
UNIVERSITY OF OSLO
Department of Informatics

Dynamic Structural
Operational Semantics
(long version)

Research Report No.
426

Cristian Prisacariu and
Olaf Owe

December 2012

Dynamic Structural Operational Semantics

(long version)

Cristian Prisacariu∗ Olaf Owe†

December 2012

Abstract

We introduce Dynamic SOS as a framework for describing semantics of

programming languages that include dynamic software upgrades. Dynamic

SOS is built on top of the Modular SOS of P. Mosses, with an underlying cat-

egory theory formalization. Dynamic SOS wants to bring out the essential

differences between dynamic upgrade constructs and execution constructs.

The important feature of Modular SOS that we exploit in our framework

is the sharp separation of the program code from the additional data struc-

tures needed at run-time. We exemplify Dynamic SOS on the C-like Proteus

language and the concurrent object-oriented Creol language. On the way we

introduce a construction on Modular SOS useful in the setting of the concur-

rent objects of Creol, where the executing code is running inside the object.

This “encapsulating construction” may be used in any situation where a form

of encapsulation of the execution is needed.

1 Introduction

We are interested in dynamic aspects of programming languages, like dynamic

software updates for imperative languages such as the C-like PROTEUS [27, 28]

or dynamic class upgrades for object-oriented languages such as the concurrent

Creol [17, 16]. The nature of such dynamic aspects is different from normal con-

trol flow and program execution constructs of a language. Yet the interpretation

of these dynamic operations is given using the same style of structural operational

∗Dept. of Informatics – Univ. of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway. E-mail:

cristi@ifi.uio.no
†Dept. of Informatics – Univ. of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway. E-mail:

olaf@ifi.uio.no

1 INTRODUCTION 2

semantics (SOS) as for the other language constructs, often employing elaborate

SOS definitions.

We want the differences between the dynamic constructs and the standard ex-

ecution constructs to be apparent in the SOS descriptions. For this reason we

develop Dynamic SOS (DSOS). We are taking a modular approach to SOS, fol-

lowing the work of P. Mosses [22], thus building on Modular SOS (MSOS). This

later formalism uses notions of category theory, but we try not to depart from the

established notations and terminology used in programming language semantics.

Dynamic SOS aims to be notation-free, where the notions and concepts underly-

ing our work can be described using various notational conventions for operational

semantics.

With software evolution [18] becoming a central paradigm, interest has in-

creased over the past few years in dynamic software upgrades [19, 9, 8, 6, 7, 15].

But these various approaches are different in presentation and formalization, mak-

ing it difficult to compare or combine them. Each of these approaches concentrate

on some particular programming language or kind of system. The work that we

undertake here is to extract the essentials of the operational semantics for dy-

namic upgrading constructs regardless of the programming language or the kind

of system paradigm. The Dynamic SOS is intended as a semantic framework for

studying future (and existing) dynamic upgrade programming constructs, where

any of the existing works should be easily represented; we exemplify only two of

them: [27] and [17]. Since existing works mainly concentrate on type systems and

type safety, and since their results can be readily done over the Dynamic SOS, we

concentrate on the semantical aspect alone. Moreover, the way we propose to give

semantics makes it easier to derive the typing system, once having the Dynamic

SOS semantic rules.

1.1 Dynamic SOS

The dynamic software updates are a method for updating a program at runtime,

during its execution, by changing various definitions the program uses, where

examples include definitions of types, or of methods and classes, or values of

variables. These updates are essentially different than the normal programming

constructs because they are external to the program, using information that is not

produced by the program, but is provided at runtime by an external entity.

At the semantic level the characteristic of the dynamic updates comes from

the fact that they are working only at the level of the data structures that the pro-

gram uses, changing them using update information provided externally. In con-

sequence, the semantics of the updates should be given only in terms of these two

data structures: the update data and the program data. This is in contrast with the

semantics for programming constructs which are given in terms of the structure

1 INTRODUCTION 3

of the program code.

In consequence, a sharp separation of the program code from the additional

data structures that are manipulated at runtime is needed. The additional data

structures are considered to be everything that is not a program term (code that

can be generated using the grammar of the language). Additional data includes

stores of variable values, but also the various definitions of functions or of classes

and methods, or message pools and thread pools. Thus, the additional data is

everything that is not being executed, but is being stored for some later use in

the execution; be that values or even other program terms e.g. in the thread pool,

which are supposed to be executed later.

This separation can be easily made possible by the Modular SOS, and its

underlying category theory. Complex features like abrupt termination and error

propagation can be nicely handled by MSOS, as well as combinations of big-step

and small-step, or rewriting based, semantic styles. Therefore, we are not con-

strained in any way by building our Dynamic SOS on MSOS. On the contrary,

MSOS is only about mathematical concepts and thinking style about the seman-

tics, and is in no way binding the language designer to a notational style. The

notation can be the same (or similar) to existing ones, as soon as the concepts and

style of MSOS and DSOS are understood.

Another idea that we build into DSOS is that upgrade points must be identified

and marked accordingly in the program code. The marking should be done with

special upgrade programming constructs. Here we are influenced by the work

on PROTEUS [28]. But opposed to a single marker as in PROTEUS, one could

use multiple markers. This would allow also for incremental upgrades. The pur-

pose of identifying and marking such upgrade points is to ensure type safety after

upgrades.

Compared to the normal flow of control and change of additional data that the

execution of the program does, we view a dynamic upgrade as a jump to a possibly

completely different data content. This, in consequence, can completely alter the

execution of the program. Moreover, these jumps are strongly knit to the upgrade

information, which is regarded as outside the scope of the executing program, as

externally provided.

1.2 Modular Semantics for Concurrent Object-Orientation

We take a modular approach to giving semantics to programming languages, as

advocated by P. Mosses [22, 21]. A side contribution of the present work is

that we give a modular SOS semantics to concurrent object-oriented program-

ming concepts. Object-orientation has not been treated before in the MSOS style.

Concurrent ML was treated in [20]. But the concurrency model in the object-

oriented setting differs from that in [20]. The concurrency model that we treat

1 INTRODUCTION 4

is that of the actors model [12, 4, 5] where each concurrent entity is standalone,

thought as running on one dedicated machine or processor. Therefore, the aux-

iliary data structures that the standard SOS employs are now localized, for each

object. We capture this localization mechanism in a general manner, yet staying

in the framework of MSOS. For this we employ a construction on the category

theory of MSOS, which we call the encapsulating construction, and show it to be

in complete agreement with the other category notions of MSOS.

A main goal of the modular approach is to ensure that once the semantics has

been given to one programming construct it will not be changed in the future. A

new programming construct is given semantics independent of the existing con-

structs. This will be illustrated all throughout our development. Because of this,

we can easily work within different notation conventions. Translations between

these notations is possible because of the common underlying mathematical struc-

ture given by the MSOS and its category theory foundations. Nevertheless, these

categorical foundations are transparent to the scientists giving semantics to pro-

gramming languages. Standard notational conventions can be adopted for MSOS,

but the working methodology changes to a modular way of thinking about the

semantics. This notion of independence of notation is also seen in [23] which

presents new notation conventions called IMSOS, intended to be more attractive

to the developers of programming languages.

A theoretical motivation for our developments is the close similarity of the

transition systems we obtain, with the labeled transition systems obtained by the

SOS of process algebras. There is a great wealth of general results in the process

algebra community on SOS rule formats [3], some of which we think can be

translated to the theory we develop here. In particular, the similarity with our

approach is the fact that the states/configurations of the transition systems we

obtain are only program terms, whereas the rest of auxiliary notions are flowing

on the transitions as labels. This is the same as in process algebras, only that we

have more complex labels here. But many of the results surveyed in [3] do not

make use of the structure of the labels. Such general results would mean that any

programming language that is developed within the restrictions of the rule format

will get the specific results for free. General results that could be investigated by

following the work presented in [3] are: (i) generating algebraic semantics [2]

from specific forms of the transition rules; (ii) compositional reasoning results

wrt. dynamic logic [26, 11] using specific forms of transition rules in the style of

[10]; or (iii) expressiveness results of the programming constructs specified within

various rule formats.

Structure of the paper: We first give a short listing of some simple notions

of category theory that will be used throughout the paper. Then Section 3 intro-

2 PRELIMINARIES 5

duces modular SOS and exemplifies it on the PROTEUS language. In Section 4

we define the encapsulating construction and use it to give modular semantics for

the concurrent object-oriented CREOL. Both languages have dynamic upgrading

constructs which are given semantics in Section 5 where we develop the Dynamic

SOS theory, our main contribution.

2 Preliminaries

We recall some standard technical notions that will be used throughout this paper

(maybe in slight variations). We try to stay close with our notation to that in [22]

for the MSOS related notions, and to that in [24] for other notions of category

theory.

Definition 2.1 (category) A category (which we denote by capital letters of the

form A) consists of a set of objects (which we denote by |A| with usual represen-

tatives o, o′, oi) and a set of morphisms, also called arrows, between two objects

(which we denote by Mor(A) with usual representatives α, β, possibly indexed).

A morphism has a source object and a target object (also called the domain and

codomain, respectively) which we denote by αs and αt. A category is required

(i) to have identity morphisms for each object, satisfying an identity law for each

morphism with source in that object, and (ii) that composition of any two mor-

phisms α and β, with αt = βs, exists (denoted β ◦ α, in mathematics notation, or

just αβ, as in computer science) and is associative.

Definition 2.2 (functors) Consider two arbitrary categories A and B. A functor

F : A → B is defined as a map that takes each object of |A| to some object of

|B|, and takes each morphism α ∈ Mor(A) to some morphism β ∈ Mor(B) s.t.

o
α
−→ o′ is associated to some F (o)

β
−→ F (o′), and the following hold:

1. F (ido) = idF (o);

2. F (αβ) = F (α)F (β).

A functor F : A → A is called an endofunctor applied to A (or on A).

Definition 2.3 (natural transformations) Consider two arbitrary categories A

and B and two functors F,G from A to B. A natural transformation η : F → G,

from the functor F to G, is defined as a function that associates to each object

o of |A| a morphism β of Mor(B) with βs = F (o) and βt = G(o) s.t. for any

3 MODULAR SEMANTICS AND PROTEUS 6

morphism α of Mor(A), with αs = o, the following diagram commutes:

F(o)
η(o)

✲ G(o)

F(o’)

F (α)

❄ η(o′)
✲ G(o’)

G(α)

❄

3 Modular Semantics and PROTEUS

Modular SOS is defined wrt. a more general form of transition systems which in

[22] are called general transition systems, but here we adopt the terminology from

[21] of arrow-labeled transition systems because, essentially, the transitions are

labeled with morphisms (also called arrows) from a category.

Definition 3.1 (arrow-labeled transition systems) An arrow-labeled transition sys-

tem (ATS) is like a classic transition system (Γ,Mor(A),−→, T) which has a set

of configurations (or states) Γ, a set of transitions between these configurations

which are labeled by morphisms from a category A (−→⊆ Γ×Mor(A)× Γ), and

a designated set of final configurations T ⊆ Γ.

A computation in an ATS is a sequence of transitions s.t. if a transition la-

beled by α is followed by a transition labeled by β then the two morphisms are

composable in A (i.e., α ◦ β ∈ Mor(A)).

Since in an ATS transitions
α
−→ are labeled with morphisms from A, we also

have a grip on the underlying objects involved in the transition, i.e., αs and αt.

Because of this, where we need to talk explicitly in a transition about the objects

of the morphism label we may write
{αs,αt}
−−−−→.

A main motivation for arrow-labeled transition systems and MSOS is to have

as configurations only program terms, without the additional data structures that

the program may manipulate (like stores or heaps). This goal is related to what one

usually seas in e.g.: (i) typing systems where the program syntax alone is under

analysis; or in (ii) Hoare logic style of reasoning about programs where the Hoare

rules are defined for program terms only (with the pre- and post-conditions being

the ones talking about the stores/heaps); or in (iii) process algebras where the

semantics of processes is given as a labeled transition system with process terms

as the states and their observable behavior as labels on transitions. In MSOS the

additional data structures that are manipulated by the program will be present on

the transitions, part of the morphisms that label them, as we see further.

3 MODULAR SEMANTICS AND PROTEUS 7

In current practice the following three kinds of label categories are enough.

But this does not restrict the modular SOS framework, and future kinds of data

could be accommodated also.

Definition 3.2 (label categories) There are three kinds of categories we may use

to build more complex label categories:

• discrete category: A discrete category is a category which has only identity

morphisms. No other morphisms are allowed.

• pairs category: A pair category is a category which has one unique mor-

phism between every two objects.

• monoid category: A monoid category is a category that has a single object

and the morphisms are elements from some predefined set Act .

Intuitively, discrete categories correspond to additional information that is of a

read-only type, like heaps. Pairs categories correspond to additional data of a type

read/write, like stores. Each store is one object in the category. The morphisms

between two stores represent how this store may be modified by the program

when executed. We take a most general view where a program may change a

store in very radical ways, therefore, we have morphisms between every two store

objects. Monoid categories correspond to write-only type of data, like observable

information that is emitted during the execution of the program, or messages sent

between components in a concurrent program.

Example 3.3 The following examples of categories are used in this paper. We

can build a discrete or a pair category by taking some underlying set of objects.

Different underlying sets make different categories.

• A discrete category can be seen as a set. One discrete category CN may

contain as objects class names. Another standard example of a discrete

category H has as objects heaps: |H| = IdVar ⇀ Val , i.e. all partial

functions from some set IdVar of variable identifiers to some set Val of

values.

• In a pairs category every two objects are related to each other in a symmet-

ric way (more than in a total preorder). An example of a pairs category S

has as objects stores, i.e. partial mappings from a set of variable identifiers

to a set of values. Pairs categories appear almost everywhere in this paper

because of the rewriting style that we take to giving semantics (even what

some works consider as heaps, like for holding definitions, we consider as

stores).

3 MODULAR SEMANTICS AND PROTEUS 8

When several additional data are needed to define the semantics then we use

complex label categories obtained by making product of such basic label cate-

gories as above. It is recommended to use as many data components as needed

to get a more clean view of the semantics for each programming construct. An

implementation may choose to put several data structures together, if no clashes

can appear.

To have a clear grip on each component of such a product we use a special

construction that returns product categories and attaches an index to each label

component, thus offering the possibility to uniquely extract each component from

a complex label by using the associated index. This procedure makes it possible

to have the modularity of the semantics, as we explain further.

Definition 3.4 (label transformers) Let Index be a countable set of indexes. Let

B be a category of one of the three kinds from Definition 3.2. The label trans-

former LabTrans(i,B) maps any category A, which is either the trivial cat-

egory TrivCat or is obtained using the label transformer itself, to the cate-

gory A × B, and associates a get operation get : Mor(A × B) × Index →
(∪jMor(Aj)) ∪ Mor(B) which for each composed morphism of the new A × B

associates a morphism in one of the component categories of the product, as fol-

lows:
get((αA, βB), k) =

{

βB, if i = k
get(αA, k), otherwise.

Notation: For a composed morphism α of a product category obtained using the

label transformer we may denote the get operation using the dot-notation (well es-

tablished in object-oriented languages) to refer to the respective component mor-

phism; i.e., α.i for get(α, i), with i being one of the indexes used to construct the

product category. Since α.i is a morphism in a basic category, we may also refer

to its source and target objects (when relevant, like in the case of discrete or pair

categories) as α.is and α.it.

Henceforth, the labels that we allow in arrow-labeled transition systems come

only from categories built using LabTrans(,). In consequence, we may have

complex labels, formed as tuples of morphisms from basic categories; and we

may access each of the components of a label using the dot-notation to stand for

the precisely defined get operation. Now we proceed to define what the SOS rules

look like in this setting.

Definition 3.5 (program terms) Consider a set of (meta)variables Var. A multi-

sorted signature Σ is a set of function symbols, together with an arity mapping ar()
that assigns a natural number to each function symbol, and a family of sorts Si.

Each function symbol has a sort definition which specifies what sorts correspond

to its inputs and output. A function of arity zero is called a constant.

The set of terms over a signature Σ is denoted Terms(Σ) and is defined as:

3 MODULAR SEMANTICS AND PROTEUS 9

• a metavariable from Var is a term;

• for some function symbol f and set of terms t1, . . . , tar(f), of the right sort,

then f(t1, . . . , tar(f)) is a term.

Definition 3.6 (rules) A literal is t
α
−→ t′, with t, t′ program terms, possibly con-

taining meta-variables (i.e., these are program schemes). A literal is closed if t, t′

do not contain meta-variables. A transition rule is of the form H/l with H a set of

literals, called the premises, and l one literal, called the conclusion.

Notation: When writing literals we use the following notation for the labels. We

write t
{α.is ... α.it}
−−−−−−−→ t′ to mean that the morphism α is a tuple where the component

indexed by i is the one given on the transition, and all other components are the

identity morphism, symbolized by the three dots. We write sources of morphisms

on the left of the three dots, and targets on the right. In one transition we may

refer to several components, e.g.: t
{α.is,α.j ... α.it}
−−−−−−−−−→ t′. In this example the j index

is associated with a discrete category and therefore, we do not write the target of it

on the right because it is understood as being the same. Moreover, because of the

right/left convention we omit the superscripts denoting sources and targets. An

even more terse notation may simply drop all references to α and keep only the

indexes, thus the last example becomes t
{i=o,j=h ... i=o′}
−−−−−−−−−−→ t′. The objects o, o′ may

be stores, and thus the transition says that the store o is changed to the o′, whereas

the component j may only be inspected, like with a heap h.

Rules are written as in proof systems, with the premises on top of a line and the

conclusion below the line. When side condition should be mentioned, we write

these also on top of the line.

Modularity refers to the fact that once a rule is defined, using labels from

some label category (i.e., referring to some needed additional data), this rule is

not changed when new additional data is required for defining some other new

rules for a new programming construct. This is made precise by the essential

result in [21, Corollary 1].

Intuitively, the result says that any transition defined by an old rule, i.e., labeled

with some α from some category A, is found in the new arrow-labeled transition

system, over a new category LabTrans(i,B)(A), using an embedding functor

which just attaches an identity morphism to the old morphism, i.e., (α, idb), for

the current object b ∈ |B|. Moreover, for any transition defined in terms of the

new composed labels from A×B, if it comes from one of the old rules then the

projection from A×B to A gives an old label morphism by forgetting the identity

morphism on B. This is the case because the old transition is defined with the

dots notation and refers only to components in A, making all other components

contribute only with the identity morphism.

3 MODULAR SEMANTICS AND PROTEUS 10

Theorem 3.7 ([21, Corollary 1]) Let A be a category constructed using the label

transformers LabTrans(j,Bj) for some basic categories Bj of the three kinds

defined before and with j ∈ J ⊂ Index . Consider a set of rules R which specifies

an arrow-labeled transition system over A, where the rules in R refer to only

indexes from J (i.e., the get operations in the morphism specifications of labels).

Let the category A′ = LabTrans(i,Bi)(A), where i 6∈ J , and let −→′ be the

transition relation specified by the same set of rules R but having labels from A′.

We have for each computation
α
−→

β
−→ . . . specified by R over A a corresponding

computation
α′

−→′
β′

−→′ . . . over A′, and vice versa.

Proof: We give only an idea of the proof. The label transformer LabTrans(i,Bi)
forms a projection functor from A × Bi. This functor is used to get the vice

versa direction of the statement, by forgetting the structure of Bi. This is possible

because the rules in R do not refer to this index i, hence to morphisms in Bi,

which means these are just the identity morphisms. The label transformer also

forms a family of embedding functors from A into A×Bi (for each object of Bi).

These functors are used to obtain the first direction of the statement. Depending

on the current object of Bi we use the corresponding embedding functor to add to

the label specified by the rules R on A an identity functor on Bi, thus obtaining a

corresponding transition with label morphism from A× Bi. ✷

Henceforth we consider various programming constructs that are normally

used in languages, and do not concern ourselves with their redundancy. In par-

ticular, we will treat those constructs found in the two programming languages

PROTEUS [27] and CREOL [17].

Example 3.8 (no labels) Consider a multi-sorted signature Σ3.8
exe consisting of the

following programming constructs:

S ::= skip | S ;S

where skip is a constant, standing for the program that does nothing, being the

identity element for ; which is a binary function symbol, standing for sequential

composition of two programs. For now we have one sort, that of Statement, where

the constant skip is the trivial statement, and sequence is defined over statements.

We define the following transition rules:

skip
U
−→ nil

S1
X
−→ S′

1

S1 ;S2
X
−→ S′

1 ;S2
nil ;S2

U
−→ S2

where the special label X stands for any morphism, and U stands for an unob-

servable label, which are exactly the identity morphisms. Note that for these rules

3 MODULAR SEMANTICS AND PROTEUS 11

we do not specify the label categories because they can use any category, even the

trivial one. This means that no additional data is needed by the respective two

programming constructs. The second rule has one premise, and assumes nothing

about the morphism of the transition. It only says that the label is carried along

from the statement S1 to the whole sequence statement S1 ;S2. The first rule is an

axiom because it contains no premises, and says that the skip program reduces

to the value nil by an unobservable transition; i.e., by the identity morphism on

the current object in the current category of labels, whichever these may be.

Throughout the paper we work with, what is called, value added syntax, where

the values that the program may take are included in the syntax as constant sym-

bols. Denote these generally as v ∈ Val , with n ∈ N ⊆ Val and b ∈ {true, false} ⊆
Val . The nil ∈ Val is seen as the special value that statements take when finished

executing. The values are considered to have sort Expressions, denoted usually

by e ∈ E. We also consider to have the standard arithmetic and Boolean opera-

tors which take expressions and return expressions. (See Appendix for a detailed

example.)

Example 3.9 (read-only label categories) We add a set of variable identifiers as

constant symbols, denote these by x ∈ IdVar . Variable identifiers have sort

Expressions and can be used to form program terms in combination with the other

operators from before that take expressions as input. Let these make a signature

Σ3.9
exe, which can be added to any other signature.

E ::= x (x ∈ IdVar) | . . .

The interpretation of variable identifiers is given wrt. an additional data struc-

ture called store, which keeps track of the values associated to each variable iden-

tifier. In consequence, we define a label category S, having as objects |S| =
IdVar ⇀ Val the set of all partial functions from variable identifiers to values,

denoting stores. Define S as a discrete category, i.e., only with identity morphisms,

since in the case of variable identifiers alone, the store is intended only to be in-

spected by the program. The label category to be used for defining the transitions

is formed by applying the label transformer LabTrans(1, S) to some category of

labels, depending on the already chosen programming constructs and transition

rules.

The transition rule corresponding to the variable identifiers is:

ρ(x) = v

x
U{1=ρ ... }
−−−−−−→ v

The rule defines a transition, between terms x and v, labeled with a morphism

satisfying the condition that the label component with index 1 has as source an

3 MODULAR SEMANTICS AND PROTEUS 12

object ρ ∈ |S| that maps the variable identifier to the value v. Any other possible

label components, if and when they exist, contribute with an identity morphism.

Moreover, this transition is unobservable. Note that because the category associ-

ated to the label component with index 1 is a discrete category, we do not specify

the target object explicitly since it is the same as the source object that is specified

in the label.

Naturally, if one chooses to give semantics to variable identifiers using a di-

vision of this auxiliary data into one heap and one store, the above rule has to be

changed. Otherwise, we will not change this rule in the future.

Example 3.10 (changing label categories from read-only to read/write) Having

variable identifiers we may add assignment statements and variable declarations

as Σ3.10
exe , which includes Σ3.9

exe.

D ::= var x := e | d0 ; d1 (d0, d1 ∈ D)

S ::= x := e | d (d ∈ D) | . . . E ::= let d in e (d ∈ D) | . . .

Both assignments and declarations (which are a subsort of statements) allow

the program to change the store data structure that we used before for evaluating

variable identifiers. Therefore, here we need S to be a pairs category so to capture

that a program can also change a store, besides inspecting it. Important in Modu-

lar SOS is that rules which use read-only discrete categories are not affected if we

change these label components to be read/write pairs categories (with the same

objects). Indeed, the syntax used in the rules refers only to the source objects

of the morphisms. Henceforth, whenever in a rule we mention only the source

of a morphism component it means that the target is the same, i.e., we specify a

particular identity morphism.

To exemplify the notation-freedom of the theory that we use, we will switch

from now on to indexes which are more meaningful for the reader (e.g., the rewrit-

ing logic semantics of CREOL from [16] uses notations like PrQ for “process

queue”, or A for “attributes”). In consequence, using now the label category

LabTrans(S, S), with S a pairs category of stores, we add new rules which refer

to both the source and the target stores of the morphisms. (See Appendix for the

complete set of rules.)

x ∈ ρ

x := v
{S=ρ ... S=ρ[x 7→v]}
−−−−−−−−−−−−→ nil

d
{S=ρ ... S=ρ′}
−−−−−−−−−→ nil e

{S=ρ′ ...}
−−−−−−→ v

let d in e
{S=ρ ... }
−−−−−−→ v

Note that the rule for the let construct is given in a big-step SOS style. This

is intended to illustrate that MSOS is amenable to mixed-step style of semantics.

The requirement above the line in the first rule is normally ensured by the typing

system, and thus can be removed. This is even desired so that we get a transition

rule that is more close to the standard rule formats [3].

4 ENCAPSULATION FOR CONCURRENT OBJECT-ORIENTATION 13

Example 3.11 (functions) We consider function identifiers as constants denoted

by f ∈ IdFun, and function definitions and function applications, in a signature

Σ3.11
exe which may be added to any signature that includes variable identifiers.

D ::= fun f(x) {s} (s ∈ S) | . . . S ::= f e (e ∈ E) | . . .

Function declarations are stored in a new label component which is a pairs cat-

egory containing objects which associate function identifiers with lambda terms

in a way known from functional languages. Denote this category by F and its ob-

jects as ρf ∈ |F|. Add this as a label component using the label transformer

LabTrans(F,F)LabTrans(S, S). Since variable identifiers are needed, the

stores component is present also. Another semantics may consider these two as

a single store-like data structure. In this paper we prefer to use more disjoint

structures when possible.

The transition rules below are as in PROTEUS, using a functional languages

style. We are using the notation s[v/x] for capture avoiding substitution of all

occurrences of a variable in a program statement.

e
X
−→ e′

f e
X
−→ f e′

ρf (f) = λ(x).s

f v
{F=ρf ... }
−−−−−−→ s[v/x] fun f(x) {s}

{F=ρf ... F=ρf [f 7→λ(X).s]}
−−−−−−−−−−−−−−−−−→ nil

With the exception of types,1 we have reached by now the language PROTEUS

of [27, 28] (see in Appendix the conditional construct and the records, which add

a third label component LabTrans(R,R)). We will add the update construct in

Section 5. We have used single variable identifiers above, but this can be easily

generalized to lists. Moreover, since we investigate only semantics aspects in this

paper (i.e., no typing systems), we assume only syntactically correct programs,

including static typing.

4 Encapsulation for Concurrent Object-Orientation

When adding the notion of concurrent objects we require that some constructs be

run inside an object. This notion of encapsulation of the execution must be cap-

tured in the category theory of the labels. We provide for this an encapsulating

construction. The term “encapsulate” has specific meaning in object-oriented lan-

guages. Our categorical construction has a similar intuition, therefore we prefer

the same terminology.

1Types may be added to programming constructs, and also a type environment as one new label

component.

4 ENCAPSULATION FOR CONCURRENT OBJECT-ORIENTATION 14

Not only the code is encapsulated in an object, but also the auxiliary data that

is used to give semantics to the code. These data components are now private

to the specific object. We want to keep the modularity in defining semantics for

object-oriented constructs, similar to what we had until now. We want that the

definition of new semantic rules not change the definitions of the old rules. On the

contrary, we may use the old transition relation to define new transition relations.

Essentially, we will encapsulate old transitions into transitions that are localized to

one object. In the concurrent setting, we even see how more objects may perform

transitions localized to each of them, thus making a global transition, changing

many of the local data.

Definition 4.1 (encapsulating construction) Let O be a discrete category, and A

a label category. The encapsulating construction Enc(O,A) returns a category E

with all the functors F : O → A as objects, and natural transformations between

these functors as morphisms.

The discrete category O captures programming objects identifiers (i.e., each

object of the category is a unique identifier for a programming object).

There are various properties that we need of this construction. One is that the

resulting category is similar to the product categories that the label transformer

generates. Once having such properties we may use the encapsulation to define

labels on the transitions, similar to any of the three kinds of basic categories.

Proposition 4.2 Properties for basic categories.

1. In discrete or pair categories morphisms are uniquely defined by the objects.

2. In categories obtained using the label transformer applied to discrete or

pair categories, the morphisms are uniquely defined by the objects.

3. When monoid categories are used in the label transformers, then one mor-

phism is uniquely determined by the objects up to the morphism components

coming from the monoid categories; i.e., when the monoid components are

projected away.

Proposition 4.3 When the encapsulating construction is applied to A which is

built only with discrete or pair categories, then the morphisms of E = Enc(O,A)
are uniquely defined by the objects.

Proof: The objects of E are functors F : O → A. Take two such functors F, F ′; a

morphism between them is a natural transformation η which for each object of O

associates one morphism of A, i.e., η(o) ∈ Mor(A), with the following property:

4 ENCAPSULATION FOR CONCURRENT OBJECT-ORIENTATION 15

for some o ∈ |O| and some morphism α ∈ Mor(O) with source o and target o′,
the following diagram commutes

F(o)
η(o)

✲ F’(o)

F(o’)

F (α)

❄ η(o′)
✲ F’(o’)

F ′(α)

❄

But in our case this diagram becomes more simple because in O the only mor-

phisms are the identities, which means that α is in fact ido and thus the o′ in the

diagram above is just o. Moreover, the functors take identities to identities, so

F (α) becomes idF (o). Now the diagram would look like the one below, which

clearly commutes for any natural transformation.

F(o)
η(o)

✲ F’(o)

F(o)

idF (o)

❄ η(o)
✲ F’(o)

idF ′(o)

❄

The natural transformation η assigns the morphism η(o) between F (o) and

F ′(o) in A. Since A is one of our special label categories then there is a unique

morphism which is the pair (F (o), F ′(o)), as it is uniquely determined by the

objects on which it acts. The same for any o′ ∈ |O| the η(o′) is unique.

The morphism (natural transformation) η is composed of many morphisms

from A, one for each object of O. All of these are unique, determined by the

application of the two functors on the specific object of O. In consequence, the η
is uniquely defined by the two functors on which it is applied. We can either write

η as a pair of functors (F, F ′) or we can write it as a set of morphisms from A

indexed by the objects o ∈ O, i.e., η = {(F (o), F ′(o)) | o ∈ |O|}. ✷

The intuition is that each functor attaches one data object to each program-

ming object identifier (i.e., object of O). So each functor captures one snapshot of

the private data of each object. We have access to these encapsulated data by tak-

ing the appropriate index, i.e., F (o) is the data encapsulated in the programming

object identified by o.

But we are interested in the morphisms, which capture how the data is changed

by the program. The fact that the morphisms are identified by the objects on which

they act says that it is equally good to mention the morphism or to mention the pair

4 ENCAPSULATION FOR CONCURRENT OBJECT-ORIENTATION 16

of objects of interest. In the encapsulating construction we may refer to the mor-

phisms also, and these are also indexed by the programming object identifiers, i.e.,

there is one local morphism associated to each o, it is η(o). Therefore, morphisms

are localized also, and we can refer to each local morphism by its corresponding

object identifier.

All these intuitions hold also when monoid categories are part of the labels.

In this case there are multiple natural transformations between two functors (and

also from one functor to itself), one for each morphism in the underlying monoid

category. When more monoid categories are used, the natural transformations

multiply as expected. The same indexing exists and we have access to the unique

local morphism for every object identifier.

Since for an object identifier o the η(o) is a morphism in the label category A,

we are free to use the get operation to refer to a particular morphism component,

i.e., we may write η(o).i to access the ith component local to the object o.

Once the encapsulation concept above is understood one can choose any pre-

ferred notation for it; e.g.: one may write o.i or o 7→ i or 〈o | i〉 or o : i.
The encapsulating construction is used to give semantics to concurrent object-

oriented programming languages where code is executed locally, in each object,

and the objects are running in parallel, maybe communicating with each other.

The modularity is obtained by defining the localized transitions in terms of the

transitions defined for the individual executing programming constructs, as given

by the rule in Example 4.4.

The category built by the encapsulating construction can be used with the label

transformer to attach more global data structures. Therefore, the encapsulating

construction is modular in the sense that new global programming constructs and

rules may be added without changing the rules for encapsulation. The reference

mechanism provided by the label transformer is used as normal. We see this in

Example 4.8 on asynchronous method calls where additional global structures are

needed for keeping track of the messages being passed around.

Moreover, we may encapsulate this category again, wrt. a new discrete cate-

gory, giving us a different set of identifiers. This can be seen applicable in lan-

guages for components, i.e., where several objects may execute in parallel inside

one component, and many components may execute in parallel also.

The encapsulating construction preserves modularity also in the sense that new

programming constructs may be added to run localized (inside objects), and thus

the encapsulated category may need to be extended to include new auxiliary data

components. The encapsulation is not affected, in the sense that the rules for

encapsulation, or which were defined referring to some encapsulated data, need

no change. The reference mechanism (with the get operation provided by the

label transformer) used in defining the localized rules is independent of the new

local categories added. We see this in Example 4.6 treating threads, which are a

4 ENCAPSULATION FOR CONCURRENT OBJECT-ORIENTATION 17

programming notion independent of the encapsulation. Henceforth we denote

the encapsulated (or local or internal) category by I when its components are

irrelevant.

Example 4.4 (objects) We add object identifiers as constants denoted o ∈ IdObj .

We add one programming construct of a new sort called Objects, denoted O,

which localizes a term of sort statement wrt. an object identifier.

O ::= 〈 o | s 〉 (s ∈ S)

This signature Σ4.4
exe should include some signature defining statements; any of the

constructs before can run inside the object construction, but which exactly is irrel-

evant for the transition rules below. The semantics of object programs is given us-

ing transitions labeled from a category constructed using the encapsulating con-

struction applied to some appropriate I: E = Enc(O, I), where |O| = IdObj .

We give one transition rule that encapsulates any transition at the level of the

statements inside the objects.

s
X
−→ s′

(ENC)
〈o | s 〉

o:X
−−→ 〈o | s′ 〉

The label X stands, as before, for any morphism in the local category I. The label

of the conclusion is taken as a morphism in the encapsulation category E. The

notation o : X specifies only part of the morphism, whereas the rest of the natural

transformation may be any identity morphism. This says that we specify that the

data for the object o is known before and after the local execution, wheres the local

data of any other objects are irrelevant and may be anything, but is not changed

in any way. Therefore, any functors F, F ′ that respect the fact that they assign

to o the source and target objects of X , and may assign anything to all other

objects, are good. Moreover, the monoid labels that may appear in X are part

of the specific natural transformation that we choose between the two functors

F, F ′; i.e., it is exactly the natural transformation assigning to o the morphism

X ∈ Mor(I).

Example 4.5 (systems of objects) Objects may run in parallel, thus forming sys-

tems of distributed objects, in each object running some code. For this we add a

parallel construct ‖ of sort Objects, with all object identifiers different:

O ::= obj 1 ‖ obj 2 (obj 1, obj 2 ∈ O) | . . .

We choose an interleaving semantics for our parallel operator, hence the rule:

obj 1
X
−→ obj ′1

obj 1 ‖ obj 2
X
−→ obj ′1 ‖ obj 2

4 ENCAPSULATION FOR CONCURRENT OBJECT-ORIENTATION 18

Note that theX in this rule stands for any morphism in the encapsulating category,

whereas in the previous rule it was standing for morphisms in the local category.

We may easily specify non-interleaving concurrency by specifying more pre-

cisely the label components:

〈o1 | s1 〉
o1:X−−−→ 〈o1 | s′1 〉 obj 2

η
−→ obj ′2

〈o1 | s1 〉 ‖ obj 2
η[o1:X]
−−−−−→ 〈o1 | s′1 〉 ‖ obj ′2

The label of the conclusion specifies the morphism which is the natural transfor-

mation η changed so that it incorporates the specified local morphism of o1. In

this way any number of objects may execute local code and the local changes to

their data is visible in the global label.

Example 4.6 (threads) We take the model of threads studied in [1] and consider

the following programming constructs of sort statement in a signature Σ4.6
exe which

normally would include also other constructs for statements from before:

S ::= yield | async (s) (s ∈ S) | . . .

Threads need an additional data component called thread pool. We build a

pairs category T which has as objects thread pools. The internal label category I

(chosen depending on the other constructs) is extended with LabTrans(T,T).
We need more algebraic structure for the thread pools objects, which is used

when defining the transition rules. A thread pool may be implemented in multiple

ways (e.g., as sets or lists); here we only require two operations on a thread pool,

an insertion ⊕ and a deletion ⊖ operation. Take ρt to be a thread pool and s a

program term, then ρt ⊕ s is also a thread pool containing s; and when s ∈ ρt
then ρt ⊖ s is also a thread pool that is the same as ρt but does not contain s.

Because of the yield which needs the whole program term that follows it, we

give semantics to threads using evaluation contexts. The modular SOS is perfectly

suited for describing semantics using evaluation contexts.

Evaluation contexts are statements with a hole []:

Ev ::= [] | Ev ;S

Placing a program term s in the whole of a context Ev is denoted Ev [s] and

results in a normal program term (i.e., without the hole). It is essential to prove

that any statement in the language can be uniquely decomposed into an evalu-

ation context Ev and a program term s so that the choice of transition rules is

unambiguous. For the simple contexts that we defined above, this result is easy.

Instead of changing all the rules from before using evaluation contexts, we

choose to give the following rule, and remove the two rules for sequential compo-

sition from Example 3.8. A second rule is required when object terms are present.

4 ENCAPSULATION FOR CONCURRENT OBJECT-ORIENTATION 19

The X label on the left comes from an encapsulated I whereas on the right comes

from a global label.

s 6= nil s
X
−→ s′

Ev [s]
X
−→ Ev [s′]

s 6= nil 〈o | s 〉
X
−→ 〈o | s′ 〉

〈o | Ev [s] 〉
X
−→ 〈o | Ev [s′] 〉

Now we can give the rules for the new programming constructs, which may be

compared to the ones given in [1, Fig.4].

async (s)
{T=ρt ... T=ρt⊕s}
−−−−−−−−−−−→ nil Ev [yield]

{T=ρt ... T=ρt⊕Ev [nil]}
−−−−−−−−−−−−−−−→ nil

s ∈ ρt

nil
{T=ρt ... T=ρt⊖s}
−−−−−−−−−−−→ s

Example 4.7 (classes) It is common in the setting of object-orientation to have

method definitions part of class definitions, where objects are instances of such

classes and can be created anytime with the new programming construct. In-

heritance and interfaces are normally part of class definitions, but we do not com-

plicate this example with them; these can be easily added. The details of this

example are already too complicated for the purposes of this paper.

Class identifiers are introduced from a set IdClass, and denoted C. Class

definitions include method definitions and attribute definitions:

At ::= var x | At ;At M ::= mtd m(x) {s} (s ∈ S) | M ;M

D ::= classC {At ;M} | . . . S ::= x := newC | m(e) (e ∈ E) | . . .

For the semantics we need two global category components (i.e., not local to

the objects) which keep definitions of methods for each class and another to keep

the attributes. Denote these by C and A, and associate using the label transformer

the indexes C and A. The objects ρc ∈ |C| are mappings from class identifiers to

definitions of methods; i.e., ρc : IdClass ⇀ (IdMethods ⇀ MtdDef). Objects

ρa ∈ |A| are mappings IdClass ⇀ At . The encapsulation is a global component

of its own, to which the label transformer associates index E. The transition rule

for class definitions is:

ρ′a = ρa[C 7→ At] ρ′c = ρc[C 7→ {m 7→ λ(x).(s) | m ∈ M}]

〈o | classC {At ;M} 〉
{A=ρa,C=ρc ... A=ρ′a,C=ρ′c}−−−−−−−−−−−−−−−−−−→ 〈o | nil 〉

Each object is an instance of a class. In consequence we associate to each

object the name of the class it belongs to, and where method definitions can be

4 ENCAPSULATION FOR CONCURRENT OBJECT-ORIENTATION 20

retrieved from.2 Normally this class name information is held in a special variable

of the object, but here we will use a category component, to keep with the modular

style. Therefore, to the internal category I we add one more category CN to which

the label transformer will associate the index CN . The objects |CN| = IdClass

are just class identifiers. The rule for object creation is:

fresh(o′) ∀i 6= CN o′ : i = ∅ ρa(C) = At

〈o |Ev [x := newC]〉
{A=ρa,C=ρc,o:S=ρ ...o′:CN=C,o:S=ρ[x 7→o′]}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→〈o |Ev [nil]〉‖〈o′ |At〉

There are ways of ensuring freshness of the object identifiers. Also there are

various styles of creating new objects, where some use a constructor which ini-

tializes the attributes, instead of just running the list of attribute definitions as we

did. Also, CREOL keeps the attributes in a special data structure, opposed to how

we put them in the store of the object. All these are readily definable. But for the

purpose of our example these details would only clutter the presentation.

The transition rule for method application must include the object because it

needs the global class definitions where the method definitions are found. (See

Appendix for methods defined inside objects.)

e
X
−→ e′

m(e)
X
−→ m(e′)

C ∈ ρc m ∈ ρc(C) ρc(C)(m) = λ(x).(s)

〈o | m(v) 〉
{o:CN=C,C=ρc ...}
−−−−−−−−−−−−−→ 〈o | s[v/x] 〉

Example 4.8 (asynchronous method calls) We take the model of asynchronous

method calls from [16] and consider two programming constructs for calling a

method and reading the result of the completion of a call:

S ::= t!o.m(e) | t?(x) | return e | . . .

where t ∈ IdFut are special identifiers used for retrieving the result of the method

call. Denote this signature Σ4.8
exe, which can be added to any previous signature.

The asynchronous method calls, as discussed in [16], work with asynchronous

message passing, as in the Actors model [5]. In consequence we need a global

data component to keep track of the messages in the system. We consider each

object having a pool of messages. Since the message pools will be manipulated

by the distributed objects of the system we use a pairs category M with objects

|M| = IdObj → 2MsgTerm being mappings from object identifiers to message sets.

The label transformer LabTrans(M,M) is applied at least to an encapsulating

2This is the dynamic binding notion (also known as late binding, or dynamic dispatch) where

the method definitions are retrieved when they are needed. This is especially useful in the presence

of inheritance and dynamic class upgrades, as in Section 5.2; otherwise we could do without, and

use the method definitions local to objects as in Example A.5 from Appendix.

4 ENCAPSULATION FOR CONCURRENT OBJECT-ORIENTATION 21

category. Similarly to the thread pools, define set operations ⊕ and ⊖ to add

and remove messages from any set MS ∈ 2MsgTerm . For our exemplification

purposes the messages are of the form: invoke(o, n,m(v)) and comp(n, v),
where o is an object identifier, n ∈ N is a natural number, and m(v) represents

the method named m and v a value term. Because of the asynchronous method

calling scheme, the method declarations are particular in the sense that the first

two parameters are predefined for all methods as being caller and label , and the

statements may end with a return : mtd m(caller , label ,x) {s ; return e} .

The special identifiers t can be seen as variables which may hold only natu-

ral numbers and cannot be modified by the program constructs, but only by the

semantic rules. Since identifiers t are local to the objects, we extend the category

I by attaching another data component LabTrans(L,L). The category L is a

pairs category with objects |L| being mappings IdFut ⇀ Nat.

fresh(n, ρ) ρm(o′) = MS

〈o | t!o′.m(v) 〉
o:L=ρ,M=ρm ...M=ρm[o′ 7→MS⊕invoke(o,n,m(v))],o:L=ρ[t 7→n]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈o |nil 〉

ρm(o) = MS invoke(o′, n,m(v)) ∈ MS

〈o | s 〉
M=ρm ...M=ρm[o 7→MS⊖invoke(o′,n,m(v))]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈o | async (m(o′, n, v)) ; s 〉

ρ(caller) = o′ ρ(label) = n ρm(o′) = MS

〈o | Ev [return v] 〉
o:S=ρ,M=ρm ...M=ρm[o′ 7→MS⊕comp(n,v)]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈o | nil 〉

ρ(t) = n ρm(o) = MS comp(n, v) ∈ MS

〈o | t?(x) 〉
o:L=ρ,M=ρm ...M=ρm[o 7→MS⊖comp(n,v)]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈o | x := v 〉

Essential to the above rules is that in each rule only one object term is present,

thus capturing the asynchronous method call aspect. Moreover, one can clearly

see the production and consumption of the messages.

Rules two and four are dependent on additional program constructions, and

thus on their semantics. This is not in the modular spirit. We would achieve the

same effect by simulating the two corresponding transition rules (for async and

assignment) and modify the required local data components directly in the rule

above; this means that the second rule would involve the T local category and

the last rule would involve S. In this way dependency on program constructs is

removed, but still the rules depend on the two local label components. This is

more preferred in the modular SOS.

We did not complicate the examples because our aim was only to show how

such a semantics is written in the modular SOS style that we take in this work.

Essential is the way in which our rules above clearly separate the data from the

5 DYNAMIC SOS 22

program code. Just from the rules we can see exactly which data components

are manipulated (which are read which are written) by the program at runtime.

Moreover, we can clearly identify which data components can be used by dynamic

upgrade constructs.

5 Dynamic SOS

Dynamic SOS enriches the modular approach from before in the following ways.

The program syntax is enriched with programming constructs denoting update

points of various kinds (to be defined by the language developer). The arrow-

labeled transition system is enriched by adding new kinds of transitions labeled

not with morphisms, but with endofunctors. Thus, the syntax for writing transition

rules is enriched to use endofunctors. The label transformer is enriched, and also

the label categories that we use. Defining the endofunctors, though, is something

we are already familiar with, as we shortly see.

Definition 5.1 (update transition systems) An update transition system (UTS) is

a classic transition system (Γ, L,−→, T) as in Definition 3.1 where the set of labels

is L = Mor(A) ∪Mor(End(A)), with End(A) the category of endofunctors on

A, having A as the single object and endofunctors on A as morphisms.

A computation in a UTS is a sequence of transitions s.t. two transitions follow

each other
α
−→

β
−→ only if both the following are respected

1. if α and β are both morphisms in A then they are composable in the same

order, α; β ∈ Mor(A); or

2. if α is an endofunctor on A and β is a morphism in A then the source βs is

the same as the output of the endofunctor α.3

We call the transitions labeled with endofunctors, jumps.

Definition 5.2 (update label transformers) Consider a second indexing set IndexU

disjoint from Index . The update label transformer is defined the same as the label

transformer from Definition 3.4, but using the update indexes j ∈ IndexU . The

ULabTrans(j,U) maps a category A to a product category A × U, where U is

either the trivial category or a pairs category.

3When the transition immediately before an endofunctor α is labeled with a morphism then α
is applied to the target of this morphism, otherwise, when it is labeled also with an endofunctor,

then α is applied to the output of this endofunctor.

5 DYNAMIC SOS 23

The U categories are the update components of the labels. Because of the

disjointness of the indexing sets, the same get operation from before is still appli-

cable, and existing transition rules are not affected by the addition of an update

component. Intuitively, the update label transformer is the label transformer ap-

plied in a special way, i.e., to a disjoint set of indexes and to pairs categories.

Modularity is not disturbed, and new data categories may be added with the

label transformer in the same way, without any interference with the update com-

ponents.

The semantics of dynamic software upgrades is given in terms of endofunctors

on the big product category. These endofunctors are obtained from combining

basic endofunctors, which are defined in terms of only some of the data and the

update components. To understand how the endofunctors are obtained and how

the basic ones should be defined we first give some properties specific to the kinds

of categories that we use.

Since the write-only types of data categories (i.e., the monoid categories) are

of no use to the program (i.e., the program does not read them when executing) we

see no reason to update these at runtime. Therefore, the update functors are to be

defined only in correlation with discrete or pairs categories. For such categories

the endofunctors have a special property, they are completely defined by their

application to the objects of the category only.

Proposition 5.3 An endofunctor over a discrete or a pair category is completely

defined by its application to the objects of the category.

Proof : Consider a discrete or pair category A and an endofunctor F for which

we know how it is applied to objects in |A|. Consider one morphism o
α
−→ o′,

which is uniquely defined by the two objects o, o′ (which may also be the same

object). The the functor associates to this morphism the following morphism from

A: F (α) = (F (o), F (o′)) which is the unique morphism from F (o) to F (o′),
hence respecting the requirements from Definition 2.2 of being a functor. ✷

This property of our endofunctors essentially says that in order to define one

basic endofunctor for a label component we only need to define how each pair of

data and update information are to be changed to a new pair of data and update.

Essentially, each update functor specifies how the update information from the up-

date component acts on the data information from the data component, changing

this and also the information in the update component (e.g., when doing incre-

mental updates using only part of the update information, which disappears after

the update operation). All these become clear in the examples below, when we

see the specific structure of the objects of the data and update component cate-

gories. But abstracting away from this structure, an update endofunctor defines

5 DYNAMIC SOS 24

a correspondence between the data before and after some update, for any update

information. Therefore we may have many update endofunctors, and in defining

the semantics of the update constructs we specify which of these endofunctors to

be used.

It remains to understand how to combine such endofunctors from acting on

the basic categories to an endofunctor that acts on the composed label category, as

given by the label transformers. We essentially make pairs of endofunctors over

the products of categories, i.e., product of endofunctors.

Proposition 5.4 (endofunctors as morphisms) Consider two categories A and

B with the property of Proposition 4.2(2), like discrete or pair categories and

their products. Denote by End(A) the category which has one object A and as

morphisms all the endofunctors on A with the identity endofunctor as the identity

morphism. Define the product of two such categories End(A) × End(B) to have

one object (A,B) and morphisms the pairs of morphisms from the two categories.

Then any morphism (FA, FB) in the product is an endofunctor on A×B which

takes any object (a, b) ∈ |A×B| to an object (FA(a), FB(b)). These endofunctors

are also completely defined by their application on the objects.

Therefore, the paired endofunctors have the same properties as the basic end-

ofunctors, and their behavior is defined by their component endofunctors.

For the basic update categories that we will use we consider that their under-

lying set of objects has a special information-less object, which we denote o⊥.

The categories that we encountered until now all have such an object, e.g., when

the underlying objects are sets then o⊥ is the ∅; when the underlying objects are

partial functions (like with heaps or stores) then o⊥ is the minimal partial function

completely undefined. For a category with a single object, like the trivial category,

then this is considered to be the o⊥. For a product of categories then the pairing

of all the corresponding o⊥ is the minimal object.

The only requirement that we ask of the endofunctors is the following, which

intuitively says that once the information-less object is reached then no more

change of data objects can be performed; i.e., the endofunctor returns the same

object. This is a kind of termination condition where inaction from the functor is

required.

Definition 5.5 (no sudden jumps) An endofunctor F on D × U is said to have

no sudden jumps iff F ((d, u⊥)) = (d, u⊥), where u⊥ ∈ |U| is the information-less

object.

Notation: For some indexing set I ⊂ Index (or I ⊂ IndexU) denote by DI

(respectively UI) the product category ×i∈IDi obtained using the (update) label

transformer using the indexes from I attached to the respective category compo-

nent.

5 DYNAMIC SOS 25

Definition 5.6 (defining update endofunctors) For some complex product cate-

gory DI ×UK , define a basic update endofunctor E wrt. at least one data compo-

nent and at least one update component, as a total function over the objects of the

corresponding product category |DI′ × UK ′|, with ∅ 6= I ′ ⊆ I and ∅ 6= K ′ ⊆ K.

This endofunctor must have no sudden jumps. Extend this basic endofunctor to

the whole product category by pairing it with the identity endofunctor on the re-

maining component categories, as in Proposition 5.4.

Proposition 5.3 talks only about pairs or discrete categories. Note that prod-

uct of pairs categories is a pairs category and product of discrete categories is a

discrete category. The above definition of basic endofunctors is easy to obtain for

such categories. But product of a discrete and a pairs category is special in the

sense that there may be pairs of objects with no morphism between them. This

issue may appear only when choosing one data component which is pairs and one

which is discrete; because the update components are always pairs. Therefore, in

the case when in the above definition, for some i ∈ I ′, Di is a discrete category

then the definition of the function must take care that it maps all tuple objects

that have oi to tuple objects which have the same object on the i position; e.g., if

F ((oi, oi′, uk)) = (o′i, o
′
i′, u

′
k) then F ((oi, o

′′
i′, u

′′
k)) = (o′i, o

′′′
i′ , u

′′′
k).

Proposition 5.7 (composing update endofunctors) For two basic endofunctors

when defined on disjoint sets of indexes, their extensions can be composed in any

order, and the result of the composition is an endofunctor on the union of the in-

dexing sets, which behaves the same as the product of the two basic endofunctors.

Proof : Consider a product category DI × UK built with the label transformer

over the index sets I ∪K. Consider two endofunctors E ′, E ′′ build over subsets

of these indexes, respectively I ′ ⊂ I , K ′ ⊂ K and I ′′ ⊂ I , K ′′ ⊂ K. Assume

these two subsets are disjoint: (I ′ ∪K ′)∩ (I ′′ ∪K ′′) = ∅. Denote I \ I ′ by Î ′ and

K\K ′ by K̂ ′, and the same for Î ′′ and K̂ ′′. Without loss of generality, consider the

above I ′, I ′′, K ′, K ′′ to be singleton sets. One endofunctor E ′ maps objects from

DI′ × UK ′ , and for two objects (d′1, u
′
1), (d

′
2, u

′
2) ∈ |DI′ × UK ′| with a morphism

α′ between them, the endofunctor maps E ′(α′) to some α′
1 between E ′((d′1, u

′
1))

and E ′((d′2, u
′
2)).

The basic endofunctors E ′, E ′′ are defined only over products of pairs and

discrete categories (there may be morphism categories in the big product DI×UK ,

but not in the subset product).

Extend each endofunctor from above to the whole category DI×UK as in Def-

inition 5.6 by pairing it with the identity endofunctor on the remaining category

DÎ′ ×UK̂ ′; e.g., for E ′ denote its extension as Ẽ ′ to be the product E ′ × IDÎ′∪K̂ ′.

The similar extension for E ′′ is Ẽ ′′ = E ′′ × IDÎ′′∪K̂ ′′ . We explicit the indexes

5 DYNAMIC SOS 26

a little more: Ẽ ′ = E ′
I′∪K ′ × IDÎ′∪K̂ ′ and Ẽ ′′ = E ′′

I′′∪K ′′ × IDÎ′′∪K̂ ′′ . Be-

cause of the disjointness condition we know that I ′ ⊆ Î ′′, K ′ ⊆ K̂ ′′, I ′′ ⊆ Î ′,
and K ′′ ⊆ K̂ ′. Since the identity endofunctors can be easily seen as prod-

ucts of smaller identity endofunctors, we can rewrite the above endofunctors

to: Ẽ ′ = E ′
I′∪K ′ × IDI′′∪K ′′ × ID ˆI′′′∪K̂ ′′′ , with Î ′′′ = Î ′ \ I ′′ = (I \ I ′) \ I ′′

which because of the disjointness of I ′ and I ′′ we have Î ′′′ = I \ (I ′ ∪ I ′′), and

Ẽ ′′ = E ′′
I′′∪K ′′ × IDI′∪K ′ × ID ˆI′′′∪K̂ ′′′ . We had been relaxed with the notation

for the products, but care must be taken for the order of the arguments, so one

would write Ẽ ′′ as IDI′∪K ′ × E ′′
I′′∪K ′′ × ID ˆI′′′∪K̂ ′′′ . Since both the primed and

double primed indexes do not contain indexes of the monoid categories, all these

categories enter under the application of the identity endofunctor ID ˆI′′′∪K̂ ′′′ .

We now make the composition of the two endofunctors E ′′ ◦E ′. Pick now two

objects from the big category |DI × UK |:
(d′1, u

′
1, d

′′
1, u

′′
1, d

′′′
1 , u

′′′
1) and (d′2, u

′
2, d

′′
2, u

′′
2, d

′′′
2 , u

′′′
2).

The number of objects in the tuples is not relevant. The morphism between there

tuple objects is also tuple of respective morphisms (α′, β ′′, γ′′′). Apply now the

endofunctor Ẽ ′ which is E ′
I′∪K ′ × IDI′′∪K ′′ × ID ˆI′′′∪K̂ ′′′ , to obtain tuples of

objects (E ′
I′∪K ′(d′1, u

′
1), d

′′
1, u

′′
1, d

′′′
1 , u

′′′
1) and (E ′

I′∪K ′(d′2, u
′
2), d

′′
2, u

′′
2, d

′′′
2 , u

′′′
2), and

morphism (E ′
I′∪K ′(α′), β ′′, γ′′′). To this one applies the second endofunctor, which

is IDI′∪K ′×E ′′
I′′∪K ′′×ID ˆI′′′∪K̂ ′′′ , to obtain objects (E ′

I′∪K ′(d′1, u
′
1), E

′′
I′′∪K ′′(d′′1, u

′′
1), d

′′′
1 , u

′′′
1)

and (E ′
I′∪K ′(d′2, u

′
2), E

′′
I′′∪K ′′(d′′2, u

′′
2), d

′′′
2 , u

′′′
2), and morphism

(E ′
I′∪K ′(α′), E ′′

I′′∪K ′′(β ′′), γ′′′).
It is easy to see that for the other compositionE ′◦E ′′ we would obtain the same

objects and morphism. Moreover, these are independent of the monoid categories

that are subject only to the identity endofunctor ID ˆI′′′∪K̂ ′′′ .

From the above one can easily see how one could first make product of the two

endofunctors E ′ and E ′′ and only the extend this to the whole category, and the

result of the application of this product of basic endofunctors results in the same

objects and morphisms as the compositions above. ✷

This last result ensures modularity of the Dynamic SOS. One defines a basic

endofunctor for some dynamic upgrade construct, and this is never changed upon

addition of other dynamic upgrade constructs and their update categories and re-

lated endofunctors. Moreover, the method of extending the basic endofunctors

with the identity functor on the rest of the indexes ensures modularity for when

new data or update components are added by the label transformers.

Much of the work in [28] is concerned with analyzing the program term to

automatically insert update statements at the appropriate points in the program

where some update is meaningful and would not cause errors. The same analyses

can be carried also when the language is given a modular semantics.

5 DYNAMIC SOS 27

Definition 5.8 (updates) Add to the programming constructs signature Σexe a

disjoint signature Σupd.

The exact function symbols of Σupd will appear later when we treat the two

languages PROTEUS and CREOL. Σupd contains programming constructs intended

to be used for marking dynamic upgrade points. Each endofunctor that we define,

as some kind of upgrade mechanism, should be matched (using a transition rule)

by an update construct.

5.1 Exemplifying DSOS for PROTEUS

The transition rules that we gave for PROTEUS used a label category formed of

three components: (1) S with objects mapping variable identifiers to values, (2)

F with objects mapping function names to definitions of functions as lambda ab-

stractions, (3) R with objects mapping record identifiers to definitions of records.

All tree are pairs categories. In [28] the semantics of PROTEUS keeps all these

information in one single structure called heap. The separation of this structure

that we took does not impact on the resulting semantic object, as one can check

against [28, Fig.12].

Four kinds of update information are present in PROTEUS. In this exemplifica-

tion we treat only two: the updating of bindings and the addition of new bindings

to the heap. In [28, Fig.11] this information comes in the form of a partial mapping

from top-level identifiers to values (we omit the types). This update information

follows the same structure as the heap. At any time point, in the heap we can

see the identifiers separated into variables, function names, or record names; the

values being either basic values for variables, lambda abstractions containing the

function body, and record definitions. It is easy to see that we get the correspond-

ing structures as the objects in our categories S, F, respectively R. In consequence

it it clear what the corresponding update categories should be: US, UF, and UR are

pairs categories containing the same objects as respectively S, F, and R.

In general, we observed that the objects of the update categories are the same

as the objects in the corresponding data categories. But this need not always be

the case. One example is the information for updating types in PROTEUS which

differs from the type environment (which maps type names to types) in the fact

that the update data comes as a mapping from type names to pairs of type and type

transformer. We are not concerned with types though.

PROTEUS uses a single update construct, which marks points in the program

where updates can take place. An ingenious analysis of the program code of

PROTEUS can establish at each program point which type names can be upgraded

without breaking the type safety. This preliminary analysis of the code labels each

5 DYNAMIC SOS 28

program point with a set of capabilities, which are the set of type names that can-

not be safely upgraded at that point (wrt. the typing system). The semantics then

checks if the upgrade information contains any of these types, and the upgrade

fails if this is the case. One could use the same information to have incremen-

tal upgrades, where at each point the upgrade is made only for those type names

which are safe, when possible (dependencies between the names in the upgrade

information may not allow for such splitting of the upgrade).

In our situation we can apply the same analysis of the program and use upgrade

constructs which are labeled with the set of identifiers that can be safely upgraded

at that point. Moreover, we separate these upgrade constructs into three kinds,

each dealing with variables, functions, or records. Thus, our upgrade signature

Σupd contains:

S ::= updatev∆ | updatef∆ | updater∆ | . . .

where ∆ is a set of respectively variables, functions, or record identifiers.

Having identified the upgrade categories above, it remains to define the corre-

sponding endofunctors. Since the endofunctors for our special categories can be

given solely by their application on the set of objects, we define one endofunc-

tor for each update category as a function applied to pairs of data/update objects,

e.g., from |S| × |US|. This definitions are readily extracted from the definition of

the updating operation in PROTEUS from [28, Fig.13]. Specific to us is that we

divided the single update construct of PROTEUS into many, one for each set of

identifiers. For each set of identifiers we give a different endofunctor by restrict-

ing the definition from [28, Fig.13] to consider only those identifiers and remove

them from the update objects. Thus, both the data object and the update object

may be changed by an endofunctor. Define an update transition rule as:

〈o | updatev∆ 〉
Ev

∆−−→ 〈o | nil 〉

with Ev
∆ ∈ Mor(End(S × US)) an endofunctor on the product category S × US,

defined as in [28, Fig.13] but restricted to only the variable identifiers specified in

∆. For one store object ρ of |S| and one update object ρu of |US| the endofunctor

Ev
∆ changes ρu to ρ′u by removing all the mappings from the variable identifiers

appearing in ∆; and changes ρ to ρ′ by replacing all mappings from variable

identifiers appearing in ∆ with the corresponding ones from ρu.

The definition of the endofunctors is outside the category theory framework

of Dynamic SOS because these depend solely on the objects of the data and up-

date categories and their underlying algebraic structure. In consequence, defining

endofunctors requires standard methods of defining functions. This is also the

reason for which it was immediate to take the definition from [28, Fig.13] into

5 DYNAMIC SOS 29

our setting. The contribution of DSOS is not at this level, but it consists of the

general methodological framework that DSOS provides, which gives a unified ap-

proach to defining dynamic software upgrades in tight correlation with the normal

programming constructs.

5.2 Exemplifying DSOS for dynamic class upgrades in CREOL

A loose correlation between the updating styles of PROTEUS and CREOL can be

the following: upgrading of variable names corresponds to upgrading class at-

tributes, upgrading functions to upgrading methods of a class, upgrading type

definitions to upgrading classes and their interfaces. The updates in CREOL sup-

port all the above, but here we stick to our simple examples where classes have

only methods and attributes.

The works on class upgrades [17, 15] introduce extra complexity in the form

of dependencies between upgrades. In consequence, classes have associated an

upgrade number. The upgrade numbers are not manipulated by the programming

constructs, but only by the update constructs. Add a pairs category UN, which

has objects |UN| = IdClass ⇀ Nat mappings from class identifiers to natural

numbers, as a global component LabTrans(UN,UN). Thus we have identified

the data components which are subject to the upgrade: C × A × UN with C and

A from Example 4.7 holding the methods and attributes from class definitions.

Denote this product as D.

We take the same steps as for PROTEUS and identify first the upgrade in-

formation. From [17, 15] we identify three components: two holding the ac-

tual new code for methods and attributes, and another holding the dependen-

cies. Thus, define one pairs category UC which has the same objects as the

category C: |UC| = IdClass ⇀ (IdMethods ⇀ MtdDef). One such ob-

jects ρuc holds information about which class names need to be upgraded and

what is the new information to be used. Another pairs category UA has objects

IdClass ⇀ A. We also define one pairs category UD which has as objects:

|UD| = IdClass ⇀ (IdClass ⇀ Nat). One such object holds upgrade infor-

mation about which class depends on which versions of which classes. Denote

the upgrade categories as UD = UC × UA × UD. Thus, the endofunctors are

defined on D× UD, i.e., on tuples of six objects.

We now decide on the update constructs and we take the same approach as for

PROTEUS to have incremental upgrades. This is in contrast to [17, 15] where there

is no actual update construct, but only update messages floating in the distributed

system and holding the upgrade information. We achieve the same results but

using the update constructs. Essentially the technique of [17, 15] corresponds to

a single update construct, as in PROTEUS, which appears at every point in the

program. For incremental upgrades we take S ::= updatec∆, where ∆

5 DYNAMIC SOS 30

is a set of class identifiers.

The corresponding update transition rule is as before:

〈o | updatec∆ 〉
Ec

∆−−→ 〈o | nil 〉

with Ec
∆ ∈ Mor(End(D × UD)) an endofunctor on the product category from

above, which is defined following the work in [17, 15]. We need some notation

first.

Definition 5.9 (dependencies check) We define a binary relation ⊆ on partial

mappings ρ, ρ′ ∈ IdClass ⇀ N as:

ρ ⊆ ρ′ iff ∀C ∈ IdClass : C ∈ ρ ⇒ C ∈ ρ′ ∧ ρ(C) ≤ ρ′(C).

Define the endofunctor Ec
∆ on C× A× UN× UC× UA× UD as follows.

Ec
∆(ρc, ρa, ρun, ρuc, ρua, ρud) =































































ρc[C 7→ ρc(C)[ρuc(C)] | ∀C ∈ ∆ ∩ ρuc],
ρa[C 7→ ρua(C) | ∀C ∈ ∆ ∩ ρua],
ρun[C 7→ ρun(C) + 1 | ∀C ∈ ∆ ∩ (ρuc ∪ ρua)],
ρuc ⊖∆,
ρua ⊖∆,
ρud ⊖∆

















if ∀C ∈ ∆ ∩ ρud :
ρud(C) ⊆ ρun

(ρc, ρa, ρun, ρuc, ρua, ρud) otherwise

The update message used by CREOL is the case here where ∆ contains one

class identifier and the three update objects also contain this single class identifier.

The apparent complication in the definition of the endofunctor comes from the

complicated update information that must be manipulated. This has nothing to do

with the category theory, but only with the algebraic structures of the underlying

objects. It is easy to check that the above endofunctor has no sudden jumps.

We treat the dynamic upgrades of CREOL somehow superficial if we only

upgrade the global class definitions (i.e., the types of the objects). Compared to

PROTEUS, challenging in the dynamic upgrading mechanism of CREOL is the fact

that the distributed and concurrent objects must be upgraded also (i.e., their local

attributes), where things become more interesting in the setting of inheritance,

i.e., when a super-class is upgraded in a class hierarchy, and objects of a sub-class

must be aware of this upgrade. A full analysis of the CREOL upgrades is part of

our further work.

Objects are the active unit of computation in a distributed object-oriented set-

ting. In CREOL also the classes are active (and the messages which are terms at

the same level as the objects and classes). The upgrade numbers that the classes

6 CONCLUSION AND FURTHER WORK 31

keep in the category component UN are used by the objects to upgrade them-

selves; also objects keep an upgrade number so to be able to detect when their

class type has been upgraded. In [17, 15] upgrading of the objects, by getting the

new attributes, is done in the rewriting logic implementation through equations,

which are unobservable, many steps, and considered atomic (all at once). This

implies that all the objects in the system are upgraded at once, and at any single

step of computation (i.e., before any rewrite rule application).

6 Conclusion and Further Work

We have built on the modular SOS of [22, 21] a Dynamic SOS framework which

is intended to be used for defining the semantics of dynamic software upgrades.

At the same time we have given modular SOS definitions for concurrent object-

oriented programming constructs, where we defined an encapsulating construction

on the underlying category theory of MSOS. The encapsulation can be used also

in other places where a notion of localization of the program execution is needed.

We have considered two examples of languages with dynamic software upgrades:

the C-like PROTEUS, and the concurrent and distributed object-oriented CREOL.

We have ignored typing aspects in this paper, and concentrated only on the

semantic definition. The cited papers that investigate forms of dynamic upgrade

do thorough investigations into typing issues. These investigations can be read-

ily adopted in Dynamic SOS because they are usually based only on the program

terms and on the upgrade informations. Nevertheless, it is interesting to further

investigate such typing systems in the setting of DSOS, and we plan to do this for

CREOL, where the combination of distributed objects with concurrency and asyn-

chronous method calls with futures, interfaces and inheritance, dynamic binding

and behavior types, make the example non-trivial.

The modular aspect of Dynamic SOS (and MSOS) is a good motivation for

undertaking a more practical challenge of building a database of programming

constructs together with their respective (D)MSOS transition rules. A new pro-

gramming language would then be built by choosing the needed constructs and

their preferred semantics, when more exist (e.g., variables implemented with a

single store or with a heap and store). The language developer would then only

concentrate on the new programming feature/construct that is under investigation.

A few requirements of this database are in order. One is a ready integration of

the (D)MSOS rules with a proof assistant like Coq, where the work in [25] is a

good inspiration point. Another is the use of a notation format with the possi-

bility of extensible notation style overlays, which would allow the developer to

view the semantics in the preferred notation. Also, such a database needs to be

maintainable by the community, as with a wiki and a web interface.

REFERENCES 32

References

[1] M. Abadi and G. D. Plotkin. A model of cooperative threads. In POPL’09,

pages 29–40. ACM, 2009. (see also the LMCS journal version 2010-6(4)).

[2] L. Aceto, B. Bloom, and F. W. Vaandrager. Turning SOS Rules into Equa-

tions. Information and Computation, 111(1):1–52, 1994.

[3] L. Aceto, W. J. Fokkink, and C. Verhoef. Structural Operational Semantics.

In Handbook of Process Algebra, chapter 3. Elsevier, 2001.

[4] G. Agha and C. Hewitt. Actors: A Conceptual Foundation for Concurrent

Object-Oriented Programming. In Research Directions in Object-Oriented

Programming, pages 49–74. 1987.

[5] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A Foundation for Actor

Computation. J. Funct. Program., 7(1):1–72, 1997.

[6] S. Ajmani, B. Liskov, and L. Shrira. Modular Software Upgrades for Dis-

tributed Systems. In ECOOP’06, volume 4067 of LNCS, pages 452–476.

Springer, 2006.

[7] G. M. Bierman, M. J. Parkinson, and J. Noble. UpgradeJ: Incremental Type-

checking for Class Upgrades. In ECOOP’08, volume 5142 of LNCS, pages

235–259. Springer, 2008.

[8] C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Richman. Lazy mod-

ular upgrades in persistent object stores. In OOPSLA’03, pages 403–417.

ACM, 2003.

[9] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More

Dynamic Object Re-classification: FickleII . ACM Trans. Program. Lang.

Syst., 24(2):153–191, 2002.

[10] W. Fokkink, R. J. van Glabbeek, and P. de Wind. Compositionality of

Hennessy-Milner logic by structural operational semantics. Theoretical

Computer Science, 354(3):421–440, 2006.

[11] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[12] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR For-

malism for Artificial Intelligence. In IJCIA’73, pages 235–245. William

Kaufmann, 1973.

[13] G. J. Holzmann. The Spin Model Checker. Addison-Wesley, 2003.

REFERENCES 33

[14] H. Hüttel. Transitions and Trees: An Introduction to Structural Operational

Semantics. Cambridge Univ. Press, 2010.

[15] E. B. Johnsen, M. Kyas, and I. C. Yu. Dynamic Classes: Modular Asyn-

chronous Evolution of Distributed Concurrent Objects. In FM’09, volume

5850 of LNCS, pages 596–611. Springer, 2009.

[16] E. B. Johnsen and O. Owe. An Asynchronous Communication Model for

Distributed Concurrent Objects. Software and System Modeling, 6(1):39–

58, 2007.

[17] E. B. Johnsen, O. Owe, and I. Simplot-Ryl. A Dynamic Class Construct for

Asynchronous Concurrent Objects. In FMOODS’05, volume 3535 of LNCS,

pages 15–30. Springer, 2005.

[18] M. M. Lehman. Programs, Life Cycles, and Laws of Software Evolution.

Proceedings of The IEEE, 68(9):1060–1076, 1980.

[19] S. Malabarba, R. Pandey, J. Gragg, E. T. Barr, and J. F. Barnes. Runtime

support for type-safe dynamic java classes. In ECOOP’00, volume 1850 of

LNCS, pages 337–361. Springer, 2000.

[20] P. D. Mosses. A modular SOS for ML concurrency primitives. Technical

report, Dept. of Computer Science, Univ. of Aarhus, 1999.

[21] P. D. Mosses. Foundations of Modular SOS. In Mathematical Founda-

tions of Computer Science (MFCS’99), volume 1672 of LNCS, pages 70–80.

Springer, 1999.

[22] P. D. Mosses. Modular structural operational semantics. J. Log. Algebr.

Program., 60-61:195–228, 2004.

[23] P. D. Mosses and M. J. New. Implicit Propagation in Structural Operational

Semantics. Electr. Notes Theor. Comput. Sci., 229(4):49–66, 2009.

[24] B. C. Pierce. Basic Category Theory for Computer Scientists. MIT Press,

1991.

[25] B. C. Pierce, C. Casinghino, M. Greenberg, C. Hriţcu, V. Sjöberg, and

B. Yorgey. Software Foundations. e-book (http://www.cis.upenn.

edu/˜bcpierce/sf/), July 2012.

[26] V. R. Pratt. Semantical considerations on floyd-hoare logic. In IEEE Sym-

posium On Foundations of Computer Science (FOCS’76), pages 109–121,

1976.

REFERENCES 34

[27] G. Stoyle, M. W. Hicks, G. M. Bierman, P. Sewell, and I. Neamtiu. Mutatis

mutandis: safe and predictable dynamic software updating. In POPL’05,

pages 183–194. ACM, 2005.

[28] G. Stoyle, M. W. Hicks, G. M. Bierman, P. Sewell, and I. Neamtiu. Mutatis

Mutandis: Safe and predictable dynamic software updating. ACM Trans.

Program. Lang. Syst., 29(4), 2007.

A EXAMPLES, PROOFS AND ADDITIONAL RESULTS 35

A Examples, Proofs and Additional Results

A.1 Further Examples for Modular SOS of PROTEUS and CREOL

In this section we give the examples for programming constructs that make up the

PROTEUS language. Some of these were already considered in the paper, but here

they contain some more explanatory text.

Example A.1 (arithmetic and Boolean expressions) We may add to Σ3.8
exe arith-

metic operators like + and Boolean operators like =. Denote these generally as

op. We may also add as constants the set of natural numbers and the truth val-

ues; having a so called value added syntax, where the values that the program

may take are included in the syntax. Denote these generally as v ∈ Val , with

n ∈ N ⊆ Val and b ∈ {true, false} ⊆ Val . The constant values are con-

sidered to have sort Expressions, denoted usually by ei ∈ E, and the arithmetic

and Boolean operators take expressions and return expressions. Denote this new

signature as ΣA.1
exe.

E ::= v (v ∈ Val) | E opE

We may now add transition rules in the style of small-step SOS, which, using

the theory developed thus far, would be presented as:

e0
X
−→ e′0

e0 op e1
X
−→ e′0 op e1

e1
X
−→ e′1

v op e1
X
−→ v op e′1

op = + v = v0 + v1

v0 op v1
U
−→ v

Example A.2 (assignment and variable declaration) Having variable identifiers

we may add assignment statements and variable declarations:

S ::= x := e | d (d ∈ D) | . . .

E ::= let d in e (d ∈ D) | . . .

D ::= var x := e | d0 ; d1 (d0, d1 ∈ D)

Using the label category LabTrans(1, S)(TrivCat), with S a pairs category

of stores, we consider the following rules for the new constructs:

e
X
−→ e′

x := e
X
−→ x := e′

x ∈ ρ

x := v
{1=ρ ... 1=ρ[x 7→v]}
−−−−−−−−−−−−→ nil

e
X
−→ e′

var x := e
X
−→ var x := e′

x 6∈ ρ

var x := v
{1=ρ ... 1=ρ[x 7→v]}
−−−−−−−−−−−−→ nil

A EXAMPLES, PROOFS AND ADDITIONAL RESULTS 36

d0
X
−→ d′0

d0 ; d1
X
−→ d′0 ; d1

nil ; d1
U
−→ d1

d
{1=ρ ...1=ρ′}
−−−−−−−−→ nil e

{1=ρ′ ...}
−−−−−−→ v

let d in e
{1=ρ ... }
−−−−−→ v

Note that the two rules on the left of the last row are in fact redundant because

they are subsumed by the same ones for the statements, since declarations are

also statements. These are necessary when we do not have the subsorting infor-

mation. Note also that the last rule for the let construct is given in a big-step SOS

style. This is intended to illustrate that MSOS is amenable to mixed-step style of

semantics.

Example A.3 (conditional construct) The conditional construct, of sort State-

ment, taking as parameters a term of sort expression and two terms of sort state-

ment, can be added to any of the signatures from before; here Σ3.10
exe ⊂ ΣA.3

exe.

S ::= if e then s1 else s2 (e ∈ E, s1, s2 ∈ S) | . . .

The semantics does not rely on any particular form of the label categories.

e
X
−→ true

if e then s1 else s2
X
−→ s1

e
X
−→ false

if e then s1 else s2
X
−→ s2

Example A.4 (records) We add to Σ3.11
exe (any other signature could also be used)

a set of record names as constants r ∈ IdRec and a set of record labels as con-

stants l ∈ IdRecLab, together with a record definition construction and a record

projection, thus making ΣA.4
exe:

D ::= record r {li = ei} (r ∈ IdRec, li ∈ IdRecLab, ei ∈ E) | . . .

E ::= r.l (r ∈ IdRec, l ∈ IdRecLab) | . . .

Record declarations are stored in a new label component R which is a pairs

category containing objects mapping record identifiers to record terms (where

a record term is {li = ei}). Extend the previous labels category with:

LabTrans(R,R).

The transition rules for the two new programming constructs are:

r 6∈ ρr

record r {li = ei}
{R=ρr ...R=ρr [r 7→{li=ei}]}
−−−−−−−−−−−−−−−−−→ nil

ρr(r) = {li = ei} ∃i : li = l ei = e

r.l
{R=ρr ...}
−−−−−−→ e

A EXAMPLES, PROOFS AND ADDITIONAL RESULTS 37

The rules above give a “lazy” semantics for records, where the evaluation

of the expressions is postponed until the moment of the record label reference.

This is similar to the inlining constructs in some programming languages like the

Promela [13, Chp.3]. Moreover, the above rules implement a small-step seman-

tics. We leave it as an exercise to give big-step semantics, or to give an eager

semantics, where the labels of R will be guaranteed to associate values to the

record labels.

The choice of syntax for the records in Example A.4 is biased by our goal to

reach the PROTEUS. Nevertheless, using the theory we presented, one may give

semantics to more complex records as those in e.g. [14, Chap.9].

Example A.5 (methods inside objects) Methods are like functions only that they

have a return statement which is treated specially.4 We thus add method defini-

tions to Σ4.8
exe:

D ::= mtd m(x) {s} | . . .

S ::= return e | m(e) | . . .

The transition rules for method definitions are simple and use another pairs-like

component category MD for storing method definitions (the same as was done

for function definitions) which is added by the label transformer, identified by the

index MD, to the local labels category I that is encapsulated:

mtdm(x) {s}
{MD=ρm ...MD=ρm[m 7→λ(x).(s)]}
−−−−−−−−−−−−−−−−−−−−−−→ nil

e
X
−→ e′

return e
X
−→ return e′

e
X
−→ e′

m(e)
X
−→ m(e′)

ρm(m) = λ(x).(s)

m(v)
{MD=ρm ...}
−−−−−−−−→ (s)[v/x]

4Other programming options are very well possible like having functions evaluate to a value,

and thus not use the return statement.

