
 

Scalability of machine learning  
within the heavy asset industry 

 
A multi case study for identifying barriers and possible solutions 

 
 

Steffen Novak Mollestad 
 
 

 

 
 
 
 
 

Master’s Thesis 
Master of Science, Innovation and Entrepreneurship 

30 credits 
 

 
The Department of Informatics 

The Faculty of Mathematics and Natural Sciences 
UNIVERSITY OF OSLO 

 
 
 

May, 2019 
  



Abstract 

 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
2019 © Steffen Novak Mollestad  

 
Scalability of Machine Learning within the Heavy Asset Industry 
 
Steffen Novak Mollestad  
 
http://www.duo.uio.no/  
 
Reprosentralen, University of Oslo 



Scalability of machine learning within the heavy industry 
 

 iii 

 
 
 
 
 
 

Abstract 
The purpose of this research paper is to identify the barriers of and propose 
possible solutions to machine learning scalability in the heavy asset industry, as 
these are blocking further innovations within the industry. The research has been 
designed with an inductive approach resulting in explanatory and explorative 
multi case study with Facebook, Uber, Tesla, GE Digital, Arundo Analytics and 
C3 as selected cases.  

The research findings highlight lack of uniform data handling within the 
heavy asset industry, limit for generalization of ML models due dissimilarities of 
industrial objects of analysis, and knowledge gap in external organizations as 
barriers. Further, a conceptual framework for how to approach these hurdles 
have been proposed.  
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1 Introduction 
Heavy loads of data are being collected and stored from all types of sources 
nowadays and to analyze these data machine learning (ML) models are typically 
being applied in various applications. ML models are fed with input data and 
determines a output – typically a prediction – based on training from previous 
data. These models have proved to achieve high accuracy conditioned by the 
right training and engineering for a set of input data. By operationalizing these 
models – and at scale – tremendous value is being released. Due to potential 
high-quality predictions from ML it has therefore been applied and deployed into 
a broad range of sectors, e.g. telecom, banking, insurance, etc. The common 
denominator in those cases is usually that analytics are being performed handling 
data about people.  

This is not the case for the heavy asset industry (further referred to as 
industrial or industry)  – e.g. maritime, oil and gas, chemicals – where the 
application of ML models often are related to optimizing production and 
maintenance, and thereby analysis of industrial equipment. Cloning a ML model 
for one equipment to another similar type does not apply, hence applying ML 
models seems to be harder to scale for the industrial cases. Companies have been 
trying to – and still do – to solve the scalability issue within the industry, but 
no-one has really succeeded yet.  

The hurdle of industrial scalability are blocking further innovations within 
the industrial sector, and are therefore relevant to solve in the context of 
innovation management. This is the point of departure for this thesis. As of this, 
the research have been aiming towards investigating what is causing these 
limitations. In quest of discover what could unleash innovation within the 
industry, it has been needed to dive into the technological sphere of ML and 
understand how this technology have been implemented and scaled within other 
sectors. This brings two dimensions to the thesis – both innovational and 
technological – thus will be analyzed accordingly. In addition, as academic 
literature also emphasizes that aspects such as organizational and business also 
impacts the processes of new innovations, thus will be included in the analysis. 

In this case study Facebook, Uber, Tesla, GE Digital, Arundo Analytics and 
C3 have been examined. This research points to key barriers for scaling of 
industrial ML and possible strategies to overcome them. 
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1.1 Research Problem 
The research first seeks to understand the characteristics of successfully scaled 
ML, further identify the barriers to scaled industrial ML, followed by outlining 
possible strategies and framework for dealing with those barriers. Due to the 
scope the thesis will seek to answer three different questions and therefore causing 
the analysis to be segmented accordingly into three sections. 
 
Research question 1: 
(1) What is characterizing scaled machine learning in the selected cases and how 
does it contribute to business value and innovation? 

The objective is to outline the attributes of scaled ML thus understand how 
mass-scaling of ML models has been driving business value and innovation. 
 
Research question 2: 
(2) What is the barriers making ML scalability challenging in the industry? 

This part of the thesis will seek to investigate specific elements which are 
blocking industrial ML scaling. The objective will therefore be to identify these 
elements and evaluate their impact within the industrial sphere, hence reveal 
what distinguish the industrial case from other cases.  
 
Research question 3:  
(3) What are possible strategies to solve these scalability barriers? 

Based on the prior analysis performed, strategic guidelines for industrial 
scalability will be outlined. By doing so, the objective is to overcome the barriers 
of scaling thus guide further innovation within industrial ML.  

 

1.2 Structure of the thesis 
In the first chapter it is described the background and relevance for the subject 
of the thesis. In the second chapter the theoretical background and context is 
being explained. In the third chapter the methodology of the thesis is outlined 
including case selection and data collection. In the fourth chapter the analysis is 
presented where there is three sections, each connected directly to the 
corresponding research questions. In the fifth chapter the conclusion is presented 
alongside with its implications.  
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2 Theoretical background 
In this section relevant theoretical framework are presented to give a fundament 
and solid understanding of the research problem. In particular, the first chapter 
focuses on context of relevant technologies and terminologies. The second chapter 
are focusing on the concepts of innovation management and its context. The 
third chapter outlines a conceptual framework and its content which will work 
as the baseline for the thesis analysis. Finally, the fourth chapter will summarize 
the theoretical background. 

2.1 Technology context and terminology 
In this chapter essential terminologies and context will be explained and hence 
works as a fundament for understanding the scope and focus of the thesis. 

Context of ML. Heavy loads of data are being collected and are available 
from all types of sources – also commonly labeled as Big Data – and to analyze 
these data machine learning (ML) models are typically being applied. Previously, 
organizations could put together teams of statisticians, modelers and analysts in 
quest to explore and exploit the data manually (Fawcett & Provost, 2013). As 
the volume and variety of data have increased significantly this has outpaced the 
capacity to perform manual analysis. In addition, computers have increased in 
computational power, network being omnipresent and algorithms developed for 
connecting datasets to more various analytic cases, leading to new opportunities 
(Fawcett & Provost, 2013). This has led to significant use of data analysis, and 
then followed by the evolution of data science as profession which typically are 
the main users of analytical tool such as ML. 

AI, ML and deep learning. In context of this, terms like AI, ML and deep 
learning are frequently being applied. They are sometimes used interchangeably 
despite being distinct in meaning. Artificial intelligence (AI) have within 
computer science been defined as “the science and engineering of making 
intelligent machines” (McCarthy, 2007). Machine learning (ML) is a subset of AI 
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which specifically have “the ability to learn without being explicitly programmed” 
(Skymind.ai, 2019) thus have the ability to modify itself without human 
intervention by being exposed to new data. This brings distinct differences, e.g. 
“symbolic logic – rules engines, expert systems and knowledge graphs – could all 
be described as AI, and none of them are machine learning” (Skymind.ai, 2019). 
ML algorithms is also often referred to as a model, which also will be the case in 
this thesis. Further, deep learning is a subgroup of ML which accounts for more 
specific types of computer algorithms, such as deep artificial neural networks and 
deep reinforcement learning (Skymind.ai, 2019) whereas deep refers to a technical 
definition – which will not be included here. As of this, the technological aspect 
has to be understood on the level and in context of learning algorithms from 
input data. 

 
Figure 2.1. Artificial Intelligence (AI) vs. Machine Learning vs. Deep 

Learning. 

 
Scalability. The term scalability is varying depending on context. Generally, 
scalability can be understood as “the ability of a business or system to grow 
larger” (Cambridge University Press, 2019). When narrowing it down to software, 
Gage (2018) defines software done at scale as “program or application works for 
many people, in many locations, and at a reasonable speed.” Due to the purpose 
of the thesis and its context, industrial machine learning scalability will be 
defined as: 

the ability for machine learning to be applied into large 
number of industrial equipment and devices at acceptable 
speed with reasonable accuracy.  

Artificial 
Intelligence (AI)

Machine 
Learning (ML)

Deep Learning
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There exists a massive range of companies that are using machine learning in 
their products and services. This ranges across different verticals (Lungariello, 
2018), but with the tech companies being at the forefront of application. This 
especially accounts for the FAANG-group (Facebook, Apple, Amazon, Netflix, 
Google) which uses it for highly personalized products and services, whereas they 
all have in common that they are doing analysis of people, and analytics are e.g. 
being utilized for targeted ads and customer recommendations. Their capabilities 
of serving their extensive customer base with ML services proves their 
tremendous scaling capabilities.  

Industrial ML. The use of ML have also gained significant impact within 
the industry which also can be illustrated with the exponential growth in 
industrial-related publications of ML  (Hajizadeh, 2018). Industrial ML can be 
applied for “saving time, reducing costs, boosting efficiencies, and improving 
safety” (Lungariello, 2018), and are specifically being commonly utilized for 
optimization of operations and maintenance. Anyhow, industrial companies have 
not been able to scale their ML solutions broadly unlike non-industrial companies 
despite extensive efforts in industrial ML and broad range of different industrial 
analytics vendors. These ranging from big established original equipment 
manufacturers (OEMs) like Siemens, ABB, GE Digital, and to smaller 
independent software vendors (ISVs) like C3, Aspentech, Arundo Analytics, 
Uptake and more. 

 
 

 
Figure 2.2. Exponential growth of ML publications in the industry. (Hajizadeh, 2018) 

 
Technology trends. The compute environments of ML are typically in the 

cloud (centralized computing) at companies such as Amazon or Microsoft as they 
have tailored their cloud and datacenter solutions for ML. In the industrial 
setting, this implies that data have to be transferred from the industrial location 
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to the datacenter location for computation, hence analytic insights must be 
transferred back to the industrial location. More recently decentralized 
computing – referred to as edge computing – have gained attention as this makes 
local computation possible, which in the industrial setting enables on-site 
analytics with limited latency.  

In this chapter essential terminologies and context have been explained and 
hence works as a fundament for understanding the scope and focus of the thesis. 

2.2 Innovation context 
In this chapter the basis for innovation theory will be outlined and set the 
perspective of how scaled ML and its considerations should be viewed. It will 
further be used as the baseline for a conceptual framework for the analysis of the 
thesis. 

The thesis itself is placed within the context of innovation, as the objective 
is to find new ways to enhance the application of machine learning (ML) models 
within the industrial setting thus scaled (industrial) ML potentially should be 
considered an innovation itself. Despite it exists various definitions on the term 
innovation, Joseph Schumpeter’s definition has become recognized and defines 
innovation as “new combinations of new or existing knowledge, resources, 
equipment and so on” (Schumpeter, 1934). As of today, innovation is considered 
to be a positive contribution into the society and even “wedded into the economic 
ideology” (Godin, 2015). In contrast, innovation has historically been viewed as 
wicked and destroying for the order of the community, as it was “introducing 
change into the established order” (Godin, 2015).  

Innovation has historically also been claimed to be associated with 
unexpected discoveries, and that luck and serendipity has often been the answer 
to these innovations (Trott, 2017). Closer investigations show that luck is rare, 
but instead that discoveries comes as a result of people having fascination within 
a specific area of science or technology in combination with extensive efforts 
leading to new discoveries (Trott, 2017). This substantiates the words by Louis 
Pasteur: “chance favors the prepared mind”. 

It is in the latest century that innovation has gained the praise for being 
specifically valuable. As innovation has been given the positive association, it has 
also been argued for being the engine of long-term economic growth (Schumpeter, 
1934), and even more lately an essential component for organizations survival, 
or as Christopher Freeman (1982) wrote: “…not to innovate is to die”.  

The innovation process itself are likely to be viewed as fairly abstract, but 
according to Trott (2017) holds some key elements. These are (i) creative 
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individuals which is affected by scientific and technological developments leading 
to knowledge inputs, (ii) firms’ architecture and external linkage which is affected 
by the social changes and market needs resulting in new marked needs and 
opportunities, and (iii) companies operation functions and activities resulting in 
development of knowledge, processes and products. As the thesis will work within 
the scope of an innovation process, these key elements and the following 
innovation theory will be a part of the foundation to understand the thesis. 

2.2.1 Types of innovation 

Innovations has given various impact but also hold various characteristics, and 
researchers therefore have classified it into sets of contrasting types 
(Gopalakrishnan & Damanpour, 1997). The types are usually classified based on 
the degree of change associated with it (incremental versus radical), the activities 
and areas affected by the innovation (products versus process), and innovations 
related to social structure and technology (administrative versus technical) 
(Gopalakrishnan & Damanpour, 1997). For the purpose of this thesis, we will 
only cover the first and third contrasting type. 

2.2.1.1 Incremental versus radical innovation 

The first contrasting innovation is the distinguishment of incremental and radical 
innovation, and are related to the magnitude of the innovation. Incremental 
innovations (also named evolutionary, continuous) call for marginal change in 
existing practices, and are related to improvements of existing methods and 
products (Gopalakrishnan & Damanpour, 1997).  Radical innovations (also 
named revolutionary, discontinuous, breakthrough) (Crossan & Apaydin, 2010) 
changes the fundamental conditions for an organization or an industry resulting 
in departing from existing practices, and tends to provide greater improvements 
than demanded (Trott, 2017). As of the definitions for both incremental and 
radical, the innovation is related to the technical aspect. Anyhow, incremental 
and radical innovation are understood as two extremes on a scale of innovation, 
resulting in innovations to be classified as more or less radical and incremental. 

The term disruptive innovation is often misunderstood as radical innovation. 
Disruptive innovation hold the characteristic of creating new markets that 
captures existing markets (Christensen, 2003). Hence is it not about the 
technology itself, but related to how the technology is used within the business 
context. This implicates that despite an innovation to itself being considered 
incremental, it could also be disruptive market-wise. Disruption theory also 
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predicts that companies who leverage disruptive innovation have relatively 
higher chance of success against large incumbent companies (Christensen, 2003). 

The introduction of new evolutions of iPhone models (iPhone 6, 6S, 7, 8, 8S, 
etc.) are more likely to be categorized as incremental innovations, as they tend 
to “only” improve the existing product, but the introduction of the first iPhone 
in June 2007 – which clearly disrupted the cell phone industry and probably 
cannibalized Nokia, BlackBerry and Sony Ericsson (Dediu, 2012) – are considered 
to be both disruptive (market-wise) and (more) radical (technology-wise).  

The radical and incremental dimension also highlights various benefits related 
to the actors in the market. For incumbents incremental innovations are likely 
to be most beneficial as this allows them to leverage existing knowledge and 
resources, which incumbents tends to have a competitive advantage of (Trott, 
2017). However, they will most likely struggle with radical innovations as they 
are more constrained by managers’ mindset, but also have less incentive to come 
up with or make use of radical innovations that could cannibalize their existing 
products. Hence, this also explains why established industry leaders almost 
exclusively introduces incremental innovations (Christensen & Overdorf, 2000). 
This gives opportunities to new entrants as they are less constrained, and 
particularly regarding the limited need for change of knowledge (Trott, 2017). 

2.2.1.2 Technical versus administrative innovation 

Lastly, Gopalakrishnan & Damanpour (1997), points to a more general level of 
innovation, which distinguish between the technical and social structural aspects. 
“Technical and administrative innovations are, respectively, related to the 
technical and administrative cores of the organization” (Gopalakrishnan & 
Damanpour, 1997). Administrative innovations apply more directly to its 
management and indirectly to the basic work activity of the organization, such 
as organizational structure, human resources and administrative processes 
(Gopalakrishnan & Damanpour, 1997). Technical innovations are directly related 
to the basic work activity of an organization, which pertains to products, 
processes and technologies that are applied to produce products and deliver 
services. Within this segment, it is been argued that radical and disruptive 
technologies likely will lead to cheaper, more convenient, simpler and smaller 
products than previous (Christensen & Overdorf, 2000).  

2.2.2 Innovation models 

Until the 1980s, the innovation model was primarily understood as a linear model 
of science and innovation (Trott, 2017). As innovation research progressed, the 



Scalability of machine learning within the heavy industry 
 

 9 

linear model could only be proven valid for a few limited applications which led 
the field of innovation theory to further develop. As a result to this, the 
interactive innovation model acknowledge innovation as a continuous interactive 
process as a result of “marketplace, the science base and the organization’s 
capabilities” (Trott, 2017), and thereby distinguish from the linear innovation 
model. Despite innovation models still evolve and are challenged, this model has 
proved to outline the key elements in innovation process, whilst it still is heavily 
simplified: (i) the market as a major source of innovation; (ii) firm competences 
enable firms to match technology with demand; and (iii) external and internal 
sources of innovations are important (Stefano, Gambardella, & Verona, 2012). 
The innovation process also can be thought of as a “complex set of 
communication paths over which knowledge is transferred” (Trott, 2017), and 
this model gives room for such view.  

As societies has evolved into a more knowledge-based economy – meaning 
“economies which are directly based on the production, distribution and use of 
knowledge and information” (OECD, 1996) – Chesbrough et. al. (2006) argues 
this leads to a “new mode of open systems involving a range of players distributed 
up and down in the supply chain” (Trott, 2017, s. 26), and coined this concept 
open innovation. Cohen and Levinthal (1990) had previously explained two 
modes of R&D – internal and external – and the importance of internal R&D to 
utilize external technology, an ability named “absorptive capacity”. The key 
difference – and claimed new paradigm – with open innovation though was 
argued to be that internal and external knowledge being equally important 
during the innovation process. 

2.2.3 Summary of innovation  

In the section of innovation context, the innovation theory have been outlined 
and put in the perspective of how scaled ML and its considerations should be 
viewed. Innovation should be understood in the setting of being a complexed 
interactive process with several interconnected elements. 

The scope of innovation comes with many nuances, both academically and 
practically. To classify scaled (industrial) ML as an innovation it must according 
to the definition of Schumpeter fulfil the attributes of “new combinations of new 
or existing knowledge, resources, equipment and so on”, which it might seems 
reasonable to assert. If so, it must also be seen in context of innovation 
management and processes and their included aspects. Anyhow, this will be a 
part of the research analysis. 
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2.3 Theoretical framework 
This chapter outlines a conceptual framework, how it has been selected and its 
content which will be used as the base for the thesis analysis.  

This thesis in itself can be understood within the scope of innovation 
management, and due to the purpose of the research a conceptual framework has 
been developed. The conceptual framework is based on innovation process (Trott, 
2017), context of technical vs administrative innovation (Gopalakrishnan & 
Damanpour, 1997), and model of interactive (Trott, 2017; Stefano, Gambardella, 
& Verona, 2012) and open innovation (Chesbrough, Vanhaverbeke, & West, 
2006). Specifically how the elements have been selected is explained in the 
upcoming paragraphs.  

Aspects from the innovation process (scientific and technological 
developments), technical innovations (products, processes and technologies), 
interactive innovation model (science base), in combination with the purpose of 
the thesis, are compressed to the first element which is technology. 

Based on the innovation process (firms’ architecture and external linkage), 
interactive innovation model (marketplace), in combination with the need to 
compare industrial versus non-industrial cases, led to the second element which 
is named business characteristics. 

 

 
 

Figure 2.3. Framework for research evaluation. 

The innovation process (individuals and knowledge inputs and firms’ 
architecture), administrative innovation (organizational structure, human 
resources and administrative processes), interactive innovation model 

 
Innovation 

management 

People and 
organization 

Business 
characteristics 

Technology 
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(organizational capabilities) are condensed into the final and third element which 
is labeled as people and organization. 

Thereby the research will focus on industrial ML with respect to (i) 
technology, (ii) business characteristics and (iii) people organization and hence 
will be evaluated accordingly. 

 

2.3.1 Technology 

Technology in this thesis will be concern machine learning and software 
scalability. This section will explore the technological …  

2.3.1.1 Machine learning (ML) 

Machine learning (ML) could generally be defined as the “design and study of 
software artifacts that use past experience to make future decisions” (Hackeling, 
2014). The unique property is then that ML have the ability to not be specifically 
programmed from every case and condition, but can learn from a set of data. 

The data is the prerequisite for learning – also referred to as training or 
modeling – and the data have different attributes/variables in columns, which is 
referred to as features.  

 
Figure 2.4. Data attributes/variables/features. (Fawcett & Provost, 2013) 

The machine learning process is based on the Cross-Industry Standard Process 
for Data Mining (CRISP-DM), which highlights that processing data is an agile 
process meaning that “iteration is considered to be the rule rather than the 
exemption” (Fawcett & Provost, 2013). By iterating – even just for the first time 
– one will also explore the data itself, leaving more insights to the data science 
team. The iteration results in a few core processes, as illustrated in figure 3.5, 
(1) business understanding, (2) data understanding, (3) data preparation, (4) 
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modelling, (5) evaluation, and eventually (6) deployment. In the context of ML, 
the modelling process is where a models is learning – more commonly referred to 
as training. Despite the ML process being fairly the same in different cases, they 
still have some variations due to the specific demands and conditions.  

After the model is deployed and hence put into production, the model can 
now take in data for prediction, which are grouped into batch data – which is 
accumulated data put together into a larger data set – or real-time data which 
consists of smaller amounts data streaming at a set frequency.   
 

 
Figure 2.5. CRISP-DM. (Fawcett & Provost, 2013) 

2.3.1.1.1. Concepts of machine learning algorithms 

When it comes to how the ML systems learn they are usually categorized into 
learning either with or without supervision of humans. As of this, the two main 
types of ML are commonly called supervised and unsupervised machine learning, 
which occupies opposite ends of the scale.  

Supervised learning is a program which “predicts an output for an input by 
learning from pairs of labeled inputs and outputs; that is, the program learns 
from examples of the right answers” (Hackeling, 2014). In other words, it aims to 
learn based on desired outcomes already known. Supervised learning is most 
commonly applied for regression or classification analysis. 

On the other hand, unsupervised learning has not been given any labels of 
what is wrong or right, but instead are trying to discover patterns in the data 
(Hackeling, 2014). Such algorithms are often used when data is unlabeled and 
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for the purpose of grouping data points – more commonly termed clustering – 
for data who are sharing similar characteristics. 

As supervised and unsupervised learning are found on the ends of the 
spectrum, there is also possibilities of semi-supervised learning in the middle. An 
example here is reinforced learning which receives feedback for its decision in an 
environment with changing states. Reactions are then measured by a previously 
defined target and thus a reward value is returned to the algorithm serving as a 
target for optimization (Hackeling, 2014). 

2.3.1.1.2. Evaluation metrics 

As CRISP-DM shows, data is the sole input of the training and are therefore the 
prerequisites of the quality of the ML model. In quest of getting the “best” model, 
it would be defined by “attributes like how interpretable, simple, accurate, fast 
and scalable the model is.” (Robinson, 2019). The challenge though being that 
these attributes typically are contrary to each other, e.g. being accurate often 
comes at the cost of compute-heavy and slow models. In the data science field it 
is therefore a big need of optimizing the models for the purpose of the analysis 
and the business question asked. 

Generally speaking, data are usually segmented into two sets of data during 
the ML process; training data set and testing data set. When testing and 
evaluating the model, the output metrics is therefore based on the test set. 

Confusion matrix. This is a table that is often used to describe the 
performance of a classification model on a set of test data for which the true 
values are known. For a classification model with binary decision problem the 
results will be labeled either positive and negative. As input data also are 
classified binary, this leaves for four different cases: 

• True positive (TP) is the number of when the algorithm correctly 
classifies the output as positive.  

• True negative (TN) is the number of when the model correctly classifies 
the output as negative.  

• False positive (FP) is the number of when the model incorrectly classifies 
the output as positive, but really is negative. 

• False negative (FN) is the number of when the algorithm incorrectly 
classifies the output as negative, but in reality is positive. 
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Figure 2.6. Confusion matrix (Fawcett & Provost, 2013). In green the positive class, 
in blue the negative class. 

These terms are very useful when computing the performance of the model. There 
exists several metrics for measuring the performance, but accuracy is considered 
to be one of the simplest and most straight-forward metrics. It is calculated as 
follows (Fawcett & Provost, 2013): 
 

Accuracy = 
n	correct predictions
n	total predictions

=
TP + TN

TP + TN + FP + FN
 

 
Accuracy will return, due to the nature of the formula, a ratio output ranging 
from 0 to 1. The accuracy range depend on conditions, type of analysis and cases. 

In addition, metrics such as recall, precision, and f-measure are common 
metrics, but are outside the purpose of the thesis. 

2.3.1.1.3. Machine learning subgroups and concepts 

As previously presented, ML falls into the group of AI, but also have different 
subgroups itself. As mentioned, one of the are to be deep learning. Below, 
concepts of ML are described briefly which will be relevant for later. 

Anomaly detection. This is the identification of “rare items, events or 
observations which raise suspicions by differing significantly from the majority 
of the data” (Zimek & Schubert, 2017), hence called anomaly detection, but also 
outlier detection. Three main techniques are considered to be unsupervised, 
supervised and semi-supervised learning. 

Automated machine learning – also referred to as autoML – is the case 
of automating processes within the ML processes. E.g. data processing and 
modelling would be automated, which could increase the effectiveness of data 
science workload (Hutter, et al., 2019) 

Transfer learning. This topic is fairly new in terms of wide appliance, 
despite being discussed in academia for decades (Pratt & Thrun, 1997). The 
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concept of transfer learning focuses on “storing knowledge gained while solving 
one problem and applying it to a different but related problem” (West, Ventura, 
& Warnick, 2007). By so with minimal retraining one could apply a very 
comprehensive model to new related cases. Findings in the case of industrial 
context show that transfer learning “outperforms unsupervised anomaly detection 
in the target domain” (Vercruyssen, Meert, & Davis, 2017) and hence shows that 
the approach is promising within the industrial setting. 

2.3.1.2 Software scalability 

As pointed out in section 2.1, scalability in this thesis is defined as the ability for 
machine learning to be applied into large number of industrial equipment and 
devices at acceptable speed with reasonable accuracy. According to Fisher & 
Abbott’s book The Art of Scalability (2015), there is three main dimensions to 
scaling, also framed as the Scalability Cube: 

(i) Y-axis; scale by splitting different things (functional decomposing),  
(ii) X-axis; scale by cloning (horizontal duplication),  
(iii) Z-axis; scale by splitting similar things (data partitioning),  
 

Figure 2.7. The Scalability Cube. (Fisher & Abbott, 2015) 
 

(i) Scale by splitting different things (Y-axis). By different things 
meaning methods, functions and services. Such scaling splits a monolithic 
application into a set of services to increase scalability, and focuses on separating 
services and data along noun or verb boundaries, and are usually executed by 
making use of microservices. E.g. in commerce could be splitting browse, 

S 

Z-axis – Data partitioning 
Scale by splitting similar 
things X-axis – Horizontal duplication 

Scale by cloning 

Y-axis – Functional 
decomposing 
Scale by splitting  
different things 

S Starting point, 
and no scaling 

Near infinite 
scaling 
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checkout, login. For each service, it should its own non-shared data to ensure 
fault isolation and high availability.  

(ii) Scale by cloning (X-axis). This meaning that each server runs 
multiple identical copies of the service (if split) behind a load balancer. Hence, 
the X-axis will range from multiple copies to one monolithic system.  

(iii) Scale by splitting similar things (Z-axis). In this respect, it’s 
similar to X-axis scaling. The big difference is that each server is responsible for 
only a subset of the data. Similar things could thus apply to segment customers 
based on geography (ex. North America and Europe). Such split would also 
benefit in cases of local privacy laws, such as GDPR in Europe.  

Despite this theory being not directly related to the more narrow field of ML 
the purpose is to help use this as an baseline for understanding scalability of ML 
within the industrial context. Hence, this makes the problem approach more 
tangible and will work as a guide for possible new frameworks. 

 
 

2.3.2 Business characteristics 

The characteristics of the businesses are important to evaluate as they 
(potentially) are determining the prerequisites of company’s possibilities and 
boundaries, and so also into the context of innovation.  

2.3.2.1 Business models 

The term business model have been used inconsistently among authors ranging 
from “core repeated processes, a mediating construct between technology 
innovation and economic value, or a set of building blocks” (Weiblen, 2014). 
Anyhow, the common denominator in business model research is that it describes 
the logic of value creation and value capturing of a firm (Weiblen, 2014; 
Chesbrough, 2010). 

As the digital disruption has emerged, Weill and Woerner (2015) proposed a 
framework for business models in the digital era. Their research findings were 
that enterprises who understood their end costumer well and the majority of 
their revenues from digital ecosystems had significant higher revenue growth and 
profit margins than their industry average, with 32% and 27% accordingly (Weill 
& Woerner, Thriving in an Increasingly Digital Ecosystem, 2015). 
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 Value chain Ecosystem 
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Omnichannel business 
• “Owns” customer relationship 
• Multiproduct, multichannel 
customer experience to meet life 
events 
• Integrated value chain 
Examples: banks, retailers  

Ecosystem driver 
• Provides a branded platform 
• Ensures great customer experience 
• Plug-and-play third-party products 
• Customer knowledge from all data 
• Matches customer needs with 
providers 
• Extracts “rents” 
Example: Amazon 
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Supplier 
• Sells through another company 
• Potential for loss of power 
• Skills: low-cost producer, 
incremental innovation 
Examples: insurance via agent, 
mutual fund via broker 
 

Modular producer 
• Plug-and-play product/service  
• Able to adapt to any ecosystem  
• Constant innovation of 
product/service  
Example: PayPal  
 

 

Table 1. Business models in the digital era (Weill & Woerner, Thriving in an 
Increasingly Digital Ecosystem, 2015) 

The proposed framework are classified into four groups: (i) omnichannel 
business, (ii) ecosystem driver, (iii) supplier and (iv) modular producer. Each of 
these axis can be understood as scales, where companies can share characteristics 
form the different quadrants, but generally the companies tends to lean into one 
of the groups. 

Supplier model. Typically companies operating in the value chain of a 
bigger company, and therefore have limited knowledge about their end customer. 

Ecosystem driver. This holds a specific key characteristics being the ability 
to gain customer knowledge from all data, but also working as a platform 
connecting customers with products and providers. 

Omnichannel model. Such business model gives access to their products 
across various channels and has an integrated value chain. Omnichannel 
companies knows their end-customers and profits on this knowledge. 

Modular producer. Companies having a such model have products and 
services that can adapt to a wide variety of platforms and needs to be best in 
their category to survive. Most modular producers don’t get to see all the 
customer data, but are “limited to the data from the transactions they process” 
(Weill & Woerner, Thriving in an Increasingly Digital Ecosystem, 2015). This 
also limits to further gain knowledge of the end customers. 
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2.3.2.2 General characteristics 

For classification purposes, a framework for enabling analysis of businesses has 
to be established. These properties are determined based on general factors 
describing companies. 
 

Characteristic Description Elements / example 

Company type 
Related to what core business 
activity, and indirectly to their 
offering. 

(i) Original Equipment 
Manufacturer (OEM);  
(ii) Independent Software 
Vendor (ISV); 

Commercial 
Transactions 

Refers to if the customer is the 
end consumer or a business.  

Business to business (B2B); 
Business to consumer (B2C) 

Industrial analysis or 
not 

This aspect will be essential 
due to classification of the 
companies.  

Industrial; 
Non-industrial 

[…] […] […] 

 
Financials are a typical high level metric for company analysis. Due to the nature 
of the research problem this does not fit in, so it will be left out of the scope. 

2.3.3 People and organization  

As previously mentioned, people and organizational aspects has been highlighted 
to be a central factor within the innovative process (Trott, 2017).  

Regarding people, it is being argued that the innovative process is impacted 
by “creative individuals which is […] leading to knowledge inputs” (Trott, 2017). 
Further, people’s ability to obtain and increase their knowledge will be considered 
as a valuable element of analysis, which also will be related to the theory of 
absorptive capacity.  

In context of digital organizations, Snow et. al. (2017) emphasizes, to catch 
up with the increase competition and surroundings, that digital organizations 
needs to design for actor-oriented principles in aim for more engaged and 
productive members. A such organization consist of three main elements: (i) 
actors, (ii) commons and (iii) protocols, processes and infrastructures. These 
actors – being either individuals, teams of firms – “must possess the capabilities 
and values to self-organize, and engage in self-management rather than 
hierarchical directions” (Snow, et al., 2017). These actors also understand the 
overall structure and processes of the organization, and their decisions are taken 
in alignment with the companies goals and good. In addition, commons, 
infrastructures and protocols are applied to guide and facilitate actor behavior, 
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connecting organization members with one another and supporting their 
activities (Snow, et al., 2017). As of this key outcomes in such organizations is 
organizational autonomy. 

In relation Fisher and Abbott (2015) refers to agile organization which also 
hold the characteristics of self-organizing and autonomous teams. Despite solving 
technological problems, the scalability issues is based on people developing the 
technology, and thereby people are important to understand and process 
elegantly. Hence, a “scalable solution requires the alignment of architecture, 
organization and process” (Fisher & Abbott, 2015, s. 61). 

Specifically, agile organizations also brings various team models depending 
on the activities and demand (McKinsey & Company, 2019). Self-managed teams 
are suited when the demand are relatively predictable, but whereas a specialist 
team is needed in case of variable demand. In addition end-to-end cross-
functional staff are suited for facing more creative and customer related activities.  

2.3.4 Summary of theoretical framework 

In the chapter of theoretical framework it has been outlined a conceptual 
framework, how it has been selected and its content which further will be used 
as the base for the thesis analysis.  

The technological factors will take input from the machine learning and 
software scalability theory. Business characteristics will consider the different 
properties for the selected businesses evaluated. People and organization will take 
into account how companies (wanting to scale) have structured themselves 
internally in combination with people and how they meet other actors. 
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2.4 Summary of theoretical background 
In this section relevant theoretical framework have been presented to give a 
fundament and solid understanding of the context of the research problem.  

The first chapter focused on context of relevant technologies and 
terminologies, with highlighting the relevance and nuances of ML and the context 
of current applications. The second chapter focused on the concepts of innovation 
management and its context, working as a base for the conceptual framework. It 
also asserted scaled ML as to be considered an innovation itself which requires 
validation from the analysis. The third chapter outlined the conceptual 
framework and its content which will work as the baseline for the thesis analysis. 
The technological factors will take input from the machine learning and software 
scalability theory. Business characteristics will consider the different properties 
for the selected businesses evaluated. People and organization will take into 
account how companies (wanting to scale) have structured themselves internally 
in combination with people and how they meet other actors. 
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3 Methodology 
In this section the chosen research method and design will be described, and it 
will lay out reasons for choices regarding cases. In addition, validity and 
reliability that will be discussed. 

3.1 Research design and method 
In this chapter the choices of research design and methodology will be explained 
hence bring clarity to the approach of this research. 

A research design is a tentative disposition that explains how the research 
will be executed (Ringdal, 2001). Complementary, Yin (2014, s. 29) defines 
research design as “the logical sequence that connects the empirical data to a 
study's initial research questions and, ultimately, to its conclusions”.  

In research design theory, methods are segmented into two main groups: (1) 
Quantitative strategies which seeks to understand coherences of variables 
(Ringdal, 2001) which usually depend on a big amount of data such that 
statistical analysis is able to be performed. It is therefore argued that quantitative 
data – in its “purest” form – is metric data (Yin, 2014). The other group is (2) 
qualitative methods which seeks to understand the depth of a case or a specific 
problem and are therefore performed with close observations to a few objects 
(Ringdal, 2001). Thereby, qualitative data often expressed in the format of text. 

Despite these methods contrast – both in execution and results format – they 
could also be made use of to complement and emphasize each other’s findings, 
and such approach is more commonly named mixed methods. It is argued to 
address broader and potentially increasing the reliability of such, but are also 
considered to be more costly in execution and complexed in analysis (Yin, 2014). 
Despite the timespan and resources available in this research project, mixed 
methods have been attempted to achieve in quest of quantification of secondary 
data and qualitative interviews. 
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Due to the formulation of the research questions, the intention is describe the 
current situation, but in extension also investigate possible solutions. This leads 
to choosing a research design as both explanatory and exploratory which is 
considered to be best suited for such research questions. Explanatory design – 
also referred to as descriptive – are preferable when the field and/or object of 
research is highly complex and there is lack of existing theory within the this 
field, usually due to a recently new phenomenon (Yin, 2014). The objective of a 
such approach will be to describe and explain the phenomenon. On the other 
hand, explorative design seeks to start off from observations and explore the 
nuances of object of research. A such design is based on the inductive approach 
which starts with interpreting and analyzing data and observations which results 
in generating theoretical framework, whilst the deductive approach starts with a 
hypothesis which it will try to either approve or disprove based on the findings 
(Yin, 2014).  

The research design chosen was case study, due to fulfilling the characteristics 
where such is preferable. These characteristics are when (1) “how” or “why” 
research questions is being posed, (2) the research have limited control over the 
events, and lastly (3) the focus is on a contemporary phenomenon (Yin, 2014). 
In addition, the objective of the case study is to look in “depth at one, or a small 
number of, organizations, events or individuals” (Easterby-Smith, Thorpe, & 
Jackson, 2015). As of this, case study are considered to be the preferred choice 
of research design. Specifically, case study research holds five components that 
are considered to be key (2014, s. 29): 

1. a case study’s questions  
2. its propositions, if any  
3. its unit(s) of analysis  
4. the logic linking the data to the propositions  
5. the criteria for interpreting the findings.  

The case study questions is based on the field scalability of machine learning 
models within the heavy industry, and the research methods are determined by 
what and how the questions are asked. Further, propositions are not significantly 
relevant in particular cases of explorative designs as the exploration is the field 
of importance, and not predefined propositions. Instead it should be stated a 
purpose such that the research has a clear direction. Unit(s) of analysis are 
different cases of ML scalability, specifically being companies, hence the research 
is designed as a multi case study. Data are empirically analyzed with respect to 
the theoretical framework.  
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The thesis has been performed qualitatively as explorative and exploratory 
research with an inductive approach, meaning it will seek to understand a case 
resulting in forming theory. 

The research progress first started with massive collecting of information 
from documents, scientific papers and interviews regarding the topic of machine 
learning scalability. In second phase, the various cases of scalability have been 
examined and analyzed resulting in a set of identified characteristics. In third 
phase, based on the characteristics the various factors for successful scaling have 
been identified. Fourth phase, characteristics which are similar and distinct 
between the non-industrial and industrial context have been classified. Hence, in 
the fifth phase, the largest barriers to scaling of industrial ML have been 
examined. Finally, in sixth phase, possible solutions and framework have been 
proposed to overcome the barriers.  

 

 
Figure 3.1. Research design and method: Progress scheme 

 
In this chapter the choices of research design and methodology have been 
explained in aim to bring clarity to the approach of this research. 
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3.2 Case selection 
In this chapter it be laid out the criteria for the choices of selected cases, followed 
by a brief introduction of each case. 

In this thesis, theoretical sampling has been applied (Gobo, 2008), where 
cases have been selected based on perceived insights they provide for the research 
topic and their relevance for theory development. 

The objective with the case selection has been to find valid cases which have 
been able to scale ML successfully, and on the other hand industrial cases which 
should have the base – prerequisites of resources, capabilities and technology – 
for being able to scale ML models within the industry. Hence, the cases have 
been primarily based on the following criteria:  

• Non-industrial software companies with successful ML scaling initiatives 
• Industrial software companies with ML scaling initiatives 

 
Selection of non-industrial companies. There exists a massive range of 

companies that are using machine learning in their products and services. This 
ranges across different verticals and horizontals, but with the tech companies 
being at the forefront of application. For the purpose of this thesis, the selection 
have also been weighted based on companies with various objects of analytics 
and officially published material regarding their ML initiatives. Regarding 
published data this seems to be more typical among the largest tech companies 
like the FAANG-group (Facebook, Amazon, Apple, Netflix, Google).  

For various objects of analysis, the selection of tech companies are typically 
very similar related to analysis of people. Anyhow there is some exceptions. Uber 
does analytics of people and driving patterns – and Tesla Inc – which does 
analytics for enabling self-driving cars. Uber has been publishing detailed on their 
blog regarding how they have been developing their software, including their ML 
challenges and how they have solved those. Tesla have been more reticent with 
sharing their ML progress, but did recently host an event where they described 
in-depth their ML progress and current capabilities. As of this, both Uber and 
Tesla have been selected as cases. 

Selection of industrial companies. Within the industrial selection of 
companies there a broad range of different industrial analytics vendors. These 
ranging from big established original equipment manufacturers (OEMs) like 
Siemens, ABB, GE Digital, and to smaller independent software vendors (ISVs) 
like C3, Aspentech, Arundo Analytics, Uptake and more. The selection for 
industrial companies have been weighted based on their prerequisites (resources, 
capabilities, technology), but also market position and available data material.  
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Hence, GE Digital there exists good amount of data due to their long-term 
market position as they originally are an OEM. For C3, which hold other business 
characteristics (ISV) but are also working on the same challenge. For Arundo it 
has been possible to do interviews of respondents who have unique knowledge in 
the field of this research, but also have market experience from other companies 
such as C3 and GE Digital. Hence Arundo was also chosen as they could provide 
information of the other cases. 

The selection thereby consist of:  
• Facebook Inc. (non-industrial) 
• Uber Inc. (non-industrial) 
• Tesla Inc. (non-industrial) 
• GE Digital (industrial) 
• Arundo Analytics (industrial) 
• C3 (industrial) 

 
The following selection could consequently be put on two axis, (1) successful 
scaling of machine learning models and (2) industrial vs. non-industrial 
application. 

 
 
Figure 3.2. Axis: Successfully scaled ML versus industrial and non-industrial. 
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3.2.1 Facebook Inc. 

Facebook is an online social media and social networking service company based 
in California, US, founded in 2004. It’s being one of the largest companies in the 
world by market capitalization (Picardo, 2019), and with their social network 
platform serving 1.5 billion active users daily (Statista, 2019).  

It is designed as a multi-sided platform – meaning it offers its services to two 
or more groups of users with different value propositions – where its user groups 
are people wanting to connect with other people and organizations wanting to 
advertise. With their goal of deliver relevant and interesting content to all of 
their users, they cannot be dependent on manual selection of content by people, 
but instead need to use advanced algorithms which can deliver this automatically 
in the moment. Here, machine learning models finds its purpose and are used to 
delivering significant value to the products and hence the users (Hazelwood, et 
al., 2018).  

At the core of this is data. Data are collected from people’s digital devices 
(smart phones, computers, etc.), giving Facebook the ability to gain massive 
amounts of data at first-hand. Being able to serve 1.5 billion users daily, it’s 
fairly obvious to claim that Facebook has indeed been able to scale machine 
learning. Facebook also have their own research department publishing articles 
frequently inclusive the topic of machine learning, giving the opportunity to get 
insights from the source itself. As of this, the thesis will use Facebook as an 
example of scalability being doable, and will investigate Facebook’s approach to 
scaling and extract relevant information. 

3.2.2 Uber 

Uber is a transportation network company based in California, US, founded in 
2009. Their core value proposition started with peer-to-peer ridesharing, which 
they distribute through their mobile app, and as of 2018 Uber counted 95 million 
rides (Statista, 2018), 15 million trips a day (Business of Apps, 2019) and 3 
million drivers (Uber, 2019). Since startup they have developed a large range of 
different products and services, e.g. Uber Eats for delivery of food.  

Uber has applied ML to a broad range of its services to ensure accurate 
information to its users, and with their extensive customer base they need to 
depend on non-human calculations and decision to deliver a proper service. Uber 
has also published several articles on how they are using machine learning in 
their platform. As of published articles and available information, Uber are 
interesting to investigate as they hold several characteristics related to this thesis.  
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3.2.3 Tesla (Autopilot) 

Tesla is an automotive and energy company based in California, US, founded in 
2003. It has gained massive attention for its innovative products and services – 
including their luxury high-tech cars – and is considered to be the 4th most 
innovative company in the world (Forbes, 2018). 

As a part of their portfolio they released Autopilot in their cars in October 
2014 which is an advanced driver-assistance system, as of today has features like 
lane centering, adaptive cruise control, self-parking and more. After the 
Enhanced Autopilot release in October 2016, they also claim all their new cars 
to be able of full autonomy driving on long-term due to the hardware upgrade 
(named hardware version 2) but conditioned by legal approval and a well-trained 
system (The Verge, 2016; Fortune, 2015). The CEO, Elon Musk, claimed in 2015, 
that: “The whole Tesla fleet operates as a network. When one car learns 
something, they all learn it” (Fortune, 2015). As Tesla makes such claims, this 
follows that they have been able to scale machine learning into their fleet of cars. 
And as of the quote “When one car learns something, they all learn it”, this is 
also referred to as fleet learning. This can more formally be understood as 
network effect based machine learning (Strobl, 2017), and has been followed up 
later with proofs of the Tesla cars improving their driving behavior as time pass 
(Electrek, 2018).  

As Tesla has been able to show proof of fleet learning and thereby implicate 
scalability of ML, in addition to handle data of physical observations, the Tesla 
Autopilot results in being a highly relevant case to study and research. 

3.2.4 GE Digital 

GE – formally named General Electric – is an American multinational 
conglomerate with headquarters in Boston, incorporated in New York in 1892 
(Wikipedia, 2019). As of today, GE’s segments ranges from aviation, health care, 
power, oil and gas, finance, manufacturing, and more. In 2015, GE founded their 
digital subsidiary GE Digital with focus on software and analytics for the 
industry, more specifically industrial internet of things (IIoT). This in 
continuation of their release of the IIoT software Predix Platform in 2013. The 
precursor, GE Software, was founded in 2011. 

GE have had high ambitions for their industrial software (The Street, 2015), 
and are still making interesting claims regarding pre-built industrial analytics 
and self-learning analytics. Given the context and their offerings, it’s interesting 
to include GE Digital – and more specifically Predix – into the scope of the cases.  
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3.2.5 Arundo Analytics Inc. 

Arundo Analytics Inc. – further only referred to as Arundo – is an international 
software company providing advanced industrial analytics the heavy industry. 
Founded in 2015 with offices in Houston, TX, San Francisco, CA, and Oslo, 
Norway. They currently serve various industrial cases with advanced analytics 
for large corporations. 

They are currently serving analytical solutions on in several environments, 
e.g. DNV GL’s and ABB’s digital platform. With their insights and experience 
in the sphere of the industrial analytics case, in combination with broad 
knowledge to the industry, makes them highly relevant to investigate during this 
research. Hence they’ve been chosen as one of the cases of analysis.  

3.2.6 C3 

C3 is a software company providing an digital platform for advanced analytics 
and software applications serving various industries. Founded in 2009 and based 
in San Francisco, CA.  

C3 claim to have been able to scale ML in the industry and have gained 
significant impact in the market with their AI suite consisting of analytical tools 
and their specific software applications, e.g. Predictive Maintenance and Sensor 
Health. They also hold characteristics of being an independent software company 
working on industrial cases. These considerations makes them interesting to 
investigate in this research. 

3.2.7 Case selection summary 

In table 2 the general characters of the selected cases are classified and will be 
the baseline for the analysis, but business characteristics in particular. 
 

Characteristics Facebook Uber Tesla GE Digital Arundo C3 

B2B vs. B2C Both B2C B2C B2B B2B B2B 

Industrial No No No Yes Yes Yes 

Company type ISV ISV ISV/OEM OEM ISV ISV 

Core business 
Social 

network 
w/ ads 

Ridesharing Automaker 
Digitizing 
industrial 

Industrial 
analytics 

Industrial 
analytics 

Proven successful 
scale of ML 

Yes Yes Yes Not yet Not yet Not yet 

 
Table 2. General characteristics of selected cases. 
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In the chapter for case selection it has been laid out the criteria for the choices 
of selected cases, followed by a brief introduction of each case, in addition to a 
presentation of the general characteristics of the various cases.  
 

3.3 Data collection 
In this chapter the approach of how data have been retrieved will be explained, 
specifically regarding document collection and qualitative interviews. 

3.3.1 Types of data 

As previously mentioned, there is a distinction between quantitative data and 
qualitative data and can be understood as one dimension of data. Quantitative 
is at its best expressed as numbers, whereas qualitative data typically are 
expressed as text.  

Another dimension to data is primary and secondary data. Primary data are 
where a researcher collects and structures the data and have the ability to bring 
very in-depth and relevant data which could ensure high validity of the data, but 
have the disadvantages of being less reliable as the researcher could impact – 
both consciously and unconsciously – the output of data basis. As for secondary 
data is when a researcher uses data collected by others and when finding 
secondary data the data itself will can only be limited affected by the researcher, 
hence will obtain its reliability. Anyhow, it is not certain the data are directly 
relevant for the unit of analysis, consequently the validity has to be ensured by 
carefully picking the right secondary data but also make proper searches which 
secures skipping relevant material. 

As for this thesis, primary and secondary data have been coherent to 
understand the characteristics of scaled ML, but with slightly different purposes. 
Secondary data have been used as the base for the broader understanding of 
scaled ML and consequently sketching the research landscape, and in some cases 
also been used for in-depth investigation in cases where it has been possible.  The 
qualitative interviews have been applied for in-depth investigations of the 
industrial aspects but also of specific considerations during the research project. 
For secondary data, document collection approach have been utilized, whereas 
for primary data the qualitative interviews have been performed.  
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3.3.2 Secondary data: Document collection 

Every case study should contain this type of data collection as it is stable, specific 
and serves a broad scope (Yin, 2014). Anyhow it has pitfalls when it comes to 
the selection of documents, which could lead to research bias. To ensure 
maximum validity official company published material have been preferred, and 
substantiated and supported by commentary material. The types of documents 
being collected includes academic research papers, blog posts (both official and 
commentary), news articles, videos (official) and internal company documents. 

Facebook. Official research material is considered to be fairly extensive as 
Facebook are established their own R&D department – named Facebook 
Research – where they have been publishing academic papers frequently plus 
more educational ML videos, which suited the research theme of the thesis. 
Especially, two papers where particularly important which were the “Applied 
Machine Learning at Facebook: A Datacenter Infrastructure Perspective” 
(Hazelwood, et al., 2018) and “Machine Learning at Facebook: Understanding 
Inference at the Edge” (Hazelwood, et al., 2019).  

Uber. At Uber they have an official blog – called Uber Engineering – 
specified for the technological and engineering discussion of the services at Uber 
containing detailed articles. This made it relatively easy to find valid content. 
Particularly the article “Scaling Machine Learning at Uber with Michelangelo” 
(Hermann & Balso, 2018) have been significantly important as it contained an 
extensive insight into how Uber are working and thinking regarding scaling ML. 
In addition, commentary material with external viewpoints have been used. 

Tesla. Previously, Tesla have been fairly reticent regarding publishing 
technical material of their ML solutions. As of this there has been many news 
articles commenting Tesla’s progress and development working as an indication 
of their development. Anyhow, in May 2019 they held the Tesla Autonomy Day 
(Tesla Inc., 2019) event which they streamed and published online. In this session 
they gave a detailed presentation of how they are building their Autopilot service, 
including how they are thinking in regards of scaling ML.  

GE Digital, Arundo and C3. As for the industrial cases available 
secondary material were limited. This led to obtaining marketing material 
(whitepapers and product offerings), press releases and some blog posts as an 
indication. As marketing material tends to bend the truth they have been given 
the least impact. As for Arundo it has been given access to a sample of internal 
company documents. Anyhow, for these cases primary data have been considered 
the most valid data. 
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3.3.3 Primary data: Qualitative interviews  

Interviews is being considered as one of the most important sources to evidence 
for case studies (Yin, 2014). This due to its characteristics of being focused and 
targeted on the research objective, and therefore have the property of being 
highly insightful. However, it also includes the risk of biases, such as response 
bias where the informant withholds valuable information or poorly formulated 
interview questions which effects the answers in return (Yin, 2014). Interviews 
are segmented into (1) unstructured, (2) semi structured and (3) depth 
interviews. When performing interviews it being specifically pointed out “the 
ability to pose and ask good questions is […] a prerequisite for case study 
investigators” (Yin, 2014), hence making sure the questions are right chosen, 
formulated and presented impacts the results and have been considered 
cautiously throughout the interviews. The interviews in this case study have been 
performed semi structured, due to the explorative research approach and the 
need for flexibility to adapt ad hoc during the interviews. Consequently, the 
interview guide have been developed accordingly and can be found in the 
appendix.  

Interviews have primarily been performed by approaching employees 
internally from Arundo, as they offered themselves to be available for interviews 
during the whole research period, in addition to having extensive industry 
experience and insights – including GE Digital and C3 – which emphasizes why 
they have been selected as a case. Consequently, the interviews have been used 
as the main source for the industrial cases.   

During the interviews it has been preferred to use an audio recorder ensuring 
getting the details – prior consent by the respondents – alongside with notes 
highlighting key elements in the interviews. Postprocessing of the interviews have 
been decoded into key elements and further been integrated into the table of 
characteristics and qualitative (text) analysis.  

3.3.3.1 Respondents 

As the respondents are anonymized they have been assigned with an interview 
ID. Their expert domain and experience is described below including the date of 
when the interview was performed. 
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Int. ID Domain Experience Date 

1 Business Management Consulting, 
Technology companies, (C3) 

01.28.19; 02.14.19; 
03.14.19; 05.10.19 

2 Data Science Academia 02.04.19 
3 Data Science Oil & Gas 02.05.19 
4 Data Science Academia 02.05.19 
5 Business Academia 02.20.19 
6 Data Science Academia 02.22.19 
7 Business Oil & Gas, (GE Digital, C3) 03.04.19 
8 Business Oil & Gas, Maritime 03.14.19 
9 Business ISVs, (GE Digital) 04.02.19 
10 Software Academia 04.02.19 
11 Software SW Consulting 04.12.19 
12 Business/Software Maritime 05.03.19 
13 Software Utilities (Hydropower) 05.08.19 

 
Table 3. Respondents. 

 
In the chapter of data collection the approach of how data have been retrieved 
have been explained, specifically regarding document collection and qualitative 
interviews. 

3.4 Reliability and validity 
In this chapter the considerations regarding reliability and validity will be 
explained, highlighting the awareness of this aspect. 

When performing research, one must ensure to reach for as high validity and 
reliability as possible. This is always related to the methodology and is therefore 
important to be considered thereby. 

Reliability. This is, for case studies, to “demonstrating that the operations 
of a study - such as the data collection procedures can be repeated, with the same 
results” (Yin, 2014). Consequently, secondary data are typically more easily 
available hence retrievable. Therefore the data considered in the non-industrial 
cases have higher reliability than the data retrieved in the industrial cases based 
on the previously mentioned considerations. To ensure the highest degree of 
reliability, the respondents’ answers have been analyzed to both other 
respondents’ answers and to the secondary data, but also – vice versa – the 
secondary data have been compared to the respondents’ answers, which should 
help increasing the external reliability of this thesis. 
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This is also connected to the philosophic sphere of epistemology which is the 
study of theory of knowledge, also formulated as the study of “how we know what 
we know” (Easterby-Smith, Thorpe, & Jackson, 2015). This can be understood 
as a scale of two contrasting types; positivism – which seeks to ensure truth by 
being totally independent of the unit of analysis and hence only focused on 
quantitative data and by so seeks to explain a phenomenon – and social 
constructivism – which seeks to ensure truth by being a part of what is being 
observed collecting rich qualitative data which can be applied for understanding 
the unit of analysis (Easterby-Smith, Thorpe, & Jackson, 2015). As for this 
research study, it has been vital to ensure proper understanding of scaling of 
industrial ML but also the ML scalability itself. Further one could argue the non-
industrial cases they have been performed more positivistic than the industrial 
cases. The methodology of characterizing the cases in tables have been an 
attempt to quantify the study as this should amplify possible causal explanations 
– hence towards more positivistic approach. Anyhow, taking a more social 
constructivism approach for the industrial cases have been vital in performing 
the thesis with sufficient validity. 

Validity. This is the consideration of whereas a study researched what it 
indented to do, hence how relevant the study is (Easterby-Smith, Thorpe, & 
Jackson, 2015). As the research is primarily exploratory this brings internal 
validity not be considered as relevant (Yin, 2014). For external validity this is 
considered in the context whether or not the findings can be generalized. 
Generalizations in science are usually based on a “multiple set of experience that 
have replicated the same phenomenon under different conditions” (Yin, 2013:21). 
As this thesis is exploratory in nature executed with a smaller selection of cases 
the findings in this thesis should accordingly be understood as one experience of 
many which should be challenged and tested for its validity. It is therefore argued 
that this should be seen in context of other similar studies before claiming that 
these findings are generalizable. 

3.5 Ethics and privacy 
In this chapter it will be highlighted general considerations impacting the ethics 
and privacy in this thesis. 

As there will be collected various types of data, this also leads to different 
treatment accordingly. For secondary data collected there will be limited to none 
concerns regarding privacy, as this is already taken care of by those who did the 
collection. Anyhow, there will still be needing to treat the secondary data with 
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respect in terms of treating them as others property, and during the analysis 
point out what results are dependent to others work. 

Regarding primary data it is of big importance to take the privacy of 
contributors seriously, both for ethical reasons but also especially due to the new 
EU regulation termed General Data Protection Regulation (GDPR). This means 
that any data that can identify or be related to an identifiable living individual 
is considered to be personal data (European Commission, 2016), but also gives 
the ownership of the data to the contributor and not the collector which is a big 
turnover. Personal data therefore has to be handled with great care, and during 
the research period therefore has to be anonymized and not traceable, both 
directly and indirectly. This will be highly relevant when the research will enter 
its observation phase, but also before and after observations when in contact 
with contributors, e.g. when asking people to join as contributors or sending them 
transcripts of conversations. To collect personal sensitive data, it has been needed 
to report to the Norwegian Centre of Research Data (NSD) on beforehand with 
reference-ID 186502.  

Another ethical aspect of observation is in the case of where respondents say 
that some facts are “off the record” or in case where I as the observer catches 
something that is sensitive and not intended for me, this will require ethical 
handling as its not data approved for recording. As an observer I ought to leave 
this out of any reflections, though this potentially could to some extent effect the 
viewpoints.  
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4 Analysis 
The analysis section is based on the outlined research questions thus will first 
focus in chapter 4.1 on exploring and understanding the phenomenon of scaled 
ML, followed in chapter 4.2 by an analysis of the barriers based on the previous 
findings, and finally in chapter 4.3 present possible solutions to these barriers. 

 

4.1 What is characterizing scaled machine 
learning in the selected cases and how does it 
contribute to business value and innovation? 
This chapter will lay out the different cases and their associated characteristics. 
During the analysis the characteristics of the successfully scaled cases will be 
outlined, and hence be compared to the other cases. This should consequently 
reveal the value of scaled ML. 

4.1.1 Non-industrial case 1: Facebook 

4.1.1.1 Technology 

Most of Facebook’s services and products are leveraging ML (Hazelwood, et al., 
2018). This includes services and products like the News Feed, Facer (face 
detection and recognition), Lumos (extracts high-level attributes and embeddings 
from an image and its content, enabling algorithms to automatically understand 
it), Search function, Language Translation, Sigma (general classification and 
anomaly detection framework), and Speech Recognition. How these ML models 
are viewed by Facebook and for what services they are used, see Appendix 7.2.  

To enable machine learning at scale Facebook have developed an internal 
infrastructure to handle the massive demand for data analytics. This 
infrastructure “includes ‘ML-as-a-Service’ flows, open-source machine learning 
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frameworks and distributed training systems”, and in addition, this includes 
running ten datacenter locations as of 2018 (Hazelwood, et al., 2018). 

Facebook’s ML-as-a-Service (MLaaS) flow has distinct similarities with 
CRISP-DM model, but what is referred to as deployment is in Facebook’s case 
running the ML models in production. Despite training typically being executed 
offline – disconnected from real-time data – there exists some cases, “particularly 
for recommendation systems, additional training is also performed online in a 
continuous manner”. This indicates that Facebook have developed a system for 
online training of ML models.  

 

 
 

Figure 4.1. Facebook's Machine Learning Flow and Infrastructure. (Hazelwood, 
et al., 2018) 

In the MLaaS of Facebook, they have clearly done functional decomposing – aka. 
scaling by splitting different things (Fisher & Abbott, 2015) – by making use of 
microservices that increases the efficiency and scale of the ML.  

The ML flow starts off with the FBLearner Feature Store, which essentially 
is “a catalog of several feature generator” and functions as a marketplace where 
teams can share and discover data (Hazelwood, et al., 2018). Obvious implication 
of this is that helps the teams with data availability and accessibility to get the 
relevant data.  

Next stage is the FBLearner Flow is the platform for ML training and so-
called pipeline management system executing a “workflow describing the steps to 
train and/or evaluate a model and the resources required to do so” (Hazelwood, 
et al., 2018) (see Appendix for screenshots). Mentioned in mobile context only, 
Facebook has also developed FBLearner AutoML designed for “optimal 
configurations for experiments” (Hazelwood, et al., 2019). 

After modelling is completed, the models are run in FBLearner Predictor 
which is the production engine. Predictor can be used in two ways; (i) as a multi-
tenancy service, or (ii) as a library that can be integrated in product-specific 
backend services (Hazelwood, et al., 2018). 
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When it comes to feed ML models with data, Facebook have several 
techniques to do this efficiently, such as “decoupling of data feed and training, 
data/compute co-location, and networking optimizations” (Hazelwood, et al., 
2018). The amount of data being leveraged at a training task for Ads and Feed 
Ranking is more than hundreds of terabytes, which also emphasizes the vast 
amount of data that has to be processed. In addition, it’s also being highlighted 
that success is predicated on the availability of extensive, high-quality data 
(Hazelwood, et al., 2018). 

For mobile phone (edge) usage of ML, Facebook has implemented some less 
energy-intensive ML models which causes it to have less accuracy. This explicit 
refers to optimize models for running in an environment constrained by 
performance and memory, and as an example this is specifically done by 
“reduce[ing] the precision of a large multi-GB embedding table from 32-bit single 
precision float to 8-bit integers” (Hazelwood, et al., 2019). Hence, this eliminates 
data details but simplifies computations. Thus this enables for real-time 
predictions on the phone itself with marginal latency, and thereby are able to 
increase the user experience.  

Understanding the entity model of an Facebook ML model would also be 
preferable, but such information as seemed hard to retrieve. Anyhow, for an Ads 
model a very limited set of features are public, but some of the most essential 
ones are (Facebook, 2018): Impression ID – the unique ID of the event when the 
user views an ad; User ID – the ID of the Facebook user; Post ID – the ID of 
the ad post; Clicks [True/False] – output whenever the user clicked on the ad or 
not; Post Country – nationality of the post; Post Category – type of group the 
ad item is belonging to (e.g. shoes, hats, glasses, etc.) 

As of one can see, these features are combination of constant (historical) 
variables and variables generated from user interaction. It therefore reasonable 
to assume that these features can relatively easily be applied to every user and 
hence generalized. 

Specifically for anomaly detection, Facebook points out in a paper (Laptev, 
2018) that working with anomaly detection is hard due to lack of labeled and 
realistic time-series data. Hence, they have worked on a process of generating 
realistic time-series data with anomalies, and their Deep Anomaly Generator 
approach has shown superior performance compared to more common approaches 
like pure synthetic data. 

 
Facebook: Technology 

Object of analysis (OA) People 
n of (similar) OA 1.5 B daily users 
ML microservice(s) Internal MLaaS, including feature store 
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IT infrastructure Self-operated datacenters 
Real-time edge analytics Yes 
Training Online 
Data vendor Self 
Data setup environment Standardized Application Store, Web client 
Kind of AI/analytics Anomaly detection (Sigma), classification (Sigma, News 

Feed), computer vision (Lumos, Facer), natural language 
processing (Speech Recognition) […] 

 

4.1.1.2 Business characteristics  

In the case of Facebook, as they have enormous amounts of data, it will be 
reasonable to assume that one of their biggest challenges to scaling has been the 
ability to analyze the data sufficiently in terms of speed and accuracy, and hence 
having the needed infrastructure to do so.  

The massive data basis will unarguably come from their end-to-end dataflow 
where Facebook is the one generating the data, and by so are the vendor of data 
themselves. This could be explained by that they are delivering their product 
and service in touch with the people, thus also are their object of analysis. As of 
this, this also gives Facebook the ability to set the standard for and control the 
data flow and quality first at hand.  

Given that they serve 1.5 billion active users daily which also indicates 
they’re having 1.5 billion of the same objects of analysis (OA). Despite people 
being different based on age, gender, nationality, cultural differences and so on, 
it is still reasonable to assume that finding patterns and personal characteristics 
is highly doable due to the amount of data, and thereby abstraction and 
generalization of the OA. Hence, Facebook obviously have large data sets to both 
train, test and validate their models on, and thereby achieve high precision in 
their predictions.  

The basis for the large amount of data can be understood partially from their 
business model being an ecosystem, as they enable an platform aligned with their 
vision statement which is “to give people the power to build community and bring 
the world closer together” (Facebook, 2019), and fulfilling the majority of the 
characteristics of an ecosystem business model (Weill & Woerner, Thriving in an 
Increasingly Digital Ecosystem, 2015). 
 

Facebook: Business characteristics 
Business model Ecosystem driver 
Company type Independent Software Vendor (ISV) 
Commercial Transactions B2C and B2B 
Company age 15 years 
Analytics Non-industrial 
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4.1.1.3 People and organization 

When it comes to people and organizational contents regarding scaled ML at 
Facebook this seems to be hard to retrieve, so such considerations is hard to 
evaluate. Nevertheless, their internal MLaaS implicit outlines an organizational 
collaboration of software engineers and data science staff, since MLaaS requires 
both such skills.  

At Facebook the decision makers – what to do with the data basis and hence 
what analytics to be run – sits internally in the organization. In terms of common 
understanding, but likely also culture, it is likely that Facebook has good 
understanding of how to utilize their data thus the conditions and limitations. 

 
Facebook: People and organization 

Team organization N/A 
Analytic decision maker Internal 

4.1.1.4 Implications and value of scaled ML 

“Looking forward, Facebook expects rapid growth in machine learning across 
existing and new services” (Hazelwood, et al., 2018). The quote is not surprising, 
given the significant benefits ML analytics results in, by delivering tailored 
content to 1.5 billion individuals daily. Unarguably one could claim that this has 
led to increased customer experience and value, but also given them an 
competitive advantage. So to say, there is obvious advantages – both for the end 
user and the company itself – of having large-scale ML analytics running. 

Implications of such though is the larger the analytics have been scaled, the 
larger is the dependency. Given they still expect this to grow even further, the 
dependency will also probably increase accordingly. As these ML algorithms help 
analyze individual cases rapidly, it also becomes a tool with great impact. 

Anyhow, the output of such power tool will be determined by the actor 
utilizing it. The highly targeted Ads with good intentions becomes an extremely 
helpful tool, but also for bad intentions could lead to malicious results. Despite 
malicious consequences previously has been mainly limited to potential outcomes, 
the case of Cambridge Analytica in early 2018 illustrated explicit how powerful 
tools can influence and be harmful, and thus shake democratic western values 
and awake the privacy concern (Wired, 2019). Anyhow, the case of Cambridge 
Analytica will not be investigated further, but is worth noticing as an instance 
for tools with great implications. 

Facebook is using ML in nearly all of their services, providing key capabilities 
in almost all aspects of user experience. This includes ranking posts for News 
Feed, speech and text translations, advertisements and their search engines, but 
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with the News Feed dominating the total compute load (Hazelwood, et al., 2018). 
Even though Facebook has built architecture themselves for handling large scale 
analytics, an option to handle this demand would be a cloud computation 
solution. Hence, this has enabled massive development and adoption of ML 
resulting in innovative solutions for delivering individualized content to 1.5 
billions users daily. Unarguably, ML has increased service and product value for 
the users.  

 

4.1.2 Non-industrial case 2: Uber 

Today Uber have an internal platform named Michelangelo which they developed 
since 2015 and still are doing. It consists of three major strategic pillars: (1) 
organization, (2) process and (3) technology.  

Aspects of interest within the technological pillar will be outlined below, and 
pillars of organization and process will be outlined in organizational aspects as 
they are interconnected. 

 
Figure 4.2. Uber’s ML platform. (Hermann & Balso, 2018) 

4.1.2.1 Technology 

As of today, Uber is using ML in a wide range of their services due to enabling 
the company itself to scale its services. These services are estimated times of 
arrival (ETAs), marketplace forecasting, customer support, ride check (alert and 
help if anomalies during ride), one-click chat, and also their self-driving car 
project. 
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In 2015, ML was not a widespread tool being utilized, in contrast of what is per 
2019, but Uber argued “it was obvious that there was opportunity for ML to have 
a transformational impact” (Hermann & Balso, 2018).  

The technology pillar of Uber holds four elements which Uber claims to be 
the most essential ones; (1) End-to-end workflow, (2) ML as Software 
Engineering, (3) Model developer velocity, and lastly (4) modularity and tiered 
architecture (Hermann & Balso, 2018).  

End-to-end workflow. Uber highlights that ML is way more than training 
models, but has to do with support of the whole cycle of data modeling (CRISP-
DM). Thus, they argue with the importance of having a set of integrated tools 
for all the steps of the ML workflow. Hence, a brief walkthrough of Ubers end-
to-end workflow will be outlined. When it comes to managing data, Uber has 
developed a centralized feature store which “allows teams to share high-quality 
features and easily manage the offline and online pipelines” (Hermann & Balso, 
2018). Regarding training of models, this is done using Uber’s Data Science 
Workbench (DSW). As the fundation is the DSW Management Service which – 
by 2017 – does session, file, package and job management, in addition to empower 
collaboration, displaying dashboard and handling quota enforcement (Joshi & 
Geracioti, 2017). On top of this users can do simple model training in their 
preferred notebook or web user interface (UI), but also “compose complex 
transformation pipelines, ensembles and stacked models” (Hermann & Balso, 
2018).  

 
Figure 4.3. The workflow of a machine learning project.  

Due to the highly iterative process of data and model alignment, Uber 
specifically developed a model evaluation and comparison tool enabling better 
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visualization and hence understanding of model performance. When deploying 
the models, this can be done either through the web UI or by using the API, and 
for both online and offline models, “the system automatically sets up the pipelines 
for data from the feature store” (Hermann & Balso, 2018). After deployment, 
monitoring the ML models with their data quality monitoring tools are done by 
the two following approaches. The first – and most accurate approach – is to log 
model predictions made in production and combine this with the actual outcome, 
as outcome is collected from the data pipeline. The second approach applies to 
the cases where either the outcome is hard to collect or the outcomes and 
predictions is hard to join together. As of this, the approach is to monitor 
distributions of the features and predictions over time. This element however 
boils down to creating a platform consisting of microservices.   

ML as software engineering. The second area is the analogy of ML as 
software engineering, which means to “apply patterns from software development 
tools and methodologies” (Hermann & Balso, 2018). This explicit means when 
creating and training a model it is important to keep track of the assets and 
configuration giving the opportunity to reproduce and/or improve the models. 
Example being “in case of transfer learning in deep learning models, we track 
the entire lineage so that every model can be retrained, if needed” (Hermann & 
Balso, 2018). This approach originates from cases where it’s been hard to 
reproduce the due to the data and/or training configuration has been lost. 

Model developer velocity. Uber highlights several principles which has 
proven the DS teams to work more effective: (1) Solve the data problem so data 
scientists don’t have to. This is solved by using the Michelangelo’s feature store 
and feature pipelines, as this solves a range data processing problems. (2) 
Automate or provide powerful tools to speed up common flows. Specifically, Uber 
has developed an internal tool named AutoTune which is general purpose 
optimization-as-a-service tool at Uber, designed with the objective “to more 
efficiently search for an optimal set of hyperparameters” (Hermann & Balso, 
2018). (3) Make the deployment process fast and magical, which could be to 
enable single click deployment and hiding of the unnecessary details. (4) Let the 
user use the tools they love with minimal cruft. Michelangelo allows interactive 
development in Python, notebooks, CLIs, and includes UIs for managing 
production systems and records. (5) Enable collaboration and reuse. This boils 
down to Michelangelo’s feature store which Uber again highlights as critical, as 
it is enabling teams to reuse important predictive features already identified and 
built by other teams. (6) Guide the user through a structured workflow. This 
helps the user to better understand how to work with the modeling. 
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Modularity and tiered architecture. The fourth and last technological 
area is to have simple components that can be assembled in targeted ways for 
greater flexibility for cases which are less common and/or more specialized. E.g. 
has been the development of prebuilt workflows, and interactive learning and 
labeling tool in this case specifically for computer vision.  

Key lesson learned at Uber. Throughout Uber’s scaling process, they also 
highlights some key lessons learned. First, when it comes to ML, data is both the 
hardest and the most important thing to get right, and here the Uber feature 
store is critical, as it enables sharing of high-quality features, automated 
deployment and monitoring. Broken data is the most common cause of such 
problems. Secondly, real-time ML is also highlighted as challenging as there is 
few proper tools which solves hybrid online/offline capabilities as most existing 
tools are built for Extract, Transform, Load (ETL) or online streaming. Uber 
emphasizes this to be a big part of their focus. Thirdly, making use of open source 
and commercial components at scale is challenging. Fourth, letting developers 
use their preferred tools and lastly, develop iteratively based on user feedback. 

The findings from Uber’s technological scaling is primarily directly related to 
the Y-axis in the scalability cube, by providing different solutions to different 
problems during the ML workflow. This including structured general-purpose 
tools in addition to more customized simple tools for special cases.  
 

Uber: Technology 
Object of analysis (OA) People, driving patterns 
n of (similar) OA 95M users monthly1, 15M Uber trips each day2 
ML microservice(s) Internal MLaaS (Michelangelo) including feature store 
IT infrastructure Cloud and own datacenters (Hermann & Balso, 2018) 
Real-time edge analytics N/A 
Training Online, centralized 
Data vendor Self 
Data setup environment Standardized application store (App Store) 
Kind of AI/analytics Stacked models 

 

4.1.2.2 Business Characteristics 

As Uber are having 95 million users monthly (Statista, 2018) and 15 million trips 
a day (Business of Apps, 2019) this unarguably results in large amounts of data. 
This gives ground to assume processing and analyzing data sufficiently would be 

                                         
1 (Statista, 2018) 
2 (Business of Apps, 2019) 
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a critical challenge. From the investigation, one could argue that this could be 
one of the reasons for their development of the MLaaS named Michelangelo. 

The data collection has its basis in the mobile application setup, hence when 
people – both drivers and customers – are downloading the Uber app. The setup 
is convenient and hassle free, probably due to automation on the backend. 

 
Uber characteristics 

Business model Ecosystem driver 
Company type Independent Software Vendor 
Commercial Transactions B2C 
Company age 10 years 
Analytics Non-industrial 

 
Due to their business model sharing the characteristics with ecosystem, and 

hence end-to-end dataflow, this also results in advantages of data collection and 
availability, but also in the format data is collection, giving opportunities to 
streamline the data collection process. Interestingly enough, Uber also points out 
that broken data is the most common problem, despite they controlling the 
dataflow. 

Uber’s OA is most likely to mainly focused around people and car driving 
patterns, which by it selves and interconnected will return highly valuable 
insights. Abstraction and generalization of such OA would probably also be 
relatively doable considering the amount of data available. 

4.1.2.3 People and organization 

As mentioned, Uber last two pillars are organization and processes, and will 
further be discussed in this section.  

Uber emphasizes that the challenge is “in allocating scarce expert resources 
and amplifying their impact across many different ML problems” (Hermann & 
Balso, 2018) as the requirements for the problems is varying. Hence this also 
impacts the need for optimal organizational structure. As of this Uber has been 
iterating for finding a suitable structure. 

Firstly, there is product (engineering) teams which builds, deploys and owns 
the ML put into production, and their focal point is narrowed into a specific 
products only. Such teams would also then have the ability to detect custom 
needs and create suitable tools accordingly. Secondly is the specialist team which 
have deep expertise across many domains, and acts like a expert resource pool 
used whenever for product teams as specific problems occur. As products are put 
into production they make sure to fill the expertise gaps will full-time experts 
freeing up the specialists. Thirdly, there is research teams – also named Uber AI 
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Labs – which collaborate on problems and guide future research, but also develop 
new techniques and tools which can be made available to product teams. Lastly, 
there is platform teams who builds and operates “a general purpose ML workflow 
and toolset that is used directly by the product engineering teams to build, deploy, 
and operate machine learning solutions” (Hermann & Balso, 2018). 

For processes Uber emphasizes two main processes which is to share best 
practices of ML, and instituting more structured processes. This is caused by 
that “ML systems are particularly vulnerable to unintended behaviors, tricky edge 
cases, and complicated legal/ethical/privacy problems” (Hermann & Balso, 2018). 
This has led to the expiration of processes regarding model launching, 
coordinated planning across ML teams, connected and collaborating community, 
and education processes. 

 
Figure 4.4. Organizational interactions of different teams in Uber’s ML 

ecosystem. (Hermann & Balso, 2018) 

One could also argue that the principles of Uber’s team organization share a 
majority of its characteristics with the agile organization (Fisher & Abbott, 2015) 
and the actor-oriented principles (Snow, et al., 2017). E.g. the flexibility and 
dynamic between product teams, specialists and researches really show – in 
theory – how the organization adapt to (sudden) needs and demands, and hence 
optimize knowledge and expertise accordingly. Hence, arguably Uber is able to 
adapt to the customer demand and needed scalability, thus increase their 
competitive advantage in the long run. 

At Uber the analytics decision makers sits internally in the organization as 
well as the data collection team and the data science team, thus it is likely that 
they understand the analytics field. 

 
Uber: People and organization 

Team organization Flexible organization: Balance of specialized and focused 
teams;  

Analytic decision maker Internal 
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4.1.2.4 Implications and value of scaled ML 

The scaled ML at Uber gives basis for a broad range of services which otherwise 
would have been very hard, if not impossible, to deliver. E.g. would be the ETAs 
which solely is a prediction and hence based on pure ML. When using Uber, this 
is highly valuable to the consumer as such information improves certainty of 
what time one could be at an event or not, which surely impacts the decisions of 
planning (rest of) the day for the consumer. As this particular service is scaled 
and applied to all 15 million trips a day, the impact is unquestionable big. 

Anyhow, as quoted from Uber, ML systems are tricky in terms of ethical, 
legal and privacy, and hence probably scale ML as well. Such cases has also been 
publicly questioned and discussed. From the analysis performed Uber is likely to 
understand “your place of work, favorite eating joints or shopping destinations, 
how often you travel, your residence and much more” (Bajpai, 2018). This 
however is not unusual – and is also the case with Facebook – but rather the 
issue is how this data is being utilized. It’s being argued that such information is 
being used by companies to generate additional revenue outside of the core 
business by e.g. selling the data (Bajpai, 2018) or by promoting their own services 
by highlighting individual people without consent (Frizell, 2014).  

Having scaled ML internally, this surely gives incremental improvement – 
and hence incremental innovations – to Uber’s line of products. As their 
product(s) have improved, their customer base has also increased. So to speak, 
one could argue that their service has been disruptive (innovation) and that ML 
has been one of the enablers to making their service available to the extensive 
size of customers. 

 

4.1.3 Non-industrial case 3: Tesla 

“Autopilot advanced safety and convenience features are designed to assist you 
with the most burdensome parts of driving” (Tesla Inc., 2019). This highlights 
the value proposition of Autopilot – safer, more convenient, less boring. Elon 
Musk – CEO of Tesla – has also mentioned that the system will never be perfect, 
but it’s likely to “reduce accidents by a factor of 10”  (CBS Interactive Inc., 2018) 
which anyway must be considered to be of significant value. 

4.1.3.1 Technology 

The Autopilot system heavily relies on machine learning models for doing 
analytics in real-time and with their deployment of fleet learning, Tesla claims 
the ML system is improving for every new distance driven. As mentioned, Tesla 
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has the ability to set the terms for both the software and hardware which 
determines the conditions for the data and ML workflow.  

For hardware this have impacted their selection of sensors on the cars and 
led to custom-built components optimized for data processing and ML analytics. 
By April 2019, Tesla shipped new cars with their third generation of hardware – 
called Hardware Version 3 – consisting of two custom-built data processors for 
high performance of analytics, one forward radar, three forward cameras (narrow, 
main, wide), four side looking cameras (two forward and two rearward) and 
twelve ultrasonic sensors for with narrow range. All these sensors are then being 
utilized for different purposes of the analytic process, but with the cameras as 
being the primary source of their analytics as they primarily rely on computer 
vision with neutral network algorithms (Tesla Inc., 2019). As Tesla has these 
sensors on  they are able to gather content-rich data resulting in a massive data 
basis. Anyhow, Tesla highlights that it is not the large content itself that is 
critical but the variety of the data which represents real cases, which tends to 
originate from large data set. They argue that is all about “the long tail” which 
covers for less frequent special events – hence varied data – which is argued to 
be critical for increasing the ML accuracy of the computer vision algorithm. Tesla 
has access to “car’s speed, acceleration, braking, battery use, and […] “short video 
clips” during accidents”, according to the company’s privacy policy (The Verge, 
2018). By so they also then have information of how their fleet of cars are 
handling in terms of steering and therefore get highly accurate information 
regarding how drivers operate during special events and further how cars in 
Autopilot mode should or should not be steering. Tesla therefore emphasize the 
importance on what they compile down to “large, varied and real” data. 

Even when the cars are not set in Autopilot mode the cars are running in 
what is named Shadow Mode which registers what actions the Autopilot would 
have been taking if it was activated. By so, the software collects data from events 
where human behavior or events and ML predictions differs – in other words 
mispredictions in their ML models – which causes a data trigger of sending data 
to Tesla centrally and then highlights relevant events for further investigation. 
An event can consist of half a million of images regarding this special events and 
will work as the data basis in Tesla’s training process. They are also able to 
automatically label the events the cars are into – due to their computer vision 
algorithms which gives great efficiency gains in terms of data structuring and 
labeling. This data trigger is executed locally in the cars and is the basis for 
Tesla’s “data engine” and enabler for their “fleet learning” approach. Figure 4.5 
shows how the data engine – in other words the ML workflow process – is 
executed at Tesla and works as a feature store. Since the models are being 
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updated and pushed into the fleet continuously, the Tesla cars also tends to 
become better as time passes. 
 

 
Figure 4.5. Tesla Data Engine. (Tesla Inc., 2019) 

 
Tesla: Technology 

Object of analysis (OA) Surroundings, driver behavior 
n of (similar) OA 500,000 vehicles on the road globally (Muller, 2019); 

500,000 images from special events  
ML microservice(s) Data engine (feature store concept) 
IT infrastructure N/A 
Real-time edge analytics Yes 
Training Centralized, pilot and validation test with Shadow Mode 
Data vendor Self 
Data setup environment Pre-installed from manufacturing 
Kind of AI/analytics Primarily neutral networks, (anomaly detection) 

 

4.1.3.2 Business characteristics 

Tesla have chosen a pure omnichannel business model in their B2C, in contrast 
to the normal approach of being a supplier through car retailers. By such Tesla 
has been able to gain direct customer relationship combined with their data 
collecting capabilities from their sold cars, thus increasing their knowledge of the 
end customer. As Tesla is considered to be both an OEM and ISV themselves, 
they also set the terms for the end-to-end data flow, both regarding hardware 
and software. Their analytics are focused on non-industrial objects, hence they’re 
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analytics are classified as non-industrial and will be elaborated in the next 
section. 
 

Tesla: Business characteristics 
Business model Omnichannel  
Company type OEM/ISV 
Commercial Transactions B2C 
Company age 16 years 
Analytics Non-industrial 

 

4.1.3.3 People and organization 

At Tesla there exists dedicated teams for different products from various 
backgrounds, like data engineers, electronic and mechanical engineers, but also 
data scientists doing data processing and analytics. Specifically material 
regarding their team dynamics has been hard to retrieve. Due to lack of valid 
material this will be hard to investigate. 

Anyhow, as for the cases for Facebook and Uber, the analytics decision 
makers sits internally in the organization as well as the end-to-end dataflow is 
covered in Tesla’s chain. It is therefore considered likely that they understand 
the scope of the analytics field. 

 
Uber: People and organization 

Team organization N/A  
Analytic decision maker Internal 

 

4.1.3.4 Implications and value of scaled ML 

From the wide intake of data and specialized ML modelling, Tesla has been able 
to scale its capabilities and deliver self-driving features to 500,000 vehicles and 
are enabled by the infrastructure built-in into the vehicles. It is therefore 
reasonable to assume that the scale are directly related to the data collection 
(“large, varied and real”), the label accuracy and hence ML model accuracy. As 
the ML models continue to increase in performance as they prove to be doing 
currently, the massive application of these models brings safety and convenience 
gains beyond what has been able to achieve previously. 

It is also being argued that self-driving cars brings ethical difficulties in terms 
of special cases where the ML algorithms has to choose between two evils, in 
such that the algorithms have to choose which action does the smallest harm. 
Based on the material it is hard to argue that this not might be the case, but 
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one could also argue that due to the extensive amount of data from the various 
sensors that such events would be very limited and not as of a big concern as 
some critics claim. Given that the system are able to increase safety by a factor 
of 10, the net reward would reasonably therefore be increasingly better than not 
having the scaled ML system. 

The Tesla Autopilot feature is at the moment not a fully self-driving car, but 
the capabilities currently show good evidence of what the Autopilot – and by so 
the ML models – can achieve by being utilized in the proper way. Reaching to 
become a fully autonomous car is unquestionably a radical innovation but also 
disruptive. Also, the cars are becoming incrementally better as time goes – 
including Autopilot – which is considered to be unique in the market place and 
hence disruptive market-wise. Anyhow, by the time fully autonomous cars are 
present, it is likely it will be considered an innovative achievement. And at the 
moment ML models seems to be very vital as an enabler. 

 

4.1.4 Industrial case 4: GE Digital 

GE emphasizes the elements of business, technology and people as central aspect 
in the Digital Ecosystem (GE, 2016), hence also support the analysis framework 
of the thesis. 

4.1.4.1 Technology 

Despite GE Digital being only four years in existing, it seems to be based on 
older software. In 2015 they claimed to do become an industrial software 
company with significant impact, expecting “Predix Software to Do for Factories 
What Apple's iOS Did for Cell Phones” (The Street, 2015). GE’s approach has 
been to deliver analytics with the formula of combining advanced data science, 
physic-based models and applied engineering knowledge, but also emphasizes the 
need for computing on the edge rather in the cloud (GE Digital, 2016). 

Per 2019, the Predix software is an industrial IoT platform, connecting 
industrial assets and data to the platform – which can be done by an edge 
solution – delivering solutions for monitoring, analytics and more, in addition to 
specific industrial applications. Anyhow, there is several claims that this software 
is not so good as it hoped for. “The platform [Predix] is not developer friendly, 
takes ten-times as long to complete normal tasks compared to best-in-class IoT 
platforms, and does not have a modern IT architecture” (Sdx Central, 2018). 
Such considerations was also confirmed from interview sessions. One could 
therefore argue that they are lacking modern infrastructure and software 
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capabilities, probably due to their IT legacy systems of previously developed 
products and solutions. This might root in their more conventional Asset 
Performance Monitoring (APM) product which helps operational engineers and 
administrators overview their physical assets, hence industrial equipment, but 
when it comes to advanced analytics these are fairly limited. 

GE Digital also deliver an edge solution – named Predix Edge – which enables 
streaming data from devices in the field in addition to run some analytics.  

Based on interviews, GE Digital’s advanced analytics are not specifically 
tailored for the various industrial equipment – despite the marketing material 
claims so – but deliver relatively simple generalizable rule-based metrics, hence 
are lacking ML intelligence. They also deliver some ML but based on findings, 
they have not been sufficient in performance. 
 

GE Digital: Technology 
Object of analysis (OA) Industrial equipment 
n of (similar) OA >1000 (estimate) 
ML microservice(s) MLaaS (Predix) 
IT infrastructure Cloud and Edge 
Real-time edge analytics Yes 
Training N/A 
Data vendor Self (when as a service) 
Data setup environment Edge (stream); System integration (batch) 
Kind of AI/analytics Rule-based metrics, anomaly detection, 

4.1.4.2 Business characteristics 

GE has historically been an OEM and hence their business design has been 
aligned as an omnichannel. More recently, they have been trying to move over 
to an ecosystem driver (Weill & Woerner, What's Your Digital Business Model?, 
2018), which substantiates with their platform approach. 

As GE is an OEM, they also have the opportunity to sell their machines in 
the format of a uptime-as-a-service, meaning the customer pays for the runtime 
– thus the value creation – of the equipment is generating, unlike a fixed one-
time purchase of the asset itself. In such cases GE is owning the asset and so the 
data, and hence they are able to collect and manage the data itself. As of this, 
this should hypothetically enable new opportunities for their GE Digital division. 
It is reasonable to assume they are having top of the line engineering knowledge 
and equipment data. In combination of their uptime-as-a-service delivery, it is 
also basis for arguing they have the updated data on their equipment 
performance. 

GE Digital serves, as rest of GE, in the B2B market. Since they deliver the 
industrial equipment itself, gaining data from it probably can be narrowed to 
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only equipment data and by so not reveal other sensitive business data from their 
customers. This could hence be seem as an competitive advantage in GE Digital’s 
favor. Anyhow, there has been several bad news regarding their digital initiative, 
and GE in general has been suffering significantly as reflected in the stock price 
the latest 3 years.  

 
GE Digital: Business characteristics 

Business model Omnichannel (developing towards ecosystem)  
Company type OEM 
Commercial Transactions B2B 
Company age 4 years (GE Software: 8 years), legacy of GE 
Analytics Industrial 

4.1.4.3 People and organization 

When it comes to team organization contents regarding scaled ML at GE Digital 
this seems to be hard to retrieve, so such considerations is hard to evaluate. 

Anyhow, in the case of GE Digital, the analytical products are to be delivered 
for customers which are typically operating the industrial equipment. The 
customers are hence the analytic decision maker and the stakeholder which 
determines how the analytics are supposed to be utilized. As of this the analytic 
decision maker are classified as external in this case. 

 
GE Digital: People and organization 

Team organization N/A  
Analytic decision maker External 

4.1.4.4 Implications and value of scaled ML 

Given that GE Digital will be able to scale ML in the applications and services 
where they currently deliver, they hold a great business opportunity to deliver 
insights into enormous number of companies. From the data basis retrieved in 
this research there still seems to be a long way to go for GE Digital, both in 
terms of technology and business.  
 

4.1.5 Industrial case 5: Arundo Analytics 

As Arundo is the one addressing the problem of scalability, they hold marginal 
content of successful scaling. Hence this section will applied for understanding 
the characteristics of Arundo. 
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4.1.5.1 Technology 

As Arundo specializes on industrial analytics in the heavy-asset industry, their 
OA is the industrial equipment, which is an umbrella of various groups of 
equipment. This includes equipment’s like compressors, heat exchangers, 
turbines, pumps, and so on. The groups but also subgroups itself varies broadly 
in characteristics and results in a low number of similar OA. This makes it hard 
to generalize and make proper abstractions of the OA. Anyhow, Arundo has 
shown some promising results in making equipment specific ML templates which 
is ML models which has been pre-trained. Despite this could be applied to plural 
instances, this usually comes at the cost of lower accuracy, but as this is still 
under development it is likely it will improve by time. 

As Arundo also rely on other companies for historical data of industrial 
equipment. Since the historical data (usually) is the prerequisite for ML model 
performance, the case of where the other companies set the terms of the data 
content brings challenges. Anyhow, the Arundo Edge product comes in from a 
new angle, setting new terms for data collection and then only collects data which 
are relevant for data analysis. 

Arundo has developed products intentionally designed for MLaaS. So to 
speak their service serves approximately the same purpose as for those who are 
built for internal usage, but in addition can be used by the customers. Below will 
be a walkthrough of the products. 

 

 
Figure 4.6. Arundo Products in the ML process (Arundo Analytics, 2019) 

The products is built along the machine learning process, hence CRISP-DM. 
The first product, the Edge Agent software, enables ingestion and collection of 
data from industrial equipment by being installed in the presence of the industrial 
utilities. Further, this enables analytics in environments which is disconnected 
and hence do not have access to internet and cloud. Secondly, the Composer 
software enables data scientists deploying with few clicks desktop-models into 
the Arundo cloud environment, named Fabric. Thirdly, the Fabric software is a 
cloud service which manages models, data streams and data pipelines. Lastly, 
they also have applications to work on top of the ML analytics, e.g. the 
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Equipment Condition & Performance Monitoring (CPM) which is a dashboard 
displaying KPIs and other analytical metrics. 

As the industrial ML process seems to differ from the more conventional 
process, Arundo has sketched what they believe to suitable. This takes the 
equipment installation phase into account, in addition to visualization of the 
insights of numerous individual equipment as their solutions ultimately shall 
present – hence help – the business with better business decisions. 

 

 
Figure 4.7. Overview of the ML process, specific within the industrial context. 
(Arundo interviews, 2019) 

When the data scientist at Arundo are working on ML analytical cases they 
rely on the industrial data gathered by engineering operators working in the field 
with the industrial equipment. What kind of data being gathered are determined 
by procedures and motives of the operators field of expertise, hence does not 
directly apply to the needs of a data scientist. In addition, it is also been noticed 
that industrial companies have programs which does not record operational data 
if the values are approximately equal. This also results in datasets with missing 
data, making analytics harder as this removes valuable information also 
regarding data distributions. 

Arundo’s primary field of ML analytics is currently related to advanced 
anomaly detection algorithms. This is most likely due to the business use cases 
they are working on.  
 

Arundo: Technology  
Object of analysis (OA) Industrial equipment 
n of (similar) OA <20 
ML microservice(s) MLaaS (product suite) 
IT infrastructure Cloud and Edge 
Real-time edge analytics Yes 
Training Offline 
Data vendor Heavy-asset industrial companies (typically operating 

engineers) especially for historical data; (Edge product for 
edge collection) 

Data setup environment Edge Agent (stream); System ingestion (batch and stream) 
Kind of AI/analytics Anomaly detection 

 

Equipment 
and 

installation

Data 
cloudification

Data 
preprocessing 

& storage

Data analysis 
and analytics Visualization
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4.1.5.2 Business characteristics 

Arundo’s products can be used standalone in the Arundo environment but are 
primarily currently being utilized on top of other services and platforms, like 
Microsoft’s ML cloud platform – Azure – but also on industrial-specific analytical 
platforms like DNV GL’s Veracity and ABB’s Ability. Such approach shares 
mostly its business model characteristics with the cross section of modular 
producer – as of the capability of adapting to any industrial ecosystem and the 
plug-and-play product – and the supplier – as they deliver their products/service 
through other companies.  

Arundo are an independent software vendor in the B2B sphere, meaning that 
they are dependent on data from the companies approaching them. As they are 
a recently founded company, it is likely that they are able to take advantage of 
the latest and most optimal software tools for these particular business cases, 
despite that it takes great effort and skills building sophisticated software. 

 
Arundo: Business characteristics 

Business model Modular producer & supplier 
Company type Independent Software Vendor (ISV) 
Commercial Transactions B2B 
Company age 4 years 
Analytics Industrial 

4.1.5.3 People and organization 

The technology-related people in Arundo are generally organized either from a 
product or project perspective, but flexible in adapting to new demands. By so 
they are able to achieve focus and momentum for each direction. Specifically for 
the product team located in Oslo, this meant that they were given freedom and 
autonomy in cases where there was a clear objective. If the team seemed to lack 
in its productiveness, the manager would balance the team with a more rigid 
approach, and hence if the manager saw the team being too constrained by 
structure and rules he would balance it by giving them more autonomy. The 
manager hence emphasized the importance of balancing the team for the right 
purpose and situation, and not solely go for an “agile” approach without further 
do. 

In the case of Arundo, the analytical products are to be delivered for 
customers which are typically operating the industrial equipment. The customers 
are hence the analytic decision maker which is labeled as external. The findings 
in the thesis shows that there seems to be a common understanding that these 
external decision makers do not possess the needed knowledge of what the 
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possibilities and limitations there exists within the analytics field, hence what is 
considered to be feasible in terms of industrial analytics. As of this there seems 
to exists a knowledge gap between analytics and business value. 

 
Arundo: People and organization 

Team organization Flexible teams balancing on demands  
Analytic decision maker External 

 

4.1.5.4 Implications and value of scaled ML 

Scalability has not been achieved – yet. Given that ML can be applied 
successfully at scale – serving a broad range of industrial use cases – there is 
great belief of that this will be very valuable for industrial companies optimizing 
their operations. This is grounded on small-scale analytics deliveries. At scale 
comes also insights and there is concerns form various industrial companies 
regarding sharing intimate operational data.  

Great business value has been proved related to ML analytics of industrial 
equipment, and is the reasons for why Arundo – among many others – have been 
targeting this industry segment the last few years. 

 

4.1.6 Industrial case 6: C3 

4.1.6.1 Technology 

As of C3 ecosystem approach they do deliver a platform tailored for handling 
data – which is their core technology – and providing a basic set of applications 
including some general anomaly detection applications.  

Their ML capabilities starts with the AI Suite which delivers microservices 
for every step in the ML workflow, with comprehensive data integration followed 
by their data management service, time-series visualization and ML model 
management service. The data management “include data federation, 
management of and interaction with multiple databases, and persistence data in 
the appropriate data store” (C3, 2019). It seems to be mainly focused on data 
integration, but does not include a feature store. C3 has also built Integrated 
Development Service which they call a low-/no-code environment for developing 
and operationalize ML during the whole ML process, which consists of a broad 
range of microservices.  
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Figure 4.8. C3 AI Suite. 

As of these findings there is clearly connection to the functional decomposing 
(Y-axis) in the scalability cube as of the microservices which is suited for the 
whole ML process. 

It is also reasonable to assume that C3 does not invest heavily in data science 
knowledge targeted for industrial equipment, as they aim for delivering the 
platform to customers and third-party companies building the applications. 

C3 seems to be highly cloud-based and hence do not deliver solutions for edge 
computing, despite that their latest articles are referring to the topic. Therefore 
on can argue only that they explicit use cloud as their IT infrastructure. 
 

C3: Technology  
Object of analysis (OA) Industrial equipment 
n of (similar) OA N/A 
ML microservice(s) MLaaS (C3 AI Suite) 
IT infrastructure Cloud 
Real-time edge analytics No 
Online training N/A 
Data vendor Heavy-asset industrial companies; 
Data setup environment System ingestion (batch and stream) 
Kind of AI/analytics Anomaly detection 

 

4.1.6.2 Business characteristics 

C3 have built a platform where (industrial) companies can build their analytic 
solutions and make use of various applications, but also are applying their 
solution on top of other ML cloud platforms such as Amazon Cloud and Microsoft 
Azure. Hence, they hold attributes primarily as an ecosystem but with slippage 
a modular producer. Based on information from the market, C3 is positioning 
them self for moving into the ecosystem business model as they want corporative 



Analysis 

 58 

collaborations to make use of their platform. By so they will probably gain more 
data from the industrial space.  

C3 are an independent software vendor in the B2B space, meaning that they 
are dependent on data from the companies approaching them. As of their age 
there should be reasonable to assume that there is little to nothing old software 
architecture, which are confirmed by their use of modern approaches in their 
market material. 

Their applications and solutions are primarily suited for industrial cases – 
like C3 Predictive Maintenance and C3 Energy Management – but also deliver 
more general services which can be used for fraud detection.  

C3 has structured it’s technology such that third-parties are the ones who 
build their applications and hence advanced ML solutions, and by so letting 
third-parties keeping their own IP. This approach could potentially help C3 with 
limiting their need for sensitive insights of other companies.  

 
C3: Business characteristics 

Business model Ecosystem  
Company type ISV 
Commercial Transactions B2B 
Company age 10 years 
Analytics Industrial 

 

4.1.6.3 People and organization 

Due to the business of C3 have specialized on their platform development. Based 
on interviews C3 has therefore limited data scientists working on ML but are 
therefore more specialized on the platform development with their data engineers 
and software developers.  

Regarding the analytic decision maker C3 are delivering analytical platform 
and products to customers which are typically operating the industrial 
equipment. The customers are hence the analytic decision maker which is 
classified as external.  

 
C3: People and organization 

Team organization N/A  
Analytic decision maker External 
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4.1.6.4 Implications and value of scaled ML 

C3 have already delivered results to several industrial companies, such as the 
energy company Shell which has chosen C3 as their AI platform. There is a 
underlying belief that this platform could work as an enabler for further 
digitalization and by so greater insights by the use of ML. 
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4.1.7 Characteristics of cases 

Below is a table summarizing various attributes of the different cases, followed 
by a high level discussion of the characteristics.  

 Facebook Uber Tesla GE Digital Arundo C3 
Scaled ML Yes Yes Yes Not yet Not yet Not yet 
Business model Ecosystem 

driver 
Ecosystem 
driver 

Omnichannel  Omnichannel 
(→ecosystem) 

Modular 
producer 
& supplier 

Ecosystem  

Company type ISV ISV OEM/ISV OEM ISV ISV 
Commercial 
Transactions 

B2C & B2B B2C B2C B2B B2B B2B 

Company age 
15 years 10 years 16 years 4 years, but 

legacy of GE 
4 years 10 years 

Analytics 
Non-
industrial 

Non-industrial Non-industrial Industrial Industrial Industrial 

Object of 
analysis (OA) 

People People, 
driving 
patterns 

Surroundings, 
driver 
behavior 

Industrial 
equipment 

Industrial 
equipment 

Industrial 
equipment 

n of (similar) 
OA 

1.5 B daily 
users 

95M users 
monthly, 15M 
Uber trips 
each day 

500,000 
vehicles; 
500,000 
images/event 

>1000 
(estimate) 

<20 N/A 

ML 
microservice(s) 

Internal 
MLaaS 

Internal 
MLaaS 
(Michelangelo) 

Internal 
feature store 
(Data Engine) 

MLaaS 
(Predix) 

MLaaS 
(product 
suite) 

MLaaS 
(C3 AI 
Suite) 

IT 
infrastructure 

Self-operated 
datacenters 

Cloud and 
own 
datacenters  

N/A Cloud and 
Edge 

Cloud and 
Edge 

Cloud 

Real-time edge 
analytics 

Yes N/A Yes Yes Yes No 

ML Training Online Online, 
centralized 

Centralized, 
pilot and 
validation test 
with Shadow 
Mode 

N/A Offline Offline 

Data vendor Self Self Self Self (when as 
a service or 
Edge 
solution) 

Industrial 
companies; 
Edge 
collection 

Industrial 
companies; 

Data setup 
environment 

App Store, 
Web client 

Standardized 
application 
store (App 
Store) 

Pre-installed 
from 
manufacturing 

Edge 
(stream); 
System 
integration 
(batch) 

Edge 
Agent 
(stream); 
System 
ingestion 
(batch and 
stream) 

System 
ingestion 
(batch and 
stream) 

Kind of 
AI/analytics 

Anomaly 
detection, 
classification, 
computer 
vision, 
natural 
language 
processing 
[…] 

Stacked 
models 

Primarily 
neutral 
networks (for 
computer 
vision), 
anomaly 
detection 

Rule-based 
metrics, 
(anomaly 
detection) 

Anomaly 
detection 

Anomaly 
detection 

Team 
organization 

N/A Flexible, 
focused  

N/A  N/A Flexible, 
balancing 
demands 

N/A 

Analytic 
decision maker 

Internal Internal Internal External External External 

Table 4. Characteristics of cases. 
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As from the cases investigated there is some distinct differences. All of the scaled 
ML cases are found in the B2C market which may indicate that consumers are 
more comfortable to share private information than businesses. This might be 
seen in connection with the number for similar OA’s which clearly have an 
extensive difference in figures, ranging from 9 to 6 figures versus 4 to 2 figures. 
Whether or not this is rooted in the chosen OA for the industrial cases is difficult 
to determine, but clearly show that there is different prerequisites for scaling ML 
in the industrial context than for the more conventional B2C but also for the 
analytics decision maker.  

Anyhow, due to these characteristics will work as the basis for analysis and 
for identifying the barriers of industrial scalability of ML they will be further 
analyzed in the next section of the analysis. 

4.1.8 The impact and value of machine learning scalability 

From the described cases examples, it can be clearly stated that machine learning 
is been heavily applied into various core activities, and are playing a key role 
into driving new product and service propositions.  

Despite machine learning as a subject not being a particular novelty of this 
decade, the scale and magnitude of ML should be considered to be of significant 
innovative value and impact. One could then argue that the innovations in 
machine learning – like deep learning – is considered as incremental technically, 
but has led to great new innovations in their magnitude of business cases, hence 
hold more disruptive character. This also has given opportunities for Tesla, as 
their advance in ML – contrary to other established automotive companies – has 
given them a competitive advantage. Such characteristics is also what the 
disruptive theory supports, and gives room for classifying the Tesla Autopilot as 
more disruptive (Christensen, 2003). Anyway, there will be good reason to assert 
that fully autonomous vehicles are both highly radical and disruptive innovation. 

There also seems to be an connection with the extensive application of ML 
at scale in combination of an ecosystem business model resulting in tremendous 
competitive advantages as it ultimately improves the customer experiences. This 
probably also contributes to the increasing “winner takes it all” analogy of the 
big tech companies (Barwise, 2018) which commonly have the ecosystem business 
model – hence Facebook and Uber. If so, this also implies the importance for 
companies to solve the large-scale ML case in need of staying ahead in the 
competition. 

With great power comes great responsibility, and the risks of misuse must 
also be taken into account. E.g. the enormous scale of Facebook also lead to the 
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opportunity of misuse in terms of Cambridge Analytica, who used the platform 
to mislead and misinform their targeted audience. As of such, this illustrates the 
importance to be aware of the magnitude of large-scale ML thus its implications. 
Anyhow, ML originates from data of observations and hence knowledge of the 
observations. This emphasizes the relevance of the old quote “Knowledge itself is 
power”, often credited Sir Francis Bacon (Wikipedia, 2019). Thus companies 
should be aware and take action regarding responsibility for ethical use of data 
analytics and data insights, and hence integrate such considerations into the 
company and product/service strategy. 

The increasing amount of data gathered show it could improve the ability to 
gain insights of phenomena’s of a new level, and so also advance the absorptive 
capacity of organizations. Organizations with the ability to scale ML should 
therefore chase it accordingly due to the aspect of possible innovational benefits 
and hence competitive advantages. 

4.1.9 Conclusion on characteristics 

Chapter 4.1 have laid out the different cases and their associated characteristics. 
During the analysis the characteristics of the successfully scaled cases have been 
outlined and be compared to the other cases. By so it have also been revealing 
the value of scaled ML. 

The discussion has shown that ML at scale has generally proved to be 
achievable and have proved to be highly valuable and beneficial, both to the end-
customer and for the business. As ML scales it also comes with great magnitude 
which unarguably brings new dimensions to responsibility issues, thus scaled ML 
should be considered both radical technology-wise and disruptive market-wise. 
Anyhow, the successful cases hold certain characteristics which distinguish from 
the industrial cases, and hence clearly also show that there is different 
prerequisites for scaling ML in the industry than for B2C. These characteristics 
will hence be investigated more in-depth in the next chapter. 
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4.2 What is the barriers making ML 
scalability challenging in the industry? 
In this chapter an analysis of what distinguish the cases of successful cases and 
the industrial cases will be performed, followed by identification of which 
elements that are likely causing to be barriers of industrial ML model scalability. 

4.2.1 Characteristics of scaled ML 

The next chapters will analyze the various characteristics in context of 
technology, business, and people and organization. 

4.2.1.1 Technology 

In this section the industrial ML process from Arundo will be used as a baseline 
(fig 5.7). 
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Mass-scale setup. Within the successful cases, like Facebook and Uber, the 
end-user is setting up the software themselves through a plug-and-play approach, 
typically from an standardized format, ex. app platform (App Store) or web-
browser. The setup takes only a few minute. In the case of GE, this is more 
uncertain, but seems to require software engineering skills and hence is not very 
efficient. In the case of Arundo their Edge Agent is setup by running an installer 
on the computer connected to a part of the industrial production systems 
gathering data. Within this Edge Agent all data streams has to be mapped 
manually. Hence when trying to connect all of the whole equipment suite on a 
production facility this is a comprehensive action. 

Data handling. At Facebook and Uber it is natural to assume they have 
continuous data streams given their opportunity to design for an end-to-end data 
flow. This leads to consistent data flows which results in data processing with 
relatively few exceptions and rare conditions. Commonly for the successful cases 
they have created a centralized feature store for historical data. This ensuring 
high-quality features which can be easily managed, shared and extracted into 
data and ML workflows.  

In the industrial cases consistent data streams does not seem to be the case. 
Insights from performed interviews show that there could come batches of data 
from days before and are missing data labels, causing data structure difficulties. 
Time labeling in the different systems also tends to vary, which makes time 
stamping a challenge, and the data collected are limited to be values of a generic 
range making it hard to identify the source, e.g. what sensor is sending the data. 
Further, in many industrial systems data are only being recorded – hence 
collected – if the sensor data changes. From a data science perspective, this causes 
broad range of valuable data to be missing from the data sets. In addition, IT in 
the industrial setting are built on old technology and infrastructure which makes 
it hard to retrieve all the needed and wanted data. So to speak there is a 
technology laggard which blocks for large data accessibility. 

Computational power. For companies having massive amounts of data 
one barrier of scaling is related to computational power. As the cases for Uber 
and Facebook shows, there seems not to be technical constrains regarding having 
sufficient power of compute, either for a pure cloud based approach or hybrid 
cloud and datacenter approach. Edge approach serves its own purpose as it can 
provide instant analytics in remote environments and make less compute 
intensive operations and then eventually transmit data to the cloud. Such were 
also the case for Facebook in their News feed service. In addition, the edge 
approach solves a security and policy concern for many industrial companies that 
don’t want their (raw) data to be transmitted into the cloud.  
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For the case of Arundo, they are relying on cloud approach in combination 
with edge solutions in remote environment. The approach to GE Digital seems 
to be quite similar, as they are both offering cloud and edge solutions. C3 on the 
other hand seems to be the industrial case where edge computing is not present. 
Hence, computational power has proved to be easily solved by cloud approach of 
purchasing large amounts of computational power and having the sufficient work 
force to process the data. Hence, these two activities boils down to capital. When 
the models are being set to production they are typically being deployed into the 
cloud environment, which usually is done by using an third party vendor, like 
Microsoft Azure or Amazon Cloud. In this environment the models can run and 
vary their demand for computational power depending on the needs. 

Scaled predictions and insights. In the successful cases of scaling, they 
ultimately hold the characteristics of ML models which can be applied to a large 
number of instances with sufficient accuracy. As for Facebook and Uber, their 
object of analysis (OA) is people and with their extensive data basis it is very 
likely that they are able to generalize their data thus the requirement of scaling 
ML models. With a such large quantity of data – ranging from 1.5B-100M users 
– it is likely that it covers significant number of events of rare instances. 

In the case of industrial analytics the typical OA is industrial equipment. 
Within this group there exists a large number of subgroups – e.g. compressors, 
heat exchangers, pumps, generators, etc. - with distinct differences themselves. 
Even for the group of compressors there is several new subgroups with different 
attributes, and results in narrow dataset relatively to the successful cases. In the 
case of Arundo this means 20 or less similar OA. For GE being an provider of 
industrial equipment they are likely to possess a large database of similar OA. In 
the use case of predictive maintenance, generally speaking, industrial equipment 
do fail rarely, causing the data of failures to be very limited. Given the constrains 
of similar OAs, this results in a challenging analytical conditions. Whereas a 
solution is scaled for 1000s of equipment, this also brings challenges into effective 
and intuitive visualization of the operational status. 

The horizontal duplication (X-axis) in the scalability cube could relate to 
generalization of the ML models, in such that one model could be scaled and be 
valid for n industrial assets.  

ML in production. The successful cases show that it is important to have 
rigid and low-latency systems that can deal with real-time predictions resulting 
in instantly. As for the industrial cases, they also show proven real-time analytics.  

Both Facebook and Uber have systems for monitoring and maintaining their 
real-time ML model performance. As of this models that drift in performance will 
be more easily detected. This approach also includes having observation ML 
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models which detects the performance of models in production or models which 
adapts due to new data (adaptive learning), making sure the models have 
sufficient level of performance. 

ML models manager. Incorporated into this is the approach of having an 
service where one can easily manage the models and its associated dependencies 
like data streams and premises. This is the case across all cases; Facebook, Uber, 
C3, GE Digital and Arundo. 

Generally, there is a broad practice of having MLaaS in all of the cases, 
bringing microservices as an essential and feasible part of scaling, hence 
substantiate the functional decomposing (Y-axis) in the scalability cube.  

4.2.1.2 Business characteristics 

Data vendor. As for Facebook and Uber, both control the data flow end-to-
end, giving them rich data on their own terms. Anyhow, this is also the case for 
GE Digital as they sell their industrial equipment provided as a service. For 
companies like Arundo and C3 this is different as they are dependent on data 
from the operators, which is the case when being an independent software vendor 
(ISV). 

For the case of Facebook and Uber their data flow control are rooted in their 
ecosystem driver design and hence give significant benefits. Yet, from the data 
basis GE has not been able to scale ML for these industrial assets. Such 
considerations could therefore argue that having complete control of data and 
hence more data is a great advantage, but not necessary the catalysator for 
industrial scaling. Becoming an ecosystem hence seems to be highly preferable in 
the case of scaling as this gives more data insights and hence better data basis 
to perform analytics.  

For B2C, consumers they seems to be more comfortable with giving away 
personal – and thus sensitive – information. Operating in B2B might seem to be 
harder as industrial companies are more reluctant to share sensitive data thus 
resulting in small data samples for external data analysis.  This could hence also 
be a factor which impact data accessibility. 

Company age. A common denominator is that the companies are relativity 
young in terms of age, specifically meaning about 10 years or less. Despite not 
the age itself being vital in the case of scalability, it anyhow could be an 
indication of a modern and hence software intensive company. As of such this 
leads to great focus on software development on modern approaches which all 
seems to be the case. The case of GE Digital is a special case, despite that the 
digital division first was initiated 8 years ago, research show that they are based 
on old software infrastructure and hence suffer from these constrains. This is 
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argued to be related to their former IT infrastructure before they established 
their software division. Companies starting with clean sheets when building their 
IT infrastructure they have the opportunity to choose more flexible and adaptive 
solutions. 

4.2.1.3 People and organization 

Organizational structure. From the case findings it clearly seems that scaling 
ML requires efforts from different disciplines, particularly from software engineers 
and data scientists. As argued by Fisher and Abbott (2015) the “alignment of 
architecture, organization and process” is vital for scaling a solution, which 
became very clear in the case of Uber which has distinct teams for different 
purposes and work with distinct overall goals giving employees autonomy. For 
the other cases this is more subtle, but one can argue by their products and 
deliveries that they have organized in ways for rapid and dedicated product and 
solution development. As of this one could then argue that such findings support 
both the theory of agile organizations by Fisher and Abbott, and the 
organizational autonomy by Snow et. al. 

Analytics and OA knowledge. In the successful cases of ML scaling the 
required knowledge for applying analytics to the specific OA is assumed to be 
limited to data science and psychology as the OA is people. In the case of 
industrial equipment this is different. Engineering know-how brings ML 
modelling complexity as it results in the need of deep engineering knowledge in 
combination of deep data science competence and business understanding. This 
challenge results in a knowledge gap as it is difficult to find people with holistic 
competences.  

In addition where industrial ML solutions are being integrated, it also causes 
some understanding difficulties as they “don’t talk the same language”. This also 
then account for the cases of knowledge gap for analytics decision makers and 
brings execution and initiative challenges. Hence, this count for cases where the 
decision makers are external.  
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4.2.1.4 Non-industrial vs. industrial case 

Table summarizing characteristics non-industrial vs. industrial: 
Non-industrial  Industrial 
- Objects of analysis are similar and have 
same type of sensors, resulting in unified 
and similar data. Results in extensive data 
basis, ranging from millions to billions in 
size of similar OA. 
 
 
- Often relatively consistent and uniform 
data (streams). 
 
 
- Tend to control the data flow end-to-end, 
often due to delivering B2C products that 
are dominant in the market, resulting in 
large, varied and real data sets. 
 
 
- Typically have an ecosystem business 
model resulting in improved data 
accessibility.  
 
- Analytic decision maker are typically 
sitting internally in the organization. 

- Data are significantly different, due to 
dissimilarities of equipment and even just 
for the same equipment model. Results in 
limited data basis, as similar OA is 
constrained by the sum of 10-1000. 
 
 
- Data can be ingested into the system 
relatively inconsistently, resulting in data 
handling difficulties. 
 
- Industrial analytic companies are 
dependent on other companies data, 
typically being operators. Data sets are 
real, but due to limited data size the 
sufficient variety is hard to retrieve. 
 
- Data vendors are industrial operators, 
resulting in ISV to not being ecosystems, 
which can lead to less data accessibility.   
 
- Applying industrial ML requires 
engineering and specific industrial 
equipment knowledge, in addition to data 
science. Brings difficulties as this relates to 
analytics decision makers who typically are 
externally positioned.  

  
 
 

4.2.2 Barriers to industrial ML scaling 

Based on the qualitative analysis performed there is reasons to assume that the 
following aspects are considered to be the largest barriers of scaling.  

Technology. Handling industrial data properly is hard and brings 
difficulties in terms of data tangibility and size. This seems partially to be rooted 
in old infrastructure which lacks modern software needs causing in massive 
manual processing. Specifically this is also related to inconsistent data streams, 
correct time stamping and mapping of data streams. Hence, the data cannot be 
handled universally, which also impacts data size and accessibility. As seen from 
the successful cases data should preferably be large, varied and real. For the 
industrial cases they are rarely large, nor varied, but real. Anyhow, large datasets 
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are not always needed for solving industrial cases as relevant data is what solves 
problems, but the case seems to be that within large and varied data sets 
typically relevant data are also embedded. Retrieving sufficient relevant data and 
being able to structure and handle it elegantly is blocking application, hence 
scaling. The lack of universally data handling is therefore considered to be a 
significant hence the first barrier. 

In the industrial case, the object of analysis (OA) are industrial equipment. 
This OA brings challenges itself as it differs, even for identical models of 
equipment. Even in some rare cases it leads to applying different ML model for 
the same model of equipment. Applying ML models which can run for plural 
equipment with satisfactory performance are therefore probably only doable to a 
smaller set which share essential common features. Hence, optimizing ML models 
for the right equipment and number of equipment is important, and thus limited 
application and generalization of the same ML models are considered the second 
barrier. 

Business characteristics. Aspects within this group does not seem to be 
barriers in themselves, but are impacting the size of the other barriers. 
Specifically this counts for commercial transactions of B2C and ecosystem 
business model which seems to unleash more access to data. In contrast, being 
an independent B2B company without an ecosystem model could increase the 
scaling hurdles, but are not considered to be significant. Company age itself is 
not considered to be a barrier, but could to some extent represent company 
software legacy and modernity, and hence laggard of technology infrastructure. 

People and organization. Applying ML models at scale requires knowledge 
from both the field of analytics and the field where the analytics should be applied 
to, which in this case applies to industrial equipment. From a data scientists 
viewpoint this typically account for lack of engineering knowledge, but as for 
decision makers this applies to lack of data science and analytics knowledge. As 
a result decision makers tends to be not enough focused on the relevant data that 
can answer business questions. This seems to account for external analytic 
decision makers in particular, and one could may assert that this is related to 
the companies and individuals absorptive capacity. As of this, knowledge gap in 
external organizations is considered to be the third and final significant barrier.  

4.2.3 Conclusion on barriers 

In this chapter an analysis of what distinguish the cases of successful cases and 
the industrial cases have been performed, followed by identification of which 
elements that are likely causing to be barriers of industrial ML model scalability. 
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As outlined, the following aspects are considered to be barriers of ML 
scalability within the industrial setting: (i) lack of uniform data handling, (ii) 
limit for generalization of ML models due to dissimilarities of OA, and (iii) 
knowledge gap in external organizations. 
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4.3 What are possible strategies to solve 
these scalability barriers? 
In this chapter the barriers of industrial scalability of ML will be discussed, and 
further based on material found possible solutions to these barriers will be 
proposed. As outlined in the previous chapter, these are considered to be (i) lack 
of uniform data handling, (ii) limit for generalization of ML models, and (iii) 
knowledge gap in organizations. 

4.3.1 Lack of uniform data handling 

This barrier, as explained in the previous chapter, it is rooted in the various old 
IT technologies and systems in combination with inconsistent data streams. In 
sum, this leads to a more fragmented and chaotic data basis and then affects the 
majority of the ML process workflow, directly equipment onboarding and data 
setup, data cloudification and processing, thus indirectly data analytics. A 
solution to this barrier must therefore be able to handle the various software 
technologies, deal with inconsistent data streams, correct time stamping and 
mapping of data streams.  

Various software technologies. The recent trend of edge computing, 
which enables local connection to the actual source, can work mostly independent 
of the old IT and software systems. By so the data streams can be set on the 
analytical terms and hence be tailored for more optimal data basis, but more 
importantly only collect the data which is relevant. This also takes care of a 
majority the cases where industrial data have been erased due to unchanging 
values.  

There seems to be an emerging interest in edge computing as more and more 
vendors are developing such tools, but still seems to be in an early technological 
phase. It is therefore being proposed applying and developing edge capabilities is 
important to build the foundation for and accelerate industrial scaling of ML 
models. 



Analysis 

 72 

Time stamping. Due to the different systems the internal system clocks are 
not in sync. In the case of industrial analytics they are heavily based on time 
series analysis, hence syncing the various events are crucial for aligning the data. 
Based on the input for interviews this seems to be solvable during the edge setup, 
but requires mainly manual processing based on specific system specifications.  

Hence, given automatic detection of this system clocks based on 
automatically detected specifications – e.g. from a classification ML model – this 
process could hence be enhanced and scaled up. 

Inconsistent data streams. Data streams can be infrequently, e.g. 2 days 
old dataset, which forces re-calculation of the ML models and other critical 
metrics. Due to this there is a need of having a flexible database which can handle 
such data batches and re-calculations elegantly.  

Based on interviews, there does not currently exists any database system 
which has such abilities. It is therefore suggested that industrial software 
companies working with analytics should aim for development of a such solution 
as this will enable a fundament for uniform data handling further on in the ML 
process. The downside will probably be that this is very expensive and hence 
may require collaborative forces – e.g. partnerships or joint ventures – depending 
on business resources. 

Mapping of various data streams. The data streams from different 
sources are commonly containing values in the same range which makes it hard 
to map the actual source – hence what sensor or signal is being sent – of the data 
streams. This requires manual mapping with industrial documents. 

A conceptual solution to a such case could be to train a ML model which 
could propose the likelihood of classification the various sources cross-checking 
with related industrial documents. It will be reasonable to assume that at first 
the ML model at first will not be having sufficient performance, but given the 
“long tail” analogy – which increases model accuracy over time due to more 
relevant data – it is proposed as being a possible solution with significant gains 
if accomplished.  

Data handling in general. The majority of the proposed solutions are 
grounded on automation, primarily enabled by ML models. By so it seems 
reasonable to assume this would work as a data unifier enhancing data 
structuring and hence increase the data accessibility and tangibility.  
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4.3.2 Limited generalization of ML models 

The typically small amount of specific OA related data and highly differentiated 
OAs makes it hard to scale ML models for a suite of industrial equipment. Hence, 
this limits the application of data analytics within in the industry itself blocking 
scaled insights. To overcome this barrier there has to be found solutions and 
guidelines in regards of data tangibility and model optimality. The two most 
prominent aspects related to limited generalization of ML models is therefore 
outlined. 

The amount of specific OA data. As the amount of data for specific 
equipment is limited – e.g. in the case of Arundo limited to less than 20 instances 
– the relevant industrial data basis is disproportionate different from the large 
successful scaled cases.  

Given the important role the feature store has been highlighted in the 
successful cases, it is reasonable to argue it may also be of great importance in 
the industrial setting due to the scarce amount of relevant data. An industrial 
feature store could work as a standardized data basis with preprocessed features 
ready to be applied to industrial ML models. This could help data scientist 
working in the industrial context more utilized with relevant data. As the feature 
store grows in size and instances, more data can be utilized for cross-validation 
and the argument of the long tail could also lead to great value in terms of model 
training thus performance, thus possibly model generalization across various 
equipment. 

Due to the scarce amount of data it is also likely that extra simulated data 
of sufficient quality are likely to be preferred. Findings from deep anomaly 
generator (Laptev, 2018) showed promising results and is hence proposed as an 
assistance in increasing the data basis and hence ML model quality. 

Differentiated industrial OAs. Training a ML model for one specific 
equipment will increase in performance as the model gets more and more tailored 
training, but since industrial equipment are varying significantly applying the 
same ML models broadly – which can be considered as horizontal duplication 
(scale by cloning) in the scalability cube – does not give satisfactory results.  
Anyhow, there could be a way to segment the industrial assets and make very 
specific pre-trained ML models which has seen promising results in terms of being 
applicable but typically comes at the cost of model accuracy.  

This leads to a conceptual graph for accuracy vs. ML model scalability which 
is illustrated in figure 4.10.  
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Figure 4.10. Accuracy vs. Duplication Scalability: Practical implications in 

terms of model training.  

Hence, this  could bring practical implications in application of ML models, as 
pretrained models with less accuracy brings value in cases of less critical 
equipment in need of basic monitoring thus can be applied for larger volumes of 
equipment. In contrast, critical equipment needs higher accuracy and therefore 
more customization which will only be applicable for individual cases. This also 
implicate that accuracy is directly correlated with the cost of building the ML 
models. Further, this could potentially also mean that based on the number of 
similar OAs ML models should be applied to it could be calculated what accuracy 
is likely to be achieved but also at what cost. 
 

 
Figure 4.11. Accuracy vs. Duplication Scalability: Practical implications in 

terms of application. 
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Scientific papers also showed promising evidence of transfer learning for 
industrial cases (Vercruyssen, Meert, & Davis, 2017), hence this approach is 
argued to be worth further research. Transfer learning models can then first 
trained for templates followed by minimal training for specific cases, thus increase 
accuracy for greater number of OAs, which is illustrated in figure 4.12. As of this 
it is considered that abstraction and generalization of ML models are more likely 
to be feasible, first within the subgroups of each equipment type – e.g. for positive 
displacement compressors and dynamic compressors – followed by abstraction of 
the equipment groups themselves such as compressors, pumps, etc. Practical 
implications are also likely to be decreasing of the cost to build industrial ML 
models thus cost to scale. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Limited generalization of ML models. Two aspects of limited generalization 
of ML models have been highlighted, whereas the differentiated industrial OAs 
seems to be most impactful. The proposed framework brings a basis to ML 
models in terms of model training and application for approximately same and 
various type of industrial OAs, which should be a considered valuable in the 
quest of generalizing ML models. 

4.3.3 Knowledge gap in external organizations 

As highlighted, external analytic decision makers tends not to possess enough 
knowledge about the capabilities and limitations of analytics. By so the decision 
makers tends to be too much focused on the data they have stored rather than 
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the relevant data that can answer specific business questions, which also 
exemplifies the need for more analytics knowledge. Closing this knowledge gap 
should therefore be considered.  

One of the reasons the knowledge gap exists in the industry is probably also 
related to the still lack presence of the applied ML technology but also due to 
that ML technology is considered being relatively unmatured. As the technology 
will be more common, mature and more applied it is reasonable to assume the 
general knowledge of analytics will be increased and implicit also the prerequisites 
for analytics. It is likely this will take time which implies that other actions has 
to be considered for solving the barrier at the time of research. 

It is therefore argued to contribute nuancing the industrial analytics field in 
the areas of influence. This particularly could relate to customer meetings where 
starting off with determine what business problems are in need of being solved 
rather than what data have been stored, followed by identifying what problems 
contain relevant data to be utilized. Also in the same discussion highlight what 
are the prerequisites for good ML and analytic projects. One could also argue 
that this could be an ingredient into the marketing and public presence for 
companies serving analytical products.  

4.3.4 The industrial ML scaling cube  

Based on the various considerations in the analysis, it is possible to align and 
understand the case of industrial ML scalability in the context the scalability 
cube (Fisher & Abbott, 2015). As of this there is proposed and illustrated a new 
cube (figure 5.17) in quest of making it tangible for the industrial setting.  

Y-axis (functional decomposing). Originally intended for microservices, 
the ML microservices and infrastructure have been placed, also more commonly 
referred to as MLaaS. Every case showed a proof of a such approach, despite it 
seemed to be that the successful ones were a bit more advanced in terms of data 
and feature store. The more tools and microservices that will be developed for a 
more rapid development cycle, the more likely it is that it will be easier to broadly 
apply and scale ML models. 

X-axis (horizontal scaling or scaling by cloning). This axis have been 
suited for applying – hence cloning – the same ML model for the same industrial 
equipment. The more assets of the same group of equipment the model can apply 
to, the greater the scale of the model is. 

Z-axis (data partitioning). With respect to the case of industrial ML, this 
could apply to the variety of industrial equipment that ML models has to be able 
to apply to for the instance of being able to scale. 
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Figure 4.13. Industrial scaling of ML models. 

 
The intersection of cloning ML models for n equipment (X-axis) and splitting 

ML models for n equipment (Z-axis) brings questions of optimization. The less 
ML models are operating in production, the easier it is to monitor, update and 
maintain the models. Contrary, the more ML models are put into production the 
higher performance the models are likely to achieve. Hence, it is therefore being 
proposed that the following question should be asked for industrial analytic 
companies: for what industrial equipment, on what level and for what number do 
you split you ML models? 

4.3.5 Conclusion on possible strategies 

In this chapter the barriers of industrial scalability of ML have been discussed 
and possible solutions proposed.  

For the first barrier – lack of uniform data handling – several strategies for 
unifying the data have been proposed including establishing a data feature store, 
highly impacted by automation enabled by ML models. For the second barrier - 
limit for generalization of ML models – it has been outlined a framework for how 
to deal with the barrier with a deliberated approach in addition to proposing 
further R&D into the technology of transfer learning. For the third barrier – 
knowledge gap in external organizations – it is emphasized as critical the 
importance of aligning expectations and common understanding with external 
organizations and external analytic decision maker in particular.  

Z-axis – Splitting ML 
models for different type 
of equipment X-axis – Cloning ML models for 

same type of equipment 

Y-axis –  
ML microservices, 
infrastructure/ 
MLaaS 
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5 Conclusion and implications 
In this section the findings from the analysis will be described in addition to the 
implications which follows the findings. Finally the limiting aspects of this thesis 
will be highlighted.  

The thesis aimed to understand the characteristics of successfully scaled ML, 
further identify the barriers to scaled industrial ML, followed by outlining 
possible strategies and framework for dealing with those barriers. To be able to 
achieve the following, the research needed to be performed with respect to two 
dimensions – innovational and technological – thus have been analyzed 
accordingly. In addition, as academic literature also emphasizes that aspects such 
as organizational and business also impacts the processes of new innovations, it 
have also been included in the analysis. Due to this three research questions was 
developed accordingly and evaluated in the context of technology, business 
characteristics, and people and organization, which have led to the following 
findings: 
 
Research question (1) What is characterizing scaled machine learning in the 
selected cases and how does it contribute to business value and innovation?  
There is certain distinct characteristics which distinguish the successfully scaled 
cases unlike the industrial ones. This specifically means they are all having B2C 
transactions making end-to-end dataflow more feasible and the analytic decision 
makers are positioned internally in the organization. Hence it is reasonable to 
claim the prerequisites are evidently different for the industrial B2B cases than 
for the successfully scaled ML. 

Further, there is great reasons to assert that despite ML itself have been an 
incremental innovation, scaled ML brings analytical capabilities and insights 
efficiency which is both significant in technological change and in market 
offerings. Hence, scaled ML is claimed to be both radical and disruptive as 
innovation. 
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Research question (2) What is the barriers making ML scalability challenging 
in the industry? 
The barriers are according to the finings considered to be lack of uniform data 
handling within the industry, limit for generalization of ML models due 
dissimilarities of industrial objects of analysis, and knowledge gap in external 
organizations are blocking industrial scalability. 
 
Research question (3) What are possible strategies to solve these scalability 
barriers? 
The proposed framework brings a set of possible solutions to overcome the 
barriers. As for lack of uniform data handling this should be approached by 
automation by ML models as well as a uniform data store. For limit of ML model 
generalization a framework has been proposed for ML models in terms of model 
training and application for industrial OAs. In terms of knowledge gap in external 
organizations the importance of aligning expectations and common 
understanding with external organizations, and external analytic decision maker 
in particular is emphasized as critical.  

5.1 Academic implications 
The research findings gives basis – based on the enhanced value and change by 
scaling – for asserting that innovation also should be considered in the way a 
product or service is being enabled to be applied in large number of instances, 
hence scaled. As there is not found academic literature which can validate such 
concept and approach, the term scaling innovation is being coined and would 
more specifically account for by what systems, infrastructure and processes it is 
needed for a product or service to be delivered and utilized for a great number 
of instances. This could be primarily related to the technological improvements 
despite – as argued with scaled ML – it comes with disruptive elements. Further, 
it is therefore being proposed that this term should be challenged to bring 
increase its external validity hence ability to be generalized. 

The research also substantiates prior research (Snow, et al., 2017; Fawcett & 
Provost, 2013; McKinsey & Company, 2019) how autonomy and flexibility within 
organizations are needed for being able to align solutions with the demands in 
the market, hence deliver relevant products and services in a highly competitive 
market.  

Further, it being asserted that lack of knowledge is vital for not blocking 
innovation, which confirms the theory of absorptive capacity (Cohen & 
Levinthal, 1990). It is proposed that this is critical also on the level of individuals,  
particularly for organizational decision makers.  
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5.2 Practical implications 
This research brings practical implications for all of the proposed strategies, 
including highlighting the importance of building an solid unified data basis of 
relevant data. Further, the framework related to generalization of industrial ML 
models is argued to have a practical approach which can be transferred directly 
into industrial business management. This also account for the industrial ML 
scaling cube which brings specific focus to the concept and development of 
industrial ML at scale. 

5.3 Limitations of the research 
As for any scientific research there are potential observational errors, including 
this research. The research duration lasted for 4 months only, which is considered 
to be relatively short for a research project. Is therefore likely to argue that a 
longer research period could have enhanced the quality of the findings. The 
researcher’s background is not in computer science or software engineering, which 
might can have impacted the interpretation of the field of ML.  

The type of data available differed, as it seemed that technology and business 
data were more accessible than organizational data, particularly for team 
organization, and consequently can have impacted the findings. For qualitative 
interviews, as my native language is not English this could have brought language 
challenges which have affected the primary data. Due to the fact that 
approximately all interviews were performed on Arundo employees, this is 
unquestionable colored by Arundo’s view on the industrial aspects. Anyhow the 
consideration was that these interviews were the most relevant and valid 
respondents given the constrained resources and time of the research project. 
Another possible limitation could also be that – despite that it has been assumed 
people have acted honestly in the interviews – it exists instances of where people 
are having their own agenda which could have impacted the answers. As for 
secondary data, possible limitations or sources of error could be outdated 
material, but also material which is biased by serving an hidden agenda (ex. for 
marketing material).  
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7 Appendix 

Appendix 1. Consent statement 
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Appendix 2. Interview guide 
The interviews will largely be informal, and will therefore be characterized by a small common 
structure. This is because the research object is not persons, but a technical field that will 
uncover new discoveries along the way and the interviews will therefore have to be adapted 
and shaped along the way. Nevertheless, there will be certain things that will be consistent. 
This is described below.  
 
Total interview time is estimated at approx. 30-45 min. 
Phase 1: Loose talk (1 min) 

• Informal chat to reassure the situation and set the framework 
 

Phase 2: Frames for the interview (1 min) 
• Inform about consent statement and purpose with study.  
• Define the Master's thesis; 

o The concept of scaling: Industrial mass application of machine learning 
models 

• Inform about why I want to interview the informant 
• Allow room for questions 
 

Phase 3: Personalization and competence (3 min) 
• Name of informant 
• Position / function 
• Expertise in subjects 
 

Phase 4: Professional questioning (20-35 min)  
(This section depends on where in the project one is) 

• From your perspective, what are the biggest obstacles to being able to scale up users 
of ML in industrial context? 

o Specific for; Technological, people and organizational, business 
characteristics? 

• Which processes are used most time? 
o How do you see that it is possible to improve these processes? 

• Technology: To what extent is data a problem for scaling from your perspective? 
• (Based on findings along the way in the project, these findings have also been 

discussed with the respondents) 
 

Phase 5: Summary (5 min) 
• Summarize and validate answers 

o Have I understood you correctly? 

• Anything else you want to add?  
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Appendix 3. Case material 

Machine learning at Facebook 

Specific regarding types of ML models Facebook sees the different types of models 
as such: 

 
Specific ML models at Facebook Description 
Logistic Regression (LR) 

efficient to train and use for prediction 
Support Vector Machines (SVM) 
Gradient Boosted Decision Trees (GBDT) can improve accuracy at the expense of 

additional computing resources 
Deep Neural Networks (DNN) the most expressive, potentially providing 

the most accuracy, but utilizing the most 
resources 

 
Below is also a list of how the various ML models are applied into various cases. 
 
Models  Services  
Support Vector Machines (SVM) Facer (User Matching) 
Gradient Boosted Decision Trees (GBDT) Sigma 
Multi-Layer Perceptron (MLP) Ads, News Feed, Search, Sigma 
Convolutional Neural Networks (CNN) Lumos, Facer (Feature Extraction) 
Recurrent Neural Networks (RNN) Text Understanding, Translation, Speech 

Recognition 
 
Frequency, duration, and resources used by offline training for various workloads 
(Hazelwood, et al., 2018): 
Service Resource Training Frequency Training Duration 
News Feed Dual-Socket CPUs Daily 

 
Many Hours 

Facer GPUs + Single-
Socket CPUs  

Every N Photos  
 

Few Seconds 

Lumos GPUs Multi-Monthly Many Hours 
Search Vertical Dependent Hourly Few Hours 
Language 
Translation  

GPUs Weekly Days 

Sigma Dual-Socket CPUs Sub-Daily Few Hours 
Speech 
Recognition 

GPUs Weekly Many Hours 
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Screenshots of Facebook’s MLaaS 
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https://code.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-

backbone/ (May, 2016) 
 

 
Figure 7.1. Execution flow of Facebook’s machine learning for mobile 

inference. (Hazelwood, et al., 2019) 
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Uber ML platform 

 
Figure 7.2. Michelangelo’s model comparison page showing a 

comparison of two models’ behavior across different segments and features. 
(Hermann & Balso, 2018) 

  

C3 ML platform 
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Appendix 4. Dissimilarities of industrial 
assets  
The characteristics of an industrial equipment varies greatly, even just for the 
equipment groups, such as illustrated for compressors.  

 

 
 

 

  

Industrial equipment
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Ejector
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Appendix 5. Machine learning in oil and gas 
Hajizadeh (2018) – with the oil and gas industry as reference – describes several 
conditions (using SWOT analysis) for the industry to apply ML. Strengths being 
the amount of raw data and expert knowledge available, and opportunities being 
hardware acceleration, transfer learning, Continuous Integration/Continuous 
Deployment, automated machine learning, and IoT and Edge analytics. As 
weakness Hajizadeh argues with technology laggard, waterfall model, lack of 
industry-wide collaborations, and availability of labeled and high-quality data. 
Threats being lack of ML strategy, oil price swings, resistance to change, safety 
and security, hire and retain ML talent, and technology stack. 

  
 


