
A Deep Dive into Docker Hub’s
Security Landscape

A story of inheritance?

Emilien Socchi
Jonathan Luu

Thesis submitted for the degree of
Master in Network and System Administration

30 credits

Department of Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2019

A Deep Dive into Docker Hub’s
Security Landscape

A story of inheritance?

Emilien Socchi
Jonathan Luu

© 2019 Emilien Socchi, Jonathan Luu

A Deep Dive into Docker Hub’s Security Landscape

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Docker containers have become a popular virtualization technology for running multiple isolated
application services on a single host using minimal resources. That popularity has led to the cre-
ation of an online sharing platform known as Docker Hub, hosting images that Docker containers
instantiate. In this thesis, a deep dive into Docker Hub’s security landscape is undertaken. First,
a Python based software used to conduct experiments and collect metadata, parental and vul-
nerability information about any type of image available on Docker Hub is developed. Secondly,
our tool allows analyzing the most recent image found in each Certified, Verified and Official
repository, as well the most recent image found in 500 random Community repositories among
the most popular ones. Using our software named Docker imAge analyZER (DAZER), the fol-
lowing discoveries were made: (1) the Certified and Verified repositories introduced by Docker
Inc. in December 2018 do not improve the overall Docker Hub’s security landscape in a way that
is significant; (2) the most influential parent images on Docker Hub are all Official images and
although vulnerabilities in the platform are still inherited in a highly manner, they do not tend to
be introduced by the top root parents as suggested by previous studies; (3) the average number
of unique vulnerabilities found across all types of repositories is expected to grow with a rate
of approximately 105 vulnerabilities per year between 2019 and 2025 if Docker Hub’s security
landscape continues evolving the same way. While set in perspective with results from previous
studies, our findings demonstrate the deterioration of Docker Hub’s security landscape over the
years and the strong need for automated Docker image security updates of a significantly higher
quality than what today’s procedures are offering.

i

ii

Acknowledgements

First and foremost, we would like to express our sincere gratitude and appreciation to our su-
pervisors I. Hassan and V. Tasoulas for their support and enthusiasm throughout the entire
thesis. Their constant availability and constructive feedback provided valuable guidance, as well
as inspirational encouragements during the entire project.

Secondly, we would like to express a special thanks to our closest friends and family who helped
us getting through this demanding but exciting master’s studies that is the Network and System
Administration (NSA) program.

Finally, we wish to express our sincere appreciation to Oslo Metropolitan University (OsloMet)
and the University of Oslo (UiO) for giving us the opportunity to take part in the NSA program
and thank all of our lecturers for their inspiring work and constant dedication.

Oslo, May 2019

Emilien Socchi & Jonathan Luu

iii

iv

Preface

The basis of this research originally stemmed from the master’s topic proposed by V. Tasoulas
regarding the investigation of container security in the world of microservices. Our initial back-
ground survey revealed that a strong need for examining the security landscape of the biggest
container image sharing platform known as Docker Hub was needed, as very little study had
been conducted on the subject so far. Both interested in conducting research about the same
topic, we decided collaborating in order to enhance our productivity and demonstrate that a
binomial cooperation may produce increased valuable results and contributions for the research
community.

Our final contributions in this research are multiple and are not strictly limited to the scope
of the problem statement. Finally, we have intended to make the reading of this thesis as
easy as possible, by writing important keywords and concepts in the background chapter in
italic. Moreover, important findings are summarized in the result and analysis chapters for
better readability and understanding, while all the details are available in their entirety in the
appendix.

We hope that you enjoy your reading and find our research of interest.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Thesis outline . 3

2 Background and literature 5
2.1 Software vulnerabilities . 5

2.1.1 What is a software vulnerability? . 5
2.1.2 Enumerating vulnerabilities . 6
2.1.3 Classifying vulnerabilities . 6
2.1.4 Severity levels . 7

2.2 Software containers . 8
2.2.1 What is a software container? . 8
2.2.2 Container vs. Virtual Machine (VM)? . 9

2.3 Docker . 9
2.3.1 What is Docker? . 10
2.3.2 What is a Docker container? . 10
2.3.3 How are Docker images distributed? . 11
2.3.4 Docker’s architecture . 11

2.4 The Docker engine . 12
2.4.1 What is the Docker engine? . 12
2.4.2 Managing images . 13

2.5 Docker Hub . 14
2.5.1 What is Docker Hub? . 14
2.5.2 Repository types . 15
2.5.3 Repository naming convention . 17
2.5.4 Docker image reusability . 18
2.5.5 Docker image dependencies . 18
2.5.6 Have you said API? . 20

2.6 Docker Hub’s security landscape . 20
2.6.1 Current knowledge . 20
2.6.2 Docker Inc.’s response . 21

3 Methodology 23
3.1 Objectives . 23
3.2 Design . 25

3.2.1 Data set definition . 25

vii

3.2.2 Preliminary requirements . 26
3.2.3 Overview . 27
3.2.4 Result data format definition . 28
3.2.5 Detailed research questions definition . 30

3.3 Implementation . 30
3.3.1 Tools and technologies . 31
3.3.2 Architecture . 32
3.3.3 Intended workflow . 33
3.3.4 Research queries definition . 34

3.4 Measurements and analysis . 35
3.5 Expected results . 35

4 Result 1: Design 37
4.1 Data set . 37

4.1.1 Defined data set . 37
4.1.2 Skipped repositories . 38

4.2 Preliminary requirements . 39
4.2.1 Two parent databases . 39
4.2.2 Manual image checkout . 41

4.3 Overview . 42
4.4 Designed result data format . 43
4.5 Detailed research questions . 46

5 Result 2: Implementation 49
5.1 Tools and technologies . 49
5.2 Retrieving data . 50

5.2.1 The Docker Hub API: version 1 . 50
5.2.2 The Docker Hub API: version 2 . 52
5.2.3 CIRCL’s CVE API . 53
5.2.4 The MicroBadger API . 54
5.2.5 The Red Hat security data API . 54
5.2.6 Enterprise Linux Security Advisory . 54

5.3 Implemented architecture . 55
5.4 Implemented workflow . 56
5.5 Getting ready for analysis . 58

5.5.1 Importing result data to MongoDB . 59
5.5.2 Research queries . 59

6 Result 3: Measurements 63
6.1 Describing the results . 63
6.2 RQ3: Vulnerability distribution across repository types 67

6.2.1 Quantitative vulnerability distribution . 67
6.2.2 Severity distribution . 69
6.2.3 Vulnerable image distribution . 71
6.2.4 Potential correlations . 73

6.3 RQ2: Vulnerabilities and inheritance . 80
6.4 RQ1: Certified and Verified vs. Official and Community repositories 81
6.5 Additional research question . 84
6.6 Summary . 86

viii

7 Analysis 87
7.1 Vulnerability distributions and predictions . 87

7.1.1 General interpretation . 87
7.1.2 Interpreting box plots . 88
7.1.3 Interpreting density plots . 90
7.1.4 Analyzing potential quantitative vulnerability correlations between depend-

ent repository types . 94
7.1.5 Predicting quantitative software vulnerabilities by 2025 96

7.2 Parental relationships and vulnerability inheritance 97
7.2.1 Modelling parental and vulnerability relationships in a network 99
7.2.2 Analyzing egocentric networks . 100

8 Discussion 107
8.1 Validity of the study . 107

8.1.1 Analyzed set of Docker images . 107
8.1.2 Applied methodology . 107
8.1.3 Software vulnerability identification . 108
8.1.4 Unidentifiable parent images . 108
8.1.5 Discovered vulnerabilities and exploitability 109

8.2 Encountered challenges . 109
8.2.1 Retrieving data from Docker Hub . 109
8.2.2 Manual image checkout . 109
8.2.3 Overwhelming the Docker engine . 109
8.2.4 Image parent retrieval . 110
8.2.5 Confusing terminology . 111

8.3 Future work . 112

9 Conclusion 113

References 115

A Excluded repositories 120
A.1 Paid repositories . 120
A.2 Manifest not found error . 121
A.3 No matching manifest or incompatible platform error 121
A.4 Pull access denied error . 122
A.5 Manual checkout of repositories (kept) . 122
A.6 Summary . 124

B Scripts 125
B.1 Installing the required tools for the VMs . 125
B.2 Setup of the environment . 126

B.2.1 Requirements for *.nix . 126
B.2.2 Requirements for Windows . 126
B.2.3 Prerequisite . 126
B.2.4 Getting Started . 127

C Research queries 129
C.1 MongoDB queries . 129
C.2 Miscellaneous MongoDB queries . 137

ix

D Result data 139
D.1 Top ten most vulnerable repositories across image types 139
D.2 Top ten most pulled repositories across image types 141
D.3 Top ten last updated repositories across image types 142
D.4 All base repositories across image types - sorted by popularity 144
D.5 Top ten most vulnerable base repositories across image types 147
D.6 Top ten most used parent images across image types 148

D.6.1 Top ten most used parent images across all repository types 150
D.7 Top ten most vulnerable packages . 151

D.7.1 Across all repository types . 151
D.7.2 Across the most popular parents . 151

D.8 CWE vulnerability categories . 152
D.9 Predicting an estimation of total vulnerabilities across repository types between

2019 and 2025 . 154

E Source code 156
E.1 dockerhub_api.py . 156

x

List of Figures

2.1 The container creation process . 10
2.2 Docker’s architecture . 12
2.3 The Docker engine . 13
2.4 The Docker engine’s use of short layer IDs and long image digests 14
2.5 Dependencies of the Official Tomcat image on Docker Hub 19

3.1 The thesis’ methodology . 24
3.2 The planned parent database’s design . 27
3.3 The planned design’s overview . 28
3.4 The planned architecture . 33
3.5 The planned experiments’ workflow . 34

4.1 The designed Official parent database . 40
4.2 The implemented design’s overview . 42

5.1 The implemented architecture . 55
5.2 The DAZER software’s workflow . 58

6.1 Analyzed Official repositories distribution . 65
6.2 Analyzed Community repositories distribution . 65
6.3 Analyzed Verified repositories distribution . 66
6.4 Analyzed Certified repositories distribution . 67
6.5 Distribution of unique vulnerabilities per repository type and per year 69
6.6 Distribution of severity levels for unique vulnerabilities across repository types . 70
6.7 Distribution of images across repository types with a critical and high severity . 72
6.8 Distribution of images across repository types with a medium and low severity . 73
6.9 The top 10 most vulnerable and most pulled Official repositories 74
6.10 The top 10 most vulnerable and most pulled Community repositories 75
6.11 The top 10 most vulnerable and most pulled Verified repositories 76
6.12 The top 10 most vulnerable and most pulled Certified repositories 76

7.1 Total number of contained vulnerabilities per image across repository types . . . 89
7.2 Density distribution of the total number of contained vulnerabilities per Official

and Community image . 91
7.3 Density distribution of the total number of contained vulnerabilities per Verified

and Certified image . 92
7.4 Density distribution of the total number of contained vulnerabilities per image

across repository types . 93

xi

7.5 Linear relationships of the total number of unique vulnerabilities between in each
type of repository . 95

7.6 Estimating the total vulnerabilities across repository types by year 2025 97
7.7 Direct and indirect parental relationships to the Official alpine:3.8 image 98
7.8 Parental relationships and vulnerability inheritance in the network of analyzed

Docker images . 99
7.9 Parental relationships and vulnerability inheritance related to the Official alpine:3.8

image . 101
7.10 Parental relationships and vulnerability inheritance related to the Official debian:9-

slim image . 102
7.11 Parental relationships and vulnerability inheritance related to the Official java:openjdk-

8-jre image . 103
7.12 Parental relationships and vulnerability inheritance related to the Official debian:latest

image . 104
7.13 Parental relationships and vulnerability inheritance related to the Official ubuntu:xenial

image . 105
7.14 Parental relationships and vulnerability inheritance related to the Official debian:stretch-

20180716 image . 106

8.1 Docker Hub’s confusing terminology . 111

xii

List of Tables

2.1 NVD’s Common Vulnerability Scoring System (CVSS) [16] 7
2.2 Main differences between VMs and software containers 9
2.3 Docker Hub’s repository type distribution as of April 5th 2019 16
2.4 Docker Hub’s paid repository distribution as of April 5th 2019 16
2.5 Docker Hub’s namespaces per repository type . 17

4.1 A summary of the experiments performed in this study 39

6.1 A summary of the experiments performed in this study 64
6.2 Quantitative vulnerability distribution across repository types 68
6.3 Distribution of severity levels for unique vulnerabilities across repository types . 71
6.4 Comparison of the average number of total vulnerabilities per repository type for

the last 10 updated and the complete set of repositories 77
6.5 Correlations between vulnerabilities found in base and non-base images 79
6.6 The top 10 vulnerable packages across repository types with their corresponding

CVE number and CWE-ID . 80
6.7 Introduced and inherited vulnerabilities across repository types 81
6.8 The ten most popular vulnerability categories across all types of repositories . . . 83
6.9 Correlations between the ten most popular parent images and the ten most vul-

nerable packages across all types of repositories 84
6.10 Correlations between the ten most popular parent images and the ten most vul-

nerable packages found across those images . 85

7.1 Descriptive statistics of the total number of vulnerabilities found in each repository
type . 88

7.2 Share of images in each type of repository with less than or 180 contained vulner-
abilities . 93

7.3 The top 10 most popular parent images in the network of analyzed images with
their total number of descendant children . 100

A.1 A summary of repositories which are not included in this study 124

D.1 Detailed numbers of unique vulnerabilities estimated for Official repository . . . 154
D.2 Detailed numbers of unique vulnerabilities estimated for Community repository . 154
D.3 Detailed numbers of unique vulnerabilities estimated for Verified repository . . . 155
D.4 Detailed numbers of unique vulnerabilities estimated for Certified repository . . . 155

xiii

xiv

Abbreviations

API Application Programming Interface

AWS Amazon Web Services

CD Continuous Delivery

CERT/CC Computer Emergency Response Team Coordination Center

CI Continuous Integration

CIRCL Computer Incident Response Center Luxembourg

CLI Command Line Interface

CNA CVE Numbering Authority

CSV Comma Separated Values

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DAZER Docker imAge analyZER

DE Docker Engine

ELSA Enterprise Linux Security Advisory

FIRST Forum of Incident Response and Security Teams

HTTP Hypertext Transfer Protocol

IT Information Technology

JSON JavaScript Object Notation

MITM Man-In-The-Middle attack

noSQL not only Structured Query Language

NCSD National Cyber Security Division

NCF National Cyber security Federally funded research and development center

NIST National Institute of Standards and Technology

NVD National Vulnerability Database

xv

OS Operating System

REST REpresentational State Transfer

RHSA Red Hat Security Advisory

SaaS Software as a Service

SDK Software Development Kit

SHA Secure Hash Algorithm

SSD Solid State Drive

ULN Unbreakable Linux Network

UUID Universally Unique IDentifier

VM Virtual Machine

VPN Virtual Private Network

xvi

Chapter 1

Introduction

Over the past few years, software containers have become a popular virtualization technology
for running multiple isolated application services on a single host using minimal resources. As a
consequence, containers have been easily integrated into Continuous Integration and Continuous
Delivery (CI/CD) workflows, resulting into numerous DevOps tools and frameworks. The latter
are increasingly utilized for application development and Information Technology (IT) opera-
tions, where speed and agility are two important factors for deployment processes, as Gartner
predicts that more than 50% of global organizations will be running containerized applications
in production by 2020, compared to today’s 20% [1].

1.1 Motivation

Although there exists many container orchestration solutions, Docker has rapidly become the
most widely used and recognized container technology over the years. Its online platform known
as Docker Hub is the world’s largest library for container images backed by a broad audience
of users and a strong community [2]. At the time of this writing, there are approximately 2.1
million repositories available on Docker Hub with approximately 80 billion downloads since the
platform’s introduction [3]. On one hand, the platform hosts Official repositories maintained
by Docker’s own dedicated team [4]. On the other hand, Verified and Certified repositories are
maintained by third-party vendors, while anyone may create a Community repository.

A commissioned study from 2016 conducted by Forrester Consulting on behalf of Red Hat re-
ports that three-quarters of security-minded respondent claimed that their major concern about
containers is security [5]. As the number of Docker images is growing, the latter have to continu-
ously be maintained. As an example, a German-based IT investment and development company
reported that Docker Hub hosted 17 malicious images that had been stored on platform for an
entire year between May 2017 and May 2018 [6]. One of them was used to mine Monero, an
open-source cryptocurrency, which rewarded the attackers with non-less than 544.74 Monero,
approximating to 90,000 dollars.

Docker images are comprised of a series of layers and may be either base, parent or a child images
(note that the terms parent and base image are sometimes used interchangeably). A base image

1

is an image which has no parent, typically containing basic tools and packages, while a child
image depends on a single parent inheriting all of its layers [7].

Once new images are uploaded to Docker Hub, the latter are run through Docker’s own security
scanner, checking against well-known Common Vulnerability and Exposures (CVE) databases
in order to map out images’ vulnerabilities [8]. Nonetheless, many images are not updated or
rebuilt for weeks, months, or even years.

In late 2018, Docker Inc. announced that both Docker Store and Docker Cloud were becoming a
part of Docker Hub [9]. The result of that merging translated into the introduction of Certified
and Verified repositories defined as followed:

• Certified repository: "Docker Certified technologies are built with best practices, tested
and validated against the Docker Enterprise Edition platform and APIs, pass security
requirements, and are collaboratively supported."

• Verified repository: "High-quality Docker content from verified publisher. These products
are published and maintained directly by a commercial entity."

As the number of Docker images is increasing, the room for security improvement is also growing.
The main goal of this thesis is to take a deep dive into Docker Hub’s security landscape.

In [10], Gummaraju et al. studied how vulnerable Docker Hub images may represent a concrete
security threat. They found that over 30% of the Official repositories hosted on the online
platform contain images highly susceptible to a variety of security attacks such as Shellshock- or
Heartbleed-based attacks, while about 40% of the Community repositories are in that case.

A similar research from 2016 created a Docker image vulnerability analysis framework named
DIVA, which semi-automatically discovered, downloaded, and analyzed both Official and Com-
munity images on Docker Hub. They found that both types of images contained more than 180
vulnerabilities on average when considering all versions. The authors pointed out that many of
the top vulnerable packages appeared in the most popular base images such as Ubuntu, Node or
Debian, suggesting that the root cause of such a concerning security landscape may be due to a
potentially small set of very influential base images [11].

Following those research, Docker Inc. introduced two main security measures in 2016: a dedicated
security scanning service [8] and two new types of repositories referred to as Certified and Verified,
meeting higher security requirements and best practices [9].

1.2 Problem statement

Based on previous research and the security mechanisms introduced by Docker Inc. in response
to those investigations, this thesis addresses the following research questions:

1. Have the security measures introduced by Docker Inc. in response to previous research
improved Docker Hub’s security landscape and to what extent?

2. Are vulnerabilities still inherited from images’ parent(s) and in what proportion?

3. How are discovered vulnerabilities distributed across repository types?

2

1.3 Thesis outline

The remaining part of this thesis is structured as followed. First, important concepts and tech-
nologies will be introduced in chapter 2. Chapter 3 will present the thesis’ objectives, while
describing the methodology used to solve the posed problem. Chapter 4, 5 and 6 will respect-
ively describe the result of our model’s design and implementation, as well as the measurements
conducted with it. Chapter 7 will deeply analyze the data obtained and described in chapter
6, using common mathematical concepts and indicators. Chapter 8 will discuss important chal-
lenges encountered during the execution of the project and provide a critical analysis of the
conducted study, as well as proposals for future work. Finally, a conclusion is presented in
chapter 9, followed by a series of developed source code and obtained raw data in the appendix.

3

4

Chapter 2

Background and literature

This chapter introduces important concepts and technologies which will be used in later chapters
such as software vulnerabilities and containers, Docker’s architecture and internals comprising
essentially of the Docker engine and Docker Hub, as well as the latter’s current security landscape.

2.1 Software vulnerabilities

Software vulnerabilities have been an increasing problem with the growth of the Internet, which
has greatly favoured their exploitation by malicious entities such as nation states or private
attackers.

2.1.1 What is a software vulnerability?

According to the National Institute of Standards and Technology (NIST), a vulnerability con-
sists of a "weakness in an information system, system security procedures, internal controls, or
implementation that could be exploited or triggered by a threat source" [12]. A software vulner-
ability consists therefore of a software weakness which may be exploited by an attacker in order
to perform an unauthorized action on a computer system.

Software vulnerabilities may be reported by anyone usually referred to as a vulnerability reporter,
which identifies and informs a security incident team capable of contacting and reporting vulner-
abilities to software vendors. Although there exists multiple private and public security incident
teams, the Computer Emergency Response Team Coordination Center (CERT/CC) is usually
the preferred entity for reporting vulnerabilities to vendors, due to its quasi-governmental profile,
as well as its historical influence in the security field [13].

Computer security incident teams are responsible for verifying and confirming a reported vulner-
ability, before taking contact with the appropriate software vendor(s) and agree on a patching
time window for the vendor to develop a security patch. At the end of that period of time, a patch
is released by the software vendor in parallel with public advisories from the security incident
team, providing technical information about the vulnerability and a unique number identifying
it, as well as references to the released patch.

5

2.1.2 Enumerating vulnerabilities

Publicly disclosed vulnerabilities are uniquely identified through so called Common Vulnerabilit-
ies and Exposures (CVE) numbers, maintained by the National Cyber security Federally funded
research and development center (NCF), operated by the Mitre Corporation and funded by the
National Cyber Security Division (NCSD) of the United States department of Homeland Secur-
ity. A CVE entry contains multiple fields such as a description of its vulnerability, its disclosure
date or even references to available patches. CVE numbers follow a strict standard consisting
of the CVE prefix, the year of their vulnerabilities’ disclosure and a variable length series of
arbitrary digits with a minimum length of four digits:

CVE-YYYY-XXXX[XXX...]

Through its CVE number, the disclosure year of a software vulnerability may therefore be iden-
tified easily. Although every disclosed vulnerability is uniquely identified with a corresponding
CVE-ID, vulnerabilities which are reported by private companies such as Red Hat or Oracle may
have their own identifier assigned by such companies. Indeed, Red Hat uses its own Red Hat
Security Advisory (RHSA) numbers, whereas Oracle uses Enterprise Linux Security Advisory
(ELSA) IDs. Note however that such vulnerability identifiers do not replace CVE numbers, as
any publicly disclosed vulnerability is uniquely identified through a CVE-ID. Nonetheless, vul-
nerabilities disclosed by private companies may temporarily lack a CVE number following their
disclosure, due to the amount of time necessary to obtain the identifier. In that case, a software
vulnerability may only be identified through a RHSA or ELSA number of the following form:

RHSA-YYYY-XXXX[XXX...]

ELSA-YYYY-XXXX[XXX...]

It is important to note that although the format of RHSA and ELSA numbers is similar to the
one used for CVE-IDs, the final digits located at the end of those numbers become different when
an RHSA/ELSA number is assigned a CVE number, as those digits are completely arbitrary in
both cases. Moreover, it should be noticed that other private companies may use personally
assigned vulnerability identifiers, but only the ones from Red Hat and Oracle will be relevant for
this thesis besides CVEs.

2.1.3 Classifying vulnerabilities

While CVE numbers are a common way of enumerating disclosed software vulnerabilities, Com-
mon Weakness Enumeration (CWE) is a software vulnerability categorization system sponsored
by the NCF, operated by the Mitre Corporation and funded by the NCSD of the United States
department of Homeland Security. CWE provides over 800 software weakness categories at the
time of this writing, ranging from simple authorization concerns to pointer dereference weak-
nesses [14].

Similarly to software vulnerabilities identified through a CVE number, CWE categories are
identified with a CWE number following a strict standard consisting of the CWE prefix as well
as a series of three or four digits:

CWE-XXX[X]

CWE weakness categories are therefore recognized through their unique CWE numbers, which
help classifying disclosed vulnerabilities identified with a CVE-ID. For example, the integer over-

6

flow vulnerability found in libssh2 before version 1.8.1 and identified with "CVE-2019-3855" is
related to the Integer Overflow or Wraparound CWE category identified through CWE-190. Fi-
nally, while CVE and CWE numbers are a common way of enumerating and classifying disclosed
software vulnerabilities, the latter need also to be assigned severity levels in order to better
understand the impact of a vulnerability on a system or infrastructure.

2.1.4 Severity levels

Any publicly disclosed software vulnerability with an assigned CVE number may be assigned
a severity level determined based on a Common Vulnerability Scoring System (CVSS) score.
CVSS is an industry standard developed by the Forum of Incident Response and Security Teams
(FIRST), a nonprofit corporation aiming at improving the way incident response teams react
to security incidents [15]. That scoring system is used by many private companies and gov-
ernmental organizations such as the US government repository of standards-based vulnerability
management known as the National Vulnerability Database (NVD).

Severity Score range

None 0.0

Low 0.1-3.9

Medium 4.0-6.9

High 7.0-8.9

Critical 9.0-10.0

Table 2.1: NVD’s Common Vulnerability Scoring System (CVSS) [16]

CVSS consists of a rating system assessing the severity of disclosed vulnerabilities depending
on their ease and direct impact of exploitation. CVSS scores range from 0 to 10 and lead to
five different levels of severity as shown in table 2.1 above. Atlassian Corporation, an influential
Australian software company using CVSS actively, describes the different severity levels provided
by the scoring system as followed [17]:

Severity Level: Critical

• Exploitation of the vulnerability likely results in root-level compromise of servers or infra-
structure devices.

• Exploitation is usually straightforward, in the sense that the attacker does not need any
special authentication credentials or knowledge about individual victims, and does not need
to persuade a target user, for example via social engineering, into performing any special
functions.

Severity Level: High

• The vulnerability is difficult to exploit.

• Exploitation could result in elevated privileges.

• Exploitation could result in a significant data loss or downtime.

7

Severity Level: Medium

• Vulnerabilities that require the attacker to manipulate individual victims via social engin-
eering tactics.

• Denial of service vulnerabilities that are difficult to set up.

• Exploits that require an attacker to reside on the same local network as the victim.

• Vulnerabilities where exploitation provides only very limited access.

• Vulnerabilities that require user privileges for successful exploitation.

Severity Level: Low
Vulnerabilities in the low range typically have very little impact on an organization’s business.
Exploitation of such vulnerabilities usually requires local or physical system access.

Finally, note that understanding the CVSS scoring system and the different severity levels it
provides is very important in order to understand the measurement and analysis chapters.

2.2 Software containers

Software containers have become a popular virtualization technology which goes all the way back
to 1979 with the very first software process isolation attempt, through the 7th version of the Unix
Operating System (OS) [18].

2.2.1 What is a software container?

A software container consists of a virtualization technology allowing to run multiple isolated
application services on a single host using minimal resources. Usually referred to as simply
containers, the latter are isolated through the use of three key components added to the Linux
kernel since 1979 known as chroot, Linux namespaces and control groups (cgroups).

The chroot utility introduced in 1979 allows changing the root directory of a running process and
all of its children. Although it is considered the very first step towards containerized technology,
the chroot utility does not strictly provide process isolation, as a chrooted process is still able to
access files and directories outside the specified root through the use of relative paths [18]. Linux
namespaces introduced in the kernel in 2002 however, constitute a major step towards software
isolation by allowing processes to be completely isolated from each other on different levels such
as networking, disk access, process IDs or even user and group access [19]. Cgroups constitute
the final component of any software container technology available today. Originally developed
by Google and added to the Linux kernel in 2007, cgroups allow limiting the consumed resources
by a certain process or group of processes, such as memory, CPU, disk or network usage [20].

A software container consists therefore of an application service isolated from other containers,
through the use of cgroups, Linux namespaces and the chroot utility. Although there exists
multiple software container orchestration solutions, they are all based on the combination of
those three technologies provided by the Linux kernel. Moreover, although software containers
go all the way back to the early 1980s, they only became popular in 2013 with the rise of
Docker, which provides a simple container packaging solution, allowing developers and operators

8

to deploy their applications easily. Finally, note that Docker is discussed in detailed in the next
section under 2.3.

2.2.2 Container vs. Virtual Machine (VM)?

Contrary to common misconceptions, software containers do not make VMs obsolete as they are
simply used for different purposes.

First, containers aim at virtualizing a single or a few applications including as few dependencies
in order to be lightweight and portable, while VMs virtualize a whole OS in view of running
multiple applications, making them more heavyweight.

Container VM

Lightweight Heavyweight

Native performance Limited performance

Shared host kernel Own virtualized kernel

Software-level virtualization Hardware-level virtualization

Startup time in milliseconds Startup time in minutes

Process-level isolation Full isolation

Table 2.2: Main differences between VMs and software containers

Secondly, containers share the underlying kernel of their host machine, providing native bare
metal performances at runtime, as they may be started in a matter of seconds. VMs on the
other hand virtualize a whole OS, which requires booting a complete kernel at runtime, creating
a significant overhead compared to containers.

Thirdly, containers virtualize solely software applications whereas VMs virtualize both software,
firmware and hardware such as disks, making them a lot more suitable for advanced operational
purposes.

Finally, software containers only provide a process-level isolation, theoretically less secure than
the full OS-level isolation provided by VMs.

2.3 Docker

As explained in 2.2.1, software containers have become a popular virtualization technology for
running multiple isolated application services on a single host using minimal resources. Although
there exists many container orchestration solutions, Docker has rapidly become the most widely
used and recognized container technology over the years.

9

2.3.1 What is Docker?

Docker is a container orchestration solution allowing developers and other IT operators to create,
deploy and manage standardized virtualization units referred to as "containers", packaging up
code for a single application and all its required dependencies [21]. Originally closed source
under the name dotCloud, Docker was released as an open source project in March 2013 and is
primarily developed by the Docker Inc. company at the time if this writing [22]. Since then, its
popularity has increased constantly within the IT industry, with a growth rate of 40% for the year
2017 only [23]. Docker consists therefore of a tool designed to create, ship and run containerized
applications based on two central components: the Docker engine and the company’s own
Software as a Service (SaaS) sharing platform known as Docker Hub [24]. Note that the term
"Docker" is often misused to only refer to the Docker engine or even the company developing
the container orchestration solution. Throughout this thesis however, the term "Docker" will
be used to strictly refer to the Docker technology, whereas "Docker Inc." will only refer to the
company developing the container orchestration solution.

2.3.2 What is a Docker container?

As briefly mentioned in 2.3.1, a Docker container consist of a standardized virtualization unit,
packaging up code for a single application and all its required dependencies [21]. The goal
of Docker containers is to facilitate the modular development and deployment of software ap-
plications, by incorporating only the necessary packages and configuration files required by a
containerized service (e.g. an Apache server). As a result, Docker containers tend to be very
lightweight and easy to deploy or duplicate.

Docker distributes applications in the form of images built upon so called Dockerfiles [25]. The
latter contain a set of directives specifying what an image should contain upon building, as shown
in figure 2.1 below. For example, such directives may consists of specifying a parent image which
can be used as a base for extension or specifying certain packages that need to be included in
the image to be built.

Dockerfile Final Image Container(s)

Apache server 2

layer 0 (base image)

layer 1 (image 1)

layer 2 (image 2)

docker build

is built upon

docker run

are instances of

Apache server x

Apache server 1

FROM ubuntu:latest

RUN aptget upgrade y

RUN aptget install apache2

Figure 2.1: The container creation process

10

Once built into an image through Docker’s internal containerization technology referred to as
the Docker engine, each directive is built into an intermediate image called an image layer
[26]. Once combined together, those layers form a final Docker image with a number of layers
matching the directives located in its original Dockerfile. The goal behind image layers is to
facilitate and optimize image rebuilds, as the Docker engine is able to reuse intermediate images,
requiring only the rebuild of modified or added layers upon changes from a Dockerfile (more
details in 2.4.2). A final Docker image consists therefore of an immutable read-only template
containing instructions for creating a Docker container.

It is only once instantiated that an image results into the deployment of a Docker container,
running a particular application service. Note that a single image may be instantiated multiple
times, as one of Docker’s goals is to make containers easy to deploy and duplicate.

2.3.3 How are Docker images distributed?

As explained in 2.3.2, a Docker container is only an instantiation of an image holding a con-
tainerized piece of software. Thus, the central part of the containerized software distribution
is executed through the sharing of final Docker images, as they constitute single portable and
immutable files easy to distribute. Anyone may build a Docker image from a Dockerfile and
redistribute it as pleased. Nonetheless, stateless and highly scalable servers referred to as Docker
image registries are a common way of storing and redistributing images to the masses [27].

Such registries simply hosting image repositories may be local and private (typically for enterprise
environments) or global and public such as Docker Inc.’s official registry named Docker Hub. The
latter is the world’s largest library of Docker images at the time of this writing and contains both
Official repositories with certified images from vendors such as Canonical, Oracle, Red Hat or
Microsoft, as well as Community repositories containing images which may be uploaded by any
user or organization [2]. Finally, note that the Docker Hub registry is discussed in more details
in section 2.5.

2.3.4 Docker’s architecture

Docker makes use of a client-server architecture composed of three entities consisting of a Docker
client, a Docker host and a Docker image registry [26]. As shown in figure 2.2 below, the client
consists of a simple interface provided to the user in order to execute Docker commands such
as docker build, docker pull or docker run and be able to build, download and deploy Docker
containers.

The actual execution of those tasks is however managed on the Docker host, which simply consists
of a physical machine or VM with a running server known as the "Docker daemon", able to
handle tasks requested by the client. The Docker daemon (often abbreviated "dockerd") consists
therefore of the core component of Docker’s architecture, as it translates user requests such as
docker pull or docker run commands into the concrete download of images or deployment of
Docker containers.

Although the Docker host usually holds both the Docker daemon and client, the latter may also
be run from a remote machine and access the daemon via a network, as the communication
between the two components is established through a REpresentational State Transfer (REST)
Application Programming Interface (API), as shown in figure 2.2.

11

Docker hostDocker client Docker image
registry

docker build

docker pull

docker run
Containers

debian

ubuntu

apache

apache

debian
Images

Docker daemon
(server)

REST
API

ubuntu

Docker client

Docker engine

Figure 2.2: Docker’s architecture

Besides handling the building of images and their deployment through containers, the Docker
daemon is also responsible for interacting with a so called Docker image registry, allowing users
to share Docker images. As briefly mentioned in 2.3.3, image registries consist of public or private
SaaS platforms, hosting pre-built images uploaded by users, in view of being shared with other
peers. Thus, a docker pull command initiated by a user through the Docker client in view of
downloading a certain image, would therefore be handled by the Docker daemon, which would
retrieve the image from its configured registry in order to make it available locally for the user.

Finally, it is important to note that the Docker client, the REST API and the Docker daemon are
all parts of the so called Docker engine, consisting of one of Docker’s two central components,
discussed in details in the next section.

2.4 The Docker engine

In combination with Docker Inc.’s own image sharing platform known as Docker Hub, the Docker
engine constitutes an essential part of the Docker container orchestration solution.

2.4.1 What is the Docker engine?

The Docker engine is a client-server application composed of three major components, as illus-
trated in figure 2.3 below [26].

First, the engine’s most abstract level consists of the Docker client, also known as the Docker
Command Line Interface (CLI) utility. The latter consists of a simple Hypertext Transfer Pro-
tocol (HTTP) client, implementing an easy way for end users to interact with the rest of the
engine using simple commands such as docker pull or docker run. As shown in figure 2.2 above,
the Docker client is therefore responsible for translating commands requested by the user into
HTTP requests destined to the engine’s server through its API.

Secondly, the Docker Engine’s API is a REST API which may be accessed by any HTTP client.
Indeed, the Docker client only consists of the default interface towards the engine, but any

12

Server
docker daemon

REST API

Client
docker CLI

network volumes

images containers

manages manages

manages manages

Figure 2.3: The Docker engine

HTTP client or programming language with an HTTP library is able to interact with the API .
Moreover, an official Go and Python Software Development Kit (SDK) have been made available
by Docker Inc. for an easy programming interaction with the Docker engine’s REST API [28].

Finally, the engine’s core component consists of the Docker daemon which functions as a server
interacting with its host OS to build, run and deploy containers using Docker components and
services. Consequently, the daemon server listens for HTTP requests coming through its REST
API, in order to execute a user requested task such as the download of an image or the deployment
of the latter in the form of a container.

The Docker engine is therefore the core of the Docker technology, as it allows handling everything
related to the management of Docker containers and the images they are based on, as well as the
volumes and networks they may use. Nonetheless, note that the automated sharing of images
involves Docker’s other main component known as Docker Hub, which is discussed in details
in 2.5. Additionally, it is important to note that the Docker engine literature tend to refer to
Docker images and containers as "Docker objects", although only the specific terms will be used
throughout this thesis for better clarity [26].

2.4.2 Managing images

As explained in 2.3.2 and 2.3.3, Docker images constitute the central piece of containerized
software virtualization in Docker. Although the Docker engine tends to blurry the perception
of Docker image management due to its accessible and intuitive CLI utility, it is important to
understand how they are operated behind the curtain. Whenever a Dockerfile is built into a
final image, all of its intermediate images become referred to as "blobs" or "layers". Each layer
contains the files and directories created based on its corresponding directive in the image’s
Dockerfile and is located under /var/lib/docker/image/overlay2/ on a Unix-based Docker host
(more details about Docker hosts in 2.3.4).

13

The order of an image’s layers as well as the rest of its metadata are contained in a JavaScript
Object Notation (JSON) configuration file referred to as the image’s manifest file. The latter
identifies the layers composing the image using a unique ID number. Prior to Docker version 1.10
introduced in February 2016, images were composed of a single layer with an ID consisting of a
randomly generated Universally Unique IDentifier (UUID) of a length of 256 bits [29]. In order
to retrieve a complete image, manifest files prior to Docker version 1.10 used a parent attribute
containing the UUID of the next layer to be retrieved. This way, complete images composed of
multiple layers in practise could be created and retrieved from registries.

Since Docker version 1.10 however, images’ layers are now identified through a hash of their
compressed content using the 256-bit version of the Secure Hash Algorithm (SHA) [30]. That
fundamental change has greatly improved security, making layer content directly addressable
through a unique SHA-256 digest. Manifest files have now removed the parent attribute or left
it completely empty to avoid breaking earlier specifications. Thus, all the layers composing an
image are now indexed in a single manifest file using their SHA-256 digests, which identifies
their content directly. It is important to note however that this new specification has made the
identification of an image’s parent a lot more challenging, as all parental references have been
eradicated from images’ manifests.

Figure 2.4: The Docker engine’s use of short layer IDs and long image digests

Regarding single Docker images as a whole, the latter are identified using a SHA-256 digest of
their manifest file. Contrary to layer IDs, image digests are always use in their entirety by the
Docker engine [31]. Indeed, layer IDs are commonly shorten within the Docker engine using
only the first 12 characters, as a attempt to improve human interaction with the engine. For
example, whenever an image is retrieved from a registry (referred to as "pulling"), the short ID
of each layer composing the image is displayed to the user, while the entire image digest is shown
as illustrated in figure 2.4. Finally, it is important to note that the use of short layer IDs and
the removal of an easy image parent identification method from the Docker engine’s API are
important details, which will play a major role in the methodology and results chapters of this
thesis.

2.5 Docker Hub

In combination with the Docker engine, Docker Hub constitutes an essential part of the Docker
container orchestration solution.

2.5.1 What is Docker Hub?

Docker Hub is Docker’s default image registry, consisting of the largest public library of Docker
images at the time of this writing [2]. As briefly mentioned in 2.3.3, container image registries

14

are private or public stateless and highly scalable servers used to store and distribute images to
the masses [27]. Within a registry, images are organized into so called repositories, which may
be visualized as folders holding images and maintained by different users.

At the time of this writing, Docker Hub hosts over 2.1 million repositories with approximately
80 billion downloads since the platform’s introduction in 2013 [3]. Each Docker Hub repository
contains a series of images for different versions of the same piece of containerized software.
Furthermore, all the images contained in a repository need to include a so called image tag,
identifying a specific image from another one. For example, a repository named <example-
repository> for the containerized software <example-software> may contain images tagged as
followed:

• <example-repository>/<example-software>:1.0.0

• <example-repository>/<example-software>:v0.9.4-server

• <example-repository>/<example-software>:2.00.035.00.20190115.1

It is important to note that although some repositories may contain a large number of tags, it
does not mean that their number of images is equally large. Indeed, a single image may have
an unlimited number of tags, whereas all the images contained within a same repository must
be unique. Thus, duplicate images with the exact same layers are not allowed to coexist within
a repository to avoid image impersonation and unnecessary redundancy. Furthermore, it should
be noted that the standard required for image tags is very loose, as they may consist of any
combination of lowercase and uppercase letters, digits, underscores, periods and dashes, with a
maximum of 128 characters [32]. Finally, note that the Docker literature tends to use the terms
"images" and "repositories" interchangeably, although the former are objects contained in the
latter and are significantly more numerous than the number of repositories available on Docker
Hub.

2.5.2 Repository types

As explained in 2.5.1, images on Docker Hub are organized into repositories managed by the
platform’s users. At the time of this writing, there exists four different types of repositories
fulfilling different best practices and security requirements.

First, Official repositories consist of a curated set of Docker repositories, aiming at providing
base OS and drop-in solutions for popular programming language runtimes, data stores, and
other services, while exemplifying Dockerfile best practices and ensure that security updates are
applied in a timely manner [4]. Due to their large popularity, Official repositories are maintained
by a dedicated team sponsored by Docker Inc., who is responsible for reviewing and publishing
all content in the Official images. As of April 5th 2019, Official repositories constitute the most
popular type of repositories with the largest number of downloads ranging from 50 000 to over
10 million pulls for the most popular ones [33]. Surprisingly however, the total number of Official
repositories is minimal, as it only represents 0.007 % of the global amount of available repositories
on Docker Hub, as illustrated in table 2.3.

Secondly, Community repositories contain images which may be uploaded by any user or or-
ganization [34]. Although their popularity varies from a couple of downloads to over 10 million
pulls, Community repositories are by far the most numerous type of repository on Docker Hub,
representing more than 99 % of the available repositories on the platform, as shown in table 2.3
below. Contrary to their three other peers, Community repositories do not need to fulfill any

15

Repository type Total Share (in %)

Official 151 0.007

Certified 44 0.002

Verified 252 0.012

Community 2,143,462 99.982

All 2,143,865 100

Table 2.3: Docker Hub’s repository type distribution as of April 5th 2019

special requirements, allowing anyone with a valid email address to open a Docker Hub account,
start initiating a Community repository and publish custom made images available for all users.

Thirdly, Verified repositories were introduced to Docker Hub in December 2018 as a result of
the merging of multiple Docker image registry platforms and in an attempt to make Docker Hub
more secure [9]. Indeed, Docker Inc. used to offer a separate platform for third party enterprise
vendors known as the "Docker store", as well as a hosted registry service dedicated to help users
connecting Docker to their existing cloud providers known as the "Docker Cloud". Since the end
of last year, the three services have been merged into a single place, making Docker Hub the one
and only Docker image registry and cloud service operated by Docker Inc.

Repository type Total Paid Share (in %)

Verified 252 26 10.317

Certified 44 11 25

All 2,143,865 37 1.726

Table 2.4: Docker Hub’s paid repository distribution as of April 5th 2019

As a result, Docker Hub now offers Verified repositories provided by third-party software vendors
such as Oracle, IBM or Microsoft. Similarly to their Official peer, Verified repositories are vetted
by Docker Inc. before their introduction on the platform. Their maintenance and the publication
of their images is however left entirely to the commercial entities. Moreover, the latter are allowed
to provide paid content via a subscription model, making some Verified repositories paid only.
As illustrated in table 2.4 however, the number of Verified repositories requiring a payment as of
April 5th 2019 is very limited, as it only consists of about 10 % of the total number of Verified
repositories and less than 2 % of the global amount on Docker Hub.

Fourthly, Certified repositories consist of a very small subset of Verified repositories, meeting
additional quality, best practise and security requirements established by Docker Inc. [9]. Making
up about 17 % of the Verified type, Certified repositories also contain a minimal amount of paid
repositories, with 25 % of them requiring a payment [table 2.4]. Thus, Certified images are
supposed to be the most stable and secure images available on the Docker Hub platform today.

Finally, note that the statistics available in table 2.3 and 2.4 are obtained directly from the
official Docker Hub’s website as of April 5th 2019, using the repository filters available through
the platform’s Web interface.

16

2.5.3 Repository naming convention

As discussed in 2.5.1, each Docker Hub repository is administrated by a user and contains a
series of images with different versions of the same piece of containerized software. Repositories
use therefore a naming convention based heavily on the username of their creator, as well as the
name of the software contained in the images they hold. The naming convention for all types of
repositories is therefore of the following form:

<namespace>/<containerized software>

Repository type Namespace Example

Official library library/ubuntu

Community <username> doct15/mysql

Certified/Verified store/<username> store/ibmcorp/db2wh_ce

Table 2.5: Docker Hub’s namespaces per repository type

As shown in table 2.5, a repository’s namespace is entirely dependent on its type. Indeed, Official
repositories are contained under the library namespace, whereas Community repositories simply
use the username of their creator. In a similar way, Certified and Verified repositories also make
use of their creator’s username, preceded by the store string.

Note that the library namespace is completely optional for Official repositories, which may be
identified as either library/<sotware-name> or directly <software-name> within Docker. Fur-
thermore, it should be noted that Verified repositories owned by the Microsoft publisher use a
completely dedicated naming convention, consisting of the mcr.microsoft.com namespace, fol-
lowed by an optional repository name and a required containerized software name such as:

• mcr.microsoft.com/mssql-tools

• mcr.microsoft.com/cntk/release

• mcr.microsoft.com/dotnet/framework/aspnet

The Microsoft publisher makes therefore heavily use of repositories of repositories, allowing the
latter to hold either images or other repositories (not both), which may lead to very long image
names such as the mcr.microsoft.com/dotnet/framework/aspnet. In that particular example, the
image for the containerized aspnet software is located under the framework repository, which in
its turn is located under the dotnet repository present under the mcr.microsoft.com namespace.

Finally, note that an image is identified within Docker through the use of a specific tag. As briefly
mentioned in 2.5.1, the Docker literature tends to use the terms "images" and "repositories"
interchangeably due to the misconception that an image related to a certain piece of software
may be identified through its repository name only. Nonetheless, an image is identified through
and only through the use of a tag, as a repository name such as library/ubuntu only identifies
a certain containerized piece of software, but not a specific version. Docker images identify
however precised version of a containerized piece of software, such as library/ubuntu:bionic or
library/ubuntu:xenial in the case of Ubuntu. Moreover, it is important to note that all repositories
make use of a default tag referred to as "latest", which does not necessarily identify the last
updated image in the repository, but is used by default when an image is pulled without specifying
a tag.

17

2.5.4 Docker image reusability

An extremely common practise in the Docker world is to base a new image on a so called
parent image containing basic files and libraries. As illustrated in figure 2.1, a parent image is
always specified as the very first line of a Dockerfile in the form of FROM <parent-image-name>
directive, which downloads the parent image from Docker Hub upon building of the new image
[35]. Thus, the rest of a Dockerfile’s declarations simply consist of modifying the parent image
(e.g. adding packages or directories), in order to create into a brand new one once the building
process is completed.

It is important to note that the vast majority of Docker images are based on a parent image,
whether the latter comes from an Official, Community or Verified repository on Docker Hub [7].
Nonetheless, using a parent image is in no way a requirement, as many of the popular images
used as parents such as Ubuntu or Debian are not based on anything. Such images are commonly
referred to as base images built from a Dockerfile containing no FROM directive or starting with
a FROM scratch declaration in order to signify their total independence.

Finally, the type of image allowed to be used as a parent depends on an image’s type. Indeed,
Official images are only allowed to be based on images of the same type, while Community images
may be based on any type. Similarly to their Official peers, Certified and Verified images are
solely allowed to use images of the same type as their parents, as well as Official images [7]. Note
that since Certified images are a sub-type of Verified images, they may therefore be based on
either a Certified or a Verified image, as well as an Official image.

2.5.5 Docker image dependencies

The possibility of extending a parent image into a brand new one greatly facilitates the creation of
new images for Docker users. However, that reusability creates a certain chain of dependencies
between images, raising a certain number of security concerns when it comes to vulnerability
isolation and inheritance.

For example, the Official Docker image for the Tomcat server (version 9.0-jre8 at the time
of this writing) is based on nothing less than three parent images, as indicated in figure 2.5
below. Indeed, that image is directly based on the official openjdk:8-jre image, which in its turn
is based on the Official buildpack-deps:stretch-curl image. Finally, the latter is based on the
Official debian:stretch image, which is a base image and therefore not based on anything else.
Nonetheless, the effective security of the official Tomcat image implies that patches are applied
to vulnerable images upstream, as any non-patched vulnerability in one of the parents makes the
children vulnerable.

Indeed, note that a child image only has one direct parent and may have multiple indirect parents.
A child image consists therefore of a simple extension of its parent, leading to the inheritance of
all the latter’s layers, as shown in figure 2.5. Consequently, that dependency chain leads child
images to also inherit all the vulnerabilities from their parent(s).

Dependency management is a recurrent security problem not only limited to Docker containers,
which has been largely studied in the computer science literature.

In [36], Lauinger et al. analyzed the challenge of maintaining JavaScript library dependencies up
to date and found that there is a strong need for better dependency management, as 37% of the
analyzed websites in 2018 included at least one dependent library with a known vulnerability.

18

based on

based on

based on

Tomcat
tomcat: 9.0-jre

6ae821421a7d
08f3d29745e3
c96693ff91d0
2e00dc04ad89
3cf45dbcf962

Debian
debian: stretch

6ae821421a7d

Buildpack-deps
buildpack-deps: stretch-curl

6ae821421a7d
08f3d29745e3

Openjdk
openjdk: 8-jre

6ae821421a7d
08f3d29745e3
c96693ff91d0
2e00dc04ad89

Figure 2.5: Dependencies of the Official Tomcat image on Docker Hub

In [37], Gaikovina Kula et al. examined the impact of library dependencies in GitHub in 2017,
covering over 4,600 GitHub software projects and 2,700 library dependencies.

They discovered that many repositories rely heavily on dependencies, but 81.5% of them keep
using outdated ones.

Dependency management is therefore an extensive problem within IT, which is essentially related
to the image dependency mechanism in the case of Docker containers.

19

2.5.6 Have you said API?

Surprisingly, the Docker Hub platform does not have any official API at the time of this writing.
Although there exists a documentation for the Docker registry HTTP API, the latter only ap-
plies to private registries but does not mention anything about Docker Hub’s entry points [38].
Nevertheless, specific HTTP requests greatly differing from the original registry API seem to be
valid towards the online platform. Thus, it is theoretically possible to make use of Docker Hub’s
unofficial and undocumented REST API, by filtering out valid requests using an automated trial
and error approach.

2.6 Docker Hub’s security landscape

Docker Hub’s security landscape constitutes the core of this thesis and is therefore an essential
part of this chapter.

2.6.1 Current knowledge

Due to the rather new aspect of Docker’s popularity and its rapid development, studies about
Docker Hub’s security landscape are limited but highly concerning.

In [39], Lin et al. demonstrated the poor security of Linux containers, which Docker containers
are an extension of. Their analytical study shows that containers are generally not very resistant
to internal exploitation, as 56.82% of the used exploits during their experiments could successfully
launch attacks from inside a container with a default configuration.

In [10], Gummaraju et al. studied how vulnerable Docker Hub images may represent a concrete
security threat. They found that over 30% of the official repositories hosted on the online
platform contain images highly susceptible to a variety of security attacks such as Shellshock-,
Heartbleed- or Poodle-based attacks, while about 40% of the community repositories are in that
case. Moreover, the empirical study revealed that 74% of all the images created in 2015 contained
relatively easy to exploit vulnerabilities such as Shellshock or Heartbleed.

In [11], Shu et al. made four main discoveries in their analytical study examining the state of
security vulnerabilities in Docker Hub images as of 2016 (date of the executed experiment). First,
they found that both Official and Community images contain more than 180 vulnerabilities on
average when considering all versions and that more than 80% of both types of images contain
at least one highly severe vulnerability. Secondly, the study shows that many images or not
updated frequently, as about 50% of both Community and Official images had not been updated
in 200 days, while about 30% of them had not been updated in 400 days. Thirdly, Shu et al.
discovered that vulnerabilities commonly propagate from parent to child images, as the latter
inherit 80 vulnerabilities from their parents on average, while child images typically add about 20
more new vulnerabilities to their extended parents. Finally, the analytical study points out that
many of the top vulnerable packages appear in the most popular base images such as Ubuntu,
Node or Debian images, suggesting that the root cause of such a severe security landscape may
be due to a potentially small set of very influential base images.

In [40], Zerouali et al. analyzed the relationship between outdated containers and their vul-
nerable/buggy OS packages, by examining 7,380 Official and Community Docker images based
on Debian in October 2018. They found that the number of outdated OS packages is highly

20

correlated to the number of vulnerabilities found in a container. Furthermore, the conducted
study shows that no image is devoided of vulnerable or buggy OS packages, confirming therefore
the claims of Shu et al. in their analytical study.

Based on the available literature and recent studies, Docker Hub’s security landscape seems
very concerning at the time of this writing, as many images contain an alarming amount of
vulnerabilities with a high propagation rate from parent to child images. It is however important
to note that the last comprehensive study conducted around this subject is dated from April
2016, which is almost three years old at the time of this writing. The security landscape of
Docker Hub may therefore have changed since the above studies were conducted, as the Docker
world is evolving extremely rapidly.

2.6.2 Docker Inc.’s response

In response to Docker Hub’s alarming security landscape pointed out by multiple research dis-
cussed in 2.6.1, Docker Inc. has introduced two main measures to the platform in an attempt to
make Docker Hub more secure [9].

Docker Security Scanning

Docker Security Scanning is a vulnerability scanning service introduced to Docker Hub in May
2016 [41]. Available for both Community and Official repositories at the time of its release,
the service provides a detailed security profile of a Docker image, by automatically analyzing
and detecting vulnerable software and dependencies at its layer level. Since March 31st 2018
however, the service has been only made available for Official and Certified repositories, leaving
Community and Verified repositories uncovered [42].

Moreover, Docker Security Scanning is a type of service which only scans a Docker image on
upload, meaning that once the image has been updated it is never analyzed again for vulner-
abilities. Indeed, it is true that a Docker image is immutable and therefore cannot be changed.
However, contained packages which are not vulnerable at the time of their upload do not mean
that they will not contain a discovered vulnerability later on.

Nonetheless, the Docker Security Scanning service constituted Docker Inc.’s first attempt to
improve the platform’s security, by integrating the service directly into Docker Hub’s Web inter-
face for Official repositories, while only sharing results with the appropriate vendors for security
reasons, when it comes to Certified repositories .

Certified & Verified repositories

In December 2018, Docker Inc. announced the merging of multiple Docker image registry plat-
forms to Docker Hub, resulting into the introduction of two new types of repositories to the
platform, defined as followed by the company [9]:

• Certified repository: "Docker Certified technologies are built with best practices, tested
and validated against the Docker Enterprise Edition platform and APIs, pass security
requirements, and are collaboratively supported."

• Verified repository: "High-quality Docker content from verified publisher. These products
are published and maintained directly by a commercial entity."

21

Certified and Verified repositories provide therefore high quality content maintained by third-
party software vendors such as Oracle, IBM or Microsoft. Furthermore, Certified repositories
consist of a very small subset of Verified repositories, meeting additional quality, best practise
and security requirements established by Docker Inc. The introduction of Certified and Verified
repositories to Docker Hub consists therefore of a second attempt in making the online platform
more secure, by providing images of higher quality vetted by Docker Inc. before their introduction
on the platform.

Finally, note that Verified and Certified repositories have technically existed since 2016 through
Docker Inc’s enterprise image registry for third part vendors known as the "Docker Store", which
was merged into Docker Hub in December 2018 (more information about repository types in 2.5.2.

22

Chapter 3

Methodology

This chapter describes the methodology adopted in order to answer the thesis’ problem statement
formulated in the form of three central research questions:

1. Have the security measures introduced by Docker Inc. in response to previous
research improved Docker Hub’s security landscape and to what extent?

2. Are vulnerabilities still inherited from images’ parent(s) and in what propor-
tion?

3. How are discovered vulnerabilities distributed across repository types?

Note that the above problem statement implies many more research questions which are discussed
in details in section 3.4.

3.1 Objectives

This research aims at answering the problem statement introduced in 1.2 using a methodology
relying on three main phases. First, the design of a suitable software to gather metadata, vulner-
ability and parental information from a set of defined images on Docker Hub will be developed.
Additionally, detailed research questions implied by the problem statement will be identified.
Secondly, the designed software will be implemented using selected tools and technologies, while
the research questions identified in phase 1 will be translated into noSQL queries for further use
during the last phase of our methodology. Finally, the latter will consist of conducting experi-
ments using the implemented software in phase 2 and provide a detailed analysis of the gathered
data using the research queries developed previously, in view of answering the original problem
statement.

The thesis’ objectives may therefore be illustrated as shown in figure 3.1 and are detailed as
followed:

1. Design

(a) Define the sets of Docker images involved in the research

23

Detailed research
questions

Result 1
Design

Result 2
Implementation

Result 3
Measurements and analysis

Discussion and Conclusion

Defined set of
Docker images Design

Implemented
software

Experiments

Designed
software

Detailed research
queries

Deployed
software Result data NoSQL database

Answer to problem
statement

Figure 3.1: The thesis’ methodology

(b) Identify preliminary requirements needed to conduct the research

(c) Create a software to gather metadata, vulnerability and parental information for each
set of Docker images involved in the research

(d) Design the format of the gathered metadata and vulnerability information for an
image

(e) Identify detailed research questions implied by the problem statement

2. Implementation

(a) Identify tools and technologies required for creating and running the software designed
in the previous phase

(b) Implement the software designed in phase 1 to gather metadata, vulnerability and
parental information for each set of Docker images involved in the research

(c) Build the environment required to run the implemented tool

(d) Translate the detailed research questions identified in phase 1 into noSQL research
queries

24

3. Measurements and analysis

(a) Conduct an experiment for each set of Docker images defined in phase 1

(b) Import the gathered metadata, vulnerability and parental information of each set into
a noSQL database for analysis

(c) Make use of the noSQL queries implemented in phase 2 in order to answer the problem
statement

Note that contrary to similar research studying Docker Hub’s security landscape, this research
not only intends to answer the problem statement discussed in 1.2, but it also aims at providing
an appropriate solution to make this study reproducible by other researchers, while providing a
basic tool to conduct similar future studies.

3.2 Design

The design phase of the methodology aims at defining the study’s scope in terms of concrete
images and repositories that should be taken into consideration for this study, as well as defining
detailed research questions and design a suitable software to conduct experiments and gather
metadata, vulnerability and parental information for the defined data set of Docker images, in
view of answering the defined research questions.

3.2.1 Data set definition

As previously mentioned in the background chapter, the Docker Hub platform contains over two
million images in total at the time of this writing [3]. A limited set of repositories and images
needs therefore to be defined in order to conduct our study.

First, it is important to determine the subset of repositories that should be part of the study.
Since one of the main goals of this work is to determine whether the security measures introduced
by Docker Inc. in the form of an image security scanner and two new types of repositories with
higher security requirements have modified Docker Hub’s security landscape, it has been agreed
that all types of repositories should be analyzed, especially the ones introduced as an attempt
to increase security on Docker Hub. As discussed in details in 2.5.2, Community repositories
make up more than 99.98% of all repositories on Docker Hub, leaving Official, Certified and
Verified images with a very minimal amount of repositories. Thus, all the repositories of those
three types will be a part of the studied data set, whereas only a fixed length subset of randomly
selected Community repositories among the most popular ones will be taken into account (e.g.
500 repositories).

Secondly, the set of images within each analyzed repository needs to be strictly defined, as many
repositories contain up to several hundred images. Since this research aims at conducting an
analysis study of Docker Hub’s security landscape in view of answering the detailed research
questions discussed in 3.2.5, it has been chosen to only analyze the most recent image in each
repository, as it represents their potentially least vulnerable image due to its most up-to-date
property. Indeed, a repository’s most up-to-date image is the one that should include most of the
patches available for the vulnerable packages it contains. Thus, only the most recent image in
each of the considered repositories will be part of the study’s data set. Note that a repository’s

25

most recent image may consist of a brand new image or a previously uploaded image which has
been updated.

Finally, the scope of this study will limit the chosen data set to images compiled for the x86-
64-bit architecture and dedicated to the Linux platform only. Thus, Docker images compiled for
the Windows platform or other processor architectures will not be taken into account, as their
number in Docker Hub’s ocean is very minimal [33].

3.2.2 Preliminary requirements

The design of the proposed software described in 3.2.3 in view of conducting experiments requires
the preliminary population of a dedicated parent database to retrieve an image’s parents, as well
as the manual checkout of certain types of images to allow their download.

A parent database

As previously discussed in the background chapter, one of the main research questions of this
thesis is to address whether vulnerabilities are still largely inherited from images’ parent(s), as
demonstrated in similar research prior to Docker’s Inc.’s introduction of new security measures
2.6.1. Thus, it is essential to be able to determine the parental relationship between images in
order to successfully analyze the evolution of vulnerability inheritance between images in Docker
Hub. As explained in details in the background chapter, retrieving an image’s parent is not as
easy as it used to be since the changes introduced in the version 1.10 of the Docker engine 2.4.2.

Indeed, images now consist of a collection of tarball files identified through layer IDs, where each
ID corresponds to a SHA256 hash of the layer’s content. Whenever an image is based on another
image, it inherits all the layers from its parent as it really consists of an extension of the latter.
We propose therefore to take advantage of that layer inheritance mechanism in order to retrieve
an image’s parent. However, this methodology implies that a parent database containing a layer
signature uniquely identifying all the images present in all the repositories susceptible to be used
as parents is created prior to the conduction of each experiment. As explained in 2.5.4, Official
images which are not base ones are indeed extending another Official image, whereas Certified
and Verified images may be based on Certified, Verified or Official images. As for Community
images, they may simply be based on any type of image.

Having a parent database containing a unique layer signature for all the images comprised in
all the Official, Certified and Verified repositories will therefore allow determining whether an
image has a parent, by simply looking for the upper layer combination of an input image into the
database. This way, the latter should be able to return the name and tag of an image’s parent
if any, as illustrated in figure 3.2 below. Note that the designed format of the parent database
planned on being used consists of a single file using the JavaScript Object Notation (JSON)
format and will not consist of a strictly speaking database able to handle queries. However, the
JSON format allows finding data in a way that should be efficient enough for the amount of data
that the parent database will contain.

26

Parent database (JSON)

parent?

<repository 1>:<image 1's tag>

parent?

none

[
		{
				<repository	1>:	[
																						{
																								"fs_layers":		unique_layer_id_1
																																						unique_layer_id_2,
																								"image_tag":		<image	1's	tag>
																						},	
																						{
																								"fs_layers":		<image	2's	layer	combination>,
																								"image_tag":		<image	2's	tag>
																						}
																						...
],
				<repository	2>:	[
																						{
																								"fs_layers":		<image	1's	layer	combination>,
																								"image_tag":		<image	1's	tag>
																						},
																						{
																								"fs_layers":		<image	2's	layer	combination>,
																								"image_tag":		<image	2's	tag>
																							}
																							...
],
				...
		}
]

unique_layer_id_1
unique_layer_id_2
unique_layer_id_3
unique_layer_id_4
unique_layer_id_5

Input image
with parent

Input image
without parent

unique_layer_id_6
unique_layer_id_7

Figure 3.2: The planned parent database’s design

Manual image checkout

As already discussed in the background chapter, the two new types of repositories introduced
by Docker Inc. in an attempt to increase its public registry’s security landscape are provided
by vetted third-party software vendors who often offer proprietary and/or paid content. As a
consequence, many providers require a valid Docker Hub account as well the manual checkout
of their Certified/Verified repositories providing some contact information in order to be able to
download the images they hold. The conduction of experiments to gather metadata, vulnerability
and parental information for the set of Docker images defined in 3.2.1 using the designed software
discussed in the next subsection will therefore require a preliminary manual checkout of those
repositories through the platform’s website. Note that Certified and Verified repositories which
require a payment will not be taken into account in this research, as their number is extremely
minimal.

3.2.3 Overview

Once the preliminary requirements and the data set of interest are defined, a suitable software
to gather metadata, vulnerability and parental information for the defined data set of Docker
images is needed. As shown in figure 3.3 below, the designed software interacts with three main
components.

First, a list with the most recent image in all the repositories of a specific type or a subset of them
(e.g. Official repositories) will be retrieved from Docker Hub. Secondly, the software should be
able to interact with the Docker engine running on the same machine in order to download all the
images in the retrieved list of most recent images and gather all of their metadata and parental
information. Finally, all the downloaded images will be analyzed for vulnerability identification

27

Software

Docker Hub

Vulnerability
database

Image scannerDocker Engine

Parent database

1

2

3

Result data

{JSON}

{JSON}

4

NoSQL databaseResearch
queries Answers

5

Figure 3.3: The planned design’s overview

using an appropriate Docker image scanner, as well as a suitable vulnerability database (more
details about the chosen tools and technology in 3.3.1). The result of an experiment using
this software will consist of a list of structured objects containing all the gathered metadata,
vulnerability and parental information of each of the analyzed images into a JSON formatted
file discussed in details in the next subsection. The result data will then be able to be imported
into a noSQL database for further analysis using what will be referred to as "research queries"
discussed in the 3.3 implementation section of this chapter.

3.2.4 Result data format definition

As previously mentioned at the end of the design subsection in 3.2.3, it is planned to import
the result data structured in the JSON format into a noSQL database for further analysis. Due
to the large number of metadata, vulnerability and parental information gathered about each
image composing the defined data set of Docker images to be studied, it is necessary to select,
design and formally define the structured format of those collected data.

The latter will actually be stored in two separate JSON files, each containing a list of structured
objects holding the gathered data. Indeed, the first file referred to as the "analysis file" will con-
tain all the collected metadata and parental information of each of the analyzed images, whereas
the second file referred to as the "vulnerability file" will contain all the gathered vulnerability
information for each of the discovered vulnerabilities during an experiment.

28

Analysis results’ format definition

As illustrated in the below 3.1 listing, each JSON object representing an analyzed image in the
analysis file will contain a total of 9 attributes structuring the collected metadata and parental
information about the image. Besides basic metadata information such as the image’s name, tag
or type, the rest of the attributes have been chosen based on the amount of valuable information
they potentially provide. For example, the number of times an image has been downloaded (re-
ferred to as "pulling") may provide valuable information to see whether there exists a correlation
between an image’s number of vulnerabilities and number of pulls. The same approach may
also be applied to an image’s last updated timestamp in order to see whether it is correlated
to the image’s total number of vulnerabilities. The retrieved parental information is planned
on consisting only of a single string referring to the parent’s name and tag for quick and easy
identification (empty otherwise).

Finally, it is important to note that the only vulnerability information included in the analysis
file will consist of the total number of vulnerabilities contained in each image, as well as a list of
CVE numbers referring to their detailed vulnerabilities located in the vulnerability file.

1 [
2 {
3 " image_id" : <image 1 ' s d ige s t >,
4 " type" : <image 1 ' s type o f image>,
5 "name" : <image 1 ' s name>,
6 " tag " : <image 1 ' s tag >,
7 " last_updated " : <image 1 ' s l a s t updated epoch timestamp >,
8 " to ta l_pu l l ed " : <image 1 ' s t o t a l pu l l count >,
9 " v u l n e r a b i l i t i e s " : [<image 1 ' s l i s t o f CVEs>] ,

10 " t o t a l_vu l n e r a b i l i t i e s " : <image 1 ' s t o t a l num. o f v u l n e r a b i l i t i e s >,
11 " parent " : <image 1 ' s parent i f any>
12 } ,
13 {
14 " image_id" : <image 2 ' s d ige s t >,
15 " type" : <image 2 ' s type o f image>,
16 "name" : <image 2 ' s name>,
17 " tag " : <image 2 ' s tag >,
18 " last_updated " : <image 2 ' s l a s t updated epoch timestamp >,
19 " to ta l_pu l l ed " : <image 2 ' s t o t a l pu l l count >,
20 " v u l n e r a b i l i t i e s " : [<image 2 ' s l i s t o f CVEs>] ,
21 " t o t a l_vu l n e r a b i l i t i e s " : <image 2 ' s t o t a l num. o f v u l n e r a b i l i t i e s >,
22 " parent " : <image 2 ' s parent i f any>
23 } ,
24 . . .
25]

Listing 3.1: The designed analysis JSON file

Vulnerability results’ format definition

As illustrated in the below 3.2 listing, all the detailed vulnerabilities collected about the analyzed
images of an experiment will be stored in a dedicated JSON formatted file. Although many
metadata may be gathered about software vulnerabilities, only three types of information are
considered valuable for this study, besides a vulnerability’s CVE number. Indeed, the package
name and version affected by a specific vulnerability, as well as its severity level will be essential

29

for our study in order to analyze whether one of those attributes stand out for certain types of
Docker images or across them.

1 [
2 {
3 "cve_number" : <vu l n e r a b i l i t y 1 ' s CVE number>,
4 "package_name" : <vu l n e r a b i l i t y 1 ' s a f f e c t e d package name>,
5 "package_version " : <vu l n e r a b i l i t y 1 ' s a f f e c t e d package vers ion >,
6 " s e v e r i t y " : <vu l n e r a b i l i t y 1 ' s s ev e r i t y >
7 } ,
8 {
9 "cve_number" : <vu l n e r a b i l i t y 2 ' s CVE number>,

10 "package_name" : <vu l n e r a b i l i t y 2 ' s a f f e c t e d package name>,
11 "package_version " : <vu l n e r a b i l i t y 2 ' s a f f e c t e d package vers ion >,
12 " s e v e r i t y " : <vu l n e r a b i l i t y 2 ' s s ev e r i t y >
13 } ,
14 . . .
15]

Listing 3.2: The designed vulnerability JSON file

3.2.5 Detailed research questions definition

As discussed in 3.2.3, the JSON formatted result data of each experiment will be imported into a
noSQL database for further analysis. The objective is to analyze all of the gathered data through
so called "research queries", which will simply consist of a noSQL translation of textual detailed
research questions implied by the thesis’ problem statement. As explained in 1.2, the latter
consists of three main research questions which imply many more. For example, the question
Are vulnerabilities still inherited from images’ parent(s) and in what proportion? imply that the
following detailed questions need to be addressed:

1. What proportion of Docker images depends on a parent?

2. What proportion of Docker images contain inherited vulnerabilities?

3. How many vulnerabilities are inherited by an image in average?

The above list is only a very small sample of the detailed research questions which need to be
defined in order to deeply answer the problem statement. The last part of the design phase
will therefore consist of defining detailed research questions that may be translated into research
queries in the implementation phase, in view of answering the original problem statement in
details during the analysis.

3.3 Implementation

The implementation phase of the methodology aims at defining research queries, as well as imple-
menting the software designed in the previous section using appropriate tools and technologies,
while creating a dedicated architecture to deploy the software and conduct experiments.

30

3.3.1 Tools and technologies

The implementation and deployment of the software designed in 3.2.3 to conduct experiments
gathering metadata, vulnerability and parental information for the defined data set of Docker
images requires a defined set of tools and technologies.

Python 3

The software will be implemented in Python 3 as a result of two factors. First, the software
is planned on interacting heavily with the Docker engine in order to download images from
Docker Hub and gather their basic metadata information once downloaded (explained in details
in 3.2.3). Since Docker offers a complete Software Development Kit (SDK) in Python for its
Docker engine, the programming language is therefore a language of choice for the implemented
software. Secondly, the latter will also interact densely with the Docker Hub platform in order
to retrieve lists with the most recent images in all the repositories of a specific type or a subset of
them, as well as collecting extra metadata information about those images. Due to the language’s
huge library versatility for Web interactions, Python is therefore the absolute language of choice
for implementing the software. Note that the version 3 of the language will be used as it will be
long-term supported, whereas version 2 will not be maintained after 2020 and one of this work’s
objectives is to provide a durable basic tool to conduct similar future studies [43].

Docker Hub’s API

As discussed in 2.5.6, Docker Hub does not possess any documented API at the time of this
writing. Nonetheless, a hidden and undocumented REST API seem to exist, as some very specific
HTTP GET requests towards the hub.docker.com domain are authorized and return valid JSON
objects. Thus, Docker Hub’s hidden API is planned on being used by the implemented software
to communicate with the platform and retrieve lists of images to be downloaded, as well as
obtaining extra metadata information about them. A list of valid HTTP GET requests will
therefore be needed to be identified first, in order to implement them into a Python API and be
used actively by the rest of the software. Note that the provided Python API, as well as the list
of valid HTTP requests towards Docker Hub’s API will constitute an extra contribution to the
research community besides our result data an analysis.

Clair scanner

As explained in details in 3.2.3, Docker images which are downloaded in order to be studied will
be scanned for vulnerability information gathering using an appropriate image scanner. Although
there exists several paid, free, closed and open source alternatives, the open source Clair software
developed by CoreOS, a Red Hat company, is the technology of choice for this task. Indeed, Clair
is considered the state of the art of container image vulnerability scanners and has been used
by previous similar research such as the one conducted by Shu et al. in 2016 [11] (discussed in
details in 2.6.1 of the background chapter). Since one of this study’s objectives is to see whether
the security measures introduced by Docker Inc. in response to previous research have improved
Docker Hub’s security landscape, the vulnerability information collected from analyzed images
should be as comparable as possible to previous studies. Thus, Clair is the technology of choice
selected to conduct static analysis of the set of Docker images that will be studied.

Nonetheless, the Clair software comes in multiple implementations which offer different degrees
of complexity with distinct architectural differences [44]. Originally based on a client-server

31

paradigm which may potentially make Clair’s setup heavy and fastidious, other standalone and
containerized implementations offer out of the box Clair functionalities, which are more suitable
for our purpose. For example, Clair scanner consists of an implementation of the Clair technology
into a standalone vulnerability scanner for the analysis of local Docker images [45]. The tool
is actually based on the original but poorly maintained analyze-local-images utility created by
CoreOS and is actively supported at the time of this writing. Whenever a Docker image is
inspected by Clair scanner, the latter investigates each and every layer making up the image
using the Clair technology, in order to identify contained packages and verify whether their
version is contained in a vulnerability database. Clair scanner offers a containerized version of
the software, as well as a containerized version of the vulnerability database, which is updated
daily and indexes vulnerabilities from multiple sources such as Debian’s security bug tracker,
the National Institute of Standards and Technology (NIST)’s National Vulnerability Database
(NVD) or the Alpine Security Database [46]. Clair scanner will therefore be the tool of choice
selected to interact with the implemented software and analyze the set of downloaded Docker
images to be studied for vulnerability information.

MongoDB

As discussed in 3.2.3 of the design section above, the result data consisting of a list of structured
objects containing all the gathered metadata, vulnerability and parental information of each of
the analyzed images into a JSON formatted file is planned on being imported into a noSQL
database. Due to its quick setup, multi-platform support and easy declarative query language
using JSON syntax, MongoDB will be the preferred noSQL database for holding the result data
in view of further analysis from any machine.

3.3.2 Architecture

Once the software to gather metadata, vulnerability and parental information for each set of
Docker images involved in the research is implemented using the tools and technologies discussed
in 3.3.1, it may finally be deployed onto a suitable architecture for conducting experiments.
Although the latter may be conducted on a series of *nix based platforms, it is important to
note that some images which will be analyzed may consist of several gigabytes. Considering a
platform with a large disk space capacity and a high speed network, while providing fast recovery
in case of problems is therefore essential. The OpenStack platform hosted at Oslo Metropolitan
University, Norway (OsloMet) fulfills such requirements and will therefore be the platform of
choice to deploy the implemented software.

As illustrated in figure 3.4 below, the software should be deployed onto a single VM running in
OsloMet’s own OpenStack environment with the Docker engine installed and an access to the
outside world in order to communicate with the Docker Hub platform. Furthermore, a contain-
erized version of Clair scanner and a containerized Clair database will be deployed alongside
the software and the Docker engine running inside the VM, to provide the software with Docker
image vulnerability scanning capabilities. Note that the Clair services will not be communicating
with the outside world, as they should only interact with each other and the deployed software
to retrieve an image’s vulnerability information. Finally, a preliminary parent database gener-
ated by the deployed software through the Docker engine during its initialization phase will also
be located aside the other components in order to successfully retrieved images’ parents when
applicable.

32

Software

Clair database

Clair scannerDocker Engine

Parent database

1

2

3

Docker Hub

5432:5432

6060:6060

{JSON}

Result data
{JSON}

VM

OpenStack

4

Figure 3.4: The planned architecture

It is important to note that the architecture planned on being used to deploy the software and
conduct experiments will not include the Mongo database discussed in 3.3.1, as its only purpose
is to allow collecting data and not provide a solution for data analysis. Indeed, the latter will
be executed locally on one of our machines using an instance of MongoDB and a copy of the
analysis and vulnerability files gathered during experiments, as discussed in 3.4.

3.3.3 Intended workflow

Once the implemented software is deployed onto an OpenStack VM loaded with the parent
database, the Docker engine and the Clair scanner services, experiments to gather metadata,
vulnerability and parental information for each set of Docker images involved in the research
may be conducted. The intended workflow planned on being used for conducting experiments
with each type of repository consists of six central steps once the deployed software is run, as
illustrated in figure 3.5 below.

First, a list of names and tags for the most recent images in each repository of the required type
is retrieved from Docker Hub through its identified API. Secondly, all the images retrieved in
the list are downloaded locally on the OpenStack VM running the software for further analysis.
Thirdly, basic metadata extracted directly from the local images such as their ids, names and

33

Start End

Retrieve a list of name and tags for the
most recent images in each repository
of the specified type from Docker Hub

Researcher runs an experiment for a specific
type of repository using the implemented software

Success?

Collect basic metadata and parental
information

YES

Collect extra metadata

YES

Success?

Success?

Collect vulnerability information

YES

Success?

YES

Export the collected metadata, parental and
vulnerability information to fileNO

NO

NO

NO

Figure 3.5: The planned experiments’ workflow

tags are collected, as well as parental information retrieved via the preliminary parent database
generated by the software prior to the conduction of each experiment (more details in 3.2.2).
Fourthly, extra metadata such as images’ last updated timestamp or total number of pulls is
obtained from Docker Hub’s API for each of the downloaded images. Fifthly, each local image
is scanned for vulnerabilities using Clair scanner and its vulnerability database. Finally, all the
collected basic and extra metadata information, as well as the gathered parental and vulnerability
information is structured into JSON objects as explained in 3.2.4 and exported to a vulnerability
and analysis JSON file, which may be imported into a Mongo database later on for further
analysis through the use of implemented research queries.

3.3.4 Research queries definition

As discussed in 3.2.3, the JSON formatted result data of each experiment will be imported into a
noSQL database for further analysis. The objective is to analyze all of the gathered data through
so called "research queries", which consist of a noSQL translation of the textual detailed research
questions identified in the design phase of our methodology in 3.2.5. For example, the detailed

34

question What proportion of Docker images depends on a parent? may be translated into a
noSQL research query as followed:

db.getCollection(<name>).find({"parents": {"$ exists" : true, "$ ne" : ""}},
{ _id: 0, name: 1, parents: 1 }).count();

The last part of the implementation phase will therefore consist of translating all the detailed
research questions identified in the design phase of the methodology into research queries, in
view of using them to address the original problem statement in depth during the analysis.

3.4 Measurements and analysis

As explained in 3.3.2, measurements will be made through the conduction of experiments for
each set of defined Docker images intended to be studied. Indeed, those measurements will be
executed from an OpenStack Cloud architecture and will consist of a collection of metadata,
vulnerability and parental information of each of the analyzed images into a list of structured
JSON objects contained in two distinct result files (explained in details in 3.2.4). The obtained
JSON files are thereafter intended to be imported into a noSQL database such as MongoDB for
further analysis through the use of research queries discussed in details in 3.3.4.

As briefly mentioned in 3.3.2, the analysis is not intended to be conducted on the OpenStack
platform, but rather on a local machine loaded with an instance of MongoDB. This way, the
analysis of the collected data may be conducted anywhere, without having to rely on a third
party platform such as OpenStack or any specific OS thanks to MongoDB’s and the JSON
format’s cross-platform compatibility. Moreover, the analysis will intend to answer the identified
detailed research questions mentioned in 3.2.5 of our methodology, by using their translated
version in noSQL referred to as research queries discussed in 3.3.4.

The final phase of this thesis’ methodology aims therefore at conducting measurements through
data collection and analyze the obtained results using detailed research queries, in view of an-
swering the original problem statement introduced in 1.2.

3.5 Expected results

It is expected that each set of Docker images to be studied and defined in 3.2.1 will consist of a
JSON formatted analysis and vulnerability file containing a collection of metadata, vulnerability
and parental information for each of the analyzed images in the set. Although some images
will be skipped due to their incompatible platform as discussed in 3.2.1, it is expected that a
vast majority of those images will be successfully analyzed. Furthermore, it is anticipated that
the result JSON files will be importable into a noSQL database such as MongoDB for further
analysis and that such results will be analyzable through the help of our implemented research
queries to answer the original problem statement.

Note that there exists some uncertainties around the potentially excessive downloading of images
from the Docker Hub platform, which may lead to the blacklisting of our OpenStack VM’s
public IP address. In that case the use of a proxy such as a Virtual Private Network (VPN)

35

is intended to be used in order to switch between multiple IP addresses. Additionally, it is
unclear whether certain images with very specific properties may require some hard coding
of their metadata information for a successful retrieval and complete measurement through the
implemented software, as some repositories may not follow recommended standards and practises.

Finally, Certified repositories are expected to provide the best security level of all types, followed
by Official and Verified repositories anticipated to be similarly secure and concluded by Com-
munity repositories which are expected to offer the worst level of security of all four types of
repositories. Indeed, Certified repositories are supposed to provide better security standards as
explained in 2.5.2, they are therefore expected to be the most secure repositories of all types,
with the lowest number of vulnerabilities in average, as well as the least number of vulnerabil-
ities with a high severity. Moreover, Official and Verified repositories vetted by Docker’s team
as well as trusted third party vendors are expected to provide a moderate level of security with
a limited number of vulnerabilities and severity level in average due to their approved profile
provide by Docker Inc. Community repositories however may be uploaded by anyone and are
therefore anticipated to contain a large number of vulnerabilities in average with a high level of
severity. It is also important to note that most of the inherited vulnerabilities are expected to
be acquired from Official images, as they seem to be the most popular ones on Docker Hub at
the time of this writing.

36

Chapter 4

Result 1: Design

This chapter describes the result design of the methodology outlined in chapter 3, defining the
study’s scope in terms of concrete images and repositories that will be analyzed, as well as the
designed software that will be used to conduct experiments and gather metadata, vulnerability
and parental information for the defined data set of Docker images, in view of answering the
defined research questions identified during this phase of the methodology.

4.1 Data set

As previously mentioned in 2.5.1, Docker Hub hosts over two million repositories at the time of
this writing, making a comprehensive study of the whole platform out of scope for this thesis.

4.1.1 Defined data set

Since one of the main goals of this work is to determine whether the security measures introduced
by Docker Inc. in the form of an image security scanner and two new types of repositories
with higher security requirements have modified Docker Hub’s security landscape, all types of
repositories were analyzed.

As discussed in detailed in 2.5.2, Community repositories make up more than 99.98% of all
repositories on Docker Hub, leaving Official, Certified and Verified images with a very minimal
amount of repositories (a few dozen to a couple of hundred). Thus, all three types of repositories
were part of the studied data set in their entirety, whereas only 500 out of 1500 randomly selected
Community repositories among the most popular ones were included in this research due to time
constraint.

Moreover, many repositories carry hundreds or even thousands of images. For that reason, it
was chosen to solely analyze the most recent image in each repository, as such images should
consist of the least vulnerable image in their repository due to their most up-to-date property.

Finally, it should be noted that this study limited the chosen data set to images compiled for the
x86-64-bit architecture and dedicated to the Linux platform only. Thus, Docker images compiled
for the Windows platform or other processor architectures were not taken into account, as their

37

number in Docker Hub’s ocean is very minimal [33]. Nonetheless, skipped repositories did not
limit themselves to the ones incompatible with the Linux platform or x86-64-bit architecture,
as many repositories contained unpredictable or abnormal properties leading to their leaping as
explained in the next subsection.

4.1.2 Skipped repositories

Due to unpredictable or abnormal properties, some repositories defined in our data set in 4.1.1
and available on Docker Hub were not included in this study. There was mainly six different
reasons for a repository to be skipped from our analysis.

First, certain repositories such as the "portworx/px-dev" Certified repository were visible through
Docker Hub’s Web interface but were not downloadable through the docker pull command
provided by the repository owner, throwing the below error. The same error message applied to
20 other repositories, which were therefore excluded from the analyzed data set of images. Note
that the complete list of skipped repositories due to that error is provided in Appendix A.2.

Error response from daemon: manifest for store/portworx/px-dev:latest not found

Secondly, repositories containing images only compiled for other processor architectures than
the x86-64-bit architecture or the Linux platform were skipped throwing one of the below errors.
Note that most of the incompatible repositories were maintained by the Microsoft publisher at
the time of this writing and constituted a total of 10 repositories listed in details in Appendix
A.3.

no matching manifest for unknown in the manifest list entries

image operating system "windows" cannot be used on this platform

Thirdly, the Official repository known as "scratch" was a special repository which did not contain
any image that may be pulled, run or tagged, as it simply consisted of a reserved repository which
may be optionally used in a Dockerfile when creating a base image, as explained in 2.5.4. Thus,
the Official scratch repository was skipped from the analysis.

Fourthly, images throwing a "Manifest not found" error due to miscellaneous reasons such as
internal server errors or an over solicited Docker daemon incapable of handling a certain pulling
request were automatically handled by our software and skipped from analysis.

Fifthly, certain Microsoft repositories containing only other repositories and no images as ex-
plained in details in 2.5.3 were also skipped. Indeed, repositories such as "microsoft-dotnet-
framework" were handled as any other repository on Docker Hub, but they did not contain any
image, leading to the below error to be thrown when attempted to be pulled. Note that a total
of 9 repositories were in that case at the time of this writing, all maintained by the Microsoft
publisher and listed out in details in Appendix A.4.

Error response from daemon: pull access denied for microsoft-dotnet-framework,
repository does not exist or may require 'docker login'

38

Finally, the remaining images which were not included in this study were unsupported images
by Clair scanner , duplicate repositories or images without a valid tag.

Initial number

of repositories

Total analyzed

repositories

Skipped

repositories

Analysis

rate

Official 151 128 23 84,77%

Community 500 500 0 100,00%

Verified 208 98 110 47,12%

Certified 44 31 13 70,45%

Total 903 757 146 83,83%

Table 4.1: A summary of the experiments performed in this study

Table 4.1 shows a summary of the repositories which were not included in this research. To
sum up, about 20% of the initial number of repositories were skipped. Furthermore, it should
be noticed that 100% of the planned number of Community repositories were actually analyzed,
as any skipped repository due to a lack of Clair scanner support was replaced by another one
among the most popular Community repositories. Finally, note that the initial number of Verified
repositories (208) did not include Certified repositories, as the latter (44) were analyzed on their
own.

4.2 Preliminary requirements

Preliminary requirements were needed to be taken into consideration before developing the soft-
ware. The planned parent database discussed in 3.2.2 became separated into two different data-
bases, while the detailed manual checkout of certain Certified and Verified repositories mentioned
in the planned design were executed as precised below.

4.2.1 Two parent databases

The single parent database proposed in the planned design in 3.2.2 became separated into two
distinct databases: one for Official images and one for Verified images (including Certified). As
explained in 3.2.2, our methodology implies that a parent database containing a layer signature
uniquely identifying all the images present in all the repositories susceptible to be used as parents
is created prior to the conduction of each experiment. As a reminder from 2.5.2, Official images
which are not base ones are extending another Official image, whereas Certified and Verified
images may be based on Certified, Verified or Official images. As for Community images, they
may simply be based on any type of image.

Having two distinct parent databases containing a unique layer signature for all the images
comprised in all the Official, Certified and Verified repositories allowed therefore determining
whether an image had a parent, by simply looking at the upper layer combination of an input
image into the databases. This way, the latter were able to return the name and tag of an
image’s parent if any, as illustrated in figure 4.1 below with the Official parent database. In

39

6ae821421a7d

debian:stretch-slim

6ae821421a7d
08f3d19635b0
dc8a54b8000b
b2c1d103db99
edfa752aa38a
583d37cbf2f0
c7846a240c1d
d8f9f0fd02fe
01d43e56770d
dbe439e2caf9
209dd35ef060
3d97847926b1
e2dfaa5afe2c
c39665b60f96
f36ef5821516
c96693ff91d0
2e00dc04ad85

wordpress:latest

[
 {
 php: [
 {
 "fs_layers": "08f3d19635b0dc8a54b8000b[...]3d97847926b1"
 "image_tag": "7.2apache",
 "last_updated": "1549118997"
 },
 {
 "fs_layers": "08f3d19635b0dc8a54b8000b"
 "image_tag": "7.2cli",
 "last_updated": "1549104597"
 }
 ...
],
 debian: [
 {
 "fs_layers": "6ae821421a7d",
 "image_tag": "stretchslim",
 "last_updated": "1548586197"
 },
 {
 "fs_layers": "2b15b7abe8b3f0cdaa86a24e",
 "image_tag": "wheezybackports",
 "last_updated": "1549795797"
 }
 ...
],
 ...
 }
]

Official parent database
parent?

php:7.2-apache

parent?

none

Figure 4.1: The designed Official parent database

that example, the input image "wordpress:latest" successfully retrieves its parent, the "php:7.2-
apache" image, from the database. The Wordpress image contains a total of 17 layers and the
database contains all the layer combinations of all the Official images. As shown in the above
figure, all the repositories’ images were stored in a list with their tags and layer combinations
inside a nested JSON object.

Thus, a parent lookup first traversed through the upper layer combination of an image, in order
to find whether that combination was found in the database. In this example, the algorithm finds
the image "debian:stretch-slim" as the input image’s first and furthest parent (marked in green).
Thereafter, the following upper layer combinations would be processed until another match was
found, leading to the discovery of a second closer parent ("php:7.2-apache" marked in blue).
Finally, the designed algorithm for parent retrieval processes the remaining layer combinations
until the end, leading to no other match in this particular example. It is important to note
that the direct parent of an input image (i.e. the one specified in the image’s Dockerfile) is
last one retrieved from a parent database ("php:7.2-apache" in this case), whereas the first ones
correspond the input image’s grandparents ("debian:stretch-slim" in this case).

The advantage of having two separate databases was that it provided a more efficient way of
indexing images’ layers and identify parent images, by only executing parent lookups towards the
appropriate database. For example an Official image may only be based on another Official image.
Thus, trying to retrieve its parent from a single database containing thousands of layer signatures
for other types of images would add an unnecessary overhead. Using a separate database for
Official signatures and another one for Verified signatures allowed therefore improving parental
lookups greatly.

The way those parent databases populated was however very different due to the way distinct
repository types were handled by the Docker engine.

40

The Official parent database

The Official parent database was populated by making use of the Docker Engine’s pull command
and images’ short layer IDs described in 2.4.2, avoiding therefore downloading Official images
completely. Indeed, the Docker SDK in Python allowed interacting with the low-level API of the
Docker daemon, streaming pulling outputs in real time and therefore displaying all the layers
composing an image with their short IDs, before actually pulling those layers. By parsing an
image’s short layer IDs from its live pulling output, all the images in all the Official repositories
might be retrieved in an acceptable amount of time, without the need of actually downloading
them. Moreover, many repositories contain several thousand tags, which does not necessarily
mean that their number of images is equally large, as a single image may be tagged an indefinite
number of times. Thus, it is important to note that the Official parent database contained an
image’s signature only once, using the image’s first retrieved tag.

The Verified parent database

Contrary to its peer, the Verified parent database was not able to populate by making use of the
Docker Engine’s pull command and images’ short layer IDs. Indeed, this technique implied that
a list of all tags present in a repository was retrieved prior to the download of the repository’s
images, so that each specific image might be started to be pulled individually and stopped
once their short layer IDs were retrieved to avoid downloading them entirely. As explained
in details in 5.2.2, a repository’s list of tags was retrieved through the use of Docker Hub’s
non-documented API version 2, which did not support Verified repositories at the time of this
writing. Furthermore, although version 1 of Docker Hub’s API supported Verified repositories
as discussed in 5.2.1, it did not provide a way of retrieving a repository’s list of tags.

Thus, the Verified parent database was populated by downloading all the images contained in
every single Verified repository using the docker pull –all-tags equivalent in the Docker SDK in
Python and retrieve a unique layer signature for each downloaded image. Moreover, note that
similarly to its peer, the Verified parent database contained an image’s signature only once, using
the image’s first retrieved tag, as a single image located in a repository may have multiple tags,
but only consists of a single layer combination.

Finally, the handling of the two parent databases consisted of a standalone Python module
separated from the main module for gathering metadata and vulnerability information, which
made it possible to update single databases in order to overcome the problem of having a too
long lapse of time for image signatures not being updated while the databases were repopulated
from scratch, which took several days. Compared to the planned design discussed in 3.2.2, that
particular improvement led to a small modification in the implemented design of the database,
with two database files and a supplementary attribute in each image object discussed in details
in 4.4.

4.2.2 Manual image checkout

As explained in details in 2.5.2, the two new types of repositories introduced by Docker Inc. in
an attempt to increase its public registry’s security landscape are provided by vetted third-party
software vendors who often offer proprietary and/or paid content. As a consequence, many pro-
viders require a valid Docker Hub account as well the manual checkout of their Certified/Verified
repositories providing some contact information in order to be able to download the images they
hold. Out of the 44 Certified repositories hosted on Docker Hub at the time of this writing, only

41

11 required a manual checkout through the platform’s Web interface, whereas 26 out of the 208
Verified repositories were in that case. Finally, note that a complete list of the manually checked
out repositories is available in Appendix A.5.

4.3 Overview

The software was designed to conduct multiple experiments, gather metadata, vulnerabilities,
and parental information for the data set of Docker images defined in 4.1. Each experiment
applied for each type of repository on Docker Hub: Official, Certified, Verified, and Community
repositories. However, a limited set of Community images was required, as analyzing over million
images is out of this project’s scope. Therefore, the designed software under the name DAZER
standing for Docker imAge analyZER and consisting of a Python bundle provided an extra
argument besides the repository type to be analyzed, specifying the number of Community
repositories to analyze (discussed in details in 5.4).

DAZER
(software)

Docker Hub

Clair vulnerability
database

Clair scannerDocker Engine

Parent database

1

2

3

Result data

{JSON}

{JSON}

4

MongoDBResearch
queries Answers

5

Figure 4.2: The implemented design’s overview

Figure 4.2 above shows the designed software used to conduct experiments to gather metadata,
vulnerability and parental information for the defined data set of Docker images. As illustrated,
DAZER interacted with three main components, similar to the planned design proposed in 3.2.3
and consisting of the following five steps:

1. A list of the most recent images in all repositories of a specific type (e.g. Certified repos-
itories) or a subset of them is retrieved from Docker Hub.

42

2. The software interacts with the Docker engine running on the same host and downloads
the most recent image in all the retrieved repositories, while gathering their metadata and
parental information.

3. All the downloaded images are analyzed for vulnerability information using a containerized
version of Clair scanner linked to an up-to-date containerized vulnerability database.

4. The retrieved information is wrapped up to a list of structured objects containing the
gathered metadata, parental information (if any), and all the vulnerabilities of each image.
The latter will be converted to two JSON files: one for the images’ metadata and parental
information and one for the images’ vulnerability metadata.

5. The result data will be imported into a MongoDB for further analysis using research queries
described in details in 4.5.

Finally, note that the actual design of the software was very similar to the one that was originally
planned in the methodology chapter presented in 3.2.3.

4.4 Designed result data format

As previously mentioned in 4.3, the result data structured in the JSON format was imported
into a noSQL Mongo database for further analysis in the next phase of our methodology. Due
to the large number of metadata, vulnerability and parental information gathered about each
image composing the data set of Docker images defined in 4.1, the structured format of those
collected data was rigorously designed as followed.

Designed parent database format

Both the Official and Verified parent databases used the JSON format in order to structure
their data. Compared to the proposed design in 3.2.4 as part of the methodology chapter, the
last_updated attribute was added to every single image object contained in the databases. That
attribute was utilized to verify whether an image had been updated since the last database update
and might therefore need to be excluded from analysis, as such an image might potentially be
based on a new parent which would not be contained in any of the parent databases.

The parent database format consisted therefore of a series of repositories structured in a list of
JSON objects, containing each a list of unique images with a corresponding tag, layer combination
and last updated timestamp, as illustrated with a part of the Official database below:

1 [
2 {
3 "mongo" : [
4 {
5 " f s_ laye r s " : " f3d19635b0dc " ,
6 " image_tag" : "v1 . 2" ,
7 " last_updated " : "34534345753567"
8 } ,
9 {

10 " f s_ laye r s " : " re349635b0edde316d5cf0dc " ,
11 " image_tag" : " 3 . 1 . 0 " ,
12 " last_updated " : "1294348944848"
13 }

43

14 . . .
15] ,
16

17 "ubuntu" : [
18 {
19 " f s_ laye r s " : "dc8a54b8000b " ,
20 " image_tag" : "1" ,
21 " last_updated " : "0348593458558"
22 } ,
23 {
24 " f s_ laye r s " : " ab8 fbc38cdf2b60 f f3e76baa " ,
25 " image_tag" : " l a t e s t " ,
26 " last_updated " : "34534345753567"
27 }
28 . . .
29] ,
30 . . .
31 }
32]

Listing 4.1: Sample of the designed Official parent database (JSON file)

Designed analysis and vulnerability results format

Due to the large number of metadata and vulnerability information, the design of the data
formats had to be properly defined and structured. After the execution of an experiment, two
JSON files were generated by the DAZER software: analysis-YYYY-MM-DD-HH-MM.json and
vulnerabilities-YYYY-MM-DD-HH-MM.json, where the timestamp corresponded to the time
when the experiment was initiated. The resulting JSON files were respectively defined as fol-
lowed:

• A file containing metadata and parental information for all the analyzed images

• A file containing all the vulnerability information discovered in the analyzed images

The example below illustrates a sample of an analysis-YYYY-MM-DD-HH-MM.json file with two
analyzed images:

1 [
2 {
3 " image_id" : "94 e814e2efa8845d95b2112d54497fbad173e45121ce9255b93401392f538499

" ,
4 " type" : " o f f i c i a l " ,
5 "name" : "ubuntu " ,
6 " tag " : " l a t e s t " ,
7 " last_updated " : 1552350017 ,
8 " to ta l_pu l l ed " : 1007214825 ,
9 " v u l n e r a b i l i t i e s " : ["CVE−2018−10846" ,"CVE−2018−16869" , . . .] ,

10 " t o t a l_vu l n e r a b i l i t i e s " : 31 ,
11 " parent " : ""
12 } ,
13 {
14 " image_id" : " facedf f f4424a99d694b03ca36060eb0dd1e35dbe26e0d1bae2986fbbef7092e

" ,
15 " type" : "community " ,
16 "name" : "drone/drone " ,
17 " tag " : " l a t e s t " ,
18 " last_updated " : 1553032060 ,

44

19 " to ta l_pu l l ed " : 64727991 ,
20 " v u l n e r a b i l i t i e s " : [] ,
21 " t o t a l_vu l n e r a b i l i t i e s " : 0 ,
22 " parent " : " a l p i n e : l a t e s t "
23 } ,
24
25]

Listing 4.2: Sample of the designed analysis JSON file

As mentioned in 3.2.3, each Docker image is composed of a series of layers identified through
layer IDs, corresponding to a SHA256 hash of the layers’ content. Therefore, it was not possible
to use an image’s name as a valid identifier, as many images contain the same name. Alongside
the essential metadata information for each analyzed images, some of the attributes contained
in the analysis file were chosen based on the potential valuable information they may provide to
this study. For instance, it might be interesting to see whether there exists a correlation between
attributes such as images’ last updated timestamps (last_updated) or their total amount of
downloads (total_pulled). Moreover, this thesis attends to address a research question related
to vulnerability inheritance, making the identification of an image’s parent essential. The latter
corresponded therefore to a string within the analysis JSON file, which was either empty, meaning
that the image was a base image, or containing the name and tag identifying its direct parent.

Combined with the field vulnerabilities, which represented a list containing all the image’s vulner-
abilities holding unique CVE numbers, it might be compelling to analyze whether there exists a
correlation between the contained vulnerabilities in child and parent images. Each CVE number
was therefore stored as a dedicated JSON object within the vulnerabilities JSON file illustrated
below with two vulnerabilities:

1 [
2 {
3 "cve_number" : "CVE−2017−14532" ,
4 "cwe_number" : "CWE−476" ,
5 "package_name" : " imagemagick " ,
6 "package_version " : " 8 : 6 . 9 . 7 . 4+ dfsg−11+deb9u6 " ,
7 " s e v e r i t y " : "High"
8 } ,
9 {

10 "cve_number" : "CVE−2018−1000500" ,
11 "cwe_number" : "CWE−295" ,
12 "package_name" : "busybox " ,
13 "package_version " : "1 :1 .22 .0 −19" ,
14 " s e v e r i t y " : " Ne g l i g i b l e "
15 } ,
16 . . .
17]

Listing 4.3: Sample of the designed vulnerability JSON file

The vulnerability file included the metadata for all the images’ vulnerabilities which had been
collected throughout a conducted experiment in the form of their CVE number, package name
and version, as well as severity level. Those information were extremely important for this study
in order to analyze whether one of these fields stood out for certain types of Docker repositories or
across them. However, compared with the previously proposed design in 3.2.4, the cwe_number
attribute which categorizes software weaknesses and vulnerabilities was introduced (more details
about CWE in 2.1.3). For instance, CWE-295 which relates to CVE-2018-1000500, corresponds

45

to an "Improper Certificate Validation" vulnerability which may be exploited by an attacker in
order to impersonate a trusted entity via a Man-In-The-Middle (MITM) attack [47]. This newly
introduced attribute might therefore help answering what kind of vulnerabilities Docker images
were most susceptible to during the measurement and analysis chapters.

Finally, note that only the analysis and vulnerabilities JSON files were imported to the Mongo
database in the next phase of our methodology, as they contained the entirety of the gathered
metadata, parental and vulnerability information of a set of analyzed images during an experi-
ment.

4.5 Detailed research questions

As discussed in 4.4, the JSON formatted result data of each experiment was imported into a
noSQL Mongo database for further analysis in the next phase of our methodology described
in chapter 5. The objective was to analyze all of the gathered data through so called research
queries, which consisted of a noSQL translation of textual detailed research questions implied by
the thesis’ problem statement. As explained in 1.2, the latter consisted of three main research
questions which therefore implied the following detailed inquiries:

RQ1: Have the security measures introduced by Docker Inc. in response to previous
research improved Docker Hub’s security landscape and to what extent?

1. How many vulnerabilities do Certified or Verified images contain compared to Official and
Community images?

2. How many vulnerabilities do Certified or Verified images inherit compared to Official and
Community images?

3. How many vulnerabilities do Certified or Verified images introduce compared to Official
and Community images?

4. How many vulnerabilities with a high severity do Certified or Verified images contain
compared to Official and Community images?

5. What are the top 10 vulnerability types contained in Certified or Verified images compared
to Official and Community images?

6. Do Certified images provide better security than the rest of the Verified images?

RQ2: Are vulnerabilities still inherited from images’ parent(s) and in what propor-
tion?

1. What proportion of images depends on a parent?

2. What proportion of images contains inherited vulnerabilities?

3. What proportion of images introduce vulnerabilities?

4. How many vulnerabilities do images inherit in average?

5. How many vulnerabilities do images introduce in average?

46

RQ3: How are discovered vulnerabilities distributed across repository types?

1. What proportion of images contains no vulnerabilities?

2. What proportion of images contains at least one vulnerability?

3. How many vulnerabilities do images contain in total?

4. How many unique vulnerabilities do images contain in total?

5. How are unique vulnerabilities distributed per severity among images?

6. How are unique vulnerabilities distributed per year among images?

7. Is there a correlation between the most popular images (most pulled) and the most vul-
nerable ones?

8. Is there a correlation between the last updated images and the most vulnerable ones?

9. Is there a correlation between base images and the most vulnerable ones OR base images
and the most popular ones OR base images and the last updated ones?

10. What are the top 10 vulnerabilities across all types of repositories?

11. Are vulnerabilities found in base images correlated with non-base images in some way?

47

48

Chapter 5

Result 2: Implementation

This chapter describes how the designed software discussed in 4.3 is implemented using selected
tools and technologies, while translating the detailed research questions identified in section 4.5
into research queries. Note that the latter will be utilized actively in the next chapter, where a
detailed presentation of the gathered metadata, parental and vulnerability information for the
defined set of Docker images will be given. Note also that the code developed for implementing
the software is available in its entirety at https://github.com/dockalyzer/dazer.

The implementation phase of our methodology is discussed in details in 3.1 and consists of
the following steps:

1. Identify tools and technologies required for creating and running the software designed in
the previous phase

2. Implement the software designed in phase 1 to gather metadata, vulnerability and parental
information for each set of Docker images involved in the research

3. Build the environment required to run the implemented software

4. Translate the detailed research questions identified in phase 1 into NoSQL research queries

5.1 Tools and technologies

The DAZER software has been implemented using a certain number of tools and technologies
discussed in details in chapter 3 under 3.3.1 and are briefly summarized here.

First, multiple APIs were used in order to gather Docker image metadata and vulnerability
information: Docker Hub API v1, Docker Hub API v2, Microbadger’s API and the Computer
Incident Response Center Luxembourg’s (CIRCL) CVE API. The Docker Hub APIs discussed
in details in 5.2 are not made public by Docker Inc. and many of the API calls were found
using a simple trial fail approach. As for CIRCL’s CVE API, the latter was implemented in
the DAZER software to collect metadata such as affected package names and versions for the
vulnerabilities discovered in the analyzed Docker images. Note that all the APIs used in the
software are discussed in details in the next section.

49

https://github.com/dockalyzer/dazer

Secondly, the Docker engine (version 18.09.3 at the time of this writing) was required to down-
load Docker Hub images. Additionally, Clair’s vulnerability scanner was utilized to analyze the
downloaded images and retrieve their vulnerability information. Clair scanner, which was run
inside a Docker container, was further linked to another Docker container running a PostgreSQL
database containing all the disclosed software vulnerabilities made public so far. Note that a
detailed description of Clair scanner and its containerized vulnerability database is provided in
3.3.1 and 4.4.

Thirdly, Python 3 and the Docker SDK for Python was used to interact programmatically with
the Docker engine directly from within the implemented DAZER software. Along with the
Docker SDK for Python, Python 3’s requests library was utilized to send requests towards the
REST APIs mentioned above and obtain JSON formatted data that could be parsed further into
structured JSON objects for further analysis, as discussed in 4.4.

Finally, the gathered metadata, parental and vulnerability information was imported to a Mongo
database for further analysis. MongoDB consists of a NoSQL database providing high-performance
data processing, which allowed us to make use of the developed research queries detailed in 5.5.2,
in order to answer the detailed research questions implied by the problem statement and identified
in 4.5.

5.2 Retrieving data

The authors of the research paper "A Study of Security Vulnerabilities on Docker Hub" generated
manually 5,000,000 random strings, which resulted in a list of 440,524 unique images on Docker
Hub [11]. In our study, several APIs were used to automatically obtain the metadata, parental
and vulnerability information of all the analyzed images. Given the fact that version 2 of Docker
Hub’s API was the most recent one at the time of this writing, using two different APIs for
retrieving the metadata of Docker Hub images was needed, as the new types of images, Verified
and Certified images, were only supported in version 1 of the platform’s API.

Contrary to the planned implementation discussed in 3.3.1, two additional APIs were used for
retrieving metadata besides Docker Hub’s API. The first one was the MicroBadger API, which
yields metadata for Official repositories on Docker Hub. The latter was utilized to discover all
the Official repositories’ tags, in use for updating the Official parent database. The second one
was CIRCL’s CVE API which provides metadata for CVE vulnerabilities.

5.2.1 The Docker Hub API: version 1

The Docker Hub API is a simple REST API for the Docker Hub platform, using basic HTTP
requests and returning JSON formatted data. As previously mentioned in 5.1, the Docker Hub
API is not made public by Docker Inc, which is therefore completely unofficial and undocumented.
Thus, many of the API calls were found using a simple trial and error approach. One interesting
finding was that only Official and Community repositories were supported by the version 2 of
the API, while both Official, Verified, and Certified repositories were supported by version 1.
As discussed in 2.5.3, Official repositories use "library" as their namespace and Community
repositories use their username, while Certified and Verified repositories are located under the
"store/<username>" namespace. Additionally, Microsoft repositories use "mcr.microsoft.com"
as their namespace. Unfortunately, the version 1 of Docker Hub’s API does not support tag

50

retrieval for a given repository. Thus, some workarounds were necessary in order to retrieve the
tags comprised in Verified and Certified repositories, which is covered in details in 4.2.

A list of all the discovered API calls valid for the Docker Hub API v1 is available below. Note
that the endpoint for the version 1 of the API was located at https://hub.docker.com/api/content.

Fetch a specific repository identified by its name
The repositories retrieved using version 1 of Docker Hub’s image API contain a lot more details
than the ones retrieved using version 2. Therefore, this call was utilized to determine whether an
image belonged to an Official repository (under the "library" namespace) or a Certified/Verified
repository (under the "store" namespace).

GET /v1/products/images/<repository_name>

Example with the Official "Ubuntu" repository:
https://hub.docker.com/api/content/v1/products/images/ubuntu

Example with the Certified "Filebeat" repository:
https://hub.docker.com/api/content/v1/products/images/filebeat

Example with the Verified "Filecloud" repository:
https://hub.docker.com/api/content/v1/products/images/filecloud

Fetch all Certified, Verified, and Official repositories
For better rigor and convenience purposes, the conducted experiments were divided based on the
four repository types that were analyzed: Official, Certified, Verified, and Community repositor-
ies. The following API call was therefore used as a base to retrieve all the Certified repositories on
Docker Hub, by iterating through the pages specified as the last argument of the call (page=x).
Note that a single page returned 25 image objects by default, although that might be increased
using the page_size=xx argument.

GET /v1/products/search?q=&type=image&certification_status=certified&page=1

In order to determine if a repository was a Verified repository, the first mentioned call,
GET /v1/products/images/<repository_name> returned the certification_status field which was
either equal to not_certified or certified. Hence, if the namespace was "store" and the certific-
ation_status was equal to not_certified, the image belonged to a Verified repository. The API
call below may be used as a base to retrieve all Certified, Verified, and Official repositories by
iterating through the pages specified as the last argument of the call (page=x). Therefore, com-
bining the mentioned call above with the API call below, it was possible to filter and fetch all
the purely Verified repositories (i.e. without Certified ones). Note that a single page returned 25
image objects by default, although that might be increased using the page_size=xx argument.

GET /v1/products/search?q=&type=image&image_filter=store&page=1

51

5.2.2 The Docker Hub API: version 2

As previously mentioned, the version 2 of the Docker Hub API only supported Official and Com-
munity repositories. Docker Hub’s API v2 might be used to retrieve various types of metadata
about specific images and repositories, such as the list of available tags within a repository.

A list of all the discovered API calls valid for the Docker Hub API v2 is available below. Note
that the endpoint for the version 2 of the API was located at https://hub.docker.com.

Fetch a specific repository identified by its name
The repositories retrieved using version 2 of Docker Hub’s image API contained less details than
the ones retrieved using version 1. Similar to the API version 1, the API call below retrieved all
the metadata of the specified repository.

GET /v2/repositories/<repository_name>

Example with the Official "Ubuntu" repository:
https://hub.docker.com/v2/repositories/library/ubuntu

Example with the Community "Amazon-ecs-agent" repository:
https://hub.docker.com/v2/repositories/amazon/amazon-ecs-agent

Fetch all the tags available under a specified repository identified by its name
Unlike version 1 of Docker Hub’s API which was missing that ability, the following call was
able to retrieve all the available tags present in the specified Official or Community repository
identified by its name.

GET /v2/repositories/<repository_name>/tags

Example with the Official "Ubuntu" repository:
https://hub.docker.com/v2/repositories/library/ubuntu/tags

Example with the Community "Amazon-ecs-agent" repository:
https://hub.docker.com/v2/repositories/amazon/amazon-ecs-agent/tags

Fetch a specific tag located in the specified repository identified by its name
This particular API call illustrated below retrieved all the metadata of a specific tag located in
a certain Official or Community repository identified by its name.

GET /v2/repositories/<repository_name>/tags/<tag_name>

Example with the Official repository "Node" and tag name "8.15-jessie":
https://hub.docker.com/v2/repositories/library/node/tags/8.15-jessie

Example with the Community repository "Amazon-ecs-agent" and tag name "latest":
https://hub.docker.com/v2/repositories/amazon/amazon-ecs-agent/tags/latest

52

Fetch all Official repositories on Docker Hub
Similar but more specific than Docker Hub’s API version 1, the following call was used as a base
to retrieve all the Official repositories available on Docker Hub exclusively, by iterating through
the pages specified as the last argument of the call (page=x). Note that a single page returned 10
image objects by default, although that might be increased using the page_size=xx argument.

GET /v2/search/repositories/?query=library&is_official=true&page=1

Fetch all Community repositories on Docker Hub
At the time of this writing, there are over 2 million Community repositories available on Docker
Hub. The following API call was therefore used as a base to retrieve 500 Community repositories
among the most popular ones available on Docker Hub, by iterating through the pages specified
as the last argument of the call (page=x). Note that a single page returned 10 image objects by
default, although that might be increased using the page_size=xx argument.

GET /v2/search/repositories/?query=%2B&ordering=-pull_count
&is_official=false&page=1

5.2.3 CIRCL’s CVE API

The Computer Incident Response Center Luxembourg (CIRCL) is a government-driven initiative
designed to gather, review, report and respond to computer security threats and incidents [48].
That organization provides a public REST API offering developers the possibility to fetch com-
plex metadata about any disclosed vulnerability with an assigned CVE number in JSON. The
goal was to utilize that API in view of extracting valuable metadata for all of the vulnerabilities
discovered in the analyzed images through Clair scanner during our experiments. Note that the
API’s endpoint was located at https://cve.circl.lu and that only two calls towards CIRCL’s CVE
API were implemented in the DAZER software.

First, the following call was used to retrieve all the available information about a certain vulner-
ability identified by its CVE number.

GET /api/cve/<cve_id>

Example with the integer overflow vulnerability found in libssh2 before version 1.8.1 and identified
with "CVE-2019-3855":
https://cve.circl.lu/api/cve/CVE-2019-3855

Secondly, CVE numbers are related to CWE numbers, classifying software vulnerabilities into
specific categories as explained in 2.1.3. For example, the "CVE-2019-3855" number mentioned
in the previous example is related to a CWE number with an id of 190. By utilizing the API
call below, the meta information of CWE-190 might be retrieved.

GET /api/capec/<cwe_id>

53

Example with the CWE id 190, corresponding to the "Reverse Engineer an Executable to Expose
Assumed Hidden Functionality or Content" category:
https://cve.circl.lu//api/capec/190

5.2.4 The MicroBadger API

MicroBadger is an online service providing a simple but limited way of looking at the content
contained in an Official or Community image hosted on Docker Hub. Microbadger provides
a simple REST API for inspecting Docker repositories and their metadata. The API follows
the same scheme as the Docker Hub API, where "library" is the used namespace for Official
repositories, while usernames are used for Community repositories. The Microbadger API was
therefore integrated easily in the DAZER software, in order to retrieve extra valuable information
which might be missing from the version 2 of Docker Hub’s API. Note that Microbadger’s API
only contained one single call which is illustrated below and originated in the endpoint located
at https://api.microbadger.com.

GET /v1/images/<repository_name>

Example with the Official "Ubuntu" repository:
https://api.microbadger.com/v1/images/library/ubuntu

Example with the Community "Amazon-ecs-agent" repository:
https://api.microbadger.com/v1/images/amazon/amazon-ecs-agent

5.2.5 The Red Hat security data API

Some of the repositories on Docker Hub are based on a CentOS or Red Hat distribution, which
disclose vulnerabilities using their own RHSA numbers, as described in 2.1.2. Thus, the Red Hat
security data REST API was utilized to translate vulnerabilities identified with a RHSA ID into
CVE and CWE numbers, so that such vulnerabilities could be a part of the final measurements
and analysis. Note that the endpoint for the Red Hat security data API was located at
https://access.redhat.com/labs/securitydataapi/cve.json?.

GET /advisory=<rhsa_id>

Example with a Linux kernel vulnerability identified with "RHSA-2016:1847":
https://access.redhat.com/labs/securitydataapi/cve.json?advisory=RHSA-2016:1847

5.2.6 Enterprise Linux Security Advisory

As explained in 2.1.3, Enterprise Linux Security Advisory (ELSA) is a reference-method for
vulnerabilities and exposures provided by Oracle Inc. The metadata for retrieving ELSA vulner-
abilities may be fetched using an API called Unbreakable Linux Network (ULN) API. However,
due to time constraints, vulnerability information from Oracle Linux Docker images were found
manually by doing Google searches of the ELSA ID. This was because the setup of their script

54

was to some extent tedious and required the user to register an Oracle account before utilizing
the API. Additionally, there were only a few of the analyzed images (less than five images), which
were based on an Oracle Linux distribution, making this manual process relatively manageable.

5.3 Implemented architecture

The OpenStack platform hosted at OsloMet, was utilized to deploy the implemented model
consisting of a Python software under the name Docker imAge analyZER (DAZER) discussed
in details in 5.4. Up to five Ubuntu 16.04 VMs with 8 VCPUs, 16GB of RAM and 160GB of
storage were used to run each type of experiment corresponding the different repository types
being part of the study: Official, Verified, Certified, and Community repositories.

DAZER
(software)

Clair database

Clair scannerDocker Engine

Parent database

1

2

3

Docker Hub

5432:5432

6060:6060

{JSON}

Result data
{JSON}

VM

OpenStack

4

APIs

Official experiment

Community experiment

Certified experiment

Verified experiment

Figure 5.1: The implemented architecture

Figure 5.1 above shows the implemented architecture used to deploy DAZER on a single VM.
The implemented software was actually deployed using several replicas of the same VM running
in OsloMet’s own OpenStack environment for optimization purposes. Each VM was comprised
of the Docker engine and an access to the outside world in order to communicate with the Docker
Hub platform and other APIs discussed in 5.2.

Moreover, a containerized version of Clair scanner and a containerized Clair database were de-
ployed alongside the measuring software and the Docker engine running inside each VM, in
order to provide DAZER with Docker image vulnerability scanning capabilities. Note that the

55

Clair services only communicated with each other and the deployed DAZER software in order to
retrieve an image’s vulnerability information and never communicated with the outside world.

Finally, a preliminary parent database generated by DAZER through the Docker engine during
its initialization phase was located aside the other components in order to successfully retrieved
images’ parents when applicable.

It should be noted that the implemented architecture was similar to the one that had been
planned in 3.3.2, although multiple replicas of the same VM were actually used to speed up the
conducted experiments, whereas only one single instance had been planned on being used. It is
also important to note that a script available in Appendix B.1 was used in order to automatically
setup VMs with DAZER’s requirements such as the installation of Clair scanner and database.

5.4 Implemented workflow

There are four types of repositories on Docker Hub: Official, Certified, Verified, and Community
repositories. When starting the implemented DAZER software consisting of a Python bundle
available at https://github.com/dockalyzer/dazer, the user is prompted to choose which of
the desired type of repository the program should run. The following command below will start
the software.

python3 main.py <repository_type> [x_images]

Note that the most recent image in all the repositories of the specified type are analyzed by
default. Moreover, a required number of images to be analyzed needs to be specified when
conducting an experiment for Community images (x_images), as analyzing over two million
repositories is out of this thesis’ scope.

When running the program for the first time, DAZER prepares and ensures that all the prelim-
inary requirements are in place as followed before pursuing further:

• Python3 is installed (Python 3.6.x is recommended)

• The Docker engine is installed (Version 18.09.x is recommended)

• A containerized instance of Clair scanner is running

• A containerized instance of the Clair vulnerability database is running

• Valid Docker Hub credentials are provided in the appropriate file

• Python 3 packages required by DAZER are installed

The above requirements are also described on the publicly accessible Github repository dedicated
to the DAZER software, available at https://github.com/dockalyzer/dazer. Note also that
DAZER will notify its user if one of those requirements is not satisfied.

Once the DAZER program is started and all of its requirements are fulfilled, the user will see
the output below displayed in the terminal. If the program stops running, the script will notice
and handle the exception(s) automatically.

DAZERing ...
Note: see the log file for more information.

56

https://github.com/dockalyzer/dazer
https://github.com/dockalyzer/dazer

DAZER does not show the underlying events and actions undertaken by the software to the
user, but rather logs its complete workflow to a dedicated file for debugging or other analysis
aspirations. The very first lines of the log file are demonstrated below and shorten where needed
for demonstration purposes.

2019-04-07 18:12:44 Updating Official parent database ...
...
2019-04-07 18:22:32 Checking perl ...
2019-04-07 18:22:37 Repository up to date
2019-04-07 18:22:40 Checking geonetwork ...
2019-04-07 18:22:44 Images have emerged or have been updated in the repository:
geonetwork
2019-04-07 18:22:50 Updating image's timestamp: geonetwork:3.6.0-postgres
2019-04-07 18:23:05 Updating image's timestamp: geonetwork:latest
...
2019-04-07 18:40:40 Images have emerged or have been updated in the repository:
wordpress
2019-04-07 18:40:58 Updating image: wordpress:cli-php7.3
2019-04-07 18:41:17 Updating image: wordpress:cli-php7.2

As illustrated by the shortened extract of the log file above, the retrieval of images’ metadata
starts after the parent database has been fully updated, which is where DAZER’s workflow
actually starts, as illustrated in figure 5.2 below. Many repositories available on Docker Hub have
not been included in this study due to various reasons explained in details in 4.1.2. Compared to
the planned workflow illustrated in figure 3.5 under chapter 3, the implemented workflow has now
two threads running simultaneously: a downloading thread and a main thread. The downloading
thread, which runs in the background, is responsible for downloading multiple images serially
and continuously. However, to avoid reaching a full disk space usage, the downloading thread
may suspend itself temporarily when the number of downloaded images makes up more than
60% of the available disk space on the machine running the software. Furthermore, note that the
downloading thread stops once all the images that should be analyzed have been downloaded.

Simultaneously, the main thread periodically checks for new downloaded images, automatically
collecting all of their metadata, parental, and vulnerability information. Once a new batch of
downloaded images have been analyzed, all of their gathered information are further exported to
the analysis and vulnerability JSON files discussed in details in 4.4. Finally, the main thread is
responsible for deleting the images it analyzes during a scanning iteration, in order to make space
for new ones to be retrieved by the downloading thread running in the background. The main
thread ends when it detects that no new images need to be analyzed and that the downloading
thread has ended its execution due to the complete download of all the images which are part of
the current experiment.

The use of two simultaneous threads instead of a single one handling both image downloads and
analysis allows optimizing the experimental process by reducing the time spent for analyzing
new images and exporting their metadata, parental and vulnerability information to the JSON
files, while reducing waiting times between downloads to the bare minimum.

57

Download each
image with the
retrieved name

and tag

Start

Wait for new images
to download

Retrieve a list of names and
tags for the most recent

images in each repository
of the specified type from

Docker Hub

End

Export the collected
metadata, parental
and vulnerability

information to files

NO

Exit downloading
thread

Success?

Image downloaded

YES

Several
images?

NO

Collect basic metadata
and parental information

Collect extra metadata

Collect vulnerability
information

YES

NO

NO

NO

YES

YES

NO

YES

Success? Success?

Success?

YES

YES

Downloading (DL) thread

New
image?

Several
images to
analyze?

NO

Main thread

DL thread
still running?

YES

Figure 5.2: The DAZER software’s workflow

5.5 Getting ready for analysis

Once all the metadata, parental and vulnerability information about all the different types of
Docker images being part of the experiments have been collected, the result data may be imported
to a Mongo database for further analysis via research queries defined in this section.

58

5.5.1 Importing result data to MongoDB

Before importing the result to the Mongo database, the latter needs to be configured to allow
connections from the local host, as the same machine was used to hold and access the database.
Once MongoDB is up and running, the following commands were used to import the result data
in the form of an analysis and vulnerabilities JSON file described in details in 4.4.

mongoimport --host <local_ip>:27017 --db <db_name> --collection
<analysis_collection_name> --file analysis_yyyy-mm-dd_hh-mm-ss.json --jsonArray

mongoimport --host <local_ip>:27017 --db <db_name> --collection
<vulnerabilities_collection_name> --file
vulnerabilities_yyyy-mm-dd_hh-mm-ss.json --jsonArray

As demonstrated above, the JSON files are separated into two different noSQL collections, which
correspond to tables in a usual SQL database. Indeed, collections hold so called documents,
corresponding to a JSON object such as an analyzed Docker image or a vulnerability in this
case. Using two separate documents allowed therefore separating the collected data logically,
while still gathering everything in one single database for further analysis using research queries.

Finally, note that each set of result data from each type of experiment (Certified, Verified, Official,
Community) needed to be imported on its own using the methodology described above.

5.5.2 Research queries

As discussed in 1.2, this thesis’ problem statement consists of three main research questions
implying many detailed research questions debated in 4.5. A part of the implementation phase of
our methodology consists therefore of translating those detailed questions into so called research
queries.

Although most of the research queries consist of a single line of code, some of the detailed re-
search questions cannot be directly translated into a single query. Thus, JavaScript code along
with Mongo queries are utilized to fully develop some of the detailed research questions. Note
that such research queries are often too long to be included here and are therefore fully available
in Appendix C. As an example however, some of the shorter research queries matching their
textual detailed and main research questions discussed in details in 4.5 and 1.2 are available as
followed.

RQ1: Have the security measures introduced by Docker Inc. in response to previous
research improved Docker Hub’s security landscape and to what extent?

The first main research question consists of several detailed research questions defined in section
4.5, which only apply to Certified and Verified images. Those detailed research questions cannot
be directly translated into research queries, as they essentially consist of comparing and identi-
fying correlations between the results of RQ2 and RQ3 for Certified and Verified images with
other types of images.

59

RQ2: Are vulnerabilities still inherited from images’ parent(s) and in what pro-
portion?

RQ2.1: What proportion of images depends on a parent?

db.data.find(
{ $and: [{"type": {"$eq": image_type } }, {"parent": {"$ne" : ""} }] },
{ _id: 0, name: 1, parent: 1 }).count());

RQ3: How are discovered vulnerabilities distributed across repository types?

RQ3.1: What proportion of images contains no vulnerabilities?

db.data.find(
{ $and: [{"type": {"$eq": image_type } }, {"total_vulnerabilities":
{"$eq" : 0} }] },
{ _id: 0, name: 1, vulnerabilities: 1 }).count());

RQ3.2: What proportion of images contains at least one vulnerability?

db.data.find(
{ $and: [{"type": {"$eq": image_type } }, {"total_vulnerabilities":
{ "$ne" : 0} }] },
{ _id: 0, name: 1, vulnerabilities: 1 }).count();

The following two research queries involve some manual operations. Unlike the find() function in
MongoDB, the aggregation() function does not support retrieving the value of a property. As an
example, the average number of vulnerabilities contained in an image was therefore calculated
using the total number of discovered vulnerabilities obtained with the research query above,
divided by the total number of analyzed images.

RQ3.3: How many vulnerabilities do images contain in average?

db.data.aggregate(
{ $group: { _id: "$type", sumTotalVulnerabilities: { $sum:

"$total_vulnerabilities" } } },
{ $project: { "_id": 0, "sumTotalVulnerabilities": 1} }

); // Average to be calculated manually

RQ3.4: How many unique vulnerabilities do images contain in total?

db.vuln.aggregate([
{ $group : { _id: { cve_number : {$gt:["$cve_number", null] } },

count : { $sum : 1 } } }
]); // Average to be calculated manually

60

RQ3.5: How are unique vulnerabilities distributed per severity among images?

db.vuln.find({"severity": {"$eq" : "Critical"}}, { _id: 0, severity: 1 }).count();
db.vuln.find({"severity": {"$eq" : "High"}}, { _id: 0, severity: 1 }).count();
db.vuln.find({"severity": {"$eq" : "Medium"}}, { _id: 0, severity: 1 }).count();
db.vuln.find({"severity": {"$eq" : "Low"}}, { _id: 0, severity: 1 }).count();
db.vuln.find({"severity": {"$eq" : "Negligible"}}, { _id: 0, severity: 1 }).count();
db.vuln.find({"severity": {"$eq" : "Unknown"}}, { _id: 0, severity: 1 }).count();

RQ3.7: Is there a correlation between the most popular images (most pulled) and the most vul-
nerable ones?

db.data.find(
{ $and: [{"type": {"$eq": image_type } }, {"name": {"$ne" : ""} }] },
{ _id: 0, name: 1, total_pulled: 1, total_vulnerabilities: 1 }).
sort({total_pulled:-1}).limit(10);

db.data.find(
{ $and: [{"type": {"$eq": image_type }}, {"name": {"$ne" : ""} }] },
{ _id: 0, name: 1, total_vulnerabilities: 1 }).
sort({total_vulnerabilities:-1}).limit(10);

RQ3.10: What are the top 10 vulnerabilities (across all types of repositories)?

db.data.aggregate([
{ $match: { type: image_type } },
{ $unwind: "$vulnerabilities" },
{$group: { _id: { id: "$vulnerabilities"}, count: {$sum : 1} } },
{ $sort: { count: -1 } }, { $limit: 10 }]);

Finally, note that the above queries and the rest of them available in Appendix C were executed
against the database by storing them into a Javascript file run via the Mongo shell, as it was a
convenient way of mining the result data and answer the detailed research questions.

61

62

Chapter 6

Result 3: Measurements

This chapter exhibits the data from all the conducted experiments using the implemented soft-
ware in phase 2 of our methodology known as the Docker imAge analyZER (DAZER) software
discussed in details in chapter 5. The measurement phase of the methodology intends to make use
of the noSQL research queries implemented in phase 2 and detailed in 5.5.2, in order to answer the
detailed research questions developed in 4.5 and ultimately address the original problem state-
ment defined in 1.2. Note that the first main research question (abbreviated RQ1) making up the
problem statement consists of several detailed research questions which only apply to Certified
and Verified repositories. Furthermore, it should be noticed that only the main research ques-
tions composing the original problem statement will be reminded here, as the detailed research
questions they imply were mostly utilized to produce the tables and charts discussed throughout
this chapter. Note however that the complete list of detailed research question developed in
chapter 4 is available in 4.5.

As a reminder, the last phase of this thesis’ methodology (phase 3) described in 3.1 consists of
the following steps:

1. Conduct an experiment for each set of Docker images defined in phase 1 (design phase)

2. Import the gathered metadata, vulnerability and parental information of each set into a
NoSQL database for analysis

3. Make use of the NoSQL queries implemented in phase 2 in order to answer the problem
statement

6.1 Describing the results

All the experiments were conducted between March 31st and April 14th 2019 included. Before
the conduction of each experiment, the relevant Official and/or Verified parent databases were
fully updated in order to guarantee that they contained the layer signatures of all the Official
and/or Verified images available on Docker Hub at that particular time.

As previously mentioned in 5.3, up to four individual VMs running in OsloMet’s OpenStack cloud
were used to run all the experiments gathering metadata, parental and vulnerability information

63

for all types of repositories. The Community experiment took approximately 141 hours to finish,
while the Official measurement took roughly 16 hours, followed by the Verified experiment which
took 14,5 hours and the Certified measurement which lasted for almost an hour. Thus, the time
spent on each experiment greatly varied from one experiment to another due to the number of
images involved in each experiment, as well the size of those images, which could reach up to
almost 30 GB for certain Verified images. Moreover, it is important to note that the network
speed as well as the actual resources available for the physical server(s) hosting the VMs at the
time of the conduction of our experiments might have played a role in the total amount of time
used to complete each measurement.

The following four pie charts as well as the summary table located below show the distribution
of base, non-base and skipped images across the four types of analyzed repositories. Note that
since only one image (i.e. the most recent one) was analyzed for each repository being part of
the conducted experiments, the terms "image" and "repository" may be used interchangeably in
this chapter.

Initial number

of repositories

Total analyzed

repositories

Base

repositories

Non-base

repositories

Skipped

repositories

Analysis

rate

Official 151 128 11 117 23 84,77%

Community 500 500 266 234 0 100,00%

Verified 208 98 33 65 110 47,12%

Certified 44 31 19 12 13 70,45%

Total 903 757 329 428 146 83,83%

Table 6.1: A summary of the experiments performed in this study

Analyzed Official repositories

During the conduction of our Official experiment, there were 11 Official base repositories on
Docker Hub, constituting over 7% of the total amount of that type of repositories on the platform,
as illustrated in figure 6.1 below. Furthermore, 117 non-base repositories were identified, implying
that almost 80% of all the Official repositories contained images which were based on another
Official image. Finally, note that the number of skipped repositories is minimal, as it only
concerns 23 repositories out the 151, making up only 15% of the total amount.

64

15.2%

77.5%

7.3%

Base repositories
Non−base repositories
Skipped repositories

Total Official repositories on
 Docker Hub − 151 repositories

Figure 6.1: Analyzed Official repositories distribution

Analyzed Community repositories

Contrary to its three other peers, the Community experiment revealed that over 50% of its
analyzed repositories were base repositories, as illustrated in figure 6.2. Indeed, 266 out of the
500 analyzed repositories were base ones, whereas only 234 contained images based on another
Official, Certified or Verified image, making up less than 30% of the total amount of analyzed
Community repositories. Note that those numbers are surprisingly high due to a significant error
caused by many Community images having a non-identifiable parent, as discussed in details in
the discussion chapter under 8.2. Finally, it should be noticed that contrary to the three other
types of experiments, the Community measurement consisted of analyzing a fixed number of 500
repositories among the most popular ones, justifying that no repositories were skipped.

0.0%

46.8%
53.2%

Base repositories
Non−base repositories
Skipped repositories

A sample of Community repositories on
 Docker Hub − 500 repositories

Figure 6.2: Analyzed Community repositories distribution

65

Analyzed Verified repositories

During the conduction of the Verified experiment, over three times as many repositories were
skipped compared to the Official measurement, making up almost 53% of the total number of
Verified repositories available on Docker Hub, as shown in figure 6.3. As explained in chapter 4
under 4.1.2, the reason for such a high number is due to the significant presence of the Microsoft
publisher among Verified repositories, which provides incompatible images for the Linux platform
or x86-64 architecture in many of its repositories, as well as offering non-downloadable images
with a missing or corrupted manifest file. Nonetheless, 33 out of the 208 available repositories
were base ones making up almost 16% of the total amount of Verified repositories, whereas 31%
were non-based ones with a total analysis rate right below 50%, as illustrated in table 6.1 above.
Finally, note that more than a third of all the Verified repositories available on Docker Hub
contained images based on another Official or Verified image.

52.9%

31.2%

15.9%
Base repositories
Non−base repositories
Skipped repositories

Total Verified repositories on
 Docker Hub − 208 repositories

Figure 6.3: Analyzed Verified repositories distribution

Analyzed Certified repositories

Since Certified repositories are a special type of Verified repositories, the number of skipped
repositories during its measurement was consequently significant with 13 out of the 44 available
repositories, making up more than 29% of the total number of repositories on Docker Hub, as
illustrated in figure 6.4 below. Nevertheless, 19 out of the 44 repositories were base ones, making
up more than 43% of all the Certified repositories on Docker Hub, whereas more than 27% were
non-base ones with 12 repositories out of 44. Finally, note that similarly to Verified repositories,
almost a third of all the Certified repositories contained images based on another Official or
Verified image.

66

29.5%

27.3%

43.2%

Base repositories
Non−base repositories
Skipped repositories

Total Certified repositories on
 Docker Hub − 44 repositories

Figure 6.4: Analyzed Certified repositories distribution

To sum up, this section covered some general statistical information for all the repository types
analyzed from Docker Hub. The following three next sections will address the original main
research questions making up the problem statement introduced in 1.2, by answering their implied
detailed research questions using the developed MongoDB queries discussed in 5.5.2. Note that
the three main research questions (abbreviated RQ) will be answered in reverse order starting
with RQ3, as the latter and RQ2 contain detailed research inquiries which will be later utilized
to fully answer RQ1 in 6.4.

6.2 RQ3: Vulnerability distribution across repository types

Main research question 3: How are discovered vulnerabilities distributed across repository types?

6.2.1 Quantitative vulnerability distribution

First, the distribution of vulnerability-free images across repository types is very surprising, as
illustrated in table 6.2 below. Indeed, almost 23% of all the analyzed Official images contain
no vulnerabilities, whereas almost 19% and 16% are respectively in that case for Community
and Verified repositories. Certified repositories are therefore performing worse when it comes to
providing vulnerability free content, as only 10% of them do not contain any vulnerability.

Secondly, there is a significant difference in the total number of vulnerabilities found for each
type of repository, as Certified images contain only 921 vulnerabilities in total, compared to 15
342 and 22 683 for Verified and Official repositories respectively. As discussed in our expectations
in 3.5, Certified repositories are therefore the most secure when it comes to the total number of
vulnerabilities found in their images, while Community repositories are performing worse with
more than 76 673 vulnerabilities in total. Indeed, although less Certified images are completely
free of vulnerabilities compared to the three other types of repositories, they contain far less
vulnerabilities than their other peers in total. Moreover, it should be noticed that despite
their maintenance by Docker Inc.’s dedicated team and trusted vendors, Official and Verified

67

repositories contain a large number of vulnerabilities in total, which constitutes therefore an
interesting but alarming discovery.

Quantitative vulnerability distribution across repository types

Official

(128 repositories)

Community

(500 repositories)

Verified

(98 repositories)

Certified

(31 repositories)

All

(757 repositories)

No

vulnerabilities
29 (22,66%) 94 (18,80%) 16 (16,33%) 3 (9,68%) 142 (18,76%)

At least one

vulnerability
99 (77,34%) 406 (81,20%) 82 (83,67%) 28 (90,32%) 615 (81,24%)

Total number

of vulnerabilities
22 683 76 673 15 342 921 115 619

Unique number

of vulnerabilities
2 304 5 095 2 586 353 5449

Table 6.2: Quantitative vulnerability distribution across repository types

Thirdly, the study of unique vulnerabilities for each of the analyzed repository type may help
understand whether certain types of repositories contain many redundant vulnerabilities. Certi-
fied images have the highest percentage of unique vulnerabilities, making up 38% of their total
amount of vulnerabilities, whereas Verified, Official and Community images have respectively
17%, 10% and almost 7% of their total amount of vulnerabilities being unique. Apart from Cer-
tified repositories where more than one vulnerability out of three is unique, such results suggest
that the three other types of repositories offer images using many identical packages, leading to
the vast majority of their vulnerabilities being duplicates.

Fourthly, the yearly distribution of unique vulnerabilities per repository type illustrated in figure
6.5 below, shows that the total number of reported vulnerabilities for all types of repositories
started to grow in 2013, reaching an all-time high in 2017. It should be noticed that although
the Docker technology did not exist prior to 2013, some Docker images contain software and
libraries with disclosed vulnerabilities prior to that date. Indeed, vulnerabilities follow a certain
format containing the exact year of their disclosure, as explained in details in 5.2.3 and 5.2.5. For
example, vulnerabilities disclosed through the CVE Numbering Authorities (CNAs) or the Red
Hat company use the following format respectively: CVE-yyyy-xxxxx, RHSA-yyyy:xxxx. The y
portion indicates the year of a vulnerability’s public disclosure, while the x portion corresponds to
a unique identifier for the vulnerability. The yearly distribution of unique vulnerabilities across
repositories types was therefore created by taking advantage of the format used by disclosed
vulnerabilities. Note that although the total number of unique vulnerabilities across all the
repository types was lower in 2018 compared to 2017, it was still higher than in 2016. Further-
more, certain vulnerabilities appearing in late 2018 may still be missing a CVE number, as they
may have not been disclosed yet in order to give their vendor(s) enough time to release a patch
before making them public. Some vulnerabilities from 2018 found in the set of analyzed Docker
images may therefore be missing from our analysis. Note also that the number of vulnerabilities
disclosed in 2019 is very limited due to the early conduction of the experiments during that same
year (between March 31st and April 14th 2019).

68

0

250

500

750

1000

1250

1500

1750

2000
20

10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Year

To
ta

l v
ul

ne
ra

bi
lit

ie
s Repository type

All

Official

Community

Verified

Certified

Distribution of unique vulnerabilities
 per repository type and per year

Figure 6.5: Distribution of unique vulnerabilities per repository type and per year

Finally, the all-time high number of uniquely reported vulnerabilities in 2017 is very character-
istic of the vulnerability distribution across the different types of repositories. Indeed, similarly
to their total number of unique vulnerabilities across all years illustrated in table 6.2 and dis-
cussed above, Community images contained the highest number of unique vulnerabilities in 2017
with over 1500 vulnerabilities, followed by Verified, Official, and Certified images which held
approximately 1000, 900, and 200 unique vulnerabilities respectively. Note however that a high
number of vulnerabilities is not enough to draw conclusions about a certain type of repository,
as vulnerabilities have different severity levels based on their level of exploitation difficulties, as
well as the consequences following an exploitation.

6.2.2 Severity distribution

As briefly mentioned at the end of the previous subsection, a purely quantitative indicator such as
the total number of unique vulnerabilities found in a given repository type is not enough to draw
any conclusion about its security. Indeed, a more qualitative indicator such as vulnerabilities’
severity levels may help confirm or relativize the findings discussed in 6.2.1.

Figure 6.6 below illustrates the severity distribution of all the uniquely discovered vulnerabilities
across all repository types, using six different severity levels derived from NVD’s CVSS scores
discussed in 2.1.4 and identified as "Negligible", "Low", "Medium", "High", "Critical", and
"Unknown". Note that such levels were provided by Clair scanner and that a "Negligible"
severity corresponds to the "None" level in NVD’s categorization, while "Unknown" severities
simply consist of vulnerabilities which have not been assigned a severity level yet.

As illustrated below, the large majority of unique vulnerabilities across all types of repositories
has a "Medium" level of severity. Indeed, as many as 3 156 unique vulnerabilities, representing
60% of the total amount of unique vulnerabilities found in the analyzed set of Docker images have
a "Medium" level of severity. As a reminder from 2.1.4, vulnerabilities with a "Medium" level of
severity provide limited access to an attacker once exploited and usually involve social engineering

69

techniques or being on the same local network as the victim. The fact that most vulnerabilities
across all types of repositories have a "Medium" level of severity is relatively concerning, although
not all of them may be exploitable as argued in 8.1 as part of the discussion chapter.

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750

Negligible Low Medium High Critical Unknown
Severity

To
ta

l v
ul

ne
ra

bi
lit

ie
s Repository type

All

Official

Community

Verified

Certified

Distribution of severity levels for
 unique vulnerabilities across repository types

Figure 6.6: Distribution of severity levels for unique vulnerabilities across repository types

Based on table 6.3 located below and providing a statistical representation of the same severity
distribution as the one illustrated in figure 6.6, it may be observed that the analyzed Community
images contain almost all the unique vulnerabilities identified during all the experiments, while
Official and Verified images contain about 50% of them. As anticipated in our expectations and
discussed in 3.5, Certified repositories offer images with the most secure content of all three, as
they only contain 8% of all the unique vulnerabilities discovered across all types of repositories.

Moreover, the share of unique vulnerabilities found in the analyzed Certified images for all levels
of severity illustrated in figure 6.6 above is significantly lower than the ones discovered for the
three other types of images, which confirms our findings from 6.2.1 showing that Certified im-
ages contain less unique vulnerabilities in average than the three other types of repositories. It
is important to note that all the repository types mostly hold vulnerabilities with a "Medium"
severity, consisting of almost 50% of all the unique vulnerabilities identified in Verified repositor-
ies, while the proportions for Official, Community, and Certified repositories are 46,48%, 57,76%,
and 36,91% respectively (see table 6.3 below).

As for the "Critical" and "Unknown" severity levels combined, the proportions of all the repos-
itory types with such vulnerabilities are below 2% of all the analyzed images, which is somewhat
reassuring as the number of unique vulnerabilities with a critical severity across all types of re-
positories is therefore very limited. Additionally, table 6.3 below illustrates that all the analyzed
images have more or less 20% of all their unique vulnerabilities with a "Low" severity, suggesting
that any image contains 1 vulnerability out of 5 carrying a very minimal risk requiring local or
physical access for successful exploitation (more details about vulnerabilities of "Low" severities
in 2.1.4).

70

Official Community Verified Certified Total unique

Negligible 16,88% (389) 9,38% (478) 13,03% (337) 13,31% (47) 9,05% (493)

Low 21,62% (498) 20,69% (1054) 21,50% (556) 23,80% (84) 20,59% (1122)

Medium 46,48% (1071) 57,76% (2943) 49,88% (1290) 39,66% (140) 57,86% (3153)

High 13,93% (321) 11,25% (573) 14,00% (362) 21,81% (77) 11,30% (616)

Critical 0,00% (0) 0,27% (14) 0,70% (18) 0,85% (3) 0,50% (27)

Unknown 1,09% (25) 0,65% (33) 0,89% (23) 0,57% (2) 0,70% (38)

Total 100,00% (2304) 100,00% (5095) 100% (2586) 100,00% (353) 100,00% (5449)

Table 6.3: Distribution of severity levels for unique vulnerabilities across repository types

Finally, note that over 20% of all the unique vulnerabilities found in Certified images have a
"High" severity level, whereas that proportion for the three other types of repositories varies
between 11 and 14%. Thus, although Certified images contain less unique vulnerabilities than
their peers in total as explained above and in 6.2.1, their vulnerabilities tend to be of higher
level. The qualitative indicator that is vulnerabilities’ severity levels allows therefore refuting
the original result direction suggesting that Certified images were the most secure due to the lower
number of vulnerabilities they hold compared to the other types of repositories. Nonetheless, it
is important to note that the distribution of severity levels for unique vulnerabilities across all
types of repositories does not indicate the actual proportion of images containing at least one
vulnerability with a particular severity level.

6.2.3 Vulnerable image distribution

As briefly mentioned at the end of the previous subsection, the distribution of severity levels for
unique vulnerabilities across Community, Official, Verified and Certified repositories does not
provide any indication on the actual proportion of images containing at least one vulnerability
with a particular severity level. Indeed, while only 3 unique vulnerabilities have a critical severity
level for Certified images as shown in table 6.3 above, their total number including duplicates
may be a lot larger and spread out over many Certified images, or contained within a single one.
Figure 6.7 and 6.8 below illustrates the quantitative distribution of images across repository
types containing at least one critical, high, medium or low vulnerability.

First, it may be observed on the left-hand side of figure 6.7 that although the number of Com-
munity images containing at least one critical severity is more important than the number of
images in the same case in other types of repositories, their proportion to their total amount
of images is actually the lowest after Official repositories. Indeed, under 3% of the Community
images hold at least one critical severity, whereas 4% and 16% are in that case for Verified
and Certified images respectively. As a reminder from 2.1.4, critical vulnerabilities are usually
easy and straight-forward to exploit, while mostly leading to root-level privileges. Thus, a large
proportion of Certified images contain at least one critical severity, which confirms our find-
ings discussed in 6.2.2 showing that although Certified images contain less unique vulnerabilities
than their peers in total, their vulnerabilities tend to be of higher level, which is very alarming.
Moreover, it was pointed out in the previous subsection that the number of unique vulnerabilities
with a critical severity across all types of repositories is very limited, suggesting that many Certi-
fied images contain the same critical vulnerabilities. Note also that a non-negligible proportion of

71

Verified images contain at least one critical vulnerability compared to Community images, which
actually perform best among the repository types holding images with critical vulnerabilities.
As for the Official images, it should be noticed that none of them contain a critical vulnerability,
which is somewhat reassuring as they are by far the most popular type of images on the Docker
Hub platform, as discussed further in 6.2.4.

14/500
(2,80%)

5/31
(16,13%) 4/98

(4,08%)

0/128
(0,00%)

0
2
4
6
8

10
12
14
16

C
om

m
un

ity

C
er

tif
ie

d

V
er

ifi
ed

O
ffi

ci
al

Repository type

N
um

be
r

of
 im

ag
es

Distribution of images
across repository types
with a critical severity

392/500
(78,40%)

97/128
(75,78%)

77/98
(78,57%) 24/31

(77,40%)

0
50

100
150
200
250
300
350
400
450

C
om

m
un

ity

O
ffi

ci
al

V
er

ifi
ed

C
er

tif
ie

d

Repository type

N
um

be
r

of
 im

ag
es

Distribution of images
across repository types
 with a high severity

Figure 6.7: Distribution of images across repository types with a critical and high severity

Secondly, the share of images containing at least one vulnerability with a high severity is similar
in each type of repository. Indeed, 77% of the Certified images hold at least one vulnerability with
a high severity, whereas 76% , 79% and 78% are in that case for Official, Verified and Community
images respectively. Thus, although more than 20% of all the unique vulnerabilities found in
Certified images have a high severity level whereas that proportion for the three other types of
repositories varies between 11 and 14% as explained in 6.2.2, the share of images containing at
least one vulnerability with a high severity is similar in each type of repository. Such results
suggest therefore that Official, Verified and Community repositories contain a significantly larger
amount of duplicate vulnerabilities with a high severity level across their images compared to
Certified repositories. As a reminder from 2.1.4, high severities may have severe consequences
such as significant data losses or downtime, although they may require advanced techniques in
order to be exploited. Thus, a such important proportion of images containing at least one
vulnerability with a high severity level is very alarming, as more than 3 images out of 4 are in
that case for any type of repository.

Thirdly, it may be observed on the left-hand side of figure 6.8 below that the proportion of
images containing at least one medium vulnerability is significantly higher for Certified and
Verified images than the two older types of repositories. On one hand, as much as 87% of the
analyzed Certified images contain at least one vulnerability with a medium severity, while 84%
of the Verified images are in that case. On the other hand, 75% of the Community repositories
hold at least one medium vulnerability, whereas 73% of the analyzed Official images are in that

72

case. Although all types of repositories contain a large number of images holding at least one
medium severity, Certified and Verified repositories tend to contain several images in that case.
As a reminder from 2.1.4, vulnerabilities with a medium severity provide limited access to an
attacker once exploited and usually involve social engineering techniques or being on the same
local network as the victim. The fact that such a vast majority of images contain at least one
vulnerability with a medium severity is therefore relatively concerning.

375/500
(75,00%)

93/128
(72,66%)

82/98
(83,67%) 27/31

(87,10%)

0
50

100
150
200
250
300
350
400
450

C
om

m
un

ity

O
ffi

ci
al

V
er

ifi
ed

C
er

tif
ie

d

Repository type

N
um

be
r

of
 im

ag
es

Distribution of images
across repository types
with a medium severity

327/500
(65,40%)

90/128
(70,31%)

77/98
(78,57%)

18/31
(58,06%)

0
50

100
150
200
250
300
350
400

C
om

m
un

ity

O
ffi

ci
al

V
er

ifi
ed

C
er

tif
ie

d

Repository type

N
um

be
r

of
 im

ag
es

Distribution of images
across repository types

with a low severity

Figure 6.8: Distribution of images across repository types with a medium and low severity

Finally, the share of images containing at least one vulnerability with a low severity is somewhat
disparate from one repository type to another. Indeed, Certified repositories perform best with
58% of their images containing at least one low vulnerability, whereas 65% , 70% and 79%
of the Community, Official and Verified images are in that case. As a reminder from 2.1.4,
vulnerabilities in the low range typically have very little impact on an organization’s business
and usually require local or physical access to a vulnerable system. Although it is a good sign
that Certified images have the lowest proportion of their total number of images containing at
least one low vulnerability compared to the three other types of repositories, it is definitely not
enough to claim that they offer a better level of security than their peers. Moreover, it should
be noticed that Verified repositories contain the highest share of images with a low vulnerability,
although that level of severity does not play a major role in determining the level of security
provided by a certain type of image, contrary to the critical, high and medium severity levels
discussed above.

6.2.4 Potential correlations

While the previous subsections presented general vulnerability results issued from the six first
detailed research questions composing RQ3 and discussed in 4.5, this subsection will address

73

the remaining ones in view of addressing a part of the original problem statement introduced in
1.2 and provide a better understanding of Docker Hub’s the security landscape. Note that the
indicators taken into account in this subsection will consist of the number of times an image has
been downloaded (referred to as "total pulled"), the last time an image was updated on Docker
Hub (referred to as "last updated"), as well as the images containing the highest number of
vulnerabilities (referred to as "most vulnerable").

Is there a correlation between the most popular images (most pulled) and the most
vulnerable ones?

IMPORTANT - Figure 6.10, 6.11 and 6.12 below contain an x-axis labelled with a
shortened version of their repository names due to their length being too important. Note
however that the detailed statistics with the exact number of downloads and vulnerabil-
ities for each of the ten most pulled and most vulnerable repositories discussed below are
available in Appendix D.2 and D.1 respectively with full repository names.

Many Official repositories possess a significant popularity among Docker Hub users. Indeed,
the right hand side of figure 6.9 illustrates the ten most popular Official repositories available
on Docker Hub during the conduction of our experiments in terms of number of downloads,
while the figure’s left hand side highlights the ten most vulnerable Official repositories in terms
of number of contained vulnerabilities. Note that the number of vulnerabilities hold in each of
the most popular repositories is also present next to the latter’s names. On one hand, it may
be observed that the "rail"s and "django" repositories contain a significantly higher number of
unique vulnerabilities with a number as high as 1500, whereas the remaining most vulnerable
Official repositories hold approximately 600 unique vulnerabilities.

0
200
400
600
800

1000
1200
1400
1600

ra
ils

dj
an

go

gl
as

sf
is

h

el
an

g

el
ix

ir

py
th

on

hy
la

ng gc
c

pe
rl

bu
ild

pa
ck

−
de

ps

Repository name

To
ta

l v
ul

ne
ra

bi
lit

ie
s

Top 10 most vulnerable
Official repositories

0.0e+00

5.0e+08

1.0e+09

1.5e+09

ng
in

x
(8

2)
re

di
s

(4
3)

al
pi

ne
 (

0)
ht

tp
d

(1
35

)
ub

un
tu

 (
41

)
po

st
gr

es
 (

10
2)

no
de

 (
79

)
m

ys
ql

 (
59

)
m

em
ca

ch
ed

 (
43

)
re

gi
st

ry
 (

0)

Repository name

To
ta

l p
ul

le
d

Top 10 most pulled
Official repositories

Figure 6.9: The top 10 most vulnerable and most pulled Official repositories

On the other hand, the most pulled Official repository consists of the "nginx" repository with 1.65
billion downloads, followed by "redis" and "alpine" with 1.49 and 1.19 billion pulls respectively.

74

Although there are no apparent correlations between the most popular and the most vulnerable
Official images, the "httpd" and "postgres" repositories stand out with their significantly higher
number of contained vulnerabilities (135 and 102 respectively) compared to the rest of the ten
most downloaded Official images. Finally, note that the detailed statistics with the exact num-
ber of downloads and vulnerabilities for each of the top ten most pulled and most vulnerable
repositories are available in Appendix D.2 and D.1 respectively.

Contrary to their Official peers, all the ten most vulnerable Community repositories contain a
high number of unique vulnerabilities averaging around 1500, as shown in figure 6.10 below.
Indeed, the bottom two most vulnerable Community repositories identified as
"herightplace/bedboard2-sidekiq" (A9) and "springcloud/spring-pipeline-m2" (A10) are rep-
resentative of that characteristics, as they contain the least number of vulnerabilities among
the 10 most vulnerable Community repositories and still hold 1277 and 1218 unique vulner-
abilities respectively. Surprisingly, the three most popular Community repository identified
as "jtarchie/pr" (B1), "pivotalcf/pivnet-resources" (B2) and "cfcommunity/slack-notification-
resource" (B3) have a higher number of unique downloads than the most popular Official re-
pository. Indeed, the three repositories possess a total number of downloads of 2.06, 1.95 and
1.74 billion respectively, while Nginx only has 1.6 billion downloads. Furthermore, the number
of downloads for the rest of the most popular Community repositories is significantly lower than
the top 3, whereas the same indicator decreases almost linearly for the 10 most popular Official
repositories illustrated in figure 6.9 above. Finally, note that similarly to Official repositories,
there is no apparent correlation between the ten most popular and most vulnerable Community
images.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

Repository name

To
ta

l v
ul

ne
ra

bi
lit

ie
s

Top 10 most vulnerable
Community repositories

0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
10

Repository name

To
ta

l p
ul

le
d

Top 10 most pulled
Community repositories

Figure 6.10: The top 10 most vulnerable and most pulled Community repositories

Similarly to Official repositories, the number of vulnerabilities contained in the two most vulner-
able Verified repositories is rather high, but decreases rapidly for the remaining repositories as il-
lustrated in figure 6.11 below. Indeed, the top 2 most vulnerable Verified repositories in the name
of mcr.microsoft.com/azuredocs/azure-vote-front" (D1) and "tore/klokantech/openmaptiles-server-
dev" (D2) contain 1531 and 1171 unique vulnerabilities respectively, whereas the remaining re-
positories average around 630 uniquely contained vulnerabilities. That indication is therefore
comforting our expectations discussed in 3.5, where Official and Verified repositories were expec-

75

ted to offer a similar degree of security. On the other hand, it should be noticed that there exists
a huge gap between the number of downloads observed for each of the ten most popular Verified
images. Indeed, the most popular image known as "mcr.microsoft.com/dotnet/core/runtime-
deps" (E1) possesses more than 348 million downloads, whereas the least popular one in the
top 10 identified as "mcr.microsoft.com/azuredocs/aci-tutorial-sidecar" (E10) only has approx-
imately 1 million downloads, which is more than 300 times less pulls. Nonetheless, the three
most popular repositories (E1, E2, E3) which possess a significantly higher number of downloads
than the rest constitute the most vulnerable Verified repositories of the ten most popular ones
with total numbers of unique vulnerabilities ranging from 54 to 104, as detailed in Appendix D.2.
That indicator is very concerning, as it shows that the most popular Verified repositories are the
most vulnerable among that top 10. Finally, note that similarly to the other types of reposit-
ory, there is no apparent direct correlation between the ten most popular and most vulnerable
Verified images.

0

200

400

600

800

1000

1200

1400

1600

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

Repository name

To
ta

l v
ul

ne
ra

bi
lit

ie
s

Top 10 most vulnerable
Verified repositories

0e+00

1e+08

2e+08

3e+08

E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
10

Repository name

To
ta

l p
ul

le
d

Top 10 most pulled
Verified repositories

Figure 6.11: The top 10 most vulnerable and most pulled Verified repositories

0

25

50

75

100

125

150

175

200

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

G
10

Repository name

To
ta

l v
ul

ne
ra

bi
lit

ie
s

Top 10 most vulnerable
Cerified repositories

0

250

500

750

1000

1250

1500

1750

2000

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
10

Repository name

To
ta

l p
ul

le
d

Top 10 most pulled
Cerified repositories

Figure 6.12: The top 10 most vulnerable and most pulled Certified repositories

76

Similarly to Official and Verified repositories, the most vulnerable Certified repository contains
a significantly higher number of unique vulnerabilities than the remaining repositories, as illus-
trated in figure 6.12 above. Indeed, the most vulnerable repository identified as "store/opsan-
i/skopos" contains 166 unique vulnerabilities, whereas the remaining Certified repositories con-
tain less than 60 vulnerabilities in average. Nonetheless, the number of unique vulnerabilities
contained in the most vulnerable Certified repository is significantly lower than the one contained
in the most vulnerable repository of the three other types with only 166 unique vulnerabilities,
against 1531 for Verified, 1530 for Official and 1792 for the most vulnerable Community re-
pository. The most vulnerable Certified repositories offer therefore a higher degree of security
compared to its three other peers, with a significantly lower number of uniquely contained vulner-
abilities. Finally, note that almost all Certified repositories do not provide statistical information
about their number of downloads through Docker Hub’s unofficial API discussed in 5.2.1 and
5.2.2, which makes the identification of eventual correlations between the ten most popular and
most vulnerable Certified images impossible.

Is there a correlation between the last updated images and the most vulnerable
ones?

A complete list of the ten last updated images for each type of repository is provided in its
entirety with timestamps in Appendix D.3, while the most vulnerable repositories for each type
of image are illustrated on the left hand side of figure 6.9, 6.10, 6.11 and 6.12 above. Although
there are no apparent correlations between the last updated and the most vulnerable images
across all types of repositories, table 6.4 below shows that the last ten repositories to be updated
for each type of repository contain an average number of total vulnerabilities lower than the
average for the entire set. Thus, Docker images which have been recently updated are more
likely to contain less vulnerabilities than older ones.

Average number of

vulnerabilities for

Official

repositories

Community

repositories

Verified

repositories

Certified

repositories

Top 10 last

updated repositories
91 139 129 14

Complete set of

repositories
177 153 157 30

Table 6.4: Comparison of the average number of total vulnerabilities per repository type for the
last 10 updated and the complete set of repositories

Nonetheless, a small correlation regarding Certified repositories with two of the last ten updated
repositories in the name of "store/ibmcorp/websphere-liberty" and "store/sematext/agent" are
found in the top 10 most vulnerable Certified repositories. Indeed, the former repository con-
tains 44 vulnerabilities although it was updated recently (March 27th) at the time of the ex-
periment’s conduction, whereas the latter holds 46 vulnerabilities despite its last update on
March 20th. Additionally, a similar correlation exists for a single Verified image identified as
"mcr.microsoft.com/oryx/build", which holds 643 vulnerabilities in total despite being recently
updated. Although insufficient to draw solid conclusions, those indications suggest that some
images may be updated without actually patching all of their vulnerabilities.

77

Finally, the rest of the collected information available in Appendix D.3 reveals that Official
images are the most frequently updated of all three types, as they are generally updated every
12 minutes on average, whereas Verified and Certified images are the least frequently updated
with an updating frequency averaging around 36 hours.

Is there a correlation between base images and the most vulnerable, most popular
or last updated images?

A complete list of all the base images for each type of repository is provided in its entirety in
Appendix D.4. As previously mentioned, a list with the ten last updated images for each type
of repository is also provided in its entirety with timestamps in Appendix D.3, while the most
popular and most vulnerable repositories for each type of image are illustrated in figure 6.9, 6.10,
6.11 and 6.12 above.

As mentioned in 6.1, over 50% of the analyzed Community repositories are base images due to
a significant error caused by many Community images having a non-identifiable parent, as dis-
cussed in details in the discussion chapter under 8.2. This detailed research question is therefore
irrelevant for Community repositories, although by only considering the top ten most used base
Community repositories, it may be observed that 7 out of 10 base repositories correlate with the
most popular repositories in the set.

Regarding the Official set, Glassfish is both a base repository and the third most vulnerable
Official repository on Docker Hub. The correlation between the number of base and the most
vulnerable Official repositories is therefore limited, which is somewhat reassuring as Official base
repositories are often used as parents. Additionally, the Ubuntu and Alpine repositories figuring
among the ten most popular Official repositories are also base repositories. The limited number
of correlations between the Official base images and the most popular images on the Docker Hub
platform suggests therefore that base images may not be as popular and influential as expected,
although no conclusion may be drawn without further investigation. Note also that there is no
apparent correlation between the base and the last updated Official repositories.

Half of the Verified base repositories correlate with the ten most popular repositories of that
kind, whereas only 1/5 of the top ten last updated Verified repositories are base ones. Contrary
to their Official peers, Verified base repositories tend therefore to be updated more often, while
their popularity is also significantly higher. Moreover, it should be noticed that there is no
apparent correlation between the base and the most vulnerable Verified repositories.

Finally, the entirety of the top ten most vulnerable Certified repositories are base ones, while half
of the most popular Certified repositories are in that case. Those findings are very alarming as
they suggest that many Certified base repositories with a high popularity are also among the most
vulnerable repositories, potentially spreading vulnerabilities to many child images using them as
parents. Furthermore, there is no apparent correlation between the base and the last updated
Certified repositories, which also suggests that Certified base repositories are not updated that
often despite their popularity and high vulnerability.

78

Is there a correlation between vulnerabilities found in base and non-base images?

Official Community Verified Certified
Rank

Base Non-base Base Non-base Base Non-base Base Non-base

1 CVE-2018-6829 CVE-2017-7245 CVE-2016-9842 CVE-2016-10228 RHSA-2018:3140 CVE-2019-7309 RHSA-2018:3157 RHSA-2019:0483

2 CVE-2016-2781 CVE-2017-7246 CVE-2016-9840 CVE-2017-7246 RHSA-2018:3158 CVE-2016-10228 ELSA-2018-0849 RHSA-2019:0679

3 CVE-2016-10228 CVE-2013-4235 CVE-2016-9841 CVE-2018-7169 RHSA-2018:3059 CVE-2016-2779 RHSA-2019:0201 CVE-2019-7309

4 CVE-2013-4235 CVE-2016-2781 CVE-2016-9843 CVE-2013-4235 RHSA-2018:3157 CVE-2018-7169 RHSA-2018:3092 CVE-2018-20482

5 CVE-2017-11671 CVE-2018-7169 RHSA-2018:3140 CVE-2019-7309 RHSA-2019:0201 CVE-2017-7246 RHSA-2019:0049 CVE-2019-1543

6 CVE-2018-7169 CVE-2016-10228 CVE-2016-10228 CVE-2016-2781 RHSA-2019:0049 CVE-2016-2781 ELSA-2018-2768 CVE-2017-7245

7 CVE-2017-7526 CVE-2019-7309 CVE-2019-7309 CVE-2017-7245 RHSA-2019:0368 CVE-2013-4235 RHSA-2019:0368 CVE-2016-10228

8 CVE-2017-7246 CVE-2016-2779 CVE-2017-7245 CVE-2019-3842 RHSA-2018:3092 CVE-2017-7245 RHSA-2018:3041 CVE-2018-7169

9 CVE-2017-2616 CVE-2015-8985 CVE-2018-20482 CVE-2019-9947 RHSA-2018:3041 CVE-2017-12132 RHSA-2018:3140 CVE-2015-8985

10 CVE-2017-7245 CVE-2017-12424 CVE-2017-7246 CVE-2019-9740 RHSA-2018:2768 CVE-2018-20482 ELSA-2018-0805 CVE-2013-4235

Table 6.5: Correlations between vulnerabilities found in base and non-base images

As shown in table 6.5, the correlations between vulnerabilities found in base and non-base images
across repository types are marked with specific colors. As illustrated, there are no correlations
between the vulnerabilities found in base and non-base Verified repositories or the ones found in
base and non-base Certified repositories. However, 6 vulnerabilities among the ten most popular
ones exist in both base and non-base Official repositories, while 4/10 are found in both types
of Community repositories. Furthermore, it should be noticed that ten most popular vulnerab-
ilities for Verified and Certified base repositories only contain vulnerabilities from Red Hat and
Enterprise Linux distributions, whereas non-base repositories hold mostly CVE vulnerabilities.

Is there a correlation between the most vulnerable packages across repository types?

Table 6.6 below classifies the ten most vulnerable packages for each type of repository with their
corresponding CVE and CWE numbers. As discussed in detailed in 2.1.2 and 2.1.3, publicly dis-
closed vulnerabilities are identified with a CVE, RHSA or ELSA number which may be classified
in a CWE category corresponding to a certain type of vulnerability (e.g. privilege escalation,
buffer overflows, etc.).

As illustrated below, all the reported vulnerabilities across the four repository types have at least
one package containing a CWE-ID of 20. Indeed, the concerned packages are "pcre", "pcre3",
"libcrypt20", "sssd-proxy", "openssl-libs", "systemd", and "python-libs". By considering the
three most frequent CWE-IDs in the entire analyzed set, the following vulnerability categories
may be identified as the most popular across all types of repositories:

• CWE-20: Input Validation
The product does not validate or incorrectly validates input that can affect the control flow
or data flow of a program.

• CWE-835: Loop with Unreachable Exit Condition (’Infinite Loop’)
The program contains an iteration or loop with an exit condition that cannot be reached,
i.e., an infinite loop.

• CWE-271: Privilege Dropping / Lowering Errors
The software does not drop privileges before passing control of a resource to an actor that
does not have those privileges.

79

Rank
Top 10 vulnerable packages with their corresponding CVE number and CWE-ID

Official Community Verified Certified

1
pcre: CVE-2017-7246

(CWE-20)

glibc: CVE-2016-10228

(CWE-835)

glib2: RHSA-2018:3140

(CWE-121)

nss-pem: RHSA-2018:3157

(CWE-125)

2
shadow: CVE-2013-4235

(CWE-367)

glibc: CVE-2019-7309

(CWE-393)

sssd-proxy: RHSA-2018:3158

(CWE-200)

openssl-libs: RHSA-2019:0483

(CWE-200)

3
coreutils: CVE-2016-2781

(CWE-270)

pcre3: CVE-2017-7245

(CWE-20)

libxcb: RHSA-2018:3059

(CWE-122)

libgcc: ELSA-2018-0849

(CWE-338)

4
glibc: CVE-2016-10228

(CWE-835)

pcre3: CVE-2017-7246

(CWE-20)

glibc: CVE-2016-10228

(CWE-835)

glibc: RHSA-2018:3092

(CWE-470)

5
shadow: CVE-2018-7169

(CWE-271)

shadow: CVE-2013-4235

(CWE-367)

glibc: CVE-2019-7309

(CWE-835)

systemd: RHSA-2019:0049

(CWE-122)

6
pcre3: CVE-2017-7245

(CWE-20)

coreutils: CVE-2016-2781

(CWE-270)

util-linux: CVE-2016-2779

(CWE-270)

systemd-libs: RHSA-2019:0201

(CWE-400)

7
glibc: CVE-2019-7309

(CWE-393)

shadow: CVE-2018-7169

(CWE-271)

shadow: CVE-2013-4235

(CWE-367)

systemd: RHSA-2019:0368

(CWE-20)

8
libgcrypt20: CVE-2018-6829

(CWE-200)

tar: CVE-2018-20482

(CWE-835)

shadow: CVE-2018-7169

(CWE-271)

nss: ELSA-2018-2768

(CWE-254)

9
util-linux: CVE-2016-2779

(CWE-270)

python3.5: CVE-2019-9947

(CWE-113)

pcre: CVE-2017-7246

(CWE-20)

libssh2: RHSA-2019:0679

(CWE-787)

10
glibc: CVE-2015-8985

(CWE-19)

python3.5: CVE-2019-9740

(CWE-113)

pcre3: CVE-2017-7245

(CWE-20)

python-libs: RHSA-2018:3041

(CWE-20)

Table 6.6: The top 10 vulnerable packages across repository types with their corresponding CVE
number and CWE-ID

The identified categories above raise some concerns, as they are related to essential system
packages (pcre3, glibc and shadow) present in any Linux-based distribution. Thus, the fact that
such packages are part of the ten most vulnerable packages found across all types of repositories
is very concerning. Moreover, it should be noticed that other important and core packages such
as systemd, coreutils or util-linux are found among the ten most vulnerable packages, although
not for every type of repository.

Finally, note that a complete list of all the CWE-IDs found in the ten most vulnerable packages
across all repositories types is available with a corresponding description retrieved from NVD’s
website in Appendix D.8.

6.3 RQ2: Vulnerabilities and inheritance

Main research question 2: Are vulnerabilities still inherited from images’ parent(s) and in what
proportion?

It may be observed in table 6.7 below that almost 80% of all the analyzed Official repositories
depends on a parent Official image, while over 40% of all the analyzed Community repositories are
in that case. Note that the result for Community repositories should be relativized as discussed
in 8.1.4 due to a significant error caused by many Community images having a non-identifiable

80

parent. As for Verified and Certified repositories, approximately 1/3 of them are based on a
parent Verified or Official image.

Vulnerabilities and inheritance - total images in our analyzed set (in percent)

Derived from detailed RQ2
Official

(174 images)

Community

(623 images)

Verified

(124 images)

Certified

(38 images)

All

(920 images)

Images depending on a parent 134 (77,01%) 261 (41,89%) 36 (29,03%) 12 (31,58%) 440 (47,83%)

Images with inherited vulnerabilities 99 (56,90%) 184 (29,53%) 32 (25,80%) 10 (26,32%) 327 (35,54%)

Images with introduced vulnerabilities 85 (48,85%) 171 (27,45%) 28 (22,58%) 4 (10,53%) 296 (32,17%)

Average number of inherited vulnerabilities 117 113 110 18 118

Average number of introduced vulnerabilities 158 177 184 10 175

Table 6.7: Introduced and inherited vulnerabilities across repository types

Moreover, Official images inherit more vulnerabilities in average compared to other repository
types, as over 50% of the totally analyzed Official repositories inherit vulnerabilities from their
parent, while over 1/4 of the analyzed Community, Verified, and Certified repositories are in that
case. Note that this indication is coherent with the proportion of images depending on a parent
in each type of repository described in the previous paragraph. Indeed, images relying heavily
on the extension of a parent repository are most likely to contain inherited vulnerabilities, as
demonstrated with Official repositories which have both the highest proportion of images being
based on a parent, as well as the highest proportion of inherited vulnerabilities.

Nonetheless, the average number of introduced vulnerabilities is higher than the average num-
ber of inherited vulnerabilities for all types of repositories and Verified images introduce more
vulnerabilities in average compared to the rest of the other repository types, without being sig-
nificantly higher. Furthermore, approximately 25% of all the analyzed Community and Verified
repositories introduce new vulnerabilities, which is similar to the proportion of repositories in-
heriting vulnerabilities for those types. Indeed, it should be noticed that more than 50% of all
the analyzed Community and Verified repositories have either no parents or no vulnerabilities
at all. Note also that some images may contain both introduced and inherited vulnerabilities.
Similarly, the proportion of inherited and introduced vulnerabilities for Official images is of ap-
proximately 50%. Finally, only less than 11% of the analyzed Certified repositories introduce
new vulnerabilities, suggesting that the vulnerabilities contain in vulnerable Certified images are
likely to be inherited.

6.4 RQ1: Certified and Verified vs. Official and Community
repositories

Main research question 1: Have the security measures introduced by Docker Inc. in response to
previous research improved Docker Hub’s security landscape and to what extent?

Finally, one of the main goals of this study is to determine whether the measures introduced by
Docker Inc. in the form of two new types of repositories (Certified and Verified) in late 2018 have
improved Docker Hub’s security landscape. As mentioned in the introduction of this chapter,
the detailed research questions implied by RQ1 reminded above will be answered in this section.

81

As briefly discussed in 6.2.1 and illustrated in table 6.2, Certified and Verified images contain 353
and 2 586 unique vulnerabilities respectively, while Official and Community images hold 2 304
and 5 095 in total. Based solely on the unique number of vulnerabilities contained in each type of
repository, Certified images are by far the most secure, followed by Official and Verified images
containing almost fourteen times the unique number of vulnerabilities contained in Certified
images. As for Community repositories, they offer the worse level of security as they contain
the highest number of unique vulnerabilities for all types of repositories, which is about twice as
high as the unique number of vulnerabilities contained in Official and Verified repositories.

When considering the average number of inherited and introduced vulnerabilities illustrated in
table 6.7, Official and Community images inherit more vulnerabilities on average compared to
Verified and Certified repositories. Furthermore, the average number of inherited vulnerabil-
ities is significantly lower for Certified images than the three other types. As for introduced
vulnerabilities, Verified repositories actually introduce more vulnerabilities in average than their
peers, although that number (184) is only slightly higher than the average number of introduced
vulnerabilities in Community (177) and Official (152) repositories. In the same way as with the
average number of inherited vulnerabilities, Certified images introduce a lot less vulnerabilities
than their peers in average (only 10).

The distribution of severity levels for unique vulnerabilities across the four repository types
shown in table 6.3 highlights that Official images contain 321 vulnerabilities with a high severity,
indicating an average of three highly severe unique vulnerabilities per image. On the other hand,
each Community image holds only a single unique vulnerability with a high severity in average,
while Verified and Certified images hold about four and three respectively.

When considering the distribution of images containing at least one vulnerability of a particular
severity level illustrated in figure 6.7 and 6.8, Certified repositories hold by far the highest
proportion of images with at least one critical severity, while all types of repository contain a
large number of images with a vulnerability of high or medium severity. Certified images are
therefore the most insecure of all four types when severity levels are set in perspective with the
number of affected images in each type of repository, while Verified images perform as poorly as
Official and Community images.

Since many of the available images on Docker Hub are based on parent images, it is very likely
that they also share identical vulnerabilities. As a simple reminder from 2.1.2 in the background
chapter, publicly disclosed vulnerabilities with an assigned CVE number are enumerated into vul-
nerability categories identified through CWE-IDs. Table 6.8 below displays the ten most popular
vulnerabilities found across all four types of repositories. The CWE-20 category corresponding
to an Input Validation vulnerability, exists across all the repository types. Moreover, 7/10 of
the most vulnerable types of attacks in Official images remain among Verified images. By com-
paring the vulnerability types in the following combined sets: Official and Community against
the Verified and Certified set, 2/3 of all the vulnerability categories in the combined Official
and Community set is shared with the combined Verified and Certified set. The large majority
of vulnerabilities contained in Certified and Verified repositories shares therefore a vulnerability
category with the two other types of repositories. Note that a complete list of CWE-IDs with
their corresponding vulnerability category and description is available in Appendix D.8.

82

Top 10 vulnerability categories across repository types (CWE-ID)

Rank Official Community Verified Certified

1
Input Validation

(CWE-20)

Infinite Loop

(CWE-835)

Stack-based

Buffer Overflow

(CWE-121)

Out-of-bounds

Read (CWE-125)

2
Race Condition

(CWE-367)

Return of Wrong

Status Code

(CWE-393)

Information Leak /

Disclosure

(CWE-200)

Information Leak /

Disclosure

(CWE-200)

3

Privilege Context

Switching Error

(CWE-270)

Input Validation

(CWE-20)

Heap-based

Buffer Overflow

(CWE-122)

PRNG

(CWE-338)

4
Infinite Loop

(CWE-835)

Race Condition

(CWE-367)

Infinite Loop

(CWE-835)

Unsafe Reflection

(CWE-470)

5

Privilege Dropping /

Lowering Errors

(CWE-271)

Privilege Context

Switching Error

(CWE-270)

Privilege Context

Switching Error

(CWE-270)

Heap-based

Buffer Overflow

(CWE-122)

6

Return of Wrong

Status Code

(CWE-393)

Privilege Dropping /

Lowering Errors

(CWE-271)

Race Condition

(CWE-367)

Resource Exhaustion

(CWE-400)

7

Information Leak /

Disclosure

(CWE-200)

HTTP Response

Splitting (CWE-113)

Privilege Dropping /

Lowering Errors

(CWE-271)

Input Validation

(CWE-20)

8
Data Handling

(CWE-19)

CRLF Injection

(CWE-93)

Input Validation

(CWE-20)

Out-of-bounds

Write (CWE-787)

9

Integer Overflow

or Wraparound

(CWE-190)

Permissions, Privileges,

and Access Control

(CWE-264)

Permissions, Privileges,

and Access Control

(CWE-264)

Resource Management

Errors (CWE-399)

10
Buffer Errors

(CWE-119)

Resource Management

Errors (CWE-399)

Out-of-bounds

Read (CWE-125)

Buffer Errors

(CWE-119)

Table 6.8: The ten most popular vulnerability categories across all types of repositories

To conclude, the level of security provided by Certified repositories is bar far superior to the three
other types in every aspect when severity levels are not taken into account. However, when the
latter are a part of the equation, Certified repositories actually perform worse, as they tend to
hold vulnerabilities of higher severity, although their total number of contained vulnerabilities is
significantly lower than the other types of repositories. As for Verified repositories, the latter offer
a very similar degree of security than Official repositories, which does not vary with/without the
consideration of severity levels. Finally, note that Community repositories perform worse than
Official and Verified repositories in all scenarios, but provide a higher degree of security than
Certified images when severity levels are taken into account.

83

6.5 Additional research question

Additional research question: Are vulnerabilities propagating from a small set of highly influential
base images?

In addition to the main research questions defined in 1.2, the investigation of an additional
research question based on an observation by Shu et al. in [11] suggesting that "it is highly likely
that the root cause of pervasive vulnerabilities on Docker Hub is the result of propagation from a
relatively small set of highly influential base images" was addressed. Indeed, their suggestion was
first formally stated into a dedicated additional research question, as stated above. Secondly, the
detailed research questions implied by that new inquiry were identified and answered as followed:

Are the ten most popular parent images correlated with the the ten most vulnerable
packages across all types of images in some way?

Table 6.9 below sets in perspective the ten most popular parent images across all types of
repositories with the ten most vulnerable packages across all types of images ("firefox" being the
most vulnerable package and "openssl" being the least vulnerable of all ten). As illustrated, only
one parent image out of the ten most popular ones across all types of repositories contain one
of the most vulnerable packages found across all types of repositories. Thus, there are almost
no correlations between the ten most popular parent images and the the ten most vulnerable
packages found across all types of repositories, advising that Shu et al.’s suggestion may be wrong.
Note however that it has been three years since their research was conducted. Their assumption
might have therefore been correct at the time of their study (April 2016), as the Docker Hub
ecosystem has rapidly changed during that period of time, as explained in 2.5. However, if only
the most vulnerable packages across the ten most popular parent images are considered, a certain
number of correlations may be observed, as addressed by the second detailed research question
implied by Shu et al.’s suggestion.

Rank
Parent

image

Number of

descendant images

Top 10 most vulnerable packages across all repository types

firefox linux imagemagick binutils php5 tcpdump mysql-5.5 tiff openjdk-7 openssl

1 centos:7 26 7 7 7 7 7 7 7 7 7 7

2 debian:9-slim 26 7 7 7 7 7 7 7 7 7 7

3 alpine:3.8 25 7 7 7 7 7 7 7 7 7 7

4 alpine:latest 23 7 7 7 7 7 7 7 7 7 7

5 ubuntu:xenial 18 7 7 7 7 7 7 7 7 7 7

6 ubuntu:latest 14 7 7 7 7 7 7 7 7 7 7

7 java:openjdk-8-jre 11 7 7 7 7 7 7 7 7 7 3

8 debian:latest 10 7 7 7 7 7 7 7 7 7 7

9
ubuntu:

bionic-20190204
8 7 7 7 7 7 7 7 7 7 7

10
ubuntu:

bionic-20181204
7 7 7 7 7 7 7 7 7 7 7

Table 6.9: Correlations between the ten most popular parent images and the ten most vulnerable
packages across all types of repositories

84

Are the ten most popular parent images correlated with the ten most vulnerable
packages found across those images in some way?

Table 6.10 below shows the ten most popular parent images across all types of repositories with
the ten most vulnerable packages found across those images ("glibc" being the most vulnerable
package and "sqlite3" being the least vulnerable of all ten). As illustrated, the number of parent
images containing one of the most vulnerable packages found among those images is fairly high.
Indeed, 5 of the unique vulnerabilities contained in the ubuntu images as listed in Appendix D.6.1
are among the ten most popular vulnerabilities found in the most popular parent images used on
Docker Hub (apart from "ubuntu:xenial" holding 4). Moreover, the 4 vulnerabilities contained in
the "debian:latest" image are all found among the ten most popular vulnerabilities for the top ten
downloaded images. The "java:openjdk-8-jre" image containing 271 unique vulnerabilities also
holds almost all the ten most popular vulnerabilities found in the most popular parent images,
apart from the one related to the "curl" package.

Nonetheless, "centos:7" and "debian:9-slim" are the two most popular parent images used across
Docker Hub at the time of this writing and contain respectively 4 and 47 unique vulnerabilities.
However, none of the unique vulnerabilities contained in the "centos:7" image are among the
ten most popular vulnerabilities found in the most popular parent images used on Docker Hub.
In a similar way, only 4 out of the 47 unique vulnerabilities contained in the "debian:9-slim"
image are found among the ten most popular vulnerabilities identified in the most downloaded
parent images. Additionally, the "alpine:3.8" and "alpine:latest" images do not contain such
vulnerabilities at all.

Rank
Parent

image

Number of

descendant images

Top 10 most vulnerable packages across the ten most popular parent images

glibc ncurses systemd gnutls28 curl pcre3 openssl krb5 nss sqlite3

1 centos:7 26 7 7 7 7 7 7 7 7 7 7

2 debian:9-slim 26 3 3 3 7 7 3 7 7 7 7

3 alpine:3.8 25 7 7 7 7 7 7 7 7 7 7

4 alpine:latest 23 7 7 7 7 7 7 7 7 7 7

5 ubuntu:xenial 18 3 3 7 7 7 3 7 7 7 7

6 ubuntu:latest 14 3 3 3 3 7 3 7 7 7 7

7 java:openjdk-8-jre 11 3 3 3 3 3 7 3 3 3 3

8 debian:latest 10 3 3 3 7 7 3 7 7 7 7

9
ubuntu:

bionic-20190204
8 3 3 3 3 7 3 7 7 7 7

10
ubuntu:

bionic-20181204
7 3 3 3 3 7 3 7 7 7 7

Table 6.10: Correlations between the ten most popular parent images and the ten most vulnerable
packages found across those images

Based on the above results, it seems therefore that Shu et al.’s suggestion about vulnerabilities
potentially propagating from a small set of highly influential base images to the whole Docker
Hub platform is refuted.

85

6.6 Summary

It is clear that the identified detailed research questions implied by the original problem state-
ment introduced in 1.2 provided a straightforward overview of Docker Hub’s current security
landscape. To conclude this chapter, a summary of our findings will therefore be provided here
with references to the appropriate sections.

First, it was found that although less Certified images are completely free of vulnerabilities com-
pared to the three other types of repositories, they contain far less vulnerabilities than their
other peers even for the most vulnerable Certified repositories (6.2.1, 6.2.4). Nonetheless, Certi-
fied images tend to contain vulnerabilities of higher severity, especially when it comes to critical
vulnerabilities (6.2.2, 6.2.3). Similarly, Verified and Official repositories contain a significantly
lower number of unique vulnerabilities than Community images, with a higher chance of being
of a lower severity level (6.2.1, 6.2.2). Overall, all types of repository contain a large number of
images with a vulnerability of high or medium severity.

Secondly, the proportion of images containing at least one inherited vulnerability across all
types of repositories is similar to the proportion of images containing at least one introduced
vulnerability (6.3). Nonetheless, the average number of introduced vulnerabilities is higher than
the average number of inherited vulnerabilities for all types of repositories.

Thirdly, the number of correlations between the most vulnerable, most popular and the most
recently updated images across the four repository types is limited (6.2.4). Indeed, Docker images
which have been recently updated are more likely to contain less vulnerabilities than older ones,
although it was found that some images may be updated without actually patching all of their
vulnerabilities, as some recently updated images were found in the top 10 most vulnerable images.

Fourthly, the number of critically vulnerable images across all four types of repositories is very
limited when only unique vulnerabilities are considered (6.2.2). However, many essential system
packages such as pcre3, glibc, shadow or systemd are part of the ten most vulnerable packages
found across all types of repositories, which raises a certain number of concerns as such packages
are found in the vast majority of Docker images (6.2.4). Note that the most popular vulnerability
categories found across all repository types are input validation, followed by infinite loop and
privilege dropping.

Finally, it was concluded based on the result data discussed in 6.5 that Shu et al.’s suggestion
about vulnerabilities potentially propagating from a small set of highly influential base images
to the whole Docker Hub platform is refuted.

In general, the level of security provided by each type of repository is more or less as anticipated
in our expectations detailed in 3.5. Indeed, Certified repositories offer by far the best level of
security when severity levels are not taken into account, followed by Verified and Official, while
Community repositories usually contain a significantly higher number of unique vulnerabilities.
When severity levels are taken into account however, Certified repositories actually perform
worse, as they tend to hold vulnerabilities of higher severity, although their total number of
contained vulnerabilities is significantly lower than the other types of repositories. Official and
Verified repositories still perform similarly when including severity levels, while Community
images continue offering a lower level of security.

86

Chapter 7

Analysis

Chapter 7 intends to deeply analyze the data obtained and described in the previous chapter by
using common mathematical concepts and indicators. This chapter is divided into two parts.
First, we utilize general statistics and modeling in order to determine the distribution of the
collected data, identify correlations between the total number of vulnerabilities found in each
type of repository and estimate their future number for the next seven years (until 2025 included).
Secondly, a network model illustrating parental relationships between images with their inherited
vulnerabilities will be created in order to identify patterns, influential repositories and correlations
related to dependencies and inheritance. Note that since only one image (i.e. the most recent one)
was analyzed for each repository being part of the conducted experiments, the terms "image"
and "repository" may be used interchangeably in this chapter.

7.1 Vulnerability distributions and predictions

General statistics may help determining the distribution of the collected data, identify correla-
tions between the total number of contained vulnerabilities found in each image composing the
four types of repository and estimate their future number for the next seven years (until 2025
included) through modelling and important statistical indicators.

7.1.1 General interpretation

As presented in table 7.1 below, 752 images were analyzed in the total during the conduction of
our experiments. If parent images are considered as well, the total number of analyzed images
is of 920. Note that table 7.1 focuses on illustrating descriptive statistics for the total number of
vulnerabilities found in each image composing the different repository types, leading to multiple
observations.

First, Certified images hold only 30 vulnerabilities in average, compared to approximately 155 for
both Verified and Community images. Official repositories perform worse with 177 vulnerabilities
in average. Thus, Certified images offer the best level of security when solely the total number
of contained vulnerabilities is considered, while the three other types provide a similar level
of security, although Official repositories contain a slightly higher number of vulnerabilities in

87

average. Furthermore, the standard deviation for the total number of contained vulnerabilities
within Certified repositories is significantly lower than the one applying for the three other types
of images. Thus, the number of vulnerabilities hold within Official, Community and Verified
repositories varies substantially more than the ones contained in Certified repositories, although
that number is slightly higher for Community images.

Secondly, when only the most vulnerable image for each type of repository is considered, the
Certified type performs significantly better than its peers with almost ten times less contained
vulnerabilities, while the three other types provide a similar level of security, although the most
vulnerable Community repository holds a slightly higher number of contained vulnerabilities.
Moreover, it should be noticed that all four types of repositories contain at least one image
without any vulnerability.

Vulnerability statistics across repository types

Official Community Verified Certified

Total analyzed images 128 500 98 31

Mean 177 153 157 30

Standard deviation 244 286 248 37

Median 93 39 90 22

Minimum 0 0 0 0

Maximum 1530 1792 1531 166

25th percentile (Q1) 1 3 18 2

75th percentile (Q3) 258 157 144 43

Table 7.1: Descriptive statistics of the total number of vulnerabilities found in each repository
type

Finally, the median is significantly lower than the mean for Official, Verified and Community
repositories, suggesting that many of those images contain a high number of vulnerabilities
compared to Certified repositories where the difference is substantially lower.

7.1.2 Interpreting box plots

Plotting the distribution of the total number of vulnerabilities found in each image of the four
types of repository with the help of a box plot displayed in figure 7.1 below allows determining
whether there exists outliers, while summarizing the so called "five-number summary" illustrated
in table 7.1 above consisting of the sample’s minimum value, lower quartile (Q1), median value,
upper quartile (Q3) and maximum value. Every box plot has two parts: a box and two whiskers.
The box’s length indicates the global variation of the data it represents by starting at the first
quartile of the sample and ending at its upper quartile (noted Q1 and Q3 in table 7.1). The
box’s thick black horizontal line, also known as its median value, indicates where the sample is
centered. As for the whiskers, the latter are simply two vertical lines outside the box, which
extend to the highest and lowest observations.

Based on figure 7.1, it may be observed that the box plot for Official images is significantly
longer than the one for the three other types of repositories. Thus, the overall total number
of vulnerabilities found in each Certified (may be hard to distinguish since the maximum value
for Certified images is only 166), Verified and Community images is more compact, while the

88

total number of vulnerabilities found in each Official repository is more spread out. Moreover,
the data is almost centred on the same level for Official and Verified images, while the median
is substantially lower for Community and Certified repositories, suggesting that the number of
contained vulnerabilities within the latter varies more than for Verified and Official images. Since
the maximum number of vulnerabilities varies greatly from one repository type to another, the
size of the box plots differs subsequently.

A box plot is divided into four quartiles. The body of the box goes from the first quartile (also
referred to as Q1, the 25th percentile or the lower quartile) and the third quartile (also known
as Q3, the 75th percentile or the upper quartile). As shown in table 7.1 and illustrated in figure
7.1, we may confirm that 75% of the data in each type of repository is less than its corresponding
Q3 value, while 25% is less than its corresponding Q1 value. Thus, 75% of the analyzed Official
images contain less than 258 vulnerabilities in total, while 75% of the Community, Verified and
Certified images contain less than 157, 144 and 43 vulnerabilities respectively. Similarly, 25% of
the analyzed Official images contain 0 or 1 vulnerability in total, while 25% of the Community,
Verified and Certified images contain less than or equal to 3, 18 and 2 vulnerabilities respectively.

0

200

400

600

800

1000

1200

1400

1600

1800

Certified Community Official Verified

Repository type

To
ta

l v
ul

ne
ra

bi
lit

ie
s

Total vulnerabilities per image across repository types

Figure 7.1: Total number of contained vulnerabilities per image across repository types

The analysis of the first and third quartile reveals therefore that Official images tend to contain
more vulnerabilities than their peers in general, while the 25% least vulnerable Verified images
contain a significantly higher number of vulnerabilities than the 25% least vulnerable images
of other types. Furthermore, Certified images are confirmed to be a lot more secure than their
peers, as their 75% least vulnerable images contain more than three times less vulnerabilities than
Verified and Official images, as well as six times less vulnerabilities than the 75% least vulnerable
Community images. Note that the difference between Q1 and Q3 is called the inter-quartile range
(IRQ).

The whiskers, which are the vertical lines above and below the box plots’ bodies, represent the
range for the bottom and top 25% of the data values (1.5 times the IRQ) where the extreme
values (referred to as outliers) are excluded. As observed in figure 7.1, the lower whisker for
all the box plots are hard to identify, as they lie very close to the minimum values. Indeed,

89

every type of repository contains multiple images without any vulnerabilities. On the other
hand, all of the box plots have visible upper whisker. For the example, the upper 25% of the
Official box plot contains 645 vulnerabilities in total, while the upper 25% of the Community,
Verified, and Certified repositories hold 380, 309, and 79 respectively. Thus, the 25% most
vulnerable Official repositories contain a significantly higher number of vulnerabilities than the
other types of repositories, while the 25% most vulnerable Certified images contain almost four
times less vulnerabilities than Verified and Community images, as well as eight times less than
Official images. When considering the 25% most vulnerable images, Certified repositories provide
therefore a significantly better security level than their peers, followed by Verified Community
and Official repositories.

Finally, it should be noticed that the Community box plot has a lot of extreme values compared
to the other types of repository, partly due to its significantly larger sample size.

7.1.3 Interpreting density plots

Contrary to box plots summarizing many statistical indicators while limiting the level of details
provided, density plots offer a more precise way of representing the distribution of a sample, while
smoothing out the noise created by outliers displayed in a usual histogram. Indeed, plotting the
density distribution of the total number of vulnerabilities found in each image of the four types of
repository allows determining how tight the data is grouped (i.e. the density according to which
the vulnerability sample is distributed), as well as whether it is symmetrical, left or right skewed.
Note that the density scale of such a plot ranges from 0 to 1, where 0 indicates that no image
contain the number of vulnerabilities displayed in a particular point in the x-axis, while a density
of 1 represents the entire sample. Figure 7.2 and 7.3 below show the density distribution of the
total number of vulnerabilities found in each image of the four types of repository, where the
peak of each curve displays where most of the vulnerabilities are concentrated over the interval.

First, the distribution of the total number of vulnerabilities found in each Official image il-
lustrated on the left hand side of figure 7.2 reveals that most of the Official images contain a
number of vulnerabilities located on the lower part of the vulnerability interval, as the distri-
bution is clearly right-skewed. Furthermore, smoothing out outliers allows identifying that the
vast majority of Official images contain a total number of vulnerabilities in the range of 0 to 450
vulnerabilities, which is significantly higher than the average number (mean) of vulnerabilities
(177) found in Official repositories as demonstrated in table 7.1. Since the distribution of the
total number of vulnerabilities found in each Official image is right-skewed, the latter decreases
rapidly after 125 vulnerabilities, confirming that most Official images contain a total number
of vulnerabilities kept under that threshold. Moreover, it should be noticed that there are no
Official images containing a total number of vulnerabilities between 450 and 500 vulnerabilities,
as illustrated by the gap in the x axis of the Official plot situated on the left hand side of figure
7.2. Nonetheless, a resurgence of a significantly dense number of Official images may be observed
after that gap, illustrating that a non-negligible number of Official images hold between 500 and
650 vulnerabilities in total.

90

0.000

0.002

0.004

0.006

0 500 1000 1500

Total number
of vulnerabilities

D
en

si
ty

Official

0.000

0.002

0.004

0.006

0.008

0 500 1000 1500

Total number
of vulnerabilities

D
en

si
ty

Community

Figure 7.2: Density distribution of the total number of contained vulnerabilities per Official and
Community image

Secondly, the distribution of the total number of vulnerabilities found in each Community image
illustrated on the right hand side of figure 7.2 shows that similarly to their Official peers, most
of the Community images contain a number of vulnerabilities located on the lower part of the
vulnerability interval, as the distribution is clearly right-skewed. Furthermore, smoothing out
outliers allows identifying that the vast majority of Community images contain a total number
of vulnerabilities in the range of 0 to 250 vulnerabilities, which is significantly higher than the
average number (mean) of vulnerabilities (153) found in Community repositories as shown in
table 7.1. Since the distribution of the total number of vulnerabilities found in each Community
image is right-skewed, the latter decreases rapidly after 250 vulnerabilities, confirming that most
Community images contain a total number of vulnerabilities kept under that threshold. Note
however that there are still a certain number of Community images with various sums of totally
contained vulnerabilities, as the density illustrated on the right hand side of figure 7.2 is almost
never equal to 0, contrary to the three other types of repositories displayed in the same figure as
well as figure 7.3.

Thirdly, the distribution of the total number of vulnerabilities found in each Verified image
illustrated on the left hand side of figure 7.3 reveals that similarly to their Official and Community
peers, most of the Verified images contain a number of vulnerabilities located on the lower part
of the vulnerability interval, as the distribution is clearly right-skewed. Furthermore, smoothing
out outliers allows identifying that the vast majority of Verified images contain a total number
of vulnerabilities in the range of 0 to 250 vulnerabilities, which is significantly higher than the
average number (mean) of vulnerabilities (157) found in Verified repositories as demonstrated in
table 7.1. Since the distribution of the total number of vulnerabilities found in each Verified image
is also right-skewed, the latter decreases rapidly after 250 vulnerabilities, confirming that most
Verified images contain a total number of vulnerabilities kept under that threshold. Moreover,
it is important to note that similarly to Official images, certain gaps in the x axis of the Verified
plot situated on the left hand side of figure 7.3 illustrate that there exist no Verified image with
a total number of vulnerabilities located within certain ranges (e.g. between 450 and 550 or 850
and 1150). Nonetheless, small spikes may be observed long after the 250 threshold, showing that
there exists a resurgence of a non-negligible number of Verified images containing a much higher

91

number of vulnerabilities than 250.

0.000

0.002

0.004

0.006

0 500 1000 1500

Total number
of vulnerabilities

D
en

si
ty

Verified

0.00

0.02

0.04

0.06

0 50 100 150

Total number
of vulnerabilities

D
en

si
ty

Certified

Figure 7.3: Density distribution of the total number of contained vulnerabilities per Verified and
Certified image

Fourthly, the distribution of the total number of vulnerabilities found in each Certified image
illustrated on the right hand side of figure 7.3 shows that similarly to their three other peers,
most of the Certified images contain a number of vulnerabilities located on the lower part of the
vulnerability interval, as the distribution is clearly right-skewed. Furthermore, smoothing out
outliers allows identifying that the vast majority of Certified images contain a total number of
vulnerabilities in the range of 0 to 60 vulnerabilities, which is significantly higher than average
number (mean) of vulnerabilities (30) found in Certified repositories as demonstrated in table
7.1. Since the distribution of the total number of vulnerabilities found in each Certified image
is also right-skewed, the latter decreases rapidly after 60 vulnerabilities, confirming that most
Certified images contain a total number of vulnerabilities kept under that threshold. Moreover,
it should be noticed that similarly to Official and Verified images, large gaps in the x axis of the
Certified plot situated on the right hand side of figure 7.3 illustrate that there exist no Certified
image with a total number of vulnerabilities located within certain ranges (e.g. between 60 and
80 or 85 and 105). Although small spikes may be observed long after the 60 threshold, those
values do not influence the global shape of the distribution, clearly showing that the major part
of the Certified images are concentrated between 0 to 60 contained vulnerabilities.

Finally, by displaying the density distribution of the total number of vulnerabilities found in each
image across all four types of repository as illustrated in figure 7.4 below, it may be observed
that the distribution curves for the Official, Community and Certified repositories meet around
75 contained vulnerabilities. Thus, the majority of images across those three types of repositories
contain less than 75 vulnerabilities in total, where Certified images are the most dense of all three
types within that range, followed by Community and Official images respectively. Furthermore,
it should be noticed that the density of Certified images at the very beginning of the vulnerability
range is significantly higher than the three other types of repositories, confirming that the number
of contained vulnerabilities in the large majority of the Certified images is very low compared to
their peers.

92

0.000

0.005

0.010

0.015

0 200 400 600 800

Total vulnerabilities

D
en

si
ty

Repository type

Certified

Community

Official

Verified

Density distribution of the total number
 of contained vulnerabilities per image

across repository types

Figure 7.4: Density distribution of the total number of contained vulnerabilities per image across
repository types

Share of images with less than or 180 contained vulnerabilities

Community Official Verified Certified Total

388/500 85/128 76/98 31/31 580/757

77.60 % 66.41% 77.56% 100% 76.6%

Table 7.2: Share of images in each type of repository with less than or 180 contained vulnerab-
ilities

As for Verified images, it may be observed that the total number of vulnerabilities they hold is
significantly higher than their peers until a certain threshold of about 180 contained vulnerabil-
ities is reached. Indeed, while the majority of images across Official, Community and Certified
repositories contain less than 75 vulnerabilities, the majority of Verified images hold less than
180 vulnerabilities. Thus, the number of Verified images with a high amount of contained vul-
nerabilities before the 180 threshold is a lot more dense than the three other types of images,
showing that Verified images with less than 180 vulnerabilities are more likely to hold a more
important number of total vulnerabilities than images in the same case from one of the three
other types of repositories.

Note also that the number of Official images with a higher number of contained vulnerabilities
than the 180 threshold decreases less rapidly than the three other types of repositories, showing
that Official images are more likely to contain a higher number of total vulnerabilities than
their peers. Overall, the majority of images across all types of repositories contain less than 180
vulnerabilities in total, as summarized in table 7.2 above.

93

7.1.4 Analyzing potential quantitative vulnerability correlations between
dependent repository types

Section 6.3 under chapter 6 set in perspective the number of vulnerabilities found in each type
of repository with their inheritance and introduced aspects. Although the average number of
introduced vulnerabilities was superior to the number of inherited vulnerabilities for most types of
repository, images of all types except Certified ones tended to contain a large number of inherited
vulnerabilities. Furthermore, Certified repositories contained a significantly higher number of
inherited vulnerabilities in average than the number of new vulnerabilities they introduced.
Analyzing the correlation coefficients of the total number of unique vulnerabilities between in each
type of repository using a scientific approach may therefore help revealing that the quantitative
evolution of vulnerabilities found in dependent repository types is linearly correlated in some
way. As a reminder from 2.5.4, Official images may only be based on images of the same type,
while Community images may be based on any type. Similarly to their Official peers, Certified
and Verified images are solely allowed to use images of the same type as their parents, as well as
Official images.

In order to scientifically identify potential linear correlations between the total number of unique
vulnerabilities contained in each type of repository, the Pearson product-moment correlation
coefficient may be used, as illustrated in figure 7.5 below. Indeed, the line of best fit drawn
by a Pearson correlation, as well as its correlation coefficient allows determining whether the
total number of unique vulnerabilities contained in two different types of repositories are linearly
correlated. It should be noticed that only the linear associations of the total number of unique
vulnerabilities contained in different image types with a parent-child relationship are of interest
(i.e Community-Official, Certified-Verified, Certified-Official and Verified-Official). Note also
that the value of the correlation coefficient determines the linear strength of the relationship
between the total number of unique vulnerabilities contained in two different repository types
and may be interpreted as followed:

• 0: indicates no linear relationship

• 1: indicates a perfect positive linear relationship. If one variable increases its value, then
the other variable also increases its value and follows the exact linear line

• -1: indicates a perfect negative linear relationship. If one variable decreases its value, then
the other variable decreases its value and follows the exact linear line.

• Between 0 and 0.3 or 0 and -0.3: indicates a weak positive/negative linear relationship

• Between 0.3 and 0.7 or -0.3 and -0.7: indicates a moderate positive/negative linear rela-
tionship

• Between 0.7 and 1.0 or -0.7 and -1.0: indicates a strong positive/negative linear relationship

As illustrated in figure 7.5 below, the total number of unique vulnerabilities contained in each
type of repository correlates with the other types in some way, as none of them have correlation
coefficient equal to 0. For example, it may be observed in the plot associating the unique
vulnerabilities contained in Community repositories with the unique vulnerabilities contained in
Official repositories (column 1, row 2) that they barely correlate with each other in a way that is
negatively linear, with a corresponding correlation coefficient of -0.0479 (column 2, row 1). Thus,
whenever the total number of unique vulnerabilities contained in Official repositories increases,
the number of unique vulnerabilities contained in Community repositories decreases slightly.

94

That analysis confirms our observations of the average number of introduced vulnerabilities in
Community images being more important that the average number of inherited vulnerabilities
discussed in 6.3, indicating that Community images do not inherit most of their vulnerabilities.

Corr:

-0.0479

Corr:

0.183

Corr:

-0.118

Corr:

-0.341

Corr:

-0.246

Corr:

-0.124

Official Community Verified Certified

Official

Community

Verified

Certified

0 500 1000 1500 0 500 10001500 0 500 1000 1500 0 50 100 150

0.000

0.001

0.002

0.003

0

500

1000

1500

0

500

1000

1500

0

50

100

150

Figure 7.5: Linear relationships of the total number of unique vulnerabilities between in each
type of repository

Moreover, Certified images which may be based on either Verified or Official repositories have
a -0.124 and -0.341 correlation coefficient with the latter repository types respectively. Thus,
Certified images are only slightly negatively correlated with Verified images, whereas their correl-
ation coefficient with Official images indicates a moderate negative linear relationship. Whenever
the total number of unique vulnerabilities contained in Verified images increases, the number of
unique vulnerabilities contained in Certified repositories only decreases slightly. Similarly but
more accentuated, an increase of the total number of unique vulnerabilities contained in Offi-
cial images leads to a moderate decrease of the number of unique vulnerabilities contained in
Certified images. That analysis contradicts our observations from 6.3 indicating that Certified
images tend to inherit more vulnerabilities in average than the number of vulnerabilities they
introduce. Note however that the reliability of the linear model requires a sufficient number of
sample, which is somewhat limited for Certified images due to their low number of repositories

95

available on Docker Hub.

Finally, when comparing the total number of unique vulnerabilities contained in Verified repos-
itories with the number of unique vulnerabilities contained in Official repositories which they
may be based on, a weak positive linear relationship may be identified. Indeed, their correlation
coefficient of 0.183 indicates that whenever the number of unique vulnerabilities contained in
Official repositories increases, the total number of unique vulnerabilities contained in Verified re-
positories increases similarly in a weak way. That analysis contradicts our observations from 6.3
indicating that Verified images contain less inherited vulnerabilities in average than the number
of vulnerabilities they introduce. Nonetheless, it should be noticed that such a positive linear
relationship may also indicate that Verified images introduce many of the same vulnerabilities
when an quantitative increase occurs, due to many similar software packages being containerized
in both types of images without being inherited.

7.1.5 Predicting quantitative software vulnerabilities by 2025

As demonstrated in figure 6.5 from chapter 6.2, the total number of unique vulnerabilities re-
ported for Official, Community and Verified repositories reached an all-time high in 2017 and
dropped by 25% to 35% the year after. On the contrary, the number of unique vulnerabilities
contained in Certified images increased by about 30% from 2017 to 2018. Moreover, the global
distribution of known unique vulnerabilities from 2010 to 2018 across all types of repositories is
more or less linear, which allows estimating the future number of unique vulnerabilities using
a best-fit linear trend line. Indeed, although such estimations are not perfect they provide a
certain indication of how Docker Hub’s security landscape will look like by 2025 if the number
of contained unique vulnerabilities across all types of repositories continues evolving in the same
way as they have so far.

The formula for estimating the unknown y-value corresponding to the predicted total number of
unique vulnerabilities found yearly across all types of repositories in figure 7.6 below, utilizes the
equation for a so called best-fit straight line which linear trend lines are based on and is defined
as followed:

y = ax + b

Note that the x-value is the sample mean of the known total number of vulnerabilities per year
and the y-value corresponds to the sample mean of the known years of disclosures for the past
vulnerabilities, while a and b are defined as followed:

a = ȳ − bx̄ b =

∑
(x− x̄)(y − ȳ)∑

(x− x̄)2
(7.1)

Using the above formula, the future total number of unique vulnerabilities contained in each type
of repository from 2019 to 2025 may be estimated as shown in figure 7.6 below. Each line provides
the mean value for the corresponding repository type, while the transparent areas surrounding
each curve are the limits defining the confidence intervals for the mean values. Note that a 95%
confidence interval was chosen, meaning that there is a 95% certainty that the predicted numbers
of unique vulnerabilities for each type of repository between 2019 and 2025 will lie within those

96

transparent areas. Note also that the detailed numbers of unique vulnerabilities estimated for
each type of repository between 2019 and 2025 are available in Appendix D.9.

0

500

1000

1500

2000

2500

3000

3500

4000

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

Year

To
ta

l v
ul

ne
ra

bi
lit

ie
s

Repository type

Official

Community

Verified

Certified

Estimating the total vulnerabilities across
 repository types by year 2025

Figure 7.6: Estimating the total vulnerabilities across repository types by year 2025

The computed linear trend line illustrates therefore that the average number of unique vulnerabil-
ities contained in Community images will increase with a rate of approximately 191 vulnerabilities
per year between 2019 and 2025. Similarly, the average number of unique vulnerabilities con-
tained in Official, Verified and Certified repositories is expected to grow with approximately 96,
115 and 17 vulnerabilities per year respectively. The order of the four types of repositories based
on their level of security will therefore remain unchanged, with Certified repositories providing
the best security of all four types, followed by Official and Verified images, while Community
repositories will still perform worst. Note however that the global trend is an increase of the
number of unique vulnerabilities found across all types of repositories, leading therefore to a
deterioration of Docker Hub’s global security landscape when only the total number of unique
vulnerabilities is taken into account.

Moreover, it should be noticed that the number of vulnerabilities disclosed in 2019 is very limited
due to the early conduction of our experiments during that same year, as explained in chapter 6
under 6.2. Nonetheless, the global growth rate of unique vulnerabilities contained in each type
of repository is expected to slow down this year, while it will slowly increase from 2020.

Finally, the linear trend line displayed in figure 7.6 above indicates that Community, Verified, Of-
ficial and Certified repositories will reach again their all-time high number of uniquely contained
vulnerabilities from 2017 in 2028, 2031, 2032 and 2020 respectively.

7.2 Parental relationships and vulnerability inheritance

As explained in 2.5.5, a Docker image is often based on a parent image, which simply consists of
extending the latter’s list of installed software packages. In its turn, a parent image may also be

97

based on another image, therefore creating a certain dependency chain between Docker images,
which may inherit vulnerabilities from one or multiple direct/indirect parent(s).

Figure 7.7 below highlights the detailed parental relationships to one of the most popular Official
images in our experimental data set: the "alpine:3.8" image. The red lines surrounding the image
illustrate the direct parental connections existing between child images and the "alpine:3.8"
parent, while the other colors highlight indirect parental connections to the "alpine:3.8" image.

platformengineering/cf-resourc...platformengineering/cf-resourc...

golang:1.12.1-alpinegolang:1.12.1-alpine

emeraldsquad/cf-zero-downtime-...emeraldsquad/cf-zero-downtime-...

alpine:3.8alpine:3.8

teliaoss/github-pr-resource:devteliaoss/github-pr-resource:dev

kubernetes/heapster:canarykubernetes/heapster:canary

golang:1.6.0golang:1.6.0

circleci/golang:stretch-node-b...circleci/golang:stretch-node-b...

golang:latestgolang:latest

hazelcast/hazelcast:3.11.3hazelcast/hazelcast:3.11.3
abiosoft/caddy:phpabiosoft/caddy:php

jrottenberg/ffmpeg:3.2-alpinejrottenberg/ffmpeg:3.2-alpine

pivotalcf/pivnet-resource:latestpivotalcf/pivnet-resource:latest

golang:1.12.2golang:1.12.2

djfarrelly/maildev:latestdjfarrelly/maildev:latest

mergermarket/404:dependabot_do...mergermarket/404:dependabot_do...

golang:alpinegolang:alpine

xataz/rtorrent-rutorrent:filebotxataz/rtorrent-rutorrent:filebot

docker/compose:1.24.0docker/compose:1.24.0

docker/ucp-calico-cni:3.2.0-be...docker/ucp-calico-cni:3.2.0-be...

tianon/speedtest:latesttianon/speedtest:latest

colemickens/oauth2_proxy:insec...colemickens/oauth2_proxy:insec...

golang:1.5.2golang:1.5.2

cfperm/requirements:basecfperm/requirements:base docker/kube-compose-controller...docker/kube-compose-controller...

depop/awscli-terraform:0.11.10-3depop/awscli-terraform:0.11.10-3

golang:1.11.5-alpine3.8golang:1.11.5-alpine3.8

registry:latestregistry:latest

ghost:latestghost:latest

node:10.15-slimnode:10.15-slim

express-gateway:latestexpress-gateway:latest

node:lts-alpinenode:lts-alpine

vault:latestvault:latest

mongo-express:latestmongo-express:latest

node:carbon-alpinenode:carbon-alpine

znc:slimznc:slim

eclipse-mosquitto:latesteclipse-mosquitto:latest

Figure 7.7: Direct and indirect parental relationships to the Official alpine:3.8 image

It may be observed that the latter possesses many direct and indirect child images, creating
therefore a dependency network around the "alpine:3.8" parent. In order to better visualize
parental relationships on a global scale, a network modelling such relationships as well as the
vulnerability inheritance between images may be created, where all the images in the gathered
data set are represented as nodes, while the parental relationship between two nodes is repres-
ented by an edge in the network. Note that such a model will allow identifying correlations,
patterns and clusters’ behavior.

98

7.2.1 Modelling parental and vulnerability relationships in a network

In order to model the parental relationships and vulnerability inheritance between all the images
in the gathered data set, the open-source and multi-platform program for visualizing large and
complex networks known as Gephi was chosen [49]. Indeed, the latter is able to take any Comma
Separated Values (CSV) file as input and use it to model either nodes or edges in a network.
Thus, two CSV files in the name of "nodes.csv" and "edges.csv" were created with the following
content in order to build the network:

• nodes.csv: list of images identified with their image ID, name and tag

• edges.csv: list of edges identified with the image ID of a child image, the image ID of a
direct parent image and the total number of vulnerabilities inherited from the parent image

As shown in table 6.7 from chapter 6.3, 920 unique images were analyzed in total across all
four types of repository. However, only images involved in a parental relationship are of interest
when modelling the parental relationships and vulnerability inheritance between all the images
in the gathered data set. Thus, base images (i.e. without parent) which do not have any child
are not considered, therefore lowering the total number of images represented as nodes in the
network illustrated in figure 7.8 below to 565. Note that the reason for having so many base
images without children (355) is due to an error caused by many Community images having a
non-identifiable parent, as discussed in details in 8.1.4. Moreover, 440 analyzed images depend
on a parent, making therefore the total number of edges in the network equal to that amount.
Also, the weight of each edge depends on the total number of vulnerabilities contained in the
child image situated at one side of the edge, which are inherited from the parent image located
on the other side. It should also be noticed that the dependency network only contains directed
graphs, as parent images may simply not be based on their children.

Figure 7.8: Parental relationships and vulnerability inheritance in the network of analyzed Docker
images

99

As illustrated in figure 7.8 above and summarized in table 7.3 below, the most influential images
(nodes) are the root parents which multiple child images are directly or indirectly based on.
Note that such images form clusters of a significantly more important size in figure 7.8 with an
associated color specified in table 7.3.

Top ten largest clusters in the network

Rank Image name Directly connected nodes Number of descendant images Color

1 alpine:3.8 25 36 Cyan blue

2 debian:9-slim 25 31 Green

3 alpine:latest 23 31 Purple

4 java:openjdk-8-jre 11 26 Orange

5 centos:7 26 26 Black

6 debian:latest 10 24 Red

7 ubuntu:xenial 18 23 Pink

8 debian:stretch-20180716 5 20 Dark green

9 ubuntu:latest 14 14 Turquoise

10 ubuntu:bionic-20190204 10 10 Blue

Table 7.3: The top 10 most popular parent images in the network of analyzed images with their
total number of descendant children

Finally, it should be noticed that the visualization of the parental relationships and vulnerability
inheritance between all the images in the gathered data set allows identifying the most influential
parent images in the network in the form of clusters, which will be analyzed in details in the
next subsection.

7.2.2 Analyzing egocentric networks

As listed in table 7.3 above, the ten most important egocentric networks corresponding to the
ten most influential parent images in Docker Hub at the time of this writing are all issued
from Official repositories. Indeed, two images issued from the Alpine repository are among the
root parents on the platform, while 3 images issued from each the Official Ubuntu and Debian
repositories are in that case. Note that figure 7.8 above shows many clusters of different shapes
and sizes and only the ones offering interesting observations will be discussed in details here.

Top 1 parent: alpine:3.8

As illustrated in figure 7.9 below, the most influential parent image in the name of "alpine:3.8"
possesses a lot of connections to other child images, while the latter usually have a maximum
degree of two, suggesting that images based on "alpine:3.8" tend to only have a single child.
Furthermore, it may be observed that there is a significant difference between the number of
vulnerabilities images inherit from their direct parent, as illustrated by the edges’ varying thick-
nesses in figure 7.9. Indeed, certain edges such as the ones between the "golang:1.6.0" and the
"kubernetes/heapster" image or the "golang:1.5.2" and the "colemickens/oauth2_proxy" nodes

100

are heavy weighted, while others have a medium weight such as the edges pointing towards the
"golang:1.12.2", the "node:10.15-slim or the "golang:latest" image. However, it should be noticed
that the entirety of the edges surrounding "alpine:3.8" contain an extremely low weight, showing
that child images using "alpine:3.8" as their direct parent do not inherit many vulnerabilities.
Thus, most of the vulnerabilities involved in images figuring in "alpine:3.8"’s dependency chain
are not introduced by the root, but rather by their closest parent.

platformengineering/cf-resourc...

kubernetes/heapster:canary

circleci/golang:stretch-node-b...

pivotalcf/pivnet-resource:latest

mergermarket/404:dependabot_do...

tianon/speedtest:latest

colemickens/oauth2_proxy:insec...

cfperm/requirements:base

depop/awscli-terraform:0.11.10-3

golang:alpine

golang:latest

golang:1.12.2

golang:1.12.1-alpine

golang:1.11.5-alpine3.8

alpine:3.8

golang:1.6.0

golang:1.5.2

ghost:latest

express-gateway:latest

mongo-express:latest

node:10.15-slim

node:lts-alpine

node:carbon-alpine

Figure 7.9: Parental relationships and vulnerability inheritance related to the Official alpine:3.8
image

Top 2 parent: debian:9-slim

Since an Alpine image has already been analyzed and the top 2 "debian:9-slim" as well as the top 3
"alpine:latest" image have the exact same number of descendant images (see table 7.3 above), the
former was preferred to be analyzed here to provide a more complete and diverse analysis of the
parental relationships and vulnerability inheritance between all the images in the gathered data
set. The Official "debian:9-slim" image is very popular with more than 200 million downloads
and contain 47 vulnerabilities in total. As illustrated in figure 7.10 below, the "debian:9-slim"
parent possesses a lot of connections to other children, while the latter usually have a maximum
degree of two, suggesting that images based on "debian:9-slim" tend to have a single child if any.
Note that all the direct connections to the "debian:9-slim" image have a low weight, showing
that children based directly on "debian:9-slim" do not inherit many vulnerabilities from their
direct parent. However, it should be noticed that the edges pointing towards the "php:7-2-fpm"
image and sourcing from the "nextcloud:16-beta-fpm", "yourls:fpm", and "backdrop:fpm" nodes

101

are heavily weighted, revealing that images based on "php:7-2-fpm" inherit a significant number
of vulnerabilities from that parent. Similarly, the edges pointing towards the "ruby:2.3-slim" and
"mysql:latest" nodes have a medium weight, showing that a moderate number of vulnerabilities
are inherited from those images. Thus, most of the vulnerabilities involved in images figuring in
"debian:9-slim"’s dependency chain are not introduced by the root, but rather by their closest
parent.

jetbrains/youtrack:2019.1.51277

circleci/mysql:latest-ram

lephare/php:7.2

circleci/php:7.2-node-browsers...

mysql:latest

debian:9-slim

mcr.microsoft.com/dotnet/core-...

mcr.microsoft.com/dotnet/core/...

node:slim

nginx:1.15.10-perl

postgres:9.4

redis:5.0.4

nextcloud:16-beta-fpm

memcached:latest

mysql:5.5

httpd:latest

pypy:3.6-slim-stretch
swipl:8.1.4

plone:4

redmine:3.3

yourls:fpm

backdrop:fpm

spiped:1.6.0

rust:slim

fsharp:10.2.1

mono:5.16-slim
irssi:latest

couchdb:2.3.0

chronograf:latest

cassandra:3.0.18

php:7.2-fpm

ruby:2.3-slim

Figure 7.10: Parental relationships and vulnerability inheritance related to the Official debian:9-
slim image

Top 4 parent: java:openjdk-8-jre

OpenJDK is an open-source implementation of the Java Platform Standard Edition and its
Official "java:openjdk-8-jre" image contains 271 vulnerabilities. As illustrated in figure 7.11
below, the "java:openjdk-8-jre" root parent possesses a rather low number of connections to
other child images, while the latter usually have a degree of two or three, suggesting that images
based on "java:openjdk-8-jre" tend to have either one or two children. Note that almost all the
direct connections to the "java:openjdk-8-jre" parent have a low weight, showing that child images
based directly on "debian:9-slim" do not inherit many vulnerabilities from their direct parent in
general. However, it may be observed that the "openjdk:8-jre-slim" image has a heavily weighted
connection to the root "java:openjdk-8-jre" parent, as it inherits 90% of its total number of
vulnerabilities (84 out of 94) from it. Moreover, two of "java:openjdk-8-jre"’s indirect children in
the name of "jenkins/jenkins:lts-jdk11" and "dotc15/k8s-mysql:latest" inherit a huge number of
vulnerabilities from their closest parent due to their heavily weighted connection to it. Thus, the

102

majority of the vulnerabilities involved in images figuring in "java:openjdk-8-jre"’s dependency
chain are not introduced by the root parent, but rather by their closest parent.

xiwix/maven-resource:latest

swarmpit/swarmpit:master

hyness/spring-cloud-config-server:1.4.6.RELEASE

atlassian/pipelines-agent:prod-stable

jenkins/jenkins:lts-jdk11

jaymoulin/jdownloader:latest

wurstmeister/kafka:2.12-2.2.0

openzipkin/zipkin-dependencies:latest

openhack/minecraft-server:latest

jenkinsci/blueocean:latest

kpsys/portaro:develop

rmohr/activemq:5.15.6-alpine

doct15/k8s-mysql:latest

maven:alpine

openjdk:8u201-jre-alpine3.9

openjdk:8u201-jdk-alpine3.9

openjdk:11-jre-slim

openjdk:11

openjdk:8-jre-slim

openjdk:8u171-jre-alpine

openjdk:jre-alpine

openjdk:8u151-jdk-alpine3.7

openjdk:8u131-jre-alpine

openjdk:8u111-alpine

openjdk:8u111-jre

rapidoid:latestjava:openjdk-8-jre

Figure 7.11: Parental relationships and vulnerability inheritance related to the Official
java:openjdk-8-jre image

Top 6 parent: debian:latest

As illustrated in figure 7.12 below, the egocentric network of the Official "debian:latest" image
has only 10 direct children, but a total number of 24 descendants, making this image the top
6 most used parent on Docker Hub at the time of this writing. It may be observed that the
majority of "debian:latest"’s direct children usually have a degree of one or two, suggesting that
images based on "debian:latest" usually have a single child if any. Nonetheless, it is important to
note that the "debian:latest" root has two direct children in the name of "buildpack-deps:scm"
and "buildpack-deps:stretch" forming their own clusters with a high number of local connections
to other children. Surprisingly, none of those two images inherit vulnerabilities from their direct
"debian:latest" parent, as their connection to the root of the network has a very low weight.

On one hand, all the connections pointing towards the "buildpack-deps:stretch" image have a
low weight, indicating that its children do not inherit vulnerabilities from that image. Addition-
ally, it should be noticed that only one of the "buildpack-deps:stretch" image’s children have
a child of its own. Indeed, the "erlang:19" image containing 589 vulnerabilities passes on non
less than 99% of its vulnerabilities (583) to the "elixir:1.4.5" image. On the other hand, the
connections pointing towards the "buildpack-deps:scm" image have a heavier weight than the

103

other cluster, indicating that child images based on the "buildpack-deps:scm" image inherit a
significant number of vulnerabilities, although the latter do not come from the "debian:latest"
root.

Finally, it should be noticed that the Community "microsoft/dotnet-nightly:1.0-sdk" image dir-
ectly based on "buildpack-deps:oldstable-scm" and indirectly relying on the "debian:latest" im-
age inherits almost 98% of its total number of vulnerabilities from its direct parent, while the
"buildpack-deps:oldstable-scm" image inherits only 30% of its vulnerabilities from "debian:latest".
Similarly to the other discussed clusters so far, the majority of the vulnerabilities involved in
images figuring in "debian:latest"’s dependency chain are not introduced by the root parent, but
rather by their closest parent.

appsvc/kudu:1903281740

scalecube/scalecube-services-g...

microsoft/dotnet-nightly:1.0-sdk

carlosedp/docker-smtp:v1.0.1

nodered/node-red-docker:v8

pivotalrabbitmq/rabbitmq-serve...

titpetric/netdata:latest

buildpack-deps:scm

buildpack-deps:oldstable-scm

buildpack-deps:oldstable-curl

debian:latest

buildpack-deps:stretch

golang:1.11

python:3.8.0a3

elixir:1.4.5

erlang:18

rakudo-star:2018.1

haxe:4

gcc:latest

ros:melodic-perception-stretch

arangodb:3.3.21

perl:5.28.1

julia:1

haskell:8.4

erlang:19

Figure 7.12: Parental relationships and vulnerability inheritance related to the Official
debian:latest image

Top 7 parent: ubuntu:xenial

As illustrated in figure 7.13, most of the images based on "ubuntu:xenial" do not have any chil-
dren, but inherit almost all of their vulnerabilities due to their heavily weighted connections to the
root parent. Nonetheless, a single exception may be observed in the name of the "ibmjava:latest"
image, which does not inherit any vulnerability from its direct "ubuntu:xenial" parent and forms
a distinct cluster with heavily weighted connections to its own children. Indeed, non less than
98% of the vulnerabilities found the "ibmjava:latest" image (42 out of 43) are passed on to each
and every of its children. Overall, the majority of the vulnerabilities involved in images figuring
in "ubuntu:xenial"’s dependency chain are directly introduced by the root parent and inherited
further by the latter’s children, although the vulnerability spread is limited as most of the images
based on "ubuntu:xenial" do not have children of their own.

104

scrapinghub/splash:master

elicocorp/odoo-china:9

ibmstocktrader/trader:basicreg...

rancher/lb-service-haproxy:v0....

mesosphere/mesos-slave:1.5.3-rc1

ibmstocktrader/notification-tw...

ibmstocktrader/stock-quote:lat...

istio/pilot:1.1.3

hyperledger/fabric-peer:1.4

cyberark/conjur:1

gitlab/gitlab-ce:nightly

mesosphere/mesos-master:1.5.3-...
cloudfoundrylondon/bbr-pipelin...

ibmjava:latest

ubuntu:xenial
swift:xenial

websphere-liberty:18.0.0.3-jav...

open-liberty:springBoot1-java8...

bonita:latest

ibmjava:sdk

silverpeas:latest

couchbase:community-6.0.0

ibmjava:latest

store/ibmcorp/websphere-libert...

Figure 7.13: Parental relationships and vulnerability inheritance related to the Official
ubuntu:xenial image

Top 8 parent: debian:stretch-20180716

As illustrated in figure 7.14 below, the egocentric network of the Official "debian:stretch-20180716"
image has only 5 direct children, but a total number of 20 descendants, making this image the top
8 most used parent on Docker Hub at the time of this writing. It may be observed that the direct
children of the "debian:stretch-20180716" root have a degree ranging from 2 to 6, suggesting that
images based on "debian:stretch-20180716" may have few or many children. The direct connec-
tions pointing towards the network’s root parent possesses various levels of weight, although
none of them is extremely heavy. Indeed, the "openjdk:8u171" and "diginc/pi-holde:prerelease"
images have a moderate weight towards the "debian:stretch-20180716" image, indicating that
they inherit a certain number of vulnerabilities from the root parent, although the other three
children do not inherit many vulnerabilities from their direct parent.

On one hand, the clusters formed around the "openjdk:8" and "openjdk:8-jre" nodes contain
many child images which inherit a large amount of vulnerabilities from their closest parent,
although the latter do not inherit many vulnerability from the root image in the network.

On the other hand, the cluster formed around the "openjdk:8u171" image contain only two
children which inherit a significant number of vulnerabilities from their closest parent, while the
latter inherit a moderate amount of vulnerabilities from the root.

Overall and similarly to the "debian:latest" root node discussed previously, the majority of the

105

vulnerabilities involved in images figuring in "debian:stretch-20180716"’s dependency chain are
not introduced by the root, but rather by their closest parent.

diginc/pi-hole:prerelease

debian:stretch-20180716

mcr.microsoft.com/hpc/azure-cy...

openjdk:8u171

xwiki:stable-postgres

geonetwork:postgres

clojure:latest

convertigo:7.5.6

groovy:3

jruby:9.1.17.0-jdknuxeo:latest

tomee:8-jre-7.1.0-plus

sonarqube:latest

jetty:9.3.24

lightstreamer:latest

jenkins:2.60.3

tomcat:latest
tomcat:7.0.93-jre8

openjdk:8

openjdk:8-jre

openjdk:jre

Figure 7.14: Parental relationships and vulnerability inheritance related to the Official
debian:stretch-20180716 image

In conclusion, it should be noticed that vulnerabilities in the Docker Hub platform are still
inherited between images in a highly manner, although Shu et al.’s suggestion discussed in 6.5
about vulnerabilities potentially propagating from a small set of highly influential images to the
whole platform is not confirmed by the above analysis.

106

Chapter 8

Discussion

This chapter provides a critical analysis of the presented study by discussing its validity, as well
as the important challenges that were encountered throughout the study, which may be beneficial
for other researchers working with the same topic to be aware of. A discussion of suggested future
work will also be addressed here.

8.1 Validity of the study

An objective critique of the conducted study is necessary in order to analyze and point out any
factors impacting its validity.

8.1.1 Analyzed set of Docker images

The presented study only analyzes the most recent image in each considered repository, consti-
tuting a set of Docker images which may theoretically be unrepresentative of the most secure
image in a given repository. Although such images should consist of a repository’s most secure
image due to their most up-to-date property, they may indeed consist of an updated version of
their containerized software, which does not take into consideration the application of security
patches for other dependencies. Furthermore, a vulnerable image may technically be updated
by only adding some dummy files and directory while re-tagging it with a new version number,
which may provide a false sense of the image having actually been updated for vulnerability
patching. Nonetheless, this study assumes that maintainers aim at providing secure software as
much as possible, therefore assuming that dummy updates leading to the most recent image of
a repository not being the most secure is minimal and does not impact the validity of the study.

8.1.2 Applied methodology

The applied methodology introduced in chapter 3 has shown itself to be successful. Indeed, the
formulation of a problem statement in form of three main research questions allowed decom-
posing the problem into detailed research questions addressable separately. Furthermore, the

107

development of an appropriate software to conduct experiments and gather metadata, parental
and vulnerability information for the set of defined Docker images into a single noSQL database
allowed addressing every detailed research question through their conversion into noSQL research
queries. The latter were used to process a huge and disparate amount of data in a systematic
and accurately reproducible way across multiple rounds of experiments. The methodology used
throughout this thesis allowed therefore meeting our objectives discussed in 3.1, by grasping the
complete spectre implied by the original problem statement, while making this study entirely
reproducible and providing the research community with a base tool (DAZER) for conducting
similar research about the Docker Hub platform.

8.1.3 Software vulnerability identification

The identification of vulnerabilities present in the analyzed Docker images being part of this
study depends heavily on the use and detection quality of Clair scanner discussed in details in
3.3.1. Although other alternatives were considered, Clair scanner consists of the state of the art
of container image vulnerability scanners at the time of this writing and has been used in similar
research investigating Docker Hub’s security landscape, such as the one conducted by Shu et al.
in 2016 [11]. Due to time constraints, the detailed analysis of Clair scanner’s inner workings was
limited, but some important limitations should be noted. As any vulnerability scanner, Core
OS’s software reports some false positives and negatives. Indeed, some packages such as the
ones related to the Linux kernel may be detected as vulnerable by Clair scanner, although such
packages are actually not contained in the image. As explained in 2.2.1, Docker containers run
on top of a shared Linux kernel, eradicating therefore the need for a Docker image to contain any
packages related to kernel. Nonetheless, many images include dummy Linux kernel packages in
order to satisfy other dependencies such as the ones required by package management systems
and therefore avoid unmet requirements. Since similar studies have not taken this parameter
into consideration and one of this thesis’ goals was to compare its results with other studies,
such vulnerabilities have not been ignored from our results. However, it should be noted that
the total number of vulnerabilities reported in this study should be relativized.

8.1.4 Unidentifiable parent images

Many Community repositories had unidentifiable parents leading to incorrect results related to
image and vulnerability inheritance. Indeed, judging from their available Dockerfiles on the
Docker Hub platform, some Community images which did not have any parent during our exper-
iments were supposed to be based on another image. The problem was that such child images
were usually based on very old parents which had been been updated by their maintainer after
building the child image. Thus, the layer signature inherited by such child images was not the
same as the one available for their updated parent on Docker Hub. Furthermore, since many
Community images are not rebuilt that often, many repositories of that type contained child
images with a non-identifiable parent using the implemented approach described in 4.2.1. The
results related to image and vulnerability inheritance discussed in 6.3 should therefore be rela-
tivized when it comes to Community repositories.

108

8.1.5 Discovered vulnerabilities and exploitability

The number of vulnerabilities discovered in the different types of images presented in this study
as well as their severity should be relativized, as many of the reported vulnerabilities may not
be exploitable in a container environment. As explained in 2.2.2, Docker containers are dif-
ferent than traditional architectures such as VM or physical machines. Thus, an exploitable
vulnerability in a traditional environment may not be exploitable when containerized due to
isolation restrictions implied by containers. Furthermore, false positives reporting vulnerabilities
in dummy packages such as the ones related to the Linux kernel are obviously not exploitable in
a container environment. The severity of many of the reported vulnerabilities in the presented
study should therefore be relativized while set in perspective with an actual exploitation context
in a containerized environment.

8.2 Encountered challenges

Throughout the realization of this project, a certain number of non-negligible challenges were
encountered. Note that future work about Docker Hub or any research related to the online
platform should be aware of the following problems.

8.2.1 Retrieving data from Docker Hub

As explained in 5.2, Docker Hub provides a public but completely undocumented REST API
for retrieving metadata about the repositories and images available on the public registry. The
identification of valid HTTP requests through a simple trial and error approach was very time
consuming, but resulted in a completely automated way of gathering metadata about any type
of Docker image directly from the Docker Hub platform, without requiring any download. Al-
though our study required image downloads for local vulnerability analysis via Clair scanner, the
complete list of valid requests detailed in 5.2, as well as its developed API in Python available in
Appendix E.1 will provide future researchers with a solid base for a better automation of their
studies and analysis.

8.2.2 Manual image checkout

As expected in 3.2.2 and executed in 4.2, a valid Docker Hub account with manually checked
out Certified and Verified repositories prior to the conduction of automated experiments was
necessary. Note that the complete list of non-paid repositories requiring manual checkout at the
time of this writing is available in Appendix A.5 for easy reference in future automated studies.

8.2.3 Overwhelming the Docker engine

In very specific situations, interacting with the Docker engine through its SDK in Python may
lead to an unexpected timeout error. For example, the latter may occur when the Docker engine is
requested to delete a very large image (e.g. "store/saplabs/hanaexpressxsa:2.00.035.00.20190115.1"
of 25.7 GB), when it is already busy executing other actions such as downloading images. Al-
though the actual time for handling such a situation greatly depends on the specification of the

109

machine running the Docker engine, the latter is set to use a default timeout of 60 seconds for
handling new requests. The deletion of a very large image exceeding 10 GB is most likely bound
to use more than one minute to complete, which may therefore lead to a timeout error exception
being thrown by the Docker SDK in Python.

Increasing the timeout to 5 and 10 minutes was unfortunately not enough to give our VM with
8 VCPUs, 16 GB of RAM and 160 GB of disk space time to handle such demanding deletion
requests. It was a final timeout of 30 minutes which actually succeeded in order to give largely
demanding deletion requests time to complete. Note that using a physical machine with a Solid
State Drive (SSD) may greatly improve the time required to handle deletion requests, as it
seemed that the bottle neck was largely due to the virtualization aspect of disk management
through OsloMet’s OpenStack platform in our case.

8.2.4 Image parent retrieval

Retrieving an image’s parent constituted without a doubt the most challenging part of our work.
Indeed, previous research examining the parental relationship of Docker images such as [11] were
executed using older versions of the Docker engine, where images contained a direct reference to
their parent, as explained in 2.4.2. Since Docker version 1.10 released in February 2016 however,
images do not contain such a reference anymore. Thus, a different approach than the one used
in [11] was applied in this study, as discussed in details in 4.2.1. Before ending up with two
updatable pseudo databases in the form of two JSON files containing the layer combination
of each image contained in each of the Official and Verified repositories, other attempts were
experimented.

First, an approach based on the analysis of image vulnerabilities was considered. Indeed, vul-
nerabilities identified with a CVE number are always related to a specific software and version.
Thus, it was assumed that a child image based on a vulnerable parent containerizing a certain
piece of software would contain vulnerabilities directly related to the parent software. Unfortu-
nately, vulnerability scanners for Docker images such as Clair scanner do not necessarily pick up
all vulnerabilities, as discussed in 8.1. Moreover, such an approach would have made it difficult
to separate base images from child images based on a non-vulnerable parent, although the goal of
that technique was only to identify inherited vulnerabilities from the ones introduced by a child.
The final approach used to retrieve an image’s parent turned out therefore to be more robust,
as it allows identifying not only an image’s direct parent, but also its grand-parents specifically.

Secondly, a single non-updatable database was considered in the form of a JSON file containing
the layer combination of each image contained in each of the Official and Verified repositories,
which any type of image may be based on. Although that second attempt was successful in terms
pure parent identification capabilities, many optimizations were added to that approach. The
single database was separated into two JSON files, one containing the layer combination of all the
Official images and one containing the layer combination of all the Verified images. As explained
in 4.2.1, the advantage of having two separate databases was that it provided a more efficient way
of indexing images’ layers and identify parent images, by only executing parent lookups towards
the appropriate database instead of both. Furthermore, the original single parent database
was not updatable, requiring its re-population from scratch before the conduction of each new
experiment, so that parent image signature would be up to date. Complete re-populations took
however more than four days in total, giving the first populated images time to be updated on
Docker Hub and change their layer signature during that period of time. In order to avoid that
problem and minimize errors related to parent identifications, the two final parent databases could

110

be updated separately based on the type of experiment being run (e.g. experiments analyzing
Official images only updated the Official parent database, whereas a Verified experiment needed
to update both), reducing the populating time from several days to a few minutes for the Official
parent database and about one hour for the Verified database.

Finally, note that the amount of time used to update a parent database greatly depended on the
date of its last update, as a recently updated database was most likely to be up to date faster
than a database left without update for several weeks. Note also that the final design of the
parent databases is available in chapter 4 under 4.2.1.

8.2.5 Confusing terminology

As explained in chapter 2 under 2.5.3, Docker Inc. tends to use the terms "images" and "re-
positories" interchangeably due to the misconception that an image related to a certain piece
of software may be identified through its repository name only. That misconception is often
reflected on the Docker Hub platform as marked in red in figure 8.1. Nonetheless, an image is
identified through and only through the use of a tag, as a repository name such as Couchbase
only identifies a certain containerized piece of software, but not a specific version. Docker images
identify however precised version of a containerized piece of software, such as "couchbase:6.0.0"
or "couchbase:enterprise-6.0.0" in the case of Couchbase. Docker Hub provides therefore a lot
more images in total than the claimed 2.1 million, as that number actually consist of the number
of registered repositories on the platform at the time of this writing and not the total number of
available images through those repositories.

Figure 8.1: Docker Hub’s confusing terminology

Moreover, individual repositories on Docker Hub contain a confusing timestamp on their result
page when searching or filtering repositories, as marked in green in figure 8.1. Indeed, each
repository contain an "Updated x minutes ago" string under their name, which is misleading as
it is easy to think that it refers to the last time the repository was updated by its maintainer.
However, that string corresponds to the last time Docker Hub’s backend engine scanned the
repository and reported it as functional. Indeed, the real timestamp showing when a repository’s
image was last updated is located under the "tags" tab of a repository.

Finally, Docker Hub uses categories in order to classify its repositories based on the type of
software they hold. Such categories may be used to to filter out repositories on the platform’s
Web interface or via its undocumented API and may therefore find themselves very convenient.
Nonetheless, one category referred to as "base images" is very misleading, as it is easy to think
that it contains all the base repositories on Docker Hub (i.e. repositories containing images
which do not have a parent image). However, that category does not correspond to what might

111

be expected, as it contains repositories which are not base ones (e.g. "swift" or "buildpack-deps")
and misses truly base repositories such as "ubuntu-debootstrap" or "opensuse".

8.3 Future work

Consequently to the results presented in this study, other research questions and suggestions
have emerged for future work.

First, it seems that there is a strong need for more reliable vulnerability scanners for Docker
images, as the state of the art solutions available at the time of this writing seem to provide too
many false positives and negatives, while not taking into account the contextualization of dis-
covered vulnerabilities and their exploitability in a containerized environment. Further research
in that direction is therefore strongly recommended, as it would greatly improve the reliability of
other studies based on vulnerability scanners for Docker images such as Clair scanner, therefore
benefiting the whole research community. Moreover, a detailed comparative study of the main
vulnerability scanners available for Docker images should be conducted prior to the investigation
of alternative approaches, in order to get a better understanding of the different scanning and
detection algorithms used in today’s solutions.

Secondly, a more thorough analysis of the new types of repositories introduced by Docker Inc. in
December 2018 is needed, as only the most recent image in each repository was analyzed in this
study. Although such images should consist of a repository’s most secure image due to their most
up-to-date property, there is a possibility that it is not the case as argued in 8.1. Conducting
a more thorough analysis of the Certified and Verified repositories may therefore reveal that
the most recent images on Docker Hub might not be the most secure ones. Furthermore, the
inclusion of Windows repositories as well as images available for multiple processor architectures
may constitute an interesting research orientation, in order to see whether Docker Hub’s security
landscape varies with different platforms and processor architectures. Note also that conducting
a small analysis of the paid Verified and Certified repositories listed in Appendix A.1 might also
constitute an interesting research orientation in order to see whether such repositories are worth
the extra money when it comes to security.

Thirdly, although multiple experiment were conducted at different times of the day, the re-
conduction of the same or a similar experiment at different timestamps during a longer period of
time may reveal some variations in Docker Hub’s effective security landscape due to non-linear
repository updates.

Finally, investigating the actual impact of such a large number of vulnerabilities found in many
images hosted on Docker Hub constitutes a fundamental research question which needs to be
answered. Indeed, many Docker images contain a large number of vulnerabilities of which many
have a high severity level. As pointed out in 8.1 however, many of the reported vulnerabilities
exploitable in a traditional environment may not be exploitable when containerized. Investigating
the actual proportion of exploitable vulnerabilities in this study as well as similar previous
research using the CVSS system or something similar may therefore constitute an interesting
research topic, which may relativize the currently alarming security landscape of the Docker
Hub platform.

112

Chapter 9

Conclusion

Based on previous research about Docker Hub’s security landscape and the security mechanisms
introduced by Docker Inc. in response to those investigations, this thesis addressed the following
research questions:

1. Have the security measures introduced by Docker Inc. in response to previous research
improved Docker Hub’s security landscape and to what extent?

2. Are vulnerabilities still inherited from images’ parent(s) and in what proportion?

3. How are discovered vulnerabilities distributed across repository types?

First, our result and analysis show that the security measures introduced by Docker Inc. in
the form of two new kinds of Certified and Verified repositories have not improved the overall
Docker Hub’s security landscape in a way that is significant. Indeed, less Certified repositories
are completely free of vulnerabilities compared to Verified, Official and Community repositories,
although they contain far less vulnerabilities than their other peers in average even for the
most vulnerable Certified repositories (6.2.1, 6.2.4, 7.1.2). Nonetheless, Certified images tend to
contain vulnerabilities of higher severity, especially when it comes to critical vulnerabilities (6.2.2,
6.2.3). Furthermore, Verified and Official repositories contain a similar and significantly lower
number of unique vulnerabilities than Community images, with a higher chance of being of a lower
severity level (6.2.1, 6.2.2, 7.1.3). However, Verified images with less than 180 vulnerabilities are
more likely to hold a more important number of total vulnerabilities than images in the same
case from one of the three other types of repositories.

Secondly, previous research such as [11] conducted in 2016 pointed out that a large amount of
vulnerabilities commonly propagated from parent to child images, with an average of 180 inher-
ited vulnerabilities in average, against 20 new ones which are introduced by child images. Our
results show that the average number of inherited vulnerabilities across all types of repositories
has dropped to 108 since 2016, while the average number of introduced vulnerabilities has com-
pletely exploded from 20 to 160, indicating a global increasing trend of the number of disclosed
vulnerabilities found in images hosted on the Docker Hub platform (6.3, 7.2.2). Moreover, it was
found that the most influential parent images on Docker Hub are all Official images and that
although vulnerabilities in the platform are still inherited in a highly manner, they do not tend
to be introduced by the top root parents on Docker Hub, as suggested by Shu et al. in their
paper’s future work section [11]. Note however that our analysis took only into consideration the

113

most updated image in each repository, while Shu et al. analyzed multiple images within many
Official and Community repositories. Moreover, the results presented in this thesis are proceed-
ing from the analysis of four types of repositories, while Shu et al. focused only on Official and
Community, as Certified and Verified repositories were not a part of the Docker Hub platform
at the time of the conduction of their experiment.

Thirdly, the measurements and analysis conducted in this thesis revealed that the majority of
images across Official, Community and Certified repositories contain less than 75 vulnerabilities
in total, while the majority of Verified images hold less than 180 vulnerabilities (7.1.3). Verified
images with less than 180 vulnerabilities are therefore more likely to hold a more important
number of total vulnerabilities than images in the same case from one of the three other types
of repositories. Furthermore, the number of Official images with a higher number of contained
vulnerabilities than the 180 threshold decreases less rapidly than the three other types of re-
positories, indicating that Official images are more likely to contain a higher number of total
vulnerabilities than their peers. The average number of unique vulnerabilities contained in Com-
munity images is expected to increase with a rate of approximately 191 vulnerabilities per year
between 2019 and 2025 if Docker Hub’s security landscape continues evolving the same way, while
that same number for Official, Verified and Certified repositories will grow with approximately
96, 115 and 17 vulnerabilities per year respectively (7.1.5). Thus, the future vulnerability trend
is an increase of the number of unique vulnerabilities found across all types of repositories, lead-
ing therefore to a deterioration of Docker Hub’s global security landscape when only the total
number of unique vulnerabilities is taken into account.

Fourthly, multiple contributions have been made to the research community, besides the analyt-
ical result of our study. Indeed, the discovery and detailed documentation of Docker Hub’s hidden
REST APIs, as well as a developed Python API for Docker Hub, making future interactions with
the platform easier for the research community have been described in 5.2 and Appendix E.1.

Finally, note that this research is entirely reproducible thanks to our developed open source
software name DAZER (Docker imAge analyZER), providing a solid tool base for other studies
surrounding the analysis of Docker images, as well as the Docker Hub platform.

114

References

[1] C. Pettey, "6 Best Practices for Creating a Container Platform Strategy," Oct. 31, 2017.
[Online]. Available: https://www.gartner.com/smarterwithgartner/6-best-practices-
for-creating-a-container-platform-strategy/. [Accessed Mar. 20, 2019].

[2] Docker Inc., "Build and Ship any Application Anywhere," 2019. [Online]. Available: https:
//hub.docker.com/. [Accessed Jan. 20, 2019].

[3] Docker Inc., "Our Company," 2019. [Online]. Available: https : / / www . docker . com /
company. [Accessed Mar. 20, 2019].

[4] Docker Inc., "Official Images on Docker Hub," 2019. [Online]. Available: https://docs.
docker.com/docker-hub/official_images/. [Accessed Apr. 05, 2019].

[5] Red Hat, "The State Of Containerization - How, Where, And Why Are Containers Lever-
aged In The Software Development Life Cycle?," Jun. 2016. [Online]. Available: https://
www.redhat.com/cms/managed-files/forrester-tap-state-of-containerization-
analyst-paper-201610-en.pdf. [Accessed Mar. 20, 2019].

[6] Security Center, "Cryptojacking invades cloud. How modern containerization trend is ex-
ploited by attackers," Jun. 12, 2018. [Online]. Available: https://kromtech.com/blog/
security-center/cryptojacking-invades-cloud-how-modern-containerization-
trend-is-exploited-by-attackers. [Accessed Mar. 20, 2019].

[7] Docker Inc., "Create a base image," 2019. [Online]. Available: https://docs.docker.
com/develop/develop-images/baseimages/. [Accessed Jan. 20, 2019].

[8] Docker Inc., "Docker Security Scanning," 2018. [Online]. Available: https://docs.docker.
com/v17.12/docker-cloud/builds/image-scan/. [Accessed Mar. 20, 2019].

[9] J. Morgan, "Introducing the New Docker Hub - Docker Blog", Dec. 13, 2018. [Online].
Available: https://blog.docker.com/2018/12/the-new-docker-hub/. [Accessed Mar.
20, 2019].

[10] J. Gummaraju, T. Desikan and Y. Turner, ‘Over 30% of official images in docker hub
contain high priority security vulnerabilities’, in Technical Report, BanyanOps, 2015.

[11] R. Shu, X. Gu and W. Enck, ‘A study of security vulnerabilities on docker hub’, in Proceed-
ings of the Seventh ACM on Conference on Data and Application Security and Privacy,
ACM, 2017, pp. 269–280.

[12] NIST, "vulnerability," 2019. [Online]. Available: https://csrc.nist.gov/glossary/
term/vulnerability. [Accessed Apr. 05, 2019].

[13] A. Arora, R. Krishnan, A. Nandkumar, R. Telang and Y. Yang, ‘Impact of vulnerabil-
ity disclosure and patch availability - an empirical analysis’, in Third Workshop on the
Economics of Information Security, vol. 24, 2004, pp. 1268–1287.

115

https://www.gartner.com/smarterwithgartner/6-best-practices-for-creating-a-container-platform-strategy/
https://www.gartner.com/smarterwithgartner/6-best-practices-for-creating-a-container-platform-strategy/
https://hub.docker.com/
https://hub.docker.com/
https://www.docker.com/company
https://www.docker.com/company
https://docs.docker.com/docker-hub/official_images/
https://docs.docker.com/docker-hub/official_images/
https://www.redhat.com/cms/managed-files/forrester-tap-state-of-containerization-analyst-paper-201610-en.pdf
https://www.redhat.com/cms/managed-files/forrester-tap-state-of-containerization-analyst-paper-201610-en.pdf
https://www.redhat.com/cms/managed-files/forrester-tap-state-of-containerization-analyst-paper-201610-en.pdf
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers
https://docs.docker.com/develop/develop-images/baseimages/
https://docs.docker.com/develop/develop-images/baseimages/
https://docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://blog.docker.com/2018/12/the-new-docker-hub/
https://csrc.nist.gov/glossary/term/vulnerability
https://csrc.nist.gov/glossary/term/vulnerability

[14] Mitre, "Common Weakness Enumeration," Apr. 03, 2018. [Online]. Available: https://
cwe.mitre.org/. [Accessed Apr. 05, 2019].

[15] FIRST, "Forum of Incident Response and Security Teams," 2019. [Online]. Available:
https://www.first.org/. [Accessed Apr. 05, 2019].

[16] NIST, "NVD Vulnerability Severity Ratings," 2019. [Online]. Available: https://nvd.
nist.gov/vuln-metrics/cvss. [Accessed May. 06, 2019].

[17] Atlassian, "Severity Levels for Security Issues," 2019. [Online]. Available: https://www.
atlassian.com/trust/security/security-severity-levels. [Accessed May. 01, 2019].

[18] The UNIX and Linux Forums, "Linux and UNIX Man Pages - Unix Version 7 - man
page for chdir (v7 section 2)," 2019. [Online]. Available: https://www.unix.com/man-
page/v7/2/chdir/. [Accessed Apr. 05, 2019].

[19] M. Tosatti, "Summary of changes from v2.4.19-rc4 to v2.4.19-rc5," 2002. [Online]. Avail-
able: https://mirrors.edge.kernel.org/pub/linux/kernel/v2.4/ChangeLog-
2.4.19. [Accessed Apr. 05, 2019].

[20] M. Kerrisk, "Linux Programmer’s Manual, cgroups - Linux control groups," May. 05, 2019.
[Online]. Available: http : / / man7 . org / linux / man - pages / man7 / cgroups . 7 . html.
[Accessed May. 11, 2019].

[21] Docker Inc., "What is a Container?," 2019. [Online]. Available: https://www.docker.
com/resources/what-container. [Accessed Jan. 20, 2019].

[22] Docker Inc., "dotCloud, Inc. is now Docker Inc.," 2019. [Online]. Available: https://www.
docker.com/docker-news-and-press/dotcloud-inc-now-docker-inc. [Accessed Jan.
20, 2019].

[23] RightScale Inc., "RightScale 2018. State of the Cloud Report," 2018. [Online]. Available:
https://assets.rightscale.com/uploads/pdfs/RightScale-2018-State-of-the-
Cloud-Report.pdf. [Accessed Jan. 20, 2019].

[24] Docker Inc., "About Docker Engine," 2019. [Online]. Available: https://docs.docker.
com/engine/. [Accessed Apr. 03, 2019].

[25] Docker Inc., "Dockerfile reference," 2019. [Online]. Available: https://docs.docker.com/
engine/reference/builder/. [Accessed Jan. 20, 2019].

[26] Docker Inc., "Docker overview," 2019. [Online]. Available: https://docs.docker.com/
engine/docker-overview/. [Accessed Jan. 20, 2019].

[27] Docker Inc., "Docker Registry," 2019. [Online]. Available: https://docs.docker.com/
registry/. [Accessed Jan. 20, 2019].

[28] Docker Inc., "Develop with Docker Engine SDKs and API," 2019. [Online]. Available:
https://docs.docker.com/develop/sdk/. [Accessed Apr. 03, 2019].

[29] Docker Inc., "Docker image introduction," Apr. 26, 2015. [Online]. Available: http://
docs.docker.com/terms/image/#base-image-def. [Accessed via the Internet Archive
Apr. 03, 2019].

[30] Docker Inc., "Migrate to Engine 1.10," 2017. [Online]. Available: https://docs.docker.
com/v17.09/engine/migration/. [Accessed Apr. 03, 2019].

[31] Docker Inc., "Image Manifest V2, Schema 2," 2019. [Online]. Available: https://docs.
docker.com/registry/spec/manifest-v2-2/. [Accessed Apr. 03, 2019].

[32] Docker Inc., "docker tag," 2019. [Online]. Available: https://docs.docker.com/engine/
reference/commandline/tag/. [Accessed Apr. 03, 2019].

116

https://cwe.mitre.org/
https://cwe.mitre.org/
https://www.first.org/
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://www.atlassian.com/trust/security/security-severity-levels
https://www.atlassian.com/trust/security/security-severity-levels
https://www.unix.com/man-page/v7/2/chdir/
https://www.unix.com/man-page/v7/2/chdir/
https://mirrors.edge.kernel.org/pub/linux/kernel/v2.4/ChangeLog-2.4.19
https://mirrors.edge.kernel.org/pub/linux/kernel/v2.4/ChangeLog-2.4.19
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/docker-news-and-press/dotcloud-inc-now-docker-inc
https://www.docker.com/docker-news-and-press/dotcloud-inc-now-docker-inc
https://assets.rightscale.com/uploads/pdfs/RightScale-2018-State-of-the-Cloud-Report.pdf
https://assets.rightscale.com/uploads/pdfs/RightScale-2018-State-of-the-Cloud-Report.pdf
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/develop/sdk/
http://docs.docker.com/terms/image/#base-image-def
http://docs.docker.com/terms/image/#base-image-def
https://docs.docker.com/v17.09/engine/migration/
https://docs.docker.com/v17.09/engine/migration/
https://docs.docker.com/registry/spec/manifest-v2-2/
https://docs.docker.com/registry/spec/manifest-v2-2/
https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/tag/

[33] Docker Inc., "Explore - Docker Hub," 2019. [Online]. Available: https://hub.docker.
com/search?q=&type=image. [Accessed Apr. 05, 2019].

[34] Docker Inc., "Repositories," 2019. [Online]. Available: https : / / docs . docker . com /
docker-hub/repos/. [Accessed Apr. 05, 2019].

[35] Docker Inc., "Docker glossary," 2019. [Online]. Available: https://docs.docker.com/
glossary/?term=parentimage. [Accessed Jan. 20, 2019].

[36] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson and E. Kirda, ‘Thou shalt
not depend on me: Analysing the use of outdated javascript libraries on the web’, arXiv
preprint arXiv:1811.00918, 2018.

[37] R. G. Kula, D. M. German, A. Ouni, T. Ishio and K. Inoue, ‘Do developers update their
library dependencies?’, Empirical Software Engineering, vol. 23, no. 1, pp. 384–417, 2018.

[38] Docker Inc., "HTTP API V2: Docker Registry HTTP API V2," 2019. [Online]. Available:
https://docs.docker.com/registry/spec/api/. [Accessed Apr. 05, 2019].

[39] X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun and Q. Zhou, ‘A measurement study on linux con-
tainer security: Attacks and countermeasures’, in Proceedings of the 34th Annual Computer
Security Applications Conference, ACM, 2018, pp. 418–429.

[40] A. Zerouali, T. Mens, G. Robles and J. Gonzalez-Barahona, ‘On the relation between out-
dated docker containers, severity vulnerabilities and bugs’, arXiv preprint arXiv:1811.12874,
2018.

[41] T. Kuznets, "Docker Security Scanning safeguards the container content lifecycle," May.
10, 2016. [Online]. Available: https://blog.docker.com/2016/05/docker-security-
scanning/. [Accessed Apr. 05, 2019].

[42] Docker Inc., "Docker Security Scanning," 2018. [Online]. Available: https://docs.docker.
com/v17.12/docker-cloud/builds/image-scan/. [Accessed Apr. 05, 2019].

[43] B. Peterson, "PEP 373 – Python 2.7 Release Schedule," Nov. 3, 2008. [Online]. Available:
https://www.python.org/dev/peps/pep-0373/. [Accessed Apr. 01, 2019].

[44] CoreOS, "Vulnerability Static Analysis for Containers: Clair," 2019. [Online]. Available:
https://github.com/coreos/clair. [Accessed Apr. 01, 2019].

[45] A. Coralic, "Clair scanner: Docker containers vulnerability scan," 2019. [Online]. Available:
https://github.com/arminc/clair-scanner. [Accessed Apr. 01, 2019].

[46] CoreOS, "Understanding drivers, their data sources, and creating your own," 2019. [Online].
Available: https://github.com/coreos/clair/blob/master/Documentation/drivers-
and-data-sources.md. [Accessed Apr. 01, 2019].

[47] Mitre, "CWE-295: Improper Certificate Validation," Dec. 27, 2018. [Online]. Available:
https://cwe.mitre.org/data/definitions/295.html. [Accessed Apr. 08, 2019].

[48] The Computer Incident Response Center Luxembourg, "CIRCL – Computer Incident Re-
sponse Center Luxembourg – CSIRT – CERT," 2018. [Online]. Available: http://circl.
lu. [Accessed Apr. 09, 2019].

[49] Gephi, "The Open Graph Viz Platform," 2017. [Online]. Available: https://gephi.org/.
[Accessed May. 18, 2019].

[50] NIST, "NVD CWE Slice," 2019. [Online]. Available: https://nvd.nist.gov/vuln/
categories. [Accessed May. 06, 2019].

117

https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://docs.docker.com/docker-hub/repos/
https://docs.docker.com/docker-hub/repos/
https://docs.docker.com/glossary/?term=parent image
https://docs.docker.com/glossary/?term=parent image
https://docs.docker.com/registry/spec/api/
https://blog.docker.com/2016/05/docker-security-scanning/
https://blog.docker.com/2016/05/docker-security-scanning/
https://docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://www.python.org/dev/peps/pep-0373/
https://github.com/coreos/clair
https://github.com/arminc/clair-scanner
https://github.com/coreos/clair/blob/master/Documentation/drivers-and-data-sources.md
https://github.com/coreos/clair/blob/master/Documentation/drivers-and-data-sources.md
https://cwe.mitre.org/data/definitions/295.html
http://circl.lu
http://circl.lu
https://gephi.org/
https://nvd.nist.gov/vuln/categories
https://nvd.nist.gov/vuln/categories

118

Appendices

119

Appendix A

Excluded repositories

This appendix provides a list of all the repositories skipped during the conducted experiments.

A.1 Paid repositories

Note that all paid repositories are of type Verified.

• store/koekiebox/fluid (Certified)

• store/klokantech/tileserver-maptiler

• store/avinetworks/seprivate

• store/softwareag/adabasmanager-ce

• store/portworx/oci-monitor (Certified)

• store/gitpitch/desktop

• store/esystemstech/liferay-cc (Certified)

• store/datastax/dse-server

• store/aretera/foopipes (Certified)

• store/site24x7/docker-agent (Certified)

• store/codecov/enterprise

• store/sysdig/agent (Certified)

• store/datastax/dse-server

• store/codecov/enterprise

• store/avinetworks/seprivate

• store/datastax/dse-server

• store/codecov/enterprise

120

A.2 Manifest not found error

• mcr.microsoft.com/iot/opc-twin-registry

• mcr.microsoft.com/iot/opc-twin-onboarding

• mcr.microsoft.com/azureiotedge/cameracapturee

• mcr.microsoft.com/aiforearth/blob-py

• mcr.microsoft.com/windows

• mcr.microsoft.com/azure-stream-analytics/simulated-sensor

• mcr.microsoft.com/oryx/nodejs

• mcr.microsoft.com/hpcacm

• mcr.microsoft.com/azuredocs/appservice/samples/multicontainerwordpress

• store/kaazing/gateway

• mcr.microsoft.com/iot/opc-twin-webui:1.0.1

• store/gitlab/gitlab-ee

• mcr.microsoft.com/cntk/nightly:2.7-rc0.dev

• store/softwareag/commandcentral:10.3.0.2-alpine

• mcr.microsoft.com/azure-stream-analytics/azureiotedge

• store/aerospike/aerospike

• store/appdynamics/java:4.5_centos7

• store/buddy/updater:1.4.12

• store/hpsoftware/oa_store

• store/appdynamics/machine:4.5_centos7

• store/portworx/px-dev

A.3 No matching manifest or incompatible platform error

• mcr.microsoft.com/windows/nanoserver:1809

• mcr.microsoft.com/dotnet/framework/wcf:4.7.2

• mcr.microsoft.com/windows/iotcore:1809

• mcr.microsoft.com/windows:1809

• mcr.microsoft.com/dotnet/framework/sdk:4.7.2

• mcr.microsoft.com/dotnet/framework/runtime:4.7.2

• mcr.microsoft.com/aivision/visionsamplemodule:0.1

• mcr.microsoft.com/windows/servercore:ltsc2019

121

• mcr.microsoft.com/windows/servercore/iis:windowsservercore-ltsc2019

• mcr.microsoft.com/dotnet/framework/samples:dotnetapp

A.4 Pull access denied error

• microsoft-dotnet-framework

• microsoft-dotnet-core

• microsoft-azure-pipelines-vsts-agent

• microsoft-azure-cognitive-services

• microsoft-osa-cli

• microsoft-windows-base-os-images

• microsoft-mcrdemoproductfamily

• microsoft-dotnet-core-nightly

• microsoft-cntk

A.5 Manual checkout of repositories (kept)

Certified repositories

• Oracle Java 8 SE (Server JRE)

• MySQL Server Enterprise Edition

• Db2 Developer-C Edition

• Oracle WebLogic Server

• Oracle Fusion Middleware Infrastructure

• IBM WebSphere Application Server Liberty

• Oracle Instant Client

• Oracle Coherence

• Sematext Agent

• IBM Security Access Manager

• Oracle Database Enterprise Edition

Verified repositories

• softwareag/apama-correlator

• IBM Db2 Warehouse client container

• softwareag/apama-builder

122

• Splunk Enterprise

• softwareag/aris-octopus

• softwareag/aris-loadbalancer

• softwareag/sample-ehcache-client

• IBM Tivoli Netcool/OMNIbus Probe for Email

• IBM MQ Advanced

• softwareag/adabas-ce

• softwareag/aris-kibana

• Data Studio (IBM)

• Data Server Manager Developer-C Edition (IBM)

• Blackfire

• Semaphore CI

• FileCloud

• softwareag/apama-correlator

• IBM Db2 Warehouse

• softwareag/aris-accserver

• softwareag/webmethods-microservicesruntime

• softwareag/terracotta-server-oss

• IBM Queryplex

• Puppet Agent Ubuntu

• Percona Server

• FullArmor HAPI File Share Mount

• Anaconda

123

A.6 Summary

A summary of skipped repositories in this study

Repository type Reason

All Failed to download image

All Change in API (both v1 and v2)

All
Manifest not found due to internal server error,

failed login, busy server etc.

All
Not supported by Clair

(incompatible platform)

Verified and Certified
Pull access denied, requires checkout

(typically for commercial repositories)

Verified and Certified Incompatible platform (e.g. Windows)

Verified and Certified
Not contain images or explicit pulling instructions

(especially Microsoft repositories)

Verified and Certified
Duplicate repositories

(especially Microsoft repositories)

Official
Not containing real images,

e.g. scratch and rocket.chat

Official Missing tags on Docker Hub

Table A.1: A summary of repositories which are not included in this study

124

Appendix B

Scripts

The most straight-forward way to setup the environment is to install the software from scratch
on your VM (make sure to fulfill the requirements described in 5.4), and also make sure the
script is executable and then copy-paste this below.

B.1 Installing the required tools for the VMs

1 #!/bin/bash
2

3 # HOW-TO: Make an executable file in terminal
4 # Run this by typing . ./scriptname.sh
5 (Yes, there are two dots and a space between them)
6

7 # Install Docker Engine
8 curl -sSL https://get.docker.com/ | sudo sh;
9

10 # Add user to Docker group
11 sudo usermod -a -G docker $USER;
12

13 # Install Git and Clair scanner binary file for Linux
14 sudo apt-get update;
15 sudo apt-get -y install git;
16 wget https://github.com/arminc/clair-scanner/releases/download/v8/clair-scanner_linux_amd64;
17 mv clair-scanner_linux_amd64 clair-scanner && chmod +x clair-scanner;
18

19 # Install and launch Clair and Clair DB containers
20 sudo docker run -u root -p 5432:5432 -d --name db arminc/clair-db:latest;
21 sudo docker run -u root -p 6060:6060 --link db:postgres -d
22 --name clair arminc/clair-local-scan:latest;
23

24 # Pip3 is required
25 sudo apt update && sudo apt install python3-pip -y;

125

B.2 Setup of the environment

Note that DAZER is an open source software publicly available via its own Github repository
located at https://github.com/dockalyzer/dazer.

B.2.1 Requirements for *.nix

• Ubuntu 16.04.5 LTS*: http://releases.ubuntu.com/16.04/ (required for Linux)

• Git: https://git-scm.com/downloads (required)

• Python 3.6.x: https://www.python.org/downloads/ (required)

• Docker: https://www.docker.com/get-started (required)

• Clair scanner: https://github.com/arminc/clair-scanner (required)

• Valid Docker Hub credentials: https://hub.docker.com/signup (required)

• MongoDB: https://resources.mongodb.com/getting-started-with-mongodb (recom-
mended)

Note: more recent Ubuntu versions and other Debian-based distributions should also work but
they have not been tested.

B.2.2 Requirements for Windows

• Git: https://git-scm.com/downloads (required)

• Docker: https://hub.docker.com/editions/community/docker-ce-desktop-windows
(required)

• Anaconda: https://www.anaconda.com/distribution/ (strongly recommended)

• Clair scanner: https://github.com/arminc/clair-scanner (required)

• Valid Docker Hub credentials: https://hub.docker.com/signup (required)

• MongoDB: https://resources.mongodb.com/getting-started-with-mongodb (recom-
mended)

B.2.3 Prerequisite

It is up to you whether you want to use the Clair binary (recommended) or install it from source
on your local machine. We demonstrate this process for Linux only.

Clair binaries can be obtained here: https://github.com/arminc/clair-scanner/releases

1. Download the appropriate binary from the link above
(e.g. for Ubuntu: clair-scanner_linux_amd64) using the following command:

wget https://github.com/arminc/clair-scanner/releases/download/v8/clair-scanner_

126

https://github.com/dockalyzer/dazer
http://releases.ubuntu.com/16.04/
https://git-scm.com/downloads
https://www.python.org/downloads/
https://www.docker.com/get-started
https://github.com/arminc/clair-scanner
https://hub.docker.com/signup
https://resources.mongodb.com/getting-started-with-mongodb
https://git-scm.com/downloads
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://www.anaconda.com/distribution/
https://github.com/arminc/clair-scanner
https://hub.docker.com/signup
https://resources.mongodb.com/getting-started-with-mongodb
https://github.com/arminc/clair-scanner/releases
https://github.com/arminc/clair-scanner/releases/download/v8/clair-scanner_linux_amd64
https://github.com/arminc/clair-scanner/releases/download/v8/clair-scanner_linux_amd64
https://github.com/arminc/clair-scanner/releases/download/v8/clair-scanner_linux_amd64

linux_amd64

2. Set write permission to the downloaded binary and move it to your home directory with
the following name:

chmod +x clair-scanner_linux_amd64
mv clair-scanner_linux_amd64 $HOME/clair-scanner

3. Deploy the Clair database with the following command:

docker run -d –name db arminc/clair-db:latest

4. Deploy the Clair scanner with the following command:

docker run -p 6060:6060 –link db:postgres -d –name clair arminc/clair-local-scan:latest

Important: make sure Clair scanner and the Clair database are using the "latest" tag, otherwise
DAZER will try to delete them.

B.2.4 Getting Started

1. Clone this repository

git clone https://github.com/dockalyzer/dazer.git

2. Add your Docker Hub credentials to the credentials.yml file.

3. Navigate to its root directory and install all the necessary Python packages using the fol-
lowing command:

pip install -e .

4. Run DAZER as followed:

./main.py <official|certified|verified|community> [<x_images>]

Examples:

Gathering metadata and vulnerability information for all Certified images:

./main.py certified

Gathering metadata and vulnerability information for all Verified images:

127

https://github.com/arminc/clair-scanner/releases/download/v8/clair-scanner_linux_amd64
https://github.com/arminc/clair-scanner/releases/download/v8/clair-scanner_linux_amd64
https://github.com/arminc/clair-scanner/releases/download/v8/clair-scanner_linux_amd64
https://github.com/dockalyzer/dazer.git

./main.py verified

Gathering metadata and vulnerability information for all Official images:

./main.py official

Gathering metadata and vulnerability information for 100 random Community images
among the most popular ones:

./main.py community 100

5. Import the exported Json files to a noSQL database for further analysis (e.g. MonogDB):

mongoimport –db analyzed_images –collection images –file
$HOME/DAZER/DAZER/json/vulnerabilities_2019-05-20_14-58-00.json

128

Appendix C

Research queries

Some of the research queries cannot be directly translated using a single-lined MongoDB query.
Therefore, JavaScript code along with Mongo queries are utilized to fully develop the research
queries.

C.1 MongoDB queries

RQ1: Have the security measures introduced by Docker Inc. in response to previous
research improved Docker Hub’s security landscape and to what extent?
As described in 5.5.2, RQ1 consists of several detailed research questions defined in section 4.5
which only apply to Certified and Verified images. Those detailed research questions cannot be
directly translated into research queries, as they essentially consist of comparing and identifying
correlations between the results of RQ2 and RQ3 for Certified and Verified images with other
types of images.

RQ2: Are vulnerabilities still inherited from images’ parent(s) and in what pro-
portion?

RQ2.1: What proportion of images depends on a parent?

// Change to the desired type of repository
var image_type = "certified";

print("What proportion of " + image_type + " images depends on a parent? "
+ db.data.find({$and: [{"type": {"$eq": image_type }}, {"parent": {"$ne" : ""}}]},
{ _id: 0, name: 1, parent: 1 }).count());

RQ2.2: What proportion of images contain inherited vulnerabilities?

// TIPS: Place this script below into a new file
// Change to the desired type of repository

129

var image_type = "certified";
var result = [];

var parent = function(image_name) {
var image_sliced = image_name.split(":")[0];
var tag_sliced = image_name.split(":")[1];
var parent_name = db.data.findOne({$and: [{name: {$eq: image_sliced }},
{tag: {$eq: tag_sliced }}]}).parent;

if (parent_name) {
var child_vuln = db.data.findOne({$and: [{name: {$eq: image_sliced }},
{tag: {$eq: tag_sliced }}]}, {name: 1, tag: 1, vulnerabilities: 1});
var parent_vuln = db.data.findOne({$and: [{name: {$eq: parent_name.split(":")[0] }},
{tag: {$eq: parent_name.split(":")[1]}}]}, {name: 1, tag: 1, vulnerabilities: 1});

if (parent_vuln === null)
{

return result;
}

var merged = child_vuln.vulnerabilities.filter(value => -1 !==
parent_vuln.vulnerabilities.indexOf(value));

for (let index = 0; index < merged.length; index++) {
let el = merged[index];
if (result.indexOf(el) === -1) {

result.push(el);
}

}
return parent(parent_name);

}
return result;

};

var total_image = 0;
var contain_inherited_vuln = 0;
var dont_contain_vuln = 0;
var total_inherited_vuln = [];

db.data.find().forEach(function(image) {
let image_and_name = image.name + ":" + image.tag;
total_image++;
a = parent(image_and_name)
if (a.length > 0) {

130

contain_inherited_vuln++;
total_inherited_vuln.push(a);
result = [];

}
else {

dont_contain_vuln++;
}

})

var avg_inherited_vuln = [];
total_inherited_vuln.forEach(function(element) {

avg_inherited_vuln.push(element.length);
});

const average = arr => arr.reduce((p, c) => p + c, 0) / arr.length;
const result_inherited_average = average(avg_inherited_vuln);

print("Total " + image_type + " images contain inherited vulnerabilities "
+ contain_inherited_vuln);
print("Total " + image_type + " images that dont contain inherited vulnerabilities: "
+ dont_contain_vuln);
print("How many vulnerabilities do " + image_type + " images inherit in average: "
+ Math.ceil(result_inherited_average) + " (Rounded up, e.g. 1.1 -> 2)");

RQ2.3: What proportion of images introduce vulnerabilities?

// Change to the desired type of repository
var image_type = "certified";

// TIPS: Place this script below into a new file
var result = [];

var parent = function(image_name) {
var image_sliced = image_name.split(":")[0];
var tag_sliced = image_name.split(":")[1];
var parent_name = db.data.findOne({$and: [{name: {$eq: image_sliced }},
{tag: {$eq: tag_sliced }}]}).parent;
var child_vulnerabilities = db.data.findOne({$and: [{name: {$eq: image_sliced }},
{tag: {$eq: tag_sliced }}]}).vulnerabilities;

if (parent_name) {
var child_vuln = db.data.findOne({$and: [{name: {$eq: image_sliced }},
{tag: {$eq: tag_sliced }}]}, {name: 1, tag: 1, vulnerabilities: 1});

131

var parent_vuln = db.data.findOne({$and: [{name: {$eq: parent_name.split(":")[0]}},
{tag: {$eq: parent_name.split(":")[1]}}]}, {name: 1, tag: 1, vulnerabilities: 1});

if (parent_vuln === null)
{

return result;
}

var merged = child_vuln.vulnerabilities.filter(value => -1 !==
parent_vuln.vulnerabilities.indexOf(value));

for (let index = 0; index < child_vulnerabilities.length; index++) {
let el = child_vulnerabilities[index];
let not_contain = merged.includes(el);
if (!(not_contain)) {

result.push(el);
}

}
return parent(parent_name);

}
return result;

};

var total_image = 0;
var contain_inherited_vuln = 0;
var dont_contain_vuln = 0;
var total_inherited_vuln = [];

db.data.find().forEach(function(image) {
let image_and_name = image.name + ":" + image.tag;
total_image++;
a = parent(image_and_name)
if (a.length > 0) {

contain_inherited_vuln++;
total_inherited_vuln.push(a);
result = [];

}
else {

dont_contain_vuln++;
}

})

var avg_inherited_vuln = [];
total_inherited_vuln.forEach(function(element) {

avg_inherited_vuln.push(element.length);

132

});

const average = arr => arr.reduce((p, c) => p + c, 0) / arr.length;
const result_inherited_average = average(avg_inherited_vuln);

print("Total " + image_type + " images that introduce vulnerabilities: "
+ contain_inherited_vuln);
print("Total " + image_type + " images that dont introduce vulnerabilities: "
+ dont_contain_vuln);
print("How many vulnerabilities do " + image_type + " images introduced in average: "
+ Math.ceil(result_inherited_average) + " (Rounded up, e.g. 1.1 -> 2)");

RQ2.4: How many vulnerabilities do images inherit in average?
Already answered in RQ2.3.

RQ2.5: How many vulnerabilities do images introduce in average?
Already answered in RQ2.4.

Q3: How are discovered vulnerabilities distributed across repository types?

RQ3.1: What proportion of images contain no vulnerabilities?

// Change to the desired type of repository
var image_type = "certified";

print("Proportion of " + image_type + " images that contain no vulnerabilities: "
+ db.data.find({$and: [{"type": {"$eq": image_type }}, {"total_vulnerabilities":
{"$eq" : 0}}]}, { _id: 0, name: 1, vulnerabilities: 1 }).count());

RQ3.2: What proportion of images contain at least one vulnerability?

// Change to the desired type of repository
var image_type = "certified";

print("Proportion of images that contain one or several vulnerabilities: " +
db.data.find({$and: [{"type": {"$eq": image_type }}, {"total_vulnerabilities":
{"$ne" : 0}}]}, { _id: 0, name: 1, vulnerabilities: 1 }).count());

Note: Unlike find() function in MongoDB, aggregation() function does not support retrieving
the value of a property, and therefore it must be calculated manually by dividing the number of
vulnerabilities with total analyzed images.

RQ3.3: How many vulnerabilities do images contain in average?

133

// Change to the desired type of repository
var image_type = "certified";

print("How many vulnerabilities do " + image_type + " images contain in total
(remember to calculate average): ");
db.data.aggregate({ $group: { _id: "$type", sumTotalVulnerabilities:
{ $sum: "$total_vulnerabilities" } } },
{$project: {"_id": 0, "sumTotalVulnerabilities": 1}});
// Average to be calculated manually

RQ3.4: How many unique vulnerabilities do images contain in total?

// Change to the desired type of repository
var image_type = "certified";

print("How many unique vulnerabilities " + image_type + " images contain in total
(remember to calculate average): ");
db.vuln.aggregate([{ $group : { _id: { cve_number : {$gt:["$cve_number", null]}},
count : { $sum : 1 } } }]); // Average to be calculated manually

RQ3.5: How are unique vulnerabilities distributed per severity among images?

// Change to the desired type of repository
var image_type = "certified";

print("How are unique vulnerabilities distributed per severity among "
+ image_type + " images")
print("Critical: " + db.vuln.find({"severity": {"$eq" : "Critical"}},
{ _id: 0, severity: 1 }).count())

print("High: " + db.vuln.find({"severity": {"$eq" : "High"}},
{ _id: 0, severity: 1 }).count())

print("Medium: " + db.vuln.find({"severity": {"$eq" : "Medium"}},
{ _id: 0, severity: 1 }).count())

print("Low: " + db.vuln.find({"severity": {"$eq" : "Low"}},
{ _id: 0, severity: 1 }).count())

print("Negligible: " + db.vuln.find({"severity": {"$eq" : "Negligible"}},
{ _id: 0, severity: 1 }).count())

print("Unknown: " + db.vuln.find({"severity": {"$eq" : "Unknown"}},
{ _id: 0, severity: 1 }).count())

134

RQ3.6: How are unique vulnerabilities distributed per year among images?

// Change to the desired type of repository
var image_type = "certified";

print("How are unique vulnerabilities distributed per year among " + image_type + " images")
print("2019: " + db.vuln.find({ cve_number: { $regex: '(CVE-2019|RHSA-2019|ELSA-2019)'} }
).count())
print("2018: " + db.vuln.find({ cve_number: { $regex: '(CVE-2018|RHSA-2018|ELSA-2018)'} }
).count())
print("2017: " + db.vuln.find({ cve_number: { $regex: '(CVE-2017|RHSA-2017|ELSA-2017)'} }
).count())
print("2016: " + db.vuln.find({ cve_number: { $regex: '(CVE-2016|RHSA-2016|ELSA-2016)'} }
).count())
print("2015: " + db.vuln.find({ cve_number: { $regex: '(CVE-2015|RHSA-2015|ELSA-2015)'} }
).count())
print("2014: " + db.vuln.find({ cve_number: { $regex: '(CVE-2014|RHSA-2014|ELSA-2014)'} }
).count())
print("2013: " + db.vuln.find({ cve_number: { $regex: '(CVE-2013|RHSA-2013|ELSA-2013)'} }
).count())
print("2012: " + db.vuln.find({ cve_number: { $regex: '(CVE-2012|RHSA-2012|ELSA-2012)'} }
).count())
print("2011: " + db.vuln.find({ cve_number: { $regex: '(CVE-2011|RHSA-2011|ELSA-2011)'} }
).count())
print("2010: " + db.vuln.find({ cve_number: { $regex: '(CVE-2010|RHSA-2010|ELSA-2010)'} }
).count())

RQ3.7: Is there a correlation between the most popular images (most pulled) and the most
vulnerable ones?

// Change to the desired type of repository
var image_type = "certified";

print("Most pulled top 10: ");
db.data.find({$and: [{"type": {"$eq": image_type }}, {"name": {"$ne" : ""}}]},
{ _id: 0, name: 1, total_pulled: 1, total_vulnerabilities: 1}).sort({total_pulled:-1}
).limit(10);

print("Most vulnerable top 10: ");
db.data.find({$and: [{"type": {"$eq": image_type }}, {"name": {"$ne" : ""}}]},
{ _id: 0, name: 1, total_vulnerabilities: 1 }).sort({total_vulnerabilities:-1}
).limit(10);

RQ3.8: Is there a correlation between the last updated images and the most vulnerable ones?

135

// Change to the desired type of repository
var image_type = "certified";

print("Most recently updated top 10: ");
db.data.find({$and: [{"type": {"$eq": image_type }}, {"name": {"$ne" : ""}}]},
{ _id: 0, name: 1, last_updated: 1, total_vulnerabilities: 1}).sort({last_updated:-1}
).limit(10);

print("Most vulnerable top 10: ");
db.data.find({$and: [{"type": {"$eq": image_type }}, {"name": {"$ne" : ""}}]},
{ _id: 0, name: 1, total_vulnerabilities: 1 }).sort({total_vulnerabilities:-1}
).limit(10);

RQ3.9: Is there a correlation between base images and the most vulnerable ones OR base images
and the most popular ones OR base images and the last updated ones?

// Change to the desired type of repository
var image_type = "certified";

print("Most vulnerable top 10 (base images): ");
db.data.find({$and: [{"type": {"$eq": image_type }}, {"parent": {"$eq" : ""}}]},
{ _id: 0, name: 1, total_vulnerabilities: 1 }).sort({total_vulnerabilities:-1}
).limit(10);

print("Most pulled top 10 (base images): ");
db.data.find({$and: [{"type": {"$eq": image_type }}, {"parent": {"$eq" : ""}}]},
{ _id: 0, name: 1, total_pulled: 1, total_vulnerabilities: 1}).sort({total_pulled:-1}
).limit(10);

print("Most recently updated top 10 (base images): ");
db.data.find({$and: [{"type": {"$eq": image_type }}, {"parent": {"$eq" : ""}}]},
{ _id: 0, name: 1, last_updated: 1, total_vulnerabilities: 1}).sort({last_updated:-1}
).limit(10);

RQ3.10: What are the top 10 vulnerabilities?

// Change to the desired type of repository
var image_type = "certified";

print("Top 10 vulnerabilities for " + image_type + " images: ");
db.data.aggregate([{ $match: { type: image_type } }, {$unwind: "$vulnerabilities" },
{$group: {_id: {id: "$vulnerabilities"}, count: {$sum : 1}}}, { $sort: { count: -1 }},
{ $limit: 10 }]);

136

RQ3.11: Are vulnerabilities found in base images correlated with non-base images in some way?

// Change to the desired type of repository
var image_type = "certified";

print("Top 10 vulnerabilities for base images: ");
db.data.aggregate([{ $match: { type: image_type, "$and": [{ "parent": { "$eq": "" } }]
} }, {$unwind: "$vulnerabilities" }, {$group: {_id: {id: "$vulnerabilities"},
count: {$sum : 1}}}, { $sort: { count: -1 }}, { $limit: 10 }]);

print("Top 10 vulnerabilities for not-base images: ");
db.data.aggregate([{ $match: { type: image_type, "$and": [{ "parent": { "$ne": "" } }]
} }, {$unwind: "$vulnerabilities" }, {$group: {_id: {id: "$vulnerabilities"},
count: {$sum : 1}}}, { $sort: { count: -1 }}, { $limit: 10 }]);

C.2 Miscellaneous MongoDB queries

In this study, we would also like to survey not only the vulnerabilities across repository types, but
also all the vulnerabilities on Docker Hub in general. When merging multiple JSON vulnerability
files in MongoDB, there are many JSON objects that occur several times. These needed to be
removed, and therefore the script below may be executed via MongoDB shell to remove the
duplicate MongoDB documents. Note that we experienced that this script needs to be run
several times before all the duplicates are removed.

// Get unique vulnerability objects
var bulk = db.vuln.initializeOrderedBulkOp(), count = 0;

// Specify the most unique property in the entire collection, in this case the CVE number.
db.vuln.aggregate([

{ "$group": {
"_id": {

"cve_number" : "$cve_number",
},
"ids": { "$push": "$_id" },
"count": { "$sum": 1 }

}},
{ "$match": { "count": { "$gt": 1 } } }
],
{ "allowDiskUse": true}).forEach(function(doc) {

doc.ids.shift(); // removes the first match
bulk.find({ "_id": { "$in": doc.ids } }).remove();
count++;

137

if (count % 1000 == 0) {
bulk.execute();
bulk = db.testkdd.initializeOrderedBulkOp();

}
});

if (count % 1000 != 0)
bulk.execute();

Note: Similar for the "data" collection, we observed hundreds of duplicate images in the collection
for Community images. These need to be removed using this script below:

// Get unique image objects
var bulk = db.data.initializeOrderedBulkOp(), count = 0;

// Specify the most unique property in the entire collection, in this case the image ID.
db.data.aggregate([

{ "$group": {
"_id": {

"image_id" : "$image_id",
},
"ids": { "$push": "$_id" },
"count": { "$sum": 1 }

}},
{ "$match": { "count": { "$gt": 1 } } }
],
{ "allowDiskUse": true}).forEach(function(doc) {

doc.ids.shift(); // removes the first match
bulk.find({ "_id": { "$in": doc.ids } }).remove();
count++;

if (count % 1000 == 0) {
bulk.execute();
bulk = db.testkdd.initializeOrderedBulkOp();

}
});

if (count % 1000 != 0) {
bulk.execute();

}

138

Appendix D

Result data

D.1 Top ten most vulnerable repositories across image types

Official repositories

(K1) rails (1530 vulnerabilities)

(K2) django (1474 vulnerabilities)

(K3) glassfish (645 vulnerabilities)

(K4) erlang (589 vulnerabilities)

(K5) elixir (588 vulnerabilities)

(K6) python (586 vulnerabilities)

(K7) hylang (586 vulnerabilities)

(K8) gcc (586 vulnerabilities)

(K9) perl (586 vulnerabilities)

(K10) buildpack-deps (586 vulnerabilities)

Community repositories

(A1) wfmdigital/php-worker (1792 vulnerabilities)

(A2) iron/images (1792 vulnerabilities)

(A3) nolan/concourse-rancher-compose-resource (1741 vulnerabilities)

(A4) robophred/concourse-svn-resource (1741 vulnerabilities)

(A5) jinlee/counter-resource (1518 vulnerabilities)

(A6) inquicker/kaws-etcd-ebs-backup (1350 vulnerabilities)

139

(A7) modeanalytics/concourse-mapping-resource (1327 vulnerabilities)

(A8) onsweb/php-base (1300 vulnerabilities)

(A9) therightplace/bedboard2-sidekiq (1277 vulnerabilities)

(A10) springcloud/spring-pipeline-m2 (1218 vulnerabilities)

Verified repositories

(D1) mcr.microsoft.com/azuredocs/azure-vote-front (1531 vulnerabilities)

(D2) store/klokantech/openmaptiles-server-dev (1171 vulnerabilities)

(D3) mcr.microsoft.com/ospo/ghcrawler-dashboard (773 vulnerabilities)

(D4) store/filecloud/filecloud (759 vulnerabilities)

(D5) store/discourse/discourse (654 vulnerabilities)

(D6) mcr.microsoft.com/oryx/build (643 vulnerabilities)

(D7) mcr.microsoft.com/ospo/ghcrawler (639 vulnerabilities)

(D8) store/ibmcorp/icam-service-composer-ui (598 vulnerabilities)

(D9) store/rocketchat/rocket.chat (556 vulnerabilities)

(D10) mcr.microsoft.com/aiforearth/base-r (434 vulnerabilities)

Certified repositories

(G1) store/opsani/skopos (166 vulnerabilities)

(G2) store/oracle/database-enterprise (106 vulnerabilities)

(G3) store/hpsoftware/sitescope_store (79 vulnerabilities)

(G4) store/bleemeo/bleemeo-agent (78 vulnerabilities)

(G5) store/datadog/agent (55 vulnerabilities)

(G6) store/sematext/agent (46 vulnerabilities)

(G7) store/ibmcorp/websphere-liberty (44 vulnerabilities)

(G8) store/ibmcorp/db2_developer_c (43 vulnerabilities)

(G9) store/oracle/database-instantclient (42 vulnerabilities)

(G10) store/oracle/coherence (40 vulnerabilities)

140

D.2 Top ten most pulled repositories across image types

Official repositories

(L1) nginx (1.650 ∗ 109 pulls, 82 vulnerabilities)

(L2) redis (1.496 ∗ 109 pulls, 43 vulnerabilities)

(L3) alpine (1.196 ∗ 109 pulls, 0 vulnerabilities)

(L4) httpd (1.116 ∗ 109 pulls, 135 vulnerabilities)

(L5) ubuntu (1.018 ∗ 109 pulls, 41 vulnerabilities)

(L6) postgres (9.293 ∗ 108 pulls, 102 vulnerabilities)

(L7) node (8.075 ∗ 108 pulls, 79 vulnerabilities)

(L8) mysql (7.913 ∗ 108 pulls, 59 vulnerabilities)

(L9) memcached (7.066 ∗ 108 pulls, 43 vulnerabilities)

(L10) registry (6.135 ∗ 108 pulls, 0 vulnerabilities)

Community repositories

(B1) jtarchie/pr (2.060 ∗ 109 pulls, 16 vulnerabilities)

(B2) pivotalcf/pivnet-resource (1.951 ∗ 109 pulls, 333 vulnerabilities)

(B3) cfcommunity/slack-notification-resource (1.749 ∗ 109 pulls, 0 vulnerabilities)

(B4) kope/protokube (5.559 ∗ 108 pulls, 133 vulnerabilities)

(B5) pivotalpa/maven-resource (2.718 ∗ 108 pulls, 40 vulnerabilities)

(B6) navicore/teams-notification-resource (2.403 ∗ 108 pulls, 178 vulnerabilities)

(B7) swce/keyval-resource (1.898 ∗ 108 pulls, 0 vulnerabilities)

(B8) bitnami/mongodb (1.894 ∗ 108 pulls, 74 vulnerabilities)

(B9) datadog/agent (1.799 ∗ 108 pulls, 47 vulnerabilities)

(B10) patrickcrocker/maven-resource (1.606 ∗ 108 pulls, 40 vulnerabilities)

Verified repositories

(E1) mcr.microsoft.com/dotnet/core/runtime-deps (3.489 ∗ 108 pulls, 54 vulnerabilities)

(E2) mcr.microsoft.com/service-fabric/reverse-proxy (2.473 ∗ 108 pulls, 104 vulnerabilities)

(E3) mcr.microsoft.com/dotnet/core-nightly/runtime-deps (3.029 ∗ 107 pulls, 54 vulnerabilities)

(E4) mcr.microsoft.com/mssql-tools (4.910 ∗ 106 pulls, 132 vulnerabilities)

(E5) mcr.microsoft.com/azureiotedge-agent (3.617 ∗ 106 pulls, 0 vulnerabilities)

141

(E6) mcr.microsoft.com/azuredocs/aci-helloworld (2.707 ∗ 106 pulls, 3 vulnerabilities)

(E7) mcr.microsoft.com/cntk/release (2.293 ∗ 106 pulls, 211 vulnerabilities)

(E8) mcr.microsoft.com/azureiotedge-hub (1.436 ∗ 106 pulls, 0 vulnerabilities)

(E9) mcr.microsoft.com/azureiotedge-simulated-temperature-sensor (1.103 ∗ 106 pulls, 0 vulner-
abilities)

(E10) mcr.microsoft.com/azuredocs/aci-tutorial-sidecar (9.472 ∗ 105 pulls, 22 vulnerabilities)

Certified repositories

(H1) mcr.microsoft.com/java/jre-headless (1947 pulls, 0 vulnerabilities)

(H2) store/sematext/logagent (0 pulls, 0 vulnerabilities)

(H3) store/veritasnetbackup/client (0 pulls, 22 vulnerabilities)

(H4) store/sematext/agent (0 pulls, 46 vulnerabilities)

(H5) store/ibmcorp/isam (0 pulls, 34 vulnerabilities)

(H6) store/elastic/packetbeat (0 pulls, 2 vulnerabilities)

(H7) store/ibmcorp/db2_developer_c (0 pulls, 43 vulnerabilities)

(H8) store/oracle/fmw-infrastructure (0 pulls, 29 vulnerabilities)

(H9) store/dynatrace/oneagent (0 pulls, 1 vulnerability)

(H10) store/elastic/heartbeat (0 pulls, 2 vulnerabilities)

D.3 Top ten last updated repositories across image types

Official repositories

(N1) swift: Saturday, 30-Mar-19 00:24:43 UTC (139 vulnerabilities)

(N2) xwiki: Friday, 29-Mar-19 23:13:55 UTC in RFC 2822 (189 vulnerabilities)

(N3) geonetwork: Friday, 29-Mar-19 23:10:01 UTC (186 vulnerabilities)

(N4) websphere-liberty: Friday, 29-Mar-19 23:03:03 UTC (43 vulnerabilities)

(N5) maven: Friday, 29-Mar-19 22:51:23 UTC (0 vulnerabilities)

(N6) clojure: Friday, 29-Mar-19 22:41:29 UTC (201 vulnerabilities)

(N7) tomcat: Friday, 29-Mar-19 22:29:12 UTC (0 vulnerabilities)

(N8) pypy: Friday, 29-Mar-19 22:21:07 UTC (119 vulnerabilities)

(N9) teamspeak: Friday, 29-Mar-19 22:17:25 UTC (0 vulnerabilities)

(N10) rabbitmq: Friday, 29-Mar-19 22:15:26 UTC (32 vulnerabilities)

142

Community repositories

(C1) circleci/php: Sunday, 21-Apr-19 00:45:05 UTC (451 vulnerabilities)

(C2) circleci/golang: Sunday, 21-Apr-19 00:32:48 UTC (439 vulnerabilities)

(C3) drone/drone: Sunday, 21-Apr-19 00:27:34 UTC: (0 vulnerabilities)

(C4) drone/agent: Sunday, 21-Apr-19 00:27:03 UTC (0 vulnerabilities)

(C5) circleci/mysql: Sunday, 21-Apr-19 00:05:47 UTC (68 vulnerabilities)

(C6) bitnami/minideb: Saturday, 20-Apr-19 22:33:36 UTC (44 vulnerabilities)

(C7) graze/php-alpine: Saturday, 20-Apr-19 20:30:38 UTC (0 vulnerabilities)

(C8) titpetric/netdata: Saturday, 20-Apr-19 19:34:29 UTC (128 vulnerabilities)

(C9) elicocorp/odoo-china: Saturday, 20-Apr-19 19:21:54 UTC (173 vulnerabilities)

(C10) kpsys/portaro: Saturday, 20-Apr-19 18:16:50 UTC (90 vulnerabilities)

Verified repositories

(F1) mcr.microsoft.com/oryx/python-3.7: Saturday, 30-Mar-19 19:12:28 UTC (180 vulnerabil-
ities)

(F2) mcr.microsoft.com/oryx/build: Saturday, 30-Mar-19 19:11:50 UTC (643 vulnerabilities)

(F3) mcr.microsoft.com/dotnet/core-nightly/runtime-deps: Friday, 29-Mar-19 21:41:55 UTC (54
vulnerabilities)

(F4) store/ibmcorp/security_information_queue: Thursday, 28-Mar-19 21:58:58 UTC (161 vul-
nerabilities)

(F5) mcr.microsoft.com/dotnet/core/runtime-deps: Wednesday, 27-Mar-19 20:48:07 UTC (54
vulnerabilities)

(F6) mcr.microsoft.com/mssql/server: Thursday, 21-Mar-19 02:56:20 UTC (39 vulnerabilities)

(F7) store/softwareag/apama-correlator: Tuesday, 19-Mar-19 18:08:53 UTC (39 vulnerabilities)

(F8) mcr.microsoft.com/azure-functions/base: Tuesday, 19-Mar-19 17:56:07 UTC (115 vulner-
abilities)

(F9) mcr.microsoft.com/iotedge/opc-client: Friday, 15-Mar-19 14:44:48 UTC (0 vulnerabilities)

(F10) mcr.microsoft.com/iotedge/opc-publisher-nodeconfiguration: Friday, 15-Mar-19 13:05:04
UTC (0 vulnerabilities)

Certified repositories

(I1) store/elastic/packetbeat: Tuesday, 02-Apr-19 16:32:37 UTC (2 vulnerabilities)

143

(I2) store/elastic/auditbeat: Tuesday, 02-Apr-19 15:21:37 UTC (2 vulnerabilities)

(I3) store/elastic/metricbeat: Tuesday, 02-Apr-19 15:13:29 UTC (2 vulnerabilities)

(I4) store/elastic/heartbeat: Tuesday, 02-Apr-19 15:06:11 UTC (2 vulnerabilities)

(I5) store/elastic/filebeat: Tuesday, 02-Apr-19 15:03:06 UTC (2 vulnerabilities)

(I6) store/elastic/apm-server: Tuesday, 02-Apr-19 14:56:32 UTC (2 vulnerabilities)

(I7) store/ibmcorp/websphere-liberty: Wednesday, 27-Mar-19 02:30:44 UTC (44 vulnerabilit-
ies)

(I8) store/sematext/agent: Wednesday, 20-Mar-19 14:23:43 UTC (46 vulnerabilities)

(I9) store/dynatrace/oneagent: Wednesday, 20-Mar-19 08:00:59 UTC (1 vulnerability)

(I10) store/intersystems/iris: Friday, 15-Mar-19 14:36:43 UTC (37 vulnerabilities)

D.4 All base repositories across image types - sorted by
popularity

Official repositories

1. alpine

2. ubuntu

3. centos

4. debian

5. amazonlinux

6. iojs

7. oraclelinux

8. notary

9. glassfish

10. sl

11. java

Community repositories (only top ten)

1. jtarchie/pr

2. cfcommunity/slack-notification-resource

3. kope/protokube

4. pivotalpa/maven-resource

5. swce/keyval-resource

144

6. bitnami/mongodb

7. patrickcrocker/maven-resource

8. ymedlop/npm-cache-resource

9. mesosphere/aws-cli

10. jrcs/letsencrypt-nginx-proxy-companion

Verified repositories

1. mcr.microsoft.com/mssql-tools

2. mcr.microsoft.com/azureiotedge-agent

3. mcr.microsoft.com/azuredocs/aci-helloworld

4. mcr.microsoft.com/azureiotedge-hub

5. mcr.microsoft.com/azureiotedge-simulated-temperature-sensor

6. mcr.microsoft.com/azuredocs/aci-tutorial-sidecar

7. mcr.microsoft.com/mssql/server

8. mcr.microsoft.com/azureiotedge-functions-binding

9. mcr.microsoft.com/azureiotedge/modbus

10. mcr.microsoft.com/iotedge/opc-publisher

11. mcr.microsoft.com/azuredocs/aci-wordcount

12. mcr.microsoft.com/iotedge/opc-proxy

13. mcr.microsoft.com/azure-functions/base

14. mcr.microsoft.com/k8s/aad-pod-identity/mic

15. mcr.microsoft.com/azuredocs/aci-hellofiles

16. mcr.microsoft.com/azure-cognitive-services/luis

17. mcr.microsoft.com/azureiotedge-testing-utility

18. mcr.microsoft.com/azure-oss-db-tools/pgbouncer-sidecar

19. mcr.microsoft.com/iotedge/opc-plc

20. mcr.microsoft.com/iotedge/opc-publisher-diagnostics

Certified repositories

1. mcr.microsoft.com/java/jre-headless

2. store/veritasnetbackup/client

145

3. store/ibmcorp/isam

4. store/ibmcorp/db2_developer_c

5. store/coscale/coscale-agent

6. store/instana/agent

7. store/oracle/fmw-infrastructure

8. store/oracle/mysql-enterprise-server

9. store/oracle/weblogic

10. store/oracle/serverjre

11. store/datadog/agent

12. store/amirsharif/enforcerd

13. store/weaveworks/cloud-agent

14. store/nvpublic/allinone

15. store/oracle/coherence

16. store/oracle/database-enterprise

17. store/opsani/skopos

18. store/oracle/database-instantclient

19. store/hpsoftware/sitescope_store

146

D.5 Top ten most vulnerable base repositories across image
types

Official repositories

1. glassfish (645 vulnerabilities)

2. iojs (197 vulnerabilities)

3. ubuntu (41 vulnerabilities)

4. debian (28 vulnerabilities)

5. centos (2 vulnerabilities)

6. alpine (0 vulnerabilities)

7. java (0 vulnerabilities)

8. oraclelinux (0 vulnerabilities)

9. sl (0 vulnerabilities)

10. amazonlinux (0 vulnerabilities)

Community repositories

1. wfmdigital/php-worker (1792 vulnerabilities)

2. iron/images (1792 vulnerabilities)

3. nolan/concourse-rancher-compose-resource (1741 vulnerabilities)

4. jinlee/counter-resource (1518 vulnerabilities)

5. inquicker/kaws-etcd-ebs-backup (1350 vulnerabilities)

6. modeanalytics/concourse-mapping-resource (1327 vulnerabilities)

7. onsweb/php-base (1300 vulnerabilities)

8. therightplace/bedboard2-sidekiq (1277 vulnerabilities)

9. pbardzinskismarsh/task-image (1121 vulnerabilities)

10. kpacha/mesos-influxdb-collector (951 vulnerabilities)

Verified repositories

1. mcr.microsoft.com/azuredocs/azure-vote-front (1531 vulnerabilities)

2. store/klokantech/openmaptiles-server-dev (1172 vulnerabilities)

3. store/discourse/discourse (654 vulnerabilities)

4. store/ibmcorp/icam-service-composer-ui (598 vulnerabilities)

147

5. store/rocketchat/rocket.chat (556 vulnerabilities)

6. store/sysdig/sysdig (423 vulnerabilities)

7. mcr.microsoft.com/k8s/aad-pod-identity/mic (309 vulnerabilities)

8. mcr.microsoft.com/windowscamerateam/onnxconverter (243 vulnerabilities)

9. store/influxdata/influxdb (197 vulnerabilities)

10. store/ibmcorp/voice-gateway-mr (190 vulnerabilities)

Certified repositories

1. store/opsani/skopos (166 vulnerabilities)

2. store/oracle/database-enterprise (106 vulnerabilities)

3. store/hpsoftware/sitescope_store (79 vulnerabilities)

4. store/datadog/agent (55 vulnerabilities)

5. store/ibmcorp/db2_developer_c (43 vulnerabilities)

6. store/oracle/database-instantclient (42 vulnerabilities)

7. store/oracle/coherence (40 vulnerabilities)

8. store/ibmcorp/isam (34 vulnerabilities)

9. store/amirsharif/enforcerd (30 vulnerabilities)

10. store/oracle/fmw-infrastructure (29 vulnerabilities)

D.6 Top ten most used parent images across image types

Official

1. debian:9-slim (18 child images)

2. openjdk:8-jre-alpine (7 child images)

3. centos:7 (6 child images)

4. debian:latest (5 child images)

5. alpine:latest (5 child images)

6. ubuntu:xenial (5 child images)

7. ubuntu:latest (4 child images)

8. buildpack-deps:stretch (4 child images)

9. php:7.3.3-fpm-stretch (4 child images)

10. alpine:3.8 (4 child images)

148

Community

1. alpine:latest (15 child images)

2. centos:7 (14 child images)

3. alpine:3.8 (11 child images)

4. ubuntu:xenial (10 child images)

5. ubuntu:latest (10 child images)

6. alpine:3.9.2 (7 child images)

7. ubuntu:bionic-20181204 (7 child images)

8. ubuntu:trusty-20181217 (5 child images)

9. ubuntu:bionic-20190204 (4 child images)

10. debian:stretch-20181226-slim (4 child images)

Verified

1. ubuntu:xenial-20180808 (3 child images)

2. debian:stretch-20181226-slim (3 child images)

3. ubuntu:bionic-20190204 (3 child images)

4. ubuntu:xenial-20180525 (3 child images)

5. debian:9-slim (2 child images)

6. alpine:3.7 (2 child images)

7. ubuntu:xenial-20180417 (1 child image)

8. ubuntu:xenial-20181005 (1 child image)

9. debian:jessie-20190204 (1 child image)

10. node:8.12 (1 child image)

Certified

1. centos:7 (6 child images)

2. ubuntu:xenial (1 child image)

3. ubuntu:bionic-20190204 (1 child image)

4. ubuntu:bionic-20180710 (1 child image)

5. alpine:latest (1 child image)

149

6. node:8.11-alpine (1 child image)

7. debian:stable-20190228-slim (1 child image)

D.6.1 Top ten most used parent images across all repository types

1. centos:7 (26 child images, 4 vulnerabilities)

2. debian:9-slim (26 child images, 47 vulnerabilities)

3. alpine:3.8 (25 child images, 0 vulnerabilities)

4. alpine:latest (23 child images, 0 vulnerabilities)

5. ubuntu:xenial (18 child images, 43 vulnerabilities)

6. ubuntu:latest (14 child images, 33 vulnerabilities)

7. java:openjdk-8-jre (11 child images, 271 vulnerabilities)

8. debian:latest (10 child images, 60 vulnerabilities)

9. ubuntu:bionic-20190204 (8 child images, 34 vulnerabilities)

10. ubuntu:bionic-20181204 (7 child images, 39 vulnerabilities)

150

D.7 Top ten most vulnerable packages

D.7.1 Across all repository types

1. firefox

2. linux

3. imagemagick

4. binutils

5. php5

6. tcpdump

7. mysql-5.5

8. tiff

9. openjdk-7

10. openssl

D.7.2 Across the most popular parents

1. glibc

2. ncurses

3. systemd

4. gnutls28

5. curl

6. pcre3

7. openssl

8. krb5

9. nss

10. sqlite3

151

D.8 CWE vulnerability categories

The following is a list of the CWE-IDs categorizing the vulnerabilities found in the ten most
vulnerable packages discovered across all types of repositories during the conducted experiments,
with an associated category name and definition retrieved from NVD’s website [50].

• CWE-19: Data Handling
Weaknesses in this category are typically found in functionality that processes data.

• CWE-20: Input Validation
The product does not validate or incorrectly validates input that can affect the control flow
or data flow of a program.

• CWE-93: Improper Neutralization of CRLF Sequences (’CRLF Injection’)
The software uses CRLF (carriage return line feeds) as a special element, e.g. to separate
lines or records, but it does not neutralize or incorrectly neutralizes CRLF sequences from
inputs.

• CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers
(’HTTP Response Splitting’)
The software receives data from an upstream component, but does not neutralize or in-
correctly neutralizes CR and LF characters before the data is included in outgoing HTTP
headers.

• CWE-119: Buffer Errors
The software performs operations on a memory buffer, but it can read from or write to a
memory location that is outside of the intended boundary of the buffer.

• CWE-121: Stack-based Buffer Overflow
A stack-based buffer overflow condition is a condition where the buffer being overwritten
is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

• CWE-122: Heap-based Buffer Overflow
A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is
allocated in the heap portion of memory, generally meaning that the buffer was allocated
using a routine such as malloc().

• CWE-125: Out-of-bounds Read
The software reads data past the end, or before the beginning, of the intended buffer.

• CWE-190: Integer Overflow or Wraparound
The software performs a calculation that can produce an integer overflow or wraparound,
when the logic assumes that the resulting value will always be larger than the original value.
This can introduce other weaknesses when the calculation is used for resource management
or execution control.

• CWE-200: Information Leak / Disclosure
An information exposure is the intentional or unintentional disclosure of information to an
actor that is not explicitly authorized to have access to that information.

• CWE-254: Security Features
Software security is not security software. Here we’re concerned with topics like authentic-
ation, access control, confidentiality, cryptography, and privilege management.

152

• CWE-264: Permissions, Privileges, and Access Control
Weaknesses in this category are related to the management of permissions, privileges, and
other security features that are used to perform access control.

• CWE-270: Privilege Context Switching Error
The software does not properly manage privileges while it is switching between different
contexts that have different privileges or spheres of control.

• CWE-271: Privilege Dropping / Lowering Errors
The software does not drop privileges before passing control of a resource to an actor that
does not have those privileges.

• CWE-338: Use of Cryptographically Weak Pseudo-Random Number Gener-
ator (PRNG)
The product uses a Pseudo-Random Number Generator (PRNG) in a security context, but
the PRNG is not cryptographically strong.

• CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition
The software checks the state of a resource before using that resource, but the resource’s
state can change between the check and the use in a way that invalidates the results of the
check. This can cause the software to perform invalid actions when the resource is in an
unexpected state.

• CWE-393: Return of Wrong Status Code
A function or operation returns an incorrect return value or status code that does not
indicate an error, but causes the product to modify its behavior based on the incorrect
result.

• CWE-399: Resource Management Errors
Weaknesses in this category are related to improper management of system resources.

• CWE-400: Uncontrolled Resource Consumption (’Resource Exhaustion’)
The software does not properly restrict the size or amount of resources that are requested
or influenced by an actor, which can be used to consume more resources than intended.

• CWE-470: Use of Externally-Controlled Input to Select Classes or Code (’Un-
safe Reflection’)
The application uses external input with reflection to select which classes or code to use,
but it does not sufficiently prevent the input from selecting improper classes or code.

• CWE-787: Out-of-bounds Write
The software writes data past the end, or before the beginning, of the intended buffer.

• CWE-835: Loop with Unreachable Exit Condition (’Infinite Loop’)
The program contains an iteration or loop with an exit condition that cannot be reached,
i.e., an infinite loop.

153

D.9 Predicting an estimation of total vulnerabilities across
repository types between 2019 and 2025

Estimating total vulnerabilities for Official images

Estimated

(total vulnerabilities)
Lower 95% Upper 95%

2019 759 391 1127

2020 855 443 1266

2021 951 499 1402

2022 1047 559 1535

2023 1143 621 1665

2024 1239 685 1793

2025 1335 750 1919

Increase rate: y = 96x

Table D.1: Detailed numbers of unique vulnerabilities estimated for Official repository

Estimating total vulnerabilities for Community images

Estimated

(total vulnerabilities)
Lower 95% Upper 95%

2019 1491 923 2059

2020 1682 1047 2317

2021 1873 1176 2569

2022 2064 1311 2816

2023 2255 1449 3059

2024 2446 1590 3300

2025 2637 1734 3538

Increase rate: y = 191x

Table D.2: Detailed numbers of unique vulnerabilities estimated for Community repository

154

Estimating total vulnerabilities for Verified images

Estimated

(total vulnerabilities)
Lower 95% Upper 95%

2019 891 484 1298

2020 1006 458 1554

2021 1121 461 1781

2022 1236 480 1991

2023 1350 510 2191

2024 1465 548 2383

2025 1580 591 2569

Increase rate: y = 114.85x

Table D.3: Detailed numbers of unique vulnerabilities estimated for Verified repository

Estimating total vulnerabilities for Certified images

Estimated

(total vulnerabilities)
Lower 95% Upper 95%

2019 175 115 234

2020 191 107 275

2021 206 104 311

2022 224 105 343

2023 241 107 374

2024 257 111 403

2025 274 116 432

Increase rate: y = 16.5x

Table D.4: Detailed numbers of unique vulnerabilities estimated for Certified repository

155

Appendix E

Source code

Due to a limitation of number of pages for the entire thesis, this appendix only contains a part of
the source code designed in chapter 4 and implemented in chapter 5 as the Docker vulnerability
AnalyZER (DAZER) software used to conduct experiments. Note that DAZER is an open
source software made publicly available in its entirety via a dedicated Github repository located
at https://github.com/dockalyzer/dazer.

E.1 dockerhub_api.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 This module contains functions interacting with bother version 1 and 2 of Docker Hub's

API.↪→

5

6 """
7

8 import json
9 import logging

10 import os
11 import random
12 import re
13 import requests
14 from DAZER import utils
15 from requests.adapters import HTTPAdapter
16 from urllib3.util import Retry
17

18 dockerhub_api_v1 = "https://hub.docker.com/api/content/v1/"
19 dockerhub_api_v2 = "https://hub.docker.com/v2/"
20 headers = {
21 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML,

like Gecko) '↪→

156

https://github.com/dockalyzer/dazer

22 'Chrome/39.0.2171.95 Safari/537.36'}
23 # -- Retrying the request three times before an exception raises
24 session = requests.Session()
25 retries = Retry(connect=3, backoff_factor=30)
26 adapter = HTTPAdapter(max_retries=retries)
27 session.mount('http://', adapter)
28 session.mount('https://', adapter)
29

30

31 def search_query_v1(query):
32 """
33 Interrogates the version 1 of Docker Hub's search API with the passed query.
34

35

36 Args:
37 query (string): the query to be searched for
38

39

40 Returns:
41 dict: the query's result in Json format when successful (note: may

be empty), None otherwise↪→

42

43 """
44 query_result = None
45 search_api = dockerhub_api_v1 + "products/search?q="
46 request = search_api + query # -- e.g. certification_status=certified&page_size=1"
47 response = requests.get(request, headers=headers)
48

49 if response.ok:
50 query_result = response.json()
51

52 if not query_result.get("summaries"):
53 logging.warning("Empty result from Docker Hub's search API version 1")
54 else:
55 logging.error("Request to Docker Hub's search API version 1 failed (change in the

API?)")↪→

56

57 return query_result
58

59

60 def get_repository_query_v1(repository, is_insecure=False):
61 """
62 Retrieves the passed repository using Docker Hub's image API version 1.
63

64

65 Note 1: The images retrieved using version 1 of Docker Hub's image API contains a
lot more details than the↪→

66 ones retrieved using version 2.
67

68 Note 2: The version 1 of Docker Hub's image API is NOT able to retrieve
'community' images (only 'official',↪→

157

69 'certified' and 'verified').
70

71 Note 3: For special purposes, this function may be called in a manner that is
insecure by omitting the logging↪→

72 of unexpected events.
73

74

75 Args: repository (string): the repository to be retrieved (note:
the API id of the repository to be↪→

76 retrieved is also accepted - e.g. 3567eb02-06cf-48e2-978f-cbd86cc3e61d)
is_insecure (bool): whether the↪→

77 function should log unexpected events
78

79

80 Return:
81 dict: the query's result in Json format when successful (note: may

be empty), None otherwise↪→

82

83 """
84 query_result = None
85 image_api = dockerhub_api_v1 + "products/images/"
86 request = image_api + repository
87 response = requests.get(request, headers=headers)
88

89 try:
90 session.get(request)
91

92 if response.ok:
93 query_result = response.json()
94

95 if "message" in query_result:
96 logging.warning(repository + " got empty result from Docker Hub's

image API version 1")↪→

97

98 elif not is_insecure:
99 logging.error("Request to Docker Hub's image API version 1 failed (change

in the API?)")↪→

100

101 except requests.exceptions.ConnectionError:
102 logging.exception("Error for request: " + request)
103

104 return query_result
105

106

107 def search_query_v2(query):
108 """
109 Interrogates the version 2 of Docker Hub's search API with the passed query.
110

111

112 Args:
113 query (string): the query to be searched for

158

114

115

116 Returns:
117 dict: the query's result in Json format when successful (note: may

be empty), None otherwise↪→

118

119 """
120 query_result = None
121 search_api = dockerhub_api_v2 + "search/repositories/?query="
122 request = search_api + query # -- e.g. library&is_official=true&page=1"
123 response = requests.get(request, headers=headers)
124

125 try:
126 session.get(request)
127 if response.ok:
128 query_result = response.json()
129

130 if not query_result.get("results"):
131 logging.warning("Empty result from Docker Hub's search API

version 2")↪→

132 else:
133 logging.error("Request to Docker Hub's search API version 2 failed

(change in the API?)")↪→

134

135 except requests.exceptions.ConnectionError:
136 logging.exception("Error for request: " + request)
137

138 return query_result
139

140

141 def get_repository_query_v2(repository, is_insecure=False):
142 """
143 Retrieves the passed repository using Docker Hub's image API version 2.
144

145

146 Note 1: The images retrieved using version 2 of Docker Hub's image API contain
less details than the ones↪→

147 retrieved using version 1.
148

149 Note 2: The version 2 of Docker Hub's image API is NOT able to retrieve
'certified' and 'verified' images (↪→

150 only 'official' and 'community').
151

152

153 Args: repository (string): the repository to be retrieved (note:
the API id of the repository to be↪→

154 retrieved is also accepted - e.g. 3567eb02-06cf-48e2-978f-cbd86cc3e61d)
is_insecure (bool): whether the↪→

155 function should log unexpected events
156

157

159

158 Return:
159 dict: the query's result in Json format when successful (note: may

be empty), None otherwise↪→

160

161 """
162 query_result = None
163 image_api = dockerhub_api_v2 + "repositories/"
164 request = image_api + repository
165 response = requests.get(request, headers=headers)
166

167 try:
168 session.get(request)
169

170 if response.ok:
171 query_result = response.json()
172

173 if "detail" in query_result:
174 logging.warning(repository + " got empty result from Docker Hub's

image API version 2")↪→

175

176 elif not is_insecure:
177 logging.error("Request to Docker Hub's image API version 2 failed (change

in the API?)")↪→

178

179 except requests.exceptions.ConnectionError:
180 logging.exception("Error for request: " + request)
181

182 return query_result
183

184

185 def get_repository_tags_query_v2(repository):
186 """
187 Retrieves all the available tags for the passed repository using Docker Hub's

tags API.↪→

188

189

190 Args:
191 repository (string): the repository to be retrieved for

tags↪→

192

193

194 Returns:
195 list: a list of retrieved tags for the passed repository
196

197 """
198 tags = []
199 tags_api = dockerhub_api_v2 + "repositories/"
200 request = tags_api + repository + "/tags/?page_size=1"
201 response = requests.get(request, headers=headers)
202

203 try:

160

204 session.get(request)
205

206 if response.ok and not response.json().get("detail"):
207 total_images = response.json().get("count") # -- the total number of

images to be fetched↪→

208 fetching_size = 50 # -- the number of json objects to fetch per request
209 total_pages = total_images // fetching_size + 1 \
210 if total_images % fetching_size > 0 else total_images //

fetching_size↪→

211 # -- the total number of pages to request for complete retrieval
212

213 for page in range(1, total_pages + 1):
214 # -- Retrieving one page
215 request = tags_api + repository + "/tags/?page_size=" +

str(fetching_size) + "&page=" + str(page)↪→

216 response = requests.get(request, headers=headers)
217

218 if response.ok and response.json().get("results"):
219 images = response.json().get("results")
220

221 for image in images:
222 tags.append(image.get("name"))
223 else:
224 logging.warning(repository + " got empty result from

Docker Hub's tags API")↪→

225 logging.warning("Sent request: " + request)
226 else:
227 logging.error("Request to Docker Hub's tags API failed (change in the

API?)")↪→

228

229 except requests.exceptions.ConnectionError:
230 logging.exception("Error for request: " + request)
231

232 return tags
233

234

235 def get_repository_tag_query_v2(repository, tag):
236 """
237 Retrieves the passed tag object for the passed repository using Docker Hub's tags

API.↪→

238

239

240 Args:
241 repository (string): the repository to retrieve the passed

tag for↪→

242 tag (string): the tag to retrieve
243

244

245 Returns:
246 dict: a dictionary representing the retrieved tag object
247

161

248 """
249 tag_json = ""
250 tags_api = dockerhub_api_v2 + "repositories/"
251 request = tags_api + repository + "/tags/" + tag
252 response = requests.get(request, headers=headers)
253

254 try:
255 session.get(request)
256 if response.ok and not response.json().get("detail"):
257 tag_json = response.json()
258 else:
259 logging.error("Request to Docker Hub's tags API failed (change in the

API?)")↪→

260

261 except requests.exceptions.ConnectionError:
262 logging.exception("Error for request: " + request)
263

264 return tag_json
265

266

267 def has_repository_tag_query_v2(repository, tag):
268 """
269 Verifies whether the passed repository has a the passed tag using Docker Hub's

tags API.↪→

270

271

272 Args:
273 repository (string): the repository to be retrieved for the

passed tag↪→

274 tag (string): the tag to be verified for
existence↪→

275

276

277 Returns:
278 bool: True if the passed repository has the passed tag, False otherwise
279

280 """
281 has_latest_tag = False
282

283 tags_api = dockerhub_api_v2 + "repositories/" + repository + "/tags/"
284 request = tags_api + tag
285 response = requests.get(request, headers=headers)
286

287 try:
288 session.get(request)
289

290 if response.ok:
291 has_latest_tag = True
292

293 except requests.exceptions.ConnectionError:
294 logging.exception("Error for request: " + request)

162

295

296 return has_latest_tag
297

298

299 def get_repository_type(repository):
300 """
301 Retrieves the type of the passed repository as being of of the following types: official,

certified, verified,↪→

302 community.
303

304

305 Args:
306 repository (string): the repository to be retrieved
307

308

309 Returns:
310 string: the type of the passed repository if successful,

an empty string otherwise↪→

311

312 """
313 image_type = ""
314 image = get_repository_query_v1(repository, is_insecure=True)
315

316 if image:
317 default_plan = image.get("plans")[0]
318 namespace = default_plan.get("repositories")[0].get("namespace")
319

320 if namespace == "library":
321 image_type = "official"
322

323 elif namespace == "store":
324 certification_status = default_plan.get("certification_status")
325 image_type = "certified" if certification_status == "certified" else

"verified"↪→

326

327 else:
328 repository = get_repository_query_v2(repository, is_insecure=True)
329

330 if repository is not None and "namespace" in repository:
331 image_type = "community"
332

333 return image_type
334

335

336 def get_latest_versioned_tag(repository):
337 """
338 Retrieves the most recent versioned tag (last pushed) of the passed repository.
339

340

341 Note:
342 A versioned tag may have different formats such as:

163

343 - 1
344 - 1.2
345 - 1.2.3
346 - v1.2.3
347 - 1.2.3-alpine
348 - v1.2.3-alpine
349

350

351 Args:
352 repository (string): the repository to be retrieved for its

most recent versioned tag↪→

353

354

355 Returns:
356 string: the most recent versioned tag of the passed

repository↪→

357

358 """
359 tag = ""
360 tags = get_repository_tags_query_v2(repository)
361

362 if len(tags) != 0:
363 tag = tags[0]
364

365 return tag
366

367

368 def get_official_images():
369 """
370 Retrieves the name, latest tag and slug name of all the official images available

on Docker Hub.↪→

371

372

373 Note 1:
374 The retrieval is executed iteratively by fetching 50 Json objects (i.e.

images) per request.↪→

375

376

377 Note 2:
378 Official repositories are located in the '/library' namespace.
379

380

381 Returns:
382 list: a list of dictionaries with the retrieved information
383

384 """
385 images = []
386 excluded_repositories = ["scratch", "rocket.chat"] # -- repositories which are indexed

by the Docker Hub API but↪→

387 # do not contain real images
388

164

389 query = "library&is_official=true&page_size=1"
390 result = search_query_v2(query)
391

392 if result is not None and result.get("results"):
393 total_images = result.get("count") # -- the total number of images to be

fetched↪→

394 fetching_size = 50 # -- the number of json objects to fetch per request
395 total_pages = total_images // fetching_size + 1 \
396 if total_images % fetching_size > 0 else total_images // fetching_size
397 # -- the total number of pages to request for complete retrieval
398

399 for page in range(1, total_pages + 1):
400 # -- Retrieving one page
401 query = "library&is_official=true&page_size=" + str(fetching_size) +

"&page=" + str(page)↪→

402 result = search_query_v2(query)
403

404 if result and result.get("results"):
405 for image in result.get("results"):
406 repository = str(image.get("repo_name"))
407 tag = ""
408

409 if repository not in excluded_repositories:
410 # -- Retrieving the necessary information for

each of the repository on the current page↪→

411 tag = get_latest_versioned_tag("library/" +
repository)↪→

412

413 if tag:
414 images.append({
415 "name": repository,
416 "tag": tag,
417 })
418 else:
419 logging.info("%s - Image retrieval

skipped (missing tag)", repository)↪→

420 return images
421

422

423 def get_certified_images():
424 """
425 Retrieves the name, latest tag and slug name of all the certified images

available on Docker Hub.↪→

426

427

428 Note 1:
429 The retrieval is executed iteratively by fetching 50 Json objects (i.e.

images) per request.↪→

430

431

432 Note 2: Certified repositories are located in the '/store/<username>' namespace
and use unpredictable tags (↪→

165

433 e.g. '/store/ibmcorp/websphere-liberty:microProfile2')
434

435

436 Returns:
437 list: a list of dictionaries with the retrieved information
438

439 """
440 images = [] # -- the list of dictionaries containing all the certified images' names,

tags and slug names↪→

441 query = "&type=image&certification_status=certified&page_size=1"
442 result = search_query_v1(query)
443

444 if not result.get("message") and result.get("summaries"):
445 total_images = result.get("count") # -- the total number of images to be

fetched↪→

446 fetching_size = 50 # -- the number of json objects to fetch per request
447 total_pages = total_images // fetching_size + 1 \
448 if total_images % fetching_size > 0 else total_images // fetching_size
449 # -- the total number of pages to request for complete retrieval
450

451 for page in range(1, total_pages + 1):
452 # -- Retrieving one page
453 query = "&type=image&certification_status=certified&page_size=" +

str(fetching_size) + "&page=" + str(page)↪→

454 result = search_query_v1(query)
455

456 if result is not None and result.get("summaries"):
457 for image in result.get("summaries"):
458 # -- Retrieving name and tag
459 image_name = image.get("slug")
460 name = ""
461 tag = ""
462 result = get_repository_query_v1(image_name)
463

464 if not result.get("message"):
465 # -- Determining the retrieving method
466 if re.search("microsoft", image_name):
467 # -- Microsoft specific retrieval
468 description =

result.get("full_description")↪→

469 name = re.search("docker pull
([.\/\w-]+)", description)↪→

470 # -- e.g. 'docker pull
mcr.microsoft.com/oryx/nodejs' or↪→

471 # 'docker pull microsoft-mssql-tools'
472

473 if not name:
474 logging.info(
475 "Repository skipped ('" +

image_name + "' does
not contain images
or explicit pulling
instructions)")

↪→

↪→

↪→

↪→

166

476 continue
477

478 name = name.group(1)
479 tag = re.search("docker

pull.*?:([.\w\d:-]+)",
description).group(1) if re.search(

↪→

↪→

480 "docker pull.*?:([.\w\d:-]+)",
description) else "latest"
-- e.g. '3.2.1', 'v3'

↪→

↪→

481 else:
482 # -- Normal retrieval
483 default_plan = result.get("plans")[0]
484 repository =

default_plan.get("repositories")[0]↪→

485 version = default_plan.get("versions")[0]
486 name = repository.get("namespace") + "/"

+ repository.get("reponame")↪→

487 tag = version.get("tags")[0].get("value")
if version.get("tags")[0].get(↪→

488 "value") else "latest"
489

490 images.append({
491 "name": name,
492 "tag": tag,
493 "slug_name": image_name
494 })
495 return images
496

497

498 def get_verified_images():
499 """
500 Retrieves the name, latest tag and slug name of all the verified images available

on Docker Hub.↪→

501

502

503 Note 1:
504 The retrieval is executed iteratively by fetching 50 Json objects (i.e.

images) per request.↪→

505

506

507 Note 2: Verified repositories which are non-Microsoft are located in the
'/store/<username>' namespace and use↪→

508 unpredictable tags (e.g. 'store/saplabs/hanaexpressxsa:2.00.033.00.20180925.2').
Microsoft repositories use a↪→

509 complete different namespace scheme proper to them and tend to use the 'latest'
tag for all of their images.↪→

510

511

512 Note 3: Certain Microsoft repositories are listed out with different names on
Docker Hub, but are actually the↪→

513 same as they use the same docker pull command (e.g. the 'Oryx node-x.y'
repositories)↪→

167

514

515

516 Returns:
517 list: a list of dictionaries with the retrieved information
518

519 """
520 images = []
521 query = "&type=image&image_filter=store&page_size=1"
522 result = search_query_v1(query)
523

524 if result is not None and result.get("summaries"):
525 total_images = result.get("count") # -- the total number of images to be

fetched↪→

526 fetching_size = 50 # -- the number of json objects to fetch per request
527 total_pages = total_images // fetching_size + 1 \
528 if total_images % fetching_size > 0 else total_images // fetching_size
529 # -- the total number of pages to request for complete retrieval
530

531 for page in range(1, total_pages + 1):
532 # -- Retrieving one page
533 query = "&type=image&image_filter=store&page_size=" + str(fetching_size)

+ "&page=" + str(↪→

534 page) # -- returns both Official and Verified images
535 result = search_query_v1(query)
536

537 if result is not None and result.get("summaries"):
538 for image in result.get("summaries"):
539 # -- Verifying that the image is of type Verified
540 image_name = image.get("slug")
541 image_type = get_repository_type(image_name)
542

543 if image_type is "verified": # or image_type is
"certified":↪→

544 # -- Retrieving name and tag
545 result = get_repository_query_v1(image_name)
546 name = ""
547 tag = ""
548

549 if not result.get("message"):
550 # -- Determining the retrieving method
551 if re.search("microsoft", image_name):
552 # -- Microsoft specific

retrieval↪→

553 description =
result.get("full_description")↪→

554 name = re.search("docker pull
([.\/\w-]+)", description)↪→

555 # -- e.g. 'docker pull
mcr.microsoft.com/oryx/nodejs'
or 'docker pull
microsoft-mssql-tools'

↪→

↪→

↪→

168

556

557 if not name:
558 logging.info(
559 "Repository

skipped ('"
+ image_name

↪→

↪→

560 + "' does not
contain
images or
explicit
pulling
instructions)")

↪→

↪→

↪→

↪→

↪→

561 continue
562

563 name = name.group(1)
564 tag = re.search("docker

pull.*?:([.\w\d:-]+)",
description).group(1) if
re.search(

↪→

↪→

↪→

565 "docker
pull.*?:([.\w\d:-]+)",
description) else
"latest" # -- e.g.
'3.2.1', 'v3'

↪→

↪→

↪→

↪→

566

567 # -- Filtering out a potential
duplicate repository↪→

568 is_retrieved = False
569

570 for image in images:
571 if name ==

image.get("name"):↪→

572 is_retrieved =
True↪→

573 break
574

575 if is_retrieved:
576 continue
577

578 else:
579 # -- Normal retrieval
580 default_plan =

result.get("plans")[0]↪→

581 repository =
default_plan.get("repositories")[0]↪→

582 version =
default_plan.get("versions")[0]↪→

583 name =
repository.get("namespace")
+ "/" +
repository.get("reponame")

↪→

↪→

↪→

169

584 tag =
version.get("tags")[0].get("value")
if
version.get("tags")[0].get(

↪→

↪→

↪→

585 "value") else "latest"
586

587 images.append({
588 "name": name,
589 "tag": tag,
590 "slug_name": image_name
591 })
592 return images
593

594

595 def get_community_images(x_images):
596 """
597 Retrieves the name and latest tag of the passed number of community images among the most

popular ones available↪→

598 on Docker Hub.
599

600

601 Note 1:
602 The retrieval is executed iteratively by fetching 50 Json objects

(i.e. images) per request.↪→

603

604

605 Note 2:
606 Community repositories are located in the '<username>' namespace

(e.g. '/pivotalcf/pivnet-resource:latest')↪→

607

608

609 Note 3: The returned images are chosen randomly between the passed number
of images times 3 for increasing↪→

610 randomness across multiple calls to this function.
611

612

613 Args:
614 x_images (int): the base number of images to be retrieved
615

616

617 Returns: tuple: two lists of dictionaries with the retrieved
information (one with the first passed number↪→

618 of retrieved images, another one with the rest of the retrieval)
619

620 """
621 images = []
622 query = "%2B&is_official=false&ordering=-pull_count&page_size=1"
623 result = search_query_v2(query)
624 excluded = ["bugswarm/artifacts", "microsoft/oms", "programmerq/scaletest",

"newrelic/nrsysmond",↪→

625 "weaveworks/weave-npc"]

170

626

627 if result is not None and result.get("results"):
628 total_images = x_images * 3 # -- the total number of images to analyze, original

value times three↪→

629 fetching_size = 50 # -- the number of json objects to fetch per request
630 total_pages = total_images // fetching_size + 1 \
631 if total_images % fetching_size > 0 else total_images // fetching_size
632 # -- the total number of pages to request for complete retrieval
633

634 counter = 0 # -- counting for every single image that are being analyzed
635 for page in range(1, total_pages + 1):
636 # -- Retrieving one page
637 query = "%2B&is_official=false&ordering=-pull_count&page_size=" +

str(fetching_size) + "&page=" + str(page)↪→

638 result = search_query_v2(query)
639

640 if result is not None and result.get("results"):
641 for image in result.get("results"):
642 if counter < total_images:
643 repository = str(image.get("repo_name"))
644 tag = get_latest_versioned_tag(repository)
645 if repository not in excluded:
646 if tag:
647 images.append({
648 "name": repository,
649 "tag": tag
650 })
651

652 else:
653 logging.info("%s - Image

retrieval skipped (missing
tag)", repository)

↪→

↪→

654 counter -= 1
655 else:
656 logging.info("%s - repository skipped due

to DNS resolve problems",
repository)

↪→

↪→

657 counter -= 1
658 else:
659 break
660

661 counter += 1
662

663 random.shuffle(images)
664 requested = images[:x_images]
665 remaining = images[x_images:]
666

667 return requested, remaining
668

669

670 def get_image_extrainfo(image_name):

171

671 """
672 Retrieves and parses extra information (type and total pulled) for the image with the

passed name using Docker↪→

673 Hub's repository API.
674

675

676 Note 1: Images of type 'community' cannot be retrieved using the version 1 of
Docker Hub's API and are↪→

677 therefore retrieved via version 2. Other image types ('certified', 'verified',
'official') are retrieved using↪→

678 version 1.
679

680

681 Note 2: The passed image name must be a slug name or a Hub ID for certified and
verified images, as version of↪→

682 the Docker Hub only understands slug names and image ids.
683

684

685 Args:
686 image_name (string): the name of the image to be retrieved

and parsed for extra information↪→

687

688

689 Return:
690 dict: a dictionary containing the parsed information from

retrieved image↪→

691

692 """
693 repository_type = get_repository_type(image_name)
694 total_pulled = 0
695

696 if repository_type != "community":
697 # -- Using version 1 of Docker Hub's repository API
698 result = get_repository_query_v1(image_name)
699

700 if result:
701 total_pulled = result.get("popularity")
702

703 else:
704 # -- Using version 2 of Docker Hub's repository API
705 result = get_repository_query_v2(image_name)
706

707 if result:
708 total_pulled = result.get("pull_count")
709

710 return {
711 "type": repository_type,
712 "total_pulled": total_pulled
713 }
714

715

172

716 def get_image_parent(repository, image_layers, db_type):
717 """
718 Retrieves the tagged parent of the image with the passed layers, belonging to the passed

repository from the↪→

719 passed type of parent database.
720

721

722 Args:
723 repository (string): the name of the repository

that the image to retrieve the parent for belongs to↪→

724 image_layers (string): the complete layer combination of
the image to retrieve the parent for↪→

725 db_type (string): the type of parent
database to retrieve from ('official' and 'verified')↪→

726

727

728 Returns:
729 dict: the parent repository name and tag of the image with

the passed layers or an empty dict if no parent is found↪→

730

731

732 Raises:
733 IOError: on database file reading failure
734

735 """
736 parent = dict()
737 image_id_length = 12 # -- the length of a single fs layer id (e.g. 6ae821421a7d)
738 image_ids = [image_layers[id:id + image_id_length] for id in range(0, len(image_layers),

image_id_length)]↪→

739 # -- splitting image_layers into a list of single layer ids with a length of
image_id_length↪→

740 home = os.path.dirname(os.path.realpath(__file__))
741 base_dir = os.path.join(home, "json/parent_db")
742

743 if db_type == "official":
744 parent_files = [os.path.join(base_dir, resource) for resource in

os.listdir(base_dir) if↪→

745 re.search("(official)", resource)]
746

747 elif db_type == "verified":
748 parent_files = [os.path.join(base_dir, resource) for resource in

os.listdir(base_dir) if↪→

749 re.search("(verified)", resource)]
750

751 else:
752 return ""
753

754 parent_file = utils.get_most_recent_file(parent_files)
755 # -- the file containing all the unique layers for all the images in the repositories of

the passed type↪→

756

173

757 try:
758 with open(parent_file, "r") as file:
759 base_db = json.loads(file.readline())
760

761 repositories = list(base_db.keys())
762 index = repositories.index(repository)
763 repositories = repositories[:repositories.index(repository)] +

repositories[repositories.index(↪→

764 repository) + 1:] # -- all the repositories apart from the passed one
765

766 except IOError:
767 raise
768

769 except:
770 pass
771

772 current_layers = ""
773

774 # -- Retrieving parent
775 for image_id in image_ids:
776 current_layers = current_layers + image_id
777

778 for repo in repositories:
779 for image in base_db[repo]:
780 if current_layers == image.get("fs_layers"):
781 # -- The repository is a parent
782 parent = {
783 "name": repo,
784 "tag": image.get("image_tag")
785 }
786

787 # -- Continuing, as the image's closest parent is among the lower layers
788 return parent

174

	Cover page
	Title page
	Abstract
	Acknowledgements
	Preface
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Problem statement
	Thesis outline

	Background and literature
	Software vulnerabilities
	What is a software vulnerability?
	Enumerating vulnerabilities
	Classifying vulnerabilities
	Severity levels

	Software containers
	What is a software container?
	Container vs. Virtual Machine (VM)?

	Docker
	What is Docker?
	What is a Docker container?
	How are Docker images distributed?
	Docker's architecture

	The Docker engine
	What is the Docker engine?
	Managing images

	Docker Hub
	What is Docker Hub?
	Repository types
	Repository naming convention
	Docker image reusability
	Docker image dependencies
	Have you said API?

	Docker Hub's security landscape
	Current knowledge
	Docker Inc.'s response

	Methodology
	Objectives
	Design
	Data set definition
	Preliminary requirements
	Overview
	Result data format definition
	Detailed research questions definition

	Implementation
	Tools and technologies
	Architecture
	Intended workflow
	Research queries definition

	Measurements and analysis
	Expected results

	Result 1: Design
	Data set
	Defined data set
	Skipped repositories

	Preliminary requirements
	Two parent databases
	Manual image checkout

	Overview
	Designed result data format
	Detailed research questions

	Result 2: Implementation
	Tools and technologies
	Retrieving data
	The Docker Hub API: version 1
	The Docker Hub API: version 2
	CIRCL's CVE API
	The MicroBadger API
	The Red Hat security data API
	Enterprise Linux Security Advisory

	Implemented architecture
	Implemented workflow
	Getting ready for analysis
	Importing result data to MongoDB
	Research queries

	Result 3: Measurements
	Describing the results
	RQ3: Vulnerability distribution across repository types
	Quantitative vulnerability distribution
	Severity distribution
	Vulnerable image distribution
	Potential correlations

	RQ2: Vulnerabilities and inheritance
	RQ1: Certified and Verified vs. Official and Community repositories
	Additional research question
	Summary

	Analysis
	Vulnerability distributions and predictions
	General interpretation
	Interpreting box plots
	Interpreting density plots
	Analyzing potential quantitative vulnerability correlations between dependent repository types
	Predicting quantitative software vulnerabilities by 2025

	Parental relationships and vulnerability inheritance
	Modelling parental and vulnerability relationships in a network
	Analyzing egocentric networks

	Discussion
	Validity of the study
	Analyzed set of Docker images
	Applied methodology
	Software vulnerability identification
	Unidentifiable parent images
	Discovered vulnerabilities and exploitability

	Encountered challenges
	Retrieving data from Docker Hub
	Manual image checkout
	Overwhelming the Docker engine
	Image parent retrieval
	Confusing terminology

	Future work

	Conclusion
	References
	Excluded repositories
	Paid repositories
	Manifest not found error
	No matching manifest or incompatible platform error
	Pull access denied error
	Manual checkout of repositories (kept)
	Summary

	Scripts
	Installing the required tools for the VMs
	Setup of the environment
	Requirements for *.nix
	Requirements for Windows
	Prerequisite
	Getting Started

	Research queries
	MongoDB queries
	Miscellaneous MongoDB queries

	Result data
	Top ten most vulnerable repositories across image types
	Top ten most pulled repositories across image types
	Top ten last updated repositories across image types
	All base repositories across image types - sorted by popularity
	Top ten most vulnerable base repositories across image types
	Top ten most used parent images across image types
	Top ten most used parent images across all repository types

	Top ten most vulnerable packages
	Across all repository types
	Across the most popular parents

	CWE vulnerability categories
	Predicting an estimation of total vulnerabilities across repository types between 2019 and 2025

	Source code
	dockerhub_api.py

