Lesser than the sum of its parts

A statistical analysis of changes in terrorist violence during the War in Afghanistan

Thyra Johanna Tandberg Askevold

Master’s thesis in Political Science
Department of Political Science
UNIVERSITY OF OSLO

May 2019
Word count: 15573
Lesser than the sum of its parts

A Statistical analysis of changes in terrorist violence during the War in Afghanistan
© Thyra Johanna Tandberg Askevold

2019

Lesser than the sum of its parts

Thyra Johanna Tandberg Askevold

http://www.duo.uio.no

Trykk: Reprocentralen, Universitetet i Oslo

IV
Abstract

The War in Afghanistan is the longest war in US history, and over the course of a conflict that has gone on for the better part of two decades, there are bound to have occurred a number of changes, which will impact the patterns of violence. In order to see how the patterns of violence are affected by changes in other factors throughout the war, I perform a statistical analysis on terrorist attacks in Afghanistan from 2001 to 2017. By dividing the war into stages, and analyzing these separately, and together, I find that in a protracted conflict like the War in Afghanistan, analyzing the war as a whole leads to misleading results, when trying to discern patterns in terrorist violence. I find that the extremely violent attacks related to the election in 2009, gives the impression, when analyzing the war as a whole, that elections in general have a higher impact on terrorist violence than what is the case when analyzing the stages separately. This is found to be the case for other variables in the analysis as well. Analyzing the whole war, and not the stages separately, also fails to show how the effects may fluctuate across stages.
Acknowledgements

First and foremost, I would like to thank my advisor, Scott Gates. Without his invaluable help and guidance, I would still be banging my head against a wall, and this thesis would most definitely not be finished.

To my family and friends, for all their support, and the endless number of pep talks throughout this process. To my parents in particular, who have been there for me both emotionally, and financially, while I was slowly inching my way towards a finished Master’s degree. They are my rocks, my unwavering support system; delivering a blend of unshakeable faith in my abilities, and a sometimes less than welcome, but always needed, hard dose of realism.

Also, to the 2020 US presidential candidates, for providing excellent distractions from the frustrations of the writing process, and for providing hope that the next occupant of the White House, and Commander-in-Chief, may be saner than the current one. May the best candidate win.

Any faults in this thesis are my own.
Table of Contents

1 **Introduction** ... 1
2 **Theoretical background** ... 3
 2.1 COIN and time ... 3
 2.2 US troop levels .. 5
 2.2.1 Strategic principles of COIN ... 5
 2.2.2 COIN and the mechanization of forces .. 8
 2.2.3 US troops in Afghanistan ... 9
2.3 Narcotics .. 10
2.4 Elections ... 12
2.5 Islamic State - Khorasan ... 14
3 **Data and method** .. 17
 3.1 Variables .. 17
 3.1.1 Dependent variable .. 17
 3.1.2 Independent variables ... 18
 3.1.3 Other GTD variables ... 20
 3.2 The Stages ... 23
 3.3 Negative Binomial Regression .. 24
4 **Findings** .. 26
 4.1 Statistical analysis ... 27
 4.2 Suicide attacks ... 31
 4.3 Type of attack ... 34
 4.4 Type of weapon ... 36
 4.5 Type of target ... 38
 4.6 Provinces .. 41
 4.7 Discussion ... 43
5 **Conclusion** .. 45

Bibliography ... 47

Appendix ... 51
List of tables

Table 1 – Terrorist violence during the war in Afghanistan……………………………………..27

Table 2 – Suicide attacks………………………………………………………………………………33

Table 3 – Type of attacks (percentages)...35

Table 4 – Type of weapons used in terrorist attacks (percentages).................................37

Table 5 – Type of target for terrorist attacks (percentages)..39

Table 6 – Number of terrorist attacks in Afghan provinces (percentages)......................42
List of figures

Figure 1 – Number of terrorist attacks per month…………………………………………..23

Figure 2 – Suicide attacks…………………………………………………………………..32

Figure 3 – Type of attack……………………………………………………………………34

Figure 4 – Type of weapon………………………………………………………………….36

Figure 5 – Type of target……………………………………………………………………38

Figure 6 – Most violent provinces…………………………………………………………..41
1 Introduction

“You could be old enough to enlist today, and not have been alive for 9/11.”

Pete Buttigieg, Candidate in the 2020 Democratic primaries on MSNBC, March 20, 2019

On September 11th, 2001, 19 terrorists with Al-Qaeda affiliations hijacked four passenger planes, crashing three of them into the Pentagon, and both towers of the World Trade Center, and slamming the fourth into the ground in a field in Pennsylvania. 2977 people died in what was the deadliest attack on US soil in history. President Bush demanded that the Taliban government in Afghanistan hand over any Al-Qaeda leaders hiding in Afghanistan. They did not comply, and in October 2001, the War in Afghanistan began (History.com 2019). It is the longest running war in US history (Bandow 2019).

Throughout a conflict as long as the War in Afghanistan, there are bound to occur a number of changes that affect the patterns of violence. The strength and the locations of insurgent groups, the emergence of new insurgent groups, the number and the strategy of military troops fighting said insurgents, elections, policy changes etc., all contribute to change the landscape in which the war is fought, so it stands to reason that they could contribute to change the pattern of the fighting itself. In this thesis, I will examine how these patterns change during the course of the War in Afghanistan.

Previous research that examines what happens over the course of a conflict is mainly qualitative in nature, and quantitative conflict research has focused primarily on the duration of conflicts, and the consequences of them, often in terms of damage caused, for example, the number of battle deaths. Qualitative research is not well equipped to discern patterns in the changes that occur during conflicts, and quantitative research has largely failed to examine these changes. In this thesis, I attempt to bridge that gap.

I contend that in a protracted conflict, patterns of terrorist violence will evolve and change throughout, as the factors that influence terrorist violence change. When analyzing these patterns, the war should be divided into stages, and these stages should be analyzed
separately, as any changes that occur will not be visible in the data if the war is analyzed only as a whole. Performing an analysis on patterns of terrorist violence on the war as a whole will produce misleading results.

I will test this assumption by performing a statistical analysis on terrorist attacks in Afghanistan from 2001 to 2017. Using data from the Global Terrorism Database, I will divide the war into appropriate stages based on the changes in the number of terrorist attacks throughout the war. I will analyze the stages separately, and then the war as a whole, and compare the results.

Previously, the lack of data available made quantitative analyses of the changes during a conflict difficult, but datasets like the GTD, now make these kinds of analyses possible. While terrorism is just one aspect of war, it provides a good basis for examining how patterns of violence change over the course of a conflict, because there is fairly detailed data available, and the events are distinct from each other. In COIN campaigns, like the War in Afghanistan, terrorist attacks are particularly good indicators of how the war is developing, because they speak to the state of the insurgency that the official military forces involved are fighting.
2 Theoretical background

There are several factors that could be important in explaining patterns of terrorist violence. I have chosen to focus on four factors for this analysis; (1) US troop levels, (2) production of narcotics, which is primarily opium in Afghanistan, (3) elections, and (4) the emergence of the Islamic State – Khorasan. These four factors and their effect on, or correlation with terrorist violence, is the basis for the independent variables in the analysis, but to begin with I want to talk about how the temporal aspect of a conflict relates to the nature of a counterinsurgency operation (COIN).

2.1 COIN and time

The War in Afghanistan, also known as Operation Enduring Freedom, is a counterinsurgency operation. Counterinsurgency (COIN) is defined by US Armed Forces as a “comprehensive civilian and military effort designed to simultaneously defeat and contain insurgency and address its root causes” (JP 3-24 2013, p. ix).

Fearon and Laitin (2003, p. 79) define insurgency as “A technology of military conflict characterized by small, lightly armed bands practicing guerilla warfare from rural base areas.”

A conventional state military has several advantages over an insurgency. Conventional military forces usually have more manpower and more weaponry, which is often more technologically advanced. The insurgents have the advantage when it comes to local knowledge; knowing the terrain, and being familiar with local customs and power structures etc. Another insurgent advantage is time.

“In almost every case, the length of terrorist and irregular warfare campaigns is measured in decades, not year” (Kiras 2019, p.186). While conventional military forces may be larger and technologically superior, they are operating under a government mandate. That same government is answerable to its people, at least if it is the government of a democratic state, so it has to be able to argue the case to its population, for spending money, and committing
soldiers to a conflict. If that government is engaging in a COIN campaign abroad, that is particularly challenging over a longer period of time.

In the case of the COIN campaign in Afghanistan, making the case for the war to begin with, was not a particularly hard sell. Terrorist attacks against the United States were carried out on American soil, and thousands of lives were lost. These terrorists hailed from Afghanistan, and the then Taliban government refused to extradite them. A show of force in the aftermath of 9/11 was necessary in order to demonstrate that such an attack on American citizens would bring the might of the US military down on the heads of those who dared try anything of the kind again. However, the War in Afghanistan has also demonstrated the problem of entering into an open-ended COIN campaign.

Where a state government has to take care of its citizens; provide clean water, health care services, education etc., an insurgency usually has a single cause that is their be all and end all. It follows that this difference in focus leads to different timeline implications for the different sides of the conflict. The longer a conflict drags on, the more problematic it will be for a government to keep funding, and defending the country’s involvement in that conflict to its people. An insurgency has no population to answer to, and its success is largely based on its survival, so a protracted conflict can actually contribute to the insurgency’s perceived legitimacy. Even if the insurgency loses ground, or is severely weakened, as long as it still survives, as long as some semblance of its organization still exits, it can rebuild. It is very difficult to completely eradicate it. Ebbs and flows in the strength of the insurgency and the intensity of the conflict, may be viewed by the insurgents as just small setbacks and advances on the long, bumpy road to their ultimate goal. That goal is their raison d’être, and whether it is reached tomorrow or decades from now, is of less importance. For a government involved in a COIN campaign, these advances and setbacks can mean the difference between getting reelected, and not. Balancing the budget, and not. Retaining legitimacy, both internationally and domestically, and not (Kiras 2019).

In a COIN campaign, or indeed any conflict, that has gone on for the better part of two decades, there will have been advances and setbacks on both sides. The strength of the insurgency will have fluctuated, as will the support of the, in this case, US government’s involvement in the conflict. These fluctuations will affect the next phases of the conflict. They may change the number of troops required, the tools they use etc. Therefore, when
examining a conflict, especially one as long as the War in Afghanistan, and attempting to understand its nuances, looking at the war as a whole may lead to valuable insight being lost.

2.2 US troop levels

2.2.1 Strategic principles of COIN

Every COIN operation will be different, and strategies need to be tailored to the specific conflict, but broadly speaking, there are two main approaches to COIN, the enemy centric approach and the population centric approach. The enemy centric approach has incapacitation or destruction of the insurgency as its primary focus, whereas the main objective of the population centric approach is to safeguard the population, in order to gain their support, and in so doing, ensure the legitimacy of the host nation government. Both in the military- and research communities, there is broad support for the population centric approach as the most effective and fruitful.

The population centric approach is also at the heart of US military COIN strategy. Field Manual 3-24/Marine Corps Warfighting Publication 3-33.5 presents a list of ten strategic principles considered to be relevant to most COIN operations: (1) Legitimacy is the main objective, (2) Counterinsurgent forces must understand the [operational] environment, (3) Intelligence drives operations, (4) Security under the rule of law is essential, (5) Counterinsurgency forces should prepare for a long-term commitment, (6) Manage information and expectations, (7) Use the appropriate level of force, (8) Learn and adapt, (9) Empower the lowest levels, and (10) Support the host nation. (2014, pp. 1-19 – 1-22)

Firstly (1) Legitimacy is the main objective. This is the principle that governs all the others. The primary objective of a COIN campaign is to eradicate the insurgency, and help build or restore the legitimacy of the host nation government. In order to ensure the legitimacy of the government, a COIN force should employ a “balanced application of both military and non-military means” (FM 3-24/MCWP 3-33.5 2014, p. 1-19). A legitimate government will have a better chance at beating back the insurgency, and a government that is perceived as
illegitimate by its population, might strengthen the roots of the insurgency. The following strategic principles are all built on the idea of strengthening the legitimacy of the host nation government in order to weaken the insurgency.

(2) Counterinsurgency forces must understand the [operational] environment. While a certain level of understanding can be gained from studying intelligence gathered from aerial surveillance, the insurgents will hold the advantage with their local knowledge. Some elements, details and nuances, are lost between ground level and the sky. The same applies to intelligence drives operations. When ground forces are involved, a cycle develops, where intelligence gathered, leads to operations, which can uncover more intelligence and so on (FM 3-24/MCWP 3-33.5 2014, p. 1-19 – 1-20).

(4) Security under the rule of law is essential. This principle is based on providing security for the population. FM 3-24/MCWP 3-33.5 emphasizes that this should be the task of host nation security forces wherever possible, however the US COIN forces should assist in providing security for the people. If the level of violence is too high for the host nation security forces to handle, the government may lose legitimacy, which in turn could strengthen the insurgency.

(5) Counterinsurgent forces should prepare for a long-term commitment. Insurgencies are often quickly defeated by the host nation government and their military. However, in cases where foreign governments (specifically the US in this case) get involved, it is usually because the host nation government is unable to beat back the insurgency on their own. In those cases, as discussed previously, it can often lead to a protracted campaign, which will require a long-term commitment of troops and resources.

(6) Manage information and expectations. This point ties in with the objective of retaining legitimacy. The COIN forces, along with the host nation government, must create and maintain a realistic set of expectations among the population. Information is the key to maintaining these expectations. “Effective counterinsurgency commanders tell the truth; they refuse to give projections; and they do not promise more than can be provided” (FM 3-24/MCWP 3-33.5 2014, p. 1-21). The COIN forces’ deeds must match their words, and must also be consistent with the broader narrative. Mismanaged expectations or perceived inconsistencies in information dispersion may reduce credibility and undermine the counterinsurgency efforts.
(7) Use the appropriate level of force. The general rule for the use of force in COIN is “do not create more enemies than you eliminate with your action” (FM 3-24/MCWP 3-33.5 2014, p. 1-21). With this principle, as with the principles related to intelligence gathering, ground forces can do things that are not possible to do from the air. An overwhelming use of force, like an air strike, can sometimes be necessary. However, showing restraint can often be more important for the legitimacy of the operation. “Confrontational military action, in exclusion, is counterproductive in most cases; it risks generating popular resentment, creating martyrs that motivate new recruits, and producing cycles of revenge” (JP 3-24 2013, p. III-13). Ground forces are needed in order to judge what kind of action is required in the different situations that arise.

(8) Learn and adapt. This point also relates to the principles of understanding the environment, and the importance of intelligence. Insurgents are adept at adapting. A COIN force must be able to learn from the information it gathers in operations it performs, and adapt its strategy and approach to fit the confines of the environment in which it operates, and it must be able to do it at least as quickly as the insurgents. The insurgents may change their strategies, locations etc. Regardless of the changes that occur in the operational environment, a COIN force must learn and adapt. (FM 3-24/MCWP 3-33.5 2014, p. 1-21).

(9) Empower the lowest levels. Effective COIN operations are decentralized, so it is important for local commanders to have the requisite capabilities at their level. These local commanders are the ones with the clearest understanding of their particular environment and situation, and in order to best perform their roles, they “require access to or control of the resources needed to produce timely intelligence, conduct effective tactical operations, and manage intelligence and civil-military operations” (FM 3-24/MCWP 3-33.5 2014, p. 1-21).

(10) Support the host nation. The purpose of a COIN force is to lend assistance in defeating the insurgency, but ultimately, the host nation government must win on its own. In order to achieve a definitive victory, the host nation must build up viable local leaders and institutions. The bigger the part of the host nation government in creating the institutions necessary to govern, the better. As with the other strategic principles, legitimacy is the key word. However, depending on the state of the host nation government (if it is failed or failing), the COIN forces may have to play a bigger part in institution building.
Running through all these principles is a theme of balance; the balance between military and non-military means, the balance of providing help and guidance, while not stepping on the host nations’ toes, the balance of enough troops to sufficiently support the host nation, but not being too overwhelming of a presence.

2.2.2 COIN and the mechanization of forces

In “Rage Against the Machines: Explaining Outcomes in Counterinsurgency Wars” (2009), Lyall and Wilson analyze 286 insurgencies from 1800 to 2005. Their findings indicate that COIN wars had a higher success rate in the nineteenth-century than in the twentieth-century, and that the primary reason for this shift, is the increasing mechanization of state militaries after World War I. They argue that more mechanized forces have less need to interact with the local population, because they are able to bring the necessary supplies with them. “Nineteenth-century militaries were organized around “foraging” principles in which soldiers extensively interacted with local populations to acquire supplies in the conflict zone” (Lyall and Wilson 2009, p. 68). Interacting with the local population in this way meant that the COIN forces were exposed to, and able to collect, a considerable amount of information that could be used to fight the insurgency. More mechanized forces on the other hand, suffer “information starvation” due to their lack of interaction with the local population. Lyall and Wilson (2009) contend that this can fuel insurgencies, rather than suppress them. When suffering from “information starvation”, separating the combatants from the non-combatants is made significantly more difficult for the COIN forces. This makes it more of a challenge to selectively punish and reward, and to know what would be the appropriate use of force. In addition, the force structure of the modern military is built in such a way as to ensure that soldiers can survive on high-intensity battlefields. Because the soldiers are better equipped to survive in that kind of environment, it creates an us-and-them situation, separating them from the local population, who feel they face a greater risk than the COIN soldiers. A separation like that further contributes to the “information starvation”, as it makes it harder for the COIN forces to recruit local collaborators (Lyall and Wilson 2009).
While the US ground troops in Afghanistan are still mechanized, a higher presence of ground forces, as opposed to for example a heavier focus on aerial warfare, fits better with both COIN doctrine and the findings in Lyall and Wilson (2009).

2.2.3 US troops in Afghanistan

The strategic principles of COIN operations, and the findings in Lyall and Wilson (2009), lays out guidelines for how a COIN force should operate, but how large should it be?

McGrath (2006) analyzes successful contingency operations to determine the right level of troop density. A previous estimate (which McGrath challenges in his analysis) for the number of troops required in order for a contingency operation to succeed is 20 troops per 1000 inhabitants. This estimate fails to take into account several factors. For instance, it does not account for the size of the area, only the number of inhabitants. McGrath (2006) estimates that the number of troops required for a successful contingency operation is 13.26 troops per 1000 inhabitants, and this figure includes any other operational forces, like indigenous police and military forces, and contractors. The basic operational unit in the analysis is a brigade or its equivalent, which, in the analysis, averages out to 5909 troops. That works out to one brigade per 483 141 inhabitants. The number of US troops in Afghanistan has fluctuated greatly; from 1300 in the first month of the war, to 100 000 at the most in 2010, and back down to 8400 in 2016. This means that at the most, there was the equivalent of approximately seventeen brigades of US troops in Afghanistan, and if there should be one brigade per 483 141 inhabitants, seventeen brigades cover roughly 8.2 million inhabitants. The population of Afghanistan increased from around 20 million at the beginning of the war, to just over 35 million in 2017 (Worldometers.com).

There are a few things to note concerning these numbers. Firstly, McGrath (2006) analyzes contingency operations in general, which is not necessarily the same as a COIN operation. COIN operations may fall under the “contingency operation” umbrella term, but the two terms are not interchangeable. Therefore the troop density estimations may not be accurate for COIN operations alone. Secondly, not all of Afghanistan is equally affected by the insurgency at any given time, so there does not necessarily have to be enough troops on the ground to cover the entire population in order for the estimate to hold. Thirdly, the estimate
of 13.26 troops per 1000 inhabitants, include all operational forces, which in Afghanistan consist of not only US troops, but also NATO troops, and Afghan forces.

While these estimates should be taken with a grain of salt, they do indicate that there could be a correlation between higher troop levels and a weaker insurgency, which would translate to lower levels of terrorist violence. Because the US troop levels change significantly over the course of the war, we might expect to see a change in the effect of US troop levels on terrorist violence across the different stages of the war.

2.3 Narcotics

The illegal production of narcotics represents a large part of the Afghan economy, and most of this comes from cultivating opium poppies, and producing opium and heroin. Afghanistan is responsible for around 90% of the world’s illegal opium production (Blanchard 2009). Helmand province is, and has been for many years, the leading poppy cultivating province, followed by Kandahar, Uruzgan and Nangarhar (Afghanistan Opium Survey 2018). With the exception of 2001, when numbers were low following a Taliban ban on it in 2000, poppy cultivation has been steadily on the rise in Afghanistan. After the Taliban was removed from power in 2001, the cultivation bounced back in 2002. This was attributed to the power vacuum that occurred in the aftermath of 9/11 and the following invasion (Afghanistan Annual Opium Poppy Survey 2001; Afghanistan Opium Survey 2002).

Lind, Moene and Willumsen (2014) examine the effect of conflict on narcotics production in Afghanistan, and find that rising conflict levels lead to higher narcotics production. Their analysis posits that conditions created by conflict, incentivizes farmers to cultivate poppies instead of other crops. Military actions can be destructive, but the declining rule of law in the aftermath, can create new illegal opportunities. Poppy cultivation is one such opportunity. There are several advantages to planting poppies as opposed to for example wheat, which is the main alternative crop, according to Lind et.al (2014). Poppies have a high value relative to the space they take up, but they are also hardier. Poppy crops are more resistant to drought
than wheat, and they are easier to transport off road, both of which are useful characteristics if the conflict has laid waste to irrigation and infrastructure.

While Lind et.al (2014) find that rising conflict levels lead to an increase in poppy cultivation, they do not find the reverse link. Their analysis does not indicate that narcotics production leads to conflict. However, they do not rule out the possibility that drugs-for-arms mechanisms are at work simultaneously. This would create a vicious circle, where conflict leads to the production of narcotics, in which strongmen organize the production to finance military campaigns. Even if they are not directly involved in the production, these strongmen can profit from the production through taxation at several points in the process. According to Blanchard (2009), the 2006 Taliban resurgence was financed, in part, by proceeds from the Afghan opium production.

This is in line with Cornell’s (2005; 2007) findings; conflict boosts drug production and affords insurgent groups the opportunity to get involved in, and benefit from, that drug production in order to fund their cause. According to Cornell, “where narcotics production exists, armed conflict is likely to fundamentally alter its dynamics – and to be fundamentally altered itself.” (2005, p. 757). In the same paper, he claims that given the opportunity to get involved in narcotics production, most insurgent groups will seize that opportunity. They might start by simply tolerating it and taxing it, to then transition into a more lucrative direct involvement (Cornell 2007). With the funding from this involvement, they are able to expand their capabilities, making it more of a challenge for the COIN forces to beat them. Cornell finds that narcotics production does not itself prolong conflicts, but that the magnitude of the narcotics production seems to be related to the magnitude and duration of the conflict. He also states that armed conflict “presently appears to be a prerequisite for the large-scale cultivation of opiates [...], which makes sense as these crops are being increasingly tightly controlled by the international narcotics control regime.” (Cornell 2007, p. 217).

Poppy cultivation appears to be inextricably linked to conflict in Afghanistan, so it seems reasonable to think that the changes in patterns of terrorist violence might affect and/or be affected by changes in the production of opium.
2.4 Elections

The majority of election violence occurs during armed conflict. Daxecker and Jung (2018) find that between 1990 and 2012, 59% of all election violence took place during armed conflict, indicating that election violence is closely linked to other political conflict. In addition they find that, with the exception of Africa, armed groups, not the government, are the main perpetrators of election violence during armed conflict. These groups will often have goals and agendas that do not align with the parties participating in the election. On the whole, pre-election violence appears to be more common than violence during and after the election.

Afghanistan is a significant contributor to election violence in the Daxecker and Jung (2018) analysis. Election violence spikes in the period between 2001 and 2007, which they attribute largely to elections in Egypt, Iraq, Ukraine and Afghanistan, with particularly high levels of violence occurring in 2004 and 2005. These years coincide with elections in Afghanistan. The violence related to the 2009 Afghan elections was especially high, accounting for 4% of election violence during armed conflict for the whole period (from the end of the Cold War up to 2012).

The first election after the war began was a presidential election, held in October 2004. The election was judged to be reasonably free and fair, and saw the interim President, Hamid Karzai, declared the winner with 55% of the vote (Worden 2010). Both the presidential election in 2004 and the following parliamentary election in 2005 were held before the 2006 Taliban resurgence. The Taliban insurgency was still building and organizing in 2004 and 2005, and so had little ability to influence the elections. There was slightly more Taliban interference in the 2005 election, reflecting the growth of the organization, however it was a modest increase (Giustozzi 2014).

The 2009 presidential elections, held on August 20th, were different from the 2004 elections in several respects. While the 2004 elections were considered reasonably free and fair, the 2009 elections were anything but. There were reports of widespread and systematic fraud. The reports from polling sites did not correspond to the number of voters; the voter turnout was low, and yet ballot boxes were full. Reports even came in from polling sites that never
opened their doors on Election Day. The Electoral Complaints Commission (ECC) threw out 1.2 million illegitimate votes. After discarding the illegitimate votes, there was no candidate with an actual majority. For the sake of retaining legitimacy, several international diplomats had to convince sitting President Karzai to hold a runoff election between himself and the runner-up, Abdullah Abdullah, the former foreign minister. This election was scheduled for November 7th, however Abdullah withdrew on November 1st due to his belief that the second round would play out in much the same way as the first (Worden 2010).

Ahead of the election, the Taliban had been threatening to attack polling sites, and to wreak reprisals on voters. The voters would be marked with indelible ink to ensure they did not vote more than once, so they would be easily recognizable. It seems reasonable to assume that these threats played a part in the low voter turnout. Election Day 2009 was one of the most violent in Afghanistan since the ousting of the Taliban government in 2001. The violence continued post-election, and did not die down until November, when Abdullah pulled out of the runoff election (Worden 2010). The Taliban violence during the 2010 parliamentary elections was comparable to the 2009 elections (Giustozzi 2014).

The 2014 elections was a significant political event. Due to term limits, President Karzai could not run for reelection. The 2014 elections became the first democratic transfer of power in the history of Afghanistan, however it did not go smoothly. In addition to threats of violence against voters coming from the Taliban, the election process itself was a protracted one. The election was first held in April, followed by a runoff election in June, between Ashraf Ghani and Abdullah Abdullah. There was reportedly fraud committed on both sides, and the results failed to produce a clear winner, so in September, three months after the election, Ghani and Abdullah reached a cooperation agreement. Ghani was announced as the president, and Abdullah would be “Chief executive” (Jeong 2014; Pengelly 2014).

The Taliban’s view of elections seems to be largely based on the foreign involvement. The international community places a great deal of importance on elections. The Taliban therefore views elections as a negative reflection of foreign interference. Because elections are seen as benchmarks of progress and success in Afghanistan by the international community, particularly in the West, the Taliban see them as necessary targets. Not only are they necessary targets, they are convenient; very visible, and at the same time vulnerable and soft (Giustozzi 2014).
2.5 Islamic State - Khorasan

On January 26, 2015, the establishment of the Islamic State – Khorasan Province (IS-K) was formally announced. Khorasan is not an official province in Afghanistan, but refers to the historical region of Khorasan, which included parts of Iran, Pakistan and Central Asia in addition to Afghanistan. As an offshoot of the Islamic State of Iraq and Syria (ISIS), IS-K was established to revive this historical region (Ibrahimi and Akbarzadeh 2019).

The relationship between the Taliban and IS-K has been a complicated one. While they share a common cause, jihad, they come at it differently. The Taliban’s focus is largely national, focused on Afghanistan, whereas IS-K’s focus is transnational, committed to the Islamic State and its establishment of a worldwide caliphate. This national vs. transnational focus is not itself a deal breaker for a cooperative relationship, after all the Taliban has a history of cooperation with Al-Qaeda, another group with a transnational focus. However, the first head of IS-K, Hafiz Saeed Khan made his disapproval of the Taliban’s actions known in an interview with the Islamic State’s magazine, Dabiq, where he criticized the Taliban, the Tehrik-e-Taliban Pakistan (TTP), and Al-Qaeda for mixing tribal traditions with religion, instead of adhering to strict Islamic Sharia. For allowing and participating in opium- and heroin production, and for working with the Pakistan intelligence agency (Ibrahimi and Akbarzadeh 2019).

The tension between the Taliban and IS-K was not just a war of words about the interpretation of the jihadist cause. In 2015 and 2016 there was heavy conflict and fighting between the groups due to IS-K taking territories and resources from the Taliban, and also recruiting from their ranks. While the fighting between the Taliban and IS-K was fierce, there were still many groups and individuals who did not want to chose a side, believing that there was more that united the groups than divided them, both ideologically and through connections, that in some cases were familial bonds. The Haqqani network for instance, who are generally considered to be under the Taliban umbrella, but operating with a great deal of autonomy, retained close relations with both the Taliban and IS-K throughout this period. Eventually, while still considering each other adversaries on a national scale, the two groups opened up for the possibility of local cooperation and sharing of resources (Ibrahimi and Akbarzadeh 2019).
The formation of IS-K began in March 2014, when nine members of Al-Qaeda pledged their allegiance to the Islamic State. In October 2014, the Islamic Movement of Uzbekistan (IMU) followed suit, and after that came a splinter group of the TTP, who declared their allegiance in November. In January 2015, the groups that had pledged allegiance to the Islamic State coalesced into IS-K under the leadership of Hafiz Saeed Khan, a former TTP commander. Nangarhar province, across the border from the Federally Administered Tribal Areas in Pakistan, became the de facto IS-K capital.

The TTP and the afghan Taliban experienced some internal crises in this time period, which likely contributed to groups breaking off, and joining IS-K. In 2010, the Pakistan military displaced the TTP, and managed to push them across the border into Afghanistan. Then, in the summer of 2015, it came to light that Taliban leader, Mullah Muhammad Omar, was killed in 2013, and that the Taliban leadership inner circle had kept this under wraps for two years. His death, and the way it was kept secret, made many question the legitimacy of the Mullah Omar’s successor. While these internal crises were playing out in the TTP and the Taliban in Afghanistan, ISIS was expanding in an impressive fashion. After capturing major cities in Iraq, and moving into Syria, they announced the establishment of a worldwide caliphate under the leadership of Abu Bakr Al-Baghdadi in June 2014 (Ibrahimi and Akbarzadeh 2019).

IS-K’s ranks swelled quickly, and by 2016 it was estimated that they had 7000-8500 members in Afghanistan alone. This rapid growth came with challenges for the Taliban, who lost members, associated groups, territories, and resources to IS-K, but there were also benefits.

The expansion of ISIS, and the growth of IS-K meant a shift in priority for US and NATO forces in the region. From 2015 onward, ground and air offensives by Afghan, US, and NATO forces, in conjunction with attacks by the Taliban, led to heavy losses for IS-K. Not only did IS-K draw fire away from the Taliban because of their rapid growth and extreme violence, but the military offensives against IS-K also aided the Taliban in their fight. With their numbers diminished, the weakened IS-K presented less of a challenge to the Taliban, and could possibly even be viewed as an ally. Because of IS-K’s extreme brutality, the Taliban’s public image has improved comparatively. They seem more moderate next to IS-K, even though the Taliban is responsible for far more deaths. In 2014, 72% of casualties in Afghanistan were attributed to the Taliban. In 2017, IS-K was responsible for 10% of the
casualties, but their methods were considerably more brutal. The Taliban also benefits from IS-K’s extreme violence by trading on it through the mutual jihadist cause, without having to commit resources to it. IS-K is proving a Taliban point for them, namely that the Afghan government incapable of protecting its population (Ibrahimi and Akbarzadeh 2019).

IS-K only appears in the later stages of the war, and so it follows that the effect of their emergence could skew the results when analyzing the war as a whole. It may be that we see an increase in violence when IS-K appears, or it could be that the fight with the Taliban took up resources on both sides, which could mitigate the effect of the IS-K emergence on terrorist violence. It is also possible that IS-K’s transnational nature means that not all of their violent attacks show up in this analysis. IS-K is also present in other countries in the region, and this analysis only looks at Afghanistan.
3 Data and method

3.1 Variables

3.1.1 Dependent variable

The dependent variable in the analysis is taken from the Global Terrorism Database. The GTD includes incidents of terrorism from 1970 to 2017, across the globe. The GTD defines a terrorist attack as “the threatened or actual use of illegal force and violence by a non-state actor to attain a political, economic, religious, or social goal through fear, coercion, or intimidation”. In practice this means in order to consider an incident for inclusion in the GTD, all three of the following attributes must be present: (1) The incident must be intentional – the result of a conscious calculation on the part of the perpetrator, (2) the incident must entail some level of violence or immediate threat of violence (includes property violence), and (3) the perpetrators of the incidents must be sub-national actors, meaning the database does not include acts of state terrorism.

In addition, at least one of these criteria must be met in order for an incident to be included in the GTD: (1) The act must be aimed at attaining a political, economic, religious, or social goal, and in terms of the economic aspect, it cannot be simply for profit, it must be for some greater systematic economic change. (2) There must be evidence of an intention to coerce, intimidate, or convey some other message to a larger audience (or audiences) than the immediate victims. (3) The action must be outside the context of legitimate warfare activities, meaning the act must be outside the parameters permitted by international humanitarian law (particularly the prohibition against deliberately targeting civilians or non-combatants).

For the purposes of this analysis, I created a subset of the GTD for Afghanistan from 2001 to 2017. While the war began in October 2001, I chose to include 2001 in its entirety in order to see if there was an immediate effect from the invasion when it came to terrorist attacks.
In order to make the dependent variable *attacks per month* I had to tweak the dataset slightly. The dataset did not include a monthly tally of terrorist attacks, so I used the existing *date*-variable to create a *month-year*-variable. From this *month-year*-variable, I got the number of attacks on a monthly basis, and used this to create a simple count variable for *attacks per month* from January 2001 to December 2017.

3.1.2 Independent variables

In order to account for a possible contagion effect between attacks, I created lagged *attacks per month*-variables; one for *attacks* (t-1) and one for *attacks* (t-3). My reasoning here was that between individual terrorist attacks, there might be a contagion effect between attacks within one month, but it seems less likely that this effect holds up with a three month lag. If it does, that would be worthy of discussion.

The GTD does not includes variables for US troop levels, narcotics production, elections, or the Islamic State – Khorasan. These variables I have had to create myself based on other source material.

The *US troops*-variable was based on a timeline of US troop levels in Afghanistan from *Military Times* (2016). There are several potential problems with the accuracy of this variable. The article only provides a rough overview of troop numbers, so the numbers in the variable are as approximate. There is also a lack of temporal consistency in this timeline. That could be merely a consequence of the article simply reporting when the number of troops changed, meaning that between each point on the timeline the troop levels stayed the same, however I think it is more likely that there was a lack of available data for certain periods.

Another important point is that there were not only American troops in Afghanistan. Britain was involved from the beginning of the campaign, and NATO forces soon joined, so while the US provided the majority of the troops, there was a contingent of foreign troops on Afghan soil throughout the war, which this variable does not account for. All of this contributes to the inaccuracy of the *US troops*-variable, however the variable does still
provide an overview of the troop levels that should be able to show the trends throughout the different stages, and the war as a whole. The variable is coded as US troops (1000).

The narcotics variables are based on reports from the United States Department of State. The International Narcotics Control Strategy Report is a yearly report created by the US State department. In order to get the numbers from 2001 to 2017, I had to use several reports (2007, 2010 and 2019), and where the reports overlap, they have the same numbers. Based on these reports, I created two variables. First, a poppy crop-variable, which is the number of hectares of poppy crops produced in a particular year, coded as poppy crop (1000 hectares). Second, an opium-variable, which is the number of metric tons of opium produced in a particular year, coded as opium (100 metric tons).

The election-variable is a dummy-variable, coded 1 for the month of an election, and 0 for months without elections, using dates from OSCE. To account for pre- and post-election violence, I have created lagged variables for 1 and 3 months pre-election, and 1 and 3 months post-election.

Because the election-variable is month of election, there may be some pre- and post-election violence within the election-variable itself, which means it will not accurately show election day violence alone, but it will still indicate whether there was an increase in terrorist attacks in relation to the election. The variable also doesn’t distinguish between parliamentary- and presidential elections. Daxecker and Jung (2018) find that parliamentary elections tend to be more violent than presidential elections, however the first two stages of the war both include a parliamentary- and a presidential election, so that should mitigate that effect if it exists in these data, therefore I chose not to separate them into two variables. In addition, the premise of this analysis is that different circumstances in each of the stages leads to different patterns of terrorist violence, and as discussed previously, the circumstances surrounding the elections, particularly in the first two stages, were very different, and therefore this is likely to have a greater effect on the results than parliamentary- vs. presidential elections. There are also only five elections in total (or six if you count the two election rounds in 2014 as separate elections – they are coded as separate elections in the dataset) throughout the war (3 (or 4) presidential and 2 parliamentary), which is too small a number to draw any definitive conclusions on parliamentary- vs. presidential election violence.
The IS-K variable is a dummy-variable, which is coded 0 for 2001-2014, and 1 for 2015-2017. The Islamic State – Khorasan became official in January 2015 (Ibrahimi and Akbarzadeh 2019), I therefore chose that as the starting point for the variable. The formation of IS-K began prior to this, and in-fighting between the Taliban and those pledging their allegiance to the Islamic State could have an impact on the data prior to 2015, however fighting between insurgents will not show up in the GTD dataset, and IS-K would likely have been too busy organizing to perform many acts of terrorist violence, if any, before the group was official. The first attacks attributed to IS-K in the GTD dataset are in 2015, which seems to support the previous assumption.

3.1.3 Other GTD variables

There are a number of other variables in the GTD that I will not be including in the main statistical analysis, but whose trends still merit discussion.

Suicide is the first of these. It is a dichotomous variable, coded 1 if the terrorist attack was a suicide attack, and coded 0 if it was not. Using the suicide-variable and the month-year-variable, I created a count variable for the number of suicide attacks per month in the same way as I created the attacks per month-variable.

Attacktype is a categorical variable in which the nature of each attack is recorded. There are nine categories of attack types. (1) Assassination, which is defined as an act whose primary objective, is to kill a specific individual, or individuals. The targeting of police officers is classed as an armed assault, unless there is reason to believe that they were specifically targeted as individuals. (2) Hijacking, an act whose primary objective is to take control of a vehicle and divert it, for some political objective. (3) Kidnapping, and (4) barricade incident, are both acts whose primary objectives are to take control of hostages for the purposes of achieving a political objective, but kidnappings involve moving the hostages, whereas a barricade incident takes place at the target location. (5) Bombing/explosion is an attack, which involves explosive devices. (6) Armed assault is an attack where the primary objective is to kill or inflict injuries on human beings, using firearms, incendiary, or sharp instruments.
(knives etc.). It also includes some classes of explosive devices, like grenades, projectiles, and unknown or other explosive devices that are thrown. (7) Unarmed assault is an attack intended to cause death or injury to human beings by any other means than explosive, firearm, incendiary, or sharp instrument. Attacks involving chemical, biological, or radiological weapons are considered unarmed attacks. (8) Facility/infrastructure attack is an act, excluding the use of an explosive, which is intended to cause damage to non-human targets, such as buildings etc. The final category is (9) Unknown attack type.

Weaptype, is another categorical variable, where the type of weapon used in each attacks is recorded. There are thirteen categories of weapon types. (1) Biological, (2) Chemical, (3) Radiological, (4) Nuclear, (5) Firearms, (6) Explosives, (7) Fake weapons, which are weapons that the perpetrator claimed was real, but was found later to be non-existent or incapable of producing the desired effect. (8) Incendiary, (9) Melee, a weapon which the user and target are both in contact with simultaneously, e.g. fists, knives, rope etc. (10) Vehicle, an automobile used in an incident which does not include explosives. In other words, a car bomb would be coded as explosives, not as a vehicle attack. (11) Sabotage equipment, a weapon that is used in the demolition or destruction of property. (12) Other, a weapon that has been identified, but does not fit into any of the other categories. (13) Unknown, used for attacks where information on the type of weapon used was unavailable.

Targtype is a categorical variable in which the type of target for each attack is recorded. *Targtype* has twenty categories: (1) Business, which is defined as any individual or organization engaged in commercial activity as a means of livelihood, (2) Government (General), which is any government building or government member, (3) Government (Diplomatic), which is foreign missions, including embassies, consulates etc. (4) Police, any member of the police force or police installations. (5) Military, which includes any target connected to the military, but excludes non-state militias and guerrillas. (6) Airports and aircrafts, (7) Educational institutions, (8) Food or water supply, (9) Journalists and media, (10) NGOs, (11) Private citizens and property, (12) Religious figures/institutions, (13) Telecommunication, which is facilities and infrastructure for the transmission of information, e.g. cell phone towers, television transmitters etc. (14) Terrorists/non-state militias, broadly defined as anyone with known terrorist affiliations, and militias and guerrillas, (15) Tourists, (16) Transportation, includes any public transportation other than aviation, even highways. (17) Utilities, which include facilities and infrastructure for the transmission or generation of
energy. That means anything from oil pipelines, to electrical transformers, to street lamps. (18) Violent political parties, this category is for entities that are both political parties and terrorists. (19) Other, includes targets that do not fit into the other categories, such as firefighters, ambulances etc. (20) Unknown, is for attacks were the intended target is not known.

Provstate is a text variable, which simply records the province in which an attack occurs. There are 34 provinces in Afghanistan: Badakhshan, Badghis, Baghlan, Balkh, Bamyan, Daykundi, Farah, Faryab, Ghazni, Ghor, Helmand, Herat, Jawzjan, Kabul, Kandahar, Kapisa, Khost, Kunar, Kunduz, Laghman, Logar, Nangarhar, Nimroz, Nuristan, Paktia, Paktika, Panjsher, Parwan, Samangan, Sari Pul, Takhar, Uruzgan, Wardak, and Zabul. While some provinces experience more violent attacks than other, every province has experienced terrorist attacks during the course of the war. In cases were the location of an attack is not known, the variable is coded as Unknown.
3.2 The Stages

The dependent variable (attacks per month) was used as a basis for dividing the war into stages. When looking at a graph of the dependent variable from 2001 to 2017, there looks to be three distinct stages; the first is from the beginning of 2001 to March 2006, the second stage is from April 2006 to August 2011, and the third is from September 2011 onwards. The vertical lines on figure 1 indicates the cut points between stages.

Figure 1 – Number of terrorist attacks per month

Looking at the graph, the stages clearly begin and end around the cut-points mentioned above, but in order to select the specific months for the cut-points, I took a closer look at the dependent variable (attacks per month). To pinpoint the best end-point for stage1, I looked at the number of attacks in the spring of 2006, and found that April represented an upswing in attacks with 42, which was nearly double even the highest numbers in the months proceeding it, and roughly seven times as high as the lowest numbers in the months before. The numbers held up in May 2006, with 38 attacks. This also makes sense substantively, as the Taliban resurgence happened in 2006 (Blanchard 2009). I therefore concluded that the first stage should end in March 2006. Similarly for the second cut-point, I took a closer look at the
attacks per month-variable around the Summer/Fall of 2011. In August 2011, there were 21 attacks, and in September of the same year, there were 41 attacks. The cut-point was slightly less obvious in this case, because while September had double the amount of attacks, the earlier summer months in 2011 had attack numbers in the mid-thirties, however these numbers were high compared to the previous winter and spring, and were possibly a reaction to the assassination of Osama bin Laden in May 2011 (CNN Library 2019). In the months following September 2011, the numbers rise rapidly. That September also marked the 10-year anniversary of the 9/11 attacks. These factors combined led me to the conclusion that August/September 2011 was a natural cut-point between stages 2 and 3.

3.3 Negative Binomial Regression

In this analysis I am using Negative Binomial Regression. Negative Binomial Regression is a type of generalized linear model where the dependent variable is count variable, meaning it is consists of non-negative integers which are based on a count of how many times an event occurs, rather than on ranking. This fits with the dependent variable in this analysis, which counts the number of terrorist attacks per month throughout the War in Afghanistan.

Why use Negative Binomial Regression, and not for example OLS? A key assumption in OLS regression is that the dependent variable is continuous. If, as in the case of this analysis, the dependent variable is a count variable, which is a discrete variable, treating it as a continuous variable, and applying a linear regression model, it can result in inefficient, inconsistent, and biased estimates (Long 1997, p. 217). Because OLS assumes a continuous dependent variable, it can predict values that are negative, and also values that are non-integers, and those predictions will not make sense with a count variable (non-negative integers) as the dependent variable.

There are regression models specifically for count data, the simplest of which is the Poisson regression model. The Poisson regression model assumes that the dependent variable follows
the Poisson distribution, which is a discrete distribution that measures the probability of a given number of events happening in a specified time period.

A potential problem with the Poisson regression model is that it assumes that the mean is equal to the variance, which is often not the case. The majority of the time, there will be overdispersion, where the variance is greater than the mean. The Poisson regression model also assumes that events are independent, so that one event occurring does not affect the probability of other such events occurring in the future. When modeling terrorist attacks, that is an assumption we cannot make. A terrorist attack at a given time may very well lead to an increased probability of other terrorist attacks taking place in the future. Contagion effects, such as those that may exist between terrorist attacks, can be the cause of overdispersion (King 1989; Long 1997). Overdispersion is caused by non-independence of events. The Poisson regression model is therefore not ideally suited for the dependent variable in this analysis.

The Negative Binomial Regression model can be considered as a generalization of the Poisson regression model, which loosens the restrictions of the Poisson model by allowing the variance to be different from the mean. This accounts for the overdispersion, and therefore also the contagion effects. Because the dependent variable in this analysis is the number of terrorist attacks per month, it follows that the events may not be independent of each other, and that there is a contagion effect. The mean of the dependent variable is 63.94, and the variance is 3627.29, confirming that the variable is indeed overdispersed, and that the Negative Binomial Regression model is the better model for this analysis.
4 Findings

In this chapter I will present the findings in my analysis. I will begin by discussing the results of the main statistical analysis in which I performed negative binomial regression analyses on the separate stages of the war, with the number of terrorist attacks per month as the dependent variable, and independent variables related to US troop levels, narcotics, elections, and IS-K. Following that, I will be discussing the trends of five other variable from the GTD dataset; suicide attacks, type of attack, type of weapon, type of target, and provinces. Including another negative binomial regression with the number of suicide attacks per month as the dependent variable, and the total number of terrorist attacks per month as the independent variable.
4.1 Statistical analysis

Table 1 contains the results of the negative binomial regression analyses performed on each stage of the war separately, and on the war as a whole.

| Table 1 - Terrorist violence during the War in Afghanistan |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| | Stage 1 | Stage 2 | Stage 3 | Whole war |
| Attacks (t-1) | -0.005 | -0.001 | 0.004** | 0.008*** |
| | (0.017) | (0.004) | (0.001) | (0.001) |
| Attacks (t-3) | -0.003 | -0.0005 | -0.001 | 0.005*** |
| | (0.018) | (0.004) | (0.001) | (0.001) |
| US troops (1000) | 0.009 | -0.003 | -0.004* | 0.013*** |
| | (0.044) | (0.003) | (0.002) | (0.001) |
| Poppy crop (1000 hectares) | -0.011*** | -0.001 | 0.004*** | -0.002 |
| | (0.004) | (0.004) | (0.002) | (0.002) |
| Opium production (100 metric tons) | 0.069*** | -0.005 | -0.012*** | 0.022*** |
| | (0.026) | (0.008) | (0.005) | (0.005) |
| Election | 0.388 | 1.237** | 0.110 | 0.401* |
| | (0.463) | (0.300) | (0.168) | (0.206) |
| Pre-election (1 month) | -0.114 | 0.318 | -0.177 | -0.213 |
| | (0.526) | (0.377) | (0.225) | (0.220) |
| Pre-election (3 months) | -0.286 | -0.084 | 0.060 | -0.299 |
| | (0.493) | (0.374) | (0.194) | (0.220) |
| Post-election (1 month) | 0.161 | 0.800*** | 0.335 | 0.370* |
| | (0.512) | (0.280) | (0.230) | (0.208) |
| Post-election (3 months) | -0.139 | 0.539* | -0.167 | 0.188 |
| | (0.496) | (0.280) | (0.194) | (0.209) |
| Islamic State Khorasan | -0.237 | 0.613*** | 0.138 | 0.156 |
| | (0.138) | (0.156) | (0.130) | (0.130) |
| Constant | 0.687*** | 4.080*** | 4.479*** | 1.406*** |
| | (0.255) | (0.546) | (0.274) | (0.130) |

Observations	53	65	73	191
Log Likelihood	-151.438	-255.369	-343.012	-827.646
theta	3.477*** (0.997) 8.437*** (1.876) 29.131*** (6.012) 4.712*** (0.590)			
Akaike Inf. Crit.	324.876	532.738	710.024	1,679.292

Note: *p<0.1; **p<0.05; ***p<0.01
Dependent variable is number of attacks per month
The lagged variable, *attacks (t-1)*, is not significant for the first two stages of the war, but it is significant in stage 3. It is perhaps not surprising that there is a contagion effect between attacks in stage 3, as the total number of attacks is much higher than in stages 1 and 2. This effect is also significant for the war as a whole. Which means that when analyzing the war as a whole, it gives the appearance that there is a contagion effect throughout the war, but when dividing the war into stages, we see that the contagion effect is only present in stage 3.

Similarly, *attacks (t-3)*, is significant for the war as a whole, making it seem like there is a three-month contagion effect between attacks, but when analyzing the stages individually, we see that *attacks (t-3)* is not significant for any of the three stages. The contagion effect that appears to exist for the whole war does not appear to exist within the individual stages. This supports my assumption that analyzing the war as a whole will produce misleading results.

Like *attacks (t-1)*, *US troop levels* is only significant for stage 3, and the war as a whole. In this case, however, the results point in opposite directions. In stage 3 there is a negative effect, indicating that the troop levels help decrease the number of terrorist attacks, whereas for the whole war the effect is positive, giving the impression that higher US troop levels contribute to higher numbers of terrorist attacks, when that is not what the individual stages indicate.

The narcotics variables produce some interesting results. *Poppy crop* is significant for both stage 1 and stage 3, but not for the war as a whole, giving the misleading impression that poppy cultivation does not have an effect on terrorist violence. This could be because the *poppy crop* effect is negative in stage 1, and positive in stage 3, possibly cancelling each other out over the course of the war. The negative effect in stage 1, indicating that higher levels of poppy cultivation lead to fewer terrorist attacks, could be due to the steady rise of poppy cultivation in that period, while the Taliban insurgency was still in its infancy. In stage 1 the Taliban was still organizing and gathering strength, so their capacity for violence was very low compared to the other two stages of the war, but poppy cultivation has risen steadily throughout the war, including stage 1. In stage 3, the *poppy crop* effect is positive, indicating that there is a correlation between higher levels of poppy cultivation and higher numbers of terrorist attacks, which is consistent with the findings in Lind et.al. (2014), and Cornell (2005; 2007). Conflict and narcotics production influence each other; more poppy cultivation means more money for insurgent groups, which in turn leads to increased capabilities, and therefore more violence.
Opium production is also significant for stages 1 and 3, but the effects are opposite of poppy crop, which is somewhat surprising. Given that the opium is produced from the poppy crops, it would not seem unreasonable to assume that the variables should produce a similar effect to each other. There are a few possible explanations for this. There might be a lag between the variables, so the number of metric tons of opium produced in a given year might stem from the previous year’s poppy crop. There might also be inconsistencies in crop size between planting and harvesting. The crops could have been affected by drought, or they may have been casualties of war, either as collateral damage from fighting in the area, or from intentional eradication operations performed by the US and NATO forces.

The opium production-variable also has a significant, and positive effect for the war as a whole. This makes sense from a theoretical point of view, but it fails to account for the fluctuations in effect across the different stages.

The election-variable is significant for stage 2, but not stages 1 and 3. The 2009 and 2010 elections were extremely violent and contentious, so it is not surprising that this effect shows in the analysis of stage 2. At that point in time, the Taliban insurgency had enough funds and organization to get involved in the elections. There was also widespread corruption, which could lead to increases in violent attacks as well. The effect is also significant for the whole war, probably largely due to the effect in stage 2 being so strong. This shows once again that analyzing the war as a whole produces results that are not consistent across all stages.

Because the Taliban was still building their organization in stage 1, and the 2004 elections were reasonably free and fair, it is not very surprising that there does not seem to be a correlation between elections and terrorist attacks in stage 1, but perhaps more surprising that there is no significant effect for stage 3. The Taliban had the capabilities to interfere in the 2014 elections, and given that there was a runoff election between Ghani and Abdullah in June after the initial election was held in April, it would not be unreasonable to expect an uptick in terrorist violence around the election. This effect may have been mitigated by the historic nature of the election, in that it was the first democratic transfer of power in Afghanistan. It is also possible that the election related violence drowned in the high number of terrorist attacks in stage 3. Looking at figure 1, there appears to be an increase in violence after April, however that spike in violence does not stand out is stage 3, it is just one of many.
Neither of the pre-election-variables are significant for any of the stages, nor for the war as a whole. This is not in line with the findings in Daxecker and Jung (2018), however the GTD only looks at incidents of terrorist violence, so any pre-election violence that was not in the form of a terrorist attack, is not included in this analysis. In addition, the Taliban might primarily threaten violence ahead of elections. They already have a reputation of violence, so it stands to reason that their threats would have credibility even if they did not resort to violence before the election.

The post-election-variables are both significant for stage 2. This is not surprising given the very violent and contentious election in 2009. The 2009 election was held in August, but the election results were not settled until November. According to Worden (2014), the post-election violence in 2009 did not die down before the results were declared, which coincides with the post-election (3 months)-variable. For the war as a whole, post-election (1 month) is significant, whereas post-election (3 months) is not. This shows once again that an analysis of the whole war does not produce a result that is consistent across all three stages. The significant effect for the post-election (1 month)-variable is likely heavily affected by the 2009 election, whereas the non-significant effect of the post-election (3 months)-variable fails to pick up the post-election violence in 2009, which lasted for three months.

The Islamic State – Khorasan-variable first appears about halfway into stage 3. It has a significant, negative effect in stage 3, but a positive, significant effect for the whole war. The negative effect in stage 3 indicates that the emergence of IS-K lead to a decline in the number of terrorist attacks. The number of terrorist attacks do appear to decline slightly from 2014 - 2015 (see figure 1). There may be several reasons for this decline. It can be due to in-fighting between Taliban and IS-K, redirecting some of their resources from terrorist attacks to skirmishes between the groups. It can also be due to the US and NATO withdrawal of forces, and their change in mandates, when on January 1st, 2015, Operation Enduring Freedom became Operation Freedom’s Sentinel, and the International Security Assistance Force (ISAF) became the Resolute Support Mission.

Another contributing factor can be that IS-K operates in other countries as well, so some of the groups’ terrorist attacks may be carried out outside of Afghanistan’s borders. The nature of IS-K attacks has been brutal, even compared to the Taliban, and their reputation reflects it. Comparatively, the Taliban appear more moderate, while still benefitting from the violence
through their shared jihadist cause. This means the Taliban may have decided to scale back their attacks, because IS-K’s reputation was doing some of their work for them. The final possible reason I am going to mention here is that IS-K suffered heavy losses at the hands of the US military through an extension of their aerial campaign against ISIS. This may be reflected in the declining number of terrorist attacks since 2015.

Despite the negative effect in stage 3, the IS-K-variable has a significant, positive effect for the whole war. This is likely due to the number of attacks being very high compared to the early stages of the war, even as the numbers decline. Again, the results for the whole war do not reflect the results across the individual stages.

4.2 Suicide attacks

Suicide attacks get a lot of attention when talking about terrorist attacks, especially those committed for the jihadist cause. Suicide attacks can be quite deadly, as it is relatively easy for a suicide bomber to blend into a crowd, and those crowds often consist primarily of civilians. Also, someone who willingly takes his own life for his cause is extremism personified. Perhaps the combination of these elements is what makes a suicide attack so disturbing, and therefore a frequent topic when discussing terrorism, particularly terrorism related to extreme Islamic views. But are suicide attacks as prevalent as one might think, given the emphasis placed on them?
Figure 2 – Suicide attacks

Figure 2 shows that there has been an increase in the total number of suicide attacks over the course of the War in Afghanistan. However, this increase is relatively small compared to the increase in the total number of non-suicide attacks. In fact, in relation to the total number of terrorist attacks, suicide attacks are actually on the decline. In stage 1 of the war, there were 30 suicide attacks and 416 non-suicide attacks, so suicide attacks represented 6.7% of the total number of terrorist attacks in that period. For stage 2, that number is 14.2%. This rise in suicide attacks, both the total number (315 suicide attacks in stage 2) and the relative number, coincides with the resurgence of the Taliban in 2006, and is therefore not terribly surprising. In stage 3 of the war, there is an interesting development. The total number of suicide attacks is 883, so there is a substantial increase from the previous two stages, but the total number of non-suicide attacks rises considerably more. Therefore, in stage 3, suicide attacks represent 8.9% of the total number of terrorist attacks, meaning there was a relative decline in the number of suicide attacks in the third stage of the war, despite the blue line on the graph trending upwards. For the war as a whole, suicide attacks represent 9.8% of all terrorist attacks, illustrating once more that there are fluctuations between the stages that looking at
the whole war does not account for. If we do a Negative Binomial Regression with the number of suicide attacks per month as the dependent variable, and the total number of attacks per month as the independent variable we can also see the fluctuations in the relationship between these variables across the three stages.

<table>
<thead>
<tr>
<th>Table 2 - Suicide attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Number of terrorist attacks per month</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Constant</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Observations</td>
</tr>
<tr>
<td>Log Likelihood</td>
</tr>
<tr>
<td>theta</td>
</tr>
<tr>
<td>Akaike Inf. Crit.</td>
</tr>
</tbody>
</table>

Note: *p<0.05, **p<0.01, ***p<0.001
Dependent variable is number of suicide attacks per month

There is a significant, and positive correlation between the number of suicide attacks per month, and the total number of attacks per month for stages 1 and 3, indicating that the more attacks there are in total, the more suicide attacks there are. This correlation does not appear to exist in stage 2. While the relative number of suicide attacks are higher in stage 2 than in stages 1 and 3, if we look at the graph (figure 2?), we see that the lines diverge in stage 2. Between 2007 and 2010, there is a small dip in the number of suicide attacks, while the number of non-suicide attacks increases in the same period. This could explain why there is no significant correlation between suicide attacks and the total number of attacks in stage 2. There is a significant, positive correlation for the whole war. Underlining once again that the changes throughout the war are not accurately represented in the analysis of the war as a whole.
4.3 Type of attack

Figure 3 – Type of attack

Figure 3 shows the increases in the total number of attacks in the different categories. Bombings/explosions and armed assaults are consistently higher than the other categories, and the total number of attacks increases through most of the war, with a particularly high increase at the beginning of stage 3. However, when looking at the relative numbers in each stage, the results look somewhat different. Bombings/explosions and armed assaults still represent the bulk of the attacks, but the relative numbers of attacks in the different categories are fairly similar across the stages.
While the total number of bombings/explosions increase through most of the war, and is significantly higher in stage 3, when looking at the relative number, we see that there is in fact a slight decrease in bombings/explosions from stage to stage. The total number of armed assaults also increases, and yet the relative numbers are fairly similar across the stages, with a small decrease in stage 2.

The category of attack type that experiences the biggest relative change is the unknown-category. There is a significantly higher number of attacks were the mode of attack is unknown in stage 3, than in stages 1 and 2. This may be a consequence of there being such an increase in the total number of attacks in that period. Stage 3 represents 78,8% of all the attacks throughout the war. It is not inconceivable that there were simply too many attacks to be able to get a thorough account of each one.

The relative number of attacks in each category is mostly comparable across the stages; however, the numbers still show the possible problems with looking at the whole war instead of examining the stages separately. The uneven distribution of attacks across the stages leads to the third stage heavily influencing the numbers for the war as whole. For instance, kidnappings experience a surge in stage 2, possibly due to the resurgence of the Taliban at the beginning of that period, but the numbers for the whole war does not show this spike in the number of kidnappings. This problem also shows when looking at the attacks with an unknown mode of attack. The numbers are relatively low for the first two stages, between three and four percent, but jumps to nearly twelve percent in stage 3. That number for the war as a whole is 9,3%, clearly heavily affected by the numbers, both total and relative, in stage 3.
This also shows when looking at bombings/explosions, which represents 48.19% of the attacks in stage 3, but more than 50% for both stage 1 and 2, and yet the number for the whole war is 48.89%. Because this is not a drastic change, the number for the whole war is not a big misrepresentation in the case of bombings/explosions, but it does illustrate that stage 3 dominates when not looking at the stages independently.

4.4 Type of weapon

Figure 4 – Type of weapon

Figure 4 shows the total number of attacks in which the different categories of weapons were used. Similarly to the types of attacks, types of weapons used seem to be fairly consistent throughout the war, which makes sense, as the same types of attacks will likely use the same category of weapons. Explosives are by far the most used, being the weapon of choice in over
half of the attacks across all stages, and for the war as a whole. Firearms are in second place, used in almost a third of the attacks, also fairly consistent across all three stages. The use of explosives and firearms correspond well to percentages of bombings and armed assaults.

Table 4 – Type of weapons used in terrorist attacks (percentages)

<table>
<thead>
<tr>
<th></th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Whole war</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosives</td>
<td>54,71 %</td>
<td>55,52 %</td>
<td>52,46 %</td>
<td>53,08 %</td>
</tr>
<tr>
<td>Firearms</td>
<td>31,84 %</td>
<td>27,65 %</td>
<td>30,39 %</td>
<td>29,93 %</td>
</tr>
<tr>
<td>Incendiary</td>
<td>4,93 %</td>
<td>3,87 %</td>
<td>1,94 %</td>
<td>2,39 %</td>
</tr>
<tr>
<td>Chemical</td>
<td>0,22 %</td>
<td>0,50 %</td>
<td>0,44 %</td>
<td>0,44 %</td>
</tr>
<tr>
<td>Biological</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Radiological</td>
<td>-</td>
<td>0,05 %</td>
<td>-</td>
<td>0,01 %</td>
</tr>
<tr>
<td>Melee</td>
<td>1,35 %</td>
<td>2,39 %</td>
<td>0,75 %</td>
<td>1,06 %</td>
</tr>
<tr>
<td>Vehicle</td>
<td>-</td>
<td>-</td>
<td>0,03 %</td>
<td>0,02 %</td>
</tr>
<tr>
<td>Sabotage equipment</td>
<td>-</td>
<td>0,05 %</td>
<td>0,04 %</td>
<td>0,04 %</td>
</tr>
<tr>
<td>Nuclear</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fake weapons</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other</td>
<td>-</td>
<td>0,09 %</td>
<td>0,03 %</td>
<td>0,04 %</td>
</tr>
<tr>
<td>Unknown</td>
<td>6,95 %</td>
<td>9,91 %</td>
<td>13,92 %</td>
<td>12,98 %</td>
</tr>
</tbody>
</table>

As with the attack type, it is the unknown category that changes most throughout the war. The change across the stages is more gradual with weapons than with attack mode, but the number for stage 3 is quite a bit higher, and that does show in the number for the whole war. The same is true for incendiary weapons. There is a decline in the use of incendiary weapons throughout the war, and the relative number of attacks in which these weapons are used is quite a bit lower for the war as a whole than would be the case if stage 3 did not influence the numbers so heavily.
4.5 Type of target

Figure 5 shows the total number of attacks for the top five types of targets. It is not surprising that military, government, police, and citizens are the top target types, and as with attack type and weapon type, there is an increase in attacks where the type of target is unknown.

The number of attacks where police are targeted increases considerably in stage 3, even more than attacks on the military. In fact, the increase in the number of attacks on police coincides with a decrease in the number of attacks on military targets. According to Giustozzi (2017), the Afghan military forces failed to develop a coherent COIN strategy before the US and NATO forces began scaling back their operations, which could account for this development.
Before 2005, when the Taliban insurgency began to grow and take hold, they were considered more of a nuisance than an actual threat, so there wasn’t much of a sense that an Afghan counterinsurgency strategy was needed. Even after the Taliban insurgency grew, and became a real threat, the COIN strategies were largely dictated by ISAF command. Until the official security transition in 2012-2013, there were few in Kabul who considered it a necessity to develop a coherent COIN approach. Through 2014-2015, in lieu of a proper military strategy for COIN, the Afghan local police became tasked with taking on the primary counterinsurgency role. Over the course of the period where the number of attacks on police increases the most, the police functioned as the main counterinsurgency force, with the military chiefly providing back-up, and occasionally clean-up (Giustozzi 2017).

Table 5 – Type of target for terrorist attacks (percentages)

<table>
<thead>
<tr>
<th>Type of Target</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Whole war</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airports & aircraft</td>
<td>1.35 %</td>
<td>1.04 %</td>
<td>0.27 %</td>
<td>0.45 %</td>
</tr>
<tr>
<td>Business</td>
<td>5.60 %</td>
<td>9.73 %</td>
<td>2.17 %</td>
<td>3.62 %</td>
</tr>
<tr>
<td>Educational institutions</td>
<td>6.50 %</td>
<td>5.49 %</td>
<td>1.73 %</td>
<td>2.58 %</td>
</tr>
<tr>
<td>Food or water supply</td>
<td>-</td>
<td>0.36 %</td>
<td>0.06 %</td>
<td>0.11 %</td>
</tr>
<tr>
<td>Government (diplomatic)</td>
<td>6.95 %</td>
<td>1.98 %</td>
<td>0.64 %</td>
<td>1.10 %</td>
</tr>
<tr>
<td>Government (general)</td>
<td>15.25 %</td>
<td>22.06 %</td>
<td>10.56 %</td>
<td>12.76 %</td>
</tr>
<tr>
<td>Journalists & media</td>
<td>0.22 %</td>
<td>1.04 %</td>
<td>0.51 %</td>
<td>0.60 %</td>
</tr>
<tr>
<td>Military</td>
<td>18.39 %</td>
<td>5.22 %</td>
<td>20.81 %</td>
<td>17.97 %</td>
</tr>
<tr>
<td>NGO</td>
<td>5.16 %</td>
<td>2.70 %</td>
<td>2.70 %</td>
<td>1.22 %</td>
</tr>
<tr>
<td>Police</td>
<td>14.35 %</td>
<td>16.84 %</td>
<td>31.41 %</td>
<td>28.26 %</td>
</tr>
<tr>
<td>Private citizens & property</td>
<td>17.71 %</td>
<td>25.71 %</td>
<td>19.53 %</td>
<td>20.59 %</td>
</tr>
<tr>
<td>Religious figures/institutions</td>
<td>4.93 %</td>
<td>1.94 %</td>
<td>1.64 %</td>
<td>1.81 %</td>
</tr>
<tr>
<td>Telecommunication</td>
<td>0.45 %</td>
<td>1.22 %</td>
<td>0.39 %</td>
<td>0.56 %</td>
</tr>
<tr>
<td>Terrorists/non-state militia</td>
<td>0.22 %</td>
<td>0.86 %</td>
<td>0.89 %</td>
<td>0.86 %</td>
</tr>
<tr>
<td>Tourists</td>
<td>0.22 %</td>
<td>0.05 %</td>
<td>0.01 %</td>
<td>0.02 %</td>
</tr>
<tr>
<td>Transportation</td>
<td>1.12 %</td>
<td>2.39 %</td>
<td>0.89 %</td>
<td>1.16 %</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.67 %</td>
<td>0.32 %</td>
<td>0.24 %</td>
<td>0.27 %</td>
</tr>
<tr>
<td>Violent political parties</td>
<td>-</td>
<td>-</td>
<td>0.14 %</td>
<td>0.11 %</td>
</tr>
<tr>
<td>Other</td>
<td>-</td>
<td>0.05 %</td>
<td>0.07 %</td>
<td>0.06 %</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.90 %</td>
<td>1.04 %</td>
<td>7.34 %</td>
<td>6.00 %</td>
</tr>
</tbody>
</table>

The increase in attacks targeting police can be seen in the relative number of attacks across the stages as well. The percentage of attacks targeting police is nearly doubled in stage 3 compared to stages 1 and 2, going from 14.35% and 16.84% respectively, to 31.41%. Because of the large increase in stage 3, it is readily apparent the dominant effect the third stage has on the numbers for the whole war, which in the case of attacks targeting police, is 28.26%.
This same effect can be seen when looking at the attacks where the target is unknown. These attacks represent around one percent in both the first and second stages. However, in stage 3 unknown targets account for 7.34% of the attacks. For the whole war, unknown targets represent 6% of the total number of attacks, the bulk of those occurring in stage 3.

There is an interesting development across stages for the military, government (general), and private citizens and property categories; stage 2 stands out significantly. The number of attacks on military targets drops drastically in the second stage. From 18.39% in stage 1, down to 5.22% in stage 2, back up to 20.81% in stage 3. For government (general) and private citizens and property, the effect is the other way around, with higher numbers for stage 2 than the other stages. The attacks targeting government go from 15.25% in stage 1, up to 22.06% in stage 2, and down to 10.56% in stage 3. Likewise, attacks on private citizens and property goes from 17.71%, to 25.71%, back down to 19.53%. These fluctuations might be caused by the violence surrounding the elections in 2009 and 2010. These were, as previously mentioned, extremely violent and contentious elections. It would not be unreasonable to think that the violence in that period shifted from the military, to government officials and institutions, and voters. These fluctuations do not show when looking at the numbers for the whole war, and again the weight of stage 3 skews the numbers. This applies to other categories in addition to the top five, shown in figure 5. Attacks targeting businesses also increase quite a bit in stage 2, and yet the number for the whole war, is much closer to that of stage 3.

The changes in types of targets across the stages illustrate once again that there is a lot that is lost when looking at the whole war as opposed to the separate stages. The fact that stage 3 weighs so heavily, makes it appear as though there was more targeting of police than was actually the case for the majority of the war. Also, the changes in stage 2, which are likely related to the elections, almost disappear in the numbers for the whole war, because of stage 3’s domination in the total number of attacks.
4.6 Provinces

Figure 6 shows the ten provinces with the highest total number of attacks throughout the whole war. Helmand province has the highest number of attacks, followed by Kandahar in second place, and Nangarhar in third. The attacks in these three provinces account for around a quarter of all the attacks throughout the war. Helmand province has the highest level of drug production in the country, which could be part of the reason why it experiences so much violence. Kandahar and Nangarhar are also major producers of opium poppies, and they are directly across the border from the Federally Administered Tribal Areas in Pakistan, which could account for the high levels of violence there. The violence in Nangarhar increases quite drastically from around 2010-2011 up to 2015, which coincides with the Pakistani military pushing the Tehrik-e-Taliban Pakistan across the border, and the emergence of IS-K, whose de facto capital became Nangarhar.

Figure 6 – Most violent provinces
Table 6 contains the number of attacks in each province in each of the stages. The most violent provinces in stage 1, is Kandahar and Kabul. In stage 2, it is Kandahar and Khost, and in stage 3, it is Helmand and Kandahar. Even though Khost is the second most violent province in stage 2, it does not appear in the top ten most violent provinces for the whole war (figure 6), probably due to quite a sharp decline in attacks in stage 3, which as we know heavily influences the results for the war as a whole.

Table 6 – Number of terrorist attacks in Afghan provinces (percentages)

<table>
<thead>
<tr>
<th>Province</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Whole war</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badakhshan</td>
<td>0.67 %</td>
<td>0.45 %</td>
<td>1.70 %</td>
<td>1.45 %</td>
</tr>
<tr>
<td>Badghis</td>
<td>0.90 %</td>
<td>1.17 %</td>
<td>1.67 %</td>
<td>1.56 %</td>
</tr>
<tr>
<td>Baghlan</td>
<td>0.45 %</td>
<td>1.85 %</td>
<td>2.97 %</td>
<td>2.68 %</td>
</tr>
<tr>
<td>Balkh</td>
<td>1.35 %</td>
<td>2.03 %</td>
<td>1.06 %</td>
<td>1.25 %</td>
</tr>
<tr>
<td>Bamyan</td>
<td>0.67 %</td>
<td>0.05 %</td>
<td>0.23 %</td>
<td>0.21 %</td>
</tr>
<tr>
<td>Daykundi</td>
<td>0.22 %</td>
<td>0.27 %</td>
<td>0.07 %</td>
<td>0.11 %</td>
</tr>
<tr>
<td>Farah</td>
<td>1.79 %</td>
<td>3.65 %</td>
<td>4.26 %</td>
<td>4.08 %</td>
</tr>
<tr>
<td>Faryab</td>
<td>-</td>
<td>1.58 %</td>
<td>4.82 %</td>
<td>4.09 %</td>
</tr>
<tr>
<td>Ghazni</td>
<td>3.81 %</td>
<td>6.98 %</td>
<td>5.87 %</td>
<td>6.03 %</td>
</tr>
<tr>
<td>Ghor</td>
<td>0.22 %</td>
<td>0.86 %</td>
<td>1.37 %</td>
<td>1.24 %</td>
</tr>
<tr>
<td>Helmand</td>
<td>12.56 %</td>
<td>7.74 %</td>
<td>10.13 %</td>
<td>9.79 %</td>
</tr>
<tr>
<td>Herat</td>
<td>1.12 %</td>
<td>5.13 %</td>
<td>5.24 %</td>
<td>5.07 %</td>
</tr>
<tr>
<td>Jawzjan</td>
<td>-</td>
<td>1.08 %</td>
<td>2.72 %</td>
<td>2.34 %</td>
</tr>
<tr>
<td>Kabul</td>
<td>13.68 %</td>
<td>6.89 %</td>
<td>5.55 %</td>
<td>6.07 %</td>
</tr>
<tr>
<td>Kandahar</td>
<td>22.20 %</td>
<td>12.74 %</td>
<td>7.36 %</td>
<td>8.86 %</td>
</tr>
<tr>
<td>Kapisa</td>
<td>-</td>
<td>0.99 %</td>
<td>1.30 %</td>
<td>1.20 %</td>
</tr>
<tr>
<td>Khost</td>
<td>6.95 %</td>
<td>9.86 %</td>
<td>2.09 %</td>
<td>3.64 %</td>
</tr>
<tr>
<td>Kunar</td>
<td>2.47 %</td>
<td>3.33 %</td>
<td>3.75 %</td>
<td>3.63 %</td>
</tr>
<tr>
<td>Kunduz</td>
<td>0.90 %</td>
<td>3.83 %</td>
<td>3.90 %</td>
<td>3.78 %</td>
</tr>
<tr>
<td>Laghman</td>
<td>0.90 %</td>
<td>1.04 %</td>
<td>2.04 %</td>
<td>1.87 %</td>
</tr>
<tr>
<td>Logar</td>
<td>1.12 %</td>
<td>2.34 %</td>
<td>2.93 %</td>
<td>2.76 %</td>
</tr>
<tr>
<td>Nangarhar</td>
<td>7.85 %</td>
<td>4.68 %</td>
<td>8.25 %</td>
<td>7.62 %</td>
</tr>
<tr>
<td>Nimroz</td>
<td>1.57 %</td>
<td>2.21 %</td>
<td>1.12 %</td>
<td>1.33 %</td>
</tr>
<tr>
<td>Nuristan</td>
<td>0.45 %</td>
<td>0.72 %</td>
<td>0.75 %</td>
<td>0.73 %</td>
</tr>
<tr>
<td>Paktia</td>
<td>3.59 %</td>
<td>2.88 %</td>
<td>1.83 %</td>
<td>2.07 %</td>
</tr>
<tr>
<td>Paktika</td>
<td>2.24 %</td>
<td>4.28 %</td>
<td>2.13 %</td>
<td>2.51 %</td>
</tr>
<tr>
<td>Panjsher</td>
<td>-</td>
<td>-</td>
<td>0.03 %</td>
<td>0.02 %</td>
</tr>
<tr>
<td>Parwan</td>
<td>0.67 %</td>
<td>1.31 %</td>
<td>1.53 %</td>
<td>1.47 %</td>
</tr>
<tr>
<td>Samangan</td>
<td>0.22 %</td>
<td>0.27 %</td>
<td>0.37 %</td>
<td>0.35 %</td>
</tr>
<tr>
<td>Sari Pul</td>
<td>-</td>
<td>0.45 %</td>
<td>1.35 %</td>
<td>1.14 %</td>
</tr>
<tr>
<td>Takhar</td>
<td>0.67 %</td>
<td>0.86 %</td>
<td>1.40 %</td>
<td>1.29 %</td>
</tr>
<tr>
<td>Uruzgan</td>
<td>3.81 %</td>
<td>2.39 %</td>
<td>4.16 %</td>
<td>3.83 %</td>
</tr>
<tr>
<td>Wardak</td>
<td>0.45 %</td>
<td>2.03 %</td>
<td>2.45 %</td>
<td>2.31 %</td>
</tr>
<tr>
<td>Zabul</td>
<td>5.83 %</td>
<td>3.56 %</td>
<td>2.83 %</td>
<td>3.07 %</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.67 %</td>
<td>0.23 %</td>
<td>0.76 %</td>
<td>0.66 %</td>
</tr>
</tbody>
</table>
Kandahar is one of the most violent throughout the war, but the relative number of attacks decline across the stages. In stage 1, nearly a quarter of the attacks took place in Kandahar, whereas in stage 2, that number was down to under 13%, and in stage 3 it was 7.36%. Kandahar was by far the most violent province in the first two stages of the war, and yet it trails Helmand when looking at the war as a whole, despite Helmand being the most violent only in stage 3, and in third place in stages 1 and 2. Again showing how much stage 3 dominates.

4.7 Discussion

In this section I will discuss a few additional points relating to the findings in this chapter. As we have seen, most variables will vary across stages. The ones that vary the least are those relating to methods of attack; type of attack and type of weapon used, and these are closely linked. It follows that that the weapons used in bombings/explosions and armed assaults will be explosives and firearms. It is not surprising that these are the variables that stay the most consistent throughout the war, and that explosives and firearms are used in the majority of attacks. Explosives and firearms have a potentially very high destructive power, and are easily accessible. Explosives do not have to be particularly sophisticated in order to do a lot of damage, and can be made by supplies readily available to most people. Bombings/explosions is a mode of attack that makes sense for a terrorist. It causes major damage with minor effort, but it also has shock value. The attack can be heard far beyond the area that is directly affected by it, and because it has the potential to be so deadly, people may assume that there are many victims of a bombing, regardless of whether or not that is the case. This may aid in strengthening the terrorists’ reputation, and increasing the population’s fear of crossing them.

While the mode of violence doesn’t change much throughout the war, where the violence takes place does shift across the stages. Certain provinces are consistently more violent than others, but there are significant changes from stage to stage. The reasons for this may be many, complicated, and interconnected. Troop movements could play a part in shifting the locations of the terrorist attacks. US and NATO forces will move to where the insurgency is,
in order to eradicate it. If the military is successful in pushing the insurgents out of the area, the insurgents will likely move their operations to another province, taking their violence with them. While beating back the insurgency in one area may weaken it, completely eradicating an insurgency is extremely difficult, and so it stands to reason that if the insurgents are pushed out of a province, the violence will move with them, rather than stop.

The violence in a particular province may also depend on how contested that province is. Provinces under full government control will likely be less violent than those with a considerable insurgency presence. It may also be that there is less violence in areas that are fully controlled by the Taliban, than in contested areas. While the Taliban is a violent organization, it makes little sense for them to use their resources to exert violence in areas where they are already in control. How contested a province is may depend on several factors. For instance, drug production, which is extensive in the very violent Helmand province. Proximity to the Pakistan border, as in the case of Kandahar and Nangarhar, is likely another factor. Also, general strategic advantages, like favorable terrain, access to valuable resources etc. It makes sense for an insurgency to go wherever it can get a foothold. Like water on pavement, a well-organized insurgency will find any crack.

Tribal ethnicity may also be a factor in what provinces are most affected by terrorist violence. Of the top ten most violent provinces, shown in figure 6, half have a Pashtun majority. Khost, which does not appear in figure 6, but was the second most violent province in stage 2, is also mostly Pashtun. It is also the case that the Pashtun provinces mostly border Pakistan, so it may be a chicken or egg scenario (South Eastern Region Migrant Resource Centre 2009).
5 Conclusion

In this thesis, I examined the changes in patterns of terrorist violence during the War in Afghanistan. By looking at figure 1, which shows the number of terrorist attacks per month from 2001 to 2017, there appeared to be three distinct stages of the war in terms of levels of terrorist violence. The natural cut points for the stages looked to be in 2006 and 2011, and using these cut points, I divided the war into three stages, and analyzed the stages separately, in order to compare the results of those analyses with the analysis for the war as a whole. By making this comparison, I found that the changes that occur throughout a lengthy conflict, like changes in troop levels, narcotics production, contentious elections, and tensions within or between insurgent groups, will impact the levels of terrorist violence differently in the different stages, and so analyzing the effect of these factors for the war as whole, will often lead to misleading results, and a lot of nuance and specificity is lost.

In the case of the War in Afghanistan, the number of terrorist attacks increased across stages, and was particularly high in stage 3 compared to the other two stages. When examining the trends of the variables, I found that the third stage skewed the numbers for the whole war, due to the sheer number of attacks in that period.

The policy implications of these fluctuations across stages will be linked to mandates and strategies for warfare. Entering into open-ended conflict, without a clear exit strategy, can lead to a long commitment, especially if it is a COIN campaign. As we have seen, there are many changes that occur during the course of a long conflict, so the flexibility with which policy makers approach such conflicts should reflect that. Both the military’s mandate, and its strategy, should be reevaluated at regular intervals, in order to keep up with the changes that are happening on the ground.

Previous quantitative research has primarily focused on the duration of conflicts and the damages caused by it, for instance, the number of battle deaths. The research on what happens during a conflict, and how it develops has traditionally been the purview qualitative research. This thesis contributes to the research community by attempting to bridge that gap. Detailed datasets like the GTD, allows us to examine quantitatively, aspects of war
previously considered to be primarily the domain of qualitative research, and enables us to
discern patterns that may aid our understanding of warfare and conflict.

This thesis examined the changes in terrorist violence over the course of a lengthy conflict. Future research might consider examining other aspects of war to see if the findings in this analysis hold for more conventional forms of warfare as well. In addition, other factors that may contribute to changes across stages of a war should be considered. How troop movements and the movements of insurgency groups affect the levels of violence, for instance. Another interesting point would be to look at the duration of the different stages. In this analysis, the stages are approximately equal in length. Stages 1 and 2 are roughly five years long, and stage 3 covers six years. This may merely be a coincidence, or it could be that stages in a conflict are cyclical, and that there is generalizable pattern in the span of stages in a war. The slight difference in length for stage 3 could be because it might include the beginning part of a fourth stage, or it could simply be that the length of each stage is completely coincidental. That is something for future research to determine.
Bibliography

Afghanistan Annual Opium Poppy Survey 2001 (2001), The United Nations International Drug Control Programme

Afghanistan Opium Survey 2018 (2018), United Nations Office on Drugs and Crime

Field Manual (FM) 3-24/Marine Corps Warfighting Publication (MCWP) 3-33.5 Insurgencies and countering insurgencies (2014), U.S. Department of the Army

Joint Publication (JP) 3-24 Counterinsurgency (2013), The Chairman of the Joint Chiefs of Staff

South Eastern Region Migrant Resource Centre (2009), “Afghan people in South East Melbourne: Perspectives of a Migrant and Refugee Community”

Appendix

A.1 – Number of terrorist attacks per month
A.2 – Terrorist attacks (all provinces)
A.3 – Type of target (all targets)