an on-setting gravothermal
collapse. Therefore, the range of cross sections where an equilibrium model can
in principle be used, even with our suggested improvements, is indeed quite
narrow.

We conclude that despite the improvements we have made to the analytical mod-
elling of SIDM haloes, the limitations are relevant enough that the most reliable method
to put constraints on the self-scattering cross-section remains a direct comparison be-
tween the results from full simulations and quantities that are in principle observable,
such as the core radius and the surface density (see Fig. 1). In the absence of sufficient
simulation data to do so, in particular for systems including baryons, current limits
and 'measurements’ of the self-scattering cross section should be interpreted with some
care.
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Figure 23: Velocity anisotropy profiles for all haloes in our simulations (gray lines),
for CDM and SIDM with cross-sections o/m = 0.1 cm?/g, 0.5 cm?/g, 1 cm?/g, 5 cm?/g
and 10 cm?/g. The red line is given by the ansatz (3.9) with the best-fit parameters
stated in Table 1.

A Radial velocity anisotropy profile 3(r)

We have adopted a simple two-parameter ansatz to fit the mean behaviour of the ve-
locity anisotropy profile in the ensemble of our simulated haloes:

_ JAIn(r/rg), forr>rs
Blr) = { 0, for r < rg (A1)

We fitted this formula to all haloes for a given cross section, and for the CDM model.
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In Fig. 23 we show the result of this procedure along with the data (the best fit values
of the parameters A and r3 are presented in Table 1).

B From the NFW parameters of the CDM halo to the model
of the SIDM halo

The density, radial velocity dispersion, and velocity anisotropy profiles of collisionless
CDM haloes are connected through the Jeans equation:

% (o7 (r)p(r)) + %B(r)af(r)p(r) — ()

(B.1)

Therefore, one can find the velocity dispersion profile in CDM haloes using as input the
profiles for density and velocity anisotropy. To show this, we introduce the function
f(r) = 0a2(r)p(r) to write Eq. B.1:

df 2
&y

GMDM(T)

B(r)f(r) = —pom(r) 2 : (B.2)

and we use the method of variation of constants to solve this equation. The solution
of the homogeneous equation

g 2

z = B.
T 26015ty =0 (B.3)
15 Bw)
f(r)y=Cre 2o v (B.4)
We substitute this solution in Eq. B.2 with C; — C}(r) and get
dcy —2r Bl g GM(T)
—e Y= —p(r) = - (B.5)
The general solution for C(r) in this equation is
Y] M
Ci(r)=C —/ 2 dyp(x)Gm—;x)dx : (B.6)
0
Thus, the velocity dispersion profile is given by
r B " z By M
aZ(r)p(r) = Ce 2 Sy —/ e Jr %dyG 2(x>p(x)dx : (B.7)
70 x

The constant C' can be fixed with the values of the density and velocity dispersion at
a radius r = g in Eq. B.7: C' = 02(r¢)pcpm(ro). Thus, we finally have:

ﬁmmm:ﬁmmmw”*?@i/3”%%@M9mmm. (B.)

T2
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Figure 24: The ratio k = p(0)/(p(rar)) in simulated SIDM haloes as a function of halo
concentration for the cross-sections o/m = 0.1 cm?/g (cyan), 0.5 cm?/g (magenta), 1
cm?/g (blue), 5 cm?/g (orange) and 10 cm?/g (red). The predicted values from our
anisotropic model using input parameters from the SIDM haloes are shown in gray,
while the results of the same model using input parameters from the corresponding
CDM halo (modeled with a NFW density profile and velocity anisotropy as described
in Appendix A) is shown in green.

In principle, we have the problem that we do not know the value of o,.(r) at any
finite radius 7o, but if we assume that o2(r)p(r) — 0 as r — oo, which is reasonable
for CDM haloes, then we can choose the boundary condition ¢2(10r,)p(10r,) = 0.
Therefore, we can use the NFW profile for p(r) and the ansatz for 8(r) described in
Appendix A to estimate o,. An example of the resulting velocity dispersion profiles is
shown in the left panel of Fig. 11. The quality of the match to the simulated data is
comparable in all the cases to this examples and we can see that the fit is reasonable.

Having established that we can obtain the velocity dispersion profile of CDM
haloes from the (NFW) density and velocity anisotropy profiles, we show in Fig. 24
how well this connection allows us to model the properties of the SIDM halo directly
from the properties of the corresponding CDM halo.
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Figure 25: The ratio of SIDM to CDM profile versus radius for different cross-sections.
The dashed vertical lines represent the corresponding radii 7.

C The precision of the radius r,; in the halo mass profiles
In Fig. 25 we present the ratio of SIDM to CDM profiles for the cross-sections o/m =
0.1, 0/m=1and o¢/m =5 cm?/g.
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