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CHAPTER 1
Introduction

1.1 Motivation

If our civilization would die out, all our knowledge and information would be lost.
Chances are, however, that future life would evolve and maybe start figuring out science
all over again. If only one sentence should be passed on to the next generation of life,
what would it be? Richard Feynman wrote about this in the introductory chapter to
his famous book series The Feynman lectures on physics. Here, he argues, that the
sentence should be something along the lines of[25]

All things are made of atoms - little particles that move around in per-
petual motion, attracting each other when they are a little distance apart,
but repelling upon being squeezed into one another. - Richard Feynman

This is a powerful summary of physics that has not been known by humanity for much
longer than a century - about the age of the oldest living humans on earth. Pick any
macroscopic object, and this is a true statement for all gases, liquids and solids. Al-
though it is a simple idea, the physics of atoms is very complex. An atom has a charged
nucleus that results in electrons liking to be nearby. These electrons must follow strict
rules about what places they can be in1. Once the electrons position themselves this
way, the interaction between two or more atoms becomes very complicated.

There is an incredible amount of effects on the atomic scale that have macroscopic
consequences. The melting temperature of ice is around 273.15K, whereas silicon
carbide melts at 3100K[35]. What determines this? And why do diamonds, quartz
and table salt have that macroscopic shape with clear facets - flat faces on the surface?
Today we do know the answer to these questions, and they all happen to depend on
details on the atomic scale.

The dynamics of atoms follow the Schrödinger equation - a complicated equation
that only has a handful known exact solutions. Approximate methods like Hartree-
Fock[34] and Density Functional Theory (DFT)[47] can be used to find solutions for
more advanced systems using a computer2. However, even with today’s computers,

1The electron places are the allowed quantum numbers n, l,ml.
2The Hartree-Fock methods were actually originally used to calculate approximate solutions with-

out computers in the 1920s.
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these methods only work efficiently for small systems up to a few thousand atoms[61],
so other methods have to be used for larger systems.

In this thesis I focus on molecular dynamics - a model where atoms are assumed
to follow the laws of classical mechanics, given some interatomic potential. These
interatomic potentials are usually found using quantum mechanical methods like DFT,
and are fitted so that they reproduce macroscopic properties. Molecular dynamics is a
numerical model that we use to run numeriments3 on a computer. The model produces
atomic trajectories, on which we apply statistical mechanics to explain thermodynamic
quantities and macroscopic properties.

In traditional experiments, we cannot follow the trajectories of every single atom,
but with atomic simulations like molecular dynamics, we can understand phenomena
on a very detailed level. The rapid increase of computing power and new algorithms
opens up the possibility to solve new, and more complicated problems each year. Super-
computers have been used to run molecular dynamics simulations with several billion
atoms[86], and will eventually catch up with some experiments. Most of today’s sim-
ulation software and analysis tools have been built around the idea that the system
preparation and running the simulation are separated processes, but this idea does not
reflect the actual workflow.

The scope of this thesis is improving the workflow in molecular dynamics simula-
tions. Molecular dynamics simulations are often divided into a three-step process where
we first prepare an initial configuration from which the simulation starts. Secondly,
the simulation is performed, before we analyze the data as the third step. Prepar-
ing initial geometries for simulations can be tricky and is very important since this
may greatly affect the outcome. Molecular dynamics simulations are often used to
understand phenomena from experiments.

One example that I have worked on in this thesis is the geometry of nanoporous
materials. A lot of the world’s energy production comes from hydrocarbons trapped
inside tight rocks, and understanding how fluid flows inside such materials has been a
popular field of study[19, 39, 40]. Studying these materials in simulations requires us
to be able to represent the geometry on a computer. Three-dimensional representa-
tions can for instance be captured using expensive focused ion beam scanning electron
microscopy (FIB-SEM). This method destroys the material[16, 18]. Other methods
include generating geometries from statistical and geometrical characterizations.

In this thesis, I have developed a method using procedural noise functions[50, 69, 70]
that can be trained to reproduce geometries that are statistical similar to a reference
geometry. The geometries used in this work were produced by molecular dynamics
simulations, but it could just as well have been a real sample from FIB-SEM. Once
the optimal parameters for the noise model are found, generating statistical similar
geometries is quickly done, and can be used for further studies.

When I started learning molecular dynamics, the learning curve was steeper than
what is necessary because several different applications are needed to run and ana-
lyze full simulations. Some physical phenomena are sensitive to initial conditions, and
running several simulations with trial and error is essential to find the optimal param-
eters. Since the human brain is excellent at interpreting visual representations of data,
immediate visual feedback would be very useful, but usually isn’t available in exist-
ing software. Laptops and desktop computers are today powerful enough to perform
simulations that were state of the art only 20 years ago. Therefore, I have developed

3A numeriment is a numerical experiment - an experiment performed on a computer[79].
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Atomify - an application that enables real-time visualization of running molecular dy-
namics simulations.

With the game industry pushing forward on the development of virtual reality (VR),
this technology has been improved tremendously lately. VR opens for new possibilities
also in scientific research. The perception of being inside a simulation surrounded
by atoms filling the complete field of view may be useful to understand physical and
chemical processes. Interacting with a simulation while it runs is possible, and new
branches of problems can now be studied. In this thesis I have also developed an
environment for running simulations in real-time using VR using game engines4 like
Unity and Unreal Engine.

Of course, such tools are only here to help answering scientific questions. In this
thesis I have also performed molecular dynamics simulations to study facet formation
in silicon carbide nanocrystals. Faceting is a type of crystal growth that happens due
to reorganizations of surface atoms through surface diffusion[12, 22]. Surface diffusion
is strongly temperature dependent: at low temperatures, surface diffusion is too slow
for faceting to happen on molecular dynamics time scales, and at high temperatures,
faceting may not be present due to surface melting, or the system being above the
roughening transition temperature[109]. That me and my co-authors were able to study
this phenomenon turned out to come as a direct consequence of immediate feedback
from Atomify while searching for the optimal temperature.

1.2 Structure of the thesis

The thesis is organized as follows. Chapter 2 gives an overview of atomic simulations
with a brief discussion on the world on the atomic scale in section 2.1. Section 2.2
introduces molecular dynamics in more detail with the mathematical formulation and
a discussion on interatomic potentials. The Vashishta potential is discussed in more
detail in section 2.3, since this has been used extensively in this thesis.

Chapter 3 is about software development and how this is an integral part of modern
scientific research. This chapter addresses how changes in modern hardware affects
software development, with extra focus on LAMMPS - the molecular dynamics software
package I have used in this thesis. How to obtain faster molecular dynamics simulations
is discussed. In addition, I go through my contributions to the source code of LAMMPS.

Chapter 4 is devoted to the physics of crystal growth. I go through some background
and terminology, before the Wulff construction is defined and explained. Then, how
facets form in nanocrystals through surface diffusion is discussed. Chapter 5 is a
summary of my publications in this thesis, and chapter 6 presents some thoughts and
ideas for future research.

All four publications are included at the end of the thesis. Publication 1, 2 and 4
have been submitted for review, wheras publication 3 is being prepared for submission.

4Game engines are programming environments used to produce games. See https://en.

wikipedia.org/wiki/Game_engine for more details.
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CHAPTER 2
Atomic simulations

Computer science inverts the
normal. In normal science,
you’re given a world, and your
job is to find out the rules. In
computer science, you give the
computer the rules, and it
creates the world.

Alan Kay

Nature is a very complex system with complicated rules that determine how and
where mass, energy and momentum is transferred. In a sense, this is the only thing
that happens in the universe. Quantum mechanics define the rules, and the macro-
scopic properties we observe are explained by statistical mechanics. Many observable
macroscopic effects result from details on the subatomic scale. Such macroscopic ef-
fects are everything from melting of ice, to something so great and complex as life
itself. Both are possible due to quantum mechanical rules that regulate what makes
an atomic nucleus stable, and how electrons interact with the nucleus. The quantum
mechanical framework allows us to explain and predict how the distribution of single
electrons make some molecules stable, while others are not. Hydrogen and oxygen
happily form water molecules due to valence bonding, filling their valence shells.

Water has several unusual properties. For instance, that ice floats in water is
explained by the fact that the hydrogen bonds form perfect tetrahedra in the solid
phase. This tetrahedral structure has lower density than liquid water at 0◦C[52]. This
is remarkable because most solids are denser than their corresponding liquids and gases.
Despite being one of the most studied substances, water is still poorly understood[68].

In principle, we do have the mathematical toolbox to explain nearly all phenom-
ena that happens on Earth1, but solving the Schrödinger equation for many particles2

simultaneously is a challenging task[83]. Although it is a difficult problem, understand-
ing the world from a bottom-up perspective is essential to be able to model physical
systems on the atomic scale.

1Although we can only explain 4% of the matter in the universe, so there is quite a job remaining
until I’m satisfied.

2Many here actually means more than one.
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The work in this thesis is about molecular dynamics. In molecular dynamics, the
motion of a set of atoms is calculated using Newton’s second law in a classical force
field. The full phase space coordinates are known at all times, and statistical properties
can be calculated from averages, assuming ergodicity[54]. Molecular dynamics has been
proved successful in reproducing and explaining many phenomena, such as mechanical
properties [14, 42, 63], chemical reactions [7, 101] and properties of many liquids[4].

High frequency vibrations of light atoms like hydrogen defines the the timescale of
atomic motion, and is of order femtoseconds. While some processes like chemical reac-
tions may occur within a few picoseconds or less, some biological processes occur over
timescales of more than a millisecond[84]. Simulating such systems with femtosecond
temporal resolution thus needs 1012 timesteps. To beat the millisecond barrier, spe-
cialized molecular dynamics hardware has been built - a so-called Application Specific
Integrated Circuit (ASIC)3 machine called Anton[84]. This machine has been used to
study protein structures in water[46, 85], which requires very long simulation times.

Much has happened in computing since the first molecular dynamics simulation of
hard spheres in the 1950s[2, 3], and more realistic systems using the Lennard Jones
potential[43] in the 1960s[75]. Since then, the computing power has seen a tremen-
dous increase. From the CDC 36004 used in [75], which performed less than 1 million
instructions per second, to modern 3GHz processors in typical laptops that can cal-
culate about 100 billion operations per second. With this rapid increase of computing
power, the length and time scales achievable in numeriments are finally catching up
with experiments.

Desktop machines and laptops are now more powerful than many supercomputers
only 20 years ago, but the workflow has not changed much. In this chapter, I discuss
briefly the bottom-up view of our world from the smallest building blocks governed by
the rules of quantum mechanics, to larger systems where Newton’s laws can be applied.
Molecular dynamics is introduced with some extra effort on potentials - especially the
Vashishta potential[102], which has been used in multiple projects throughout this
thesis. Lastly, I discuss the workflow of a typical molecular dynamics research project
is executed and how this can be improved.

2.1 The world at the atomic scale

The smallest building blocks in the universe are, as far as we know, the particles in
the standard model (and probably some others explaining the largely unknown dark
matter). It consists of six quarks, six leptons, the force carrying bosons and the Higgs
boson. Interaction between them arises from simple5 symmetries. The up and down
quarks combine to create protons and neutrons, which make up the atomic nucleus
surrounded by electrons.

These atoms may come in contact with other atoms, and potentially form molecules
and larger crystals. Atoms are generally quantum mechanical objects, but many prop-
erties can correctly be described classically given the right interatomic potential. In
classical mechanics, the state of a system is defined by a point in phase space that
changes over time through an equation of motion. The phase space point is the set of
the positions r and momenta p for all N atoms, making up the canonical coordinates

3ASIC machines are built to be good at a specific task and cannot do general computing.
4CDC 3600 was one of several computers built by Control Data Corporation in the mid-1960s.
5Only a madman would call the mathematics simple, but the symmetries are at least simple.
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q

q = (r,p) = (r1, r2, ..., rN ,p1,p2, ...,pN) (2.1)

where ri is the position of atom i and pi is its momentum. The energy is found through
the Hamiltonian

H(r,p) = K(p) + V (r) =
N∑
i=1

|pi|2
2mi

+ V (r), (2.2)

where K(p) is the kinetic energy, mi is the mass of atom i and V (r) is the potential
energy in the system. This Hamiltonian defines the time evolution of the system
through Hamilton’s equations

dp

dt
= −∂H

∂r
,

dr

dt
=

∂H
∂p

. (2.3)

In real life, knowing the positions and momenta for every single atom in a system
is of course not feasable, so we use statistical mechanics to help us describe rather
ensembles - a collection of states with given probabilities. It links the ensemble of
states to thermodynamic quantities and is very useful when doing atomic simulations.

For instance, in the canonical ensemble6, each state (r,p) has a probability deter-
mined by its energy

ρ(r,p) =
1

Z
exp

(
− H(r,p)

kT

)
, (2.4)

where k is Boltzmann’s constant and T is the temperature. The normalization 1/Z
comes from integrating over all states

Z =

∫
r

∫
p

drdpρ(r,p), (2.5)

but is usually not practical to find. A thermodynamic quantity A is obtained through
an ensemble average, i.e. integrating over all possible states and evaluating the quantity
A multiplied by the probability of finding the system in that state

〈A〉Ensemble =

∫
r

∫
p

drdpA(r,p)ρ(r,p). (2.6)

The ergodic hypothesis states that the time spent in a region of phase space around
(r,p) is proportional to ρ(r,p). This is useful since we usually do not know the prob-
ability density ρ(r,p) We do, however, know how a system will evolve using equation
(2.3). The ensemble average is assumed to, for long times, be equal to the time average
so that

〈A〉Ensemble = 〈A〉Time =
1

N

N∑
i=1

A(r(i),p(i)), (2.7)

6The canonical ensemble is also known as the NVT ensemble. Here the system has a constant
number of particle N , volume V and temperature T
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where N is the number of independent7 measurements, and A(r(i),p(i)) is the value of
observable A at measurement i.

Numerous macroscopic quantities can be found using this technique and I refer to
[4] and [26], both of which are excellent books on this topic. Having these mathematical
tools available, we can set up systems and create trajectories in the phase space using
molecular dynamics which is discussed next.

2.2 Molecular dynamics

The idea of molecular dynamics is so simple that anyone accepting that everything
is made up of atoms and knowing Newton’s second law will understand the basics.
Although quantum mechanics describes the rules at the atomic scale, we assume in
molecular dynamics that the motion of atoms is described by classical mechanics using
Hamilton’s equations. We start with some initial state q = (r,p).

A typical interatomic potential (or force field) is usually decomposed into a sum of
two-particle contributions, three-particle contributions and so on[4]

V (r) =
∑
i,j

V (2)(ri, rj) +
∑
i,j,k

V (3)(ri, rj, rk) + ... (2.8)

From Hamilton’s equations, we find the forces in the system since the kinetic energy
term only depends on p

dp

dt
= −∂H

∂r
= −dV

dr
, (2.9)

which then becomes

F(r) = −∇V (r) (2.10)

=
∑
i,j

−∇V (2)(ri, rj) +
∑
i,j,k

−∇V (3)(ri, rj, rk) (2.11)

=
∑
i,j

F(2)(ri, rj) +
∑
i,j,k

F(3)(ri, rj, rk) (2.12)

for a three-particle potential. Without any external forces, the sum of all forces is zero,
so we need to look at the forces fi acting on each atom i. fi is found as

fi(ri) = −∂riV (R), (2.13)

where ∂ri = (∂xi
, ∂yi , ∂zi) and ∂x ≡ ∂

∂x
is shorthand for partial derivatives.

Most potentials consist of general terms reflecting known physical effects. For in-
stance, take the Lennard Jones potential[43]. It is only a pairwise potential of the
interatomic distance r between two atoms

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
. (2.14)

Here, the r6 and the r12 terms represent the van der Waals attraction force and steric
repulsion respectively. The 12th power in the repulsion term has no physical meaning,

7Independent means that the measurements should be performed with some time delay in between.
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but is numerically is cheap to compute once the van der Walls r6 term is calculated.
The parameters σ and ε can be fitted to reproduce many properties of noble gases[53],
but is also used in several other systems[4].

In a system with ions, the effect of Coulomb interaction is often important. This
term goes like 1/r, and is considered a long-term interaction since it decays very slowly,
compared to other terms, for large r. In periodic systems, a particle at position ri will
interact with an infinite array of images of the simulation box, including itself, multiple
times. To efficiently compute forces with long-range interactions, one often needs to use
special algorithms of the type long-range solvers. This group of algorithms contains the
Ewald summation[26] method and PPPM (particle-particle particle-mesh)[37], both of
which exploit properties of the Fourier transform in periodic systems. Charges can
either be fixed throughout the simulation, or be adjusted during the simulation using
charge equilibration as described in [76] and [59].

Developing interatomic potentials is a field of study of its own. One of the most
advanced force fields that exists today is called ReaxFF, and was originally developed
to study chemical reactions[101]. It includes more physical effects than Lennard Jones,
and its original form is given as

Esystem = Ebond + Eover + Eunder + Eval + Epen + Etors

+ Econj + EvdWaals + ECoulomb, (2.15)

and has a total of 93 parameters that need to be fitted. The conventional approach to fit
these parameters is using an ab initio method like DFT[47, 101]. Then, the force field
is often adjusted to reproduce macroscopic properties like the first sharp diffraction
peak of the structure factor S(q)[103] and other relevant properties depending on the
research interest.

All in all, a potential is a mathematical function designed to capture relevant phys-
ical concepts. In this thesis, I have used the Vashishta potential in publication 3 and
4. This potential is discussed next.

2.3 The Vashishta potential

Vashishta et. al. published around 1990 a potential to study amorphous GeSe2[102]
and SiO2[103] in molecular dynamics. In both studies, the potential reproduced the
structure factor S(q) to an impressive degree. The potential has been very success-
ful in describing the mechanical properties of both crystalline and amorphous silica.
The same functional form can be used for different elements as well, so the group has
published a series of parameters for other oxides[105], ceramics[104] and aluminum
nitride[106]. While being similar to the Stillinger-Weber potential[91], it includes sev-
eral important differences in both the two-body term and the three-body term.

The most general functional form of the potential looks like8

V (r) =
∑
i,j

V
(2)
ij (rij) +

∑
i,j,k

V
(3)
ijk (rij, rik, θijk), (2.16)

where the two-body contribution is given as

V
(2)
ij (r) =

Hij

rηij
+

ZiZj

r
e−r/λ1,ij − Dij

r4
e−r/λ4,ij − Wij

r6
, r ≤ rc,ij. (2.17)

8The original version did not contain the exponential screening of the Coulomb term or the Cijk

term in the three-body energy. For proper values of λ and Cijk it reduces to the original form.
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Each parameter has a subscript which comes from the fact that different pairs and
triplets of elements have different parameter values. Here, Hij is the strength of the
steric repulsion (representing the same physical effect as the r12 term in Lennard Jones).
The second term is the Coulomb interaction with charges Zi and Zj. This term contains
an exponential screening factor with parameter λ1,ij. We also have a charge-induced
dipole interaction with strength Dij, which also is exponentially screened with another
parameter λ4,ij. Then, lastly, the van der Waals interaction with interaction strength
Wij. rc is the cutoff distance, the distance at which the force and the energy is zero.

Having a cutoff introduces an error. This error is compensated with a shifted term
with linear force interpolation towards rc

V
(2 shifted)
ij (r) =

⎧⎨
⎩ V

(2)
ij (r)− V

(2)
ij (rc)− (r − rc)

[
dV

(2)
ij

dr

]
r=rc

r ≤ rc

0 r > rc.
(2.18)

The number of atomic neighbors scales as the volume of the surrounding sphere of
radius rc, so the neighbor count scales as r3c . The screening factors in the potential
then increases the computational efficiency by an order of magnitude[105], because it
allows a much smaller cutoff distance rc. It has been shown that these screening factors
do not change the structural or dynamic properties of the material[60].

The three-body term is evaluated for all triplets i, j, k within the three-body cutoff,
and is given as

V (3)(rij, rik, θijk) = Bijk

[
cos θijk − cos θ0ijk

]2
1 + Cijk

[
cos θijk − cos θ0ijk

]2×
exp

( γij
rij − r0,ij

)
exp

( γik
rik − r0,ik

)
, rij ≤ r0,ij, rik ≤ r0,ik (2.19)

= P (3)(θijk)×R(3)(rij, rik), (2.20)

where I have factored out the spatial part R(3)(rij, rik) and the angular part P (3)(θijk).
The spatial part describes the bond stretching and the angular part represents bond
bending. Bijk is the strength of the interaction, θijk is the angle between vectors rij and
rik and θ0ijk is the equilibrium angle discussed above. Compared to the Stillinger-Weber
potential, the two-body term of this potential includes more physical terms. The three-
body term is nearly identical except the Cijk term in the denominator, which is used
to control the stiffness of the angular term.

In this thesis, the Vashishta potential has been used to generate the nanoporous
structures in publication 4, and to study faceting of silicon carbide (SiC) nanoparticles
in publication 3.

With this short introduction to molecular dynamics, I will in the next section discuss
a typical workflow while doing molecular dynamics simulations. This workflow includes
working with several different applications and tools.

2.4 Tools and workflow

A typical molecular dynamics simulation can be thought of as a process divided into
three different stages. First, an initial state from which the system will start from has
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to be created. This state contains the topology of the system (atom positions, and
possibly bonds between them), initial velocities, charges and boundary conditions. It
can be a tricky step and the time spent on preparing the system is often underestimated
in advanced simulations.

Secondly, the simulation itself is performed, often with some professionally written
software. Some analysis may be performed on the fly during the simulation9, but
a third stage, the analysis of atomic trajectories and thermodynamic data is quite
common after the simulation is finished.

These three stages define a typical workflow of atomic simulations, and has not
changed much over the past 20 years despite the remarkable technological advances.
With powerful desktop machines and laptops, visualizations and analysis can be per-
formed locally, but the three stages are still decoupled. In this section I go into detail
about each step with some examples from my own research and discuss how there is
room for improvement in modern research.

2.4.1 Stage I: Initial configuration

Many simulations are simple to set up. Measuring bulk properties of a solid can
be quickly prepared if the solid is a crystal with known lattice structure. The most
common lattices, simple cubic (SC), face centered cubic (FCC), body centered cubic
(BCC), hexagonal close-packed (GCP) and diamond, are already built-in features in
most molecular software packages. These lattices describes most monoatomic crystals
at room temperature in the periodic table[45], and bulk systems can be setup within
minutes.

However, crystals consisting of multiple elements often exist in more complicated
structures. Having initial configurations matching those found in nature is essential
to be able to compare numeriments to experiments, since deviations can to a large
degree affect the results. For instance, the melting temperature of perfect crystals
in molecular dynamics simulations are expected to be higher than experimental bulk
values since samples in nature are never perfect crystals, nor do they obey periodic
boundary conditions[104]. Melting is often initiated at grain boundaries or crystal
defects which act as melting seeds[71].

Setting up advanced systems with complicated topology often requires special soft-
ware like Moltemplate[41]. Moltemplate is a scripting based molecule builder that
create larger systems from building blocks. Complex bond topology and advanced
interfaces are among the examples in the software package.

Some advanced systems are those resulting from complicated physical processes.
One such example which I have studied in this thesis is nanoporous media. These
systems consist of complicated pore networks found in nature. The physics of fluids in
tight rocks is important since most of the hydrocarbons used for energy production are
found in such systems. Continuum hydrodynamics breaks down when the channels are
very narrow[44], so particle models like molecular dynamics are often used to study flow
in nanopores. Even without flow, water confined in nanopores have shown to appear in
new phases using molecular dynamics[87]. Preparation of such systems is complicated,
and is the main focus of publication 4 where we have used precedural noise methods
to create statistically similar geometries to those generated by computing intensive
molecular dynamics methods.

9In very large simulations, this may be essential since the amount of data can be enormous.
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Other systems may not be geometrically as hard to set up, but the behaviour of
some systems are sensitive to initial conditions such as temperature. This was the case
in publication 3 where several initial conditions were tested to see whether or not we
could capture faceting of nanocrystals in molecular dynamics. Faceting is the process
where surface atoms reorganize resulting in possibly a polyhedron (this is discussed
further in chapter 4 and in publication 3). This process is highly temperature sensitive,
because at too high temperatures, the system may melt the nanoparticle. A too low
temperature may prevent faceting to happen on time scales available in simulations.
Then, once the initial configuration is done, the simulation can be started.

2.4.2 Stage II: Simulation

Once the initial configuration is properly set up, the simulation itself may not be hard
to perform. Existing advanced software packages exists and the one I have used in this
thesis is discussed more in detail in section 3.1. An initial configuration is integrated
through time using a numerical integration scheme like velocity Verlet [96], and trajec-
tories can be saved to disk with any desired frequency. Aggregate scalar quantities
such as temperature, stress or the mean square displacement can be calculated on the
fly and stored to files for further analysis after the simulation is finished.

Many physical properties can be measured in equilibrium molecular dynamics -
where the states (hopefully10) are sampled in a certain ensemble like NVE, NVT or
NPT. In these simulations, the system is first equilibrated before we start to perform
sampling of states. Finding the diffusion coefficient, viscosity or thermal conductivity in
a system can be done in equilibrium molecular dynamics using Green-Kubo relations[4,
26], but many properties require the simulation to be performed at non-equilibrium
conditions such as when studying flow or irreversible processes.

In fluid flow simulations, the fluid is moving caused by an external pressure difference[44].
Several techniques exist to achieve a pressure difference. The simplest method is used
in the case study in publication 1, where a constant force is applied on the atoms.
Other more realistic methods may have reservoirs on both ends of the transport chan-
nels where fixed pressure boundary conditions are obtained by adding or removing
atoms in the reservoirs[95]. Setting up and performing such simulations often require
a lot of trial and error, and visual feedback is essential to work efficiently.

Atomify (publication 1) is a tool developed to reduce the gap between preparing
the initial state and the simulation itself. It enables real-time visualization of the
simulation, where adjustments to the simulation script can quickly be tested with
immediate visual feedback.

2.4.3 Stage III: Post-processing and analysis

Once the simulation is done, the analysis stage begins. This stage is another big portion
of the total time spent on a molecular dynamics research project. It is not always clear
from the beginning what type of analysis one should perform and rerunning simulations
to produce data not originally stored is common. As an example, in publication 3, we
did not have enough temporal resolution to measure the diffusion coefficients from the
saved trajectories, so we had to rerun the simulation from several timesteps.

10Ensuring that the system actually does follow trajectories in the desired ensemble can be tricky,
and several techniques exists for doing so, see [54, 65, 82] for details.
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Also here, visual feedback is crucial, and is often performed locally on an office
computer or laptop after the data has been transferred from a supercomuter. In the
beginning, molecular dynamics simulations were performed without visualizations, and
only atomic positions and velocities were analyzed to extract i.e. diffusion coefficients
and correlation functions[33, 75]. This is only natural since computers at the time did
not necessarily have a display.

Later, once computers began to have screens, numerous visualization tools were
developed to visualize molecular systems. Here I will only discuss the most popular
ones used today, but I refer to [55] for a review of different tools.

In 1996, Visual Molecular Dynamics (VMD) was released as a tool to visualize and
analyze atomic simulations with main focus on proteins and nucleic acids[38]. It sup-
ports displaying trajectories of atoms and molecules, but also interacting real-time with
a running instance of molecular dynamics softwares such as Nanoscale Molecular Dy-
namics (NAMD)[62]. VMD can be controlled with mouse clicks in the Graphical User
Interface (GUI), but also by writing scripts in the Tcl programming language. High
quality images can be rendered to produce publication-ready figures, while also sup-
porting high performance real-time rendering using Open Graphics Library (OpenGL).
However, the GUI is outdated, and the Tcl language is used less today. This opens up
for new, more modern tools to enter the market.

In 2009, another visualization tool called Ovito was released[92]. Ovito is a modern
visualization tool that supports many file formats[94] and advanced analysis through
its powerful modifier pipeline. A series of modifiers can be applied. Such modifiers
can be system replication, slicing, displacement analysis (which can be used to color
atoms) and more advanced techniques like coordination analysis and Common Neigh-
bor Analysis (CNA) analysis[23, 93] to identify crystal structures. See [94] for a full
list of features. Most of these features are also available in a flexible Python Appli-
cation Programming Interface (API), which enables efficient post-processing analysis
workflows. If Ovito lacks a specific analysis method, a user can write custom Python
modifiers as a part of the pipeline.

2.4.4 What’s missing?

The workflow defined as these three stages are quite powerful and has been used in
many published papers. However, in my experience, the three stages are too separated
compared to how the creative mind works throughout a simulation. By separated, I
mean that they often involve using different applications and switching back and forth
between these many times. In figure 21 the idealized workflow is shown, compared to
how a research project often actually is performed. If the initial configuration is created
by one application, and another is used to visualize the result, the context switch can
reduce efficiency and productivity.

Compare this to doing programming. It is quite common to use an integrated
development environment (IDE) - a software application that is more than just a text
editor. The IDE knows the programming language syntax, and can both compile and
run your program within the same environment. Similarly in video editing, sound and
video are tightly bound, and all professional video editing softwares support editing
both.

In molecular dynamics, the simulation conditions are usually defined in a script
before the simulation starts, but is not a part of the file containing the initial geometry.
Boundary conditions and possibly integration rules in different regions are commands
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Idea Prepare Initial configuration Run simulation Perform analysis

Publish

Idea Prepare Initial configuration Run simulation Perform analysis

PublishAdjust initial conditions

Modify simulation

a)

b)

Figure 21: The idealized workflow shown in a). An idea leads to preparation of
an initial configuration from which a simulation starts from. Then a simulation is
performed and results are analyzed before the paper is published. Usually, the workflow
is rather like shown in b). An idea leads to preparation of an initial configuration.
Then, a simulation is performed and you realize that the initial configuration somehow
is wrong, and you need to change it. This can happen many times even before a
full simulation is finished. Then, once the results are produced, you might get new
insight so that you once again have to change the initial configuration or simulation
parameters. Repeat this process multiple times and you might end up writing a paper.

to the simulator software which usually does not support real-time visualization in an
efficient manner. For beginners, this is especially hard because the context switches
may increase the learning barrier.

This is why I created Atomify. Atomify is a suggested solution to reduce the gap
between the three stages, but is not intended to replace existing post-processing soft-
wares like VMD or OVITO. I don’t mean that they are not necessary - especially since
Atomify only runs on a local computer and cannot be used for very large simulations.
It can, however, be used to glue together the separated initial conditions and preparing
the initial geometry.

Currently, it does not yet support virtual reality. VR has by 2018 really reached a
new milestone with several high quality, relatively cheap headsets available for everyone.
Although the initial release of VMD supported stereoscopic rendering, which could be
used to visualize 3D images using glasses of some kind[38], tilting and rotating your
head did not change the camera position, and is then not necessarily considered VR.
Today, with the Oculus Rift and HTC Vive, we can get full VR perception since the
sensors track not rotation and tilting of your head, but also walking and crouching.
For systems like the nanoporous materials in publication 4, being able to be inside
the systems and observe the pore networks is very useful. Other researchers have also
started developing similar tools[17], but these are so far limited in simulation size.

In publication 2, we have used existing game engines and coupled them to simulation
softwares to visualize simulations in VR environments. With hand controllers, we can
interact with the system in new ways. I expect a lot of new tools using VR to be
developed over the next few years.
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CHAPTER 3
Software development

I have always wished for my
computer to be as easy to use
as my telephone; my wish has
come true because I can no
longer figure out how to use my
telephone.

Bjarne Stroustrup

Most modern research involve some software development. It is common to write
small scripts to automate tasks, and create figures for publications. Running thou-
sands of simulations with different input parameters can be done with simple scripts.
However, developing a molecular dynamics code that can compete with existing codes
is very difficult. The number of different algorithms and methods is large. Some of the
most popular codes have been developed for more than 20 years[62, 73] and contain
several hundred thousand lines of code each.

Several open source molecular dynamics softwares exist, such as LAMMPS[73],
NAMD[62], GROMACS[74] and OpenMM[20], and have hundreds of contributors[29–
31] that help improving the codes each year. Molecular dynamics simulations are often
performed on supercomputers to obtain large systems and perform long simulations[86].
They should therefore show excellent scaling across thousands of processors[64, 74],
which may not be a trivial programming task.

Development of simulation software often has two different focus areas: new features
and performance optimizations. Among new features we find new potentials[99], and
methods like spin coupling to molecular dynamics[67]. The latter was only recently
implemented in LAMMPS[100] with a new parallel implementation in order to be
efficient in large simulations1. Adding support of modern hardware to existing codes
also requires a lot of development.

Herb Sutter, one of our most famous C++ experts, wrote in 2005 in his article
The Free Lunch is Over!!! : “Concurrency is the next major revolution in how we write
software.”

What he is referring to is that while the transistor count has steadily followed
Moore’s law, the clock speed of processors haven’t increased much since the 3GHz

1I used this as an example since it was implemented into LAMMPS this year.
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Figure 31: The percentage of total computing power being powered by GPU’s,
Intel R©Xeon PhiTM’s or regular processors on the top 50 supercomputers since 2010.
In 2010, there were only a few supercomputers powered by GPU’s and the first
Intel R©Xeon PhiTMsupercomputer came in the end of 2012. Writing software that
utilizes this special hardware requires extra knowledge. Source: top500.org.

mark in 2005. The current state of the art 5 nm transistors are getting close to the
physical limit, and must eventually stop shrinking. Since 2005, new processors have
gotten faster by adding more cores and better vectorization2. Most of the increased
computing power since 2005 is only available through exploiting this new programming
model.

Central Processing Unit (CPU)’s are so-called general-purpose computing units that
are reasonably fast at general tasks, but this also means it does not yield maximum
performance at specialized tasks. When the computer game industry grew in the 1990s,
new vendors pushed forward a new type of computing devices which were specialized
in running the exact same code simultaneously to render many pixels on the screen.
These devices are called GPU’s and have the past 10 years found their way into su-
percomputers. This is shown in figure 31 where the total computing power on the top
50 supercomputers is divided into three categories: GPU’s, Intel R©Xeon PhiTM’s and
regular processors. Intel R©Xeon PhiTMis a new type of computing card produced by
Intel R©to compete with GPU vendors in the computing market.

2Vectorization, or Single Instruction Multiple Data (SIMD), means that the processor executes
the same instructions (multiplication, square root, etc.) on multiple values on a single core at the
same time.
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I start this chapter by discussing why I have chosen Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) as molecular dynamics software and its ba-
sics. Different acceleration techniques are then discussed with extra attention on how
GPU’s can be used, since these may be much faster than regular processors. Then, I
go through my contributions to the source code of LAMMPS - all of which have been
motivated by my own scientific research and development.

3.1 LAMMPS

In this thesis all simulations have been performed with LAMMPS - one of the most
popular molecular dynamics codes today. It was originally developed by Steve Plimpton
at Sandia National Labs, but has today many contributors and maintainers. LAMMPS
is open source, written in C++ and is easy to extend with new classes due to its
elegant build system and class factory design. The code runs with excellent scaling on
thousands of processor cores[80] and supports acceleration on GPU’s and Intel R©Xeon
PhiTM’s through accelerator packages.

LAMMPS was originally written in FORTRAN 77 in the 90’s, with its first version
released in 1995 [81]. It was rewritten to F90 in 2001, before Sandia in 2004 decided
to switch to C++ and rewrote 50000 lines from F90 to C++. This is the codebase of
which today’s version is based on.

The software is very flexible with many supported features. A simulation is defined
using an input script that is executed line by line. The scripting language is proba-
bly Turing complete3, and I have implemented a molecular dynamics code within the
scripting language using only variables and loops[32]. Computes can be used to mea-
sure properties like temperature, coordination number, radius of gyration and mean
square displacement (many more exist). Fixes are applied each timestep and are used
to i.e. obtain certain ensembles as NVE, NVT or NPT, or perform advanced sim-
ulations measuring properties such as thermal conductivity, chemical reactions using
nudge elastic band or running shock simulations.

A good molecular dynamics code should run efficiently and yield high performance
throughput utilizing the available hardware. Many different techniques exist and some
will be discussed next.

3.1.1 Acceleration techniques

Most of the computation time in a molecular dynamics simulation is spent on calcu-
lating forces, which typically are given as (eq. (2.12)):

F(r) =
∑
i,j

F(2)(ri, rj) +
∑
i,j,k

F(3)(ri, rj, rk)

=
∑
i,j

(
F(2)(ri, rj) +

∑
k>j

F(3)(ri, rj, rk)
)
. (3.1)

Distributing and optimizing this calculation is central for nearly all optimization tech-
niques. I will here present some of the relevant techniques in modern molecular dy-
namics codes.

3I haven’t proved this, but it seems plausible.
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MPI: LAMMPS is programmed using Message Passing Interface (MPI) where the
software is started as multiple processes, possibly on different computers, each having
a unique identifier that is used so each process can work on a smaller part of the
full problem. This is one of the few efficient techniques that allows a software to run
on distributed memory systems (i.e. multiple computers) in supercomputer centers.
When a molecular dynamics simulation is run on N processes, the full system volume is
divided intoN subvolumes, one per process. Each process owns, and does computations
on atoms within its subvolume.

Threads and OpenMP: Within the same process, the program can run multiple
threads, each executing code on different processor cores. Several threads can run
sequences of instructions sharing the same memory. Equation (3.1) is programmed
as a loop over i atoms. By dividing the i loop into multiple ranges, each running on
different threads, we can use several cores within the same process. For instance, if we
have 1000 atoms and 4 threads, thread 1 can calculate the forces for atoms 1-250 while
thread 2 works with atoms 251-500 etc. In C++, access to threads can be obtained
through std::thread , or using OpenMP .

SIMD: For every pair i and j, the exact same code will be executed, except perhaps
whether or not the pair is within the cutoff or not. This is what SIMD is made for
- performing Single Instruction on Multiple Data. Using the SIMD registers, we can
obtain a substantial speedup since several neighbors can be computed simultaneously.
The USER-INTEL package in LAMMPS is written by Michael Brown. This package
contains specialized versions of several of the classes in LAMMPS written in a way
exploiting SIMD and multiple cores.

Force tables: The Vashishta potential discussed in section 2.3 contains multiple
trigonometric functions such as exp and cos, in addition to evaluating powers of r. Calls
to these are expensive compared to regular floating point operations such as addition
and multiplication. These function calls can be avoided by storing precomputed values
of the forces and energies into an array with only atomic distance as input parameter.
In the force loop, the squared distance is calculated for each atom pair. This distance
is used to find the two nearest precomputed values and different interpolation schemes
can be used to evaluate the force and energy to any desired accuracy.

GPU’s: Apart from the techniques mentioned above, all of which affects regular
implementations on CPU’s, other computing models also exist. The usage of additional
computing cards such as GPU’s has become quite popular as can be seen in figure
31. These cards add an additional computing power that can be used in parallel with
regular processors. The computing and memory model is often different, so the original
code doesn’t necessarily automatically run on these cards. A GPU can have thousands
of cores[108], and code is run in massive parallel executing the same instructions on
multiple data inputs (SIMD). While a high-end processor today can perform about 1
TFLOP, modern GPU’s can perform more than 15 TFLOPS on single precision floating
point numbers[66]. I implemented one version of the Vashishta potential in the GPU

package, and one in the KOKKOS package. These packages, hence the implementations,
are quite different and deserve their own subsections.

3.1.2 GPU package

The GPU package was initially written by Michael Brown[8–10] in 2010 as an acceler-
ator package for LAMMPS. It was built as a way to accelerate the two heaviest part of
a timestep: neighbor list building and force computations. All of the data is owned by
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the CPU, which is also where time integration happens. Atom positions are transferred
to the GPU each timestep to build neighbor list and calculate the forces, which then
are transferred back to the CPU for time integration.

Each potential has to be written as CUDA kernels since this was the only supported
alternative by NVIDIA in 2010 when the package was written. OpenCL is supported
through a CUDA→OpenCL transpiler, so this package can also be used on cards pro-
duced by other vendors than NVIDIA. Since the GPU is only used for neighbor list
building and force calculations, this package also works in Atomify.

3.1.3 KOKKOS package

When time goes by, new hardware or new programming language features comes, and
new rewrites of a software become inevitable. This is time consuming and prevents
the development of new scientific ideas or features. As a solution to this problem,
Sandia started developing a new library called KOKKOS[21]. The title of their paper
is Kokkos: Enabling manycore performance portability through polymorphic memory
access patterns. This paper addresses the manycore revolution and how different plat-
forms obey different memory models, which may require different code per platform.

KOKKOS solves this problem with a template-based C++ library where the pro-
grammer does not need to worry about the memory access pattern4. As developers,
we only need to think about the memory as a regular, contiguous array, but this is
just an abstraction over the underlying memory model which depends on the target
platform. The same C++ code is used for GPU’s, Intel R©Xeon PhiTM’s or the more
standard OpenMP and pthreads . When new hardware or new platforms appear years

from now, the software written using KOKKOS (such as LAMMPS) does not need to
be updated since it can be supported by changing the KOKKOS library only. This
reduces the effort needed to keep the software relevant many years from now.

In the GPU package, the processor owns the data, and atomic positions are only
transferred to the GPU to build neighbor lists and calculate forces. Transferring data
is not free and adds an additional overhead which should be avoided if possible. If
KOKKOS is used on GPU’s, the data is owned by the device and is only transferred
to the CPU if non-KOKKOS features are being used. In a simple NV T simulation,
the data lives on the device and has zero overhead in data transfer throughout the
simulation. KOKKOS is currently written using static state variables, and does not
support multiple instances of the KOKKOS object, nor reallocation during the life time
of the process.

I have worked with both these packages and contributed to the LAMMPS source
code which is discussed next.

3.2 My open source contributions

I have several contributions to the LAMMPS source code over the past years. As of
May 22nd, 43 bug reports and 38 pull requests have been submitted as is shown in
figure 32. Open source contributions often come from problems a user experiences, and
this is also the case here.

4For instance, GPU’s is faster using texture memory for random memory access, compared to the
constant memory for contiguous access.
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a) b)

Figure 32: List of parts of my contributions to the LAMMPS software on GitHub. (a)
A total of 43 issues has been submitted and (b) 38 pull requests have been submitted
with multiple bugfixes, new features such as GPU implementations of the Vashishta
potential and improvements on the GCMC code.

Tabulation and cached neighbor lists: The first contributions were optimiza-
tions on the Vashistha potential with tabulated two-body forces to prevent expensive
function calls, but also cached neighbor lists for the three-body force loop. The tab-
ulation is done using simple linear interpolation between the tabulated values, and
gives a 60% speedup when using 50000 tabulation points compared to the analytical
implementation.

The silicon carbide parameters for the Vashishta potential has a 7.36 Å cutoff for
the two-body forces, but only 2.9 Å for the three-body forces[104]. Similar values
are also found for the other materials[103, 105, 106]. The neighbor list is using the
maximum cutoff value and will in the silicon carbide case consist of at least all atoms
within 7.35 Å. A näıve implementation would loop through all these neighbors when
calculating the three-body forces although only those within 2.9 Å are contributing.

To improve this, I implemented a cached neighbor list that contains only those
atoms closer than three-body cutoff. This list is built each timestep while looping
through the two-body forces. It is almost free and gives a great speedup (2x-4x). Later
on, Axel Kohlmeyer implemented the same techniques in other MANYBODY potentials
such as Stillinger-Weber[91] and Tersoff[97, 98]. We have now also implemented the
cached neighbor lists in both the GPU package and the KOKKOS package.

C++ exceptions: LAMMPS was originally written so that the process exited
if any errors had occurred. Such errors could be a syntax error in the user script,
simulations losing atoms or some other invalid state. This was problematic for Atomify
since if LAMMPS exits the process, this would also exit Atomify. What we want to
happen is to print the error message to the user so she can quickly fix the problem and
try again. Richard Berger, the main developer of the Python package, had similar
problems when running LAMMPS in a Jupyter Notebook session.

As a solution to this, I suggested using std::exception . Exceptions are used to
transfer control from where a problem occured, to further up in the call stack where
such an exception can be handled. This is a standard feature in many programming
languages, C++ being one of them. LAMMPS now supports this and Atomify catches
exceptions and presents error messages to users instead of exiting.
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Figure 33: Benchmark on the two GPU implementations of the Vashishta potential
(bulk 3C-SiC) using one NVIDIA Tesla P100 GPU, compared with 128 and 32 cores
on Fram. Larger system size was achieved by replicating the system in all directions.
The measure is atom-timesteps per second, a quantity that ideally should be constant
since simulation time is O(N) of number of atoms. We see that we need a rather large
system to reach ideal performance which is expected since GPU’s have many cores and
require a substantial workload to perform ideally. Alternatively, multiple jobs can be
run simultaneously to achieve good performance also on smaller systems.

Variable initialization: Once exceptions were supported, another related prob-
lem occured. That the process will continue after a LAMMPS problem was detected
was originally not in the developers minds. This was evident when a user of Atom-
ify had an error in the input script. Most of the C++ classes in LAMMPS did not
properly initialize variables. If an exception was thrown during object construction,
pointers may have random values which resulted in segmentation fault during dealloca-
tion. Initializing pointers to NULL , and array lengths to zero before any script syntax
validation was performed fixed these problems when running Atomify or LAMMPS in
Jupyter Notebook. The standard classes and 33 out of 58 packages are now fixed and
ready to use in Atomify.

GPU implementations: My scientific interests made me want to run the Vashishta
potential on GPU’s. Benchmarks showed that Stillinger-Weber had a great speedup on
modern GPU’s[80], and since the Vashishta potential is very similar to the Stillinger-
Weber potential, it was reasonable to expect similar speedups also with this potential.
My implementation was merged into the code in November 2016. As mentioned in sub-

21



section 3.1.3, the KOKKOS package does not support running LAMMPS as a library due
to its global state. This is problematic for Atomify since it allocates and deallocates the
LAMMPS object many times during one session. KOKKOS also only supports double
precision, which typically gives a factor 2 performance decrease compared to single pre-
cision. The GPU package does support both single precision and library usage, so this
package is ideal to use to do real-time simulations in Atomify. I then implemented the
potential also in the GPU package. The implementation followed the style of existing
similar potentials such as Stillinger-Weber. In figure 33, I show benchmarks on how my
GPU implementations perform compared to 32 and 128 cores on our supercomputing
cluster Fram. One single NVIDIA P100 card performs approximately the same as 128
cores on Fram using four Intel E5-2683v4 processors[89].

Other bugfixes: Several other bugfixes in different classes and packages has
also been submitted. See https://github.com/lammps/lammps/pulls?q=author%

3Aandeplane for a full list of pull requests.
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CHAPTER 4
Theory of crystals

The beauty of crystals lies in
the planeness of their faces.

Alfred Edwin Howard Tutton

We have used the methods developed in this thesis to address several physical phe-
nomena in detail. The most extensive application is to facet formation in nanocrystals
- the mechanism of transforming the shape of a nanoparticle into one with clear facets
like shown in figure 41. Crystals are fascinating objects with an incredible amount of
interesting physics in it. Depending on the number of electrons in the valence shell,
atoms may organize in complicated structures that obey certain symmetries. This has
several macroscopic consequences.

One of the text books describing crystal growth is Physics of crystal growth by
Pimpinelli and Villain[72]. In figure 42, I have created a word cloud from the text in
this book to extract the main concepts, and important terminology in a visual manner.
The term surface appears three times more than any other technical1 word which
reveals that this is the main focus of the book.

Crystals are everywhere. Almost the entire Earth’s crust consists of crystalline
rocks, and reveal important historical events that have happened on earth[107]. In
fact, the physics of crystal surfaces has been a popular field of study for nearly a
century with several groundbreaking papers. Most crystals grow from a solution or a
melt. With the advent of molecular beam epitaxi (MBE, a technique to grow crystals
layer by atomic layer in a controlled manner) and electron microscopy, the physics of
crystal growth took a new step forward.

Understanding this process is also important the development of modern technol-
ogy. Semiconductors are a class of materials that have electric conductivity between
insulators and metals, but by doping2 them, they get very interesting properties and
can be used to create transistors and modern processors. Modern processors are grown
from silicon crystals and doping is done by the surface being in contact with vapor.
See [72] for more details.

1I have removed the most common english words.
2Doping means adding impurities (other elements) to the material.

23



a) b)

Figure 41: Crystals at low temperatures form facets - flat faces along crystal planes.
a) (100) and (111) facets on a diamond cuboctahedron, image captured with scanning
electron microscopy. The crystal has a diameter of almost 1mm with clear facets.
c©User:Ludvig14 / Wikimedia Commons / CC-BY-SA-3.0. b) Metastable faceted sili-
con carbide nanocrystal from publication 3. The colors have no direct meaning except
highlighting the different (110) facets.
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Figure 42: A word
cloud generated from
Physics of crystal
growth by Pimpinelli
and Villain[72]. The
top 5 words are surface,
energy, crystal, diffusion
and steps which reveals
important concepts in the
field. Not surprisingly,
these are all important
terms in publication 3
where we study the trans-
formation of nanocrystals
from different initial
shapes to shapes with
facets.
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a2

a1

Figure 43: Two-
dimensional silicon
carbide crystal. The
two lattice vectors a1

and a2 are shown in the
inset with the unit cell
highlighted in the dashed
box.

Physics often deals with questions like what is the equilibrium state? and what is
the path toward equilibrium? For crystals, this translates to what is the equilibrium
shape? and how does the crystal grow or transform to obtain this stable shape?

In this chapter, I briefly discuss what a crystal is, as well as some basic terminology
and concepts that will be useful to understand why crystal equilibrium shapes in fact
are variants of polyhedra with facets. I then discuss the Wulff construction[110] - a
technique to construct the equilibrium shape of a crystal from the surface tension which
can be measured experimentally. Some details about facet formation is then discussed
before relevant topics like surface diffusion and energy barriers conclude the chapter.
This chapter should not be seen as a review, but rather a collection of important results
on the path to a understanding of the faceting phenomenon.

4.1 Terminology

A solid is a crystal if the atoms are placed a structured way on a lattice with trans-
lational symmetries[45]. In figure 43, I show a two-dimensional silicon carbide crystal
with clear translational symmetries.

A unit cell consists of a set of atoms - building blocks - that can be replicated
along lattice vectors {ai} to create a larger system. Since crystals are not infinite, they
always have surfaces exposing some atoms to either vacuum or some other substance
such as air.

The thermodynamics of crystal surfaces is very interesting due to its complicated
nature. At zero temperature, it is possible to have a perfectly flat surface, but once
atoms are allowed to move thermally, some of them may gain enough energy to escape
its low energy state in the crystal lattice site, and become an adatom which will diffuse
around on the surface. Several adatoms may meet and form islands with boundaries
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adatom

kink

step

island

a)
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θ

Figure 44: A crystal surface to illustrate a) steps, kinks, adatoms and islands, and
in b), a vicinal surface, or a stepped surface with a small angle θ from one of the high
symmetry directions.

called steps which may have kinks in them. These terms are illustrated in figure 44a.
If a surface has steps, kinks or adatoms, the combinatorics of the possible configu-

rations lead to an important entropic term in the free energy F = U − TS that makes
the physics of crystals both difficult and interesting.

A flat crystal surface is described as a crystal plane which is defined by at least three
non-collinear3 points in the underlying lattice. A plane with three lattice points actually
contains an infinite number of points due to the required translational symmetry. Such
planes are described by Miller indices h, k, 
 which, together with the lattice vectors
{ai}, defines the normal vector to the plane

nh,k,� = ha1 + ka2 + 
a3. (4.1)

Depending on the underlying crystal, some of these planes are identical due to
rotational symmetry. For instance, in a single cubic crystal, the (100), (010) and (001)
planes are identical since the crystal can be rotated 90 degrees and still look exactly
the same. Such collections of identical planes are referred to as {100} planes.

If we cut a crystal along one of these planes, we break some bonds, which requires
some work W to be applied. Two new surfaces are then created, each with area A. We
define the surface tension f as the amount of work per area

f =
W

2A
, (4.2)

3Collinear points are points in a straight line.
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Figure 45: Ratios of surface tension ratio γhkl/γ111 of indium in [36]. The {111}
surface clearly has the lowest surface tension. Reprinted with permission from Elsevier.

where the factor 2 arises because we in fact have created two surfaces. Surface tension
is an important quantity in the theory of crystal surfaces, and depends on the normal
vector. f is in fact a free energy, so it has an entropic term, and is thus temperature
dependent. Generally, we can write f as[88]

f(T,n) = ε(T,n)− Ts(T,n), (4.3)

where ε is the internal energy per area and s is the entropy per area.
In figure 45, the surface tension for indium is shown[36]. The surface tension is in

the figure denoted as γ, but is identical to f in this chapter. As I will explain soon,
the cusp (discontinuity in df/dθ) in the {111} direction corresponds to facets.

The full surface free energy of a crystal is found by integrating over the surface

Fsurf =

∫
∂Ω

f(T,n)dS, (4.4)

and is one of the main quantities that determines the physics of a crystal since this is
the quantity that is minimized to reach equilibrium. At zero temperature, the entropic
term vanishes. In this case, only the internal energy defines the equilibrium shape.

A lot of the research on crystal surfaces has been on the growth on flat surfaces
and stepped surfaces - surfaces with an angle θ from a high symmetry direction such as
(100) or (110) (see figure 44b). Surfaces grow when new atoms migrate to sites where
they attach. Such sites are usually holes in the surface, or in kinks when steps are
present. Migration to the surface may be controlled in different manners in vacuum,
like MBE, or if it occurs in a fluid phase. In a fluid phase, the particles diffuse in
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3 dimensions, whereas in vacuum diffusion is restricted to the 2 dimensional crystal
surface. This limitation causes different growth phenomena in vacuum and in fluid
phases.

In three groundbreaking papers by Burton, Cabrera and Frank[11–13], they present
many ingredients of modern crystal growth science. These papers are focused on crystal
growth on flat crystals and how temperature-dependent phenomena like step roughness,
surface diffusion and nucleation affects how a crystal grows. I will in the following only
treat growth in vacuum.

Theoretically, we assume that we have a nanoparticle in vacuum, where any shape
transformation is caused only by reorganization of atoms within the nanoparticle. The
nanoparticles consists of N atoms with some initial shape. Given that the system is
allowed4 to reach its equilibrium shape, what will it be? This question was answered
by George Wulff in 1901 [110].

4.2 Wulff construction

The work in publication 3 is concerned with equilibrium shapes of volume-preserving
nanocrystals. It was Gibbs[28], who in the 1880s realized that the equilibrium shape
for a fixed volume substance will be the shape that minimizes the integrated free energy
Fsurf. The problem can be formulated mathematically as minimizing Fsurf while keeping
the volume constant. What follows is presented as in [72].

Assuming that the equilibrium shape is a polyhedra5, the surface free energy can
be found by summing the contributions per facet

Fsurf =
∑
i

fiAi, (4.5)

where fi ≡ f(ni) and Ai is the area of facet i (The temperature is assumed to be zero,
so I have dropped it here). Assuming that the crystal can be constructed as a set
of connected pyramids, one per facet, the volume of the crystal is V = 1/3

∑
i Aihi,

where hi is the distance from the crystal center to the nearest point on the facet i.
A constraint minimization using a Lagrange multiplier λ to enforce constant volume
gives

δ(λV + Fsurf) =
∑
i

(λ
3
hi + fi

)
δAi = 0. (4.6)

This results in

fi
hi

=
λ

3
(4.7)

for all facets. Furthermore, this can be written as

h(n) = kf(n), (4.8)

for k = 3/λ, and means that the distance from the crystal center to a facet is pro-
portional to the surface tension. This powerful result is the foundation for the Wulff

4Energy barriers may prevent this from happening, and the system may be stuck in a metastable
state[58, 77].

5This is not obvious at all, but turns out to be true at zero temperature.
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Figure 46: The Wulff construction is a technique to create the equilibrium crystal
shape from the surface tension f(T,n). It works as follows: (a) Create a polar plot of
the surface tension. This is the curve defined so that for each direction n, the distance
from the crystal center O to the intersection point on the curve is proportional to the
surface tension. (b) For a point P on the curve, draw a perpendicular line to OP at
the P . (c) Repeated this for all points on the curve. A few such normals are shown for
different points P on the curve. (d) The crystal shape will be similar to the interior
envelope of all these perpendicular lines. Notice how the cusps define facets, i.e. large
flat areas on the crystal. This is a modified version of c©Michael Schmid / Wikimedia
Commons / CC-BY-SA-2.5.

construction, which is used to create the equilibrium shape given the surface tension
f(n). The method is best described in two dimensions (this can be seen as a cross
section of a three-dimensional crystal), but is easily extended to three dimensions. It
works as follows.

Draw the polar plot of the surface tension f(T,n). This means, for each direction
n, put a point P in that direction with distance proportional to f(T,n) from the crystal
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a) b)

c) d)

Figure 47: Facet formation in a silicon carbide nanoparticle. This simulation was
performed with the Vashishta potential[104] at 2200K. The strong colors have no
meaning other than highlighting the different (110) facets. Edges between facets are
colored black. a) shows the simulation after 1 ns where we see that the particle has
started showing small facets. b) is taken at 40 ns, c) at 125 ns and d) at 1μs. Notice
how the (110) facets grow laterally by adding step by step towards the metastable shape
in d). This is metastable due to an energy barrier preventing the dark blue facets to
grow normally which is required for the particle to reach its equilibrium shape. See
publication 3 for more details.

center O. Then, at each such point P , construct a perpendicular line to OP , which
gives a family of lines6. The crystal shape will then be geometrical similar to the interior
envelope of all these lines.

In figure 46, I have shown how this works geometrically. By using eq (4.8), we can
in principle measure the surface tension for all high index crystal planes and use these

6In three dimensions, these perpendicular lines are perpendicular planes.
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Figure 48: State of the art images on faceting of Mo2C nanoparticles at 1473K
taken from Atomic-Scale Mechanism on Nucleation and Growth of Mo2C Nanoparticles
Revealed by in Situ Transmission Electron Microscopy. These images are captured
with TEM and shows how the nanocrystal grows by adding single atomic steps at
the boundary. In the first (top left) image, we see a kink. Reprinted (adapted) with
permission from [24]. Copyright (2018) American Chemical Society.

values to construct the equilibrium shape at low temperatures. As seen in figure 46,
cusps in the polar plot correspond to facets. These cusps can for simple 2D Kossel
crystals[22, 48, 49] be explained by that the energy to open a surface (creating a cut
along an angle θ) is given as the Manhatten distance between the end points

f(θ) ≈ k(1 + |θ|+ ...) (4.9)

for small angles at zero temperature. Here, the constant k determines the strength of
the interaction. The derivative of f at θ = 0 is discontinuous, and we have a cusp. At
zero temperature, the equilibrium shape of a crystal is then a polyhedra with sharp
edges and corners between the facets[22].

4.3 Facet formation

Atoms on high energy surfaces will diffuse more easily than on low energy surfaces.
They may therefore jump around until they attach to a energetically favorable site.
Typically, these sites are in steps on the edge of existing facets. Facets can either grow
in the normal direction by adding a new layer, or laterally by adding new steps on the
edge. When one facet grows normally, its neighboring facets will grow laterally since
they then get a new step at the edge.

Figure 47 shows the facet formation in one of the nanocrystals in publication 3.
Here we see that the area of (110) facets increase by atoms attaching at the edge of the
facets. In simulations we can follow the trajectory of every atom. However, studying
equilibrium shape crystals experimentally on the atomic scale turns out to be difficult.
Observations are usually done with TEM, Scanning Tunneling Microscopy (STM) or
atomic force microscopy (AFM)[6, 24, 51, 57, 72]. Such scanning methods have limited
temporal resolution on atomic time scales, and require the growth to be very slow to
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capture. In addition, small crystals may either float freely around in a vacuum chamber
or, if grown on a already existing surface, have their shape altered. In figure 48, state
of the art experimenal images of atomic faceting mechanisms is shown from [24] using
TEM. If the growth is slow enough, the formation of single steps with kinks can be
captured, but the evolving facet dynamics have yet not been studied experimentally
and still is considered to be largely unknown[51]. However, as we show in publication
3, the atoms can be followed in detail in simulations. We can then obtain an improved
understand of how diffusion transforms a particle into its equilibrium shape. It does
happen through surface diffusion.

4.4 Surface diffusion

Surface diffusion is the random motion of atoms jumping between adjacent surface
lattice sites. The potential energy of an atom at a site is lower than between two sites,
so to jump between them, the atom will have to overcome an energy barrier, a so-called
activation energy[56]. The rate at which surface diffusion happens depends on different
possible paths7[27, 78], but usually follows an Arrhenius law[72]

D ∝ exp(−Ed/kT ), (4.10)

for some activation energy Ed. We here see that at low temperatures, diffusion happens
slowly. In figure 49, I show a simulation of a silicon carbide nanocrystal in its equi-
librium shape with temperatures in the range 300K to 2100K over 400 ns. At 300K,
all atoms are locked in their lattice position and we see no diffusion. At 1800K, the
atoms at edges and corners8, are diffusing. All edges, corners and (111) facets diffuse at
2100K. Although we have many diffusing atoms at high temperatures, a nanoparticle
may be stuck in a metastable shape.

4.5 Energy barriers

The nanoparticle in 47d is stuck in a metastable shape. In order for the particle to reach
its equilibrium shape, two of the layers need to grow a layer normal to the facet. If the
facet is sufficiently large, this growth may be preventd due to an energy barrier[58, 77].
This is explained by the fact that for a new layer to be grown, single adatoms have to
randomly diffuse on top of a low energy surface where the adatom free energy is high.

Atoms located at one of these facets will quickly fall off again since edges and
corners are energetically more favourable than the facet. This is evident from figure
49d, where the facets remain flat and have very few adatoms. In publication 3, we
study this energy barrier in detail.

7Some directions may have higher energy barriers than others.
8The sharp corner in figure 49b is in the (100) direction.
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b)
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10 Å

0 Å

(110)
(111)

T = 300K

T = 1800K

T = 2100K

Figure 49: Molecular
dynamics simulation of an
silicon carbide nanocrys-
tal at its equilibrium
shape. The particle con-
sists of 103498 atoms, and
was heated from 300K to
2100K over 0.4 μs. Col-
ors indicate the displace-
ment of each atom over
the past 2 ns (red means
that the atom has moved
at least 10 Å). In a), we
see that at 300K, there
is very little movement.
In b), the temperature is
1800K, with some edges
and corners slowly diffus-
ing. Note that some edges
are still completely frozen.
This indicates that this
crystal is Wortis type
B[109]. In c), the tem-
perature is 2100K. Here
all edges, corners and the
(111) facets are diffusing,
but the (110) facets are
still quite stable.
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CHAPTER 5
Summary of publications

In this chapter, I summarize the four publications in this thesis.

Publication 1: Effective workflow in molecular dynamics simulations using
Atomify — a real-time LAMMPS visualizer

Anders Hafreager, Svenn-Arne Dragly, Anders Malthe-Sørenssen.
Submitted to Modelling and Simulation in Materials Science and Engineering.

Publication 1 is a proposed solution to the problem described in subsection 2.4.4: there
is too much context switching overhead between different applications when running
molecular dynamics simulations compared to how our minds work. Visual feedback
is crucial during script development to verify the initial geometry and boundary con-
ditions. In this paper, we introduce Atomify - a real-time LAMMPS visualizer that
combines all the three stages described in section 2.4. The main focus of this applica-
tion is to enable a user to quickly perform changes to the simulation script, and get
immediate visual feedback on the results, either through visualization of the atoms, or
by plotting a compute or variable real-time.
My contribtion: I am the main developer in this project and I have written most of
the paper.

Publication 2: Game-Engine-Assisted Research platform for Scientific com-
puting (GEARS) in Virtual Reality
Brandon K. Horton, Rajiv K. Kalia, Erick Moen, Aiichiro Nakano, Ken-ichi Nomura,

Michael Qian, Priya Vashishta and Anders Hafreager.
SoftwareX, 9, 112-116, (2019).

doi.org/10.1016/j.softx.2019.01.009

While Atomify in publication 1 improves the workflow of script development, it does
not yet support VR headsets or interactions with the simulation. Publication 2 is
a collaboration with the Materials Genome Innovation for Computational Software
(MAGICS) center. We here used existing game engines like Unity and Unreal Engine
- both of which supports VR - to perform simulations in real-time, and visualize the
contents using VR headsets like the HTC Vive and Oculus Rift combined with Leap
Motion Controllers. High sensitivity sensors allow a user to walk around, crouch and
rotate the head to get a full 3D view inside a simulation.
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The Leap Motion Controller detects the position of hands and fingers. This is used
to rotate, translate and zoom in on different features in a simulation.

Several different simulation codes were tested in different programming languages
to explore the strengths of the different game engines. For instance, by using a simi-
lar data communication layer as in publication 1, we can run real-time simulations in
LAMMPS using VR headsets. We implemented the same rendering technique as in
Atomify to achieve high rendering performance.
My contribtion: I planned and designed the LAMMPS application in Unreal Engine,
how to efficiently render large amounts of atoms, and helped developing the code.

Publication 3: Direct atomic simulations of facet formation and equilib-
rium shapes of SiC nanoparticles

Anders Hafreager, Henrik Andersen Sveinsson, Anders Malthe-Sørenssen,
Rajiv Kalia and Priya Vashishta

In preparation.

Transformation of a nanoparticle from an initial shape to its equilibrium shape may
require a huge mass transfer, and take a very long time depending on the surface
diffusion. The rate at which surface diffusion happens follows an Arrhenius form[72],
and is temperature dependent.

In this publication, we first used Atomify to simulate small silicon carbide nanopar-
ticles in vacuum at different initial temperatures to see whether or not faceting hap-
pened on molecular dynamics time scales. At low temperatures, surface diffusion is
too slow for faceting to happen, and at high temperatures, the system may melt or be
above the roughening transition temperature at which facets disappear.

At 2200K, we did see indications of facet formations from an initially spherical
particle, and started further studies using supercomputers. This allowed us to study
a phenomenon that has several unanswered questions today. Will all initial shapes
eventually transform to the same shape? Where does most of the mass transport
happen?

To answer these questions, several microsecond simulations were performed using
the GPU implementations of the Vashishta potential discussed in section 3.2. Initially
spherical, cubic and cylindrical nanocrystals with different sizes were simulated. We
found that the equilibrium shape indeed is independent of the initial shape, and that
the (110) and (111) crystal planes are the dominant facets. This makes the equilibrium
shape a rhombic dodecahedron1 truncated by (111) facets.

However, the initially cylindrical nanoparticle ended up in a metastable shape where
two of the (110) facets did not grow normally2 over a 1 μs simulation3. It is a known
phenomenon that if a facet is sufficiently large, an energy barrier may prevent the facet
to grow normally[58, 77].

Our simulations indicated that we had found such a barrier. By heating the
nanoparticle to 2361K, both facets started to grow normally, and the particle ended
up in the same equilibrium shape as the initially spherical and cubic nanoparticles.
Most of the mass transport happens on edges and the corners between the facets.

1Twelve different (110) facet directions exist, which makes a dodecahedron the expected equilib-
rium shape if these facets have the lowest surface tension[107].

2Normal growth means adding or removing a full atomic layer.
3We also continued this simulation at 2200K for a total of 3 μs, but the facets showed no normal

motion.
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This is, as far as I know, the first direct atomic simulation of faceting.
My contribtion: Henrik Sveinsson and I have contributed equally to this work and
has worked together on all aspects of the project. We used my GPU implementation
of the potential. This was necessary to run many very long simulations. Analysis and
paper writing have also been done by both of us.

Publication 4: Structural replication of nanoporous media using procedural
noise

Anders Hafreager, Nicolaas Groeneboom and Anders Malthe-Sørenssen
Submitted to Physical Review E.

This publication is concerned with the first stage of a molecular dynamics project:
preparing an initial geometry. From [87], we have a method to generate physically
realistic nanoporous materials in SiO2 using molecular dynamics, but generating many
statistical similar geometries may be computationally expensive. We show that by using
procedural noise, a well-known technique from games and movies, we can reproduce the
statistical properties of these geometries within seconds, once the optimal parameters
have been found. The radial distribution function g(r) is used as a statistical measure
to compare the original physically based geometry to our generated one. Procedural
noise functions are typically sums of contributions on different length scales with several
free parameters.

A fully automatic Markov chain Monte Carlo method was developed to find optimal
parameters in a high-dimensional parameter space. We ignore the intramolecular part
of g(r) during the parameter search since this does not capture the porous network.
The model is capable of capturing most features of g(r). Our best-fit model also
reproduce porosity and surface area, but the surface gets bad chemical properties like
the coordination number.
My contribtion: I proposed the original idea. Then I developed, together with
Nicolaas Groeneboom, the software implementation of the model. I have also written
important parts of the paper.

37





CHAPTER 6
Outlook

How technology develops further is hard to predict. It seems reasonable that with
the transistor size getting closer to the physical limit, new hardware will not only be
inherently parallel, but also more specialized for certain tasks. Machine learning is a
popular term these days, and has recently found its way into research in physics[15, 90].

One of the most popular machine learning softwares today is Tensorflow[1], de-
veloped and maintained by Google. It was released in 2016 - the same year as they
revealed their Tensor Processing Unit (TPU), a hardware, specialized to perform ma-
chine learning very efficiently. This year, NVIDIA released their new GPU, NVIDIA
V100, which also is specialized in machine learning[66].

Development of software should be done with this changing hardware landscape in
mind, and I believe Sandia’s efforts with KOKKOS is a good way to go. Java’s saying,
“write once, run anywhere”, also applies to the philosophy behind KOKKOS.

A single computer with eight high end GPU’s can perform better than 1000 mod-
ern supercomputer CPU cores1, and scales better in inhomogeneous systems with the
default MPI domain splitting implementation found in most codes. I therefore expect
real-time visualization tools like Atomify to be more common over the next years.

Atomify: Atomify (publication 1) needs to be improved. For instance, direct in-
teraction with a running simulation is not yet possible. The lack of virtual reality (VR)
support comes from the fact that it is built using Qt3D which does not support VR
out of the box yet2. VR support in Qt3D will probably be supported sometime in the
near future. While the VR environment GEARS in publication 2 is nice, it so far works
more as a proof of concept than a production ready framework.

There also seems to be a change in how rendering is done. Traditional rendering
works by representing geometrical objects as 3D primitives that are transformed by
matrices on the GPU. These polygons are projected onto the two-dimensional screen
where coloring of each pixel is calculated for each triangle covering a pixel. This
rendering technique has been used for many years now, but lacks photorealistic quality.

GPU’s are now getting powerful enough to perform real-time physically based ren-
dering, using raytracing. In raytracing, the paths of light rays are being traced, using
physics to determine how the rays interact with surfaces. VMD and Ovito do support

1This number comes from the benchmark shown in figure 33 in section 3.2.
2There exists several VR projects using Qt already, and some progress on Qt3D support is done

here: https://github.com/dabulla/qt3d-vr/tree/virtual-reality.
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rendering images using physically based raytracing, but these methods are too slow to
be run in real-time. Microsoft announced this year that they are adding support for
real-time raytracing in their Direct3D API. I expect this new method to be entering
scientific visualization softwares over the next few years.

While more realistic-looking rendering is nice, I don’t think it adds value to the
analysis process - at least not compared to what ambient occlusion3 and VR adds. In
publication 3, ambient occlusion was crucial during the analysis, since we more clearly
could see the facets on the nanocrystals.

Faceting of nanocrystals: As far as I know, our work in publication 3 shows the
first direct atomic simulations of faceting formation. Following the trajectories of each
atom reveal a great deal about the process. Although we in this publication explain
how faceting happens, there are many details we haven’t discussed. For instance, the
corners and edges in faceted silicon carbide nanoparticles remain sharp at temperatures
up to several hundred kelvin. The crystal then seems to be of Wortis type B[109]. Such
properties are important for our understanding of the roughening transition[5, 109].

Procedural noise: The use of procedural noise models like Perlin noise[69] and sim-
plex noise[70] has shown to be promising in our pilot study in publication 4. Players of
games like Minecraft4, enjoy interesting and rich worlds following simple rules from pro-
cedural noise. While our method reproduces the radial distribution function, surface
area and porosity, we see clear problems on the atomic scale where the coordination
number of surface atoms reveals that they are not chemically stable. The method only
cares about geometry, not chemistry. Perhaps applying a passivation step may work,
but the molecular topology is probably non-physicial.

Using our model to produce geometries for continuum flow simulations would be
interesting. I do not know whether or not the permeability would be reproduced, but
this quantity is closely related to porosity and surface area[44].

3Ambient occlusion adds the effect of depth by making objects inside the system appear darker.
4Minecraft is one of the most popular games of all times. Visit minecraft.net to find a new way

to procrastinate.
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K. Schulten. Namd: a parallel, object-oriented molecular dynamics program.
The International Journal of Supercomputer Applications and High Performance
Computing, 10(4):251–268, 1996.

[63] F. Ning, Y. Yu, S. Kjelstrup, T. J. Vlugt, and K. Glavatskiy. Mechanical prop-
erties of clathrate hydrates: status and perspectives. Energy & environmental
science, 5(5):6779–6795, 2012.

[64] K.-i. Nomura, R. K. Kalia, A. Nakano, and P. Vashishta. A scalable paral-
lel algorithm for large-scale reactive force-field molecular dynamics simulations.
Computer Physics Communications, 178(2):73–87, 2008.
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a b s t r a c t

The Game-Engine-Assisted Research platform for Scientific computing (GEARS) is a visualization frame-

work developed at the Materials Genome Innovation for Computational Software (MAGICS) center to

perform simulations and on-the-fly data exploration in virtual reality (VR) environments. This hardware-

agnostic framework accommodates multiple programming languages and game engines in addition to

supporting integration with a widely-used materials simulation engine called LAMMPS. GEARS also

features a novel data exploration tool called virtual confocal microscopy, which endows scientific

visualization with enhanced functionality.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Motivation and significance

Data visualization plays a key role in scientific discovery. Thou-
gh quantitative analysis is indispensable, researchers are often
forced to apply summary metrics blindly. Unfortunately, some of
these statistics are limited in their ability to describe the system
under test and can be misleading, as illustrated by Anscombe’s
Quartet [2].

∗ Corresponding author at: Collaboratory for Advanced Computing and Simula-

tions, University of Southern California, Los Angeles, CA 90089-0241, USA.

E-mail address: knomura@usc.edu (K.-i. Nomura).

Visualization software such as VisIt [3], ParaView [4], Visual
Molecular Dynamics (VMD) [5], and OVITO [6] provide a straight-
forward interface to create three-dimensional (3D) images and
observe patterns in the output of simulations. Though often used
among experienced researchers, it remains challenging to extract
information from datasets that consist of complex geometries or
contain a large number of entities because of the intrinsic limi-
tation of two-dimensional (2D) representations of 3D objects for
traditional displays. Immersive 3D visualization technology like
ImmersaDesk, Tile Wall, and CAVE2 [7] provide unique spaces for
collaboration and scientific communications [8]. These solutions,
however, require specialized knowledge of the respective systems

https://doi.org/10.1016/j.softx.2019.01.009
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Fig. 1. (Left) A user wearing a head-mounted display. (Right) A user manipulating simulation data of a tellurene material [1]. The skeletal hands are processed by the

LeapMotion library in the Unity 5 Game Engine. Using finger pinches and gesture controls, the user can rotate, translate, and scale the structure intuitively in immersive VR.

The surrounding graphical user interface is the Unity editor.

and clear expectations of the simulation’s outcome. Furthermore,
the high costs of these systems make them prohibitive for most
researchers.

An affordable alternative is an easily-accessible, agnostic soft-
ware platform designed for the increasingly available head-
mounted displays (HMDs) developed for consumer virtual reality
(VR). VR is a powerful visualization tool that has grown steadily
in popularity over the past two decades, fueled by the success of
HMDs likeOculus Rift [9] andHTCVive [10]. Despite itswidespread
adoption for video games and media applications, as well as its
potential as the most immersive and intuitive method for viewing
data, VR has been underutilized by the scientific community. To
transform VR into a common scientific tool, we have developed a
software framework, called Game-Engine-Assisted Research plat-
form for Scientific computing (GEARS) that facilitates the adoption
of VR technologies and allows researchers to take advantage of the
unique analytical advantages that the medium offers (Fig. 1).

2. Software description

2.1. Interactive data visualization

GEARS makes use of commodity game engines, like Unity [13]
and Unreal Engine [14], to simplify access to VR headsets. The
most straightforward application of VR to data visualization is
interactive viewing of pre-computed results for data exploration.
To realize this feature, GEARS employs the iBET workflow [15], in
which external 3D modelers, such as VMD and Blender [16], are
used to create a 3D object that can be added to the scene along
with the appropriate script (for example, LeapRTS.cs for the Leap
Motion controller [17]) (see Fig. 2).

This aspect of GEARS allows users a quick, straightforward out-
let for immediate visualization of snapshots of data frommaterials
simulations or molecular structures. Though the current interac-
tive visualization mode supports single frame data, we plan to ex-
pand this feature by creating multiple scenes containing different
simulation time steps for more dynamical data exploration. Fig. 3
showcases several examples of GEARS interactive visualizations
used in computational researches.

2.2. Real-time simulation visualization

GEARS also takes advantage of the programing capabilities pro-
vided by game engines, such as C# and JavaScript supported by
Unity and C++ for Unreal Engine, to facilitate reuse of existing sim-
ulation codes. Thismode of GEARS is suitable to explore simulation
results in real-time, rendered entirely within the game engine.

To realize this real-time rendering, it is critically important
to design an efficient data-bridging method between the game
engine and user-developed simulation program. GEARS employs
two approaches, called Run-when-Ready and Render-when-Ready,
depending on the size of the data and the complexity of the simu-
lation engine. Run-when-Ready calls the simulation engine upon a

frame update to advance the state of the simulation (for example

particle positions) of the frame by one timestep. Render-when-
Ready makes use of the multi-threading optimization technique

to offload the simulation engine computation onto a new thread

while the main thread is only responsible for handling the render

state of the game engine. In this approach, when the simulation

engine finishes one timestep computation, the main thread ei-

ther updates the frame state or stores the simulation states for

rendering later while the worker thread continues to produce

new states as background. Using this technique as well as other

optimizations, like impostors and GPU instancing [18], we have

demonstrated real-time simulation sizes reaching up to 500,000

particles. To minimize the amount of coding necessary for GEARS

users, we provide two demos – Lennard-Jones molecular dynam-

ics (MD) [19] and electron transfer simulation by kinetic Monte

Carlo [20] – implementing the Run-when-Ready and Render-when-
Ready approaches in the GEARS GitHub repository. See Demo3 of

UnityGEARS on the GEARS repository.

In an effort to make our immersive scientific computing suite

accessible to a broad research community, we have also interfaced

GEARS with one of the most widely used MD simulation engine

called LAMMPS (Large-scale Atomic/Molecular Massively Parallel

Simulator) [21]. LAMMPS was developed at Sandia National Labo-

ratory and supports a variety of interatomic potentials, statistical

ensembles, and flexible simulation setups. The LAMMPS interface

enables users to visualize their MD simulations in VR environment

without any coding. A ‘‘How-to’’ for setting up the LAMMPS in-

tegration environment and an example demo are documented in

detail in the Lammps Compliation section of UnrealGEARS on the

GEARS repository.

2.3. Virtual confocal microscopy

To fully realize the promise of immersive scientific computing,

we have developed a new tool to enhance GEARS’ visualization

capability, called virtual confocalmicroscopy. Confocalmicroscopy

has become an indispensable biomedical tool, and it has proven

useful in many other scientific fields [22–25]. It allows for in-

creased resolution, contrast, and optical sectioning while mini-

mizing photodamage and bleaching concerns. The technique uses

point illumination and a pinhole to scan the sample and reject out-

of-focus light. As a result, the image only contains information very

close to the focal plane, offering greater resolution [24]. An analo-

gous approach in VR could enable more methodical investigations

of simulated complex structures.

Virtual confocal microscopy utilizes Unity’s surface shader ca-

pabilities to control how each vertex on the structure is rendered

in order to highlight certain areas or planes of the material in the

simulation. Our solution seeks to generate a viewing plane that

sits in front of the user’s head, follows their head movement, and

alwaysmaintains a set distance from the user. This distance, aswell

as the thickness of the highlighted viewing plane can be specified
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Fig. 2. (a) Three primary steps (Data Acquisition, Interface Selection, and Post-Processing) of the GEARS visualization workflow. In the Data Acquisition step, a researcher

supplies data to the engine by either converting pre-computed results to a particular format (e.g. .obj, .fbx) or computing data on the fly via simulation. In the Interface

Selection step, a GEARS user selects the method or interface through which they desire to interact with their pre-computed data or real-time simulation. In the Post-

Processing step, a researcher selects a post-processing technique, which can either utilize the control scheme they chose in the Interface Selection step or make use of

custom code. (b) An example of visualizing a chemical vapor deposition (CVD) simulation [11,12] through GEARS’ LAMMPS integration. (c) Simulating and exploring data

related to a molybdenum disulfide (MoS2) fracture via the LAMMPS integration. Using the controllers indicated by white lines, researchers can freely navigate through the

structure, pause and resume the animation, and even highlight regions of interest with the provided laser attachment (shown in green).

and changed dynamically by the user. The rest of the simulated sys-

temwill stay mostly transparent (with the opacity also dictated by

user input), except for the vertices that intersect with this plane. In

this way, the user can scan through complicated geometries using

just their headmovements - a unique experimental advantage only

possible in VR.

2.4. Control schemes

A carefully designed control scheme is essential to facilitate

interaction between the user and various data representations

within the immersive simulation. These interactions range from

object manipulation and spatial translations to temporal scaling.

It is critical that these interactions mimic natural motion as much

as possible to limit user discomfort, especially as it relates to user

motion within the environment [26–28]. GEARS supports input

from a variety of sources that includes the Leap Motion controller,

Oculus Touch, and HTC Vive motion for immersive environments,

as well as keyboard and mouse for small and precise adjustments

to aspects of the simulation.

3. Illustrative examples

Recently, researchers performed MD simulations of desalina-

tion membranes to understand and characterize how local, atomic

structures contribute to macroscopic behavior [31]. The relevant

dimensions of the polyamide membranes of interest range from

a tenth of a nanometer to 100 nm, making it an excellent candi-

date for computational studies to extract optimization information

not easily accessible experimentally. They have found that water

molecules permeated the membrane through benzene rings and

Fig. 3. Examples of interactive visualization: (a) Realtime rendering and simulation

of MoS2 synthesis. (b) Walkthrough of three-dimensional nanometric cage struc-

ture in a porous amorphous silica. (c) Exfoliation process due to dynamic shear-

flow on a 2D material surface [29]. (d) Strain-induced structural transformation in

an atomic telluride layer [30].

that the degree to which these monomers were cross-linked gov-
erned the speed of permeation along various paths [31]. However,
the construction of these membranes is very complex, making
a quick identification of preferential paths difficult with tradi-
tional 2D visualizations. The ability to section such a complicated
super-structure in VR environmentwith simple headmotion helps
researchers identify prevalent substructures of interest in these
simulated materials, and will greatly accelerate the research pro-
duction cycle (see Fig. 4).
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Fig. 4. Crosslinked aromatic polyamide membrane immersed in water. Water

molecules (red) diffuse through nanometric channels in the membrane (green) at

the middle of the simulation box.

Source: Adapted with permission from [27].

© 2016 American Chemical Society.

4. Impact

Physical simulations, like MD, inherently exist in 3D space,
yet modern, desktop viewing platforms tend to only support 2D
visualizations. GEARS, as an open-source, commodity platform,
makes exploratory visualization and immersive data analysismore
accessible for researchers. Using our workflow, outlined above,
and our provided vertex shader, one can apply 3D virtual con-
focal microscopy to any discrete data set. Alternatively, should a
researcher need to create their own customized shader (depending
on their investigative needs), they can make use of the sample
environments we have provided to productively bring their own
data to an interactive, immersive environment. Consequently, this
manuscript sets a foundational codebase for scientists to make use
of modern graphics shaders for experimental data analysis.

Even if shader technology or virtual confocal microscopy is not
a primary goal, researchers can still make use of the immersive
playback capabilities in GEARS. For pre-computed simulations, this
generally means pausing animations then exploring and analyz-
ing sequestered regions. However, not only have we provided an
immersive visualization engine for researchers, but also a simu-
lation platform that encapsulates much of the complicated logic
necessary for real-time data analysis. Researchers can choose to
either port their existing data (e.g. LAMMPS DUMP files) or run en-
tirely new simulations on-the-fly. With our framework, LAMMPS
scripts can be written with VR visualization accounted for by
design. Researchers can even pause a simulation mid-run, giving
themopportunities tomake adjustments to their simulation before
supplying new commands to the linked LAMMPS library through
our code interface. Afterwards, they can continue running the
simulation and note the effects of their adjustments to the system.
This option for immersive simulation steering is just one example
of how our software also acts as a platform for VR-oriented exten-
sions in LAMMPS. By integrating LAMMPS with Unreal, much like
Atomify [32] integrated the MD simulator with mobile operating
systems, we have improved the framework’s extensibility as a
research tool. Additionally, build upon our sample environments,
researchers can more productively take advantage of the engine’s
rich features — for instance, its native server framework for multi-
user LAMMPS VR collaboration, built-in blueprint system for in-
teractive UI, and plugin controls for immersive navigation of a 3D
simulation.

GEARS in Unity and Unreal act as an extensible hybrid simula-
tion and visualization engine. It has already seen use in classroom
and research settings, acting as a newmedium for presenting data.
This medium allows researchers to take advantage of humanity’s

innate spatial awareness to improve its user’s productivity as well
as a new avenue for scientific communication. It has facilitated the
exchange of simulation data to both experts and non-experts,most
notably at U.S. Department of Energy (DOE) Materials Genome
Innovation for Computational Software (MAGICS) workshops and
at a DOE conference in Washington DC.

5. Conclusions

We have developed a hardware-agnostic visualization frame-
work called GEARS that takes advantage of the unique possibilities
and power associatedwith the use of VR environments and rapidly
evolving game engine technology to explore scientific datasets.
VR has become a powerful new method of engaging with users
in a more tactile, visceral way. The resurgence in hardware to
support VR has resulted in a rich software environment that al-
lows developers access to these tools with minimal investment.
While VR technologies have amyriad of applications, they could be
particularly useful for scientific data visualization and exploration,
collaboration with domain experts, as well as communications
with non-scientific audiences. With GEARS, we provide various
approaches and modalities for researchers to interactively explore
their simulation data, from visualization of pre-computed datasets
in VR to the integration of external simulation engines such as
LAMMPS. GEARS even allows for researchers to take advantage
of immersive data visualization and simulation without requiring
additional coding. Driven by the multimedia and gaming indus-
tries, it is likely that VR platforms will continue to enhance user
functionality and interactivity at lower costs, making them even
more approachable to researchers. Therefore, the novel data explo-
ration and collaboration capabilities GEARS offers will be broadly
beneficial for scientific community.
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