Noun—Noun Compound Analysis:
A Holistic Perspective

Murhaf Fares

Department of Informatics
Faculty of Mathematics and Natural Sciences
University of Oslo

Thesis submitted for the degree of Philosophise Doctor
2019

© Murhaf Fares, 2019

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2159

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

Lax® 1LY o 2VE g O
R

U Sasall 79 A1 a0 a2l &
NI d3es

Kanskje du spgr i angst,
udekket, apen:

hva skal jeg kjempe med,
hva er mitt vapen?

— Nordahl Grieg

Acknowledgments

First and foremost, I am thankful to my supervisors, Stephan Oepen and
Erik Velldal. Your genuine interest in my work has never faded throughout
the years, even when we had to stare at too many numbers trying to discover
some patterns or discuss which ARG is the ‘right’ one for a given noun—noun
compound. It is safe to say that you provided me with the essential scientific
and methodological tools—including hedges—to carry out my research. You
respected my opinion and decisions at different important crossroads; from
experimental design to—well—typographical considerations. For all of the
above, I consider myself fortunate to have you as supervisors.

I am thankful to Martha Palmer, and the NLP Group at CU Boulder, for
hosting me in the first half of 2017 and many fruitful discussions on semantic
representation frameworks and neural networks.

Many friends and colleagues, perhaps unknowingly, have contributed to
making life in the dark days—literally and figuratively—brighter. To the
best friend in writing and otherwise, Emanuele Lapponi, thank you for many
consoling (and writing) sessions; you have been a true friend since my first day
at IFI. To the current and former members of the Language Technology Group,
Andrei, Arne, Eivind, Elisabeth, Farhad, Jan Tore, Jeremy, Lilja, Samia and
Vinit, thank you for the feedback and support on different occasions and
for creating a friendly work environment. To the ESC10 group, our coffee
breaks made it easier to get through the day, even though I was not the most
‘devout’ espresso drinker. To the SPACE team, believe it or not, our work
together somehow made me more determinant to finish my PhD and kept me
sane throughout those years.

To my parents, Maha and Mahmoud, if I manage to make you proud,
know that this would have never been possible without your limitless trust
and support. I am privileged to have loving parents who worked hard to pave
the way for me and be where I am today. To my wonderful brothers, Anas
and Munes, you continue to surround me with love and care even from across
the ocean.

il

Zeina, ... rj,a_d‘ GAL

iv

Contents

1 Introduction 1
1.1 Motivation and Overview 3
1.2 Contributions 6

1.2.1 Limitations 8
1.3 Thesis Outline 9

2 Noun—Noun Compounds in Linguistics and NLP 13

2.1 Defining Noun—Noun Compounds 14
2.1.1 A Multitude of Studies and Names 14
2.1.2 Finite vs. Infinite 15
2.1.3 Deictic, Novel and Established Compounds 17
2.1.4 Endocentric vs. Exocentric 18
2.1.5 Nominalizations vs. Root Nominals 19
2.1.6 Theoretical vs. Computational 20
2.1.7 A Preliminary Definition 22

2.2 Noun—Noun Compound Analysis 22
2.2.1 Identification 23
2.2.2 Bracketing oo 24
2.2.3 Constituent Sense Disambiguation. 25
2.2.4 Interpretationo 26
2.2.5 Compositionality 27

2.3 A Selection of Studies: Literature Review 28
2.3.1 Lauer (1995) 28
2.3.2 Girjuetal (2005). 29
2.3.3 Kim and Baldwin (2013) 30
2.3.4 O Séaghdha and Copestake (2013) 32
2.3.5 Tratz and Hovy (2010) 34
2.3.6 Shwartz and Waterson (2018) 35

2.4 Conclusion

Annotation of Noun—Noun Compounds and Beyond

3.1 Introduction

3.2 Compound-Specific Datasets
3.2.1 O Séaghdha and Copestake (2007)
3.2.2 Kim and Baldwin (2008)
3.2.3 Tratz and Hovy (2010)

3.3 Contrastive Analysis

3.4 Linguistic Annotation Frameworks
341 NomBank,
342 PCEDT 20
3.4.3 Other Resources.

3.5 Conclusion

Resource Creation

4.1 Introduction and Motivation

4.2 Overview

4.3 Compound Identification
4.3.1 Motivation and Past Work
4.3.2 Compound Identification Strategies
4.3.3 Syntax-Based Identification
4.3.4 Results and Discussion
4.3.5 Refined Identification Method

4.4 Noun-Noun Compound Bracketing
441 Dataand Results,

4.5 Semantic Relations, .
4.5.1 Data, Results and Reflections
4.5.2 Correspondence between PCEDT and NomBank
4.5.3 Type vs. Token Semantics
4.5.4 Compound Interpretation Dataset

4.6 Conclusion

vi

39
39
41
43
45
47
50
52
53
95
o7
99

5

6

Embeddings and Similarity-Based Classification
5.1 Introduction and Motivation
5.2 Backgroundo
5.2.1 Word Embeddings 0L,
5.3 Word Embedding Models
5.4 Linguistic Regularities in Embeddings
5.5 Vector Arithmetic for Compounds
5.5.1 Experimental Results
5.5.2 K-Nearest Neighbors
5.6 Conclusion

Neural Classification
6.1 Background: Dima and Hinrichs (2015)
6.1.1 Replicating Dima and Hinrichs (2015)
6.2 Neural Classification Experiments
6.3 Effect of Word Embeddings
6.3.1 Text Pre-Processing
6.3.2 Vector Dimensionality and Fine-Tuning
6.3.3 Size of Training Data and Fine-Tuning
6.4 Model Architectureo
6.5 Model Hyperparameters
6.5.1 Sensitivity Analysis
6.5.2 Random Search
6.6 WordNet Features.
6.7 Training Data oo o
6.8 Conclusion Lo

Transfer and Multi-Task Learning

7.1 Introduction and Motivation

7.2 Terminology and Definitions
721 TLwvs. MTL o .
7.2.2 Related Worko

7.3 TL & MTL for Compound Interpretation

7.4 Experimental Setupo
7.4.1 Single-Task Learning Model
7.4.2 Transfer Learning Models
7.4.3 Multi-Task Learning Models

vii

95
96
97
99
101
103
105
107
109
111

113
114
118
121
122
123
126
130
135
140
141
144
148
152
158

7.5 Experimental Results 178

7.5.1 Evaluation on the Development Split 178

7.5.2 Evaluation on the Test Split 183

7.5.3 What Happened to AIM? 191

7.6 Generalization on Unseen Compounds 191
7.7 Performance Stability 195
7.8 Conclusion 197

8 Summary and Concluding Remarks 201
References 209
A Noun Compound Relations 225
A.1 Nastase and Szpakowicz (2003) 225

B NomBank and PCEDT Relations 227
B.1 NomBank Relations. 227
B.2 PCEDT Functors 228

C Model Hyperparameters 231

viil

Chapter 1

Introduction

Noun-noun compound analysis in natural language processing (NLP) is a
compound problem consisting of several tasks that collectively deal with the
syntax and semantics of this linguistic construction. Past work on compound
analysis has typically focused—to varying degrees—on five tasks, namely
compound (1) identification, (2) bracketing, (3) compositionality prediction,
(4) sense disambiguation and (5) interpretation. We will use the following
example paragraph to briefly introduce these tasks, using italics to highlight
compound instances.

The ultimate goal of this thesis is to distinguish between the meaning of snake
oil product, hair product and meat product among other types of noun—noun
compounds. Some of the experiments presented in this thesis make use of
the dot product.

The task of compound identification, simply, refers to identifying noun—
noun compounds in written text or speech. In compound bracketing, the
goal is to analyze the internal syntactic structure of noun—noun compounds.
For example, snake oil product is analyzed as a left-branching compound, i.e.
[[snake oil] product]. The task of compound compositionality prediction seeks
to determine the degree of compositionality through relating the meaning of
the compound as a whole to the meaning of its constituents. For example,
the predominant contemporary use of snake oil product is non-compositional
because its meaning cannot be immediately derived from the individual
meanings of its constituents.! Compound sense disambiguation is concerned
with disambiguating the meaning of polysemous constituents in noun—noun

LA snake oil product is a fraudulent product of little real worth. However, in traditional
Chinese medicine the meaning of snake oil is compositional; i.e. oil extracted from snakes.

compounds. For example, the constituent product in dot product refers to
the mathematical concept of multiplication, but in consumer product it refers
to an article or substance for sale. Compound interpretation is the task of
determining the thematic relations holding between the constituent parts of
noun-noun compounds. In layman’s terms, this task amounts to determining
that meat product is a food product that contains meat whereas hair product
does not contain hair but is used for hair care.

In this thesis, we present a study of English noun—noun compound analysis
that takes a holistic perspective on the problem. The holistic nature of
our work manifests in three respects. First, of the five compound analysis
tasks introduced above, we focus primarily on compound interpretation and
identification, but we also create a resource for compound bracketing and
reflect on (the need for) compound sense disambiguation in our work. Second,
we part company with past NLP studies on compound analysis and resituate
the problem within general-purpose whole-sentence meaning representation
frameworks. Specifically, we introduce a new approach (and a resource) that
derives the semantic interpretation of noun—noun compounds from linguistic
resources that represent the semantics of phrasal or sentential structures,
in contradistinction to the more isolated, compound-centric perspective of
much past work. Third, we empirically determine the utility of distributional
semantic models as well as of neural networks to classify the relations holding
between the compound constituents. Our experimental setup is systemically
varied to account for different properties of the models we use, in isolation
and in combination.

Overall, this thesis stands at the intersection of many of the recent, and
not-so-recent, developments in NLP. In addition to investigating several
properties of word embeddings and neural networks, we also experiment with
transfer and multi-task learning for compound interpretation—two machine
learning techniques that have recently drawn much attention in NLP research.
Further, we use manually annotated, well-established meaning representation
resources to shed new light on noun—noun compounds, and call for critical
reflections on some of the long-held views pertaining to their analysis in NLP.

Before we delve into our theoretical and experimental study of noun-noun
compounds—first things first—in the next few pages, we motivate the subject
matter of this project, highlight some of its main contributions and limitations
and, finally, lay out a road map for the rest of the thesis.

1.1 Motivation and Overview

Frequent, productive and semantically unpredictable; these are three prop-
erties of noun—noun compounds which make them ubiquitous, scientifically
interesting and challenging. Their frequency has been attested, and quan-
tified in numerous studies; for example, O Séaghdha (2008) and Baldwin
and Tanaka (2004) report, respectively, that 3% of the words in the British
National Corpus (Burnard, 2000) and 3.9% of the Reuters Corpus (Rose et
al., 2002) are part of noun—noun compounds. In language production, we
often form new compounds on the spot, among other reasons to fulfill some
informational need such as referencing objects or entities that do not have
lexicalized names. Such an open-ended ability to create new compounds—by
simply combining pairs of nouns—is what makes them productive, and per-
haps semantically unpredictable also. The following are just a few examples
of the compounds (headed by the noun pill) that can be found in the Corpus
of Contemporary American English (COCA; Davies, 2009): abortion pill,
sleeping pill, contraception pill, poison pill, chill pill and horse pill. While
most, if not all, of these compounds are readily interpretable by humans, com-
putational models would require more than just the surface form information
to interpret them and represent the different meanings they convey.?

Noun—noun compounds have been the focus of much work, both in theo-
retical linguistics (Li, 1972; Downing, 1977; Levi, 1978; Warren, 1978; Finin,
1980; inter alios) and natural language processing (Lauer, 1995; Nakov, 2007;
O Séaghdha & Copestake, 2009; Tratz & Hovy, 2010; Kim & Baldwin, 2013;
Dima & Hinrichs, 2015; inter alios). However, despite this extensive liter-
ature on compound analysis (and compound interpretation in particular),
past studies do not come close to agreeing on how compounds ought to be
interpreted (or analyzed more generally). Indeed, it would be no exaggeration
to say that some of the competing views on compound interpretation in
theoretical linguistics vary from claiming that only nine relations are sufficient
to interpret compounds (Levi, 1978) to simply stating that no finite set of
relations is adequate to represent the semantics of noun—noun compounds
(Downing, 1977).

The vast majority of past NLP studies on compound interpretation invent

2In fact, the meaning of some of these compounds might not be as obvious for humans
as well. For example, poison pill refers to a defense strategy against a hostile takeover by
other companies and horse pill is a pill that is too large to swallow.

(or sometimes reuse) what can be described as ‘ad hoc’ taxonomies of relations.
That is not to say that these taxonomies are generally uninformed by linguistic
theory, but they often use very specialized (or overly abstract) relations that
are not easily integrated with other NLP sub-tasks. Furthermore, many of
the past studies tend to start anew and create their own distinct taxonomies
of relations that annotate distinct sets of compounds, which complicates
the comparison between them. Consequently, not only do we observe a
tendency to isolate compound analysis from other NLP tasks, but also limited
cross-fertilization among the compound analysis studies themselves. With
the aforementioned points in mind, in this work, we position compound
analysis within the realm of meaning representation frameworks, unspecific
to compounds, which—we argue—is an approach better suited to integrate
compound analysis into other tasks and facilitate cross-framework comparison,
as will become clearer later in this thesis.

At the heart of our holistic approach to compound analysis is a dataset
that links noun—noun compounds to broader general-purpose meaning repre-
sentation frameworks. To create such a dataset, we first survey the existing
compound datasets as well as some widely used whole-sentence meaning rep-
resentation frameworks in Chapter 3. Then, in Chapter 4, we set out to derive
a new compound dataset from the combination of five resources that annotate
the same text with various types of syntactic and semantic information. The
process of creating the dataset, however, forces us to think about even more
foundational aspects of compound analysis. For example, the first step in
creating a dataset of compounds is to identify them in running text (i.e. the
compound identification task). Past studies rely heavily on an identification
method which inherently leads to identifying false positive examples; i.e. it
identifies the mere occurrence of noun sequences as compounds. Hence, in
Chapter 4, we take a step back and start from the task of compound identi-
fication by proposing a new method to identify compounds using syntactic
structure.

By deriving our dataset from multiple linguistic resources, we effectively
revisit critical questions related to these resources as well as compound
analysis in NLP. For example, we use the dataset itself as a means to reflect
on, and when possible evaluate, ‘cross-framework annotation agreement’
based on multiple, parallel syntactic and semantic annotations of noun—noun
compounds in our dataset. Additionally, we probe the question of whether
the semantics of noun—noun compounds is best approached in a type-based

4

or token-based perspective, which also leads us to reflect on the annotations
of the linguistic resources themselves.

In the second half of this thesis, we put our dataset to use and empir-
ically investigate the utility of relatively recent machine learning models
and techniques (e.g. word embeddings and neural networks) for compound
interpretation. Our ultimate goal is to be able to computationally predict the
semantic relations holding between the compound constituents. In order to
come closer to achieving such a goal, however, we first need to consider—and
ideally understand—the interplay between the machine learning models we
use and compound interpretation (as defined in our dataset, at least). Despite
their success and popularity in much current NLP, word embeddings and
neural networks remain comparatively less explored in the context of com-
pound interpretation in contrast to the more ‘traditional’ machine learning
methods such as support-vector machines (SVMs). Therefore, in Chapters 5,
6 and 7, we systematically study the impact of different properties and
(hyper)parameters of word embeddings and neural networks on compound
interpretation. Owing to the parallel annotation in our dataset (which will
be explained in some detail in the following section), we also experiment
with two machine learning strategies that currently receive a lot of attention
in neural NLP and other fields, namely transfer and multi-task learning.
These two learning strategies are often used to improve a neural model’s
generalization by “leveraging the domain-specific information contained in
the training signals of related tasks” (Caruana, 1997, p. 41).

Research Objectives

Drawing upon an extensive literature review as well as the recent developments
in the field, this doctoral project started with three broad goals in mind. The
first goal was to investigate how noun-noun compounds are analyzed (or
rather, interpreted) in general-purpose meaning representation frameworks.
In other words, we wanted to examine how the semantics of compounds would
be represented if one is to break away from the datasets that somehow isolate
an otherwise integral linguistic construction from whole-sentence semantics.
Second, motivated by the success of distributional semantic models in other
NLP tasks, we intended to assess to what degree such models lend themselves
to predicting the semantics of noun—noun compounds. Among other things,
we were interested in determining the impact of several properties of word

embedding models (when used as input representations to neural networks)
on the compound interpretation problem. Third, being a doctoral project
in NLP, training machine learning models for compound interpretation is
a somewhat obvious goal. Therefore, in light of their widespread use as an
effective ‘tool” for a range of NLP tasks, we set out to evaluate the ability of
neural network models to learn and represent the semantics of noun-noun
compounds.

Over the course of the project, each of these three general objectives,
inevitably, led us to pursue more specific and methodological questions related
to compound analysis as well as the linguistic resources and machine learning
techniques we use.

1.2 Contributions

In the following, we group the contributions of this thesis under different
overarching themes, but several of these at times interact and overlap, of
course.

Back to the Roots: In Chapter2, we conduct a systematic review of
compound analysis in theoretical linguistics and make an attempt at discerning
the (dis)similarities between the computational and theoretical approaches
to compound analysis. Even though our efforts in this avenue remain at
the theoretical level, we believe they can contribute to more systematic,
linguistically-informed compound analysis in NLP. Along similar lines, in
Chapter 3, we present a survey of the existing compound interpretation

2

datasets and closely examine and contrast three datasets, viz. the ones by O
Séaghdha and Copestake (2007), Kim and Baldwin (2008) and Tratz (2011).

Building Bridges: One of the main contributions of this thesis is the
creation of a new noun—noun compound dataset with bracketing and semantic
annotations. We use four resources that annotate (parts of) the Wall Street
Journal (WSJ) text in the Penn Treebank (PTB; Marcus et al., 1993) to derive
the dataset; these four resources are: (1) the internal annotation of noun
phrases in the PTB by Vadas and Curran (2007), (2) DeepBank (Flickinger et
al., 2012), (3) the Prague Czech-English Dependency Treebank 2.0 (PCEDT;
Hajic¢ et al., 2012) and (4) NomBank (Meyers, 2007). The resulting resource

6

can be perceived as a collection of datasets each containing more or less the
same compounds but with annotations from the four resources named above.
More specifically, the dataset contains triple bracketing annotation of the
same set of multi-word compounds based on the annotations of the PCEDT,
DeepBank and noun phrase annotations by Vadas and Curran (2007). In
addition, the compounds are annotated with two types of semantic relations
extracted from PCEDT and NomBank. Such a multi-layered annotation allows
us to instantiate different versions of the dataset to satisfy some criterion, e.g.
in our machine learning experiments on compound interpretation, we focus
on two-word compounds and, hence, we instantiate a version of the dataset
that only contains two-word compounds with dual semantic annotation from
NomBank and PCEDT.

Important as it is, this dataset stands to be more than just a new resource
for compound analysis in NLP. First, through this dataset we make new
connections (or build bridges) across the resources that were used to derive
it. In Chapter 7, for example, we exploit the NomBank relations to learn
the PCEDT relations (and vice versa) in various transfer and multi-task
learning configurations. Second, by drawing upon different resources, we open
the door for contrastive analysis and evaluation of their annotations, both
quantitatively and empirically. In concrete terms, in Chapter 4, not only do
we extract the bracketing of the same set of compounds from three resources,
but we also quantify the ‘cross-resource’ bracketing agreement. As such,
we connect these three resources and enable follow-up work on annotation
consistency. Third, since the semantic relations in our dataset are not limited
to noun—noun compounds, we believe this dataset sows the seeds of integrating
compound analysis with other tasks. For example, the NomBank relations in
the dataset follow the same style as the Proposition Bank (PropBank; Palmer
et al., 2005) and thus it is possible to combine learning problems from both
worlds in a multi-task learning setup, for example.

A Shakeup: By approaching compound analysis through a broader meaning
representation perspective, this thesis deviates from all past NLP studies on
the topic. Apart from that, in Chapter 4, we also bring forward the question
of type-based vs. token-based semantics by showing a few examples from our
dataset that are at odds with the type-based perspective, which has been
a somewhat unquestioned assumption in previous studies. Even though we
end up pursuing a type-based approach, in part for reasons that have to do

with the resources used to create the dataset, we believe that—at the very
least—we succeed in demonstrating a need for further critical reflections on
some of the underlying assumptions regarding compound analysis in NLP.

No Longer Overlooked: To date, the identification of noun—noun com-
pounds has received scant attention in the voluminous NLP literature on
compound analysis. In Chapter 4, we establish why this seemingly simple task
is in fact non-trivial and propose a new syntax-based approach to compound
identification. We demonstrate how our new method addresses some of the
shortcomings of the near-universally used method to compound identification

by Lauer (1995).

Tried and Tested: Throughout Chapters 5, 6 and 7, we systematically
evaluate various properties of word embeddings and neural networks as
well as learning strategies in light of their performance on the compound
interpretation task. The experiments presented in those chapters are aimed
at understanding the interplay between word embeddings, neural networks
and compound interpretation. Hence, we do not just experiment with one
embedding model or two, but design a systematically varied experimental
setup leading to a total of 60 experiments with word embeddings alone in
Chapter 6. By casting such a wide net we are able to empirically determine
which properties of word embeddings impact the performance of our neural
classifier. Likewise, to gauge the effect of neural hyperparameters, we conduct
a sensitivity analysis of our model and complement it with random search
experiments for hyperparameter optimization. In Chapter 7, we present a
comprehensive series of experiments on transfer and multi-task learning for
compound interpretation. To the best of our knowledge, we are the first to
put these learning strategies to use for the task of compound interpretation.
It is important to highlight, however, that the dual annotation in our dataset
plays a central role in facilitating the experiments with transfer and multi-task
learning. Lastly, throughout these empirical parts of the thesis, we take special
care to reflect on the evaluation metrics we use to measure the performance
of our models in view of the relation distribution in our dataset.

1.2.1 Limitations

First, the fact that this work exclusively deals with noun-noun compounds
in the English language poses a major limitation we cannot overlook. While
some methodological aspects might be applicable to other languages, it is not
obvious if we can directly draw parallels with other languages, not least because
compounding is largely a syntactic process in English, but a morphological one
in many other languages such as German or Norwegian. Second, even though
the dataset we create includes bracketing annotations, we do not conduct
any experiments to learn compound bracketing. Third, our experiments on
compound identification rely on the gold-standard syntactic annotation of the
PTB, but to ultimately evaluate the utility of our new method one will need
to apply it on the output of automatic parsing. Fourth, we assume that all
the compounds in our dataset are compositional; i.e. we do not engage with
the compositionality prediction task. This assumption is largely motivated
by the annotation guidelines of the resources we use to derive the dataset,
e.g. Meyers (2007, p. 9) states that “most idioms and idiom-like units are
removed from consideration” in NomBank. Finally, when it comes to the
annotation quality, our dataset is—of course—constrained by the quality
of the original annotations in the resources we use; the compositionality
assumption in NomBank is a case in point.

1.3 Thesis Outline

The thesis is organized in six core chapters, in addition to a concluding
chapter.

Chapter 2: Noun—Noun Compounds in Linguistics and NLP

In this chapter, we take a close look at noun—noun compounds, or complex
nominals somewhat more generally, and establish some of the key terminology
and concepts for the following chapters. We provide a linguistic background
on the definition(s) of complex nominals, linguistic approaches to compound
interpretation and the different types of compounds discussed in theoretical
linguistics. Further, we contrast these theoretical approaches with a selection
of computational approaches to compound analysis and introduce the various
sub-tasks that are often addressed in the context of compound analysis in

NLP. Lastly, we review a selection of recent NLP studies on compound
interpretation.

Chapter 3: Annotation of Noun—Noun Compounds and Beyond

In this chapter, we present a concise survey of the existing taxonomies and
datasets for compound interpretation in NLP, and appraise three of the
publicly available datasets and contrast their annotations on a handful of
compounds. Furthermore, we review several linguistic annotation frame-
works that go beyond just representing the meaning of noun—noun compound
constructions to phrasal and full sentential structures.

Chapter 4: Resource Creation

This chapter describes the process of deriving a new noun—noun compound
dataset from a selection of well-established general-purpose linguistic resources.
First, however, we present a comprehensive study of compound identification
as a prerequisite step towards creating a new compound dataset from annota-
tions over running text. We then define several versions of our dataset that
include syntactic and semantic annotation of compounds and evaluate the
bracketing agreement among the resources we use. Further, we reflect on the
annotations of NomBank and PCEDT and how they relate to each other and
define the dataset we use for the compound interpretation sub-task in the
rest of the thesis.

Chapter 5: Embeddings and Similarity-Based Classification

In this chapter, we give a brief background on distributional semantic models
and detail the motivation behind using embeddings as input representation for
compound interpretation. In addition, we introduce the embeddings models
we train for our experiments as well as the text pre-processing pipeline and
(hyper-)parameters used to train them. We also report baseline results of
vector arithmetic methods to predicting the semantic relations of compounds
using simple similarity-based techniques, such as the k-nearest neighbors
algorithm.

10

Chapter 6: Neural Classification

In this chapter we present a comprehensive series of experiments on using
neural network models to learn the semantic interpretation of noun—noun
compounds. These experiments are geared towards determining which aspects
or properties of word embeddings as well as neural classification models affect
the overall performance on three noun—noun compound datasets, viz. the
Tratz, NomBank and PCEDT datasets. We also experiment with different
neural architectures to gauge the role of the head and modifier nouns in
predicting the compound relations. We conduct a series of experiments on
hyperparameter tuning, mainly to validate our choice of hyperparameters and
quantify their impact on classification accuracy across the three compound
datasets mentioned above. Moreover, we investigate the learning curves of
the neural classification model and quantify the effect of random initialization
on the final performance of the classifier.

Chapter 7: Transfer and Multi-Task Learning for Compound Inter-
pretation

In this chapter, we empirically evaluate the utility of two learning strategies,
transfer and multi-task learning, that can exploit the relationship between
our noun—noun compound datasets. Through a comprehensive series of
experiments and in-depth error analysis, we investigate whether or not transfer
learning (via parameter initialization) and multi-task learning (via parameter
sharing) can help improve the performance of our neural classification models.
Furthermore, we demonstrate how the dual annotation with relations over
the same set of compounds in our dataset can be exploited to improve the
overall performance of a neural classifier on the less frequent, but more
difficult, relations in PCEDT and NomBank. We gauge also the ability of
our neural models to generalize over unseen examples and the influence of
lexical memorization on their performance.

Chapter 8: Summary and Concluding Remarks

In this chapter, we summarize our findings and experimental results and
discuss potential avenues for future work.

11

Chapter 2

Noun—Noun Compounds in
Linguistics and NLP

Although the literature on
this creature is extensive and
intriguing, all evidence
suggests that the beast is
mythical.

—Levi (1978, p. 46)

In this chapter, we try to demystify noun—noun compounds—or the myth-
ical beast per Levi’s words.! We start with a general linguistic background
on the definition(s) of noun—noun compounds and linguistic approaches to
compound interpretation. We also review the different types of noun—noun
compounds (or complex nominals more generally) that are discussed in the-
oretical linguistics and examine if, and how, such distinctions are made in
computational studies. We then, in §2.2, introduce the tasks that are often
addressed in the context of noun—noun compound analysis in natural language
processing. In §2.3, we delve deeper into one of these tasks, namely the
semantic interpretation of noun—noun compounds, and review some of the
recent computational studies on this task.

Levi (1978) wrote those remarks in the context of reviewing linguistic tests of ‘com-
poundhood’, such as stress patterns.

13

2.1 Defining Noun—Noun Compounds

Compounding is a productive and frequent construction in English; it is
productive in the sense of our open-ended ability to form new compounds and
frequent in the sheer number of times this construction is attested in written
and spoken language, e.g. O Séaghdha (2008) reports that 3% of the words
in the British National Corpus (BNC; Burnard, 2000) are part of noun—noun
compounds. From a functional perspective, compounds serve at least two
purposes: first, compounds are used as a means of ‘telegraphic speech’ to
compress syntactic and semantic information in compact forms (Levi, 1978, p.
56-60). To use an example from Li (1972), the noun—noun compound cradle
song roughly packs the sentential structure “a song to lull a child in the cradle
to sleep”. Second, compounds are used as a naming device to refer to entities
that have no name, and in this context Downing (1977, p. 824) aptly states
that “[clompounding thus serves as a back door into the lexicon”.?

It is therefore not surprising that the syntax and semantics of complex
nominals—as a linguistic construction—have received a fair amount of at-
tention and scrutiny in the functional and generative schools of linguistics
(Jespersen, 1949; Li, 1972; Downing, 1977; Levi, 1978; Warren, 1978, inter
alios). In this section, we take a somewhat historical perspective to briefly
review some of the influential linguistic studies that arguably shaped con-
temporary NLP research on noun-noun compounds. Although we will not
pursue many of the notions and distinctions presented in this chapter, we
believe it is instructive to review them—albeit briefly—for more linguistically
informed computational research on noun—noun compounds, if nothing else.

2.1.1 A Multitude of Studies and Names

Despite the extensive attention and interest, there has been little agreement
among the scholars on the definition of noun—noun compounds and how
they ought to be interpreted. These variations are reflected in the fact that
“[t|here are almost as many names for noun compounds and their relatives
as there are linguistic studies of them” (Lauer, 1995, p. 28). These names
include: noun compounds (or compound nouns), nominal compounds (or com-
pound nominals), nominalizations, noun sequences, noun—noun compounds,

2Downing (1977) here refers to the compounds that survive beyond the momentary use
to become established compounds and potentially enter the lexicon, cf. §2.1.3.

14

noun+noun compounds and complex nominals. These different names do not
necessarily assume the same definition of the construction they refer to (cf.
Levi’s definition of complex nominals in §2.1.2). In addition, some of these
names are considered a sub-type of others; specifically, nominalization is a
type of complex nominals in Levi (1978). We will use the term noun-noun
compounds throughout this thesis, except in this chapter where we will use
different terms and definitions depending on the studies we are referring to
or reviewing. In addition, being the broadest term, we will use ‘complex
nominals’ as a catch-all term to describe the collection of phenomena studied
in the works we present in this chapter.

Identifying consistent linguistic tests of ‘compoundhood’ poses a major
source of disagreement. Levi (1978), for example, examines three tests
(viz. fronted stress, permanent vs. fortuitous aspect or bond and semantic
specialization) and demonstrates that they are mutually inconsistent. She even
goes further to say that “there are no clear and consistent criteria according
to which an entity called nominal compounds may be identified” (Levi, 1978,
p. 46). Ryder (1994) also reviews, inter alia, phonological and syntactic
tests of compoundhood, such as syntactic inseparability.> She arrives at a
somewhat similar conclusion that none of the tests “can serve as an absolute
test”. However, Ryder points to the everlasting quest of morphologists to
reliably define what constitutes a word and concludes that “the concept of a
noun-noun compound is viable even if discrete boundaries for the category
are not” (Ryder, 1994, p. 16). Later in this section, we will return to some of
the different types of compounds that are often discussed in these tests.

2.1.2 Finite vs. Infinite

Early linguistic studies of compounds held a wide spectrum of views on the
semantic interpretation of complex nominals. These views vary from assuming
that nine abstract relations are sufficient to interpret complex nominals (Levi,
1978) to suggesting that they simply cannot be interpreted using a finite set
of relations (Downing, 1977).

Levi (1978) studies the syntax and semantics of what she calls “com-
plex nominals” which include three sets of linguistic constructions: noun

3Syntactic inseparability or indivisibility is the inability to insert a word between the
compound’s constituents. In other words, a noun compound can only be modified as a
whole e.g. bad state lawyer vs. *state bad lawyer.

15

compounds (e.g. apple cake), nominalizations (e.g. film producer) and noun
phrases with nonpredicating adjectives (e.g. electrical outlet).* Grounded
in the theories of generative grammar, Levi (1978) seeks to detail the pro-
cess of deriving complex nominals and their productive and idiosyncratic
aspects. She maintains that all complex nominals are derived—from under-
lying phrase structures—by applying one of two transformational syntactic
processes, namely: predicate nominalization and predicate deletion. The
result of the first derivation process is the set of complex nominals whose head
is a nominalized verb such as city planner. The second derivation process
refers to transforming a clause to a complex nominal by deleting one of a
small set of nine “recoverably deletable predicates” (RDPs), viz. CAUSE, HAVE,
MAKE, USE, BE, IN, FOR, FROM and ABOUT.? Levi (1978, p. 6) claims that these
RDPs represent “the only semantic relations which can underline complex
nominals” that are derived by deletion. Levi’s set of RDPs has later formed
the basis for some of the inventory-based approaches to noun—-noun compound
interpretation in NLP, e.g. the work by O Séaghdha and Copestake (2007)
(cf. §2.3 and §3.2.1).

Downing (1977) starts her article by critiquing Levi’s analysis of the
syntax and semantics of complex nominals, among other generative analyses.
Downing (1977) points to the fact that some of Levi’s RDPs are inherently
vague and underspecified, and that Levi chose such predicates to limit the
number of underlying relations and show that compounds are not “boundlessly
idiosyncratic”. As Downing (1977) highlights, Levi derives the analysis of
the compounds headache pills and fertility pills from the same (recoverably
deletable) predicate (or relation) FOR, even though the former are intended
to relieve headache and the latter are used to enhance reproductive fertility.
Geared towards investigating the functional role of noun compounds, Downing
focuses on the creation and interpretation of novel compounds in English.5

4Levi (1978) explains that the term “nonpredicating adjectives” refers to adjectives that
cannot be used in the predicate position as well as adjectives that lead to nonsynonymous
expressions if used in the predicate position in contrast to the prenominal modifier position.
To illustrate the latter feature of nonpredicating adjectives, Levi (1978) gives the example
of “a logical fallacy” # “a fallacy which is logical”.

°Levi (1978) distinguishes between prenominal modifiers that are derived from the
subject of the predicate and those derived from the object of the predicate. If this distinction
is taken into account, the number of RDPs becomes 12.

SDowning (1977) states that she opts for investigating novel compounds, in contrast to
corpus-extracted and varyingly lexicalized compounds, to “avoid entanglement with the
historical process” of lexicalization as well as to focus on the functional role of compounding.

16

However, unlike Levi (1978), Downing (1977) only studies noun compounds
(rather than complex nominals) and adopts the definition by Li (1972, p.
19) that noun compounds are “the simple concatenation of any two or more
nouns functioning as a third nominal.” Downing (1977) conducts a four-
part experiment to discover the potential semantic relations underlying noun
compounds and investigate the use of compounding as a naming device, among
other goals. Pursing the first-mentioned goal, Downing (1977) concludes that
there is “no finite set of compounding relationships™” This conclusion has
subsequently come to influence NLP research on compounds and lead to
the so-called paraphrasing approach to compound interpretation (Nakov,
2007). Interestingly though, Downing (1977) also suggests a list of twelve
relations—the most common relations observed in her experiments—that
any inventory of compound relations should include. Downing (1977, p. 828)
emphasizes that she makes no claim that her list “exhausts the possible
compounding relationships, or that its members adequately reflect the full,
essential, semantic content of the compounds reducible to them.”

Finally, Warren (1978) offers one of the earliest comprehensive and system-
atic descriptive analysis of noun—noun compounds based on a sizable set of
4,557 compound types extracted from an early version of the Brown Corpus
(Francis & Kucera, 1979). Based on an extensive data analysis, Warren (1978)
proposes a four-level hierarchical taxonomy of six major semantic relations
(or participant roles as she calls them) that are subdivided into finer-grained
relations. The six major relations are: Constitute, Possession, Location,
Purpose, Activity-Actor and Resemblance. Warren’s work is noteworthy
for its comprehensiveness and influence on NLP research, e.g. Lauer (1995);
Barker and Szpakowicz (1998); Girju et al. (2005) define relations similar to
Warren’s.

2.1.3 Deictic, Novel and Established Compounds

Y

Ryder (1994) distinguishes between three types of “noun-noun combinations’
to establish what she actually means by noun-noun compounds. These three
groups are: deictic compounds, novel compounds and established compounds.

TOf course, Downing (1977) is not the only scholar to maintain such a position; for
example, Kay and Zimmer (1990, p. 239) state that “the list of interpretations with different
semantic relations holding between the two elements of the compound may be extended
indefinitely to the limits of one’s ingenuity.”

17

Deictic compounds, like other categories of deixis, cannot be interpreted
without contextual information as they are normally created in conversational
settings “to satisfy a fleeting discourse need” (Ryder, 1994, p. 8). Deictic com-
pounds are often excluded from linguistic studies of compound interpretation
because their meaning depends on extra-linguistic information; for example,
Downing (1977) uses the term deictic compounds to describe the subset of
“novel compounds used in conversational situations” which she excludes in
her study. In this context, Downing (1977) introduces the famous example of
deictic compounds, apple-juice seat, which is often cited in NLP studies to
demonstrate the difficulty of interpreting noun-noun compounds.®

Novel compounds, in contrast, are interpretable—to some extent—out of
their original context. However, as Ryder explains, “this requirement still does
not necessarily limit the kinds of relationships that could hold between the
element nouns” (Ryder, 1994, p. 9). Furthermore, novel compounds refer to
potentially more permanent states, in contrast to deictic compounds that are
generally derived from temporary states (e.g. the apple-juice placed in front of
the seat). To illustrate the limited interpretability of novel compounds, Ryder
(1994) explains that the hearer only has access to the predictable meaning of
pencil sharpener (a tool for sharpening pencils), but not its size or shape.

Established compounds are originally novel compounds, but they have
been accepted by the language speakers and become part of their lexicon over
time. This does not imply that all established compounds are idiomatic, but
idiomatic compounds have to be established, otherwise it would be impossible
to interpret them. In fact, Ryder (1994) points out that established compounds
become like words and undergo semantic drift. She gives the example of cod
fish, which is the common name for a fish specie, but according to Ryder cod
fish originally meant “a fish that is like a cod”?

Based on Ryder’s discussion of the three types of noun—noun combinations,
it is plausible to assume that the boundaries between these three groups are not
always clear-cut. As shown above, Downing (1977) treats deictic compounds
as a subtype of novel compounds. Moreover, it is not obvious if, and when,
a novel compound becomes an established one (Warren, 1978, p. 46). In
fact, Spéarck Jones (1983) maintains that lexicalized compounds (a type of

8«[T]he seat in front of which a glass of apple-juice had been placed” (Downing, 1977,
p. 818).

9Cod (or codd) means a bag or pouch in Old English, according to the Oxford English
Dictionary (OED).

18

established compounds) and non-lexcalized (novel) compounds form two ends
of one wide spectrum of novelty vs. lexicalization. Warren (1978, p. 50)
also holds the same view that the distinction between established and novel
compounds is a controversial one.

2.1.4 Endocentric vs. Exocentric

Compounds can be classified—along with other linguistic constructions—as
endocentric and exocentric based on the relation between the compound as
a whole and its constituents (Levi, 1978; Warren, 1978; Ryder, 1994). In
addition to the grammatical implications of such a distinction (cf. Bloomfield,
1984, p. 235-236), exocentric compounds are semantically headless construc-
tions whereas endocentric compounds are headed by one of their constituents.
In other words, an endocentric compound refers to a specific subset of the set
of objects denoted by its head (i.e. a hyponym of its head), but an exocentric
compound, in contrast, is not a hyponym of its head constituent. Idiomatic
compounds are typical examples of exocentric compounds, e.g. soap opera is

neither a subtype of soap nor of opera.'®

2.1.5 Nominalizations vs. Root Nominals

Several linguistic accounts of compound interpretation make yet another
distinction between compounds based on whether or not their head is derived
from a verb (Levi, 1978; Warren, 1978). These two types of compounds are
often referred to as deverbal compounds (headed by nominalizations, e.g.
house rental) and root compounds (headed by non-derived nouns, e.g. bed bug).
Levi (1978) assumes this distinction by defining two derivation processes that
distinguish between derivation by nominalization and derivation by deletion.
Around the same time, Roeper and Siegel (1978) published a study devoted
to the particular root—verbal distinction, relating it to semantic predictability:
“Root compounds are as unpredictable as ordinary words and must therefore
be entered in the atomic lexicon” (Roeper & Siegel, 1978, p. 206). Warren

10Bauer (2011) and Fabb (2017), among others, assume a third type of compounds called
co-headed compounds or coordinative compounds in which the two constituents exhibit
head-like properties, for example sofa bed. Levi (1978, p. 6) also refers to this type of
compounds but as one of three groups of exocentric compounds (that she excludes from
her study).

19

(1978, p. 57), in contrast, excludes “noun-noun compounds in which one noun
is deverbal”.

Deverbal compounds can be further classified into different types of nom-
inals depending on whether or not they inherit the argument structure of
their base verbs, viz. (1) argument-supporting nominals (or complex event
nominals), (2) result nominals and (3) simple event nominals; only the first
type inherits the argument structure of the underlying base verb (Grimshaw,
1990; Iordachioaia et al., 2016). The difference between argument-taking
and result nominals is perhaps best illustrated by contrasting exam (result
nominal) and ezxamination (argument-supporting nominal) in the following
example:

(2.1) The examination of the patients

(2.2) *The exam of the patients

2.1.6 Theoretical vs. Computational

Moving from the theoretical accounts of noun—noun compounds to com-
putational modeling, we ought to ask what does the theory imply for the
computational perspective on compound analysis?

In one of the early computational studies on compound interpretation,
Sparck Jones (1983) writes that for some of the linguistic distinctions and
categorizations to be applicable in computational models, there must be an
explicit characterization of them. Hence, based on this observation, some
of these distinctions seem to make their way to computational studies of
compound analysis while others are either sidestepped or subsumed under one
category. For example, the distinction between deictic, novel and established
compounds can be applied in computational linguistics provided that we have
a method to determine a compound’s membership to one of these three groups.
In the case of computational models that solely rely on corpora of written
text, one can arguably assume that deictic compounds are much less likely to
occur, which leaves us with two types, viz. novel and established compounds.
These two types can then be distinguished based on their frequency in a given
corpus. Indeed, Lapata and Lascarides (2003) present a statistical method to
detect novel compounds and “distinguish those which are valid compounds
from nonce terms”!' Likewise, we can assume that lexicalized or idiomatic

1 As we will show in §4.3, the method proposed by Lapata and Lascarides (2003) is

20

compounds, such as couch potato, are likely to be identifiable using a simple
dictionary look-up method. However, this does not necessarily mean that
lexicalized compounds were always excluded from computational studies on
compound interpretation, for instance the annotation schemes of both Tratz
and Hovy (2010) and O Séaghdha and Copestake (2007) include a special
relation indicating lexicalization.

Unless there is a specific need for it, the endocentric vs. exocentric distinc-
tion is rarely addressed in NLP research. For example, O Séaghdha (2008, p.
33) does not distinguish between endocentric and exocentric compounds under
the assumption that the semantic relations in his framework denote the rela-
tion between the compound’s constituents and not the compound as a whole.
Nakov (2007) introduces the distinction in the theoretical review of compound
analysis, but he does not explicitly specify whether or not it is addressed
in his work. Given that many of the compound interpretation studies in
NLP were focused on two-word compounds (i.e. compounds consisting of two
nouns only), we speculate that they did not make the endocentric—exocentric
distinction, partly because they are not directly concerned with the concept
of ‘headedness’. However, whenever the need for identifying the head in
compounds arises, there is no way around determining whether a compound
is endocentric or exocentric. For instance, knowing whether a compound is
endocentric or exocentric is essential in an application like textual entailment
where a compound like lung cancer semantically entails cancer, assuming
knowledge about the endocentricity of this compound (Nakov, 2013).

Deverbal compounds are treated differently across the NLP literature
where some studies focus exclusively on nominalizations whereas others ex-
clude them altogether. Lapata (2002) studies only a particular group of
deverbal compounds where the prenominal modifier is either the underlying
subject or direct object of the original verb (from which the head noun was
derived). Lauer (1995), on the other hand, excludes nominalizations in favor
of the so-called propositional compounds (cf. §2.3).'? Both Lauer (1995) and

primarily motivated by the fact that the compound identification heuristic they use—which
was proposed by Lauer (1995)—identifies false positive examples.

2More accurately, Lauer (1995) excludes the same set of deverbal compounds Lapata
(2002) studies, i.e. deverbal compounds whose prenominal modifier plays the role of the
semantic subject or object of the original verb corresponding to the nominalized head noun.
Lauer (1995, p. 62) explains that the compound peasant rebellion is excluded because
peasant plays the role of the subject for the verb rebel, but the compound city dwellers is
not excluded because city is neither the subject nor the object of the verb dwell.

21

Lapata (2002) use lexicon-based methods to identify deverbal compounds,
which is obviously limited to whatever nominalizations are included in the
lexica they use. Neither O Séaghdha (2008) nor Tratz (2011) exclude nomi-
nalizations from their studies, but the latter pays special attention to this
group of compounds by choosing not to define a relation that denotes the
object of a nominalized head in order to avoid ambiguity as many compounds
can fit this relation as well as others (Tratz, 2011, p. 47).

Based on the discussion above, we believe that carrying over many of the
distinctions and categorizations held in theoretical linguistics to computational
linguistics or NLP can sometimes imply intensive and informed annotation
efforts. Indeed, detecting some of these distinctions have themselves become
standalone (sub-)tasks related to compound analysis, for example, detecting
the compositionality of noun-noun compounds (cf. §2.2).

Lastly, Sparck Jones (1983) explains that viewing compound interpretation
from a computational perspective adds new problems that are otherwise not
encountered in linguistic studies of compounds. For example, identifying
whether or not a sequence of words is a sequence of nouns (i.e. PoS tagging)
and consequently determining if this sequence of nouns is a valid compound
itself—we will refer to this task as compound identification, cf. §2.2.1.

2.1.7 A Preliminary Definition

We define noun—noun compounds as constructions consisting of two or more
nouns that stand in a head—modifier relation. In practice, however, we take a
syntax-based approach to define (and identify) noun-noun compounds where
we require the sequence of nouns that make up a compound to be dominated
by the same parent node (i.e. noun phrase or NP). Furthermore, we also
distinguish between compounds based on proper nouns and common nouns,
but we will leave the details to Chapter 4. The linguistic resource from which
we derive our compound dataset pose their own constraints as well, which we
will also return to in Chapters 3 and 4.

2.2 Noun—Noun Compound Analysis

We dedicate the rest of this chapter to reviewing some of the previous studies
on noun—noun compound analysis in NLP. However, before we turn to the

22

actual review, in the following we establish the definition of the sub-tasks
related to compound analysis.

In the early 1980s Finin (1980) and Spérck Jones (1983), inter alios, offered
extensive views on the problems involved in ‘computationally’ interpreting
noun—noun compounds, such as “recognising that some string of words is ac-
tually a string of nouns” (Spéarck Jones, 1983, p. 5) and “lexical interpretation
(mapping words into concepts)” (Finin, 1980, p. 310).

Overall, we identify at least five different tasks or problems related to
noun—noun compound analysis in NLP:

1. Identification of noun—noun compounds in text (or speech), i.e. deter-
mining if a sequence of nouns is in fact a compound

2. Sense disambiguation of the compound’s constituents

3. Syntactic analysis of the compound’s internal structure, i.e. left vs. right
bracketing of compounds consisting of more than two constituents

4. Semantic interpretation, i.e. predicting the semantic relation holding
between the compound’s constituents

5. Predicting the compositionality of noun—noun compounds, i.e. the re-
latedness between the meaning of the compound as a whole and the
meaning of its constituents

These tasks, more or less, cover the thematic focus of almost all the research
studies on noun—noun compounds in NLP. However, despite broad agreement
on the different problems involved in compound analysis, these tasks are
not equally researched in NLP; for example, compound identification has
received comparatively less attention than the task of semantic interpretation.
Moreover, the approaches to solve these tasks, not unexpectedly, vary in
terms of the methods and resources used (cf. §2.3). In the following, we
define each of the five tasks of compound analysis and refer to some of the
relevant work in NLP.

2.2.1 Identification

Noun—noun compound identification is the task of determining whether or not
a sequence of nouns actually forms a compound, assuming that we already

23

have a method to identify sequences of nouns in plain text (i.e. PoS tagging).
More concretely, compound identification amounts to identifying that there
are two noun sequences in Example 2.3, century compounds and research
studies, and that only one of them makes a valid noun—noun compound (viz.
research studies).

(2.3) In the last centuryy compoundsy were scrutinized in many researchy
studiesy.

As mentioned before, noun-noun compound identification in particular
has received little attention in recent work in NLP. In Chapter4, we will
elaborate more on why this foundational task has been somewhat neglected,
discuss the shortcomings of existing approaches and introduce a syntax-based
method that aims to resolve some of these issues. However, for now, it suffices
to say that many of the previous studies (cf. §2.3) have relied on a PoS-based
approach, proposed by Lauer (1995), that introduces many false positives,
like century compounds in the example above.

2.2.2 Bracketing

Compounding, in English, is a recursive process which means that noun—-noun
compounds can be as long as the following example by Levi (1978, p. 5):

(2.4) horseback riding school cafeteria breakfast menu substitution list

We refer to the compounds consisting of three or more nouns as multi-
word compounds or N-ary compounds, in contrast to two-word compounds
(or binary compounds). This recursive property gives rise to the compound
bracketing task, which involves analyzing the internal structure of N-ary
compounds by breaking it down into binary subconstituents. Multi-word
compounds—Iike prepositional phrases—are “every way ambiguous” construc-
tions, i.e. the number of possible structural analyses is equivalent to the
number of binary trees over the terminals. In other words, the structural
or syntactic ambiguity of noun—noun compounds “grows exponentially with
their length (following the Catalan sequence)” (Isabelle, 1984, p. 509). Even
though not all bracketings necessarily lead to equally plausible readings, this
does not eliminate the need to consider them, especially in computational
analysis.

24

Compound bracketing can be beneficial for accent placement in speech-to-
text synthesis applications, as shown by Sproat (1994). In addition, bracketing
is interrelated with semantic interpretation of noun—noun compounds; for
example, the meaning of the compound in Example 2.5 varies depending on
how its internal structure is analyzed, in that it could refer to a price report
made for consumers (2.5a) or a report on consumer prices (2.5b).

(2.5) consumer price report
a. [consumer [price report|]|

b. [[consumer price] report]

While many recent NLP studies on compounds focused on two-word
compounds (which obviously do not require bracketing), compound bracketing
has received some attention, either as a separate task (Resnik, 1993; Lauer,
1995; Pitler et al., 2010; Nakov, 2013) or as part of parsing noun phrases
(Bergsma et al., 2010; Vadas & Curran, 2011).

2.2.3 Constituent Sense Disambiguation

Constituent sense disambiguation (or nominal sense disambiguation) is con-
cerned with disambiguating the meaning of polysemous constituents in a
given compound. For example, the compound pilot program has at least
two interpretations depending on the meaning of the prenominal modifier
pilot—it can be a trial program or a program for aircraft pilots. Like com-
pound identification, this task has received little attention in NLP. McShane
et al. (2014) list several reasons why nominal sense disambiguation has not
been perceived as central as compound interpretation to compound analysis.
Among other reasons, they refer to the fact that some of the previous research
studies have focused on domain-specific compound analysis which primarily
deals with monosemous nominals, such as the medical domain in Rosario
and Hearst (2001). In addition, many of the previous studies on compound
analysis revolve around participation in shared tasks or competitions, such as
Hendrickx et al. (2013), which in turn do not require sense disambiguation.

We believe the very nature of the existing compound datasets makes
certain assumptions with regard to the necessity of sense disambiguation in
compound analysis. As we will show in the following chapters, nearly all of
the recent noun—noun compound datasets are type-based, i.e. it is assumed
that the relation holding between the constituents of a compound is the same

25

regardless of the context, and hence these datasets do not include the original
context from which the compounds were extracted. Thus, these datasets
implicitly assume a specific sense of the polysemous constituents in order for
the type-based assumption to hold.

Although in theory it is clear that we need sense disambiguation as part of
compound analysis, this need not be as clear in practice. Not only because past
work, much like ours, focuses on other tasks related to compound analysis,
but also because the need for sense disambiguation is not as pressing or
frequent in practice. We will elaborate on this in §4.5.3 in the context of our
datasets; however, for now, it suffices to say that we find very few compound
instances in our dataset whose constituents express different meanings in
different contexts (or occurrences).’® One such example (from our dataset; cf.
Chapter 4) is shown in Examples 2.6 and 2.7, where coverage in the former
refers to insurance coverage whereas in the latter it refers to media coverage.

(2.6) Industry officials say the Bay Bridge — unlike some bridges — has
no earthquake coverage, either, so the cost of repairing it probably
would have to be paid out of state general operating funds.

(2.7) The Associated Press’s earthquake coverage drew attention to a
phenomenon that deserves some thought by public officials and
other policy makers.

2.2.4 Interpretation

The semantic interpretation of noun—noun compounds has been under active
research and investigation in computational linguistics for decades, dating
back to as early as the work by Su (1969), Finin (1980) and Spéarck Jones
(1983). Given the disagreement on how to interpret noun-noun compounds
in theoretical linguistics, it is no surprise that similar trends are observed
in computational linguistics and NLP. Existing approaches to compound
interpretation in NLP, by and large, subscribe to one of two competing views
on compound interpretation in theoretical linguistics; viz., compounds are
interpretable using a finite set of (abstract) semantic relations vs. the number
of semantic relations needed to interpret compounds is unbounded (cf. §2.1.2).

13Qur dataset, of course, contains polysemous words, but the observation here concerns
whether or not these words express different meanings when they occur more than once in
the dataset. We will address this question in more detail in §4.5.3.

26

These two views are often referred to as the inventory-based and paraphrase-
based perspectives. The approaches in the former perspective are mainly
inspired by the works of Levi (1978) and Warren (1978), among others, but
do not come close to agreeing on what kind of relations or taxonomies are
adequate to interpret noun-noun compounds. For example, O Séaghdha and
Copestake (2007) define a coarse-grained set of relations (viz. six relations
based on the theoretical work by Levi, 1978), whereas Tratz and Hovy (2010)
assume a considerably more fine-grained taxonomy of relations that consists of
43 relations. The paraphrasing perspective takes the same position as Downing
(1977) and questions the very assumption that noun-noun compounds are
interpretable using a predefined finite set of relations. For example, in one
of the early studies on computational models for compound interpretation,
Finin (1980, p. 311) maintains that “there can be arbitrarily many possible
relationships between the two nouns, each relationship appropriate for a
particular context”4

In the inventory-based perspective, the task of noun—noun compound
interpretation is often approached as a multi-class classification problem over
a predefined taxonomy of relations. Assuming a supervised learning setup
and a dataset of labeled compounds, the task is simply to learn to classify the
semantic relations holding between the constituents of the compounds based
on a set of training examples. However, the exact definition and difficulty of
this task largely depends on the set of relations used and their distribution
in the dataset, among other things. We return to a more in-depth review of
some of the recent inventory-based studies in §2.3.

In the paraphrase-based perspective, compound interpretation amounts
to finding the most likely paraphrase of a given compound which can be
either a prepositional or verbal paraphrase. Most notable in this strand of
research is the work by Nakov and Hearst (2013) who through Internet search
queries, attempt to find the set of all possible paraphrasing verbs that might
paraphrase a given compound and assign weights to each of the verbs based
on its frequency. To interpret the compound malaria mosquito, for example,
they issue search queries like “mosquito that * malaria” and process the
returned search snippets leading to paraphrasing verbs like carry, spread and

14We do not review Finin’s (1980) work in this thesis. Briefly though, couched in the
role-filling theory, his approach assumes that one of the nouns in the compound denotes an
event, and hence has an event structure, and the other noun fills a role in that structure.
Finin (1980) makes this assumption for non-derived nouns as well as nominalizations.

27

cause. They argue that their approach is more apt to capture the nuances of
compound semantics like in the case of malaria mosquito where the mosquito
does not actually cause malaria but merely transmits or carries it. This
approach was adopted in SemEval-2010 Task 9 and SemEval-2013 Task 4
(Butnariu et al., 2010; Hendrickx et al., 2013, respectively).

2.2.5 Compositionality

Compound compositionality prediction is the task of determining the degree
of compositionality through relating the meaning of the compound as a
whole to the meaning of its constituents, i.e. determine if the meaning of
the compound is derivable from the meaning of its constituents. Semantic
compositionality of noun—noun compounds poses a dilemma to researchers in
NLP, because lexicalization (or compositionality) form a continuum wherein
it is difficult to draw a line between lexicalized and compositional compounds
(Sparck Jones, 1983). Therefore, past work offers different views on the
granularity of compound compositionality ranging from binary (compositional
vs. non-compositional) to six-point scales of compositionality. Most of the
previous studies, however, seem to agree on approaching this problem in
isolation from the rest of compound analysis tasks (Reddy et al., 2011;
Hermann et al., 2012; Farahmand et al., 2015; Yazdani et al., 2015). That
said, some of the existing datasets that annotate the semantic relations of
compounds single out lexicalized compounds by annotating them with special
relations, but they are not otherwise concerned with predicting compound
compositionality (O Séaghdha & Copestake, 2007; Tratz & Hovy, 2010).

Most of the recent studies use compositionality prediction as a means
to compare distributional semantic models such as word embeddings. For
example, Schulte im Walde et al. (2013) compare syntax-based and context-
based distributional semantic models with regard to their ability to predict
the compositionality of German noun—noun compounds. Likewise, Cordeiro
et al. (2016) use the compound compositionality datasets by Reddy et al.
(2011) and Farahmand et al. (2015), among others, to evaluate distributional
semantic models.?

15The dataset by Reddy et al. (2011) consists of 90 noun—noun compounds annotated
on a compositionality scale of six points, whereas the dataset by Farahmand et al. (2015)
consists of 1,048 two-word English noun—noun compounds annotated using a binary scale
as (non-)compositional and (non-)conventionalized compounds.

28

2.3 A Selection of Studies: Literature Review

Existing approaches to compound interpretation in NLP vary depending on
the taxonomy of compound relations as well as the machine learning models
and features used to learn those relations. In this section we review a selection
of studies on noun—noun compound interpretation. The choice of these studies
is partly motivated by their relevance to our own work in later chapters, but
we also include other studies to further explain some of the problems and
tasks related to compound analysis. We focus here on the approaches that
cast the interpretation problem as an automatic classification task over a
finite set of relations. Some of the following studies also address the problem
of bracketing, but we do not comment on the bracketing algorithms or models
because they are not studied in any interesting depth in this thesis.

2.3.1 Lauer (1995)

Lauer (1995) presents one of the early influential studies on statistical methods
for noun—noun compound interpretation (and bracketing), using the Grolier
encyclopedia (an eight-million word corpus) to estimate word probabilities.
He tests his models on a dataset of 244 three-word bracketed compounds
and 282 two-word compounds. The compounds were annotated with one of
eight prepositions, which Lauer (1995) takes to approximate the semantics of
noun—noun compounds; for example, airport food would be interpreted as food
at the airport in Lauer’s framework (Lauer, 1995, p. 155). The prepositions
Lauer uses are in fact based on Warren’s (1978) study which includes a list of

typical paraphrasing prepositions for each of the six major semantic classes
in her study (cf. §2.1.2).

Assuming an inventory of frequent lexical items like prepositions (in con-
trast to abstract semantic relations) allows Lauer (1995) to use unsupervised
statistical models which rely solely on co-occurrence probabilities (or counts)
to interpret compounds. However, the notorious polysemy of prepositions
casts doubt on their ability to capture the semantics of compounds; for
example, the prepositions on, in and at can denote time and location in
different contexts, and it is debatable whether the choice of one of these
prepositions over the others is a semantic question or a matter of lexical
association (O Séaghdha, 2008). Additionally, Girju (2009) describes their
work to annotate a multi-lingual dataset of compounds—extracted from the

29

Europarl Corpus (Koehn, 2005)—using Lauer’s prepositions; she reports
that 79% of the English compounds were annotated with the underspecified
preposition of. Nonetheless, Lauer’s dataset and prepositions were used in
subsequent work by Lapata and Keller (2004); Girju et al. (2005); Nakov
(2007); Bos and Nissim (2015); inter alios.

2.3.2 Girju et al. (2005)

Girju et al. (2005) study the semantic interpretation and bracketing of noun—
noun compounds using a dataset of binary and three-word compounds an-
notated with the prepositional paraphrases (PPs) by Lauer (1995) and 35
semantic relations defined by the authors. Their dataset consists of com-
pounds extracted from the Wall Street Journal (WSJ) articles in the Text
REtrival Conference (TREC-9) document collection as well as an extended
version of WordNet (XWN 2.0).1® They use Lauer’s heuristic (cf. §4.3.1)
to identify compounds in randomly selected sentences from the two afore-
mentioned resources. The annotators then manually checked the identified
compounds to confirm their validity. Girju et al. (2005) annotate a total of
4,504 binary compounds and 484 three-word compounds for their training
split.!” Additionally, for their test split, they annotate the same set of noun
compounds used by Lauer (1995) which consists of 282 binary compounds
and 244 three-word compounds. The annotation scheme by Girju et al. (2005)
allows assigning more than one relation per compound, and hence 608 com-
pounds were tagged with more than one semantic relation and almost all
the compounds that are interpretable using the prepositional paraphrases
received more than one PP.!® However, it is not immediately clear how this
property is reflected when evaluating the accuracy of their models. Girju et
al. (2005) also asked the annotators to provide information on the order of
the head and modifier nouns in the compounds. They find that 34% of the
binary compounds are left-headed (i.e. the head precedes the modifier). We
suspect that the relatively high percentage of left-headed compounds can be
a result of their decision to include proper names as part of the compounds
(combined with questionable assumptions about headedness); e.g. in their

16 http://www.hlt.utdallas.edu/~xwn/. Accessed: 5 February 2019.

17We use the numbers reported by Girju et al. (2005) in Table 3. However, these numbers
do not immediately align with the numbers reported in Table 1 in the same article.

18The annotators assigned the relation Others to the compounds that encode a relation
or prepositional paraphrase other than the ones defined in the annotation guidelines.

30

http://www.hlt.utdallas.edu/~xwn/

framework, the head of the compound GM car is GM which is a proper name.

Girju et al. (2005) cast the compound interpretation problem as a classifi-
cation task to predict their own semantic relations and Lauer’s prepositional
paraphrases. They use three supervised learning models, viz. semantic scat-
tering, iterative semantic specialization and support vector machines.'® They
also ‘replicate’ the unsupervised model by Lapata and Keller (2004), which
relies on web search queries, to predict the PPs by Lauer (1995). Their
three supervised models utilize WordNet-based features such as the semantic
class of the compound’s head and modifier nouns (i.e. the so-called synset in
WordNet). The unsupervised model outperforms the three supervised models
on Lauer’s prepositional paraphrases. In the supervised models, they find
that word sense disambiguation impacts the performance of their models
on the 35 semantic relations while it almost has no effect on the abstract
prepositional paraphrases of Lauer (1995).

2.3.3 Kim and Baldwin (2013)

Kim and Baldwin (2013) also study the semantic interpretation and bracketing
of noun compounds. They use an analogy-based method which relies on lexical
semantic similarities from WordNet. The main assumption they make is that
compounds “which contain similar words in corresponding positions tend to
share the same semantics” (Kim & Baldwin, 2013, p. 389). For this study,
they extract a dataset of noun-—noun compounds from the WSJ of the PTB
using a PoS-based identification heuristic, collecting a total of 2,169 binary
compounds and 1,571 three-word compounds.?’ The binary compounds and
the outermost parts of three-word compounds are annotated with the 20
semantic relations defined by Barker and Szpakowicz (1998). The three-word
compounds were, of course, bracketed to allow annotating the ‘outermost’
pair of nouns. The dataset is equally split between training and test.

In addition to their own dataset, Kim and Baldwin (2013) evaluate their
method on the SemEval-2007 task dataset (Girju et al., 2007), primarily to
compare their method with others, such as semantic scattering by Moldovan
et al. (2004). As mentioned above, Kim and Baldwin (2013) rely solely on

9The semantic scattering and iterative semantic specialization algorithms are described,
respectively, in Moldovan et al. (2004) and Girju et al. (2003).

20The download link provided for the dataset in Kim and Baldwin (2013) no longer
works. However, an earlier version of the dataset which only includes binary compounds is
available online and described in Kim and Baldwin (2008).

31

lexical semantic similarity between the compound constituents; i.e., given a
compound from the test split, they would compute the similarity between
its head and modifier with all the heads and modifiers in the training split
and assign it the relation of the most similar compound. To compute the
semantic similarity, Kim and Baldwin (2013) use an open-source tool called
WordNet::Similarity which provides several methods to measure semantic
similarity or relatedness based on information from WordNet. Since these
measurements are computed between pairs of nouns, Kim and Baldwin (2013)
use a weighted function to combine the similarities between the heads and
modifiers of two compounds.?*

Kim and Baldwin (2013) conduct four sets of experiments focusing on
compound interpretation (for binary and three-word compounds), the relative
contribution of the head and modifier nouns to compound interpretation
and, lastly, bracketing. Kim and Baldwin (2013) report that their model
achieves an accuracy well above the majority class baseline, which is 43%
(achieved by assigning the relation TOPIC to all the test compounds). On
the SemEval-2007 dataset, their model outperforms the semantic scattering
algorithm but not the memory-based method by Nastase et al. (2006); the last
two methods, as Kim and Baldwin (2013, p. 398) explain, “require manual
word sense information” whereas the model by Kim and Baldwin does not. To
determine the contribution of the head and modifier nouns to predicting the
semantic relation of a given compound, Kim and Baldwin (2013) experiment
with different values of the weighting factor (in the function that adds the
head and modifier similarity scores). They find that some semantic relations
exhibit stronger correlation with either the head or modifier; for example, the
relations CAUSE and POSSESSOR rely more on the modifier noun. However,
since different relations have different correlations with the head and modifier,
they decide to use a uniform weighting factor (i.e. the head and modifier
similarity scores contribute equally to the combined score).

2.3.4 O Séaghdha and Copestake (2013)

O Séaghdha and Copestake (2013) present a comprehensive study on the use
of kernel-based methods to interpret noun-noun compounds using different

21'We implement a similar approach in Chapter 5, but instead of WordNet-based similarity
we use word embeddings and we do not use a weighting factor to combine the head and
modifier similarities (i.e. the two similarity scores contribute equally to the final combined
similarity score).

32

2 The defining aspects of O

types of lexical and relational information.?
Séaghdha and Copestake’s (2013) work can be summarized in (1) the focus on
kernel methods, (2) the use (and creation) of a noun compound interpretation
dataset that embraces the abstract relations by Levi (1978) and (3) the pure
statistical method that breaks away from manually-created lexical resources
such as WordNet in favor of corpus-based lexical and relational distributional

information.

The underlying assumption in their work is that compound interpretation
is an analogical process, i.e. the relational meaning of one compound can be
derived or predicted from ‘similar’ compounds. Entailed in this assumption is
the ability to define compound similarity, which O Séaghdha and Copestake
(2013) claim to be found in three types of information: lexical, relational and
contextual information. In general, lexical information is information about
the individual constituents which can be extracted from lexical resources
like WordNet—in the case of Kim and Baldwin (2013)—or corpus-based co-
occurrence statistics (as we will apply in Chapter 5). Relational information,
on the other hand, captures the contexts in which the constituents occur
together; the assumption here is that the context will encode the relational
similarity between the constituents. Of course, the constituents need not
oceur as a compound in the same context, but O Séaghdha and Copestake
(2013) do enforce a constraint on the constituents to be within a window
of ten words in the sentence. Finally, contextual information refers to the
actual context (or sentence) in which a certain compound occurs. O Séaghdha
and Copestake (2013, p. 335) argue that “context features are of little value
for understanding compounds” based on their earlier work (O Séaghdha &
Copestake, 2007). Therefore, they do not use contextual information in their
models.

O Séaghdha and Copestake (2013) extract the lexical and relational
information in terms of co-occurrence distributions from three copora: the
British National Corpus (BNC; Burnard, 2000), a Wikipedia dump and the
224 edition of the English Gigaword Corpus (Graff et al., 2005). They pre-
process and PoS tag the three corpora as well as parse the BNC and the
Wikipedia dump. They need the morpho-syntactic analyses of the corpora to

22The work presented in O Séaghdha and Copestake (2013) was preceded by several
articles by the same authors (O Séaghdha & Copestake, 2007; O Séaghdha & Copestake,
2008; O Séaghdha & Copestake, 2009), but here we review the most recent one only (that
is, O Séaghdha & Copestake, 2013).

33

collect the co-occurrence distributions from certain grammatical relations and
types (which they detail in Section 4.2 of the same article). As mentioned
above, O Séaghdha and Copestake (2013) pay special attention to the choice
of kernel function in their SVMs and choose functions that are motivated
by their intuition on the two types of information considered (i.e. lexical
and relational).?® They train one SVM classifier per relation casting the
multi-class classification problem as a set of binary classification problems,
i.e. one-vs-all. The final prediction is made based on the relation classifier
that yields the highest positive (or least negative) distance to the decision
boundary.

O Séaghdha and Copestake (2013) use the compound dataset they intro-
duced in O Séaghdha and Copestake (2007) which consists of 1,443 binary
compounds annotated with semantic relations at three levels of granularity.?*
O Séaghdha and Copestake (2013) train their classifiers on the three levels of
granularity and report evaluation results for five-fold cross-validation on the
full dataset. Among other things, they find that the lexical features alone
lead to better results than the relational features alone. However, their best
results are obtained when both types of features (and kernels) are combined.
The results they report outperform the then state-of-the-art performance on
the dataset of six coarse-grained relations.

Lastly, O Séaghdha and Copestake (2013) also experiment with classifica-
tion using only the head or modifier noun—which is similar in spirit to the
experiments Kim and Baldwin (2013) conduct on the relative contribution of
the head and modifier nouns. O Séaghdha and Copestake (2013) find that,
overall, better results are achieved when both nouns are considered, but they
also observe a somewhat similar pattern to Kim and Baldwin’s where certain
relations tend to benefit more from the head or the modifier, though the vast
majority of relations seem to perform better with the head only in contrast
to the modifier only.

23We refer to the original article by O Séaghdha and Copestake (2013) for a detailed dis-
cussion and comparison between the different kernel functions for each type of information,
such as linear vs. distributional kernels for lexical information.

24The O Séaghdha and Copestake (2007) dataset will be described in more detail in
§3.2.1.

34

2.3.5 Tratz and Hovy (2010)

Unsatisfied with the heterogeneity of past work on compound interpretation,
Tratz and Hovy (2010) start afresh and create the largest manually annotated
dataset of noun-noun compounds. The compounds in their dataset were ex-
tracted from “two principal sources: an in-house collection of terms extracted
from a large corpus using part-of-speech tagging and mutual information
and the Wall Street Journal section of the Penn Treebank” (Tratz, 2011,
p. 49). Their dataset consists of 17,509 unique, out-of-context noun—noun
compounds annotated with a taxonomy of 43 semantic relations; we will take
a closer look at the dataset and taxonomy of relations in §3.2.3.

Tratz and Hovy (2010) train a maximum entropy (ME) classifier to learn
the semantic interpretation of the compounds in their dataset as well as
the dataset by O Séaghdha and Copestake (2007). Their classifier, for both
datasets, relies on a large number of features extracted from two lexical
resources (viz. WordNet and Roget’s Thesaurus), surface form features (such
as suffixes) and n-gram features (3- and 4-grams) from the Web 1T Corpus
(Brants & Franz, 2006). The relatively large number of their WordNet-based
features is noteworthy; Tratz and Hovy (2010) list 14 feature types that they
extract from WordNet such as the synonyms and hypernyms of all the nouns
and verbs in a word’s definition. They perform 10-fold cross-validation on
their own dataset and 5-fold cross-validation on the dataset by O Séaghdha
and Copestake (2007) to allow direct comparison with the results reported
by O Séaghdha and Copestake (2009). Tratz and Hovy (2010) report an
accuracy of 79.3% on their dataset and 63.6% on the one by O Séaghdha
and Copestake (2007), which is similar to the previously obtained accuracy
on the latter dataset.? Tratz and Hovy (2010) assess the impact of their
feature types through an ablation study that alternates between including
one feature type or excluding it (while keeping the rest of the features). They
report that their novel WordNet feature, which uses word definition terms,
has an equally positive influence on both datasets as the more traditional
WordNet hypernym features. The n-gram features, however, yield mixed

ZTratz and Hovy (2010) experiment with SVMs using the same features of their maximum
entropy classifier and arrive at the same results for both datasets. Further, they report
that the SVM classifier’s performance is highly sensitive to tuning the SVM cost parameter
C', which is not unexpected. However, based on what Tratz and Hovy (2010) report, they
seem to be more rigorous in their training and evaluation than O Séaghdha and Copestake
(2013) because the former report one value for the C' parameter across all folds, whereas 0
Séaghdha and Copestake (2013) optimize that parameter for each cross-validation fold.

35

results, as they have a positive impact on O Séaghdha and Copestake’s (2007)
dataset, but not on their own dataset. To further assess the performance of
their model, Tratz and Hovy (2010) evaluate it on a set of 150 noun-noun
compounds whose constituents are unseen in their training data. These 150
examples were randomly selected from New York Times articles and used
for a final inter-annotator agreement study in Tratz and Hovy (2010). Their
model achieves an accuracy of 51% on the inter-annotator agreement data
(i.e. the unseen compounds), which is—as Tratz (2011, p. 60) reports—“8%
lower than the human agreement figure”.

Being the largest dataset to annotate the semantics of noun—noun com-
pounds, Tratz and Hovy’s data can be considered one of the comparatively
influential datasets for compound interpretation in NLP. Their dataset was
used by others to further study compound interpretation (Dima & Hinrichs,
2015; Shwartz & Waterson, 2018) as well as for compound compositionality
prediction (Hermann et al., 2012).2° In Chapter 6, we review and replicate
the work by Dima and Hinrichs (2015) and evaluate our models on a version
of the Tratz and Hovy (2010) dataset.

2.3.6 Shwartz and Waterson (2018)

Shwartz and Waterson (2018) propose a paraphrasing approach to predict the
relations in the Tratz (2011) dataset.?” They describe three models, called
Path-based, Integrated and Integrated-NC. The three models rely on learning
so-called path embeddings (cf. Shwartz et al., 2016) for the dependency paths
connecting the constituents of a given compound; the dependency paths are
extracted from a concatenation of the English Gigaword Corpus (Parker et
al., 2011) and a Wikipedia dump. Two of their models (namely Integrated
and Integrated-NC) also use word embeddings to represent the constituents
of the compound and the Integrated-NC model uses an additional embedding
vector to represent the full compound (learned by replacing the constituents
of the compounds in the corpus by a single token).

One of the primary motivation of this study is to explore the effect of a

Z6Hermann et al. (2012) use Tratz and Hovy’s (2010) dataset in a binary classification
task of compositionality, where the compounds are split into two groups, lexicalized and
compositional, based on the relation LEXICALIZED.

2TTratz (2011) introduces a slight variant of the original dataset by Tratz and Hovy
(2010); we will return to the distinction between the two datasets in Chapter 3.

36

phenomenon called lexical memorization.?® Therefore, they evaluate their
models on four different splits of the Tratz (2011) dataset (each consisting of
train, development and test sets): (1) random, (2) lexical-full, (3) lexical-mod
and (4) lexical-head. The first split includes the full dataset, whereas the last
three impose a constraint on the three sets to have distinct vocabulary in the
training vs. evaluation subsets (this constraint is only applied on the modifier
and head nouns in the case of lexical-mod and lexical-head, respectively). The
lexical-full split is similar in spirit to the inter-annotator agreement set by
Tratz and Hovy (2010). While their models do not outperform the previously
reported results by Dima (2016) on the full dataset (i.e. the random split),
they do achieve better results on the other three splits, and hence show that
their path-based approach helps mitigate the problem of lexical memorization.

2.4 Conclusion

In this chapter, we have introduced some of the main linguistic definitions
and categorizations of noun—noun compounds. However, as evident from our
discussion in §2.1, there has been little agreement on what constitutes a
noun compound, not to mention how to interpret it. Early linguistic accounts
of compound interpretation took somewhat opposing views on the semantic
interpretation of noun—noun compounds, as we explained in §2.1.2. On the
one hand, Levi (1978), inter alios, argued for representing the semantics
of a subset of complex nominals using nine abstract relations, and on the
other hand, Downing (1977) suggested that there is simply no finite set
of compounding relations. We also discussed how compounds, or complex
nominals more generally, were categorized in theoretical linguistics according
to several criteria, such as lexicalization and novelty (§2.1.3), endocentricity
and exocentricity (§2.1.4) and nominalization (§2.1.5). In §2.1.6, we reflected
on the connection between the linguistic and computational studies of noun—
noun compounds, arguing that some of the linguistic notions require explicit
annotation to be captured in computational models. Moreover, as noted by
Spérck Jones (1983) the computational analysis of compounds introduces new
problems that are not necessarily part of theoretical studies (e.g. PoS tagging
prior to compound identification).

ZLevy, Remus, et al. (2015) define lexical memorization as the phenomenon in which
the classifier learns that a specific word in a specific slot is a strong indicator of the label.
We investigate this phenomenon in §7.6.

37

In §2.2, we discussed the five noun—noun compound analysis tasks in
NLP, namely: (1) compound identification §2.2.1, (2) bracketing §2.2.2,
(3) nominal sense disambiguation §2.2.3, (4) semantic interpretation §2.2.4
and (5) compositionality prediction §2.2.5. We do not claim that these tasks
cover all possible problems related to compound analysis, but—to the best
of our knowledge—past work focused on one or more of the aforementioned
tasks. Throughout the discussion, we highlighted that some tasks received
more attention than others, such as the compound identification problem
which is arguably a foundational step in compound analysis but has been
often overlooked in the literature.

We dedicated the final part of this chapter, §2.3, to an in-depth review of
some of the recent NLP studies on inventory-based interpretation of noun—
noun compounds. In the following, we summarize the studies we reviewed
from two points of views: (1) the taxonomies and datasets and (2) the machine
learning models and features they use.

Taxonomies and Datasets: Lauer (1995) approximates the semantics of
noun—noun compounds using eight prepositional paraphrases on a dataset of
282 two-word and 244 three-word compounds. Girju et al. (2005) annotated
a little over 4,500 binary compounds and 484 three-word compounds starting
with a taxonomy of 35 semantic relations, but they report that only 21 of these
relations occur in the dataset. O Séaghdha and Copestake (2007) relied on
the relations introduced by Levi (1978) to create a coarse-grained inventory of
six relations (with two additional levels of granularity), which they then used
to annotate 1,443 two-word compounds extracted from the BNC. Kim and
Baldwin (2008) used the set of 20 semantic relations defined by Barker and
Szpakowicz (1998) to annotate 2, 169 two-word compounds extracted from
the WSJ segment of the PTB. Kim and Baldwin (2013) report bracketing
and annotating 1,571 three-word compounds, but only the first dataset, i.e.
Kim and Baldwin (2008), is available on-line. Finally, Tratz and Hovy (2010)
annotated a relatively large dataset of 17,509 binary compounds using a
taxonomy of 43 semantic relations.

Machine Learning Models and Features: In §2.3, we showed that
noun—noun compound interpretation is, by and large, approached as an
automatic classification problem. A wide variety of machine learning models
have been already applied to learn compound interpretation, including rule-

38

based learning algorithms and decision trees like C5.0 (Nastase & Szpakowicz,
2003) nearest neighbor classifiers using semantic similarity based on lexical
resources (Kim & Baldwin, 2013), kernel-based methods like SVMs using
lexical and relational features (Girju et al., 2005; O Séaghdha & Copestake,
2013), maximum entropy with a relatively large selection of lexical and surface
form features such as synonyms and affixes (Tratz & Hovy, 2010) and, most
recently, neural networks solely relying on word embeddings to represent the
compound’s head and modifier nouns (Dima & Hinrichs, 2015; Shwartz &
Waterson, 2018). It was clear, throughout the literature review, that past work
depended heavily on features extracted from lexical resources such as WordNet
(Girju et al., 2005; Tratz & Hovy, 2010; Kim & Baldwin, 2013). Interestingly,
though, the earlier studies by Lauer (1995); Lapata and Keller (2004) used
statistical methods that do not require lexical resources, but the nature of
relations they used made this possible; that is, prepositional paraphrases.
More recent approaches, however, make use of co-occurrence distributions O
Séaghdha and Copestake (2013) and distributional semantic models such as
word embeddings (Dima & Hinrichs, 2015; Shwartz & Waterson, 2018).

In the following chapter, we take a closer look at some of the existing
‘compound-specific’ taxonomies and datasets as well as linguistic annotation
frameworks that annotate noun—noun compounds as part of a broader, uniform
perspective on sentence meaning.

39

Chapter 3

Annotation of Noun—Noun
Compounds and Beyond

The first part of this chapter offers a concise review and analysis of some
of the existing noun—noun compound interpretation datasets. In the second
part, we introduce more general linguistic annotation frameworks that can
be potentially used to derive datasets for compound interpretation. We
start with an overview of the existing taxonomies and datasets for compound
interpretation in § 3.2. We then turn to appraise three of the publicly available
datasets and contrast their annotations on a handful of compounds in §3.3.
In § 3.4, we review several linguistic annotation frameworks that go beyond
just representing the meaning of compound constructions to phrases and full
sentences. In doing so, we explore if and how such resources can be put to
use for compound interpretation.

3.1 Introduction

The primary focus of this thesis on noun—noun compound interpretation
warrants a dedicated review of the datasets and taxonomies proposed to
interpret compounds in NLP. Therefore, in this chapter, we explain how
compounds were annotated in past work and, consequently, motivate the need
for a new approach and dataset (introduced in Chapter 4) that facilitates the
integration of compound interpretation in a broader linguistic and computa-
tional perspective. We, thus, distinguish between two types of taxonomies for
compound interpretation. We refer to the first type as ‘compound-specific’

41

taxonomies, which are created almost exclusively for noun—noun compound
interpretation. The second type is more generic in the sense that it ex-
ploits linguistic representation resources concerned with annotating larger
constructions, such as full noun phrases and sentences, to derive relations
for compound interpretation. Of course, in either case, the taxonomies we
consider consist of finite predefined sets of semantic relations, in contrast to
the unbounded paraphrase-based approach (cf. §2.2.4).

Many of the recent NLP studies on compound interpretation rely on
taxonomies of relations—and datasets—that are arguably tailor-made for
noun—noun compounds. Even though such relations are often theoretically
motivated, they ultimately isolate compound interpretation from other work in
computational semantics and introduce large variations in terms of specificity
and coverage. This variation has long roots in theoretical linguistics, as
shown in Chapter 2, but it also means that many of the subsequent studies
in NLP often start anew with every new taxonomy of relations. That said,
there have been some efforts to map the relations in different taxonomies, e.g.
Tratz (2011), but such efforts remain approximative at best for two reasons.
First, most studies that use distinct taxonomies also annotate distinct sets of
compounds, and hence the relation mapping can only be done by comparing
the relations themselves—mnot the compounds they annotate. Second, highly
similar relations might be defined differently across previous studies. In
fact, even the same relations can be redefined over time; for example, the
organizers of SemEval-2010 Task 8 (Hendrickx et al., 2010) redefine four of
the semantic relations introduced in SemEval-2007 Task 4 (Girju et al., 2007)
and write that “no complete continuity should be assumed” between the
two tasks.! All of the above is not a critique of past studies, but it alludes
to a—perhaps unavoidable—pattern in the NLP literature on compound
interpretation, which leads many scholars to start afresh when studying
compound interpretation, and hence making the comparison across their work
less straightforward. Therefore, we try to strike a balance between creating
yet another taxonomy and enabling cross-framework comparison by deriving
taxonomies, and datasets, from established linguistic resources (cf. §3.4 and
Chapter4).

Although we start the following section with a short survey of the com-
pound interpretation datasets, we do not aim to present a comprehensive

'Both SemEval-2007 Task 4 and SemEval-2010 Task 8 are about semantic interpretation
of pairs of nominals; we provide more details in §3.2.

42

review of past studies in this chapter. Instead, we will only focus on three
taxonomies (and their corresponding datasets), chosen in light of the following
criteria. First and foremost, the dataset should annotate noun—noun com-
pounds only; that is, in contrast to the datasets that annotate noun—modifier
pairs which include adjectival modifiers, such as the dataset by Nastase
and Szpakowicz (2003). Second, the dataset should, of course, be available
(publicly or otherwise) and contain a ‘reasonable’ number of compounds (at
least 1,000 examples). Third, the dataset cannot be domain-specific to allow
comparison with other datasets, and hence we exclude datasets like the one
by Rosario and Hearst (2001). Based on these criteria, the three datasets we
will review in some detail are the ones of O Séaghdha and Copestake (2007),
Kim and Baldwin (2008) and Tratz (2011).

3.2 Compound-Specific Datasets

Almost all the studies we reviewed in §2.3 introduced their own dataset,
with the exception of Dima and Hinrichs (2015) and Shwartz and Waterson
(2018). Needless to say, however, there are other inventories and datasets
in the NLP literature than the ones we mentioned in the previous chapter.
Therefore, we complement the review of Chapter 2 by briefly surveying the
broader landscape of datasets that were used in past work on compound
interpretation. For the sake of completeness, though risking repetition, we
will refer to some of the datasets that were already introduced in §2.3.
Vanderwende (1994) uses a set of 13 wh-questions to interpret the relations
holding between what she calls noun sequences, e.g. the compound night
attack is interpreted using the wh-question When. Vanderwende (1994) defines
‘conventional names’ for the wh-questions that make it easier to compare to
other taxonomies of relations; for instance, the conventional names of When
and Where are Time and Locative, respectively. Lauer (1995) assumes a set
of eight prepositional phrases to approximate the relations holding between
noun-noun compounds (cf. §2.3.1). Nastase and Szpakowicz (2003) introduce
a dataset of 600 modifier-noun pairs which were manually annotated with
a two-level hierarchy of relations, viz. five general relations subdivided into
30 relations (see § A.1 for the full taxonomy with examples). However, this
dataset is not limited to noun—noun compounds because the modifier can be
a noun, an adjective or an adverb. As explained in §2.3.2, Girju et al. (2005)
use an inventory of 21 relations based on Moldovan et al. (2004) taxonomy of

43

Dataset Dataset Size Taxonomy Size

Vanderwende (1994) 197 13
Lauer (1995) 282 8
Nastase and Szpakowicz (2003) 600 30
Girju et al. (2005) 4,504 21
O Séaghdha and Copestake (2007) 1,443 6
Kim and Baldwin (2008) 2,169 20
Tratz and Hovy (2010) 17,509 43
Bos and Nissim (2015) 965 25

Table 3.1: Overview of compound interpretation datasets in NLP. Emphasis
is used for the datasets that satisfy the criteria for in-depth review.

35 relations for noun phrases which includes Levi’s (1978) complex nominals,
genitives and adjective phrases. O Séaghdha and Copestake (2007), Kim and
Baldwin (2008) and Tratz and Hovy (2010) propose their own taxonomies and
annotate different sets of compounds; we will return to reviewing these three
datasets in detail below. Bos and Nissim (2015) use a gamification method to
annotate a set of 965 noun—noun compounds extracted from the Groningen
Meaning Bank (Bos et al., 2017). Following Lauer’s (1995) approach, Bos
and Nissim (2015) assume that the semantics of noun-noun compounds can
be interpreted using prepositions. However, unlike Lauer (1995) who uses
just 8 prepositions, Bos and Nissim (2015) start with 26 common English
prepositions, 25 of which are attested in the final dataset.

Several SemEval tasks related to the semantic interpretation of “pairs
of nominals” have been organized over the past decade.? In SemEval-2007
Task 4, Girju et al. (2007) devise a taxonomy of seven relations that occur in
previous datasets at the time.? Later, in SemEval-2010 Task 8, Hendrickx et
al. (2010) define a taxonomy of nine semantic relations, of which four were
borrowed from Girju et al. (2007), but the annotation guidelines of these
four relations were revised in the 2010 task. According to the annotation
guidelines of both tasks, the pair of nominals consist of a common noun and
a prenominal modifier which can be a noun or adjective. Hence, these pairs
of nominals are not necessarily noun—noun compounds by our definition.

2Butnariu et al. (2010) and Hendrickx et al. (2013) organized two SemEval tasks for
compound interpretation using paraphrasing verbs and preposition.

3 The seven relations are: Cause-Effect, Instrument-Agency, Product-Producer,
Origin-Entity, Theme-Tool, Part-Whole and Content-Container.

44

Table 3.1 summarizes the datasets we mentioned above. However, it is
important to reiterate that not all of the datasets in the table are exclusively
concerned with noun—noun compounds. In the following sections, we look
more closely at the three of these datasets (highlighted above) that meet the
requirements suggested in §3.1.

3.2.1 O Séaghdha and Copestake (2007)

In §2.3.4, we reviewed the machine learning methods used to learn the dataset
by O Séaghdha and Copestake (2007). Therefore, we now focus on the dataset
itself in terms of its semantic relations as well as the annotation process.

The theoretical framework for the O Séaghdha and Copestake dataset
is based on the so-called recoverably deletable predicates of Levi (1978) (cf.
§2.1.2). However, O Séaghdha and Copestake do not take the relations
proposed by Levi as is; instead, they define five desirable criteria according
to which they either drop some of the nine relations by Levi (1978), such as
CAUSE and MAKE, or add new ones, such as INST and ACTOR. The criteria they
define assume desirable properties of the relations as well as the taxonomy
as a whole, such as coverage and coherence among other criteria which are
described by O Séaghdha (2008, p. 28-29).*

O Séaghdha and Copestake (2007) refined their annotation guidelines
over the course of six months and finally ended up with six coarse-grained
semantic relations (listed in Table 3.2). Five of these six relations are directed,
and hence if directionality is taken into account, the total number of relations
would be 11; O Séaghdha and Copestake refer to these relations as the directed
coarse-grained relations. Moreover, each of the six coarse-grained relations
has its own set of annotation rules. As part of the annotation process, the
annotators specified which of the rules license the relation they selected, and
hence the annotation rules themselves can be seen as a more fine-grained set
of relations.

To create the dataset, O Séaghdha and Copestake (2007) sampled a total
of 2,000 binary noun—noun compound types from the BNC, using a simple
PoS-based heuristic for compound identification (like Lauer’s, cf. §4.3.1). As
will be explained in §4.3.1, such heuristics can result in false positives, and

4The coverage criterion assumes that the relations account for as much data as possible,
and coherence requires the relations to describe a coherent concept and the boundaries
between such concepts to be clear (O Séaghdha, 2008, p. 28).

45

Relation % Example

BE 9.55 monitor screen
HAVE 9.95 mountain summit
IN 15.40 dog box

ACTOR 11.80 class struggle
INST 13.30 hunger strike
ABOUT 12.15 tax exemption
REL 4.05 fashion essentials
LEX 1.75 monkey business
UNKOWN 0.45 simularity crystal
MISTAG 11.00

NONCOMPOUND 10.60

Table 3.2: Relations in O Séaghdha and Copestake (2007). The relation
distributions in this table are based on the numbers reported in Table 3.2 in
O Séaghdha (2008, p. 40). The percentages in the table are computed over a
dataset of 2,000 compounds.

therefore part of the annotation process by O Séaghdha and Copestake (2007)
is to check whether the compounds are valid.> Therefore, Table 3.2 lists the six
coarse-grained relations in addition to two classes indicting PoS tagging errors
(MISTAG) and invalid compounds (NONCOMPOUND). Furthermore, the table
includes three other relations denoting lexicalization (LEX), unknown meaning
of the compound (UNKNOWN) and compounds that cannot be interpreted using
the six relations (REL).

Parts of the O Séaghdha and Copestake (2007) dataset were annotated
by two annotators over two stages. First, two batches of 100 compounds
were drawn from the full dataset (2,000 compounds) and used in a two-stage
annotation training phase to ensure that the two annotators can reach an
adequate agreement level. Second, after the training stage, a sample of 500
compounds was annotated by the two annotators leading to an inter-annotator
agreement of 66.2% and Cohen’s (1960) Kappa score of 0.693. The rest of
the dataset was annotated by one annotator only. Although the compounds
in the final dataset are distributed out of context, the actual annotation was
done in context, i.e. the original sentences from which the compounds were

5Indeed, O Séaghdha (2008) reports that their heuristic has an accuracy of 78.4% on
identifying noun-noun compounds.

46

extracted were shown to the annotator(s). Moreover, the annotators were
not allowed to assign more than one relation per compound, unlike Kim and
Baldwin (2008) and Tratz and Hovy (2010) as we will explain below.

As can be seen in Table 3.2, the distribution of the relations in O Séaghdha
and Copestake’s dataset is well balanced. However, the size of the ‘classifica-
tion’ dataset—i.e. the compounds assigned one of the six semantic relations—is
relatively small (1,443 compounds) compared to other recent datasets.® Fur-
ther, the semantic relations are arguably overly abstract when compared to
other taxonomies. For example, the relation HAVE is defined by five annota-
tion rules which denote, among other things, possession, group membership
and part-whole relations. However, as we will show below, each of these
(sub-)definitions or rules is a relation in and by itself in other taxonomies.
Similarly, in contrast to other annotation schemes, O Séaghdha and Copes-
take’s combines the temporal and locative aspects in one relation, viz. IN.

3.2.2 Kim and Baldwin (2008)

Kim and Baldwin (2008) annotated 2, 169 binary compounds sampled from
the WSJ corpus in the PTB. They also used a PoS-based heuristic to identify
noun—noun compounds, which requires manual validation of the identified
compounds to exclude false positives. Kim and Baldwin (2008) adopt the
taxonomy of 20 relations defined by Barker and Szpakowicz (1998) without
modification, which is highly similar to the two-level hierarchical taxonomy
by Nastase and Szpakowicz (2003), cf. Table A.1 in Appendix A.

Kim and Baldwin’s (2008) annotation scheme differs from O Séaghdha and
Copestake’s in three ways. First, the full dataset by Kim and Baldwin (2008)
was annotated by two annotators, in contrast to O Séaghdha and Copestake
(2007) whose dataset has about one third of the compounds annotated by two
annotators. Second, the annotators were not shown extra, context information
apart from the compounds themselves. Third, the annotators were allowed to
assign more than one relation per compound in case of ‘genuine’ ambiguity;
that is, in the cases where extra contextual information is needed to interpret
the compound and assign a semantic relation; Kim and Baldwin (2008) give

60 Séaghdha (2008) distinguishes between the annotation dataset and the classification
dataset. The latter, has a total of 1,443 compounds that are annotated by one of the six
semantic relations and it is this dataset O Séaghdha and Copestake use in subsequent
classification experiments. Whereas the annotation dataset consists of 2,000 compounds
but these include lexicalized compounds, tagging errors and false positives.

47

Relation % Example

TOPIC 39.05 music star
PURPOSE 13.78 trade union
OBJECT 7.61 lawsuit settlement
SOURCE 7.33 crop problem
PROPERTY 7.15 prescription drug
CAUSE 5.49 death notice
CONTENT 3.23 debt collection
POSSESSOR 2.44 company car
PRODUCT 2.44 liquor industry
TIME 2.03 lunch break
LOCATION 1.84 hotel lobby
LOCATED 1.15 horse barn
MATERIAL 1.15 paper product
CONTAINER 1.15 committee member
EQUATIVE 1.15 fountain pen

INSTRUMENT 0.83 laser printer
BENEFICIARY 0.69 consumer price
RESULT 0.69 oil spill

AGENT 0.64 court decision
DESTINATION 0.14 space shuttle

Table 3.3: Relations in Kim and Baldwin (2008). The distributions were
calculated on the full dataset, i.e. the combination of the train and test splits.

cotton bag as an example of genuine ambiguity, which can be interpreted as a
bag made of cotton (MATERIAL) or a bag for cotton (PURPOSE).

Kim and Baldwin (2008) report an annotator agreement of 52.31%, after
training the annotators on 200 compounds which are not part of the original
dataset. However, they do not report other scores to account for agreement
by chance, such as Cohen’s Kappa measure. In addition, Kim and Baldwin
(2008) state that in the cases where the annotators assign more than one
relation per compound, agreeing on at least one relation was considered as
an agreement.’

Table 3.3 lists the semantic relations attested in Kim and Baldwin’s (2008)
dataset and their frequencies. As can be seen from the table, almost 39% of the
compounds in their dataset are annotated with the relation TOPIC. Further,

78.2% of the compounds in Kim and Baldwin’s dataset are annotated with more than
one relation.

48

the five most frequent relations account for three quarters of the compounds in
the dataset, which obviously leaves the least frequent relations with very few
examples. Even though the inventory of relations used by Kim and Baldwin
(2008) is more fine-grained than the one used by O Séaghdha and Copestake
(2007), there are still some relations that can be considered somewhat abstract.
For example, in experimental work preceding the documentation of the dataset
proper, Kim and Baldwin (2006) considered the relation PROPERTY too general
and decided to exclude it from the dataset in their experiments on compound
interpretation using verb semantics.

3.2.3 Tratz and Hovy (2010)

When we introduced Tratz and Hovy’s (2010) work in §2.3.5, we reported
that they created a dataset of 17,509 noun-—noun compounds annotated with
43 semantic relations organized in ten groups. However, the dataset later
published by Tratz (2011) includes 19, 158 noun—noun compounds annotated
with a revised taxonomy of 37 relations.® We distinguish between these two
versions of the dataset by referring to the former as the Tratz and Hovy (2010)
dataset and the latter as the Tratz (2011) dataset.

Tratz and Hovy (2010) proposed a new taxonomy of relations, which
they refined throughout five rounds of annotation—each consisting of 100
examples—to guarantee more consistency in annotation (i.e. to improve
inter-annotator agreement). The annotators were shown the compounds in
different contexts and asked to select one or two relations per compound.
These annotation rounds informed the adjustments that Tratz and Hovy
(2010) made incrementally on their taxonomy; for example, they excluded the
relation PURPOSE because it was found to be ambiguous with other categories
and introduced more fine-grained relations that generally express purpose.
Tratz and Hovy (2010) relied on the Amazon Mechanical Turk (MTurk) service
(a crowd-sourcing ‘micro-working’ platform) for those rounds of annotation.”

8Tratz (2011) revised the taxonomy, and annotation, of the compound dataset “to allow
for a better mapping between prepositions and noun compound relations” (Tratz, 2011, p.
76). This led to conflating some of the relations into one, and hence the smaller number of
relations in the revised dataset.

9Tratz and Hovy (2010) highlight the linguistic drawbacks of using such a platform,
for example they could not make sure that the so-called ‘Turkers’ (the annotators in this
case) are native speakers of English. More importantly, however, MTurk is not merely a
crowd-sourcing platform, it is an unregulated labor market, which raises ethical concerns
about its use in academic research and otherwise. Fort et al. (2011) discuss some of the

49

Tratz and Hovy (2010) performed a final inter-annotator agreement study
to evaluate the quality of their taxonomy on 150 compounds that were not
part of the original dataset. They also relied on the MTurk service for the
agreement study, but they accounted for the fact that MTurk is not ideal
for inter-annotator agreement studies by applying several constraints and
weighting methods, which are fully explained in Section 6 in Tratz and Hovy
(2010). They measured agreement based on their own annotation of the 150
compounds and the MTurk annotations, and report a combined agreement

score of 59% on the full taxonomy and 0.57 Kappa score.!?

In Table 3.4 we compile the relations, and frequencies, from the dataset
made available by Tratz (2011), and hence the relations and their distribution
are different from the ones reported in Tratz and Hovy (2010).!! For example,
Table 1 in Tratz and Hovy (2010) lists seven sub-relations under TOPIC, but
we only observe three relations of this type in Table 3.4, including the generic
relation TOPIC. This suggests that some of the more specific relations were
conflated under the more general TOPIC relation. The 37 relations are grouped
under 12 types of relations, which are indicted as numbers in the left-most
column of Table 3.4. The numbers refer to the following groups: (1) Objective,
(2) Causal, (3) Purpose, (4) Ownership, Employment and Use, (5) Time,
(6) Location and Whole+Part, (7) Composition and Containment, (8) Topical,
(9) Attributive and Equative, (10) Other Complements, (11) Personal Name
and Title and (12) Other. The relations under the eleventh group (Personal
Name and Title) are not described by Tratz (2011) but they are attested in
the dataset. We refer to Appendix B in Tratz (2011) for full definitions of
the relations listed in Table 3.4.

As can be seen from Table 3.4, the distribution of the relations is com-
paratively balanced, with the most frequent relation accounting for 17.13%
of the data, viz. 0BJECTIVE.!? It is noteworthy, however, that the six most
frequent relations in Tratz’s (2011) dataset seem to be the least specific
among the 37 relations in the taxonomy. These relations are OBJECTIVE,

issues with MTurk, such as the very low wages and complete lack of labor rights.

10The agreement scores Tratz and Hovy (2010) report vary depending on the annotator,
as they hired several annotators via MTurk, but here we only consider the combined
weighted agreement score of all annotators.

1 The dataset is distributed as part of the following package https://www.isi.edu/
publications/licensed-sw/fanseparser. Accessed 5 June 2015.

12 According to Tratz (2011, p. 197) the relation OBJECTIVE describes “the logical gram-
matical object”, which we find to be more of a syntactic definition than a semantic one.

50

https://www.isi.edu/publications/licensed-sw/fanseparser
https://www.isi.edu/publications/licensed-sw/fanseparser

Relation % Example

1{ OBJECTIVE 17.13 tax claim
SUBJECT 3.54 press report

9 CREATOR-PROVIDER-CAUSE_OF 1.52 fire damage
JUSTIFICATION 0.26 genocide trial
MEANS 1.50 phone interview
PERFORM&ENGAGE_IN 11.48 peace effort
CREATE-PROVIDE-GENERATE-SELL 4.83 wine shop

3 OBTAIN&ACCESS&SEEK 0.86 finance plan
MITIGATE&OPPOSE 0.78 tax relief
ORGANIZE&SUPERVISE&AUTHORITY 1.60 election committee
PURPOSE 1.95 exchange system
OWNER-USER 2.12 company car

4 EMPLOYER 2.32 state lawyer
EXPERIENCER-OF-EXPERIENCE 0.53 team spirit
USER_RECIPIENT 1.03 worker salary

5 TIME-OF1 2.17 night club
TIME-0F2 0.47 watermelon season

6 LOCATION 5.16 street lawyer
WHOLE+PART OR_MEMBER_OF 1.69 staff lawyer
CONTAIN 1.21 oil tank
SUBSTANCE-MATERIAL-INGREDIENT 2.64 plastic pencil

7<¢ PART&MEMBER_OF_COLLECTION&CONFIG&SERIES 1.78 customer base
VARIETY&GENUS_OF 0.10 ant species
AMOUNT-OF 0.88 tax level
TOPIC 7.02 wage talk

8¢ TOPIC_QOF_EXPERT 0.68 film scholar
TOPIC_OF_COGNITION&EMOTION 0.31 market optimism
EQUATIVE 5.43 drug charge

9 ADJ-LIKE_NQUN 1.33 mass exodus
MEASURE 4.21 month time
PARTIAL_ATTRIBUTE_TRANSFER 0.35 chocolate lab

10 RELATIONAL-NOUN-COMPLEMENT 5.62 drug epidemic
WHOLE+ATTRIBUTE&FEATURE&QUALITY 0.29 monopoly power

1 PERSONAL_NAME 0.52 barack obama
PERSONAL_TITLE 0.53 mister bond

19 LEXICALIZED 0.78 drag queen
OTHER 5.36 contact lense

Table 3.4: Relations in Tratz (2011). The relations and their frequencies were
extracted from the dataset itself.

51

PERFORM&ENGAGE 1IN, TOPIC, RELATIONAL-NOUN-COMPLEMENT, EQUATIVE and
LOCATION. Tratz and Hovy (2010) map their taxonomy of relations to other
taxonomies, such as the ones by Barker and Szpakowicz (1998) and Girju
et al. (2005), and demonstrate that their relations are similar to the ones
defined in past work.

3.3 Contrastive Analysis

One way to compare the three datasets we introduced above is to inspect
how they annotate a selection of noun-noun compounds that are common to
the three of them. Upon inspecting the three datasets, we find that there are
only 33 compounds in common; Table 3.5 lists these 33 compounds and their
annotation in the datasets of O Séaghdha and Copestake (2007), Kim and
Baldwin (2008) and Tratz (2011). Obviously a sample of 33 compounds is
not enough to perform a quantitative analysis of the approximate agreement
between the three annotation schemes. Moreover, a proper qualitative analysis
would mandate a comprehensive review of the annotation guidelines of the
three datasets, which is something that not only falls outside the scope of
our work, but is also not readily available, at least in the case of Kim and
Baldwin’s (2008) dataset.

Of the 33 compounds, 15 are of type TOPIC (i.e. 45.45%) in Kim and
Baldwin’s dataset, which is unsurprising given that 40% of the compounds
in their dataset are annotated with that relation. However, this makes us
more reluctant to read much into the ‘patterns’ we observe in Table 3.5. For
example, O Séaghdha and Copestake’s IN, INST and ACTOR relations annotate
many of the same compounds as Kim and Baldwin’s TOPIC, but this is likely
to be a by-product of the latter relation being very frequent in Kim and
Baldwin’s dataset. Given that the TOPIC relation seems to cover a broad
concept, we exclude the compounds annotated with this relation from our
analysis.

The compounds annotated with the relation HAVE by O Séaghdha and
Copestake (i.e. examples 11-16 in Table 3.5) receive somewhat similar re-
lations in Kim and Baldwin (2008) and Tratz (2011). O Séaghdha (2008)
defines five rules that license the relation HAVE which express: possession,
part-whole, group-member, condition-experiencer and property-object. These
rules encompass most of the relations observed in the other two datasets such
as WHOLE+PART OR_MEMBER_OF, POSSESSOR and CONTAINER. Tratz’s relation

52

Compound 0&C K&B T
1 home market IN TOPIC PURPOSE
2 stock market IN TOPIC PURPOSE
3 golf course IN TOPIC PERFORM&ENGAGE_IN
4 office space IN LOCATED LOCATION
5 video game INST TOPIC MEANS
6 computer software INST TOPIC LOCATION
7 computer system INST TOPIC EQUATIVE
8 jet engine INST CONTENT WHOLE+PART_OR_MEMBER_QOF
9 aid package INST CONTENT TOPIC
10 printing press INST PROPERTY PERFORM&ENGAGE_IN
11 committee member HAVE CONTAINER WHOLE+PART_OR_MEMBER_OF
12 family member HAVE CONTAINER WHOLE+PART_OR_MEMBER_OF
13 union member HAVE POSSESSOR WHOLE+PART_OR_MEMBER_QOF
14 department store HAVE TOPIC CONTAIN
15 world economy HAVE TOPIC LOCATION
16 customer base HAVE CONTENT PART&MEMBER_OF _COLLECTION. ..t}
17 machine tool BE MATERTAL EQUATIVE
18 junk bond BE PROPERTY EQUATIVE
19 parent company BE POSSESSOR EQUATIVE
20 crystal chandelier BE CONTENT SUBSTANCE-MATERIAL-INGREDIENT
21 government report ACTOR SOURCE SUBJECT
22 employment service ACTOR TOPIC EQUATIVE
23 government official ~ACTOR TOPIC EMPLOYER
24 aerospace division ACTOR TOPIC OTHER
25 engineering group ACTOR TOPIC PERFORM&ENGAGE_IN
26 advertising agency ACTOR TOPIC PERFORM&ENGAGE_IN
27 research team ACTOR PURPOSE PERFORM&ENGAGE_IN
28 state legislature ACTOR PURPOSE EMPLOYER
29 board meeting ACTOR CONTENT SUBJECT
30 property tax ABOUT TOPIC OBJECTIVE
31 interest payment ABOUT CAUSE OBJECTIVE
32 takeover offer ABOUT PURPOSE OBJECTIVE
33 oil price ABOUT SOURCE RELATIONAL-NOUN-COMPLEMENT

Table 3.5: The set of compounds found in O&C: O Séaghdha and Copestake
(2007); K&B: Kim and Baldwin (2008) and T: Tratz (2011). { Shortened
form of PART&MEMBER_OF COLLECTION&CONFIG&SERIES

53

LOCATION might seem out of place at first glance, but Tratz and Hovy (2010,
p. 681) report that the relations “LOCATION and WHOLE + PART/MEMBER OF
were commonly disagreed upon by Turkers so they were placed within their
own taxonomic subgroup”.

Per definition, the relations BE and EQUATIVE in O Séaghdha and Copes-
take (2007) and Tratz (2011), respectively, are highly similar. In both studies,
the two relations can express sub-types as well as material. These similarities
hold in examples 1719 in Table 3.5, but as we mentioned before our sample
is very small to draw any conclusions. Therefore, we cannot judge to what
degree this observation indicates consistency across the different annotation
schemes. The same applies for the relations ABOUT and OBJECTIVE in O
Séaghdha and Copestake (2007) and Tratz (2011), respectively. Furthermore,
the six compounds annotated as INST (examples 5—10) by O Séaghdha and
Copestake receive six different relations in Tratz’s dataset. Due to the small
size of the sample at hand—again—we find it difficult to determine whether
the mapping of INST to many other relations in Tratz’s dataset is a mere
coincidence or a pattern.

The discussion above illustrates the problem with comparing existing
taxonomies and datasets for noun—noun compound interpretation. That is,
we do not have enough data to perform a quantitative analysis, simply because
the datasets often annotate largely distinct sets of compounds. To quote
O Séaghdha (2008, p. 30), a “definitive comparison of multiple schemes would
require annotation of a single corpus with every scheme, but in practice this is
rarely done.” This observation serves as one of our motivations to create a new
dataset that makes it possible to compare annotations across frameworks by
considering resources that annotate the same corpus (cf. Chapter4). Therefore,
in the following section we explore if and how existing linguistic resources can
be used to derive a new dataset for noun—noun compounds that addresses
the aforementioned problem, among others.

3.4 Linguistic Annotation Frameworks

The rest of this chapter explores how noun—noun compounds are analyzed
within linguistic meaning representations that operate at phrase- or sentence-
level. In contrast to the compound-specific datasets, these meaning repre-
sentation frameworks consider semantic structures across a broader range
of phenomena and different syntactic realizations. Therefore, they are often

o4

pushed in different directions, which may lead to broader and stronger gener-
alizations. For the same reasons, however, these frameworks may have less
specialized annotations for compounds, compared to the datasets we reviewed
in the first part of this chapter.

By introducing some of the frameworks below we set the scene for the
following chapter, but we will leave the particularities of deriving a dataset
for noun—noun compound analysis from these frameworks to the next chapter.

3.4.1 NomBank

NomBank (Meyers, 2007) is a sister project of the Proposition Bank or
PropBank (Palmer et al., 2005) where the former annotates the argument
structure for nominal predicates and the latter focuses on the argument
structure of verbs. Both resources annotate the WSJ corpus of the PTB (in
addition to other corpora for PropBank), and hence provide an additional
layer of shallow meaning representation on top of the syntactic representations
in the PTB.'® NomBank partly builds on PropBank to populate its lexical
entries and preserves some consistency across the two resources; for example,
the default argument structure of verbal nominalizations in NomBank reuses
the argument labels of the underlying verb in PropBank (Meyers et al., 2004).

NomBank set out to annotate all ‘markable’ noun phrases in the WSJ
corpus. For a noun phrase (NP) to be markable, it must of course contain
an argument-taking common noun (i.e. a propositional noun expressing an
event, relation or state) and at least one argument of the head noun, among
other conditions (Meyers, 2007, p. 7). According to Meyers et al. (2004),
argument-taking nouns need not be verbal nominalizations; in fact, they define
16 classes of argument-taking nouns, in addition to verbal and adjectival
nominalizations. The 16 classes include relational nouns, such as director and
husband, and partitive nouns, such as set and cascade. As mentioned above,
to define the nominal argument structures, NomBank draws on the predicate
argument structures in PropBank, sometimes even when there is no direct

13The need for an explicit representation of argument structures is motivated by the fact
that the argument structure of a given predicate often corresponds to multiple syntactic
realizations, due to verb alternations or diathesis alternations (Levin, 1993). Hence the
mapping between the grammatical subject or object and semantic roles such as agent and
patient or theme need not be constant for a lemma; for example, in The boy broke the
window and The window broke we have two grammatical analyses of the window (object in
the former and subject in the latter) even though the window plays the same semantic role
in both cases.

95

morphological connection between the nominal predicate and the verbal one.
For example, NomBank assumes that aggression takes the same argument
structure as the verb attack in PropBank.

NomBank views complex proper nouns (or proper noun phrases) as “un-
analyzable wholes”, and hence they are considered unmarkable (i.e. they were
not annotated), cf. Meyers (2007, Section 3.2). In addition, most idioms are
not markable in NomBank with the exception of those that can be interpreted
literally such as a grain of salt. However, NomBank does annotate so-called
dead metaphors (i.e. lexicalized metaphors) such as tapestry which is often
used a synonym for combination.

In concrete terms, NomBank defines a frame entry for each nominal
predicate that specifies its argument and allowed adjuncts, following the same
style used in PropBank. Each frame lists the possible ‘rolesets’ of the predicate;
that is, the possible sets of arguments a predicate can take. In some cases,
the different senses of a polysemous noun can give rise to distinct rolesets, but
this is far from being the rule in NomBank. Meyers (2007, p. 23) clearly states
that “the same sense of a noun seems to participate with different sets of
roles.” Further, NomBank does not distinguish between “closely related senses
of a noun unless they take incompatible sets of argument roles” (Meyers,
2007, p. 23). The arguments and adjuncts in NomBank are also defined
following the PropBank style; arguments are numbered (ARGO, ARG1, ARG2,

..), and some of them can be generalized to prototypical semantic roles
such as agent and patient. Adjuncts (or modifiers) are expressed using the
label ARGM and are further specified via so-called function tags, which denote
whether a modifier is temporal ARGM-TMP, locative ARGM-LOC or directional
ARGM-DIR among other types. Meyers (2007, p. 90) defines a total of twelve
function tags, to which we will return in the following chapter.

The actual NomBank annotation of the WSJ corpus consists of a list of
propositions which specify the predicate and its arguments (and adjuncts) in
a given sentence, as shown in the following example:'4

(3.1) State officials
ARG2 = state, ARGO = official, REL = official

Meyers et al. (2004) report that there are approximately 200, 000 instances
of markable nouns in the WSJ segment of the PTB; according to their

14Tn this example, the predicate official is also annotated as the ARGO of itself, which is
an instance of so-called incorporated arguments in NomBank (Meyers, 2007, p. 8).

56

estimates, 5,000 of these instances are adjectival nominalizations and the rest
are evenly divided between verbal nominalization and the other noun classes
they define. Further, Meyers et al. (2004) report an initial estimate of 6,500
lexical entries for argument-taking common nouns in the PTB. The number
of instances that were eventually marked in NomBank version 1.0 (released
December 17, 2007) is 114,576, the rest of the markable instances do not
actually take arguments in the corpus. Similarly, the final number of frames
or lexical entries representing argument-taking nouns is 4, 704.

Some of the noun phrases annotated in NomBank constitute, partially or
fully, noun—noun compounds. Therefore, the same relations (i.e. arguments
and adjuncts) used to annotate noun phrases also apply for noun—noun
compounds. Assuming a method to identify compounds in the WSJ text, we
can extract the annotation of the compounds in NomBank and create a new
dataset whose relations are the arguments and adjuncts defined in NomBank.
The details of how this can be done in practice are laid out in the following
chapter.

3.4.2 PCEDT 2.0

The Prague Czech—English Dependency Treebank 2.0 (PCEDT; Hajic et al.,
2012) is a manually annotated parallel treebank of the same WSJ text in
PTB and its Czech translation. Unlike NomBank, the PCEDT annotates
the full sentences using multiple interlinked layers of representation based on
the valency theory of the Functional Generative Description framework in
theoretical linguistics (FGD; Sgall et al., 1986). The representation layers in
PCEDT start from the surface form with the bottom-most layer, the word
layer (w-layer), which contains a tokenized version of the plain text. The
morphological layer (m-layer) adds morphological information on the tokens
in the w-layer such as PoS tags and lemmas. The analytical layer (a-layer)
contains a parsed version of the text in the form of dependency trees. The
tectogrammatical layer (t-layer), which is the topmost layer, captures the
meaning of the sentence by representing both (deeper) syntactic and semantic
relations in the sentence. In addition, the English part of PCEDT includes
the original annotation from the PTB, which are represented in an additional
layer called the phrase-structure layer (p-layer).

We will only focus on the t-layer, as we are mainly interested in un-
derstanding how the semantics of noun—noun compounds are represented

57

@
t-tree
zone=en

oppose.enunc

PRED v:fin
l opposed
and official channel
CONJ x ACT n:subj PAT n:obj
land lofficials Channel
california york state One
LOC.member n:in+X LOC.member n:in+X APP n:attr NE n:attr
California York state One
New
NE n:attr
New

Figure 3.1: The PCEDT tectogrammatical annotation of “In California and
New York, state officials have opposed Channel One.”

in PCEDT. The tectogrammatical representation is, in practice, a rooted
dependency tree structure with different types of nodes, edges and attribute
values (within the nodes). Figure3.1 shows an example of the t-layer an-
notation in PCEDT." As Haji¢ et al. (2012) explain, only content words
and coordinating conjunctions are represented as nodes in the t-layer (the
linguistic contribution of function words is stored as attributes in the inner
structure of the nodes). PCEDT defines eight types of nodes in the t-layer
that have different functions and inner structures, e.g. technical root, complex
and atomic nodes. The edges in the t-tree are unlabeled (i.e. they bear no
description), but their types are determined based on the daughter node’s
type. The inner structure of each node consists of attribute-value pairs that
vary depending on the node type; such attributes include information on the
morphosyntactic realization of the node, whether the node is a member of
coordination, among many other attributes. Of the numerous attributes in
the t-layer nodes, we are concerned with the functor attribute which describes
the syntactico-semantic relation between the node and its parent.

According to the PCEDT annotation manual, functors represent the
semantic values of syntactic dependency relations (Cinkova et al., 2006, p.
107). In other words, functors are essentially semantic labels between a lexical
unit (predicate) and its valency complementations, which are defined in the

15Figure 3.1 is generated using the Treex Web interface, https://lindat.mff.cuni.cz/
services/treex-web.

58

https://lindat.mff.cuni.cz/services/treex-web
https://lindat.mff.cuni.cz/services/treex-web

PCEDT English Valency Lexicon (EngValLex; Semecky & Cinkova, 2006).
Functors in PCEDT can be grouped according to several criteria; one such
grouping is based the valency criterion which divides functors into arguments
and adjuncts. Argument functors include ACT (Actor), PAT (Patient) and ADDR
(Addressee) among others. PCEDT defines several types of adjunct functors
such as temporal functors (e.g. TWHEN, TTILL), locative and directional functors
(e.g. LOC, DIR1) and implicational functors (e.g. AIM, CAUS). Cinkova et al.
(2009) report that about 70 functor types are used in the PCEDT annotation.
However, not all of these functors occur in noun—noun dependency relations,
which is the part of the sentence annotation that concerns us. We will return
to the functors attested in noun—noun dependency relations in the following
chapter (§4.5).

Given the whole-sentence meaning representation in PCEDT, it follows
that PCEDT annotates noun—noun compounds, and hence we can expect
to derive a dataset for noun—noun compounds from PCEDT. In fact, in the
annotation manual of PCEDT, Cinkova et al. (2006, p. 162) clearly assert
that “nouns as modifiers are interpreted according to their semantic relation
towards the governing noun.” Further, Cinkova et al. (2006) define specific
annotation rules for deverbal nominalizations, based on a set of suffixes typical
of deverbal nouns, which assumes that some forms of nominalizations inherit
their argument structure from the underlying verb.

Deriving a noun—noun compound dataset from PCEDT, thus, amounts to
identifying the compounds in the WSJ corpus and extracting their functors
from the PCEDT’s t-layer. For example, considering Figure 3.1 again, we see
that it includes a noun—noun compound, viz. state officials, and the relation
between its constituents is the functor APP (which denotes the appurtenance
of one person or thing to another).

3.4.3 Other Resources

In the same general spirit of this second part of the chapter, we further
review other candidate resources that can be potentially used to study noun-—
noun compound interpretation. For reasons that will become clear below,
however, these resources have not taken a central role in our work, and thus
are discussed somewhat more tersely.

59

(b / have-org-role-91
:ARG1 (p / police~e.26)
:ARG2 (o / official~e.27))

Figure 3.2: AMR analysis of police official

Abstract Meaning Representation: The Abstract Meaning Representa-
tion (AMR; Banarescu et al., 2014) is a formalism for English whole-sentence
meaning representation. In practice, AMRs are directed, acyclic and rooted
graphs, whose nodes represent concepts (or constants) and edges represent
the relation between the nodes. The AMR concepts are in no small part based
on PropBank frames. In theory, one can identify the noun—noun compounds
in the AMR copora and extract their corresponding relations from the AMR
graphs. However, since one of the basic principles of AMR is to “abstract
away from syntactic idiosyncrasies” (Banarescu et al., 2014, p. 178), the AMR
graphs are, in practice, not aligned with surface form tokens.!® Hence, in
order to derive an AMR-based dataset for noun—noun interpretation, one
would first need to align the tokens to the AMR graph nodes.!” Even if
we assume token-aligned graphs, it is not always clear how to extract the
noun—noun compound analysis from AMR. For example, the constituents
of the compound police official are analyzed as arguments to a non-lexical
concept have-org-role-91 (which expresses organizational membership).'®
The sub-graph in Figure 3.2 shows the analysis of police official in AMR.

DeepBank: DeepBank (Flickinger et al., 2012) annotates the WSJ corpus
in PTB with the English Resource Grammar (ERG; Flickinger, 2000), which
is a broad-coverage, linguistically precise grammar for English written within
the linguistic framework of Head-Driven Phrase Structure Grammar (HPSG;
Pollard & Sag, 1994). By design, these analyses limit themselves to what is
often called sentence meaning, i.e. the constraints on interpretation imposed

16AMR 2.0 (released on June 15, 2017) includes automatically generated alignments,
whereas AMR 1.0 (released on June 16, 2014) does not provide any form of alignments.
We evaluated the use of AMR for creating a dataset for compound interpretation before its
second release. Needless to say, the issue of string-to-graph alignment remains unresolved
in AMR 2.0, because it was generated automatically. Therefore, we argue that AMR 2.0 is
still not ideal for creating a high-quality AMR-based compound dataset.

1"In fact, aligning tokens or strings to AMR graphs has emerged as a separate task in
and of itself in NLP (Pourdamghani et al., 2014; Lyu & Titov, 2018).

18 A non-lexical concept is an abstract concept that does not directly correspond to a
token in the sentence.

60

by grammatical structure. Thus, noun—noun compounds in DeepBank are
annotated with a very underspecified relation called compound, and hence
DeepBank does not commit to any semantic interpretation of noun—noun
compounds. That said, DeepBank does annotate the internal structure of
multi-word compounds, and we will exploit this information in Chapter 4.

3.5 Conclusion

In this chapter, we focused on the semantic interpretation of noun—noun
compounds in terms of the datasets and taxonomies of relations proposed in
previous NLP studies. Evidently, there is no lack of compound interpretation
datasets, as shown in our brief review of such datasets in § 3.2. However, much
like the theoretical studies on compounding, past work in NLP often assumes
varying definitions of compounds and how they ought to be interpreted,
resulting in a mixed bag of taxonomies and datasets. The variability of the
datasets and taxonomies is not a bad thing per se, but it does require extra
efforts to align and compare past work. Tratz (2011), for example, presented
an approrimate mapping of the past inventories of relations, but such a
mapping cannot be evaluated quantitatively because most of the existing
datasets annotate disjoint sets of compounds.

Of the existing datasets, we chose to review three datasets that annotate
noun—noun compounds exclusively, among other criteria; viz. the datasets by
O Séaghdha and Copestake (2007), Kim and Baldwin (2008) and Tratz (2011).
We showed, in § 3.2, that these three datasets make varyingly different assump-
tions starting from the annotation guidelines to the granularity of the relation
they adopt. O Séaghdha and Copestake’s dataset is remarkably motivated by
a theoretical framework (i.e. that of Levi, 1978), in contradistinction to Tratz
and Hovy (2010) who relied on ‘crowd-sourcing’ to refine their relatively large
taxonomy of relations. The relations in O Séaghdha and Copestake (2008) are
perhaps the most abstract among the three datasets and the dataset itself is
the smallest in size. Kim and Baldwin’s (2008) dataset is slightly larger in size
in terms of the number of compounds and relations. However, the distribution
of the relations is relatively skewed where the five most frequent relations
annotate 75% of the compounds in the dataset. The dataset by Tratz (2011)
is by far the largest one with respect to the number of relations as well as
compounds. As noted in § 3.2.3 though, the more specific a relation is the less
frequent it is; for example, the relation MITIGATE&OPPOSE has a frequency

61

of 0.78% compared to an 11.48% frequency for PERFORM&ENGAGE _IN, both
relations broadly express purpose. Overall, each of these datasets comes
with its advantages and disadvantage; for example, while O Séaghdha and
Copestake’s dataset is framed by a linguistic theory, its size poses a limitation
on machine learning approaches. Tratz and Hovy’s dataset, on the other hand,
includes a sizable number of compounds, but it is perhaps less linguistically
motivated, with respect to its inventory of relations as well as annotation
scheme (i.e. the use of MTurk for semantic annotation).

To contrast the three datasets, in §3.3 we analyzed the subset of com-
pounds the three datasets annotate. We found that there are only 33 com-
pounds that are common to the three datasets, which obviously limits our
contrastive analysis to mere observations. For example, even though we
observed some potential cross-dataset consistency in relations that express
possession and group membership, we cannot conclude whether or not this
observation is indeed a pattern. This uncertainty, coupled with the fact that
none of the datasets (and taxonomies) seems to be advantageous on all fronts,
motivates our approach to consider how existing linguistic representation
resources deal with noun-noun compounds in § 3.4.

We introduced two well-established meaning representation frameworks,
NomBank and PCEDT (Sections 3.4.1 and 3.4.2, respectively), which can be
exploited to derive a new dataset for compound interpretation. NomBank
annotates the argument structure of nominal predicates in noun phrases.
PCEDT, in contrast, is a multi-layered whole-sentence meaning representation
framework. We showed that noun—noun compounds are inherently annotated
as part of broader constructions in both resources. The fact that PCEDT
annotates the same corpus as NomBank (viz. the WSJ corpus in PTB)
makes these two resources all the more interesting. We also briefly discussed
the potential of using two other meaning representation resources; namely,
AMR and DeepBank. We found that extracting compound interpretation
from AMR graphs presupposes an alignment between the tokens and AMR
concepts, which adds an error-prone step to deriving a compound dataset from
AMR. DeepBank does not provide semantic interpretation for noun—noun
compounds, but it remains a valuable resource when it comes to compound
bracketing (cf. §4.4).

In the following chapter, we present the actual process of creating a new
dataset with dual annotation from NomBank and PCEDT, among other
resources.

62

Chapter 4

Resource Creation

In this chapter, we describe the process of deriving a new noun—noun com-
pound dataset from a selection of well-established general-purpose linguistic
resources. We define several versions of our dataset that include syntactic and
semantic annotation of compounds. In addition, we present a comprehensive
study of compound identification as a prerequisite step towards creating a
new compound dataset from annotations over running text. We start the
chapter, in §4.1, by motivating the need for a new dataset and explain the
merits of the approach we take to derive it. In §4.2, we lay out the general
technical framework we use throughout the chapter. In §4.3, we present
and discuss several compound identification methods and then use them to
identify noun—noun compounds in the WSJ corpus of the PTB. In §4.4, we
extract the bracketing of the multi-word compounds in our dataset from
three linguistic resources and evaluate the bracketing agreement between
them. Lastly, in §4.5, we add semantic relations to the compounds in our
dataset from two meaning representation frameworks and discuss how these
annotation relate to each other.

Parts of this chapter build on previously published work in Fares et al.
(2015) and Fares (2016).

4.1 Introduction and Motivation

In Chapters 2 and 3, we showed that there is little agreement on how to
interpret or represent the semantics of noun—noun compounds, whether in
theoretical linguistics or NLP. Consequently, many taxonomies and datasets

63

emerged throughout the decades of research on the topic, each with its
own merits and shortcomings (cf. §3.2). However, which taxonomy (and
dataset) to use remains—by and large—an open research question and is
highly dependent on downstream applications. In an attempt to answer this
question, we take a new perspective on compound interpretation that seeks
to ‘integrate’ this task within broader established meaning representation
frameworks. Therefore, we dedicate this chapter to introducing our new
noun—noun compound dataset and the process of deriving it from existing
linguistic resources.!

The need for a new dataset is motivated by several key reasons, some
of which were already explained in the previous chapter. First, the existing
compound datasets assume distinct taxonomies of relations and annotate
distinct sets of compounds—which makes it difficult to compare them, as
we highlighted above. Our new dataset aims to allow cross-framework com-
parison by using resources that annotate the same text (and hence the same
compounds), such as NomBank and PCEDT. The second reason pertains
to the usability and integration of compound interpretation in other NLP
tasks or applications. As Copestake and Briscoe (2005, p. 130) appositely
note, “without consideration of the integration issues and the purposes of
compound processing, any definition of a target for noun compound analysis
is somewhat arbitrary.” Given that almost all of the existing taxonomies are
compound-specific (i.e. tailor-made for compounds), it is unclear how they
can be utilized beyond the task of compound interpretation itself. Therefore,
with this consideration in mind, we believe that our new dataset opens up
new possibilities for integrating compound interpretation within other NLP
tasks, because it relies on annotation frameworks that are not specific to
noun—noun compounds. Likewise, in order to build a compound processing
pipeline that handles both bracketing and semantic interpretation of noun—
noun compounds, we need a dataset that includes both types of information.
Moreover, on a theoretical level, creating a new dataset based on existing
meaning representations can help further our understanding of noun—noun
compounds as a linguistic construction inherent to some meaning representa-
tion ‘schemes’. Lastly, on a more practical level, the parallel annotations in
our dataset facilitates experimentation with machine learning methods such
as multi-task learning as we will show in Chapter 7.

"'We use ‘linguistic resources’ as a general term to refer to meaning representation
formalisms, treebanks and computational lexica.

64

4.2 Overview

This section gives a brief overview of our approach to automatically construct a
bracketed and semantically annotated dataset of noun—noun compounds from
several linguistic resources. The construction process consists of three main
steps that mirror three of the tasks introduced in § 2.2; namely, (1) compound
identification, (2) compound bracketing and (3) compound interpretation. For
each of these steps, we will use several linguistic resources that provide lexical,
syntactic and semantic annotations for (parts of) the WSJ corpus of the PTB,
viz. NomBank, the English part of PCEDT 2.0, DeepBank and, of course, the
PTB itself. However, since the original PTB leaves the internal structure of
noun phrases unannotated, we will also use the noun phrase annotations by
Vadas and Curran (2007). More specifically, we will first identify noun—noun
compounds in the WSJ corpus using a selection of compound identification
methods detailed in §4.3. Secondly, in §4.4, we will extract the bracketing
of the identified compounds from three different resources: the PTB noun
phrase annotation by Vadas and Curran (2007), DeepBank and PCEDT.
Lastly, in §4.5, we will extract the semantic relations of two-word compounds
as well as bracketed multi-word compounds from two resources: PCEDT and
NomBank.

On a more technical level, we will use the PCEDT files to identify noun—
noun compounds, because the so-called phrase-structure layer (p-layer) in
PCEDT includes the noun phrase annotation by Vadas and Curran (2007),
which is required to apply our compound identification methods. For bracket-
ing, we will also use the PCEDT’s p-layer and t-layer as well as DeepBank.
More concretely, though, we will use the dataset prepared by Oepen et al.
(2014) which includes DeepBank and the PCEDT’s tectogrammatical layer.
We rely on the dataset by Oepen et al. (2014) because it converts the tec-
togrammatical annotation in PCEDT to dependency representation in which
the “set of graph nodes is equivalent to the set of surface tokens”. To extract
the semantic relations, we will also use the dataset by Oepen et al. (2014) for
PCEDT relations and the original NomBank files for NomBank relations.

After each step throughout the whole process, we store the data in a
relational database with a schema that represents the different types of infor-
mation (e.g. bracketing and semantic relations), and the different resources
from which they are derived (e.g. PCEDT and NomBank). In addition, the
database also stores the WSJ sentences of the noun—noun compounds in our

65

dataset (i.e. the context). This setup allows us to easily combine information
in different ways, and therefore instantiate several versions of the dataset.

4.3 Compound Identification

This section presents careful analysis and experimentation directed at the
identification of noun—noun compounds in running English text. We first
motivate the need to address this seemingly simple problem. We then move
on to explaining how previous work has approached compound identification.
Finally, we propose a new method to identify noun—noun compounds based
on syntactic information, and compare it with the more traditional PoS-based
identification strategy.

4.3.1 Motivation and Past Work

“Processing compound nouns thus implies not only interpreting compounds
to provide explicit meaning representation for them ... but also recognising
their occurrences, on the very many occasions that they occur in English
text” — Spérck Jones (1983, p. 5)2

The very first step of creating a noun—noun compound dataset is to identify
sequences of nouns in running text and determine whether a given sequence
actually forms a compound. Noun—noun compound identification is, thus,
an enabling task to create a new compound dataset, and—by extension—a
prerequisite to studying noun-noun compound interpretation. However, as
we explained in § 2.2, this essential task has been mostly overlooked in the
literature, as the majority of past studies focus on semantic interpretation
of compounds and do not pay much attention to the question of identifying
them. Such a perception can be justified, because compound identification
might seem like a simple task at first glance. However, as we will show below,
this basic task is in fact not trivial.

Like for many other NLP tasks, the main approaches to compound identi-
fication can be broadly categorized as either symbolic or statistical. Those
approaches can be further grouped depending on the linguistic information
and strategies they use (cf. §4.3.2). One of the most widely used compound
identification heuristics was proposed by Lauer (1995). To identify binary (i.e.

2Emphasis added.

66

two-word) compounds, Lauer’s heuristic simply looks for consecutive pairs of
so-called ‘sure’ nouns—mnouns that are unambiguous with respect to their PoS
tags—that are neither preceded nor followed by other nouns. Hence, words
like bear and book are excluded by Lauer’s heuristic because they can be used
as verbs as well as nouns. Lauer (1995) reports a high identification precision
of 97.9% on a set of 1,068 candidate compounds from the Grolier Multime-
dia Encyclopedia, where an important factor presumably is his limitation
of candidate compound constituents to unambiguous nouns.®> Importantly,
Lauer (1995, p. 130) clearly points out that “there is no guarantee that two
consecutive nouns form a compound.” For example, the direct and indirect
nominal objects of a transitive verb can occur consecutively without forming
a noun-noun compound. The following sentence (from the WSJ corpus)
illustrates the problem with relying on PoS tags only to identify compounds,
wherein the first and second objects of the verb call might be mistakenly
taken to form a compound, viz. program part.

(4.1) Chairman Theodore Cooper called the program part of the company’s
two-year strategy to implement budget constraints.

Variations of the heuristic proposed by Lauer (1995) comprise some of the
most widely used symbolic approaches to noun—noun compound identification
in more recent NLP studies (Lapata, 2002; Girju et al., 2005; O Séaghdha
& Copestake, 2007; Tratz & Hovy, 2010). Some of these studies, however,
do not mention Lauer’s restriction to unambiguous nouns, e.g. Tratz and
Hovy (2010), which could lead to identifying more false positives because
of PoS tagging errors. Furthermore, some of the studies that use Lauer’s
heuristic resort to manual inspection of the extracted candidate compounds
to exclude false positives (Girju et al., 2007, O Séaghdha & Copestake, 2007;
Kim & Baldwin, 2008). Others use a frequency-based remedy together with
the PoS-based identification method; for example, Farahmand et al. (2015)
rely on a PoS-based method to extract noun-—noun pairs from Wikipedia and
then filter out the pairs whose frequency count is smaller than ten.

3Note that the sure noun constraint introduces bias in identifying compounds because
it eliminates an entire class of nouns that can be verbed. In addition, if we assume a set
‘sure’ nouns, there is no guarantee that these nouns will not be verbed. In fact, Lauer
(1995, p. 207) lists information sources as one of the compounds in his study which means
that both constituents are assumed to be ‘sure’ nouns, but the word source can be used as
a verb according to the Oxford English Dictionary.

67

Lapata and Lascarides (2003) evaluate Lauer’s heuristic on the BNC by
inspecting a sample of 800 noun sequences classified as valid compounds and
report an accuracy of 71%, which is substantially lower than the original
result by Lauer (1995). However, this lower accuracy score is not unexpected
because Lapata and Lascarides (2003) do not implement Lauer’s criterion
of unambiguous nouns and they use an automatically PoS tagged version
of the BNC, which contains some PoS tagging errors. In the same article,
Lapata and Lascarides (2003), also introduce statistical models (based on C4.5
decision tree and naive Bayes learners) to identify noun—noun compounds.
They train and test the models on 1,000 noun sequences that occur only
once in the BNC, and experiment with different combinations of features and
learners. Their best model achieves an accuracy of 72.3%. In addition to
surface form statistics, Lapata and Lascarides (2003) use PoS tag information
in their statistical models, which is the same type of linguistic information
used in Lauer’s heuristic (i.e. PoS tags).

In the following, we propose a new noun—noun compound identification
method that makes use of syntactic information to overcome some of the
limitations of Lauer’s heuristic.

4.3.2 Compound Identification Strategies

In order to explain the problem and our approach more precisely, we define
three dimensions of noun—noun compound identification strategies. The first
dimension is the type of linguistic information used to detect compounds,
namely PoS tags (PoS-based) or syntax trees (syntax-based). The second
dimension concerns the treatment of proper nouns (NNPs), and here we can
define three options: (a) Simply treat proper nouns like common nouns (i.e.
no special treatment), (b) exclude all noun sequences that contain proper
nouns or (c¢) exclude noun sequences that are headed by a proper noun
(assuming that the head is always the right-most word in the sequence).
We refer to those three strategies, respectively, as NNP*, NNP°? and NNP”.
The third dimension concerns the number of constituents (i.e. nouns) within
the compound, which partly depends on the type of linguistic information
we use to identify noun—noun compounds. In the PoS-based approach, we
distinguish between binary and n-ary strategies for compound identification,
where the former identifies two-word compounds and the latter identifies
compounds that have n >= 2 constituents. In the syntax-based approach, we

68

also distinguish between binary and n-ary compounds. However, taking into
consideration that the internal structure (i.e. bracketing) of n-ary compounds
is available, we can also decompose n-ary compounds (where n > 2) into
‘sub-compounds’ including binary ones.

We apply the strategies outlined above on the following example (from
the WSJ) to illustrate the difference between them:

(42) NananNp bankNN indeXNN, WhiChWDT traCkSVBz thriftNN issuesNNS

First, under a PoS-based binary strategy we will extract thrift issues, while
an n-ary strategy will extract both thrift issues and Nasdaq bank index. As
for the proper noun treatment, an NNP? strategy would exclude Nasdaq bank
index but NNP" would not because the proper noun Nasdaq is not in the head
position. In the syntax-based approach, the same rule for NNP treatment
would apply, but we will extract one more binary compound, namely bank
index, as syntax gives access to the internal structure of the compound Nasdagq
bank index.

In the following, we will empirically compare the PoS-based and syntax-
based approaches for both binary and n-ary compounds (using NNPY and
NNP” for proper noun treatment). Since our ultimate goal is to create an
annotated dataset of compounds, we will not consider compounds that consist

of proper nouns only, because NomBank does not annotate complex proper
nouns (cf. §3.4.1).

4.3.3 Syntax-Based Identification

The PoS-based approach for compound identification simply looks for a
consecutive sequence of nouns, and if the goal is to identify binary compounds,
then the noun pair cannot be preceded nor followed by other nouns. With
richer linguistic representations, viz. syntactic trees, the definition of noun—
noun compounds goes one step further; the sequence of nouns is also a
sequence of leaf nodes in the parse tree. Therefore, the definition of a noun—
noun compound becomes a sequence of noun leaf nodes that are dominated
by the same (noun phrase) parent node.* The requirement of a single parent
node stems from the fact that noun—noun compounds act as one nominal,
and hence their constituents cannot belong to two different phrases. In the

4We will amend this definition when we introduce the actual syntactic representation
used in our experiments.

69

NP

K

DT NML NN NN

\ | |
The NmP earthquake disaster

San Francisco

Figure 4.1: Internal noun phrase structure of The San Francisco earthquake
disaster.

syntax-based approach, unlike the PoS-based approach, it does not matter if
a compound is followed or preceded by other nouns, because the surrounding
nouns can be excluded if they are dominated by a different parent node.

In order to compare the PoS- and syntax-based approaches, we use the
English part of the PCEDT which contains the WSJ corpus of the PTB. As
mentioned in §4.2, we choose to use the PCEDT for compound identification
because its p-layer includes the internal noun phrase annotations introduced
by Vadas and Curran (2007). Recall, further, that the original PTB does not
annotate the internal structure of noun phrases, which is why we need the
annotations by Vadas and Curran (2007).

Figure 4.1 shows an example of the internal annotation of noun phrases
in the PCEDT’s p-layer. The NML node stands for nominal modifier left-
branching, and it is one of the nodes added by Vadas and Curran (2007) to
the PTB annotation.> Vadas and Curran (2007) left the right-branching noun
phrases unaltered; in other words, if a noun phrase does not contain an NML
node, then it is right-branching.

Our definition of noun—noun compounds above requires leaf nodes to have
a joint parent node, but in Figure 4.1 we see that San Francisco has a different
parent node than earthquake disaster, even though they are part of the same
compound (and noun phrase). Therefore, in the implementation of syntax-
based compound identification we make an exception for the identical-parent
condition when the parent node is of type NML. In concrete terms, this means
that we can extract the following three compounds from the structure in
Figure4.1 (assuming we allow compounds consisting of proper nouns only):

°The other node Vadas and Curran (2007) add is JJP, and it is used with adjectival
phrases.

70

[[San Francisco| [earthquake disaster]]

Note that even though we make an exception for the identical-parent
condition for NMLs, we still preserve their (left) bracketing constraints, and
hence, a ‘compound’ like Francisco earthquake will not be extracted from the
example phrase above.

4.3.4 Results and Discussion

In order to compare the PoS- and syntax-based approaches we experiment
with detecting noun—noun compounds in the full WSJ of the PTB with
eight different configurations as shown in Table4.1. The table provides total
counts of compound instances (tokens) and the numbers of distinct strings
(i.e. compound types).5

In all configurations, the syntax-based approach identifies more compounds
than the PoS-based one, and that is because the former has access to the
internal structure of the compounds and can therefore extract sub-compounds
out of n-ary ones where n > 2. Furthermore, in the binary setup, the PoS-
based approach is limited to strictly two consecutive nouns. For example, the
noun sequence boardyy meetingyy yesterdayyy is not considered by the binary
PoS-based approach because it contains three consecutive nouns, whereas
the syntax-based approach extracts the binary sub-compound board meeting.
Apart from this, the mere numbers do not tell us much in the absence of
gold-standard data—to the best of our knowledge there is no gold-standard
dataset for noun—noun compound identification. Therefore, we manually
inspect a total of 100 random binary NNP” compounds; 50 of which are only
identified by the PoS-based approach and the other 50 are only identified by
the syntax-based approach. In other words, we inspect two disjoint sets of
compounds whose members are identified by only one of the two approaches.

Of the first set, 28 instances include a percent sign which is tagged as a
noun (NN) in PTB, e.g. % drop in “...and a 4% drop in car loadings”. In fact,
sequences like % stake and % increase are among the top ten most frequent
‘compounds’ identified by the PoS-based approach, which is unsurprising
given the WSJ domain. Such cases are excluded in the syntax-based approach
because the percent sign and the following noun belong to two different
phrase constituents. The PoS-based set includes five cases that were wrongly

SNote that no linguistic pre-processing (e.g. down-casing or stemming) was applied
when calculating the type counts reported in Table4.1.

71

PoS-based Syntax-based
Binary N-Ary Binary N-Ary
NNP? NNP” NNP? NNP? NNP? NNP" NNP? NNP?

Tokens 27,677 33,167 30,296 39,429 29,535 36,441 34,151 42,835
Types 15,128 18,766 17,167 23,704 15,853 20,018 19,469 25,021

Table 4.1: Total number of noun—noun compounds identified in the WSJ
corpus in the PTB. NNP?: Excludes all sequences that contain proper nouns.
NNP?: Excludes sequences headed by a proper noun.

identified as compounds because of annotation errors on the PoS tag level
in PTB, but not on the syntax level. For example, the PoS-based method
extracts store data from the sentence in Example 4.3, because the word store
is tagged as NN (singular common noun) in PTB. On the syntactic level,
however, the phrase “to store data” receives the right analysis (i.e. verb
phrase) and hence it is excluded by the syntax-based method.

(4.3) Conner dominates the market for hard-disk drives used to store data
in laptop computers

We also find subtler annotation errors like treating the adjective in vitro as the
combination of a preposition (IN) and a noun (NN), which led the PoS-based
approach to extract vitro cycles as a compound in “...after only two in vitro
cycles”. The remaining instances involve nouns that are not dominated by the
same parent node (and therefore not identified by the syntax-based method).
There are several linguistic constructions that may lead to such errors, such
as the objects of a ditransitive verb and temporal modifiers like today and
yesterday (tagged as nouns rather than adverbs in the PTB).” In sum, the
50 compounds detected by only the PoS-based approach are invalid noun—
noun compounds, which suggests that the syntax-based approach succeeds in
excluding some of the false positives referred to by Lauer (1995).

Of the 50 compounds detected by the syntax-based approach only, there
are 38 compounds that were extracted from other compounds with more than
two constituents—cases which could not have been identified by the binary

"According to the Part-of-Speech Tagging Guidelines of the PTB (Santorini, 1990, p.
19): “The temporal expressions yesterday, today and tomorrow should be tagged as nouns
(NN) rather than as adverbs (RB). Note that you can (marginally) pluralize them and that
they allow a possessive form, both of which true adverbs do not.”

72

NP

N

NNP CC NN NNS

communications and business relationships

Figure 4.2: Coordination structure

PoS-based approach. Furthermore, we see seven compounds that are either
followed or preceded by other nouns. Such cases are also unidentifiable by
the PoS-based approach because it requires pairs of nouns not surrounded
by other nouns. We also find four annotation errors where left-branching
noun phrases were annotated as right-branching. For example, the phrase
San Diego home is considered right-branching in the Vadas and Curran (2007)
annotation of noun phrases in PTB, which leads to extracting Diego home as
a ‘compound’.

The result analysis further reveals that the syntax-based approach includes
arguably incorrect compounds when a noun is preceded by a coordinated
phrase with noun conjuncts, such as communications and business relation-
ships in Figure 4.2. The syntax-based approach extracts business relationships,
but this can be either incorrect or incomplete extraction given the nature of
coordination structures as we will discuss in the following sub-section.

The result analysis also revealed that our implementation of the identical-
parent condition was not fine-grained enough to preserve the left bracketing
information in some NML constituents. For example, in Figure4.3 our
implementation wrongly extracted the compound development expenses. In
the following section we report the number of compounds extracted with a
finer-grained implementation of the syntax-based approach that handles such

CITors.

4.3.5 Refined Identification Method

As discussed in the previous section, extracting noun—noun compounds that
are partially contained in nominal coordinate structures calls for careful
treatment. In order to handle coordinate constructions properly, we need to
distinguish between distributive and non-distributive (or collective) coordinate
structures. Consider the following coordinate constructions:

73

NP

NNP NML NNS
\ \
Cray-3 expenses
NNP CcC NN
\ \ \
research and development

Figure 4.3: Coordination structure: Left-branching

(4.4) Business and nursing programs

(4.5) Research and development expenses

The first construction can be considered distributive and could be para-
phrased as business programs and nursing programs. The second construction,
however, is arguably non-distributive, which means that the two nominal con-
juncts research and development ‘jointly’ modify the noun ezpenses—though it
is also possible that the construction is referring to research expenses and devel-
opment expenses, but we assume it is non-distributive for the sake of argument.
Given this distinction between distributive and non-distributive coordinate
structures, it would in principle be possible to extract compounds from dis-
tributive coordinate structures; e.g. nursing programs from Example4.4. In
practice, however, the PTB annotation does not distinguish between dis-
tributive and non-distributive coordinate structures, and therefore we decide
conservatively to exclude all noun—noun compounds that are part of coordinate
structures.

We further refine our implementation of the syntax-based identification
approach to ensure that left-branching noun phrases are handled correctly.
Consider the phrase regional wastewater system improvement revenue bonds
in Figure4.4, which includes an adjectival modifier as part of the initial
compound. According to our definition of noun—noun compounds (as strictly
nominal sequences), the only compound that can be extracted from this phrase
is revenue bonds. Given the underspecified bracketing information within
the first NML constituent, extracting wastewater system might be incorrect
because, arguably, wastewater in this construction may be modified by regional,
as shown in the following bracketing. We refine our implementation of the

74

NP

NML NN NNS
| |

revenue bonds

NML NN
\

improvement

JJ NN NN
\ \ \

regional wastewater system

Figure 4.4: Analysis of regional wastewater system improvement revenue
bonds

syntax-based approach to correctly handle such cases as well, i.e. identify
revenue bonds as only compound in this example.

[[[[regional wastewater| system| improvement] [revenue bonds]]

Table 4.2 shows the number of compound instances and types identified
using the refined syntax-based approach, which also excludes all noun—noun
compounds that are part of a coordinate structure. Our refined implementa-
tion of the syntax-based heuristic identifies 33,092 binary NNP” compounds
and 38,917 n-ary NNP”" compounds. Expectedly, we now identify fewer com-
pounds than in the less restrictive syntax-based method (cf. Table4.1), but
still comparable in number to the PoS-based method (which would extract
some compounds from both the conjoined modifier and adjectival modification
structures of Figures 4.3 and 4.4). However, the trends regarding false posi-
tives and false negatives observed in the results analysis of §4.3.4 apply with
equal force to this more conservative parameterization of our syntax-based
method.

We adopt this final set of noun—noun compounds as the basis for the
following sections where we automatically construct a dataset of bracketed
noun—noun compounds annotated with semantic relations from PCEDT and
NomBank. Note, however, that the number of compounds in our dataset will
vary in the following sections depending on the resources we use.

1)

Binary N-Ary
NNP® NNP* NNPY NNP”

Compound instances 27,418 33,092 29,666 38,917
Compound types 14,498 18,200 16,249 22,765

Table 4.2: Number of noun—noun compounds in the WSJ corpus of the PTB
identified using the refined syntax-based method.

4.4 Noun—Noun Compound Bracketing

We now turn to the bracketing of multi-word compounds in our dataset,
which already came up in the context of compound identification in §4.3.5.
Given that the set of compounds we identified in the previous section contains
n-ary compounds, we need to establish the bracketing of such compounds.
As explained in §2.2.2, noun—noun compound bracketing can be defined as
the disambiguation of the internal structure of compounds with three nouns
or more. For example, we can bracket the compound noon fashion show in
one of the following ways:

(4.6) Left-branching: [[noon fashion] show]
(4.7) Right-branching: [noon [fashion show]]

In this example, the right-branching interpretation refers to a fashion show
happening at noon, whereas the left-branching one expresses a show of ‘noon
fashion’, for example in an interpretation of mid-day attire. One can argue
that the right-branching bracketing is the more likely one, but the correct
bracketing need not always be as obvious—some compounds can be subtler
to bracket, e.g. car radio equipment (Girju et al., 2005).

As explained in §4.2, we extract the bracketing of the n-ary compounds
in our dataset from three resources: Vadas and Curran’s (2007) annotation of
noun phrases in PTB (VC-PTB, henceforth), DeepBank and PCEDT. Vadas
and Curran (2007) manually annotated the internal structure of noun phrases
(NPs) in the PTB which were originally left unannotated (i.e. all NPs in the
PTB have a flat structure). However, as is the case with other resources,
Vadas and Curran’s annotation is not completely error-free. For example,
we find at least 57 right-branching compounds that contain New York, like
the compound New York lawyer which is bracketed as right-branching by
Vadas and Curran (2007), but it is obviously left-branching, i.e. [[New York]

76

compound
compound compound

New York investment bank
(a) DeepBank

RSTR

| tahd
/

New York investment bank

(b) PCEDT

Figure 4.5: The DeepBank and PCEDT annotation of the compound New
York investment bank.

lawyer]. We, therefore, crosscheck the bracketings by Vadas and Curran
(2007) with those of DeepBank and PCEDT. The latter two, however, do not
contain explicit annotation of noun—noun compound bracketing, but we can
‘reconstruct’ the bracketing based on the dependency relations assigned in
both resources, i.e. the logical form meaning representation in DeepBank and
the tectogrammatical layer (¢-layer) in PCEDT. More specifically, we rely on
the dependency edges in the graph representations by Oepen et al. (2014) to
reconstruct the compound bracketing in DeepBank and PCEDT. For example,
Figures 4.5a and 4.5b show (parts of) the bi-lexical dependency graphs of the
compound New York investment bank in DeepBank and PCEDT. Based on
the dependency edges in both graphs, we extract the following bracketing for
the compound: [[New York] [investment bank]].

4.4.1 Data and Results

In the following, we present the results of mapping and contrasting the
PCEDT, DeepBank and VC-PTB bracketing of the n-ary compounds (where
n > 2) identified using the refined syntax-based approach in §4.3.5.

Even though we can identify 38,917 noun—noun compounds in the full
WSJ corpus (cf. Table4.2), the set of compounds that constitutes the basis
for bracketing analysis (i.e. the set of compounds that occur in all three
aforementioned resources) is smaller for two reasons. First, DeepBank only
annotates the first 22 sections of the WSJ corpus. Second, not all the

7

DeepBank
DeepBank DeepBank PCEDT PCEDT
PCEDT VC-PTB VC-PTB VC-PTB

NNP” 80% 79% 88% 5%
NNP? 78% 75% 90% 74%
NNP” excl. sub 82% 82% 86% 5%
NNP? excl. sub 81% 7% 90% 4%

Table 4.3: Pairwise and three-way bracketing agreement. NNPY: excluding
proper nouns; NNP”: proper nouns are only allowed in the modifier position;
excl. sub: excluding sub-compounds

noun sequences identified as compounds in VC-PTB are treated as such in
DeepBank and PCEDT. Hence, the number of noun—noun compounds that
occur in all the three resources is 26,500. Furthermore, almost three-quarters
(76%) of these compounds consist of two nouns only, meaning that they do
not require bracketing, which leaves us a subset of 6,244 compounds—we will
refer to this subset as the bracketing subset. Unless otherwise specified, all
numbers and percentages reported in the rest of this sub-section are based on
the bracketing subset.

After mapping the bracketings from the three resources we find that they
agree on the bracketing of almost 75% of the compounds in the bracketing
subset (cf. the right-most column in Table4.3). Such an agreement score is
relatively good compared to previously reported agreement levels on much
smaller datasets, e.g. Girju et al. (2005) report a bracketing agreement of 87%
on a small set of 362 three-word compounds. Inspecting the disagreement
among the three resources reveals two things. First, noun-noun compounds
which contain proper nouns (NNP) constitute 45% of the compounds that are
bracketed differently. Second, 41% of the differently bracketed compounds are
actually sub-compounds of larger compounds. For example, the compound
deputy editorial features editor is bracketed in three different ways in VC-
PTB, PCEDT and DeepBank which results in different sub-compounds in
these resources, namely deputy editorial features in PCEDT and editorial
features editor in VC-PTB and DeepBank. The sub-compounds themselves
also receive different bracketing analyses, leading to extracting the binary
sub-compounds editorial features from PCEDT and DeepBank and features
editor from VC-PTB.

78

VC-PTB [New [York [exchange [board meeting|

I
I

[)
PCEDT [[New York] [exchange [board meeting]]]
DeepBank [[[New York] [exchange board]] meeting]
Ours [[[[New York] exchange| board] meeting]

Table 4.4: Bracketing of New York exchange board meeting in VC-PTB,
PCEDT and DeepBank. The last row shows our intuition of what should be
the correct bracketing.

It is noteworthy that those two observations do not reflect the properties
of compounds containing NNPs or sub-compounds; they only tell us their
percentages in the set of differently bracketed compounds. To get the full
picture, we need to look at the number of sub-compounds and compounds
containing NNPs in the set of compounds where the three resources agree.
As it turns out, 72% of the compounds containing NNPs and 76% of the
sub-compounds are bracketed similarly across the three resources. Therefore,
when we exclude them from the bracketing subset we do not see a significant
change in bracketing agreement among the three resources (compare the top
two cells in the right-most column in Table 4.3 with the bottom two cells in
the same column).

We find eleven cases only where the three resources provide three different
bracketings, and in some cases the three bracketings are arguably wrong. For
example, Table 4.4 shows the bracketing of the compound New York exchange
board meeting according to the three resources, in addition to what we believe
to be the correct bracketing.®

In Table4.3 we report pairwise bracketing agreement levels among the
three resources. The relatively high agreement level between PCEDT and
VC-PTB should not come as a surprise; the so-called phrase-structure layer
(p-layer) in PCEDT uses the VC-PTB annotation, and therefore the PCEDT
bracketing extracted from the t-layer is expected to be similar to that in the
p-layer (i.e. VC-PTB bracketing). Further, PCEDT and VC-PTB seem to
disagree more on the bracketing of noun—-noun compounds containing NNPs,
because when proper nouns are excluded the agreement level between PCEDT

80ur bracketing is based on the context in which the compound occurs in the PTB: “At
another point during the hearing, Rep. Markey asked Mr. Phelan what would be discussed
at a New York exchange board meeting today.” Knowing that John J. Phelan Jr was a
chairperson of the New York Stock Exchange, we believe that our analysis is more plausible
than the other three bracketings in Table 4.4.

79

and VC-PTB increases, but it decreases for the other two pairs.

As we look closer at the compound instances where at least two of the
three resources disagree, we find that some instances are easy to classify as
annotation errors. For example, the compound New York streets is bracketed
as right-branching in VC-PTB, but we can confidently say that this a left-
bracketing compound. Not all bracketing disagreements are that easy to
resolve though; one example where left- and right-bracketing can be accepted
is Furopean Common Market approach, which is bracketed as follows in
DeepBank (1) and PCEDT and VC-PTB (2):

1. [[European [Common Market]] approach]

2. [European [[Common Market| approach]]

Even though we do not aim to study compound bracketing in this work,
we believe that a part of the bracketing dataset can be used for future
experimentation. More specifically, we can redefine the bracketing subset to be
the set of compounds that are bracketed similarly in the three resources, which
arguably ensures a high-quality annotation.® Lastly, using the bracketing
annotation, we can extract binary sub-compounds from n-ary ones and include
them in our compound interpretation dataset, as detailed in the following
section.

4.5 Semantic Relations

Now that we have a set of noun—noun compounds with bracketing annotation
for n-ary compounds, we move to the last step of adding semantic relations
to the compounds in our dataset.

As explained in §4.2, we rely on PCEDT and NomBank to define the
semantic relations in our dataset, which includes the bracketed compounds
from the previous section as well as two-word or binary compounds. However,
unlike in §4.4, the set of noun—noun compounds in this section consists of the
compounds that are (1) bracketed similarly in PCEDT and VC-PTB, (2) occur

9Resolving the bracketing discrepancies in the three resources falls outside the scope of
our work, but we have shared our findings with the original resource creators and provided
them with a web-based ‘tool’ that allows them to inspect the bracketing disagreement, and
possibly correct them. The tool can be found on https://ltgoslo.github.io/fun-nom/
bracketing

80

https://ltgoslo.github.io/fun-nom/bracketing
https://ltgoslo.github.io/fun-nom/bracketing

in both resources and (3) are annotated in NomBank. This set consists of
26,709 compounds and 15,647 compound types, which can be either binary
or n-ary and include proper nouns in the modifier position only.'® We do not
use the intersection of the three resources (as in §4.4), because DeepBank
does not contribute to the semantic relations of noun-noun compounds (cf.
§3.4.3) and it limits the size of our dataset (cf. §4.4). Nonetheless, given
our technical setup (i.e. the database) we can readily produce the set of
compounds that occur in the three resources and are bracketed similarly, and
then extract their semantic relations from PCEDT and NomBank.

We introduced some of the theoretical aspects behind NomBank and
PCEDT in §3.4.1 and §3.4.2, respectively; for convenience, we briefly repeat
some of the relevant points here. PCEDT assigns syntactico-semantic labels,
so-called functors, to all the syntactic dependency relations in the tectogram-
matical layer (a deep syntactic structure). Drawing on the valency theory of
the Functional Generative Description, PCEDT defines 70 functors for verbs
as well as nouns and adjectives (Cinkova et al., 2009).!! NomBank, on the
other hand, annotates the argument structure of nominal predicates only;
in other words, it assigns role labels (arguments and adjuncts) to common
nouns in the PTB. In general, NomBank distinguishes between predicate
arguments and adjuncts (modifiers), which correspond to those defined in
PropBank.!? We take both types of NomBank relations (i.e. arguments and
adjuncts) as well as the PCEDT functors to be the ‘semantic’ relations of
noun—noun compounds in our dataset.

4.5.1 Data, Results and Reflections

Given 26, 709 noun—noun compounds, we construct a dataset with two rela-
tions per compound: a PCEDT functor and a NomBank argument role or
modifier. The resulting dataset is relatively large compared to the datasets
we reviewed in the previous chapter (cf. Table3.1). However, the largest
dataset by Tratz and Hovy (2010) is type-based and includes a small number

10The number of compound types becomes 14,405 if we count based on the lemmatized
form of the constituents.

HThe functors attested in our dataset are fully defined in § B.2. The full inventory
of PCEDT functors is available on https://ufal.mff.cuni.cz/pcedt2.0/en/functors
.html. Accessed: 13 April 2019.

12We define the NomBank arguments and adjuncts attested in our dataset in §B.1. The
full list of NomBank adjuncts can be found in Table 2 in Meyers (2007, p. 90).

81

https://ufal.mff.cuni.cz/pcedt2.0/en/functors.html
https://ufal.mff.cuni.cz/pcedt2.0/en/functors.html

Relation ~ Count % Example

ARG1 15811 59.20 interest rate
ARG2 3779 14.15 appeals court
ARGO 2701 10.11 bank financing
ARG3 1767 6.62 vice president

ARGM-LOC 1131 4.23 market price
ARGM-MNR 563 2.11 program trading
ARGM-TMP 510 1.91 pretax profit
ARGM-PNC 149 0.56 takeover bid

Support 142 0.53 parent company

ARG4 76 0.28 earthquake insurance
ARGM-ADV 18 0.07 paper losses

ARG1-HO 15 0.06 sticker-shock reaction
ARGO-HO 12 0.04 House-Senate agreement
ARGS8 9 0.03 breakfast meeting
ARGM-EXT 8 0.03 percentage gainer
ARGM-CAU 4 0.01 -cancer deaths

ARG9 4 0.01 Geneva meeting
ARG1-H1 4 0.01 debt-reduction requirement
ARG3-HO 3 0.01 Chicago-Paris flight
ARG5S 3 0.01 Ilandslide win

Table 4.5: Distribution of NomBank relations over the set of 26,709 com-
pounds. The relations are defined in § B.1.

of compounds with proper nouns. The size of our dataset becomes 11,761 if
we exclude the compounds containing proper nouns and only count the com-
pound types.'? In addition to being the second largest dataset for compound
interpretation, our dataset offers several important advantages, such as dual
semantic annotation and bracketing of multi-word compounds, inter alia.
Tables 4.5 and 4.6 show the NomBank and PCEDT relations attested in
our dataset and their distribution over the 26, 709 compounds.'* Overall, we
observe a total of 34 PCEDT functors and 20 NomBank roles and adjuncts.'®

13Counting the number of compound types based on their lemmas, the size of our dataset
becomes 10, 596.

14In Table4.6, and throughout this thesis, we shorten the names of some the PCEDT
functors. Specifically, we drop the suffix ‘-arg’ from the names of the following relations:
PAT-arg, ACT-arg, ORIG-arg, EFF-arg and ADDR-arg.

15We also use a special relation called NONE with 37 binary compounds that do not
actually form compounds according to the PCEDT t-layer analysis. For example, in our

82

Relation Count % Example

RSTR 12992 48.64 vice president

PAT 3867 14.48 auto maker

APP 3543 13.27 company spokesman
REG 2176 8.15 money manager

ACT 1286 4.81 earnings growth

LOoC 979 3.67 floor trader

TWHEN 367 1.37 pretax gain

AIM 284 1.06 pension fund

ID 256 0.96 Bush administration
MAT 136 0.51 interest rates

NE 132 0.49 Bay area

ORIG 114 0.43 interest income
MANN 83 0.31 program trading
MEANS 56 0.21 loan losses

EFF 55 0.21 stock prices

AUTH 49 0.18 Hemingway book
BEN 40 0.15 employee manuals
ADDR 39 0.15 consumer loans
CAUS 38 0.14 cancer deaths

THL 38 0.14 quarter loss

CRIT 25 0.09 Dbankruptcy-law protection
DIR1 21 0.08 college dropouts
DIR3 19 0.07 research investment
TFRWH 18 0.07 December contract
EXT 8 0.03 part time

TFHL 6 0.02 lifetime job

CPR 5 0.02 zombie approach
DIFF 5 0.02 media witch hunty
ACMP 4 0.01 discount-coupon books
DIR2 1 0.00 highway travelers
DPHR 1 0.00 ambulance chasers
RESL 1 0.00 -controlling interest
THO 1 0.00 quarterly dividend
TPAR 1 0.00 session losses

Table 4.6: Distribution of PCEDT functors over the set of 26, 709 compounds.
The relations are defined in §B.2. 7 The compound media witch hunt is
right-branching, which means the relation is between media and hunt.

83

Before we discuss the distribution of these relations, we define some of the
frequent ones in the following. In PCEDT, the most frequent functor, RSTR, is
an underspecified relation that expresses a restrictive attribute; PAT and ACT
describe, respectively, patient and agent (or actor) arguments; APP describes
possession or ownership (appurtenance); REG expresses a circumstance the
predicate takes into account; TWHEN and LOC refer to temporal and locative
modifiers, respectively. The interpretation of the numbered arguments in
NomBank often depends on the predicate itself, but—conventionally—ARGO
and ARG1 correspond to proto-agent (or actor) and proto-patient (or theme)
roles, respectively. ARG2 typically expresses recipient or beneficiary, but this
need not always hold. Adjuncts in NomBank are denoted by the prefix ARGM-
followed by a so-called function label such as LOC (locative), TMP (temporal),
MNR (manner), CAU (cause), PNC (purpose) and EXT (extent). We provide the
definition of all the NomBank and PCEDT relations in our dataset in § B.1
and §B.2.

As can be seen from Tables 4.5 and 4.6, the distribution of the NomBank
and PCEDT relations is rather imbalanced; only twelve functors and nine
NomBank relations occur more than 100 times in the dataset. Further, the
most frequent NomBank relation (ARG1) accounts for 59% of the data, and
the five most frequent relations account for about 95% of the data. We see
a similar pattern in the distribution of PCEDT functors, where 49% of the
compounds are annotated with the underspecified functor RSTR, and the five
most frequent functors account for 89% of the data (cf. Table4.6).

Such a distribution of relations is not unexpected in both PCEDT and
NomBank. Almost 61% of the 114, 576 noun instances annotated in NomBank
include an ARG1 argument, and hence the high frequency of this relation in our
dataset is just representative of the original NomBank annotation. Moreover,
we have already seen a somewhat similar pattern in other datasets; for
example, Kim and Baldwin (2008) report that 42% of the compounds in
their dataset are annotated as TOPIC (cf. §3.2.2), which is more or less the
equivalent of ARG1 in NomBank. According to Cinkova et al. (2006), the
arguments or relations that cannot be expressed by “semantically expressive”
functors in PCEDT usually get assigned the functor PAT, which is the second

dataset, oil man is extracted as a binary compound from the phrase “...decide how much
oil man William Herbert Hunt will owe ...”, but the PCEDT’s t-layer analyzes oil as part
of the WH-phrase, i.e. [how much oil] [man William Herbert Hunt will owe], whereas the
PTB analysis of this phrase looks as follow: [how much][oil man]|[William Herbert Hunt
will owe].

84

most frequent functor in our dataset.

Of course, such a skewed distribution of relations is far from ideal for
training machine learning models. We can potentially modify our dataset to
achieve a slightly more balanced distribution, for example, by mapping some
of the specific temporal functors in PCEDT (THL, THFL and THO; cf. § B.2)
to just one general relation (e.g. TWHEN). However, given our goal to study
how noun-noun compounds are interpreted in meaning representation frame-
works, we choose to use the dataset as-is, and instead try to employ various
machine learning strategies for overcoming the challenge of an imbalanced
data distribution (cf. Chapter 7).

Lastly, some of the examples we provide in Tables 4.5 and 4.6 reveal that
our dataset still contains some errors. For example, quarterly dividend in
Table 4.6 is not a noun—noun compound, but it was extracted from the WSJ
text because the PTB tags quarterly as a noun in this instance.'® In addition,
some of the constituents in Tables 4.5 and 4.6 are hyphenated words, but they
still form a single unit in our dataset; for example, discount-coupon books is
considered a binary compound in our dataset. NomBank tends to be more
specific when annotating hyphenated words through using so-called hyphen
tags (-HO and -H1) to denote which constituent of the hyphenated string is
actually the argument; e.g. the relation ARG1-H1 indicates that reduction in
debt-reduction requirement is the ARG1 of requirement. We will specify how
such compounds will be treated in practice in Chapter 6.

4.5.2 Correspondence between PCEDT and NomBank

One of the motivations behind creating our new dataset is to compare how
different meaning representation frameworks annotate the same set of com-
pounds. In this section, we present a quantitative analysis of how the PCEDT
functors map to NomBank arguments and modifiers, and vice versa.

In theory, some of the PCEDT functors and NomBank relations express
the same type of relations; for example, both the PCEDT functor LOC and
NomBank adjunct ARGM-LOC describe a locative modifier.!” Therefore, in order
to confirm whether such ‘theoretical” similarities actually hold in practice,

16The ‘compound’ is extracted from the following sentence: “CMS Energy Corp. said it
would begin paying a 10-cent-a-share quarterly dividend, the company’s first since 1984”.

1"Bonial et al. (2014) also find lexical resource like PropBank and EngValLex (the
PCEDT’s English valency lexicon) “surprisingly compatible” even though they were created
“independently and with different goals”.

85

ARG1 ARG2 ARGO ARG3 ARGM-LOC ARGM-MNR ARGM-TMP ARGM-PNC

RSTR 0.60 0.12 0.08 0.10 0.03 0.03 0.01 0.01
PAT 0.89 0.05 0.01 0.03 0.01 0.01 0.01
APP 0.42 037 0.17 0.01 0.03 0.00 0.00 0.00
REG 0.75 0.09 0.07 0.07 0.00 0.01 0.00 0.00
ACT 0.46 0.03 0.48 0.01 0.01 0.00

LocC 0.16 0.20 0.09 0.01 0.54

TWHEN 0.12 0.04 0.00 0.01 0.81

AIM 0.65 0.12 0.06 0.08 0.00 0.00 0.05

ID 0.39 030 0.27 0.04 0.00
MAT 0.86 0.09 0.01 0.02
NE 0.32 046 0.13 0.02 0.06

ORIG 0.20 0.19 0.13 0.37 0.06 0.01 0.01
MANN 0.23 0.07 0.01 0.04 0.65

MEANS 0.45 0.09 0.04 0.12 0.14 0.11

EFF 0.60 0.18 0.11 0.04 0.04
AUTH 1.00

BEN 0.45 0.35 0.03 0.17

ADDR 0.18 0.64 0.10 0.08

CAUS 0.21 0.18 0.18 0.32 0.08
THL 0.03 0.03 0.95

Table 4.7: Correlation between PCEDT functors and NomBank arguments
and modifiers. The table maps PCEDT to NomBank relations. The numbers
in boldface indicate the PCEDT functors and NomBank relations that we
a priori assume are semantically comparable. The empty cells denote zero,
whereas 0.00 is a very small non-zero number. The correlations are to be read
row-wise.

86

ARG1 ARG2 ARGO ARG3 ARGM-LOC ARGM-MNR ARGM-TMP ARGM-PNC

RSTR 0.50 040 0.38 0.76 0.37 0.79 0.27 0.66
PAT 0.22 0.05 0.02 0.06 0.02 0.07 0.13
APP 0.09 034 0.22 0.02 0.09 0.00 0.01 0.01
REG 0.10 0.05 0.05 0.08 0.01 0.02 0.01 0.07
ACT 0.04 0.01 0.23 0.00 0.02 0.01

LocC 0.01 0.05 0.03 0.00 0.47

TWHEN 0.00 0.00 0.00 0.00 0.58

AIM 0.01 0.01 0.01 0.01 0.00 0.00 0.09

ID 0.01 0.02 0.03 0.01 0.00
MAT 0.01 0.00 0.00 0.00
NE 0.00 0.02 0.01 0.00 0.01

ORIG 0.00 0.01 0.01 0.02 0.01 0.00 0.01
MANN 0.00 0.00 0.00 0.00 0.10

MEANS 0.00 0.00 0.00 0.00 0.01 0.01

EFF 0.00 0.00 0.00 0.00 0.01
AUTH 0.02

BEN 0.00 0.00 0.00 0.00

ADDR 0.00 0.01 0.00 0.00

CAUS 0.00 0.00 0.00 0.01 0.02
THL 0.00 0.00 0.07

Table 4.8: Correlation between NomBank arguments and modifiers and
PCEDT functors. The table maps NomBank to PCEDT relations. The
numbers in boldface indicate the PCEDT functors and NomBank relations
that we a priori assume are semantically comparable. The empty cells denote
zero, whereas (.00 is a very small non-zero number. The correlations are to
be read column-wise.

87

we show the correlation between the PCEDT and NomBank relations in
Tables 4.7 and 4.8. The first table shows the mapping of PCEDT functors to
NomBank relations (and Table4.8 is the other way around—from NomBank
to PCEDT); for instance, the second cell from the top under the second
column in Table4.7, shows that 89% of the compounds annotated as PAT in
PCEDT receive the relation ARG1 in NomBank. Note that since some of the
relations in both resources annotate only a handful of compounds, we limit
the comparison to the 20 most frequent functors in PCEDT and the 8 most
frequent relations in NomBank.

The numbers in boldface in Tables 4.7 and 4.8 indicate the PCEDT
functors and NomBank relations that we a priori assume are semantically
comparable. For example, the temporal functors in PCEDT (viz. TWHEN and
THL) intuitively correspond to the temporal modifier in NomBank (ARGM-TMP).
Indeed, looking at the figures in Tables 4.7 and 4.8, it is evident that such
similarities largely hold in practice. More specifically, 81% of the TWHEN
compounds and 95% of the THL compounds in PCEDT are annotated as
ARGM-TMP in NomBank (note, however, that there are only 38 THL compounds;
cf. Table4.6). From Table4.8, 58% of the ARGM-TMP compounds in NomBank
map to THWEN in PCEDT. On the surface, 58% might seem comparatively
low (considering the reverse mapping), however the number of ARGM-TMP
compounds (510) is higher than the TWHEN compounds (367), and hence in the
best case scenario the correspondence would be at 72%. In other words, the
total number of TWHEN compounds constitutes about 72% of the ARGM-TMP
ones.

The locative modifiers in NomBank and PCEDT, which were mentioned
above, are also expected to annotate many of the same compounds. The
number of compounds annotated by the locative relation in PCEDT is com-
parable to those annotated as such in NomBank (979 and 1, 131, respectively;
cf. Tables 4.5 and 4.6). However, the overlap between the sets of compounds
annotated by LOC and ARGM-LOC is 54% from PCEDT to NomBank and 47%
the other way around. From Table 4.8, we see that 37% of the ARGM-LOC
compounds (that is, 415 compounds) are annotated as RSTR in PCEDT.
Looking at some examples in this set of compounds, we find some potential
inconsistencies in the PCEDT annotation; for example, the compound floor
trader occurs 21 times in our dataset and is annotated with three different
functors in PCEDT (17 RSTR, 3 LOC and 1 ACT). In NomBank, however, all the
instances of this compound are annotated with ARGM-LOC. We further probe

88

the issue of potential annotation inconsistency in PCEDT, in the following
subsection.

Similarly, the functors ACT (actor) and AUTH (authorship) show relatively
high correspondence with the NomBank argument ARGO (agent or actor),
but the reverse correspondence is not as obvious. The same applies to the
mapping from the functor PAT (patient) to the NomBank argument ARG1.
In both cases, however, the (high) number of ARG1 and ARGO in NomBank
affects the percentages in Table4.8 when mapping these two relations to
their PCEDT counterparts. Perhaps the most obvious example of where our
assumed theoretical similarity does not hold is the relations AIM in PCEDT
and ARGM-PNC; both relations express purpose, but their correspondence is
very low, cf. Tables 4.7 and 4.8.

It is evident from the discussion above that not all ‘theoretical similarities’
are necessarily reflected in practice. NomBank and PCEDT are two differ-
ent resources that were created with different annotation guidelines and by
different annotators, and therefore we cannot expect perfect correspondence
between PCEDT functors and NomBank arguments and adjuncts. That said,
in Chapter 7, we will use transfer and multi-task learning as an empirical
step to determine the usefulness of the (partial) correspondence between the
NomBank and PCEDT relations.

4.5.3 Type vs. Token Semantics

Thus far, our analysis has focused on the instance-based (or token-based)
version of our dataset, where the same compound type can occur more than
once. However, as we have repeatedly highlighted, most of the existing
compound datasets operate on the type level. It is, therefore, often assumed
that noun—noun compounds have the same interpretation regardless of their
context.

In the previous section, we observed that PCEDT assigns more than one
functor to different instances of the compound floor trader. In fact, some
of the most frequent compound types are annotated with several functors
in PCEDT; for example, the compound Bush administration is the most
frequent compound under the functor APP (69 times), but it is also the second
most frequent compound annotated with the functor ID (10 times). Likewise,
interest rate is the most frequent compound annotated with the functor MAT
(12 times) and the second most frequent one annotated as APP (64 times). The

89

compound takeover bid, which occurs 28 times in our dataset, is annotated
with four different functors in PCEDT, including AIM and RSTR, whereas
in NomBank it is always annotated as ARGM-PNC. Overall, around 13% of
the compound types are annotated with more than one functor in PCEDT,
whereas only 1.3% of the compound types are annotated with more than one
argument in NomBank.'®

This observation raises the question of whether or not the semantics of
noun—noun compounds varies depending on their context, i.e. token-based
vs. type-based semantics. While we identify a few examples that support
the token-based perspective in NomBank, most of the examples in PCEDT
seem to be a result of inconsistency in annotation. Indeed, the PCEDT
documentation clearly cautions that “[t]he annotators tried to interpret
complex noun phrases with semantically expressive functors as much as they
could. This annotation is, of course, very inconsistent.”!? We suspect that the
annotation inconsistency is partly due to the fact that the PCEDT English
valency lexicon is primarily focused on verbal lexical units, and thus there
are no restrictions on the valency structure for nouns.? Therefore, in the
following we focus on NomBank only.

We identify at least two reasons why NomBank sometimes assigns different
relations for different occurrences (or instances) of the same compound type.
First, if one of the compound’s constituents has more than one sense, this
can lead to different interpretations depending on the context. We already
gave an example of such cases in §2.2.3, in which the compound earthquake
coverage is annotated with two relations depending on the meaning of coverage.
In Example 4.8, the word coverage is used to refer to insurance protection,
whereas in Example 4.9 coverage is used in the context of media reporting.

(4.8) Industry officials say the Bay Bridge — unlike some bridges — has no
earthquake coverageygga, either, so the cost of repairing it probably

18Tn this subsection, when we write that a compound is annotated with more than one
relation, we mean that different instances or occurrences of the same compound type are
annotated with distinct relations.

9The PCEDT online documentation https://ufal.mff.cuni.cz/pcedt2.0/en/
valency.html. Accessed: 21 March 2019.

20In §3.4.2, we wrote that the PCEDT defines “specific annotation rules for deverbal
nominalizations, based on a set of suffixes typical of deverbal nouns, which assumes that
some forms of nominalizations inherit their argument structure from the underlying verb.”
However, this does not immediately entail that nominalizations have their own entries in
the PCEDT English Valency Lexicon.

90

https://ufal.mff.cuni.cz/pcedt2.0/en/valency.html
https://ufal.mff.cuni.cz/pcedt2.0/en/valency.html

would have to be paid out of state general operating funds.

(4.9) The Associated Press’s earthquake coverageyge drew attention to
a phenomenon that deserves some thought by public officials and
other policy makers.

Overall, there are only 60 compound types in our dataset that are anno-
tated with more than one sense from NomBank. However, some of these are
clearly due to annotation errors; for example, the compound budget cut occurs
five times in our dataset, four of which interpret cut using the NomBank sense
‘cut.02’ (meaning reduce) and one time as ‘cut.01’ (slice). There are also
examples of subtle distinctions where it is difficult to tell if the distinction
is a deliberate choice or annotation error; e.g. product development occurs
with two senses of development, one refers to the act of creating and the other
refers to when things or events come about.

Second, some cases can likely be blamed on annotation inconsistency on
the argument level in NomBank. For example, 14 of the 15 instances of pilot
union in our dataset are annotated as ARG1 and only one is annotated as ARG2,
with no obvious reason why this instance is different from the rest. Likewise,
instances of the following compounds are annotated with either ARG1 or ARG2:
labor problem, health problem, housing problem and financing problem. Upon
examining these instances, we cannot immediately tell if there is, in fact, a
genuine motivation behind the annotation decisions, cf. Examples 4.10 and
4.11. However, we suspect that the definition of ARG1 as “theme” and ARG2
as “value” in the NomBank frame of problem could have been somewhat
ambiguous for the annotators.

(4.10) In Houston, we have seen how bad the housing problemyps; can
become.

(4.11) Nearly 36% ranked housing problemsyges as their most serious unmet
legal need.

Based on the discussion above, we believe that the variation in the instance-
based annotation of compounds in our dataset is largely due to annotation
inconsistencies. Therefore, in the following section, we will define a type-based
version of our dataset which we will use to train machine learning models
for compound interpretation. Nonetheless, the question of token-based vs.

91

type-based interpretation remains an open one, with a few examples from our

dataset that support this view.?!

4.5.4 Compound Interpretation Dataset

In this section, we introduce the version of the dataset we will use in our
machine learning experiments for compound interpretation in the following
chapters; we will refer to this version as the interpretation dataset.

To define our compound interpretation dataset, we impose three conditions
or criteria on the compounds to be included (the conditions are, by and large,
motivated by the findings of this chapter):

1. We require all noun—noun compounds in the interpretation dataset to
be binary or two-word compounds.

2. We exclude all compounds that contain proper nouns whether in the
head or modifier position.

3. Compounds can occur only once in the dataset, i.e. our interpretation
dataset is type-based.

The last condition calls for choosing one relation per compound type in the
cases where instances of the same compound type are annotated with multiple
relations. We choose the majority relation for each compound type that
is annotated with more than one relation in PCEDT and NomBank. For
example, the compound money manager occurs 61 times in our instance-based
dataset and is annotated with three PCEDT functors PAT (27 times), REG (24
times) and RSTR (10 times); we select its most frequent functor (PAT) for the
compound type. Whenever there is a tie (i.e. there is no majority relation),
we favor the non-RSTR functors; e.g. if a compound occurs ten times, five of
which are annotated with TWHEN and the other five are annotated with RSTR,
we choose the functor TWHEN as the relation of the compound type.

21For example, we observe in our dataset that the compound government bill refers to a
government law proposal in the following sentence: “It was the first time in 20 years that
such government bills were defeated.” However, in another context, the same compound
refers to government treasury securities: “Results of the Tuesday, October 10, 1989, auction
of short-term U.S. government bills, sold at a discount ...”. The constituent bill in these
two instances is annotated with two different senses in NomBank, ‘bill.03’ in the former
and ‘bill.02’ in the latter.

92

Given the three criteria above, the size of the compound interpretation
dataset becomes 10, 596, counting the compound types based on the surface
form. The dataset size becomes 9,611 if we count the compound types based
on their lemmas. Furthermore, the number of NomBank relations goes down
to 18 (in contrast to 20 in the instance-based dataset). The two relations that
do not occur in the interpretation dataset are ARG3-HO and ARGO-HO, because
they are only observed in the set of compounds that contain proper nouns.
The distribution of the relations remains skewed with both the NomBank
and PCEDT relations. In fact, many of the relations likely are too infrequent
to be learned by machine learning models; while we do not exclude these
relations from the dataset, we define a minimum frequency threshold that
determines whether a relation is taken into account when computing the
macro-averaged F; scores of our models in Chapters 6 and 7. We refer to this
subset of relations as the ‘learnable’ relations, and it consists of the NomBank
and PCEDT relations that annotate at least 50 compounds in our dataset.
In total, there are nine ‘learnable’ PCEDT functors and eight ‘learnable’
NomBank relations.??

Finally, we randomly split the dataset into three parts: training (70% of
the dataset), development (10%) and test (20%).?*> We make sure that the
distribution of relations reflect the proportions of the three splits, but some
of the extremely infrequent relations can only occur in the training split, such
as AUTH in PCEDT and ARG5 in NomBank (both relations occur only two
times in our dataset). We will use the training and development splits to
train and fine-tune our classification models throughout Chapters 5, 6 and 7.
Towards the end of this thesis, in Chapter 7, we will also use the test split to
evaluate our final models.

4.6 Conclusion

One of the main contributions of this work is the creation of a new dataset
of noun—noun compounds couched in existing meaning representation frame-
works. In this chapter, we presented the dataset and detailed the process
of deriving it. Our new dataset is the largest dataset that includes both

22The ‘learnable’ relations in PCEDT: RSTR, PAT, REG, APP, ACT, AIM, TWHEN, LOC and MAT;
and in NomBank: ARGO, ARG1, ARG2, ARG3, ARGM-LOC, ARGM-TMP, ARGM-MNR and ARGM-PNC.

BThe interpretation dataset is publicly available at https://github.com/ltgoslo/
fun-nom.

93

https://github.com/ltgoslo/fun-nom
https://github.com/ltgoslo/fun-nom

compound bracketing and semantic relations, and the second largest dataset
in terms of the number of compound types and excluding compounds that
contain proper nouns.

A significant part of this chapter (§4.3) focused on the task of noun—
noun compound identification, which many of the recent studies have not
dealt with in much detail. We reviewed the most commonly used compound
identification heuristic by Lauer (1995) and discussed its limitations in §4.3.1.
We laid out three dimensions on which compound identification strategies
vary, namely (1) type of linguistic information used to identify compounds
(PoS tags vs. syntax trees), (2) treatment of proper nouns (NNP° NNP”
and NNP*) and (3) length of compounds (binary vs. n-ary). In §4.3.3, we
defined a syntax-based compound identification method that makes use of
the syntactic annotation in the PTB as well as the noun phrase annotation
by Vadas and Curran (2007). We then evaluated contrastively variations of
the syntax-based and PoS-based approaches to identify compounds in the
WSJ corpus of the PTB (§4.3.4). One of the challenges for quantifying the
accuracy of the different identification strategies is the lack of gold-standard
evaluation data. We therefore opted for manual inspection of a subset of
the identified compounds, which in turn led to gradual improvement in our
implementation of the syntax-based method. Overall, our results and analysis
showed that achieving high-quality compound identification requires linguistic
representations at least at the level of syntactic structure. We also showed,
however, that complex cases that include coordinate structures may call for
even richer linguistic annotations. Given that our method could still identify
false positives (e.g. compounds that are part of coordinate structures), we
chose the most restrictive parameterization of our syntax-based method to
construct our dataset.

In §4.4, we established the bracketing of n-ary compounds in our dataset
based on the syntactic and semantic annotation of three linguistic resources,
PCEDT, DeepBank and the noun phrase annotation by Vadas and Curran
(2007). We showed that the three resources agree on the bracketing of
75% of the compounds in our bracketing subset (which consists of 6,244
compounds). Possibly reflecting their genealogy, the pairwise agreement levels
tend to be higher between PCEDT and Vadas and Curran’s annotation than
the other pairs. Furthermore, we observed that agreement between two of
the resources (or even all three of them) does not always mean that these
bracketing analyses are correct. That said, we believe that our bracketing

94

subset is an important addition to the resources on compound bracketing, not
least because it facilitates future work on the integration of the compound
bracketing and interpretation tasks.

In §4.5, we constructed a variant of the dataset, whereby each compound
is assigned two semantic relations, a PCEDT functor and NomBank argument
or adjunct. We discussed the imbalanced distribution of the PCEDT and
NomBank relations where relations like ARG1 and RSTR annotate more than
50% of the compounds. We argued, however, that our goal to study compound
interpretation as part of broader meaning representations mandates using the
dataset as-is, instead of trying to somehow ‘improve’ the distribution of the
relations. We also performed a quantitative analysis of the correspondence
between PCEDT and NomBank relations based on our understanding of
which relations are semantically comparable to some degree (§4.5.2). Our
analysis was geared towards gauging cross-framework annotation similarity
with no preconceptions of how such similarity should—or could—manifest
itself. Therefore, even though we only found partial correspondence between
the theoretically similar relations in NomBank and PCEDT, we defer our
judgment on the utility of such a correspondence to Chapter 7, where we
empirically evaluate them in transfer and multi-task learning experiments.
The question of token vs. type semantics surfaced in our analysis of the
PCEDT relations (§4.5.3). While we found some examples that support
token-based interpretation in NomBank, there were clear indicators that the
variation in PCEDT is in no small part due to annotation inconsistency.
Lastly, in §4.5.4, we defined the version of the dataset that will be used in
our machine learning experiments in the following chapters. We will often
refer to the PCEDT annotation of the compounds in our dataset as the
PCEDT dataset and the NomBank annotation as the NomBank dataset. In
addition to these two datasets, we will also use Tratz’s (2011) dataset in our
experiments in Chapters 5 and 6.

All in all, this chapter demonstrated how existing resources can be ex-
ploited to construct a dataset for compound bracketing as well as interpre-
tation. While we chose to remain as faithful as possible to the original
annotations, we identify a few interesting possibilities to improve the ex-
pressiveness of our dataset. For example, we might exploit the fact that
PCEDT sometimes assigns multiple functors per compound type to reduce
the number of compounds annotated with the underspecified functor RSTR.
More concretely, one could replace all RSTRs with the most frequent non-RSTR

95

functor for the compounds that are annotated with both RSTR and non-RSTR
functors. Even though this method would not change the annotation of the
compounds that are annotated with RSTR only, it would still have an effect
of 11% of the compound types overall. For NomBank, we could augment
the arguments and modifiers with other relations from lexical resources like
PropBank and VerbNet (Schuler, 2005). More specifically, about 60% of the
senses in NomBank are annotated with a source field which specifies the source
of the predicate in PropBank (i.e. the PropBank verbal predicate on which
the NomBank predicate is based). One has to keep in mind, however, that the
process of nominalization can affect the underlying verb’s argument structure;
that is, obligatory arguments of the original verb can become optional in the
nominalization. Therefore, the mapping between NomBank frames and their
source frames in PropBank may not be straightforward. Lastly, the arguments
of some NomBank frames are also annotated with so-called thematic roles
in VerbNet such as Agent, Instrument and Theme. Extracting such roles
from NomBank would add another type of relations to almost 28% of the
compound types in our dataset. The opportunities described above show how
our approach to compound interpretation opens up for further integration
with other existing and widely-used linguistic resources.

96

Chapter 5

Embeddings and
Similarity-Based Classification

Word embeddings have proved successful in many NLP tasks to the extent
that they have become one of the de facto standard input representations to
neural networks. Indeed, in Chapters 6 and 7 we will use word embeddings
to represent the constituents of noun—noun compounds in our neural network
classification models. Therefore in this chapter, we focus on word embeddings
themselves, introduce the process of training our embedding models and
present baseline results of using them for interpretation in a similarity-based
classification setup. In §5.1, we detail the motivation behind using embeddings
as our input representation and the experiments we conduct in this chapter.
Further, in § 5.2, we give a brief background on distributional semantic models
and word embeddings. We then, in §5.3, introduce the embeddings models
we train for all the upcoming experiments as well as the text pre-processing
pipeline and (hyper-)parameters used to train the models. In § 5.4, we review
two studies that contributed to popularizing the use of embedding models
to recover relational similarity via simple vector arithmetic operations. We
experiment with using the same vector arithmetic methods to predict the
semantic relations of noun—noun compounds in § 5.5 using simple similarity-
based techniques, such as the k-nearest neighbors algorithm in §5.5.2.

Section 5.3 of this chapter builds on our joint work published in Fares et
al. (2017).

97

5.1 Introduction and Motivation

In the past few years, word embeddings have become near-ubiquitous in
NLP at large and proven to be more effective than the so-called count-based
representations for many NLP tasks (Baroni et al., 2014). Perhaps one of the
key reasons behind such widespread use of distributional semantic models in
general is the fact that they can be automatically derived from large amounts
of unlabeled text, which eliminates the need for manual annotation. As we will
show in the following section, word embeddings often improve over the more
traditional distributional semantic models while maintaining most of their
desirable properties (except interpretability). In addition, several studies have
demonstrated that word embeddings not only capture word similarities (or
attributional similarity) but also some types of relational similarities between
pairs of words (Mikolov, Yih, & Zweig, 2013; Levy & Goldberg, 2014).!
Furthermore, a number of recent studies have also used word embeddings
as input representation to their neural models for noun-noun compound
interpretation in particular (Dima & Hinrichs, 2015; Shwartz & Waterson,
2018; Ponkiya et al., 2018). All of the above, in one way or another, motivate
the choice of word embeddings to represent the constituents of noun—noun
compounds in our upcoming experiments (cf. Chapters 6 and 7).

The goal of this chapter is twofold; first, we lay the foundation of the
models we use to represent the constituents of noun—noun compounds; that
is, we explain the basic ideas underlying word embeddings and present our
methodological process to train word embeddings, including the specification
of the linguistic pre-processing steps applied to the embedding training corpora
and the model hyperparameters and properties. Second, we seek to determine
to what extent word embeddings can be used to predict the semantic relations
of compounds. Since it was shown that word embeddings capture some
types of relational similarities (e.g. analogy relations), we ask whether word
embeddings capture (some of) the semantic relations holding between the
constituents of the compounds in the Tratz, NomBank and PCEDT datasets.
To answer this question, we apply the vector arithmetic methods typically
used to solve the semantic analogy task in a straightforward exemplar-based
classification algorithm for noun—noun compound interpretation.

!Turney (2006) defines attributional similarity as the similarity between (the attributes)
of two words, and relational similarity as the similarity between the relation holding
between two pairs of words, such as analogy.

98

The similarity-based approach to compound interpretation can be seen as
a simple baseline for the following experiments in Chapter 6. However, for our
purpose, we use these experiments as a proxy to confirm whether or not the
embedding models capture some level of semantic similarity (either relational
or attributional) between the compounds. In other words, in part we use the
experiments in §5.5 to confirm the validity of our methodological decision to
rely on word embeddings to represent noun—noun compounds.

5.2 Background

In this section, we introduce some of the concepts and assumptions underlying
the distributional semantic models. In addition to establishing terminology;,
our goal does not go beyond a brief review of the long history of the distribu-
tional hypothesis and its applications in computational linguistics.?

The idea behind the distributional hypothesis can be summarized as
follows: words that have similar meaning tend to occur in similar contexts
(or similar linguistic environments). The distributional hypothesis—as a
linguistic approach to represent meaning or difference therein—has deep roots
in theoretical linguistics as well as philosophy, most notably in the works
of Wittgenstein (1953) Harris (1954) and Firth (1957). The aforementioned
three assumed varied definitions of ‘distributional’ and had different goals;
for example, Harris (1954) proposed that language can be structured (i.e.
its units can be grouped under different classes) based on a distributional
analysis of the language. Harris spoke of difference in meaning in that words
(or linguistic units in general) that have different meanings tend to have
different co-occurrents. Firth (1957), on the other hand, focused on the
notion of collocation and word sense disambiguation where the different
senses of a polysemous word can be disambiguated based on the context it
occurs in. Pulman (2013) traces the early interpretations, and applications,
of the distributional hypothesis in computational linguistics to the late fifties
and early sixties of the last century. For example, Pulman (2013) refers to the
doctoral thesis of Karen Spéarck Jones (1964) who was one of the pioneers of
statistical natural language processing and information retrieval (IR), and it
is in the field of IR that vector space models (VSMs) have become particularly

2For a comprehensive review, we refer to Sahlgren (2008), Turney and Pantel (2010),
Pulman (2013) and Clark (2015), to name a few.

99

ubiquitous. VSMs, in the context of IR, are simply algebraic models that
represent textual documents as vectors in an n-dimensional space whose
dimensions correspond to the word types in the collection of documents at
hand (i.e. the corpus). In an IR system, the documents as well as the user
query are represented as vectors in the same space, and the distance between
(or the directionality of) the query vector and document vectors correspond
to their ‘similarity’ (or more accurately, the relevance of a given document to
the user query).

Distributional semantic models (DSMs) make use of VSMs and the distri-
butional hypothesis for lexical semantics; however, instead of creating one
vector per document, DSMs work on the word type level.> That is, DSMs have
one vector per word type representing the meaning of a given word based on
its co-occurrents within some context (leading to a so-called term-term matrix
in contrast to the term-document matrix in IR). The (semantic) similarity
between two words is then computed in terms of the distance or angle between
the vectors representing these words.? The word vectors are constructed by
counting the number of times a given word co-occurs with others and then,
optionally, applying some information-theoretic measures such as (positive)
pointwise mutual information. The process of deriving or populating DSMs
requires only large amounts of text, and of course computational power. With
the availability of the latter, creating such models became much easier. How-
ever, sparsity (or linguistic creativity) and the curse of dimensionality remain
among the major bottlenecks in creating and using these models, and this is
where word embeddings are sometimes considered superior to the count-based
DSMs.

Before we turn to word embeddings, it is important to highlight that long
before the advent of word embeddings, matrix factorization methods (i.e.
rank reduction methods) have been applied to count-based VSMs and DSMs
to generate low-dimensional word representations from large co-occurrences

3We use “distributional semantic models” to refer to models that represent word
meanings and “vector space models” to refer to the more general application of the
distributional hypothesis in vector spaces, such as the term—document representation in IR.
The distinction we make here is only for clarity, but in practice these terms are often used
interchangeably in the literature, e.g. Turney and Pantel (2010); Kiela and Clark (2014).

4The terms context and similarity can be defined in multiple ways which have direct
impact on what kind of relations can be uncovered from DSMs (e.g. syntagmatic vs.
paradigmatic relations). However, here we assume familiarity with such concepts and
definitions and refer to the work by Pad6 and Lapata (2003) and Sahlgren (2008), inter
alios, for more details.

100

matrices. For example, latent semantic analysis (Deerwester et al., 1990, LSA)
for term—document matrices and Hyperspace Analogue to Language (Lund &
Burgess, 1996, HAL) for term—term matrices.

5.2.1 Word Embeddings

Like DSMs, word embeddings can be thought of as a mapping from V' (a
vocabulary or set of words) to R? (d-dimensional space of real numbers),
where each word w in V is represented by a real-valued vector in the
d-dimensional embedding space. However, unlike count-based DSMs, the
vectors in word embeddings are dense and of much lower dimensionality (often
between 50 and 600 dimensions). Moreover, the embedding dimensions do
not correspond to context words and the vectors’ values on a given dimension
do not explicitly encode co-occurrence counts; which is one of the reasons
word embeddings are considered obscure and harder to interpret than the
count-based methods. More importantly, how such dimensions and values are
learned is somewhat dependent on the embedding algorithm itself. Several
algorithms have been proposed to learn neural language models—as part
of the neural networks—and word embeddings (Collobert & Weston, 2008;
Collobert, Weston, et al., 2011; Mikolov, Sutskever, et al., 2013; Pennington
et al., 2014; Lebret & Collobert, 2014; Bojanowski et al., 2017). Among the
most notable and widely used algorithms are the continuous bag-of-word
(Mikolov, Chen, et al., 2013, CBOW) and skip-grams with negative sampling
(Mikolov, Sutskever, et al., 2013, SGNS) algorithms which were popularized
via the word2vec toolkit, and the Global Vectors algorithm (Pennington et
al., 2014, GloVe). We use the latter algorithm to train our word embeddings
in §5.3, but we will very briefly describe the former two to contrast them
with GloVe.

The objective in the SGNS algorithm is to learn a representation that
is good at predicting a word’s context given the word itself. Whereas the
objective in CBOW, conversely, is to learn a representation to predict a
word given its context. In either case, the ultimate goal is not the models
themselves for those two types of prediction tasks, but rather the weights
learned by the models, which make up the actual word representations. Word
embeddings are, therefore, often referred to as prediction-based models, in
contrast to the traditional count-based ones.

Pennington et al. (2014) describe both SGNS and CBOW as window-

101

based methods because they only rely on the ‘local context’ to learn word
representations; i.e. they scan the corpus one window at a time (for some
definition of window, e.g. five surrounding words) without considering global
co-occurrence information throughout the corpus. GloVe, in contrast, is a
matrix factorization method that uses global statistics of word co-occurrence
in the corpus (hence the name Global Vectors). Indeed, the actual training of
a GloVe model starts from a word co-occurrence matrix (i.e. the input to the
training algorithm is a count-based term—term matrix) and the goal of the
algorithm is to learn a low-rank matrix that captures as much information as
possible from the original co-occurrence matrix.

The key insight in constructing a GloVe model is that the ratio of word
co-occurrence probabilities—in comparison to raw probabilities—is “better
able to distinguish relevant words |[...] from irrelevant words” (Pennington et
al., 2014, p. 1534). Based on this assumption, Pennington et al. (2014) define
the learning algorithm as a weighted least squares problem, as follows:

|4 2
J0)= 3 f<XZ-j> <wfwj — log Xij) (5.1)
ij=1

X is the word-word co-occurrence matrix, V' is the vocabulary and f is a
weighting function defined by Pennington et al. (2014) to downplay the effect
of high co-occurrence counts.® The objective function .J in Equation 5.1 aims
to learn the set of parameters # that minimizes the difference between the
inner product of the word w; and the context word ;, on the one hand, and
the log of the co-occurrence count X;;, on the other, for all pairs of words
(i, 7) that co-occur in the corpus.® The details of arriving at Equation 5.1 can
be found in Pennington et al. (2014).

From the above, it becomes clear that GloVe tries to combine the best of
the count-based and prediction-based worlds by utilizing the non-zero entries
in the global word-word co-occurrence matrix while requiring the word vectors
to encode meaning by way of the ratio of co-occurrence probabilities. Further,

5The weighting function introduces two parameters, namely . and a, but we do not
discuss them here since we use their default values—which were empirically defined by
Pennington et al. (2014).

5We do not include the bias terms in Equation 5.1 for simplicity. However, they are
actually important in order to redefine the log of the probability ratio in terms of the

. . . X

co-occurrence counts, i.e.: the bias terms account for log(X;) in log(Pi;) = log() =
log(Xi;) — log(X;). See Equations 6 through 8 in Pennington et al. (2014).

102

GloVe shows that the distinction between count-based and prediction-based
method is in fact not clear-cut. In the following section, we present the
collection of GloVe models that we have trained on a variety of training
corpora with different choices of pre-processing steps and dimensionalities.

5.3 Word Embedding Models

In this section, we outline the process of training a total of eight GloVe models
on different combinations of word form choices (full form vs. lemma), training
corpora and a variety of dimensionalities.” Our decision to train several
systematically varied GloVe models is motivated by the findings of Dima and
Hinrichs (2015); Schnabel et al. (2015); Levy, Goldberg, and Dagan (2015)
that certain embedding models seem to be more suitable for certain tasks
and that some properties of the models do have an impact on performance of
downstream tasks—such as compound interpretation in the case of Dima and
Hinrichs (2015).

Levy, Goldberg, and Dagan (2015) report that some of the gains of
prediction-based methods over count-based methods are in fact due to certain
hyperparameter choices and design decisions. They hence stress the need
for full transparency to facilitate fair comparison and reproducibility of
embedding models. In a similar spirit, we argue that it is equally important
to make explicit the design choices with regard to text pre-processing prior
to training the actual embedding models (Fares et al., 2017).% This entails
making explicit the pre-processing steps as well as tools used to prepare the
training corpus. Therefore, in the following, we start by introducing our text
pre-processing ‘pipeline’ and then move to training the GloVe models.

Pre-Processing Pipeline: The very first step in training word embedding
models is processing the training data; that is, to extract and clean the textual
content—if needed—and then sentence-split and tokenize the text. Sentence-
splitting and tokenization are arguably the minimum pre-processing steps

"Some of the embedding models presented in this section are part of a larger initiative
by the Nordic Language Processing Laboratory (NLPL). The full repository of word vectors
is described in Fares et al. (2017) and can be accessed at http://vectors.nlpl.eu.

8In Fares et al. (2017), we show that lemmatization does have a potentially large effect
on the embedding model’s performance on so-called ‘intrinsic’ evaluation tasks such as
word similarity and analogy. See Table 1 in the aforementioned work.

103

http://vectors.nlpl.eu

required before training an embedding model. Other steps include, inter alia:
stop-word removal, number normalization (i.e. replacing digits with a specific
numerical value such as zero), downcasing, phrase identification, named-entity
recognition and morphosyntactic annotations such as part-of-speech tagging.

We use two corpora and a concatenation thereof to train the GloVe models:
the English Wikipedia dump from September 2016 (about 2 billion word
tokens) and English Gigaword Fifth Edition (about 4.8 billion word tokens)
(Parker et al., 2011). Wikipedia dumps consist of ‘MediaWiki’ and HTML
markup, and hence we use a tool called WikiExtractor to extract and clean
the textual content from the Wikipedia dump.? In terms of linguistic pre-
processing, we sentence-split, tokenize, and lemmatize the text in Wikipedia
and Gigaword using the Stanford CoreNLP Toolkit, version 3.6.0 (Manning
et al., 2014). Furthermore, we also remove all stop-words using the stop-word
list defined in the Natural Language Toolkit (Bird et al., 2009, NLTK).

Those pre-processing steps above lead to two types of training corpora
in terms of their word form, viz. lemmatized and full form, which is the first
aspect in which our GloVe models vary. That is, the models can be trained on
lemmatized or non-lemmatized versions of the corpora. Second, the models
differ in the training text: Wikipedia, Gigaword and the concatenation of both
(Wiki+Giga henceforth). Third, the model can be of different dimensionalities,
viz. 50, 100, 300, 600 or 1000 dimensions. We train eight GloVe models that
allow us to study the effect of these three properties independently, i.e. surface
form, training data and dimensionality. The models are listed in Table 5.1.

All the GloVe models are trained using the reference implementation
published by Pennington et al. (2014). Training a GloVe model consists of
four steps: (1) collecting unigram vocabulary counts, (2) constructing word—
word co-occurrence matrix, (3) shuffling the co-occurrence matrix (row-wise)
and (4) training the GloVe model on the co-occurrence matrix. To ensure
replicability—inasmuch as the embedding algorithm allows it—we ‘pre-shuffle’
the training corpora in the same way for all the models.! Hence, we skip the
third step of shuffling the co-occurrence matrix. Further, in step (1), we define
minimum frequency thresholds for the three corpora, and thus we ignore
words that occur less than 80 times in Wikipedia, 100 times in Gigaword and

9The tool can be found on: https://github.com/attardi/wikiextractor. Accessed:
16 January 2019.

10pre-shuffling was also important to align—as much as possible—the word2vec and
GloVe models we compare in Fares et al. (2017).

104

https://github.com/attardi/wikiextractor

Training Data Word Form Dimensions Vocab Size Freq. Cutoft

Wikipedia Full form 300 302815 80

Gigaword Full form 300 292967 100
Wiki+Giga Full form 300 291392 200
Wiki+Giga Lemma 50 260073 200
Wiki+Giga Lemma 100 260073 200
Wiki+Giga Lemma 300 260073 200
Wiki+Giga Lemma 600 260073 200
Wiki+Giga Lemma 1000 260073 200

Table 5.1: List of GloVe models. Number of training iterations: 50 if
dimensions < 300; 100 iterations otherwise. Symmetric context window
size for all the models: 5.

200 times in Wiki4+Giga. In step (2), we use a symmetric context window
of size five to construct the co-occurrence matrix for all the models. For the
training step, we use the default values for the parameters of the weighting
function (Zmax = 100 and o = 0.75). We set the number of training iterations
to 50 for models with less than 300 dimensions and 100 iterations otherwise,
as recommended by Pennington et al. (2014).

All the resulting models will be used in §6.3, but for the experiments in
this chapter we will report on using the model trained on the full forms of
Wiki+Giga (i.e. the third model from the top in Table5.1).

5.4 Linguistic Regularities in Embeddings

It is perhaps no surprise that word embeddings capture the attributional
similarity between words, such as synonymy; less expectedly though, word
embeddings also capture certain types of relational similarity as shown by
Mikolov, Yih, and Zweig (2013); Levy and Goldberg (2014), among others. In
the following, we briefly review the findings of these two studies and explore
if and how a similar approach can be used to predict the semantic relations
of noun—noun compounds.

Mikolov, Yih, and Zweig (2013) report that word embedding models
capture syntactic and semantic regularities (i.e. relational similarity) that
can be recovered by applying simple vector arithmetic operations. The most
famous example of such regularities is the observation that subtracting the

105

vector of the word man from the vector of king and adding the vector of
woman results in a vector whose nearest neighbor is the vector of the word
queen (excluding the vectors of the words king, man and woman); that is, if
w; is the vector for the word i, the observation translates to:

Wking — Wman + Wyoman ~ Wqueen

Mikolov, Yih, and Zweig (2013) formulate the task of identifying syntactic and
semantic regularities in word embeddings as an analogy task and introduce
a dataset of 800 analogy questions that capture morpho-syntactic relations
(the MSR dataset henceforth). Each of these questions consists of two pairs
of words, say a:b and c:d, that share a particular relation and the question
is then: given the pair a:b and the word ¢, find the word d that satisfies the
analogy “a is to b as ¢ is to d”. In addition, Mikolov, Chen, et al. (2013)
design another analogy dataset that contains 19, 544 questions covering seven
semantic relations and seven morpho-syntactic ones; this dataset is referred
to as the Google Analogies Dataset.

To solve the analogy questions in both datasets, Mikolov, Yih, and Zweig
(2013) compute the vector y = w, —w, +w, and search for its nearest neighbor
in the embedding space in terms of cosine similarity. They refer to this method
as the vector offset method, and it can expressed in terms of word vectors as
shown in Equation 5.2.

arg max (cos(wq, wy — w, + we)) (5.2)
deV\{a,b,c}

Levy and Goldberg (2014) redefine the vector offset method by Mikolov,
Yih, and Zweig (2013) to recover relational similarity as a combination of
three pairwise word similarities, i.e. they express relational similarity in terms
of attributional similarity. Hence, Equation 5.2 can be rewritten as follows:

arg max (cos(wgq, wp) — cos(wq, w,) + cos(wg, w,)) (5.3)
deV\{a,b,c}

Levy and Goldberg (2014) refer to the method described in Equation 5.3
as 3COSADD; we will follow the same terminology here as well. The second
vector arithmetic method Levy and Goldberg (2014) introduce is called

106

PAIRDIRECTION, and it requires the two pairs of words to share the same
direction, as shown in Equation 5.4.!!

arg max (cos(wq — We, wp — wWy)) (5.4)
deV\{a,b,c}

Levy and Goldberg (2014) state that even though Mikolov, Yih, and
Zweig (2013) do not mention PAIRDIRECTION in their paper, they do use it
to solve the semantic analogy questions, while they use 3COSADD to solve
the syntactic ones.

The vector arithmetic methods by Mikolov, Yih, and Zweig (2013) and
Levy and Goldberg (2014) outperform the previous state-of-the-art on the
SemEval-2012 Task 2: Measuring Relation Similarity (Jurgens et al., 2012).12
Word embedding models have been often compared in light of their perfor-
mance on the analogies datasets mentioned above and other word similarity
datasets such as SimLex-999 (Hill et al., 2015)—these evaluations are some-
times referred to as ‘intrinsic’ evaluation of word embeddings. However, those
comparisons were not always fair; for example, the competing embedding
models are sometimes trained on different corpora as highlighted by Levy,
Goldberg, and Dagan (2015). Further, the very approach of evaluating embed-
dings on word similarity (and analogy) has been criticized for—among other
reasons—its weak correlation with extrinsic evaluation measures (Faruqui et
al., 2016). For our part, we will evaluate word embeddings with respect to
their impact on the performance on our neural classifier in the context of
noun-noun compound interpretation (cf. §6.3). That said, we refer to Fares
et al. (2017) for a carefully designed comparison between some of the GloVe
models presented in this chapter and SGNS word2vec models, based on their
performance on the Google Analogies Dataset and SimLex-999.

Having discussed how vector arithmetic operations are used to solve
semantic and syntactic analogy tasks, the following section addresses ways
of using the same methods to predict the semantic relations of noun—noun

HTevy and Goldberg (2014) define a third vector arithmetic method based on a multi-
plicative combination of the vectors called 3CosMUL. We do not include this method in
our review because we do not use it in our experiments.

2Interestingly, Levy and Goldberg (2014, p. 172) report that the traditional count-based
models also capture some form of relational similarity, and hence they claim that word
embeddings are not “discovering novel patterns, but rather is doing a remarkable job at
preserving the patterns inherent in the word-context co-occurrence matrix.”

107

compounds.

5.5 Vector Arithmetic for Compounds

The task of noun—noun compound interpretation can be construed as an
analogy problem wherein the compound semantic relations correspond to the
analogy relations. Therefore, we utilize the same methods proposed for solving
the analogy problem in word embeddings, with the aim of establishing a very
simple baseline and gauging the ‘representational’ ability of our embedding
models in the context of noun-noun compound interpretation. Compound
interpretation, as discussed in Chapter 2, is a multiclass classification problem:
given an unseen compound, our goal is to predict its semantic relation based
on the examples seen before (i.e. in the training data).

To cast compound interpretation as an analogy problem, we assume that
the two noun constituents in each compound make up the word pairs in the
analogy problem. In concrete terms, in the analogy problem we have two
pairs of words (a:b and c:d) which exhibit a shared relation (e.g. the gender
relation in man:woman and king:queen). In the compound interpretation
problem, we have two compounds a b and ¢ d that are annotated with the
same relation, and we take this relation to play the role of the ‘analogy’
relation. The difference, however, is that in the analogy problem we are
looking for d in V' so that “a is to b as ¢ is to d” given a : b and ¢, whereas in
compound interpretation, we are looking for the compound ¢ d in the training
data with the highest relational similarity to the compound a b. To find the
compound that yields the highest relational similarity, we apply the vector
arithmetic methods 3COSADD and PAIRDIRECTION. Said differently, in the
analogy problem we aim to find the word in the embedding vocabulary that
satisfies the analogy relation, whereas in compound interpretation we do not
start from the embedding vocabulary itself, but rather from the training split
and then use the embedding model to compute the relational similarities.
Hence, the search in compound interpretation is more ‘restricted” than in the
analogy problem. In addition, what matters in compound interpretation is
the relation of the most similar compound, not the compound itself.

Hence, assuming C' is the set of compounds in the training split where
each instance is a pair of nouns and c, d is the test compound, we can rewrite
the vector arithmetic methods 3COSADD and PAIRDIRECTION as shown in
Equations 5.5 and 5.6, respectively:

108

arg max(cos(wg, wy) — cos(wg, w,) + cos(wq, w,)) (5.5)
a,beC

arg max(cos(wg — We, Wy — Wy)) (5.6)
a,beC
Based on the above, predicting the relation of a given compound amounts
to finding its most ‘relationally’” similar compound in the training split, using
Equations 5.5 and 5.6, and then returning the relation of that compound.
As mentioned in the beginning of this section, compound interpretation
can be seen as an analogy problem. To verify this assumption, we define an
additional similarity measure that only relies on attributional similarity (i.e.
word similarity) between the compounds’ constituents, instead of relational
similarity. Given two compounds, a b and ¢ d, we define compound similarity
as the sum of the pairwise similarities between their left- and right-constituents,
as shown in Equation5.7. We will refer to this measure as SIMCOM.

SIMCOM(a b, ¢ d) = cos(w,, w.) + cos(wy, wq) (5.7)

Classification using SiMCoM, like in the previous methods, looks for
the compound in the training split that maximizes SIMCOM given an input
compound c d, i.e.:

arg max SIMCOM(a b, ¢ d)
a,beC

Now that we have three similarity-based methods to interpret noun—noun
compounds, the remaining part of this chapter will focus the experimental
results of using these methods on the Tratz, NomBank and PCEDT datasets.

5.5.1 Experimental Results

Before presenting the results of the three similarity-based methods to predict
compound relations, we briefly outline our experimental setup. The similarity-
based classification algorithm is memory-based, which means there is no
training or learning prior to the actual classification step. We conduct our

109

Measure Tratz NomBank PCEDT

3C0SADD 55.42 70.76 43.26
PAIRDIRECTION 55.57 70.65 46.96
SiMCoM 59.38 71.85 46.41

Majority baseline 17.08 67.61 52.28

Table 5.2: Accuracy of the three similarity-based methods on the development
splits of the three datasets. The GloVe model is trained on the full forms of
Wiki+Giga and of 300 dimensions.

experiments on the training and development splits of the Tratz, NomBank and
PCEDT datasets. The training splits of the three datasets (cf. §4.5.4) make
up the training samples or instances, and the compounds in the development

splits are used for evaluation.'?

For all the experiments in this section and the following one, we use the
300-dimensional GloVe model trained on the non-lemmatized concatenation
of Wikipedia and Gigaword (Wiki+Giga), i.e. the third model in Table5.1.
Further, all the word vectors are normalized to unit length (aka ¢s-norm) which
transforms the cosine similarity to a simple dot product of the normalized
vectors.

Table 5.2 shows the accuracy results of using the three similarity measures
3C0SADD, PAIRDIRECTION and SIMCOM to predict the relations of the
compounds in the development splits of Tratz, NomBank and PCEDT.

The first thing to observe in Table 5.2 is that the SIMCoM method leads
to remarkably better results on Tratz compared to the other two relational
similarity methods. SIMCOM also leads to an improved accuracy on NomBank
but the difference between SIMCoOM and the other two methods is about one
point (in contrast to 3.8 points on Tratz). Second, the relational similarity
methods lead to comparable results on both Tratz and PCEDT.'* Third, on
PCEDT, it is the 3COSADD method that leads to the worst accuracy, while
the other two methods yield more or less the same accuracy.

13For the Tratz (2011) dataset, we use the training and development splits as defined by
Dima and Hinrichs (2015), cf. §6.1.

“Levy and Goldberg (2014) report that the PAIRDIRECTION method outperforms
3CO0SADD on restricted vocabulary, but we do not see any major differences between
the two. That said, our task and datasets are different from theirs, and hence it is not
necessarily surprising to see a different pattern here.

110

To better understand these results, however, one needs to take into
account the accuracy of the majority class baseline shown in the last row
of Table5.2. The accuracy of similarity-based methods on PCEDT is lower
than that of the majority baseline classifier. Furthermore, the similarity-
based accuracy on NomBank is a few points higher than the majority-class
baseline. The high accuracy of majority baseline on NomBank and PCEDT
is not surprising given what we know about the relation distributions in these
two datasets (cf. Tables 4.5 and 4.6). However, the fact that the similarity-
based methods perform worse than the majority baseline on PCEDT—in
contrast to NomBank whose majority relation is even more frequent—can be
interpreted as an indicator of the difficulty of learning the PCEDT relations.
The distribution of the Tratz relations is more balanced than the other two
datasets and the performance of the similarity-based methods is well above
the majority baseline.

While we do not report per-relation F'; scores in this chapter, it is important
to highlight here that the similarity-based methods achieve relatively high
scores on the relations with the least diverse set of constituents in Tratz
such as MEASURE. We observe a similar pattern in PCEDT and NomBank
where the relations of high constituent diversity have a low per-relation F
score whereas the ones with low constituent diversity have a high score (we
detail the constituent diversity per relation in Figure 7.3 in Chapter 7). These
observations indicate that the similarity-based methods rely on attributional
similarity rather than relational similarity to predict the relations in the
three datasets. The fact that the SIMCoM method leads to better accuracy
on the Tratz dataset further supports the aforementioned conclusion. This
conclusion, however, is not unexpected given the somewhat ‘generic’ nature
of some of the semantic relations in the three datasets; for example, the
relations denoting actor (ARGO in NomBank and ACT in PCEDT) are likely
to be too abstract to be encoded in word embeddings. Furthermore, Levy
and Goldberg (2014) in fact report that semantic analogy relations are more
difficult to recover than others, for example the currency relations in the
Google Analogies Dataset.

5.5.2 K-Nearest Neighbors

To complement our similarity-based perspective, in this section we present
the results of using the k-nearest neighbors (k-NN) algorithm together with

111

k Tratz NomBank PCEDT
1 55.57 70.65 46.96
3 60.68 76.41 49.89
5 61.77 75.11 54.13
7 62.40 75.54 54.46
9 63.28 75.33 55.54
11 62.60 75.33 55.43

Table 5.3: Accuracy results of PAIRDIRECTION-based similarity for different
values of k. The GloVe embedding model is trained on the full forms of
Wiki+Giga and of 300 dimensions.

one of the relational similarity methods (viz. PAIRDIRECTION) to predict the
compound semantic relations in Tratz, NomBank and PCEDT. We experiment
with multiple odd values of k, however since our classification problem is not
binary, using odd values of k£ would not break the ties in finding the majority
class among the k-nearest neighbors. Therefore, we implement a distance-
weighted version of k-NN, where the neighbors are weighted according to
their similarity to the compound that has to be classified.

Table 5.3 shows the accuracy results when considering an increasing num-
ber of k-nearest neighbors. The similarity of the nearest neighbor is computed
using the PAIRDIRECTION measure in the embedding space of the 300-
dimensional GloVe model trained on the non-lemmatized form of Wiki+Giga
(the same model used in the previous section).

As can be seen from Table 5.3, the accuracy on the three datasets increases
by considering more than just the one nearest compound in the training data.
For NomBank, the ideal number of nearest neighbors seems to be 3; whereas
the highest accuracy on Tratz and PCEDT is achieved when k = 9. However,
given the distribution of the relations in NomBank and PCEDT, one has to be
careful interpreting the accuracy results in isolation. More concretely, while
the improvement in accuracy on NomBank is due to better predictions of all
the relations when k = 3, as soon as k exceeds 7 the improvement becomes
more and more limited to correct predictions of the most frequent relations
(ARG1); for example, when k = 9 we see 98% recall in predicting ARG1 and 67%
precision. Seeing ARGl among the nearest neighbors is, of course, bound to
happen with increasingly higher values of k, because ARG1 amounts to 67.61%
of the training examples. The same holds for PCEDT where increasing the

112

number of nearest neighbors does improve the predictions of almost all the
relations but after £ = 9 we start to see some harmful effect on some relations,
while RSTR (the most frequent relation) continues to improve.'®> The Tratz
dataset is more balanced and hence increasing k& does not lead to a similar
effect.

Contrasting the results in this section and the previous one, it is clear
that if one is to use a similarity-based approach for compound interpretation,
it is important to rely on more than the one nearest neighbor.

5.6 Conclusion

In this chapter, we gave a high-level overview of distributional semantic
models, both in the traditional sense (i.e. count-based models) and the more
recent prediction-based models. In the latter, we focused on the Global
Vectors (GloVe) algorithm by Pennington et al. (2014) since we use it to train
our own embedding models. In §5.3, we introduced eight GloVe models and
detailed how we trained them on a variety of training corpora, with different
dimensionalities and text pre-processing steps. These models will be put to
use in the following chapter, where we try to quantify their impact—as input
representation—on the final performance of a neural classifier for noun—noun
compound relations.

In §5.4, we reviewed two of the relevant studies on recovering relational
similarities (or linguistic regularities) from word embeddings using vector
arithmetic methods. And in §5.5, we proposed a way to use the same
vector arithmetic methods to interpret noun—noun compounds and defined
an additional method based on the attributional similarity of the compound’s
constituents. In §5.5.1, we presented the results of using one of our embedding
models in a similarity-based approach to predict the semantic relations of
noun—noun compounds in the Tratz, NomBank and PCEDT datasets. The
results indicated that the embedding models have a limited ability to encode
the ‘abstract’ semantic relations in the three datasets, and that by simply
relying on the similarity between the compound’s constituents we could
achieve better accuracy results (at least in the case of Tratz and NomBank).
Although we have only reported on the use of one embedding model in our

15 As mentioned before, the imbalanced distribution of relations calls for another evalua-
tion metric, such as macro-averaged F; score, but since the experiments in this chapter are
exploratory we will leave the detailed evaluation to the following chapters.

113

experiments in this chapter, we did run pilot experiments using almost all
the embedding models with our similarity-based approach. One important
observation that surfaced from these experiments is that the results vary
depending on the embedding model, and therefore in the following chapter
(in §6.3) we systematically experiment with using all the GloVe models as
input to our neural classifier. In §5.3, we experimented with using the k-
NN algorithm with the PAIRDIRECTION method to try and reach a final
conclusion regarding the embeddings’ ability to capture relational similarities
in terms of semantic relations of nominal compounds. While our k-NN
experiments showed some improvement in accuracy across the three datasets
as we increased the number of nearest neighbors, these improvements were
mainly due to ‘better’ predictions of the most frequent relations in NomBank
and PCEDT.

Finally, the goal of our experiments in this chapter was to gauge the
potential of using the GloVe models as input representation for our neural
classification model. As mentioned above, the models seem unable to capture
the notions of relational similarities as defined by the compound relations
in Tratz, NomBank and PCEDT. That said, the GloVe models were able
to capture attributional similarities between the compound constitutes (as
evidenced by the high F; score on the least lexically diverse relations). In
Chapter 6, we aim to learn these relational similarities using neural networks
with word embeddings as input representation.

114

Chapter 6

Neural Classification

In this chapter we present a comprehensive series of experiments on using
neural network models to learn the semantic interpretation of noun—noun
compounds. The experiments in this chapter are geared towards determining
which aspects or properties of the neural classification model affect the overall
accuracy, among other metrics, across three compound datasets, viz. Tratz,
NomBank and PCEDT. Moreover, throughout the chapter we take special
care to reflect on the methodological aspects of both the experiments and
evaluation measures. We start the chapter by reviewing the highly relevant
work by Dima and Hinrichs (2015), the first study on neural compound
interpretation, which we then replicate as a first step towards designing a
neural network model for our dataset. In §6.1.1, we present the results of
replicating the experiments conducted by Dima and Hinrichs (2015) and
compare our results to theirs. In §6.3, we systematically study the interplay
between the performance of the neural classifier and a selection of properties of
word embeddings (when used as input representation to the neural classifier).
In §6.4, we experiment with different neural architectures to gauge the role
of the head and modifier nouns in predicting the compound relations. We
conduct a series of experiments to validate our choice of hyperparameters and
their impact on classification accuracy across three noun—noun compound
datasets in §6.5. Thereafter, we explore the effect of using additional lexical
semantic features as input to the neural classification model in §6.6. Finally,
in 6.7, we investigate the learning curves of the neural classification model on
the three compound datasets and quantify the effect of random initialization
on the final performance of the classifier.

115

6.1 Background: Dima and Hinrichs (2015)

Dima and Hinrichs (2015) use a feedforward neural classifier to predict the
semantic relations of the compounds defined in a revised version of the dataset
by Tratz and Hovy (2010). In addition, they use pre-trained word embeddings
to represent the constituents of the compounds. In the following, we will
unpack the details around (1) the compound dataset, (2) their use of word
embeddings and (3) the neural classification model used by Dima and Hinrichs
(2015).

First, Dima and Hinrichs (2015) use the dataset introduced by Tratz (2011),
which is a revised and publicly available version of the original dataset by
Tratz and Hovy (2010) (cf. §3.2.3). The major differences between these two
versions of the dataset are: first, the revised dataset contains more compound
examples (19,158 compounds) than the original one (17,509 compounds);
second, the relation inventory in the revised dataset consists of 37 semantic
relations whereas the original one consists of 43 relations. As Dima and
Hinrichs (2015) report, Tratz (2011) did not (re)evaluate the model described
by Tratz and Hovy (2010) on the revised dataset, which makes the comparison
between the results reported by Dima and Hinrichs (2015) and Tratz and
Hovy (2010) less straightforward. To distinguish between the two versions
of the dataset, we follow the same naming convention used by Dima and
Hinrichs (2015) where the revised version is referred to as the “Tratz dataset”
and the original version of the dataset is referred to as the “Tratz and Hovy
dataset”.

Dima and Hinrichs (2015) pre-process the Tratz dataset before using it in
their experiments. These pre-processing steps include lower-casing all words
(the Tratz dataset has some names which are capitalized) and normalizing
the spelling of some complex words like health care (which occurs in different
forms in the dataset, viz. health care and healthcare). After applying all the
pre-processing steps, Dima and Hinrichs (2015) end up with a constituent
dictionary of size V' = 5,242. They split the Tratz dataset into three parts:
train (13,409 compounds), development (1,920 compounds) and test (3,829
compounds).

Dima and Hinrichs (2015) use four pre-trained, publicly available word
embedding models that differ in their vector dimensionality, vocabulary size
and training data size and genre. The embedding models were also trained
using different embedding algorithms proposed by Collobert, Kavukcuoglu,

116

and Farabet (2011); Pennington et al. (2014); Lebret and Collobert (2014);
Mikolov, Sutskever, et al. (2013)—some of these algorithms and models were
briefly discussed in §5.2.1. The properties of the embedding models used by
Dima and Hinrichs (2015) are presented in Table6.1 (which is adapted from
Table 2 in the aforementioned article). Dima and Hinrichs (2015, p. 177)
report that in the case of embedding models that come with multiple options
for vector dimensionality (e.g. the GloVe models) “it was always the highest
dimensional embedding that gave the best results in the cross-validation

setup”.

Name Dimensions Dict. size Data size Support corpora

CW 50 130,000 0.85bn enWikipedia + Reuters RCV1
GloVe 300 400,000 42bn Common Crawl (42bn)

HPCA 200 178,080 1.65bn enWikipedia + Reuters + WSJ
word2vec 300 3,000,000 100bn Google News dataset

Table 6.1: Overview of the word embedding models used by Dima and
Hinrichs (2015). CW: Word embeddings by Collobert, Kavukcuoglu, and
Farabet (2011); GloVe models by Pennington et al. (2014); HPCA: Em-
beddings obtained by applying Hellinger PCA to the word co-occurence
matrix (Lebret & Collobert, 2014); word2vec: Continuous skip-gram model
by Mikolov, Sutskever, et al. (2013). Support corpora: the data used to train
the embeddings.

The neural classifier implemented by Dima and Hinrichs (2015) consists of
four layers: (1) input layer, (2) lookup table (aka embedding layer), (3) hidden
layer and (4) output layer. The architecture of the model is shown in Figure 6.1.
The input layer is simply to specify the index (in the lookup table) of the word
embedding vector representing one of the constituents of a given compound.
Hence, the size of the input layer is two (one index per constituent). The
second layer (the lookup table) is where the word embedding vectors are
actually stored—merely a V' X d. matrix of real-valued numbers, where d, is
the dimensionality of the word embeddings. As detailed later, it is essential
to have the embedding vectors as part of the neural network model to be
able to modify them via backpropagation as the model is being trained. The
vectors selected from the lookup table (by the input indexes) are concatenated
and fed to the hidden layer, which is fully connected with the lookup layer.
Dima and Hinrichs (2015) empirically determined the size of the hidden layer

117

Embedding Hidden Output
layer layer layer

o vy ‘v12 ‘

+<—— Relation #1

Input #1 ——

Input #2 ——

+<—— Relation #k

Figure 6.1: Architecture of the neural classifier by Dima and Hinrichs (2015)

to be the same as the size of the embedding vectors (i.e. same number of
dimensions). Finally, the output of the hidden layer is passed to the output
layer whose size equals the number of relations in the Tratz dataset. The
Softmax function in the output layer chooses the most likely relation based on
the scores assigned by the network. Dima and Hinrichs (2015) determined the
model hyperparameters empirically based on the results of their experiments
on the development set. We return to the values of these hyperparameters in
§6.1.1 as we present our replication of their model and experiments.

One of the interesting questions Dima and Hinrichs (2015) pose in their
work is whether or not updating (fine-tuning) the embedding weights (as
part of training the neural classifier) contributes to boosting the accuracy
of the neural classifier. Consequently, they experiment with two types of
architecture: one with fine-tuning (where the embedding weights are updated)
and another one without fine-tuning (where the embedding weights are frozen,
i.e. left unchanged). We will often refer to the former as the fine-tuned model
and to the latter as the static model.

In total, Dima and Hinrichs (2015) experiment with four embedding
models to represent the compounds and two neural architectures. The results
of these experiments are shown in Table 6.2 (which is based on Table 3 in their
paper); all the numbers reported in the table represent the micro-averaged
F; scores of the models.! Under the columns DEV(NO-F) and DEV(F), the

! As Dima and Hinrichs (2015, p. 179) explain: “The classification task at hand is an
instance of one-of or multinomial classification, therefore micro-averaged F; is the same as
the accuracy.”

118

Embedding model DEV(NO-F) DEV(F) TEST(NO-F) TEST(F)

CW-50 65.83 78.39 66.62 76.03
GloVe-300 74.17 77.81 76.05 75.87
HPCA-200 61.45 77.14 64.56 76.00
word2vec-300 71.46 73.54 71.38 71.59
Random embedding - 74.17 - 71.43
CW-50+GloVe-300+HPCA-200 79.01 79.48 78.14 77.12

Table 6.2: Accuracy results of the experiments reported by Dima and Hinrichs
(2015). NO-F: No fine-tuning of word embedding. F: Word embeddings were
fine-tuned during training.

models were trained on the training split and evaluated on the development
split. Under the columns TEST(NO-F) and TEST(F) the models were trained
on both the training and development splits and evaluated on the test split.
It is important to highlight here that their decision to (re)train the model
on both the training and development splits not only render the results
on development incomparable to test, but also makes it difficult to gauge
potential overfitting effects—we will elaborate on this point in the following
section.

The first four rows in Table 6.2 correspond to the results of using the four
embedding models introduced earlier; the fifth row represents the results of
using random embeddings as input to the neural classifier (in this case, it only
makes sense to report the results of using the fine-tuned random embeddings).
The last row shows the result of using the concatenation of the embedding
vectors from three models.

The first thing to observe from Table 6.2, and which is also reported by
Dima and Hinrichs (2015), is that the model that uses the concatenation
of the three word embedding vectors achieves the best accuracy with and
without fine-tuning on both the development and test splits. However, as
Dima and Hinrichs (2015, p. 180) explain, in this setup the size of the
network grows considerably since the size of the hidden layer is assumed
to be the same as the dimensionality of the input vector (550 in this case),
and this leads to “a much more difficult training task when compared to
more compact representations”. Dima and Hinrichs (2015) do not elaborate
on the meaning of “difficult training task” in this context, but it is obvious
that the computational cost of training the neural classifier increases as the

119

dimensionality of word embedding vectors, and consequently the size of the
hidden layer, increase. In addition, large neural networks (i.e. models with
a large number of parameters) are more prone to overfitting than smaller
models.

Second, as evident in Table 6.2 and as reported by Dima and Hinrichs
(2015), fine-tuning of word embeddings helps improve the prediction accuracy
of the model in most cases. This effect is especially remarkable in the
case of lower dimensional embeddings like CW-50 where fine-tuning leads
to a solid ten-point increase in accuracy on the test set. However, the
improvements become less pronounced as the dimensionality of the word
embedding model increases. That said, as Dima and Hinrichs (2015) point
out, vector dimensionality is not the only difference between the four models;
in fact, the size of the word embedding training data (i.e. support corpora
in Table6.1) varies drastically between CW and HPCA, on the one hand,
and GloVe and word2vec, on the other hand. Dima and Hinrichs (2015, p.
180) conclude that the embedding models trained on large amounts of data
are “better suited for direct use in new tasks and have less to gain from fine-
tuning”. Interestingly, however, using randomly initialized embeddings leads
to an accuracy on par with the accuracy achieved using the word2vec model,
which is trained on large amounts of data. We expect major differences in
accuracies on (partly) unseen compounds; i.e., compounds whose constituents
do not occur in the training data, because they would not have a meaningful
representation in the randomly initialized embeddings.

Dima and Hinrichs (2015) report that their model outperforms that
of Tratz and Hovy (2010) on unseen compounds by a wide margin (i.e.
compounds that contain constituents only seen in the test set, cf. §3.2.3). As
explained earlier, however, the test datasets are not directly comparable due
to the difference in the number of compound instances and semantic relations.
Nonetheless, given that Dima and Hinrichs (2015) report an accuracy of
77.12% on unseen compounds while Tratz and Hovy (2010) report 51%
accuracy on unseen compounds in a similar—though not identical—test set,
one can stipulate that the model by Dima and Hinrichs (2015) is more robust
in classifying unseen compounds. The use of pre-trained word embeddings
partly explains the superior results on unseen compounds by Dima and
Hinrichs (2015) as they encode ‘features’ about the semantic similarity of
thousands of words even if they are unseen in the training set.

120

6.1.1 Replicating Dima and Hinrichs (2015)

As reported in the previous section, the neural model introduced by Dima
and Hinrichs (2015) leads to robust results when tested on unseen compounds,
which makes their choice of model architecture and hyperparameters a good
starting point to design a neural classification model for our datasets.

Even though we do not necessarily aim to reproduce the exact results
reported by Dima and Hinrichs (2015), in this section we try to replicate
their setup as closely as possible to see if we arrive at comparable results, and
hence validate our implementation. To do so, first, we implement the exact
same network architecture described in the previous section, i.e. a feedforward
neural network of four layers: an input layer, a lookup table (an embedding
layer), a hidden layer and an output layer. Second, we reuse the exact same
version of the Tratz dataset as well as the same data splits used in their
experiments.? Third, whenever possible, we use the same hyperparameters
specified in Dima and Hinrichs (2015); however, as explained below, this is
not always possible due to using different neural network implementation
frameworks. Fourth, we use two of the word embedding models they use to
represent the constituents of the noun-noun compounds.

Table 6.3 summarizes the similarities and differences between the hyperpa-
rameters and other properties of the model by Dima and Hinrichs (2015) and
ours. The parameters in Table 6.3 are self-explanatory, however, it is worth-
while commenting on two points. First, in terms of hyperparameters the only
difference between the two models in Table 6.3 is the optimization function (or
the optimizer); Dima and Hinrichs (2015) use Averaged Stochastic Gradient
Descent (ASGD), whereas we experiment with an optimization function called
Adaptive Moment Estimation (Adam; Kingma & Ba, 2015). The reason we
have a different optimization function is simply because we use different
libraries for neural networks. Dima and Hinrichs (2015) implement their
model using Torch7, an earlier scientific computing framework (Collobert,
Kavukcuoglu, & Farabet, 2011), whereas we implement ours using Keras, a
Python deep learning library with TensorFlow as backend.? The optimization
function used by Dima and Hinrichs (2015), ASGD, is not implemented in
Keras (at the time of conducting our experiments). Second, Dima and Hin-
richs (2015) use the early stopping criterion proposed by Prechelt (2012) to

2We are grateful to Corina Dima, for sharing the pre-processed dataset with us.
3Keras: The Python Deep Learning library www.keras.io

121

www.keras.io

Dima & Hinrichs Ours

Hidden layer activation Sigmoid Sigmoid

Hidden layer size 300 300

Output layer activation Softmax Softmax
Optimizer Averaged SGD, n = 0.9 Adam n = default
Loss function Negative log likelihood = Negative log likelihood
Batch size))

Epochs Early stopping criterion Early stopping criterion

Table 6.3: Comparison of hyperparameters between our implementation of
Dima and Hinrichs (2015) and their original model.

Embedding model DEV(NO-F) DEV(F) TEST(NO-F) TEST(F)

GloVe-300 74.43 77.50 73.31 75.32
word2vec-300 75.99 77.34 73.94 75.16

Table 6.4: Results of evaluating our replication of the Dima and Hinrichs
(2015) model on the Tratz dataset. See Table6.1 for details about the
embedding models used here.

avoid overfitting, in which the training simply stops when the “generalization
error (i.e. the error on the development set) has increased in s successive
epochs”; they set s to five. While this stopping criterion is straightforward
to define when we train the model on the training split and evaluate it on
the development split, it is less clear how such a stopping criterion can be
applied when the model is trained on the combination of the training and
development splits and evaluated on the test split, as Dima and Hinrichs
(2015) did. Upon correspondence with the first author of the aforementioned
article, we confirmed that Dima and Hinrichs (2015) in fact used the test
split itself in the early stopping criterion to monitor the model’s performance.
This unfortunate design decision ultimately favors the model that performs
best on the test split, and hence violates the constraint on the test split being
completely held-out. When evaluating on the test split, we train our model
on the training split only and monitor its performance on the development
split only (to apply early stopping). Therefore, our results on the test split
are not directly comparable with those by Dima and Hinrichs (2015).

122

With the exception of the optimization function, our model can be con-
sidered a ‘near-replica’ of the model by Dima and Hinrichs (2015). Indeed,
this is confirmed by looking at the results in Table 6.4 which are comparable
to—and sometimes better than—the results reported by Dima and Hinrichs
(2015). They report an accuracy of 77.81% on the development split when
using GloVe-300 (cf. Table6.2), and our model lands at 77.34% accuracy on
the same data split and using the same word embedding model. Using the
word2vec model, we achieve remarkably better results than what is reported
by Dima and Hinrichs (2015). We do not speculate about the reasons behind
the improved performance we see, but it is apt to recall here that we use
different optimization function from what Dima and Hinrichs (2015) use.*
All in all, the results in Table 6.4 confirm the validity of our implementation
and set the scene for the next round of experiments in which we take a closer
look at the model architecture and hyperparameters and word embeddings in
light of the classifier’s performance on three noun-noun compound datasets:
NomBank, PCEDT and Tratz.

6.2 Neural Classification Experiments

We have thus far focused on replicating the model described in Dima and
Hinrichs (2015) for noun—noun compound interpretation in the realm of the
compounds and semantic relations defined by Tratz (2011). We now turn to
studying the use of neural classifiers for our compound datasets (NomBank
and PCEDT) as well as the Tratz dataset. More concretely, in the rest of this
chapter, we evaluate the effect of different word embedding models and neural
network architectures and hyperparameters on the classification performance
(in terms of accuracy and macro-averaged F; score) on the three compound
datasets.

The space of hyperparameters in neural networks is normally quite large;
but this space becomes even larger when we consider the hyperparameters
related to the input representation (i.e. word embeddings). Therefore, in
order to make the results more tractable, and isolate the effect of specific
hyperparameters and properties of the neural as well as embedding models,
we first conduct a series of experiments on word embeddings in which we

4In fact, even if we were using the exact same libraries and optimization functions,
seeing the exact same results would have been also unlikely given the non-deterministic
nature of parameter initialization in neural networks.

123

vary only one (hyper)parameter at a time. We follow the same approach
when experimenting with new model architectures (§6.4) or adding new input
features (§6.6). This approach implicitly assumes that the hyperparameters
and properties we are experimenting with are independent; this, of course,
need not be the case, but we accept this simplifying assumption for now to
prune the problem space, and eventually be able to control the effect of the
different hyperparameters.

Notes on Evaluation: In the following, we will present a rather compre-
hensive set of experiments which are evaluated and analyzed in terms of
accuracy and macro-averaged F; score. The accuracy is computed over the
full set of evaluation instances (whether in the development or test split
in the following chapter). The macro-averaged F; scores for PCEDT and
NomBank, however, are computed on the subset of ‘learnable’ relations which
are deemed frequent enough in these datasets (the frequency threshold and
the relations themselves were defined in §4.5.4). Furthermore, to ensure that
the differences in performance are not a side-effect of the random initialization
of some of the neural network weights or the shuffling of training data before
each learning epoch, we fix the random seed for the pseudo-random number
generators modules in Python and NumPy.

6.3 Effect of Word Embeddings

Before delving into studying the different architectures and hyperparameters
of the neural classifier, in the following, we try to determine which types
and properties of word embeddings lead to strong end-to-end classification
accuracy as well as macro-averaged F; score. Dima and Hinrichs (2015)
already provide evidence that the word embedding models (used as input
representation to the neural classifier) have direct impact on the classification
accuracy of the semantic relations in Tratz’s dataset. For example, they
observe that classification accuracy increases with the dimensionality of the
word embeddings and the size of support corpora (i.e. the copora used to learn
the word embedding models). The following set of experiments aims to help
us further understand the effect of the different properties of word embeddings
on the accuracy of neural classifiers, and look for similar—and perhaps new—
trends to what Dima and Hinrichs (2015) find, but on other datasets and
using a broader and systematically varied range of word embeddings.

124

In some cases, word embeddings themselves are trained using neural
networks (such as word2vec models), which means that the space of hyperpa-
rameters is also wide for word embeddings. Therefore, we limit the number of
potential experiments by selecting a few parameters (viz. text pre-processing
steps, vector dimensionality and training corpora), and change only one of
them at a time while fixing all other parameters. For example, when compar-
ing the effect of embedding dimensionality on compound classification we use
models that only differ in their dimensionality. Most of the word embedding
models used in this section are described in §5.3.

Unless otherwise stated, the neural architecture we use in the following
embedding-related experiments is the same as the one described in the previous
section, i.e. our replica of the neural classification model proposed by Dima
and Hinrichs (2015).

6.3.1 Text Pre-Processing

We start our experiments by looking at the effect of text pre-processing. Fares
et al. (2017) show that simple text pre-processing steps can improve the
results when evaluating word embeddings on standard semantic evaluation
datasets, such as SimLex-999 (Hill et al., 2015) and the Google Analogies
Dataset (Mikolov, Chen, et al., 2013). Indeed, contrary to the common
assumption that more data leads to better results, Fares et al. (2017) find that
the models that were trained on pre-processed data achieve better results than
the models that were trained on larger amounts of unprocessed data. Given
this conclusion, we use some of the word embedding models introduced in § 5.3
to study the effect of lemmatizing the training corpora of word embeddings
on noun—noun compound interpretation. However, using lemma-based word
embeddings as input representations to our neural classifier assumes that the
noun—noun compound datasets are also lemmatized. Therefore, whenever the
lemmatized word embeddings are used, lemmatized versions of the compound
datasets are also used. The lemmatized compound datasets are obtained by
applying the same lemmatization strategy described in §5.3 on the original
noun-noun compound datasets (i.e. using the Stanford CoreNLP Toolkit
version 3.6.0).

More concretely, to measure the effect of pre-processing on compound
interpretation, we compare the results of using two word embedding models
as input to our neural classifier to predict the semantic relations of noun—-noun

125

Embedding model Tratz NomBank PCEDT

g Lemmas 70.41 78.37 58.04
< Full-forms 72.92 76.63 58.15
_ Lemmas 65.58 61.61 39.89
~ Full-forms 67.59 04.32 34.50

Table 6.5: Accuracy (top two rows) and macro-averaged F; (bottom two
rows) on the development split using lemma-based and fullform-based 300-
dimensional GloVe word embeddings trained on Wikipedia and Gigaword.
The embedding layer was not updated during training.

compounds in the NomBank, PCEDT and Tratz datasets. The two word
embedding models we use are identical in every aspect except in whether they
were trained on lemmas or full-forms. These two models are fully described
in Chapter 5, but for the sake of clarity we repeat some of their important
properties here. The two models are 300-dimensional and were trained on
either lemmas or full-forms from Wiki+Giga (i.e. Wikipedia dump combined
with Gigaword Fifth Edition) using GloVe.

The top two rows in Table 6.5 show the accuracy of the neural classifier on
the development split of the Tratz dataset as well as our datasets, NomBank
and PCEDT, using a lemmatized word embedding model (referred to as
‘Lemmas’ in the table) and non-lemmatized model (referred to as ‘Full-forms’
in the table). The last two rows, in the same table, show the macro-averaged
Fy score on the development splits of the three datasets.

As mentioned before, we use lemmatized versions of the datasets in
conjunction with the lemmatized word embeddings. In practice this means
that we have two versions of each dataset (lemmatized and non-lemmatized),
and hence two constituent dictionaries per dataset that are different in size.
For example, the size of constituent dictionary in the lemmatized version
of the Tratz dataset is 5,070 compared to 5,242 in the (original) full-form
version. Nonetheless, we can still make general observations about the results
in Table6.5. First, we see a marked drop in accuracy as well as F; score on
the Tratz dataset when we use lemmas instead of full-forms. One minor, but
plausible, explanation for this drop in accuracy is that the way lemmatization
was applied on the dataset led to losing significant inflectional information
that could help distinguish between some relations in the Tratz dataset. Let’s

126

take for example the compounds shrine burning, flag burning and chemical
burn, where the semantic relation of the first two compounds is OBJECTIVE
and semantic relation of the third one is SUBJECT. The lemmatized version
of the dataset changes the constituent ‘burning’ to ‘burn’, and hence we
lose the inflectional suffix which could help distinguish between the first two
compounds, on the one hand, and the third one on the other hand.> We find
that the model operating on lemmas misclassifies the compound flag burning
(which is lemmatized to ‘flag burn’) whereas the model operating on full-forms
does not. This misclassification error could be blamed on the loss of inflectional
information caused by lemmatization which lumps the constituents ‘burning’
and ‘burn’ together. Even though a new type of errors is introduced when
using lemma-based embeddings and lemmatized compounds, we find that at
least 75% of the classification errors made using the full-form embeddings also
occur when using the lemma embeddings. Note that our approach to error
analysis here is mainly qualitative, as we seek to complement the empirical
observations with a linguistically informed explanation of whether or not
using lemmas makes sense in the context of noun—noun compound analysis.
When it comes to out-of-vocabulary words, we find that even though the
lemma-based embeddings (and dataset) have fewer out-of-vocabulary words
(viz. 163 words), in contrast to 200 with the full-form embeddings, this does
not seem to compensate for the overall drop in accuracy. Another potential
explanation for the decreased performance in the lemma-based model has to
do with the loss of distinction between different word classes in the lemmatized
embedding models. Such loss manifests on the word embedding level when
we consider words like ‘burn’ and ‘burning’ or ‘fly’ and ‘flying’ which end
up having one identical semantic representation (i.e. one embedding vector)
rather than two separate representations that could have been similar but
certainly not identical.

Looking at the NomBank results, we see that using lemmas instead of
full-forms does help improve the classification accuracy by 1.74 percentage
points. We also see a similar trend in macro-averaged F; scores. Nonetheless,
the biggest part of the errors made in both setups remains the same; that
is, 80% of the errors observed in the lemma-based setup are also seen in the

5Whether or not the word ‘burning’ should be lemmatized to ‘burn’ depends on the
context and its PoS tag. We do not believe ‘burning’, as a gerund noun, should be lemma-
tized to ‘burn’, and therefore the example above seems to be an artifact of lemmatization
out of context.

127

full-form setup. To verify whether or not lemmatization introduces new type
of errors (as reported above in the case of the Tratz dataset), we inspect the
misclassification errors of the lemma-based setup and find that most of the
errors are not directly related to lemmatizing the dataset itself. However,
one cannot rule out the effect of lemmatization altogether because the word
representations (i.e. the values in the embedding vectors themselves) are
affected by lemmatization, as we explained above.

Lastly, the accuracy on the PCEDT dataset remains more or less un-
changed, regardless of whether we use lemmas or full forms. However, the
macro-averaged Fy score of the lemma-based model is clearly higher than the
full-form one. This ‘discrepancy’ between the accuracy and macro-averaged
F'; scores stems from the fact that the lemma model outperforms the full-form
model on many infrequent relations, sometimes with a large margin such as
on the temporal relation TWHEN. However, the full-form model moderately
outperforms the lemma model in predicting the most frequent relation in
PCEDT (RSTR). These two observations combined explain why the two models
have comparable accuracy scores, but different F; scores. Furthermore, we
inspect the misclassification errors made by the model on the lemmatized and
non-lemmatized versions of the PCEDT dataset. We find that about 76% in
either case are the same; from this, one can speculate that the challenge of
learning how to predict 76% of the errors lies somewhere else (likewise also
for the NomBank and Tratz datasets).

The discussion above indicates that using full-forms instead of lemmas
better fits our setup, primarily because lemmatization can only be applied
out of context in the case of the Tratz dataset, which arguably leads to some
lemmatization errors. Further, full-form tokens preserve the affixes and other
forms of inflection that might constitute important features for the classifier as
well as the word embedding models (such as the distinction between ‘burn’ and
‘burning’ which is lost in the lemmatized tokens). Empirically, however, the
results vary depending on the dataset, but it is important to emphasize once
again that lemmatizing the noun—noun compound dataset itself introduces
changes on the dataset that ‘complicate’ the comparison with other works
(especially so in the case of the Tratz dataset).

128

Tratz NomBank PCEDT
Static Fine-tuned Static Fine-tuned Static Fine-tuned

50 58.19 74.01 75.98 78.15 58.26 59.67
100 63.57 75.94 74.89 78.59 57.72 09.24
300 70.41 76.72 78.37 79.35 58.04 59.24
600 73.75 76.25 77.39 79.13 58.59 58.59

1000 72.86 76.30 78.80 78.59 58.91 58.91

(a) Vector dimensionality versus classification accuracy.

Tratz NomBank PCEDT
Static Fine-tuned Static Fine-tuned Static Fine-tuned

50 49.82 65.23 45.60 57.07 35.83 40.23
100 56.18 66.63 46.97 58.15 38.55 39.87
300 65.58 70.24 61.61 59.45 39.89 42.82
600 68.84 68.60 07.22 60.08 40.94 42.78

1000 66.16 68.99 61.00 53.91 38.81 42.95

(b) Vector dimensionality versus macro-averaged F; score.

Table 6.6: Vector dimensionality versus (a) accuracy and (b) macro-averaged
F{ on the development split of the three noun—noun compound datasets.
Note that all the GloVe embedding models as well as the datasets operate on
lemmas in the tables above.

6.3.2 Vector Dimensionality and Fine-Tuning

The goal of the next set of experiments is two-fold: First, to study the effect
of vector dimensionality on the performance of our noun—noun compound
classifier. Second, to examine the benefit of fine-tuning word embedding
models (while training the neural classifier) versus the embedding model’s
dimensionality. Dima and Hinrichs (2015) report that fine-tuning word
embeddings leads to more significant improvement in accuracy when the
embedding models have relatively low dimensionality. In the following, we use
five word embedding models that only differ in their vector dimensionality,
but are otherwise identical. The five GloVe models were trained on the
lemmatized version of Wikipedia and Gigaword (cf. §5.3), and hence all the
noun-noun compound datasets were also lemmatized.%

60ur decision to use lemmatized word embeddings stems from partly practical reasons—
that is, the availability of lemmatized word embedding models in different dimensionalities.

129

Table 6.6a shows the classification accuracy of our neural classifier on the
development splits of the Tratz, NomBank and PCEDT datasets. Likewise,
Table 6.6b shows the macro-averaged F; scores. In addition to variable levels
of embedding dimensionality, Tables 6.6a and 6.6b show two modes: the static
mode in which the embedding vectors are not updated during training, and
the fine-tuned mode in which the embedding vectors are updated (fine-tuned)
during training.

Looking at the results in Table 6.6a, we see different trends depending on
which dataset and mode one considers. First, in the static mode, it is apparent
that higher embedding dimensionality leads to higher accuracy on the Tratz
dataset except with the 1000-dimensional embedding, which is somewhat
consistent with what Dima and Hinrichs (2015) report.” These gains in
accuracy, however, become less pronounced when we look at the results on the
same dataset in the fine-tuned mode, which is also consistent with the findings
of Dima and Hinrichs (2015); that is, fine-tuning helps most for embedding
models with comparatively lower dimensions. The macro-averaged F; scores
on the Tratz dataset are largely in line with the accuracy scores.

We see a somewhat similar trend on the NomBank dataset in both the
static and fine-tuned modes. The classification accuracy increases—though
less remarkably—with the embedding dimensionality in the static mode; for
example, moving from 50-dimensional embedding model to 300-dimensional
model leads to more than two percentage points improvement in classification
accuracy. However, the improvement becomes much smaller with models
of over 300 dimensions. Higher dimensionality also helps in the fine-tuned
mode, but moving from one dimensionality level to the next, the effect seems
even smaller than in the static mode. The trend observed on the NomBank
dataset is similar to what we observe on Tratz above, which is again in line
with what Dima and Hinrichs (2015) report. The macro-averaged F; scores
largely correspond to the accuracy scores in the sense that the models with
lower dimensionality (50 and 100) have lower macro-averaged F; scores in
comparison to the models with higher dimensionality. The accuracy of the
300-dimensional model is slightly lower than that of the 1000-dimensional
model but the macro-averaged F; score is in favor of the former with a small

"Dima and Hinrichs (2015, p. 177) report that “it was always the highest dimensional
embedding that gave the best results in the cross-validation setup”. We consider our results
“somewhat consistent” with theirs because even though the accuracy improves with higher
embedding dimensionality, the improvement stops at 300 or 600 dimensions (depending on
the dataset).

130

margin—which is not unexpected given the small difference between the
accuracies of these models. In the fine-tuned mode, the 100-dimensional
and 1000-dimensional models achieve the same accuracy, but their macro-
averaged F'; scores are not the same or even close. The main reason we see
this divergence between accuracy and F; score is because the former model
(100-dimensional) achieves a much higher F; score in predicting the locative
relation ARGM-LOC in comparison to the latter model (48.00% vs. 12.50%,
respectively).

Finally, when it comes to the static mode on PCEDT, we see a different,
and somewhat inconsistent, pattern from NomBank and Tratz; using the
50-dimensional model leads to slightly higher accuracy than the 100- and 300-
dimensional models. Overall, the highest improvement in accuracy amounts
to about one percentage point difference (between the 100-dimensional em-
bedding model and the 1000-dimensional model). In the fine-tuned mode,
the difference in accuracy between the best and worst performing models is a
little over one percentage point (1.08). Furthermore, we also do not see a clear
correlation between the increased embedding dimensionality and improvement
in accuracy. The PCEDT macro-averaged F; scores in Table 6.6b are also
less consistent with their corresponding accuracy scores. For example, the
100- and 300-dimensional embedding models lead to the same accuracy in
the fine-tuned mode, but two different macro-averaged F; scores, with the
latter outperforming the former by 2.95 points, most notably because the
100-dimensional model does not predict (or learn) the functor relation AIM at
all whereas the 300-dimensional model does.

Given the somewhat inconsistent pattern we see in the PCEDT results,
we find it difficult to interpret these results without a closer inspection of the
errors made by the neural classifier using the different embedding models. In
the fine-tuned mode, around 65.96% of the errors are the same regardless of
which embedding dimensionality is in use.® Which means that for at least
the larger part of the errors, we need to look somewhere else other than the
dimensionality of the embeddings, but this still does not explain the pattern
(or lack thereof) we see here. Since we have several configurations and many
error sets, we inspect the classification errors made by all the fine-tuned models

8We write “around 65.96%” because the percentage of common errors per model depends
on the number of errors made by each model. We obtain the number 65.96% by taking the
average of the percentages on the five error sets; the highest percentage is 66.85% and the
lowest is 65.09%.

131

as well as a few randomly selected examples. One problem we immediately
identify is potential annotation inconsistency of some noun—noun compounds
in PCEDT (cf. §4.5.3). All the models mistakenly assign the relation RSTR
to the compound potato farmer instead of the gold-standard relation REG.
However, if we look at the compound instances headed by the noun ‘farmer’
in the training split, we find that the compounds banana farmer, rice farmer
and horse farmer are annotated as RSTR, while the compounds wheat farmer
and catfish farmer are annotated as REG.® We do not immediately see why the
compounds rice farmer and wheat farmer were annotated with two distinct
relations, and thus suspect that the ‘distinction’ is a result of annotation
mistake (or inconsistency). The potential inconsistency in these training
examples makes the learnability of some PCEDT relations difficult, if not
impossible in some cases. We present more examples of potential annotation
inconsistency in Table 6.7, where we list all the compound examples that
are headed by the noun ‘talks’ and their annotation in the training split.
Further, in Table 6.8 we present the compound examples that are headed by
the noun ‘talks’ in the development split, their gold standard annotations
and the predictions of the different classifiers. We do not aim to discuss the
annotation decisions here, rather point out the reason why some compound
examples in the PCEDT dataset are misclassified (or at the very least hard
to classify). In Table 6.8, there are two examples that are predicted correctly
by all the models and these are annotated with the functor RSTR. Otherwise,
we see that all the models confuse the functor relations REG, RSTR and PAT,
which is arguably a result of how the training data annotate highly similar
compounds with different semantic relations (e.g. pay talks, wage talks and
price talks are annotated with three different relations).

While we cannot establish, with full certainly, a direct link between
the pattern we see in Table 6.6a and the potential annotation inconsistency,
the latter alone leads to put slightly less weight on the PCEDT classifier’s
performance when deciding on which word embedding model to use for
the three datasets. Hence, unless otherwise stated, for the majority of the
experiments presented in this chapter and the following one, we will use an
embedding model of 300 dimensions because it leads to the best combination
of accuracy and macro-averaged F; score on the NomBank and Tratz datasets
in the fine-tuned mode.

9The PCEDT manual defines REG as an “adjunct expressing a circumstance that the
main predication takes into account”, cf. § B.2.

132

Compound Functor

Compound

Functor

arms-control talks RSTR

bank talks RSTR
strategy talks RSTR
bid talks RSTR
contract talks RSTR
pay talks RSTR

takeover talks

peace talks
steel talks

quota talks
studio talks

REG
REG
PAT
PAT
ACT

Table 6.7: Example compounds headed by the noun talks

split of the PCEDT dataset.

in the training

Compound Gold 50 100 300 600 1000
labor talks REG RSTR RSTR RSTR REG REG
wage talks REG RSTR RSTR REG RSTR REG
price talk PAT REG RSTR RSTR RSTR REG
merger talks PAT RSTR RSTR RSTR RSTR RSTR
disarmament talks RSTR RSTR RSTR RSTR RSTR RSTR
emergency talks RSTR RSTR RSTR RSTR RSTR RSTR
settlement talks RSTR PAT RSTR RSTR RSTR RSTR

Table 6.8: Example compounds headed by the noun talks in the development
split of the PCEDT dataset and the predicted functor using the five embedding

models.

133

6.3.3 Size of Training Data and Fine-Tuning

In the following set of experiments, we study the effect of increasing the size
of the corpora used to train the word embedding models on the performance
of our neural classifier. Here, we also experiment with two modes, ‘static’
and ‘fine-tuned’; to better understand the relationship between fine-tuning
word embeddings (as part of training the neural classifier) and the size of
their training data. We compare four word embedding models by using them
as input to our neural classifier, and hence our comparison is again based
on the final accuracy and macro-averaged F; scores of the neural model on
the three compound datasets we have used so far: Tratz, NomBank and
PCEDT. All the word embedding models are trained on full-form tokens
(i.e. non-lemmatized data) using GloVe and have a vector dimensionality of
300. The first three models in Table 6.9a were introduced in Chapter 5 and
the fourth model, Common Crawl (42B), was trained by Pennington et al.
(2014).1

The results of training the neural classifier on the training split and
evaluating it on the development split of each of the three datasets are
presented in Table6.9a in terms of accuracies and Table6.9b in terms of
macro-averaged F; scores.

In the static mode, the classification accuracy on the Tratz dataset does
not always improve when using embedding models trained on larger amounts
of training text, e.g. the Wikipedia model, on the one hand, vs. Gigaword
and Wiki+Giga models, on the other hand. Furthermore, the difference
in accuracy between the model trained on the smallest corpus (Wikipedia)
and the one trained on the largest corpus (Common Crawl) is less than one
percentage point (0.89). However, the ‘coverage’ of the word embedding
models certainly improve with more training text; in the Wikipedia model,
for example, there are 230 out-of-vocabulary constituents in the Tratz dataset,
but the number goes down to 3 with the Common Crawl model. Upon
inspecting the errors, however, we find that only six compounds (about 1%),
of all the errors made by the Wikipedia model, include out-of-vocabulary
words in either the head or modifier positions. Five of these six compounds
are also part of the errors made by the Common Crawl model even though—

10Ty fact, the GloVe model trained on Common Crawl differs from the other three models
in other aspects and not just the size of the training data, including the initial learning
rate and the window size where we used a window of size five whereas Pennington et al.
(2014) used a window of size ten.

134

Tratz NomBank PCEDT

Corpora Static Fine-tuned Static Fine-tuned Static Fine-tuned
Wikipedia (2B) 73.54 77.08 77.50 78.26 57.72 59.24
Gigaword (4.8B) 73.13 76.46 76.09 77.28 58.26 59.46
Wiki+Giga (6.8B) 72.92 77.45 76.63 78.04 58.15 58.80

Common Crawl (42B) 74.43 77.50 75.43 78.37 58.91 58.59

(a) Embedding corpora size versus classification accuracy.

Corpora Tratz NomBank PCEDT
Static Fine-tuned Static Fine-tuned Static Fine-tuned
Wikipedia (2B) 68.39 69.21 58.33 59.81 39.19 43.60
Gigaword (4.8B) 67.63 68.11 50.95 49.11 32.73 36.93
Wiki+Giga (6.8B) 66.92 69.89 57.07 58.92 34.50 37.10
Common Crawl (42B) 67.80 69.26 53.32 59.81 43.57 37.46

(b) Embedding corpora size versus macro-averaged F; score.

Table 6.9: Embedding corpora size versus (a) accuracy and (b) macro-averaged
F; score on the development split of the three compound datasets. Note
that all the embedding models and datasets are not lemmatized in the tables
above.

except for one—their constituents are no longer out-of-vocabulary. Since the
small improvement in classification accuracy is not directly related to the
coverage of the embedding model, it might be the case that with significantly
more training data (Wikipedia vs. Common Crawl) we achieve more reliable
semantic representation, at least for predicting the semantic relations defined
by Tratz (2011). As reported by Dima and Hinrichs (2015), the size of
the embedding training data plays a less important role when the word
embeddings are fine-tuned as can be seen in Table 6.9a for the three datasets,
not just Tratz. Interestingly, we find that only 50% of the misclassification
errors in the static mode are the same across the different models. This
percentage of common errors, however, grows to 75% in the fine-tuned mode.
Considering the macro-averaged F; scores, we find that the Wikipedia model
achieves better performance than the Common Crawl model (in the static
mode); even though there are many differences in the per-relation F; scores
of the two models, the most noteworthy one is the relation JUSTIFICATION
which the Common Crawl model never predicts but the Wikipedia model
does. This difference is not clearly reflected in the accuracy scores because
the aforementioned relation ranks among the least frequent relations in the

135

Tratz dataset.

When it comes to NomBank in the static mode, we see that the Wikipedia
model yields better accuracy (and macro-averaged F score), in comparison
to the Common Crawl model which was trained on 20 times more data. In
fact, the Common Crawl model leads to the worst accuracy (and second
worst macro-averaged F;) on NomBank in comparison to the other models
in Table6.9a. In the fine-tuned mode, however, all the embedding models
achieve relatively similar accuracy scores with the largest difference being less
than one percentage point (i.e. the Gigaword model vs. the Common Crawl
model). About 57% of the errors in the static mode and 60% of the errors in
the fine-tuned mode are the same across all the models.

For PCEDT, in the static mode, the classification accuracy seems to
improve when using an embedding model trained on significantly larger
corpora (i.e. the Wikipedia model vs. Common Crawl). This observation,
however, is not applicable in the fine-tuned mode, where the best accuracies
are in fact achieved with the embedding models trained on smaller corpora
(Wikipedia and Gigaword models). In terms of F; scores, the model that
leads to the best accuracy in the fine-tuned mode (Gigaword) leads to the
worst macro-averaged F; score. Overall, the Gigaword model achieves lower
per-relation F; scores in comparison to the Wikipedia model except on
RSTR and ACT (the former being the most frequent relation in PCEDT). For
completeness, we inspect if the models overall make different types of errors
by intersecting their misclassification errors. We find that about 75% of
the PCEDT errors by all the models are the same in both the static and
fine-tuned modes.

As mentioned before, the Common Crawl model actually differs from
other embedding models in more than just the size of training data, and
therefore we exclude it from the final comparison to choose an embedding
model for the three datasets. Among the three other embedding models, the
Gigaword model leads to the worst accuracies and macro-averaged F; scores
on NomBank and Tratz. The Wikipedia and Wiki+Giga models lead to
comparable accuracies on NomBank and Tratz in the fine-tuned mode, with
a slight preference for the former on NomBank and for the latter on Tratz.
However, given that the difference between the accuracy of Wikipedia and
Wiki+Giga models on NomBank is smaller than that on Tratz, we take the
final decision based on the model’s performance on the Tratz dataset. The
Wiki+Giga model yields the highest accuracy on Tratz, and hence we will

136

use it in the remaining experiments in this chapter and the following one.!!

Finally, even though we do not see a monotonic relationship between the
size of the training corpora and performance in our experiments, these results
alone are not enough to conclude that no such relation exists. The corpus
size is not the only factor at play here; the training text domain or genre vary
across the corpora we used to train the embedding models.

Which Embedding to Use? Based on the experiments we presented so
far, we can conclude that different embedding models—i.e. word embedding
properties—are preferable to the three compound datasets. In other words,
there is no cross-cutting model that fits all scenarios, which is consistent with
what Schnabel et al. (2015) report: “different tasks favor different embed-
dings”. There are, however, a few observations that generally hold across the
different configurations and datasets. For example, we can safely assume that
increasing the embedding dimensionality to 600 or 1000 dimensions become
less important when the embedding models are fine-tuned as part of the neural
classifier. Furthermore, even though it might seem practically appealing to
use lemma-based embeddings for some datasets (especially PCEDT), our
manual error analysis reveals that lemmatization will inescapably lead to
loss of potentially important features. Overall, it is empirically clear that
fine-tuning the embedding models leads to better classification accuracy and
macro-averaged F; score. In addition, using word embeddings trained on
substantially larger copora does not necessarily lead to better performance in
terms of accuracy and macro-averaged F; scores. To ensure that the results
of the following experiments are somewhat comparable—feasible indeed—we
pick one embedding model as we investigate the impact of different neural
architectures and hyperparameters on compound interpretation. For the rest
of this chapter, unless stated otherwise, we will use the 300-dimensional em-
bedding model trained using GloVe on non-lemmatized text from Wikipedia
and Gigaword (Wiki+Giga).

1We relied on NomBank and Tratz to make the final decision because the results of
experiments so far have been more consistent on those two datasets than PCEDT. However,
if we are to consider the accuracy and macro-averaged F; scores on PCEDT, then the
Wikipedia model would be the best one for the majority of datasets (i.e. for NomBank and
PCEDT).

137

6.4 Model Architecture

In this section we move to experimenting with the architecture of the neural
classification model. The architectures we experiment with are motivated by
the problem at hand, that is, noun—noun compound interpretation. More
specifically, we introduce head- and modifier-specific layers (constituent-
specific layers) to the classification model; for example, instead of having just
one embedding layer for both the head and modifier nouns we experiment
with two separate embedding layers. The rationale behind using modifier- and
head-specific layers is based on the assumption that the head and modifier
nouns can play different roles in defining the semantic relation of noun—noun
compounds. Kim and Baldwin (2005) find the head noun to be “a more reliable
predictor” of compound interpretation than the modifier noun. However,
they also report that the best overall accuracy is achieved when both nouns
contribute equally to their interpretation algorithm. The neural models we
introduce in this section somehow capture the same idea of Kim and Baldwin
(2005), but instead of manually setting the weights of the head and modifier
nouns’ contribution as in Kim and Baldwin (2005), we rely on the neural
model to learn different weights for the head and modifier nouns.

Based on the architecture of the classification model we have been using
so far, we identify three alternative architectures which include constituent-
specific layers, namely:

1. Embedding-specific (Eg): the model has two embedding layers, one
for the head noun and one for the modifier noun. This, in practice,
means that we end up with two sets of word embedding vectors, where
the embedding vector of the same word could be different depending
on whether it occurs in the head or modifier position (as a result of
fine-tuning the word embedding models during training).

2. Hidden-specific (Hg): the model has two hidden layers but only one
embedding layer. The output of the hidden layers are concatenated in a
so-called merge layer and passed to the output layer. The architecture
of this model is shown in Figure6.2.

3. Embedding- and hidden-specific (EHg): the model has two embedding
layers and two hidden dense layers. In other words, the representations
and weights of the head and modifier nouns are separated throughout

138

Embedding Hidden Merge Output
layer layer layer layer

vy ‘vlz ‘ ‘le

+<—— Relation #1

Input #1 —— ’ v2q ‘ V25 ‘ ‘ v2
Y

w1q

w1y .
Input #2 ——

w2y

+<—— Relation #k

w2

Ynp

Figure 6.2: Architecture of the neural classifier with constituent-specific
hidden layers (i.e. two hidden layers). The solid lines in the figure indicate
how the information flows throughout the network for a given compound, i.e.
vector embedding look-up, then feeding the selected vectors into the dense
layer. Note that the merge layer is fully connected with the output layer but
the figure is simplified.

the model except on the output layer where the output of the hidden
layers are concatenated using a merge layer (like in the Hg model).

We use the exact same data splits and hyperparameters described in the
previous section to train and evaluate the three constituent-specific models.
Table 6.10a shows the accuracy scores of the three models on the development
splits of the Tratz, NomBank and PCEDT datasets. Likewise, Table 6.10b
shows the macro-averaged F; scores across the three models and datasets.

As evident from Table 6.10a, the three constituent-specific models do not
improve over the accuracy of the model with no constituent-specific layers
(referred to as Noneg in Table6.10a) for the Tratz dataset. However, the
macro-averaged F; scores in Table 6.10b draw the opposite picture where all
the constituent-specific models outperform the model with no constituent-
specific layers, albeit with a small margin. This is mainly due to the Noneg
model failing to predict one specific relation (PARTIAL_ATTRIBUTE_TRANSFER)
which the three constituent-specific models predict. Not predicting this
relation at all does not have a remarkable influence on the accuracy score
because it is one of the least frequent relations in the Tratz dataset; in fact,

139

Model Tratz NomBank PCEDT

Eg 76.46 77.93 09.02
Hg 76.09 77.28 59.46
EHg 75.99 77.28 28.37

Noneg 77.45 78.04 58.80

(a) Accuracy on the constituent-specific models on the development set.

Model Tratz NomBank PCEDT

Eg 71.63 50.13 37.86
Hg 70.51 56.38 36.95
EHg 70.08 58.09 36.61

Noneg 69.89 58.92 37.10

(b) Macro average F; of the constituent-specific models on the development set.

Table 6.10: Accuracy (a) and macro-averaged F; (b) of the constituent-specific
models on the development set. Embedding: Wiki+Giga. Full form. Adam.
Batch: 5. Fine-tuned. The last line is the model with no constituent-specific
layer.

it constitutes only 0.3% of the dataset (Tratz, 2011). The so-called Personal
relations in Tratz (PERSONAL_NAME and PERSONAL_TITLE) also benefit from
the constituent-specific setups, sometimes leading to 100% F; score. However,
these two relations also fall down the list in terms of frequency, each making
up only 0.5% of the dataset. From these results, we can conclude that if
accuracy is the most important metric in learning the Tratz dataset, then
no gains can be achieved by using constituent-specific layers. However, a
midway compromise between accuracy and macro-averaged F; would favor
the constituent-specific model on the embedding layer Eg.

On NomBank, we do not see any improvement in accuracy using the
constituent-specific models. The macro-averaged F; scores in Table 6.10b,
however, point to stark variation between the models that are otherwise
invisible if we only consider the accuracy scores. For example, the Noneg
model outperforms the embedding-specific model (Eg) by a fraction of 0.11
points in terms of accuracy, but the difference goes up to 8.79 points in terms
of macro-averaged F; score. This remarkable contrast between accuracy and
F; can be blamed on the Eg model performance on two specific relations:

140

ARGM-MNR and ARGM-LOC. The Eg model does not predict the former at all
(while all other models do) and achieves a very low Fy score on the latter
(compared to the other models). The model’s F; score is also lower on other
relations, but it achieves a comparable F; score to the Noneg model on the
most frequent relation, which is why these differences are not clearly reflected
in terms of accuracy.

We observe small improvements in accuracy on PCEDT (less than 1%)
using embedding- and hidden-specific layers (i.e. Es and Hg). The macro-
averaged F; scores, though not fully in line with the accuracy scores, do
not show high divergence from the accuracy results (unlike the results for
NomBank). We remain unsure, nonetheless, about the final conclusion
regarding PCEDT, and NomBank to some extent. Hence in order to judge
which model is in fact better than the rest we take a closer look at their
actual predictions.

For these two datasets, we compare the misclassification errors made by
the different models to determine if there is any change in the error patterns
when the head and modifier nouns are (partly) isolated. We find that 89%
of the PCEDT classification errors made by all models (including the model
with no constituent-specific layers) are the same, and 60% of the errors on
NomBank are the same (also including all model architectures). This indicates
a potential change in the type of errors made by the different models on
NomBank (much less so on PCEDT); i.e. some architectures might be better
(or worse) at predicting certain relations than others.

Upon closer inspection of the output of the different models, we observe
a small change in the error patterns when predicting the NomBank loca-
tive and temporal relations (ARGM-LOC and ARGM-TMP, respectively). All the
constituent-specific models make fewer classification errors on the ARGM-TMP
relation, but only the EHg model makes fewer errors on ARGM-LOC. How-
ever, with the exception of these two relations, the Noneg model (with no
constituent-specific layers) still performs best at predicting all other relations.
Most notably, the model without any constituent-specific layers outperforms
all the constituent-specific models in predicting the ‘core’ arguments in
NomBank (ARGO, ARG1, ARG2 and ARG3). These observations indicate that
introducing constituent-specific layers can help when there are prototypical
heads or modifiers that occur with a given relation, which is obviously the
case for ARGM-TMP, but not for the aforementioned core arguments.

On PCEDT, the prediction of some functors such as the patient functor

141

PAT also improves when we introduce constituent-specific layers. However,
we do not see a consistent behavior across the different constituent-specific
models.

Finally, the observation that some relations can benefit from introducing
separate layers for the head and modifier nouns is somewhat in line with
what Kim and Baldwin (2005) report (albeit in a pre-neural classification
approach); that is, the impact of the head and modifier noun varies depending
on the semantic relation. Our experimental results and error analysis indicate
that the relations that might benefit most from constituent-specific layers
are the ones that are likely to have ‘prototypical’ modifiers or heads, such as
the temporal relations. Such relations, however, are among the least frequent
ones in the three datasets we are studying. Thus, in the grand scheme of
things, introducing constituent-specific layers to the classification model offers
little to no improvement in accuracy.

6.5 Model Hyperparameters

In all the experiments presented in this chapter so far, we relied on the
findings reported by Dima and Hinrichs (2015) to set the hyperparameters
of our models. Even though our focus has been to isolate the effect of
different aspects of our model (such as the input representation §6.3 and the
model architecture §6.4), we believe it is equally important to gauge whether
the choice of hyperparameters by Dima and Hinrichs (2015) also leads to
(near-)optimal results on our datasets.

Hyperparameter optimization can be a major challenge in neural networks
as the process can easily become intractable with too many hyperparameters
and settings to experiment with. More importantly, it is computationally
expensive to perform an exhaustive grid search on all possible combinations
of hyperparameter values, because of the exponential growth of the combined
search space.'? In this section, we approach the question of hyperparame-
ter optimization using two strategies. However, before we introduce these
strategies, it is important to highlight that our primary aim here is to de-
termine the plausibility of the combination of hyperparameters and settings
we use in terms of the model’s classification accuracy. We acknowledge that

121f we have m hyperparameters each taking n values, then the grid search space (i.e.
number of combinations) grows as O(n™) (Goodfellow et al., 2016, p. 429).

142

additional gains maybe could be achieved through even more comprehensive
hyperparameter optimization experiments than what we present in this sec-
tion, but this would of course require more computational time and analysis.
We therefore deliberately choose to focus more on the methodological and
representation questions related to the problem at hand, i.e. noun—noun com-
pound interpretation, at the expense of more hyperparameter optimization
experiments.

In the following sections, we start by exploring the sensitivity of the
model’s performance with respect to a selection of hyperparameters in iso-
lation (§6.5.1), in a manner somewhat similar to how Zhang and Wallace
(2017) study the sensitivity of convolutional neural networks (CNNs) for
sentence classification. The sensitivity analysis allows us to gauge the impact
of individual hyperparameters on our particular task, but it also makes strong
assumptions about hyperparameter independence. Therefore, we also conduct
a series of hyperparameter optimization experiments on the three compound
datasets (§6.5.2), where the correspondence or dependence relation among
the hyperparameters is taken into account. We use random search for hy-
perparameter optimization, which was shown to be more efficient than grid
search (with exponential growth) and manual search (Bergstra & Bengio,
2012).

6.5.1 Sensitivity Analysis

Zhang and Wallace (2017) present a sensitivity analysis with respect to the
parameterization of a CNN model on nine datasets for sentence classification.
The goal of their study is to identify the sensible value ranges to explore
as well as the important settings or hyperparameters in contrast to those
that have little or no effect on the model’s performance independent of
dataset. In their experimental setup, Zhang and Wallace (2017) study several
hyperparameters and settings, such as dropout and word embedding models,
in isolation; that is, they change one hyperparameter at a time. We follow
a similar approach in this section, by staging our hyperparameter search
through several consecutive experiments. While we also aim to determine
the sensitivity of our classification model to a selection of hyperparameters,
our experiments are limited to three hyperparameters only: optimization

143

function, batch size and dropout.'® Since we continue to fix the random
seed, we run the experiments in this section one time only, unlike Zhang and
Wallace (2017) who run each of their experiments ten times and report the
mean accuracy in addition to ranges of maximum and minimum scores. In
order to isolate the effect of these hyperparameters as much as possible, we do
not change the model architecture throughout the experiments. Finally, we
do not detail the results of the individual experiments in tables, but instead
we include plots of the results in Appendix C.

Optimization Function: The first hyperparameter we vary is the opti-
mization function. We experiment with almost all the available optimizers in
Keras using their default learning rates, namely: AdaMax, RMSprop, Adam,
Adadelta, AdaGrad and SGD. In Figures C.1, C.2 and C.3, we plot the
validation accuracy and loss when training our neural classification models on
PCEDT, NomBank and Tratz, respectively, using the aforementioned opti-
mization functions. Note that these plots correspond to training for 15 epochs
without updating the embedding layer (i.e. training in the static mode)—this
is mainly due to the computational cost of running all the experiments in the
fine-tuned mode.

Overall, the validation accuracy and loss when training on the Tratz
dataset look more smooth than on NomBank and PCEDT; training on the
latter two datasets seems to converge much earlier than on Tratz, and hence
the validation accuracy starts to fluctuate after several epochs. Further,
none of the optimizers lead to distinctly better validation accuracy on any
of the datasets (in comparison to the other optimizers), but their overall
behavior differs—expectedly so. For example, the traditional Stochastic
Gradient Descent (SGD) takes much longer to converge compared to the
other optimization functions which have some sort of adaptive learning rate.
RMSprop, in all three datasets, might be overfitting the training data without
harming the validation accuracy after five epochs (because we see a significant
peak in the validation loss while the validation accuracy remains more or less
the same).

As mentioned before, all the optimization functions arrive at more or
less the same validation accuracy except SGD and AdaGrad. The latter
accumulates the square of all gradients (i.e. always positive-valued numbers),

130ur word embedding experiments, in § 6.3, are also similar in spirit to the work by
Zhang and Wallace (2017).

144

which means that it monotonically shrinks the learning rate throughout
training, and therefore the learning slows down early on (Zeiler, 2012). This
property of SGD and AdaGrad is at odds with our experimental design
decision to (pre-)set the same number of epochs for all optimizers. We
compensate for this unfair setup in §6.5.2 where we set the number of epochs
to a higher value and use an early stopping criterion. For the sake of this
section, however, the main goal is not to determine the optimizer that leads
to the best validation accuracy, but rather examine the overall behavior of
the classifier when different optimizers are used and look out for potential
anomalies. Finally, we believe there are more interesting observations to be
made about the different optimization functions, but this falls outside the
scope of our project as we aim to invest more in finding out which features,
model architectures and learning strategies improve the classification accuracy,
in contrast to extensive experimentation with and analysis of the model’s
hyperparameters.

Batch Size: The second hyperparameter we experiment with is the batch
size. Thus far, we have been using a mini-batch size of 5 in our of all
experiments, which is partly motivated by the work of Dima and Hinrichs
(2015). Here, we experiment with nine different values for the batch size: 1, 5,
10, 20, 50, 100, 150, 200 and 250. We train and plot the validation accuracy
and loss of the model on the three datasets using the AdaGrad optimization
function over 15 epochs. We do not update the weights of the embedding
model in these experiments for the same reason as before (i.e. computational
cost). The plots are shown in Figures C.4, C.5 and C.6 in Appendix C.

From these plots, we see that using larger batch size means the model
needs more epochs to converge on the three datasets. Relatively small mini-
batches (such as 5 or 10) converge in the early epochs on the three datasets.
In terms of validation accuracy, the best accuracies are achieved with smaller
batches. On the one hand, these are partly a by-product of setting the number
of epochs to 15 for all batch sizes, which might be ‘unfair’ towards the larger
batches which need more epochs to converge. On the other hand, it has been
shown that large batches can indeed degrade the model’s ability to generalize
(Keskar et al., 2017).

Even though these experiments are not enough to provide evidence of
whether large batches degrade our model’s performance given a larger number
of epochs, we use the overall observation—that smaller mini-batches are

145

likely to yield better results—to guide our random search experiments in the
following section §6.5.2.

Dropout: We now turn to experimenting with adding a dropout layer to
our neural classification model. We add the dropout layer after the hidden
layer which sets a fraction of the hidden units to zero; this fraction is specified
by a parameter called the dropout rate. We experiment with four values
for the dropout rate: 0, 0.25, 0.50 and 0.75. A zero-valued dropout rate is
equivalent to no dropout. We plot the validation accuracy for the neural
model on the three datasets using the different dropout rates in Figures C.7,
C.8 and C.9.

Overall, we find that adding a dropout layer might be of potential help
to improve the generalization of the model. However, similar to what Zhang
and Wallace (2017) find, the ‘ideal” dropout rate seems to be dependent on
the dataset; for example, the NomBank model performs better with a low
dropout rate (0.25), whereas the PCEDT model achieves the best validation
accuracy using the highest dropout rate (0.75), and on the Tratz dataset a
dropout rate of 0.5 leads to the best accuracy. Even though we do not rule
out the benefit of adding a dropout layer, we do not use it in our overall
experimentation scheme because it requires a dataset-dependent dropout rate,
while we aim to have a unified setup for the three datasets. Therefore, none of
the experiments in the following chapter use a dropout layer, unless otherwise
stated.

6.5.2 Random Search

The experiments introduced in the previous section obviously make strong
assumptions about the independence of the different hyperparameters. Such
assumptions do not hold in practice, but they are acceptable in the context
of exploring the model’s sensitivity to specific hyperparameters. To optimize
the model’s hyperparameters, however, we need to experiment with different
combinations of these hyperparameters. Therefore, in this section we present
the results of the random search experiments we conduct to identify the best
combination of hyperparameters for the three datasets.'* To keep the problem
tractable, we restrict our experiments to seven hyperparameters and settings:

14We use a Python library called Talos to perform the hyperparameter optimization
random search experiments https://github.com/autonomio/talos

146

https://github.com/autonomio/talos

Hyperparameter/Settings Values

Hidden layer size 4,8, 16, 32, 64, 128, 256, 300

Hidden layer activation Sigmoid, Hard Sigmoid, ReLLU, SELU, ELU
Optimizer Adam, Adamax, Adadelta, Adagrad, SGD, Nadam
Batch size 2,4,5,8, 16, 32

Epochs 20, 40, 50

Dropout rate 0,0.2,04, 0.6

Trainable embeddings True, False

Table 6.11: Hyperparameter values and settings for the random search
experiments. Note that we also use an early stopping criterion in all the
experiments regardless of the number of epochs.

(1) optimization function, (2) activation function, (3) dropout rate, (4) batch
size, (5) number of epochs, (6) size of the dense layer and (7) whether or
not the word embedding layer is trainable. The full set of hyperparameter
values and settings are listed in Table6.11. We choose the values of some of
these seven hyperparameters and settings based on what we observed in the
previous section; for example, we limit the mini-batch size to a maximum of
32 (cf. discussion in §6.5.1). However, we also choose some ‘extreme’ values
to measure the effect on specific settings; for example, we expect the size of
the hidden layer to play a major role in the overall performance, so we select
values ranging from just four units to 300. Overall, we end up with a total of
34,560 hyperparameter combinations for each of the three datasets, which
would translate to 103,680 experiments if we were to perform a pure grid
search for the three datasets. This is obviously prohibitively expensive in
terms of computational cost, so we downsample the grid size by randomly
selecting 0.5% of the hyperparameter combinations using a quantum random
number generator.!®

Before we delve into the results of the different hyperparameter com-
binations on the three datasets, we observe two general patterns that are
dataset-independent (in the context of our three datasets). First, fine-tuning
the word embeddings helps improve the model’s performance across the three
datasets, but more importantly, across the different values of hyperparameters.
This pattern can be easily seen in Figure 6.3, where the experiments in which

15The Australian National University Quantum Random Number Server https://
qrng.anu.edu.au

147

https://qrng.anu.edu.au
https://qrng.anu.edu.au

the word embedding models are fine-tuned achieve higher validation accuracy
than the experiments with static embeddings. Second, using an extremely
small number of units in the hidden layer (such as four or eight) degrades
the performance of the model substantially, regardless of whether or not
the embedding layer is fine-tuned. In Appendix C, we include the figures
corresponding to model performance with different levels of granularity of the
hidden layer size. Note, however, that we cannot read too much into these
plots because there are many other variants across all the experiments; in
other words, the plots presented in Figures C.10, C.11 and C.12 oversimplify
the dependency relations to other hyperparameters by just indicating the
hidden layer size and ‘trainability’ of the embedding layer.

Our random search experiments reveal that the top performing hyper-
parameter combinations on the three datasets differ among themselves and
from the configuration we used in the previous sections. One way forward
would be to simply select the set of hyperparameter values and settings that
lead to the best validation accuracy on the three datasets separately. While
this approach has its merits, we choose to continue to limit the variation in
hyperparameters across the three datasets for reasons that will become clear
in the following chapter, but for now it suffices to say that our experiments
focus more on the benefits of different learning architectures and features. It
therefore makes sense for us to try and limit the variation in other variables
(i.e. hyperparameters) as much as possible. Nonetheless, it is still important
to verify that the combination of hyperparameters and settings we used so
far lead to a reasonably high performance across the three datasets; we will
refer to the configuration of hyperparameters and settings used so far (cf.
Table 6.3) as the “unified hyperparameter configuration” or, for simplicity,
the “unified configuration”.

Given the list of hyperparameter combinations explored in our random
search experiments, we rank it based on the model’s validation accuracy and
check where would the unified configuration rank in this list. We do this
comparison for the three datasets. We find that the unified configuration
would be the seventh best performing system on Tratz, eleventh best on
NomBank and twenty-second best on PCEDT. Half of the hyperparameter
combinations that lead to better validation accuracy on Tratz use the same
optimizer as the one we used in our experiments (i.e. Adam), but they
differ in terms of the dropout rate. Similarly, 30% of the hyperparameter
combinations that lead to better validation accuracy on NomBank also use

148

0.8

AAMMMMMMIALIALA, A,
by,
AAAAAAAAAAAA AbA, > E
AAA‘ A

A

0.7 ‘A‘n
0.6
o K.
;’ X
0.5 x
6%
XX %
%
0.4
X
X
X
%K
X
0.3 »
*
20 40 60 80

Ranked Runs

Figure 6.3: Validation accuracy on Tratz (A), NomBank (x) and PCEDT (e)
over 172 hyperparameter random search experiments for each dataset. The
figure shows the accuracy per experiment per dataset ranked by decreasing
accuracy (on the z-axis). The red markers correspond to the static embedding
setting and the blue ones to the fine-tuned embedding settings. Since we
draw these two settings separately, the x-axis does not span to 172 points
and stops at 98, which is the largest number of experiments using one of the
two settings (the fine-tuned setting on Tratz).

149

Adam as optimizer with variations in the dropout rate and batch size. On
PCEDT, 20% of the hyperparameter combinations outperforming ours use
Adam with some variations in other hyperparameters as well. Overall, we
find the results on Tratz and NomBank reassuring, especially that we have
already observed that dropout can help (cf. §6.5.1). The results on PCEDT
are arguably less assuring, but as will be shown soon (in §6.4) PCEDT in
fact exhibits the highest level of sensitivity to random initialization which
adds yet another variable to the results of the random search experiments on

PCEDT.

Final Words on Hyperparameter Optimization: FEven though we re-
main assured that our choice of hyperparameters yields robust and high-
performing results, we do observe that some hyperparameter combinations
may lead to better performance than what has been reported earlier in this
chapter. We will, however, continue to use the same unified hyperparame-
ter configuration we used so far to allow comparability across the different
experiments in the following chapter. We also acknowledge that there are
other hyperparameters that could have been explored, such as the learning
rate, in addition to further analysis of the interplay between the different
hyperparameters.

6.6 WordNet Features

Our experimental results in §6.3 and §6.4 as well as the previous section
indicate that improving the classification accuracy potentially requires adding
more input ‘features’ to the neural classification model, rather than just more
intensive fine-tuning of the neural network’s hyperparameters. In this section,
we briefly present our experiments with new features based on information
from classical lexical resources such as WordNet (Miller, 1995).

Tratz and Hovy (2010) use several lexical resources to encode features
about noun—noun compounds in their MaxEnt model, which still achieves
state-of-the-art cross-validation accuracy on their dataset. One of these lexical
resources is WordNet. Inspired by their choice of features, we run a few pilot
experiments using similar WordNet features as additional input to our neural
classifier, aiming to provide a tentative indication of the utility of this type
of information in our neural classification architecture.

150

There are many different types of features one can extract from WordNet,
but the most straightforward choice is to use the set of all synonyms in the
so-called synsets (synonym sets) of a given compound’s constituent. However,
since the synsets in WordNet sometimes include synonyms of different word
classes (e.g. verbs, adjectives and adverbs), we distinguish between three
design decisions with respect to the part-of-speech (PoS) tags of the words in
the synset we use:

1. N: Nouns only
2. N+V: Nouns and verbs (as Tratz and Hovy (2010) did)

3. E: Everything (i.e. all the synonyms regardless of their PoS tag)

For each constituent (noun) in the constituent dictionary, we extract
its synonym set from WordNet following the three PoS options enumerated
above. Once the synonyms are extracted, the next step is to decide how to
represent them; the most straightforward representation in our setup is to use
the average vector of the embedding vectors of all words in the synset. This
average vector (the average synset vector, henceforth) can then be used as
input to the neural network, and here—again—we also distinguish between
at least two approaches: the ‘concatenated’ approach and the ‘averaged’
approach. In the ‘concatenated’ approach, we concatenate the compound’s
constituent embedding vector and the average synset vector (leading to a
600-dimensional input vector per constituent, if the embedding model is
300-dimensional). In the ‘averaged’ approach, we take the average of the
constituent’s embedding vector and the average synset vector (leading to
a 300-dimensional input vector per constituent, if the embedding model is
300-dimensional). Finally, if a constituent does not have a synset in WordNet
or if some of the words in the constituent’s synset do not have embedding
vectors (i.e. are out-of-vocabulary), we then use the vector of the unknown
word.

Table 6.12a shows the accuracy results of training and evaluating the
six WordNet models using three PoS tag sets for the words allowed in the
synsets and two ways to input the averaged vector of the synonyms to the
neural classifier (i.e. averaged and concatenated). Table6.12b shows the
macro-averaged F; scores for the same setups. Overall, we see that using
WordNet-based features does not lead to substantial improvements over the

151

g ‘ Concatenated Averaged

yHse Tratz NomBank PCEDT Tratz NomBank PCEDT
N 77.29 78.48 59.46 77.55 78.80 58.59

N+V 76.82 78.70 59.78 77.29 78.48 58.80

E 76.98 78.80 59.67 77.45 78.69 58.91

No-WordNet 77.45 78.04 58.80 77.45 78.04 58.80

(a) Accuracy

Synset Concatenated Averaged

ynse Tratz NomBank PCEDT Tratz NomBank PCEDT
N 70.46 49.92 38.19 70.61 50.85 36.63

N+V 70.23 50.27 39.00 69.76 50.61 35.34

E 70.64 50.84 38.91 70.02 50.80 35.13

No-WordNet 69.89 58.92 37.10 69.89 58.92 37.10

(b) Macro-average F; score

Table 6.12: Accuracy (a) and macro-averaged F; score (b) of the WordNet
models on the development sets of the three datasets. N: Nouns. N+V: Nouns
and verbs. E: All synonyms regardless of their PoS tag.

152

model that does not use any WordNet features (referred to as ‘No-WordNet’ in
the last row in Tables 6.12a and 6.12b). More specifically, the model’s accuracy
on the Tratz dataset becomes slightly worse when using the concatenated
representation of the synonyms. Further, the Tratz accuracy remains more
or less the same using the averaged representation of the synonyms. The
macro-averaged F; scores remain more or less the same also. The accuracy
on NomBank improves by 0.76% points when using the full synset (regardless
of the PoS tag) in the concatenated setup, and when using nouns only in the
averaged setup. The macro-averaged F; results are, however, dramatically
worse in all the models that use WordNet features in comparison to the model
that does not use any WordNet features. For PCEDT, the concatenated
setup seems to help overall, with the greatest improvement in accuracy being
about 1% when using the N+V synset. This improvement is also observed on
the macro-averaged F score. In contrast, the averaged setup either does not
help or slightly improves (or worsens) the accuracy depending on the PoS
tags of the synonyms considered from the synset.

Since the improvements in accuracy across the three datasets are rather
small, we semi-manually analyze the errors of the WordNet models. Whether
in PCEDT or NomBank, we find that 94% of the errors are the same regardless
of the PoS of the synset words or the choice of feature representation (i.e.
concatenated or averaged). In Tratz, 86.70% of the errors are the same across
all the PoS tags of the synset and the two feature representation setups.

Comparing the misclassification errors of the models that use WordNet
features and the model that does not use any WordNet features, we find
that about 92.60% of the misclassification errors are the same in PCEDT;
therefore, it is clear that the neural classification model makes highly similar
predictions with and without WordNet features. In NomBank, the picture is
slightly different as the percentage of common misclassification errors goes
down to 72% (from 94%) when we include the model that does not use
WordNet features.

To understand the difference between the models that use WordNet
features, on the one hand, and the one that does not, on the other hand,
we compare the misclassification errors made by these models on NomBank.
More concretely, we inspect the cases where any of the WordNet models
predicted the correct relation while the No-WordNet model failed to do so (i.e.
we compare the union of the correctly predicted compounds by the WordNet
models to the error set of the No-WordNet model). Further, we also inspect

153

the cases where the No-WordNet model made the correct predictions and
all of the WordNet models made classification mistakes (i.e. we compare
the intersection of the misclassified compounds by the WordNet models to
the predictions of the No-WordNet model). We find that about 63% of the
correctly predicted compounds by the WordNet models, but misclassified
by the No-WordNet model, are of type ARG1, which is the most frequent
relation in NomBank. On the other hand, the correct predictions by the No-
WordNet model only (i.e. the compounds that none of the WordNet models
gets right) are more diverse in terms of their relations, including 34.78% of
type ARG2, 19.56% ARG1 15.22% ARG3 and 13.04% ARGO. Further, none of the
WordNet models predict the relation ARGM-MNR which explains the relatively
large deterioration in macro-averaged F; score when WordNet features are
introduced.

Based on these insights, we believe that the WordNet features we encode
do not help improve the model’s ability to learn the different relations in the
three datasets considered. That said, we cannot conclude here that WordNet
features—in general—would not be helpful, as we realize that our repre-
sentation of WordNet features using word embedding vectors is potentially
suboptimal. In essence, word embedding vectors implicitly encode semantic
similarity information, and therefore adding more word embedding vectors
to the network as representation of WordNet features may be redundant.
A better approach to exploit the information encoded in lexical resources
like WordNet might be to use them directly as input to the neural classifier
instead of using their word embedding representation. The utility of WordNet
features in neural architectures, therefore, remains in part an open question
for future research.

6.7 Training Data

Throughout this chapter, we experimented with different approaches to im-
prove the performance of our neural classification model; from varying the
input representation models (word embeddings) to introducing new archi-
tectures and additional features. While some of these experiments revealed
interesting findings, the overall performance of the model did not exhibit any
‘breakthrough’ improvements. This prompts us to ask whether adding more
training data would be of help. Therefore, in this section, we experiment
with the effect of incrementally increasing the size of the training data for

154

the three compound datasets—that is, we investigate the learning curves of
the neural classification model on the three datasets.

We start by training the neural classification model with only 20% of the
available training data in each dataset, and then add one tenth of the training
data and repeat until we reach 100% of the training data. We evaluate the
models on the full development split at each point. Furthermore, since those
subsets of training data are drawn randomly from the full training split, we
repeat these experiments ten times for each subset to make sure that the effect
we see is not an artifact of the selected examples. Note, that the ‘randomness’
here only affects the selection of training examples. We still use the same

random seed to initialize the weights of the neural network.

Figures 6.4, 6.5 and 6.6 show the learning curves on the Tratz, NomBank
and PCEDT datasets, respectively. The curves are drawn using a second
degree polynomial regression. The regression confidence intervals are shown
around the regression line. The far ends of the vertical bars in the three
figures represent the minimum and maximum accuracy of the ten runs at
each point and the solid circles represent the mean accuracy of the ten runs.
Given that the neural classifier arrives at varied accuracy ranges depending on
the dataset, we draw the learning curves separately. Further, these accuracy
ranges can be both wide (in the case of the Tratz dataset) and narrow (for
PCEDT), and hence to avoid the visual amplification of one in comparison to
the other, we use the same relative range size on the y axis for all the figures.

From the figures, we can immediately see that more training data can
actually help improve the accuracy of the neural classifier on the three datasets.
However, this observation is most obvious on the Tratz dataset, and to a
slightly lesser degree on NomBank but it is perhaps least obvious on PCEDT.
It is important to highlight here, though, that the comparison across the three
datasets is not completely fair, because 20% of the training data in the Tratz
dataset, in terms of the absolute number of compound instances, amounts to
a little more than 40% of the training data in NomBank and PCEDT. We
see a relatively large deviation in accuracy across the ten runs for each of the
three datasets on the 20% point; this effect is not surprising, since the random
subset of 20% sampled for each of the ten runs is more likely to have varying
degrees of representativeness of the full dataset. However, what is surprising
is to see the large deviation in the model’s accuracy on PCEDT when we use
100% of the training data (cf. Figure6.6). In this particular scenario it seems
that the order of the training data has a large impact on the performance

155

76

4

72

Val Acc

70
68
66

64
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

% Training Data in Tratz

Figure 6.4: Learning curve on the Tratz dataset. The vertical bars show the
minimum and maximum accuracy of the ten runs at each point and the solid
circles represent the mean accuracy of the ten runs. The regression confidence
interval are shown around the regression line.

156

82

80

8

Val Acc

76
74
72

70
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

% Training Data in NomBank

Figure 6.5: Learning curve on the NomBank dataset. The vertical bars show
the minimum and maximum accuracy of the ten runs at each point and the
solid circles represent the mean accuracy of the ten runs. The regression
confidence interval are shown around the regression line.

157

64

62

60

Val Acc

54

52
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

% Training Data in PCEDT

Figure 6.6: Learning curve on the PCEDT dataset. The vertical bars show
the minimum and maximum accuracy of the ten runs at each point and the
solid circles represent the mean accuracy of the ten runs. The regression
confidence interval are shown around the regression line.

158

Tratz NomBank PCEDT

Min 76.51 7717 95.98
Max 77.60 78.91 60.87
Mean 76.95 77.99 59.06
STD 0.30 0.43 1.10

Table 6.13: Minimum, maximum, mean and standard deviation (STD) of
accuracy over 20 runs with 20 different random seeds for initialization and
shuffling.

of the model, because in each of the ten runs that use the full training split
the only difference is the order of training data—as mentioned before, the
random seeds were fixed when initializing the weights of the neural network
across the ten runs, but not upon selecting a random sample of the dataset.

To confirm that the effect we see is indeed a result of the order in which
the training instances were presented to the classifier, we run two additional
series of experiments. In the first one, we train the classifier using the exact
same hyperparameters and input representation but with 20 different random
seeds on all of our datasets. These random seeds are used throughout the
training process, which means that the order of the training instances will be
different from one random seed to another (because they are shuffled prior to
each training epoch). In the second series of experiments, we use the same
20 random seeds but only to initialize the weights of the neural network and
after that the random seed is fixed across all the experiments; that is, the
training instances are shuffled in the same way for the 20 runs. Tables 6.13
and 6.14 summarize the maximum and minimum accuracies observed for each
dataset as well as the mean and standard deviation of the 20 runs per dataset.

Contrasting the results in Tables 6.13 and 6.14, it becomes more likely that
the order of training examples influences the final performance of the model on
PCEDT. This is much less of a problem for both NomBank and Tratz, where
the two series of experiments lead to similar values of mean and standard
deviation. Arguably, observing variance in the model’s performance due to
different random seeds is not surprising given the nondeterministic nature of
neural networks (Reimers & Gurevych, 2017; Crane, 2018). However, it is
the contrast between the PCEDT results, on the one hand, and the Tratz
and NomBank results, on the other hand, that is of interest here.

159

Tratz NomBank PCEDT
Min 76.61 77.93 58.04

Max 77.24 79.13 99.35
Mean 76.86 78.48 58.54
STD 0.16 0.31 0.29

Table 6.14: Minimum, maximum, mean and standard deviation (STD) of
accuracy over 20 runs with 20 different random seeds to initialize the weights
in the neural network, but the same random seed for shuffling. The training
instances are also presented in the same order.

The two primary takeaway results from the tables above are: First, the
PCEDT results vary depending on the order of training examples during train-
ing. Therefore, we will report the (averaged) results of multiple runs towards
the end of Chapter 7, following the same experimental setup introduced in this
section. The inconsistent empirical results on PCEDT nonetheless support
our previously stated suspicion regarding the annotations in the English part
of PCEDT. Second, in all cases, we see some variation between the minimum
and maximum accuracy achieved as a result of random initialization. Hence,
in the following chapter, we experiment with learning strategies (namely
transfer learning) which could provide a more principled approach to initial-
ization yielding more stable, and potentially better, performance. Seeing that
adding more training data can be of help, we also experiment with multi-task
learning which also provides us with a way to exploit the dual annotation in
our training data for NomBank and PCEDT.

6.8 Conclusion

In this chapter, we covered a rather wide and comprehensive series of questions
related to neural classification models for compound interpretation in light
of three compound datasets, viz. Tratz, NomBank and PCEDT. In the
following, we try to summarize some of the important findings in our efforts
to replicate past work §6.1.1 and the effect of the following ‘factors’ on the
classification model: (1) word embeddings §6.3, (2) model architecture §6.4,
(3) hyperparameters §6.5, (4) WordNet features §6.6 and (5) training data
§6.7 and random initialization.

160

Replicating Dima and Hinrichs (2015): In §6.1, we reviewed and repli-
cated the first study on neural compound interpretation by Dima and Hinrichs
(2015) as a starting point for the experiments that followed in the chapter.
Dima and Hinrichs (2015) used a feedforward neural network with word
embeddings to learn the semantic relations in the Tratz dataset. The results
of our replication experiment were on par with what was reported by Dima
and Hinrichs (2015) using the GloVe embedding model, but we achieved
remarkably better results using the word2vec model. Since we are mainly
interested in a successful replication of Dima and Hinrichs’s (2015) work—
which we have achieved—we did not pursue a detailed explanation of why our
model arrives at better results when using the same word2vec model. We did
highlight, however, that our replica implementation is in fact a near-replica,
because we used a different optimization function and different library for
neural networks.

Effect of Word Embeddings: In §6.3, we investigated the effect of sys-
tematically varied word embeddings (used as input representation) on the final
performance of our neural classifiers for the Tratz, NomBank and PCEDT
datasets. More specifically, we focused on three aspect of word embeddings:
(1) text pre-processing, (2) embedding dimensionality and (3) embedding
training data. We also evaluated the effect of embedding fine-tuning along
with the second and third aforementioned aspects. The overarching conclusion
of our embedding experiments is, simply put, there is no one-size-fits-all word
embedding model; that is, the absolute best embedding model (in terms
of classification accuracy and macro-averaged F; score), to a large degree,
depends on the dataset itself. For example, we found that lemmatization
improves the NomBank classifier accuracy while it harms the Tratz classifier
accuracy (and it almost has no effect on PCEDT). That said, we observed
a few patterns that, by and large, hold across all three datasets. First, our
experiments confirmed that fine-tuning word embeddings leads to better accu-
racy and macro-averaged F; scores. Second, we showed that the embedding
dimensionality and size of training data play less of an important role when
the embedding models are fine-tuned. That is not to say that the dimensional-
ity of word embeddings is not important, but rather the impact of increasing
the number of dimensions becomes less pronounced with fine-tuning. Third,
our experimental results revealed that there are limits on how far higher
dimensionality is better (especially in the fine-tuned mode), which somewhat

161

modulates the conclusion by Dima and Hinrichs (2015, p. 177) who write that
“it was always the highest dimensional embedding that gave the best results”.

Neural Architectures: In §6.4, we experimented with alternative neural
architectures which account for the assumption that the modifier and head
nouns can contribute differently to determining the compound’s relation. More
concretely, we defined three architectures with constituent-specific layers in
which the head and modifier nouns have separate embedding layers (Eg),
hidden layers (Hg) or both (EHg). Our experimental results showed that
the benefit of the constituent-specific architecture depends on the evaluation
measure we consider. We did not see any improvement in accuracy when
using the three new architectures on NomBank and Tratz, and a small
improvement on PCEDT. However, we did observe larger variation in the
macro-averaged F; scores even though the accuracy scores were comparable.
Upon further inspection of the results, we found that the relations that have
‘prototypical’ heads or modifiers, especially in NomBank, tend to benefit
more from the constituent-specific classifiers. These relations, however, are
relatively infrequent and therefore such an improvement was not reflected in
terms of accuracy.

Model Hyperparameters: In §6.5, we studied the impact of different
hyperparameters on our classification models following two strategies: (1) sen-
sitivity analysis in §6.5.1 and (2) random search in §6.5.2. In the sensitivity
analysis study, we evaluated the impact of a selection of hyperparameters, in
isolation, on the model’s performance. Such an experimental setup, of course,
makes strong assumption on the independence of different hyperparameters,
but we compensated for this assumption in the random search experiments
which consider seven hyperparameters and settings at the same time. In
either case, however, our hyperparameter search experiments were geared
towards confirming the plausibility of our hyperparameter choices rather than
finding the configuration that leads to the absolute best results. In addition
to confirming the validity of our hyperparameter choices, the results of the
hyperparameter optimization experiments revealed a few patterns that apply
to the three compound datasets. First, fine-tuning word embeddings helps
improve the classification accuracy regardless of the values of other hyper-
parameters; this pattern was clear across 172 random search experiments
per dataset. Second, extremely small hidden layers (e.g. four or eight units)

162

substantially degrade the classification accuracy of the models for all datasets,
which is unsurprising given the reduced representational capability of the
model. Third, adding a dropout layer might help improve the performance
but the ideal dropout rate is dataset-dependent. Lastly, our unified hyperpa-
rameter configuration (cf. Table 6.3) ranks comparatively high among the 172
hyperparameter combinations explored by the random search study, especially
on the Tratz and NomBank datasets. Our decision to continue to use the
unified hyperparameter configuration is mainly to facilitate straightforward
comparison with the experiments in Chapter 7.

WordNet Features: In §6.6, we experimented with adding WordNet-
based features to our models, which were inspired by the features used by
Tratz and Hovy (2010). Overall, we did not see any remarkable improvement
in the model’s performance, even though we experimented with several
types of features (extracted from the constituents’ synsets in WordNet) and
different representations of such features. However, we also explained that our
representation of the WordNet features (using word embedding vectors) might
have been suboptimal, and therefore further experimentation is required to
determine the utility of WordNet-based features with neural models.

Training Data: In §6.7, we studied the effect of incrementally increasing
the size of the training data on the performance of the neural classifier for
each of the three datasets. Specifically, we trained classification models on
increasing amounts of data starting with only 20% of the training examples
and then added one more tenth of the training data per step. To make
sure that the results were not an artifact of how the subsets of the training
data were sampled, we ran each experiment ten times and finally drew the
learning curves based on the mean accuracy results. From the experimental
results, it was clear that with more training data the model can achieve higher
accuracy scores, especially for the Tratz and NomBank datasets. However,
our experiments also revealed that the models can be sensitive to the order of
training data (primarily on PCEDT), which promoted us to experiment with
the impact of random initialization and ordering of training examples. In a
series of experiments that control for the effect of random initialization and
the shuffling of training examples, we found that the model’s performance
on PCEDT is susceptible to the order of examples presented during training.
This proved to be less of an issue for NomBank and Tratz.

163

Chapter 7

Transfer and Multi-Task
Learning for Compound
Interpretation

In this chapter, we empirically evaluate the utility of two machine learning
strategies, transfer and multi-task learning, that exploit the relationship
between multiple, parallel annotations in our compound datasets. Through a
comprehensive series of experiments, we investigate whether transfer learning
via parameter initialization and multi-task learning via parameter sharing can
help improve the performance of our neural classification model. Furthermore,
we demonstrate how the dual annotation with relations over the same set of
compounds in our dataset can be exploited to improve the overall accuracy of
a neural classifier on the less frequent, but more difficult, relations in PCEDT
and NomBank. We start with a brief introduction and motivation in §7.1. We
then, in § 7.2, move to define some basic terminology as well as the learning
strategies used in this chapter and review a selection of related studies (§7.2.2).
In §7.3, we introduce how transfer and multi-task learning can be applied
to compound interpretation and in §7.4 we outline our experimental setup
and models. In §7.5, we detail the results of our experiments and present
an in-depth error analysis on the development and test splits. In §7.6, we
gauge the ability of our neural models to generalize over unseen examples and
the influence of lexical memorization on their performance. Lastly, in §7.7,
we investigate the benefits of transfer and multi-task learning to ‘stabilize’
the model’s performance with respect to random initialization and order of
training examples—a recurring issue we observed in the previous chapter.

165

7.1 Introduction and Motivation

Thus far we have only considered single-task learning (STL) as a learning
strategy in our experiments—that is, we experimented with separate neural
classifiers to learn the interpretation of noun—noun compounds in the three
datasets. In contrast, we dedicate this chapter to comprehensive experimen-
tation on transfer learning (TL) and multi-task learning (MTL), two learning
strategies that can take advantage of the relationship between the NomBank
and PCEDT compound datasets. This chapter, furthermore, partly aims to
contribute to the more general goal of studying the use of TL and MTL for
NLP problems. The work presented in this chapter is hence motivated by
several observations rooted in properties of two of the compound datasets we
use (viz. PCEDT and NomBank), the very nature of the neural classifica-
tion models introduced in the preceding chapter and—of course—findings by
previous research on related problems.

First, in Chapter 6 we found that the (random) initialization of the neural
classifier’s weights as well as the order of training examples non-trivially affect
the final performance of the classifier in terms of accuracy. Furthermore,
we also observe that adding more training data is likely to improve the
performance of the neural classifier (cf. §6.7). As will be explained later in
this chapter, transfer learning and multi-task learning can potentially offer
solutions for the two problems stated above in terms of parameter (or weight)
initialization and additional training examples.

Second, over the past few years, the interest in using transfer learning and
multi-task learning in NLP has surged, all the while showing ‘mixed’ results
depending on, inter alia, the main and auxiliary tasks, model architecture and
datasets (Collobert & Weston, 2008; Mou et al., 2016; Sggaard & Goldberg,
2016; Martinez Alonso & Plank, 2017; Bingel & Sggaard, 2017). These ‘mixed’
results coupled with the fact that neither TL nor MTL has been applied
to compound interpretation before further motivate our extensive empirical
study on the use of TL and MTL for compound interpretation, not only to
supplement existing research on the utility of TL and MTL for semantic
NLP tasks in general, but also to determine their benefits for compound
interpretation in particular. It has been observed, however, that TL and
MTYL often work best when the main and auxiliary tasks are somehow related
(Mou et al., 2016), which is the case for our noun-noun compound datasets

(cf. §7.3).

166

Third, one of the primary motivations for using multi-task learning is
to improve generalization by “leveraging the domain-specific information
contained in the training signals of related tasks” (Caruana, 1997, p. 41). In
this chapter, we investigate whether or not TL. and MTL can be used as a kind
of regularizer to learn to predict the infrequent relations in a highly skewed
distribution of relations in the noun-noun compound datasets of NomBank
and PCEDT.!

7.2 Terminology and Definitions

In this section, we introduce the basic idea behind transfer and multi-task
learning in general without distinguishing between the two learning strategies;
though, as will be shown later, we do in fact distinguish between them, but
until we do that we will refer to both learning strategies as multi-task learning
(or MTL). In addition, we define some of the terminology that we perceive as
generally vague, underspecified concepts in the context of multi-task learning.

Multi-task learning is perhaps best understood in contrast to the more
common approach of single-task learning. To a certain degree, all the ex-
periments we introduced in Chapter 6 fall under the definition of single-task
learning, in the sense that we train and optimize three separate classification
models to learn the semantic relations in the three compound datasets.? At no
point in Chapter 6 did we exploit the fact that at least two of our compound
datasets are closely related (viz. PCEDT and NomBank); rather we treated
them as completely separate tasks even though we know that, in practice, this
is not the case. Multi-task learning—as a machine learning strategy—allows
us to take advantage of the relationship between our tasks (or datasets) by
learning one model for the two tasks, among other approaches.

Multi-task learning makes use of multiple related tasks to either (1) im-
prove the generalization of one specific task only or (2) learn multiple tasks in
one model at the same time. The rationale behind multi-task learning can be
summarized in that task-specific information and representations available for
a given a model can be also beneficial for other related tasks. More precisely,
in his seminal work, Caruana (1997, p. 41) writes:

'Parts of this chapter are based on the work we published in Fares et al. (2018)
2In fact, using pre-trained word embedding models already introduces some aspect of
transfer learning to our experiments in Chapter 6, but we will come back to this point later.

167

“MTL improves generalization by leveraging the domain-specific information
contained in the training signals of related tasks. It does this by training
tasks in parallel while using a shared representation. In effect, the training
signals for the extra tasks serve as an inductive bias.”

At first glance, the excerpt from Caruana (1997) leaves little room for
interpretation, but in the grand scheme of things we find that some terms
require further specification. One of these terms is generalization which has
been described as a “suitcase word” by Lipton and Steinhardt (2018). In their
article, Lipton and Steinhardt (2018) try to identify some of the problematic
aspects in machine learning scholarship, which include the overuse of certain
terms; they describe such terms as “suitcase words”—a concept they borrow
from Minsky (2007). Therefore, in the interest of full transparency, in the
following we explain some of the keywords in the quote by Caruana (1997)
above as we transition towards a more detailed definition of multi-task learning
in our experiments.

Generalization: Given the context of multi-task learning, generalization
can be understood in at least two ways. First, the more ‘traditional” definition,
which is the (expected) difference between the model’s performance on the
training split and the development or test splits. This difference in perfor-
mance is often computed between the training and test splits and referred
to as generalization error (Hastie et al., 2009, p. 220). Second, it is possible
to interpret generalization as the model’s ability to generalize over a new
domain or type of input (Williams, 2013); for example, the ability of part-of-
speech taggers trained on edited newspaper text to perform equally well on
social media text. We will use generalization in both senses throughout this
chapter; in § 7.6, for example, we quantify the model’s ability to generalize
over compounds with unseen constituents. In addition, we will also consider
a slightly variant perspective on generalization in §7.5.2, where we compare
the difference between the model’s performance (in terms of accuracy) on the
development set and the test set.

Inductive bias: This concept is somewhat related to generalization. Train-
ing an ML model is essentially looking for a hypothesis that characterizes
the training examples and allows the model to ‘generalize’ over unseen ex-
amples (be it from a different domain or not). Inductive bias can be then
understood as bias to make the ML model favor one hypothesis over others

168

(Caruana, 1993). In the context of multi-task learning, the training signals
from other tasks become an additional source of inductive bias. The final set
of weights for a given neural model are somehow the result of finding a local
(or sometimes global) minimum. However, if there are several local minima
(which is often the case), then the decision of which local minimum to ‘choose’
can be influenced by inductive bias. In multi-task learning, the idea is to
influence the choice of the local minimum or hypothesis based on signals (i.e.
inductive bias) from other related tasks. This hypothesis is hence assumed
to lead to favorable generalization abilities because it combines information
from multiple ‘related’ tasks.

Relatedness: The earliest work on multi-task learning by Caruana (1997)
does not offer a clear, formal definition of when two tasks are considered
related. On the one hand, he states that if the predictions on two tasks
are functions of the same input, then these two tasks are related. On the
other hand, he also states that injecting noise into one task can also help
the model generalize (by way of regularization). Of course, such noise is by
no means to be considered ‘related’ to the main task even though it might
help improve generalization. This may be the reason why Caruana (1997,
p. 71) writes “[w]e may never have a theory of relatedness that allows us
to reliably predict which tasks will help or hurt each other when used for
inductive transfer.” Perhaps for the same reason, Goldberg (2017, p. 244) also
claims that choosing related tasks for MTL is “more of an art than science”.
In the following we present a more recent formal definition of relatedness,
based on which we show why two of our compound datasets (viz. NomBank
and PCEDT) can be considered related.

Formal definition: We follow the same notation used by Pan and Yang
(2010) to define how two tasks can be related as well as explain multi-task
learning in more formal terms.

Assume we have a classification task 7, which can be defined in terms of
all training pairs (X,Y’) and a probability distribution P(X), where:

X:I'l,...,xNeX
Y=uy,...,yn€)

X is the input feature space,) is the set of all labels and N is the size of the

169

training data. Further, the classification task domain D is defined by the pair
{X, P(X)}. The goal of a machine learning algorithm is to learn a function
f(X)—from the training pairs (X, Y)—to predict Y based on the features of
the input examples X.

Now assuming that we have two ML tasks, 7, and T,, we would train
two separate models (i.e. learn two separate functions f, and f;) to predict
Y, and Y, in a single-task learning setup. In MTL, however, we can either
learn one function for the two tasks or still learn two separate functions while
relying on information from the two tasks. As mentioned earlier, if 7, and
T, are related somehow, either explicitly or implicitly, MTL can improve the
generalization of either task or both (Caruana, 1997; Pan & Yang, 2010; Mou
et al., 2016). Two tasks are considered related when their domains (D, and
Dy) are similar but their label sets are different), #), which is similar to
the scenario Caruana (1997) describes as two tasks being functions of the
same input. Another case of two tasks being related is when their domains
are different but their label sets are identical, i.e.), = }), (Pan & Yang,
2010).2

Given the former definition of ‘relatedness’, noun-noun compound inter-
pretation in the context of the NomBank and PCEDT datasets is a well-suited
candidate for TL and MTL, because the training examples in the two datasets
are identical, but the label sets are different, i.e.:

XPCEDT - XNomBank

yPCEDT # yNo'mBank

Thus, we can reasonably assume that it is potentially beneficial to use
MTL in the context of our noun—noun compound datasets.

7.2.1 TL vs. MTL

In 1995, researchers gathered in a post-conference workshop under the annual
Conference on Neural Information Processing Systems to discuss “knowledge
consolidation and transfer in inductive systems”* The overarching aim was to
develop “methods that capitalize on previously acquired domain knowledge”.

3When the label sets are identical, multi-task learning (in the general sense) practically
becomes a technique for domain adaptation.

1The workshop web page: http://plato.acadiau.ca/courses/comp/dsilver/
NIPS95_LTL/transfer.workshop.1995.html. Accessed: 11 December 2018.

170

http://plato.acadiau.ca/courses/comp/dsilver/NIPS95_LTL/transfer.workshop.1995.html
http://plato.acadiau.ca/courses/comp/dsilver/NIPS95_LTL/transfer.workshop.1995.html

These methods came under different names: multi-task learning, lifelong
learning, knowledge consolidation, inter alia. Even though it has been well
over twenty years since that workshop took place, the names of such methods
are still at times conflated and used somewhat interchangeably in the literature;
for example, what we call transfer and multi-task learning in this chapter are
both referred to as transfer learning by Mou et al. (2016). Therefore, for the
sake of clarity, in this section we aim to define and make explicit the difference
between what we refer to as transfer learning (TL) versus multi-task learning
(MTL). In doing so, we do not seek to argue that such a distinction between
TL and MTL should be made at all times, rather merely make explicit the
meaning of two concepts central to this chapter.

We define transfer learning as using the parameters (i.e. weights in neural
networks) of one model trained on task 7, to initialize another model for
task 75. Mou et al. (2016) refer to this method as “parameter initialization”.’
That is, the weights of a model that have been trained on a given task can be
used to initialize another model for another related task. Hence, in this sense,
TL as a learning strategy entails some sort of knowledge ‘transfer’ across
tasks but in a sequential manner. We interpret multi-task learning as training
(parts of) the same model (e.g. neural network) to learn tasks 7, and 7y at the
same time, i.e. learning one set of parameters for both tasks. This approach to
multi-task learning is also known as hard parameter sharing. Hence, not only
is there simultaneous learning in MTL (in contrast to ‘sequential’ transfer),
but also parts of the model itself are shared among the tasks. It is important
to highlight here that the ultimate aim of using MTL need not be training
one model for many tasks. In fact, Caruana (1997, p. 68) clearly states that
the main benefit of MTL is not to “reduce the number of models that must
be learned”, but rather to exploit the training information contained in other
tasks to learn a specific one. Consequently, we often speak of ‘auxiliary’ and
‘main’ tasks in MTL, where the auxiliary tasks are the tasks used to introduce
inductive bias so that the model is able to learn better generalizations over the
main task. Likewise, we also speak of ‘source’ and ‘target’ tasks in transfer
learning; the source task being the task whose model’s weights are used to
initialize a model for the target task.

In the following section, we review some of the previous work on TL and

®In fact, using pre-trained word embeddings as input representation (like we did in
Chapter 6) is in a sense a form of unsupervised transfer learning, but in this work we focus
on transfer methods based on supervised learning.

171

MTL for NLP, not only to situate our work within the realm of existing
studies but also to help paint a clearer picture of what TL and MTL mean.

7.2.2 Related Work

To the best of our knowledge, transfer and multi-task learning have never been
applied to noun—noun compound interpretation before. Therefore, in this
section, we review several recent studies on TL and MTL for other NLP tasks
that are somehow related to our experimental setup or present comprehensive
experiments on the use of TL and MTL for a variety of NLP tasks, including
named entity recognition and semantic labeling (Martinez Alonso & Plank,
2017), sentence-level sentiment classification (Mou et al., 2016), super-tagging
and chunking (Bingel & Sggaard, 2017) and semantic dependency parsing
(Peng et al., 2017).

Mou et al. (2016) study the ‘transferability’ of knowledge across differ-
ent NLP tasks using six datasets for sentence classification (sentiment and
question type classification) and sentence pair classification (sentence relation
classification such as entailment and contradiction). They organize their
experiments in two series, each comprising three datasets corresponding to
whether these datasets deal with sentence classification or sentence pair clas-
sification. The largest datasets in these two series of experiments serve as the
‘source’ task for the other two target tasks. Furthermore, they train two neural
networks for these experiments; a long short term memory (LSTM) recurrent
neural network (RNN) for sentence classification and a convolutional neural
network (CNN) for sentence pair classification. Mou et al. (2016) define two
approaches for what they call transfer learning: parameter initialization (using
the parameters of a model trained on the source task to initialize a model
for the target task) and multi-task learning (training a model on the source
and target tasks simultaneously). As explained in §7.2.1, we refer to the
first approach as transfer learning and the second one as multi-task learning,
whereas Mou et al. (2016) refer to both approaches as transfer learning, i.e.
Mou et al. (2016) consider MTL a type of TL. One of the interesting findings
by Mou et al. (2016) is that knowledge ‘transferability’ largely depends on
the semantic relatedness or similarity between the source and target tasks.
Mou et al. (2016) seem to define semantic similarity based on the similarity
between the classification labels in the source and target tasks; for example,
they consider two sentence classification datasets, namely the IMDB dataset

172

and the Movie Review Data (Pang et al., 2002), semantically similar because
they both annotate sentiment polarity (positive vs. negative). Given their
conclusion, our NomBank and PCEDT datasets potentially stand to benefit
from TL and MTL, because they can be considered semantically similar in
terms of their labels (in addition to annotating the exact same set of noun—
noun compounds). Lastly, Mou et al. (2016) report that the performance of
parameter initialization is generally comparable to that of multi-task learning,
and that combining the two approaches does not lead to further gains in the
tasks they study.

Martinez Alonso and Plank (2017) try to establish when MTL works for
semantic sequence classification in terms of task-dependent characteristics.
They experiment with five semantic tasks (such as named entity recognition)
as their main tasks and four morphosyntactic and frequency-based tasks (such
as PoS tagging) as their auxiliary tasks. The neural model underlying all of
their experiments is a bidirectional LSTM neural network. Their experimental
design leads to a total of 1,440 models where not only the combination of
auxiliary and main tasks differs, but also the placement of the output layer
of the auxiliary task. Overall, Martinez Alonso and Plank (2017) report that
only one of the five main tasks sees a significant improvement using MTL
in comparison to the STL baseline. Note that Martinez Alonso and Plank
(2017) do not use pre-trained word embeddings as input representation in
their experiments. The main conclusion Martinez Alonso and Plank (2017)
draw from their experiments relates the auxiliary task label distribution
to the potential benefits of MTL. More concretely, their MTL architecture
could benefit most from “compact and more uniform label distributions” of
the auxiliary tasks. Given the architecture of their model (i.e. having three
hidden layers), Martinez Alonso and Plank (2017) experiment with placing
the output layer of some auxiliary tasks, such as PoS tagging, at inner layers.
They find that the choice of where to place the output layer does not lead to
any systematic variation in the final results.

Bingel and Sggaard (2017) conduct a comprehensive set of experiments in
an effort to determine what relations among the tasks can guarantee benefits
from MTL. Their study is focused on sequence labeling using a bidirectional
LSTM, in which they compare the performance of 90 MTL models (i.e. 90
combinations of ten NLP tasks) to the corresponding STL models. Of these
90 combinations, 40 see improvement using MTL over the STL models. They
then analyze these results by training a logistic regression model to predict the

173

benefits of MTL based on features inherent to the tasks themselves as well as
features extracted from the learning curves of the STL models. This method
of analysis allows them to find which features of the logistic regression model
were most predictive, and since these features are basically characteristics of
the tasks themselves they are able to determine what contributes to making
MTL beneficial. Based on the above, they find that the strongest predictor
of MTL benefits is the learning patterns of the main and auxiliary tasks
in terms of the shape of their learning curves; if the main task is likely to
plateau rather early in training (i.e. get stuck in a local minimum), then using
a non-plateauing auxiliary task would be of help. Another strong predictor is
the out-of-vocabulary rate for the main task, which is to be expected since
the embedding weights are shared in the MTL models across the tasks, and
hence more embedding weights are updated during training. Upon private
correspondence with the authors, they explained that their definition of out-
of-vocabulary words actually refers to words that are only observed in the test
set of the target task (and not in the training set).® If some of these unseen
words in the main task occur in the training set of the auxiliary task they will
be updated during training, and hence the potential benefit of MTL in this
context. We find this to be an interesting observation and stipulate that it
may perhaps provide a partial remedy to the undesired effect of fine-tuning a
subset of the vectors in word embedding models while keeping the rest static
(Astudillo et al., 2015).

Unlike the three studies we reviewed above, Peng et al. (2017) focus on one
NLP problem only, viz. semantic dependency parsing. We include their work
in our literature review because their hypothesis and motivation to use multi-
task learning are similar to ours. They experiment with learning dependency
parsing across three linguistic formalisms from the 2014 and 2015 SemEval
shared tasks on broad-coverage semantic dependency parsing (Oepen et al.,
2014, 2015). They hypothesize that the “overlap among the theories and
their corresponding representations can be exploited using multitask learning”
(Peng et al., 2017, p. 2037). We assume the same hypothesis for noun-noun
compound interpretation across parallel annotations in § 7.3. In brief, Peng et
al. (2017) train a bidirectional LSTM composed with a multi-layer perceptron
(MLP) as their single-task learning model (which also serves as their baseline).

60Qut-of-vocabulary words or rate sometimes refers to the words that are not represented
in the word embedding model itself (i.e. words that do not have an embedding vector), but
that is not what Bingel and Sggaard (2017) refer to in their work.

174

They then extend the STL model to an MTL model via parameter sharing
(in the bidirectional LSTM) as well as a single MTL model that uses joint
inference across the three formalisms. One of the important findings Peng et
al. (2017) report is that structural similarity between the formalisms affects
the utility of multi-task learning in their experiments. More specifically, they
find that two of the formalisms are more similar to each other than the third
one, and this pair of formalisms is the one that sees the highest improvement
when MTL is applied.

Finally, even though the aforementioned studies experiment with different
NLP tasks and assume slightly different definitions of TL and MTL, we find
an overarching conclusion across all of them: The potential benefits of transfer
and multi-task learning largely depend on the properties of the main and
auxiliary tasks as well as the datasets at hand. To summarize, Mou et al.
(2016) emphasize the importance of semantic similarity between the source
and target tasks, whereas Martinez Alonso and Plank (2017) report that the
skewedness of the data distribution in auxiliary tasks plays an important role
in determining whether or not MTL helps. Bingel and Sggaard (2017) find
the learning pattern of the auxiliary and main tasks to be a strong predictor
of the benefit of MTL, where “target tasks that quickly plateau” benefit most
from “non-plateauing auxiliary tasks” Peng et al. (2017) observe “structural
similarity” between the main and auxiliary tasks as an important factor.

7.3 TL & MTL for Compound Interpretation

Taken together, the conclusions of the previous studies reviewed in §7.2.2
indicate that transfer and multi-task learning might be of help in our tasks
of noun—noun compound interpretation. The definite answer, however, has
to be pursued empirically. That said, boosting the model’s performance
is but one of several potential benefits of transfer and multi-task learning.
In §6.7 we observed that random initialization of the model’s parameters
directly affects the overall performance of the model as well as its stability.
In addition, we also observe that adding more training data can help boost
the model’s performance, though the order of the training examples seems to
have an effect as well (especially on PCEDT). In this section we explain how
transfer and multi-task learning can potentially offer a remedy for these two
issues in the context of our task and datasets—though the ultimate answer
remains to be seen empirically (in §7.7). We also explain our hypothesis of

175

why the NomBank and PCEDT datasets are especially suited for a transfer
and multi-task learning setup.

In transfer learning, as defined in §7.2.1, we use the weights of a model
trained on some task 7, to initialize a model for another task 7. Seen as an
initialization strategy, transfer learning—in theory at least—offers a more
informed, and potentially stable, alternative to random initialization. Transfer
learning can be considered an ‘informed’ initialization strategy in our case,
because our source and target tasks are closely related (cf. §7.2 and the
following paragraph). While multi-task learning in our particular setup does
not add more training data in terms of the numbers of examples, it does
add another source of information to the model, by requiring it to learn the
semantic interpretation of the same noun—noun compounds in two distinct
annotation frameworks (NomBank and PCEDT).

The last point leads to the question of how ‘related’ are these two datasets.
In §7.2, we explained the ‘relatedness’ between NomBank and PCEDT in
terms of their identical inputs X, i.e. the fact that the actual compound
examples are the same across the two datasets but their labels are different.
Here we argue that even their labels, Yy, mpenr a0d Vpcerpr, are also related.
Abstractly, many relations in PCEDT and NomBank describe similar semantic
concepts, since they annotate the semantics of the same text. We detailed
the correspondence between the annotations in the two datasets in §4.5.2; for
example, we reported that the temporal relation in NomBank (ARGM-TMP) and
its counterpart in PCEDT (TWHEN) exhibit a relatively consistent behavior
across frameworks as they annotate many of the same compounds. However,
as also explained in §4.5.2, some abstractly similar relations do not align
well in practice; for example, the functor AIM in PCEDT and the modifier
ARGM-PNC in NomBank express a similar semantic concept (Purpose according
to the annotation guidelines of the two datasets), but the overlap between
the sets of compounds they annotate in practice is rather small. Nonetheless,
it is still plausible to hypothesize that the (partial) similarities between the
two annotation frameworks and label sets can be exploited in the form of
transfer and multi-task learning. As such, the NomBank and PCEDT datasets
maximally enable TL and MTL perspectives, as they offer dual annotation
with relations over the same underlying set of compounds. Furthermore, our
TL and MTL experiments can be perceived as a method to conduct further
empirical, contrastive analysis and comparison between the two annotation

frameworks themselves (NomBank and PCEDT).

176

When it comes to the Tratz dataset, we expect TL and MTL to have less of
an effect because (1) the labels of Tratz are tailored to noun—noun compound
interpretation, unlike NomBank and PCEDT that express the semantics of
compounds in a broader linguistic context and (2) the Tratz dataset annotates
a different set of compounds, which means there is little lexical overlap between
the Tratz dataset on one hand and PCEDT and NomBank on the other hand.
Therefore, we limit our experiments to NomBank and PCEDT in this chapter.

7.4 Experimental Setup

In this section, we present the neural classification models used in our TL
and MTL experiments. To isolate the effect of TL and MTL, we use the
single-task learning model introduced in Chapter 6 as our baseline, and then
we extend it to apply TL and MTL.

7.4.1 Single-Task Learning Model

Before we embark on describing how we implement TL and MTL, we briefly
review the single-task learning (STL) model introduced in Chapter6. The
baseline STL model is a feed-forward neural network consisting of: (1) an
input layer, (2) an embedding layer, (3) a hidden layer and (4) an output layer.
The input layer is simply two integers specifying the indices of a compound’s
constituents in the embedding layer where the word embedding vectors are
stored; the selected word embedding vectors are then fed to a fully connected
hidden layer whose size is the same as the number of dimensions of the word
embedding vectors. Finally, a Softmax function is applied on the output layer
and the most likely relation is selected.

Throughout this chapter, the compound’s constituents are represented
using a 300-dimensional GloVe word embedding model trained on an English
Wikipedia dump and Gigaword Fifth Edition (which is the same embedding
model we settled for in §6.3). When looking up a word in the embedding
model, if it is not found we check if the word is uppercased and look up the
same word in lowercase. If a word is hyphenated and is not found in the
embedding vocabulary, we split it on the hyphen and average the vectors of
its parts (if they exist in the vocabulary). If after these steps the word is still
not found, we use a designated vector for unknown words.

177

The model’s hyperparameters and settings remain the same as in the
‘unified hyperparameter configuration’; as outlined in Table 6.3, but we repeat
them here for simplicity. The weights of the embedding layer (i.e. the word
embeddings) are updated during training in all the experiments. The opti-
mization function we use in all the models is Adaptive Moment Estimation,
known as Adam, with the default learning rate (n = 0.001). The loss function
is negative-log likelihood (aka categorical cross-entropy). We use a Sigmoid
activation function on the hidden layer units and Softmax on the output
layer. All the models are trained using mini-batches of size five. The number
of epochs is set to 50, but we also use an early stopping criterion based on the
model’s accuracy on the development set (i.e. training is interrupted if the
development accuracy does not improve over five consecutive epochs). Like
the experiments in Chapter 6, we implement all the models in Keras with
TensforFlow as backend.

Finally, in line with many previous studies (Collobert & Weston, 2008;
Martinez Alonso & Plank, 2017; Bingel & Sggaard, 2017), we use the same
hyperparameters for STL, TL and MTL to isolate the effect of TL and
MTL. Needless to say, our TL and MTL might benefit from hyperparameter
optimization but this would make direct comparison to our STL models less
straightforward.

7.4.2 Transfer Learning Models

We define our transfer learning setup in a way similar to the work by Mou
et al. (2016), in that we experiment with parameter initialization on all the
layers of the neural model, except the output layer because it is task- or
dataset-specific (Mou et al., 2016).

More specifically, transfer learning in our experiments amounts to training
an STL model on PCEDT relations, for example, and then using (some of)
its weights to initialize another model for NomBank relations. Given the
architecture of the neural classifier described in the previous section, we
identify the following three ways to implement TL:

1. TLg: Transfer of the embedding layer weights.
2. TLy: Transfer of the hidden layer weights.

3. TLgn: Transfer of both the embedding and hidden layer weights.

178

In addition to the those three TL configurations, we distinguish between
transfer learning from PCEDT to NomBank and vice versa; that is, either
task can be used as source task or target task. Hence, we either start by
training on the NomBank dataset and use the weights of the corresponding
transfer layer to initialize the PCEDT model or the other way around. This
leads to a total of six TL setups or models. Lastly, we do not freeze the
transfered weights in any of the setups, since TL is partly perceived as a
parameter initialization strategy. We acknowledge, however, that it could
be well worth experimenting with freezing some of the TL models’ layers or
gradually unfreezing some of them.

7.4.3 Multi-Task Learning Models

In our MTL experiments, we train one model simultaneously to learn both
PCEDT and NomBank relations, and therefore all the MTL models have
two loss functions and two output layers. The two loss functions contribute
equally (i.e. have the same weight) to computing the overall loss during
training. We extend the STL model introduced in Chapter 6 to enable (hard)
parameter sharing. Hence, we implement two MTL setups to learn NomBank
and PCEDT:

1. Shared embeddings (MTLg): a model with shared embedding layer but
two task-specific hidden layers.

2. Fully shared (MTLgg): apart from the output layer, the model does
not have task-specific layers, i.e. both the embedding and hidden layers
are shared. Figure 7.1 shows the architecture of the model.”

Like in transfer learning, we also distinguish between the auxiliary and
main tasks in MTL, but the distinction is based on which development
accuracy (NomBank or PCEDT) is monitored by the early stopping criterion.
Hence, we end up with a total of four MTL configurations, based on which
dataset (or task) is the main task and the architecture of the MTL model

"We refer to this model as MTLg in Fares et al. (2018). The notation was changed here
for clarity.

179

Embedding Hidden Output

<—— NomBank Rel #1

[[s

Input #1 —— v2q ‘”22 ‘ "UQD

- /-3
/

+—— NomBank Rel #k

Input #2 —— \ +— PCEDT Rel #1

¢ PCEDT Rel #;j

Figure 7.1: Architecture of the MTLgy model

7.5 Experimental Results

In this section, we present and analyze the results of our experiments on TL
and MTL. To allow comparison with the results presented in Chapter 6, we
use the exact same data splits (i.e. training and development sets) to train
and evaluate the models. We start by reporting results on the development
split (§7.5.1), and then move to in-depth analysis of the STL, TL and MTL
models’ performance on the test split (§7.5.2).

Before we present the results, however, we recall the distribution of the
most frequent relations in NomBank and PCEDT across the three data splits
in Figures 7.3a and 7.2b. As we have repeatedly stated, and as the figures
indicate, the imbalanced distribution of relations in NomBank and PCEDT
renders accuracy alone a less informative evaluation measure to identify the
best performing model in our experiments. Therefore, it is important to report
and analyze the (macro-averaged) F; scores of the NomBank and PCEDT
relations across all the STL, TL and MTL models. Furthermore, these figures
demonstrate the difficulty of the problem at hand; for example, almost 71% of
the relations in the NomBank training split are ARG1 (proto-typical patient),
and 52% of the PCEDT relations are of type RSTR (underspecified adnominal
modifier). Such highly skewed distributions of the relations make learning
some of the other relations more difficult, if not impossible in some cases. In
fact, of the 11 NomBank relations observed in the development split, three
relations are never predicted by any of the STL, TL and MTL models, and

180

of the 20 PCEDT relations observed in the development split only six are
predicted. That said, the non-predicted relations are extremely infrequent in
the training set (e.g. 23 PCEDT functors each occurs less than 20 times in
the training set), and it is therefore questionable if an ML approach will be
able to learn them under any circumstances. The macro-averaged F'; scores
in this section are hence computed over the subset of ‘learnable’ relations in
NomBank and PCEDT (cf. §4.5.4 for the definition of the subset of ‘learnable’
relations in both datasets).

7.5.1 Evaluation on the Development Split

Tables 7.1a and 7.1b present the accuracy and macro-averaged F; scores of
the different TL and MTL models on the development split in NomBank
and PCEDT.® The top row in both tables shows the results of the STL
model, which also serve as our baseline in the TL and MTL experiments.
The NomBank column refers to the results when said dataset is used as a
target task (in TL) or main task (in MTL), and PCEDT is used as a source
or auxiliary task. For example, the second cell in the NomBank column refers
to the model (TLg) whose embedding layer is initialized using the embedding
weights from the STL model trained on PCEDT. The same applies inversely
to the PCEDT column.

Looking at the accuracy results first, we see that the benefits of TL
and MTL vary depending on the dataset. For example, on PCEDT (i.e.
predicting PCEDT functors as the target or main task), all the TL models
improve the accuracy over the STL model, with the largest—though still
modest—improvement achieved using the TLgy model (1.09 absolute points).
On NomBank, however, the best improvement we observe is 0.44, using
the TLgg model also. It is also important to highlight here that in terms
—ALrror_ . 100), the 0.44 improvement in NomBank

of error reduction (i.e. #
rror

accuracy amounts to 2% error reduction, whereas the 1.09 increase on PCEDT
corresponds to 2.64% error reduction. Both of the MTL models worsen the

8Note that the numbers reported in this chapter marginally differ from what we report
in Fares et al. (2018). While the differences observed do not change the overall conclusion, it
is important to highlight that those experiments were conducted on different computational
infrastructures using different versions of Tensorflow. For example, the models in Fares et
al. (2018) were trained using Tensorflow version 1.8.0, whereas the models in this chapter
were trained using version 1.12.0. Crane (2018) identifies changing the framework version
as one of the factors that can potentially cause “irreproducibility of results”.

181

0.7 B Train
I Dev
0.6 B Test

o
o

Percentage
o
N

0.3
0.2
0.1 .
Q C
PS‘C)\ PS‘G{L ?3”6 ?&C’(b C;N\»OO S ﬂ\‘ﬁﬂg &I\§k$ S ﬂ\?$
PN N R

Relation

(a) NomBank

0.5 B Train
B Dev
B Test
0.4
O. III ..I --- —-— ————— —
&

Percentage
o
w

o
N

[y

0
Relatlon
(b) PCEDT

Figure 7.2: Distribution of NomBank and PCEDT relations in the training,
development and test sets.

182

Model NomBank PCEDT Model NomBank PCEDT

STL 78.04 58.80 STL 58.92 37.10
TLg 78.37 59.57 TLg 59.36 44.24
TLy 78.15 59.24 TLy 59.08 42.74
TLgy 78.48 59.89 TLgy 59.12 44.87

MTLg 77.93 59.78 MTLg 59.09 43.55
MTLggy 76.74 58.80 MTLgn 48.01 37.37

(a) Accuracy (b) Macro-average F; score

Table 7.1: Accuracy (left) and macro-averaged F; score (right) of the STL, TL
and MTL models on the development splits of NomBank and PCEDT. TLg:
Transfer of the embedding weights. TLy: Transfer of the hidden layer weights.
TLgy: Transfer of both the embedding and hidden layer weights. MTLg:
The embedding layer weights are shared. MTLgy: Both the embedding and
hidden layers weights are shared.

accuracy on NomBank, most notably in the case of the fully shared model
MTLgg (1.3 absolute points decrease in accuracy). The MTL accuracy results
on PCEDT are better than on NomBank in the sense that MTLg improves
over the STL accuracy and MTLgy leads to the same accuracy as the STL
model.

Switching focus from accuracy to macro-averaged F; scores, Table 7.1b
shows that all the TL models and the MTLg one remarkably improve the
PCEDT F;. The results on NomBank are somehow in line with the accuracy
results, as we either see modest improvement, or in the case of MTLgy the
macro-averaged F; drops (the NomBank accuracy also drops using the same
model, but the drop in F; is much more dramatic). To further understand
these results, we detail the per-relation F; scores on NomBank and PCEDT
in Tables 7.2a and 7.2b, respectively. With the exception of the ARGM-TMP and
ARGM-LOC relations, none of the NomBank relations improve by more than
one point in F; score, and the F; scores of ARG3 and ARGM-MNR remarkably
decrease across all models. The MTLgy model in particular leads to degraded
performance on all the NomBank relations, except on ARGM-TMP. Moreover,
the model no longer predicts the relation ARGM-MNR, as it has an F; score of 0
(the Fy score in Table 7.2a decreases by 22.22 points), which largely explains
the substantial drop in macro-averaged F; in Table 7.1b.

The PCEDT per-relation Fy scores, in Table 7.2b, show a different pattern.

183

AO Al A2 A3 LOC MNR TMP

Count 78 622 104 Y 15 7 22
STL 58.90 87.46 50.00 67.27 47.62 22.22 78.95
TLg -249 4049 +0.27 —-786 +10.71 —4.04 +6.05
TLy —-232 +0.34 —-0.53 —-9.27 4693 —555 +11.533

TLgn +0.45 +0.47 +0.26 —-8.68 +6.93 —6.84 +8.85
MTLg -3.06 —-0.02 +0.54 —-845 4838 =222 +6.05
MTLgg —-7.92 -099 -10.84 —-8.09 -—-35.12 —-2222 +8.85

(a) Per-relation Fy score on the NomBank development split

ACT TWHEN APP PAT REG RSTR AIM

Count 34 15 63 184 98 481 14
STL 48.39 4348 3191 46.10 19.05 70.76 0.0
TLg +4.07 +3887 -3.02 +1.21 4892 -—-0.03 0.0
TLy —-2.24 +38.87 —-691 +3.56 +6.12 +40.07 0.0

TLgn +3.22 43887 —-180 +1.96 +11.82 +0.30 0.0
MTLg +0.79 +38.87 —-2.70 +0.83 +6.85 +0.50 0.0
MTLgy —-0.77 +6.52 —-7.73 —-1.74 +5.19 +0.45 0.0

(b) Per-relation Fy score on the PCEDT development split

Table 7.2: Per-relation F; score on the development split of NomBank and
PCEDT. The numbers indicate the increase or decrease in F; score in com-
parison to the STL model.

From the table we see that the improvements in macro-averaged F; score
on PCEDT (in Table7.1b) are due to better performance on some of the
less frequent relations. All the models that lead to increased F; score on
PCEDT (i.e. all the TL models and MTLg), achieve the same score as the
STL model on the most common relation RSTR—and sometimes even better,
e.g. TLgg—while boosting the F; score on relations like REG, PAT and TWHEN.
However, all the TL and MTL models lead to varyingly worse F; scores
on APP. Perhaps more importantly, none of the STL, TL and MTL models
predict the relation AIM; we will return to analyzing why this is the case in
§7.5.3.

In Chapters 4, we showed that there is likely some annotation inconsistency
in PCEDT. In addition, in §6.7, we observed that random initialization
and the order of training examples have an impact on the PCEDT results.

184

Therefore, we need to verify if the improvements we see in the TL and
MTL experiments actually hold when we compare them to the results of
the experiments in §6.7. Since ACT, REG and TWHEN are the three PCEDT
relations that benefit most from TL and MTL, we compute their average
F' scores in the 20 experiments with random initialization and order of the
training example (which is the setup that led to highest standard deviation in
accuracy in §6.7). The average F; scores over 20 runs are as follows: 45.02%
for ACT, 23.86% for REG and 61.32% TWHEN. While the average F; of the last
two relations are higher than their scores in the STL model (cf. Table 7.2b),
the improvement by the TL and MTL models still leads to higher F; scores
on all three relations (compared to the averaged scores from the 20 random
experiments).

Based on the results presented in this section, we can—for now—conclude
that transfer and multi-task learning (with the exception of the MTLgy model)
tend to help more for PCEDT than NomBank. In other words, in absolute
numbers, using NomBank as an auxiliary (or source) task for PCEDT is more
effective than the other way around. However, one has to keep in mind that
the performance levels on NomBank are higher than on PCEDT, which means
that an improvement of one point on both datasets, for example, corresponds
to different values of error reduction. In the following section, we evaluate
our STL, TL and MTL models on the test splits of NomBank and PCEDT
to, among other reasons, help us further investigate, and potentially explain,
the patterns observed in this section.

7.5.2 Evaluation on the Test Split

We have thus far only evaluated our models on the development split of our
compound datasets. As we now reach the final set of experiments in this
thesis, we can safely evaluate our STL, TL and MTL models on the test split
of NomBank and PCEDT. Overall, we believe that conducting evaluation
and result analysis on the test split is more rigorous than on the development
set for several reasons. First and foremost, our test split is almost twice the
size of the development one (920 examples in development vs. 1,759 in test).
Second, all of our neural models use an early stopping criterion that monitors
the model’s performance on the development split; and while using such a
stopping criterion can help prevent overfitting on the training data, in the end
we still choose a model that achieves the best accuracy on the development

185

Model NomBank PCEDT
Dev Test, Dev Test,

STL 78.04 76.75 5880 56.05
TLg 78.37 78.05 59.57 57.36
TLy 78.15 78.00 59.24 56.56
TLgn 78.48 77.94 59.89 56.68
MTLg 7793 7845 59.78 56.90
MTLggy 76.74 78.51 58.80 56.00

(a) Accuracy

Model NomBank PCEDT
Dev Test Dev Test

STL 58.92 5254 37.10 34.42
TLg 59.36 52.83 44.24 41.42
TLy 59.08 53.03 42.74 39.90
TLgy 59.12 53.11 44.87 40.44
MTLg 59.09 53.21 43.55 40.47
MTLgy 48.01 42.07 37.37 34.89

(b) Macro-averaged F

Table 7.3: Accuracy and macro-averaged F; score of the STL, TL and MTL
models on the development and test splits of NomBank and PCEDT.

split. In addition, since our development split is relatively small in size, there
is no guarantee that it is in fact representative of the problem. The last
two points might cast some doubt on the benefits of using an early stopping
criterion based on the development split (Prechelt, 2012). In other words, it
is not unlikely that our stopping criterion favors a model that performs well
on the development data but that is not necessarily the best model overall.
For all the reasons above, in this section and the following ones we use the
test split of NomBank and PCEDT to evaluate our models and systematically
analyze their performance based on insights from the dataset as well as the
classification errors of the models. Note that all the models remain the same
as in the previous section, i.e. they are still only trained on the training split.

The accuracy and macro-averaged F; scores of the STL, TL and MTL
models on the test split are shown in Tables 7.3a and 7.3b. We repeat the
results on the development split to make it easier to compare the performance

186

of the models on the two data splits. There are several observations one can
draw from these tables. First, the accuracy and macro-averaged F; scores
of the STL models drop when the models are evaluated on the test split,
whether on NomBank or PCEDT, in comparison to their accuracy and F;
on the development split. The same observation holds for the development-
versus-test accuracy and F; for all the TL and MTL models on PCEDT.
On NomBank, however, most TL and MTL models achieve more or less the
same accuracy on development and test, and some are even better on test
(e.g. MTLg and MTLgg), but the F; scores drop on test (in comparison to
their scores on development). The overall drop in accuracy and F; moving
from development to test can be interpreted as an indicator of ‘overfitting’
on the development set. Second, all the TL models outperform the STL
model on the test split of NomBank, even though transfer learning does not
remarkably improve accuracy over STL on the development split of the same
dataset (cf. §7.5.1). Furthermore, while the MTL models, especially MTLgy,
have a negative effect on accuracy on the development split of NomBank,
they still lead to the same improvement as the TL models on the test split.
Third, transfer learning improves the test accuracy on PCEDT by about 1.31
absolute points (in comparison to STL), which is more or less the same effect
observed on the development split. However, the TL model that leads to this
improvement on test (TLg) is different from the one (TLgy) that leads to
a 1.09 improvement on the development split. The fully shared multi-task
learning model (MTLgy) yields slightly worse PCEDT accuracy on test than
the STL model; which is also somewhat in line with what we observe on the
development split, where the MTLgy model does not lead to any improvement
in accuracy.

All in all, the PCEDT results on test are more or less similar to the results
we see on development. Both the TL and MTL models improve accuracy on
the test split of NomBank by at least 1.19 absolute points. That said, the
NomBank results on development versus test are somehow inconsistent; the
model that achieves the best accuracy on development (TLgy) records the
worst accuracy on test among the TL and MTL models, and the model that
achieves the best accuracy on test has the worst accuracy on development
(MTLgn) among all other models. To understand this effect, we—once

again—turn to study the macro-averaged F; scores.?

9Note that the macro-averaged F; scores in Table 7.3b differ from what we report in
Table 8 in Fares et al. (2018) because in the latter we computed macro-averaged on a

187

From Table 7.3b, we see that the best model on NomBank test in terms
of accuracy, MTLgy, is in fact dramatically worse than all other models w.r.t.
its macro-averaged F; score. The rest of the TL and MTL models improve
over the F; score of the STL model, though these improvements are relatively
small, with the largest being 0.67 by the MTLg model (which also achieves
the best accuracy if we exclude MTLgy). The macro-averaged F; results on
PCEDT correspond to the accuracy results, where the model that achieves
the best accuracy on test also achieves the best F; score (TLg). Furthermore,
the relative ranking of the models based on their accuracy and F; scores
is highly similar, with the exception of the MTLgy model which achieves
slightly higher F; than the STL model.

Based on the F; scores in Table 7.3b, it becomes quite clear that TL and
MTL on the embedding layer yield remarkable improvements on PCEDT,
with about 7 absolute points increase in F; in contrast to 0.67 in the best
case on NomBank. From an error reduction perspective, the improvements on
the PCEDT and NomBank macro-averaged F; scores correspond to 10.67%
and 1.41%, respectively.

Lastly, even though we see remarkable improvements in macro-averaged Fy
score on PCEDT, the improvements in accuracy remain relatively small. In
addition, the accuracy results on the development and test splits of NomBank
are somewhat contradictory (in terms of which model is the best and which
one is the worst across the development and test splits). In the following
section, therefore, we take a closer look at the per-relation F; scores to further

our understanding of how the two evaluation metrics interact, and ultimately
when, and how, TL and MTL help.

Per-Relation F; Scores

Tables 7.4a and 7.4b show the per-relation F; scores on the test split of
NomBank and PCEDT, respectively. Like the previous section, we only
include the results for the subset of relations deemed ‘learnable’ based on
their frequency in the training split (cf. §4.5.4), which is the same subset of

relations used to compute the macro-averaged F; score.!”

different subset of PCEDT relations that excludes the relation AIM (which is not predicted
by any of the models). The overall ranking of the models remains the same nonetheless.
10Five of the NomBank relations observed in the test split are never predicted by any
of the STL, TL and MTL models, and of the 26 PCEDT relations observed in the test
split only six are predicted (one of the presumably ‘learnable’ relations in PCEDT is never

188

AO Al A2 A3 LOC MNR TMP
Count 132 1282 153 75 25 25 27
STL 49.65 87.41 45.65 60.40 2857 29.41 66.67
TLg +5.37 +0.57 —-4.04 -0.26 —-0.66 +3.92 —-2.84
TLy +5.16 +0.52 -2.74 -—-040 —-3.57 +5.88 —1.36
TLgn +3.97 +0.54 =295 4071 +0.70 +3.92 -—-1.45
MTLgy +4.42 4093 =279 +1.57 +143 —-0.84 0.0
MTLgy +3.44 +1.00 -7.51 +2.29 -2857 -29.41 -—14.5

(a) Per-relation Fy score on the NomBank test split

ACT TWHEN APP PAT REG RSTR AIM
Count 89 14 118 326 216 900 29
STL 43.90 4211 2278 42.83 20.51 68.81 0.0
TLg +5.47 +28.86 +4.89 —-1.31 +10.26 +0.80 0.0
TLy +10.09 +19.96 +2.22 +0.26 +5.58 +0.24 0.0
TLgn +5.93 +22.41 +5.79 +0.08 +8.15 +0.21 0.0
MTLg +10.19 +24.56 +1.27 —-0.72 +6.61 +0.41 0.0
MTLgn +3.90 0.0 4286 -2.19 -1.29 +40.02 0.0

(b) Per-relation Fy score on the PCEDT test split

Table 7.4: Per-relation F; score of the STL, TL and MTL models on the
test split of NomBank and PCEDT. The numbers indicate the increase or
decrease in Fy score in comparison to the baseline model (STL).

189

We observe several interesting patterns in Tables 7.4a and 7.4b. First,
based on our analysis of the MTLgy results on the development split as
well as its accuracy and macro-averaged F; score on test, we know by now
that despite its relatively high accuracy the model does not perform well
on the less frequent relations. We notice the same pattern on the test split;
MTLgy leads to substantially degraded F; scores on four NomBank relations,
including the locative modifier ARGM-LOC and manner modifier ARGM-MNR
(shortened to LOC and MNR in Table 7.4a) which the model is no longer able
to predict. The reason that the MTLgy model achieves the highest accuracy
on the NomBank test split (cf. Table7.3a) is partly because it correctly
predicts more compounds of type ARG1, which is the most frequent relation
in NomBank—in fact, it achieves the highest improvement on ARG1 (and
ARG3) F; score in comparison to all other TL and MTL models. The same
model, MTLgy, also has the worst F; score, compared to all other models,
for two PCEDT relations, namely REG (which expresses a circumstance) and
PAT (Patient).

Second, with the exception of the MTLgyg model, all the TL and MTL
models consistently improve the F; score of all the PCEDT relations except
PAT (and AIM which is not predicted by any of the models). Most notably,
the F; scores of the relations TWHEN, REG and ACT see a remarkable boost,
compared to other PCEDT relations, when the embedding layer’s weights
are shared (MTLg) or transfered (TLg and TLgy). The improvement on
TWHEN and ACT can be partly explained by looking at the correspondence
matrices between NomBank arguments and PCEDT functors. In Tables 7.5b
and 7.5a, we present a compact version of the correspondence matrices
(introduced in §4.5.2); the tables show how the PCEDT functors map to
NomBank arguments in the training split (Table 7.5a) and the other way
around (Table7.5b). From Table 7.5a, we see that 80% of the compounds
annotated as TWHEN in PCEDT were annotated as ARGM-TMP in NomBank.
Inspecting the predictions of the STL and TLg models, we find that all the
TWHEN examples that the latter model predicts correctly, but the STL one
does not, are indeed annotated as ARGM-TMP in NomBank; for example the
compound future power is annotated as ARGM-TMP and TWHEN in NomBank
and PCEDT, respectively, and the STL model misclassifies it as RSTR whereas
the TLg model predicts the correct relation. In addition, 47% of the ACT

predicted, viz. AIM).

190

relations map to ARGO (proto-agent) in NomBank; even though this mapping
is not as clear as one might have expected, it is still relatively high if we
consider how other PCEDT relations map to ARGO. The correspondence
matrices demonstrate how the assumed theoretical similarities between the
NomBank and PCEDT relations do not always hold as clearly, e.g. considering
the mapping from the proto-typical agent and patient relations in NomBank,
ARGO and ARG1, to ACT and PAT in PCEDT in Table 7.5b. Nonetheless, even
such ‘imperfect’ correspondence seems to provide a ‘training signal’ that helps
the TL and MTL models learn relations such as ACT.

Since the TLg model outperforms the STL model in predicting REG by
ten absolute points, we inspect all the REG compounds that are correctly
classified by the TLg model but are misclassified by the STL model. We
find that the latter always misclassifies them as RSTR which indicates that
transfer learning from NomBank helps the TLg model recover from the STL’s
over-generalization in RSTR prediction (the most frequent relation in PCEDT).

The two NomBank relations that receive the highest boost in F; scores
(about five absolute points) are ARGO and ARGM-MNR, but the improvement in
the latter relation, actually, corresponds to only one more compound which
might well be predicted correctly by chance. To analyze the improvement
in ARGO, we look again at the correspondence matrix between PCEDT and
NomBank in Tables 7.5a and 7.5b. The PCEDT functor ACT maps to ARGO
47% of the time, and 26% the other way around, which can partially explain
the relative boost observed in ARGO.

Overall, the (macro-averaged) F; scores indicate that TL and MTL from
NomBank to PCEDT are more helpful than from PCEDT to NomBank. The
correspondence matrices in Tables 7.5a and 7.5b can offer an insight on why
this might be the case. In the first rows of the aforementioned tables, we
see that five PCEDT relations (including the four most frequent ones) map
to ARG1 in NomBank in more than 60% of the time for each relation. This
means that the weights learned to predict PCEDT relations potentially offer
little or no inductive bias for NomBank relations. Whereas if we consider the
mapping from NomBank to PCEDT, we see that even though many NomBank
arguments map to RSTR in PCEDT, the percentages are comparatively lower,

and hence the mapping is more ‘diverse’ (i.e. discriminative) which seems to
help the TL and MTL models learn the less frequent PCEDT relations.

191

RSTR PAT REG APP ACT AIM TWHEN
Al 0.70 090 0.78 0.62 047 0.65 0.10
A2 0.11 0.05 0.10 0.21 0.03 0.12 0.03
A0 0.06 0.01 0.04 0.13 047 0.07 -
A3 0.06 0.02 0.06 0.02 0.01 0.06 -
LoC 0.02 0.01 0.00 0.01 0.01 0.01 0.02
TMP 0.01 - 0.00 0.00 - - 0.80
MNR 0.02 0.00 000 - 001 - -
Count 3617 1312 777 499 273 116 29

(a) Correspondence matrix between PCEDT functors and NomBank arguments

and modifiers

A1 A2 A0 A3 LOC TMP MNR
RSTR 0.51 0.54 047 0.63 0.66 0.36 0.78
PAT 0.24 0.09 0.03 0.08 0.07 - 0.05
REG 0.12 0.11 0.07 0.13 0.02 0.01 0.01
APP 0.06 0.14 0.13 0.03 0.05 0.01 -
ACT 0.03 0.01 0.26 0.01 0.03 - 0.03
AIM 0.02 0.02 0.02 0.02 0.01 - -
TWHEN 0.00 0.00 - - 001 046 -
Count 4932 715 495 358 119 103 79

(b) Correspondence matrix between NomBank arguments and modifiers and PCEDT

functors

Table 7.5: Correspondence matrix between (a) PCEDT and NomBank and
(b) NomBank and PCEDT. Slots with ‘-’ mean zero, 0.00 is a very small
number but not zero.

192

7.5.3 What Happened to AIM?

As mentioned in the previous sections, none of the STL, TL and MTL models
predicts the functor AIM in the development and test splits of PCEDT, even
though it is more frequent than TWHEN in the training split (cf. Figure 7.2b).
Upon inspecting the classification errors of all the models on the test split,
we find that AIM is almost always misclassified as RSTR by all the models.

Furthermore, through analyzing the training data, we discover that the
relations AIM and RSTR have the highest lexical overlap in the training set
among all other pairs of relations in PCEDT: 78.35% of the modifier nouns
(or left constituents) and 73.26% of the head nouns (or right constituents)
of the compounds annotated as AIM occur in other compounds annotated
as RSTR. This at least in part explains why none of the models manage to
learn the relation AIM but raises a question about the models” ability to learn
relational representations; we further pursue this question in the following
section.

7.6 Generalization on Unseen Compounds

We now turn to analyze the models’ ability to generalize over compounds
unseen in the training split. Recent work by Dima (2016) and Shwartz and
Waterson (2018) suggests that the gains achieved in compound interpretation
using word embeddings and somewhat similar neural classification models
are in fact a by-product of a phenomenon called lexical memorization. Levy,
Remus, et al. (2015) define lexical memorization as the phenomenon in which
the classifier learns that a specific word in a specific slot is a strong indicator
of the label. In other words, the classification models may merely learn that
a specific set of nouns is a strong indicator of a specific relation in NomBank
or PCEDT. Therefore, in order to gauge the role of lexical memorization in
our models also, we quantify the number of unseen compounds that the STL,
TL and MTL models predict correctly.

The term ‘generalization’ in this section refers to the model’s ability to
correctly predict the relations of nominal compounds whose constituents are
partly or completely unseen in the training data (i.e. the second definition of
generalization in § 7.2 above). We distinguish between ‘partly’ and ‘completely’
unseen compounds as follows. A compound is considered ‘partly’ unseen if
one of its constituents (right or left) is not seen in the training data at all. A

193

Model NomBank PCEDT

L R L&R L R L&R
Count 351 286 72 351 286 72

STL 2792 3951 50.00 45.01 47.55 41.67
TLg 25.93 36.71 48.61 43.87 47.55 41.67
TLy 26.21 38.11 50.00 46.15 49.30 47.22
TLgy 26.50 38.81 52.78 4587 47.55 43.06
MTLg 2450 33.22 38.89 44.44 47.20 43.06
MTLgy 22.79 3427 40.28 44.16 4790 38.89

Table 7.6: Generalization errors on the subset of unseen compounds from
the test set. L: Left constituent is unseen; R: Right constituent is unseen;
L&R: Left and right constituents are unseen.

completely unseen compound is one whose left and right constituent are not
seen in the training data (i.e. completely unseen compounds are the subset of
compounds in the test split that have zero lexical overlap with the training
split).! Overall, almost 20% of the compounds in the test split have an
unseen left constituent, about 16% of the compounds have an unseen right
constituent and 4% are completely unseen. In Table 7.6, we compare the
performance of the different models on these three groups in terms of the
proportion of compounds a model misclassifies in each group (i.e. error rate).

From Table 7.6, we see that TL and MTL reduce the NomBank gen-
eralization error in all cases, except TLy and TLgg on completely unseen
compounds; the latter (TLgy) leads to higher generalization error. The MTL
models lead to the biggest error reduction across the three types of unseen
compounds; MTLg leads to about six points error reduction on compounds
with unseen right constituents and eleven points on completely unseen ones,
and MTLgy reduces the error on unseen left constituent by five points. Note,

11Of course, all the compounds in the development and test splits are ‘unseen’ as a whole,
given that our compound datasets are type-based (i.e. there are no duplicates). However,
the criterion for defining unseen compounds here is based on the compound’s constituents.
It is, therefore, possible to have compounds in the test splits whose constituents occur in
the training split, but with different compounds. For example, if the compounds account
manager and credit account occur in the training split, none of them can occur in test.
However, a compound like credit manager can still occur in test. We do not consider this
compound ‘unseen’ (neither partly nor completely) because both of its constituents occur
in training, albeit as part of different compounds.

194

however, that these results have to be read together with the Count row in
Table 7.6 to get a complete picture. For instance, an eleven-point decrease
in error on completely unseen compounds amounts to eight compounds. In
PCEDT, the largest error reduction on unseen left constituents is 1.14 points
which amounts to four compounds, 0.35 (just one compound) on unseen right
constituents and 2.7 (or two compounds) on completely unseen compounds.

Since we see larger reductions in the generalization error in NomBank,
we manually inspect the compounds that led to these reductions; i.e. we
inspect the distribution of relations in the set of the correctly predicted
unseen compounds. The MTLg model reduces the generalization error on
completely unseen compounds by a total of eight compounds compared to the
STL model, but seven of these compounds are annotated with ARG1, which is
not unexpected given that ARG1 is the most frequent relation in NomBank.!?
When it comes to the unseen right constituents, the 24 compounds that MTLg
improves on consist of 18 ARG1 compounds, five ARGO compounds and one
ARG2 compound. We see a similar pattern upon inspecting the gains of the
TLg model; where most of the improvement arises from predicting more ARG1
and ARGO relations correctly. The majority of the partly or completely unseen
compounds that were misclassified by all models are not of type ARGl in
NomBank or RSTR in PCEDT. This observation in and of itself is in line with
the overall pattern we have seen so far, i.e. less frequent relations are, obviously,
more difficult to learn. What remains to be determined, nonetheless, is the
role lexical memorization plays in learning the interpretation of noun—-noun
compounds.

To gauge the effect of lexical memorization, we study the ratio of relation-
specific constituents in NomBank and PCEDT, plotted in Figure7.3. We
define relation-specific constituents as left or right constituents that only
occur in compounds of the same relation in the training split, and their ratio
is simply their proportion in the overall set of left or right constituents per
relation. Some constituents, however, occur only once in the training split
which obviously makes them relation-specific, but that can also make their

12Note that these eight compounds do not fully represent the difference in predictions
between the MTLg model and the STL model, because the MTLg predictions introduce a
new error on one compound of type ARGM-PNC, but compensate by predicting another one
correctly. In other words, there is a total of nine differences between the two models on
completely unseen compounds. However, since we are only discussing the set of unseen
compounds the TL and MTL models predict correctly, in contrast to the STL model, we
will leave out these details in order to keep the discussion tractable.

195

0.9
 Left
0.8 mmm Right
m Left>1
0.7 Right > 1

g%
IS
0.4
043 l
0.2
0.1 I
00 o N < ° \
Pf&‘ ?3‘0 "-S’
Relation
(a) NomBank
0.9
. Left
0.8 == Right
e Left>1
0.7 Right > 1
0.6
° 0.5
p=!
o]
0.4
0.3
0.2 I
II |l i
0.0 <
S {Q
5 5 g ‘6‘?’
A I o
Relation
(b) PCEDT

Figure 7.3: Ratio of relation-specific constituents in (a) NomBank and (b)
PCEDT. The bars in light red and light blue correspond to the ratio of
relation-specific constituents whose frequency is greater than one in the
training split.

196

corresponding relations more difficult to learn; i.e., more lexical ‘diversity’ in
a given relation means less ‘prototypical’ examples, which can make learning
more challenging. Hence, in Figure 7.3 we plot the ratio of relation-specific
constituents overall (regardless of their frequencies) as well as the ratio of
relation-specific constituents that occur more than once.

Looking at Figure 7.3, we see that NomBank relations have higher ratios
of relation-specific constituents in comparison to PCEDT, even when we
only consider constituents that occur more than once. This arguably makes
learning the former comparatively easier if the model is only to rely on lexical
memorization. Furthermore, ARGM-TMP in NomBank and TWHEN in PCEDT
stand out from other relations in Figure 7.3, which are also the two relations
with the second highest F; scores in their respective dataset—except in STL
on PCEDT (cf. Tables 7.4a and 7.4b). Lexical memorization is, therefore,
the most likely explanation of such relatively high F; scores. We also observe
some correlation between lower ratios of relation-specific constituents and
relatively low F; scores, e.g. APP and REG in PCEDT. Interestingly, all the
constituents specific to the PCEDT relation AIM occur only once in the
training split (cf. Figure 7.3 where AIM does not have bars in light red or
light blue), which adds to the reasons why this particular relation was not
predicted by any of the STL, TL and MTL models (cf. §7.5.3). Based on
these observations, we cannot rule out that our models exhibit some degree
of lexical memorization effects, even though manual result analysis has also
revealed ‘counter-examples’ where the models generalize and make correct
predictions where lexical memorization is impossible.

7.7 Performance Stability

In Chapter 6, we observed that the model’s performance (in terms of accuracy)
depends to some extent on the random initialization and the order in which
the training examples are presented. In this section, we study whether or
not the same effect holds in the TL and MTL realm. However, since we
have six TL models and four MTL models, we choose only the two models
that allow maximal parameter transfer and sharing (i.e. TLgy and MTLgy)
to measure their performance stability with regard to random initialization
(using different random seeds) and order of the training data. We follow
the same experimental setup introduced in §6.7, where we try to isolate the

197

PCEDT

Min 58.15
Max 59.35
Mean 58.75
STD 0.35

Table 7.7: Minimum, maximum, mean and standard deviation (STD) of TLgy
accuracy over 20 runs with 20 different random seeds. The training examples
are presented in the same order across the 20 runs.

effect of parameter random initialization and data shuffling, using 20 different
random seeds (which are the exact same random seeds used in §6.7).

In the first experiment, we try to quantify the effect of random initialization
on the performance of the TLgy model. We train 20 STL models on NomBank
(using the same 20 random seeds from §6.7) and we then use the weights of
these models to initialize 20 TLgy models for PCEDT. In other words, we
have 20 pairs of source (NomBank) and target (PCEDT) models and each pair
is initialized using one of the 20 random seeds. Note that the random seeds
are only used to initialize the model weights, but the training examples are
presented in the same order across all the experiments. Table 7.7 presents the
maximum, minimum and average accuracy as well as the standard deviation
of the 20 runs on the development split of PCEDT. The results in the table
do not support our intuition about the benefits of transfer learning as a more
‘informed’ parameter initialization strategy (cf. §7.1). The standard deviation
observed on the TLgy models (0.35) is in fact a little higher than what we
report in Table6.14 (0.29). The mean accuracy of the TLgy models is only
slightly higher than the mean accuracy reported in Table6.14, the former
being 58.75 and the latter 58.54.

In the second experiment, we focus on the effect of the order of training
examples on the performance of the MTLgy model. We train 20 MTLgy
models where PCEDT is the main task, also using the same 20 random seeds
as in the previous experiment (and §6.7). Unlike the previous experiment,
however, these random seeds are used throughout training including the
shuffling of training examples. The results of these experiments on the
development split of PCEDT are listed in Table 7.8. The standard deviation
of the MTLgy models’ accuracy is a little lower than for the STL models

198

PCEDT

Min 57.06
Max 61.30
Mean 59.26
STD 0.95

Table 7.8: Minimum, maximum, mean and standard deviation (STD) of
MTLgy accuracy over 20 runs with 20 different random seeds. The training
examples are shuffled differently across the 20 runs.

(1.10, cf. Table 6.13) but it is still relatively high overall. The average accuracy
of the MTLgy models is also only marginally higher than for the STL models
in the previous chapter (59.26 vs. 59.06).

Given the results in Tables 7.7 and 7.8, we can conclude that TL and MTL
do not necessarily help improve the model’s stability in terms of its accuracy
on the development split. While this conclusion contradicts our intuition
about the benefits of transfer learning as a parameter initialization strategy,
it is also likely that our hyperparameter choices partly led to those results.
In §7.4.1, we explained that using the exact same hyperparameters for the
STL model, on the one hand, and the TL and MTL models, on the other
hand, would allow isolating the effects of TL and MTL as much as possible.
However, there is a flip side of this decision; for example, by using the same
optimization function (viz. Adam) without lowering the learning rate we risk
overwriting the ‘knowledge’ (i.e. weights) learned in the source task. We,
therefore, believe that further experimentation with different hyperparameters
specific to TL and MTL can still potentially yield different results in terms of
the model’s performance stability.

7.8 Conclusion

We presented in this chapter a relatively comprehensive series of experiments
on two learning strategies, transfer and multi-task learning, that currently
receive a lot of attention in NLP and other fields. Despite this attention,
there remains considerable uncertainty about which task properties and
experimental settings actually make such learning methods effective. In
addition to our immediate goal of learning compound interpretation in the

199

context of NomBank and PCEDT, our experiments shed light on the utility
of TL and MTL perspectives on the semantic interpretation of noun—noun
compounds, which has not been investigated before in this realm.

In §7.2, we gave a brief introduction to transfer and multi-task learning,
established some terminology and reviewed a selection of relevant NLP studies.
Then, in §7.3, we explained our hypothesis for why TL and MTL could
be beneficial in the context of our NomBank and PCEDT datasets. We
introduced our experimental setup in § 7.4, which consists of six TL models
and four MTL models. In § 7.5, we reported the results of a series of minimally
contrasting experiments using the TL and MTL models. The accuracy
and macro-averaged F; scores we reported explore an elaborate space of
distinct experimental configurations, and therefore we only present a high-
level summary in the following.

Through our experiments and in-depth analysis of results and prediction
errors on both the development and test splits, we demonstrated the ability
of both TL and MTL to mitigate the challenges of class imbalance and
substantially improve prediction of low-frequency relations, when using (the
harder) PCEDT as the target (in TL) or main (in MTL) task in particular.
More specifically, we showed that transfer of representations or sharing across
our tasks (or datasets) is most effective at the embedding layers, i.e. the
model-internal representation of the two compound constituents involved. In
multi-task learning, full sharing of the model architecture across tasks (i.e. the
MTLgy model) dramatically worsens the model’s ability to generalize on the
less frequent relations in both NomBank and PCEDT. Moving from evaluation
on the development split to the held-out test data in §7.5.2, we noticed a
drop in the accuracy of the STL model (i.e. the model from Chapter6) on
both datasets, but TL and MTL helped bring up the test accuracy, especially
on NomBank. One recurring pattern throughout our experiments was that
the accuracy and macro-averaged F; scores tend to sometimes paint different
pictures. For example, we observed that the model (MTLgy) that achieved
the best test accuracy on NomBank is also the model with the worst macro-
averaged Fy score on the same split. This is not an exceptional observation per
se—given the skewed distribution of relations in NomBank and PCEDT—but
it serves as a reminder of the importance of methodological decisions when
reporting empirical results on datasets like ours.

In §7.6, we showed that our TL and in particular MTL models made
quantitatively and qualitatively better predictions, especially so on the ‘hard-

200

est” inputs involving at least one constituent not seen in the training data.
However, indicators of remaining ‘lexical memorization’ effects arise from our
error analysis of unseen compounds as well as the ratio of relation-specific
constituents in Figure 7.3.

Finally, given the results of §6.7, we sought to determine whether or not
transfer and multi-task learning can help improve the ‘stability’ of our models
on the PCEDT dataset. However, contrary to our preliminary intuition about
TL as an initialization strategy, the performance stability experiments—in
§ 7.7—unveiled that the final performance of our TL (and MTL) models
remains somewhat dependent on the order of the training data (i.e. data
shuffling). That said, this conclusion can also be a by-product of the hy-
perparameters and settings in our experiments, which were deliberately not
fine-tuned to allow direct comparison with the STL experiments.

Overall, the experiments in this chapter demonstrated how our NomBank
and PCEDT datasets present an interesting opportunity for innovative neural
approaches to compound interpretation, as they relate this sub-problem to
broad-coverage semantic role labeling or semantic dependency parsing in
PCEDT and NomBank. In the following, and last, chapter we will discuss,
inter alia, potential avenues for future work and improvement on our TL and
MTL setup.

201

Chapter 8

Summary and Concluding
Remarks

In this thesis, we set out to unravel some of the essential questions surrounding
noun-noun compound analysis in NLP, while weaving the problem into a
more holistic perspective on meaning representation. We argued for a new
approach to compound interpretation, created a new dataset that enables such
an approach and conducted a thorough empirical study using this dataset.

Our approach to compound analysis took a ‘reverse’ view on the problem;
that is, instead of starting with a compound-centric perspective, where the
datasets and taxonomies are carefully crafted for the sake of compound
interpretation only, we sought to determine how noun—-noun compounds are
analyzed when they are part of broader meaning representation frameworks.
Though this approach might be considered unorthodox in contrast to previous
studies, it is indeed the disagreement among past studies (both in NLP
and theoretical linguistics) that partly motivated our perspective. In our
theoretical and literature reviews, in Chapters 2 and 3, we explained how past
studies presented starkly different views on the semantic relations of noun—
noun compounds—at times, ranging from an inventory of only nine relations
to ‘infinity’ (cf. §2.1.2). We therefore took a somewhat pragmatic decision to
delegate the definition of the compound relations to well-established resources
like NomBank and PCEDT, which also grant straightforward integration of
compound analysis with other NLP tasks.

In the following, we summarize some of the main results of our work and
provide an outlook for future research.

203

Compound Identification and Dataset Creation

Aiming for a high-quality dataset of compounds, in Chapter 4, we revisited
the task of compound identification as the first step in compound analysis. In
§4.3.3, we proposed an identification method that relies on syntactic structure
to identify valid compounds and addressed some of the issues of PoS-based
identification methods that were used in past studies. By exploiting the
syntactic trees in the PTB, we were able to exclude invalid ‘compounds’
whose constituents are dominated by different parent nodes—which is a
typical source of errors in the PoS-based method. Quantifying the accuracy
of compound identification methods proved challenging due to the lack of
gold-standard evaluation data. We therefore opted for manual inspection of a
subset of the compounds identified by the PoS- and syntax-based methods (cf.
§4.3.4). We found that our proposed method successfully excludes the false
positive examples identified by the PoS-based method (at the very least on the
subset of compounds we inspected). We also observed, however, that nominal
coordinate structures in principle would call for linguistic representations
that make explicit the distinction between joint and distributive coordination
structures.

In Chapter 4, we introduced a relatively large, multi-layered dataset of
noun-noun compounds derived from: (1) the WSJ corpus in the Penn Tree-
bank, (2) the annotation of noun phrases in the PTB by Vadas and Curran
(2007), (3) DeepBank, (4) the English part of the PCEDT and (5) NomBank.
Through this dataset, we showed that even though these five resources were
not created to annotate compounds exclusively, they can still be exploited to
analyze noun—noun compounds—and through doing so, to reflect on the re-
sources themselves. For example, in §4.4.1, we evaluated the cross-framework
annotation agreement and found that PCEDT, DeepBank and Vadas and Cur-
ran (2007) agree on the bracketing of almost three quarters of the multi-word
compounds we identified in the WSJ corpus of the PTB. To date, our dataset
is the second largest available in terms of the number of binary compound
types (viz. 10,596). However, what makes our dataset unique is indeed its
triple syntactic and dual semantic annotations of compounds.

Each compound in our dataset is annotated with two relations based on
the argument structure of nominal predicates in NomBank and the tectogram-
matical layer in PCEDT. The highly imbalanced distribution of relations in
our dataset might be perceived as a disadvantage, and it is indeed legitimate

204

to ask if such a distribution is a by-product of the underlying resources not
being exclusively concerned with compounds. The flip side of this same
question, however, is whether the compound-specific datasets are constructed
in such a way that guarantees an artificially balanced representation of the
compound relations, i.e. to what degree their distributions reflect those in
running text. Even though we did not pursue an answer for this question,
we did embrace our dataset as-is and addressed the problem of skewed label
distributions by using appropriate evaluation measures (i.e. macro-averaged
F;) and machine learning strategies like transfer and multi-task learning (in
Chapter 7).

Unlike the bracketing annotations, the semantic relations are not directly
comparable across NomBank and PCEDT, and therefore we analyzed them
based on our postulation of which relations are semantically comparable.
Even though we observed partial agreement across the two frameworks (in
the relations we believed to express the same concepts), it was not obvious
whether and to what degree ‘complete’ correspondence could be established
between the NomBank and PCEDT relations. We further investigated the
utility of such cross-framework agreement in our empirical study in Chapter 7.
This contrastive analysis gave rise to the question of token vs. type semantic
interpretation of compounds. Considering the token-based version of our
dataset (in which a compound type can occur more than once), we found that
13% of the compound types in PCEDT are annotated with more than one
relation. We observed the same pattern on 1.3% of the compound types in
NomBank. The variation in PCEDT relations (per compound type) seemed
to be, at least in large parts, a result of annotation inconsistency, rather than
a deliberate decision to distinguish between the meaning of the compound
types across their different occurrences. In NomBank, however, we found a
few examples that would call for a token-based perspective, but there were
also obvious examples of annotation errors.

Word Embeddings

Word embeddings have become one of the major building blocks in NLP,
and our work is no exception in this regard. We used embeddings mainly as
input representations for the neural models, but we also investigated their
ability to recover relational similarity as defined in the compound datasets.
To this end, in Chapter 5, we cast compound interpretation as an analogy

205

problem and adapted two vector arithmetic methods (that are often used
for word analogy) to predict the compound relations in the Tratz, NomBank
and PCEDT datasets. We also experimented with another method that
relies solely on attributional similarity (i.e. similarity between the compound
constituents). Our experiments showed varyingly limited ability of word
embeddings to capture the semantic relations defined in the three datasets.
On the one hand, we found that we can achieve an accuracy well above the
majority class baseline on the Tratz dataset by just applying simple vector
arithmetic operations. The results on PCEDT, on the other hand, were the
opposite; i.e. the majority class baseline led to better results than all other
similarity-based methods. In addition, we found that attributional similarity
leads to higher accuracy on the Tratz and NomBank datasets, which suggests
that the methods used for analogy-like tasks are not equally applicable to our
compound interpretation task.

In Chapter 6, using the NomBank, PCEDT and Tratz datasets and eight
systematically varied GloVe models, we investigated the utility of word
embeddings as input representations to neural classifiers. More specifically, we
studied the effect of three embedding properties on the classifier’s performance,
viz. text pre-processing, embedding dimensionality and size of training data for
the embedding. We also quantified the impact of fine-tuning word embeddings
as a part of the neural architecture. Among other things, we were able to
determine that fine-tuning word embeddings does improve the classification
accuracy on all three datasets. At the same time, we found that fine-tuning
downplays the impact of the size of the embedding training data and the
embedding dimensionality on the classifier’s accuracy and macro-averaged
F; scores. That said, there are still gains in increasing the embedding
dimensionality, but these become less pronounced when the embeddings are
fine-tuned; e.g. without fine-tuning the 300-dimensional model outperforms
the 50-dimensional one by about 12 points in accuracy on the Tratz dataset,
but the difference goes down to 2.7 points when the models are fine-tuned (cf.
Table 6.6a). Even though the observations above hold for all three datasets, it
was clear that no single word embedding model leads to the best performance
across the three datasets. For example, the lemma-based embedding model
achieved higher accuracy on NomBank than the non-lemmatized model, but
we observed the inverse effect on the Tratz dataset.

206

Neural Architectures and Hyperparameters

To quantify the contribution of the head and modifier nouns to predicting
the compound relation, in §6.4, we defined three neural architectures with
constituent-specific layers. These architectures isolated the head and modifier
constituents at the embedding layer, hidden layer and both of them. We
observed somewhat incompatible patterns between the accuracy and macro-
averaged F; scores; e.g. on the Tratz dataset, all the constituent-specific
models achieved lower accuracy than the model with no constituent-specific
layers, but the macro-averaged F; scores were the other way around (i.e. all
constituent-specific models achieved higher Fy scores). We saw a highly similar
pattern on NomBank also. The accuracy and macro-averaged F; results on
PCEDT were almost consistent. By inspecting the actual predictions of the
models, we found that the impact of the constituent-specific models varies
depending on the semantic relations. The overarching prediction patterns,
however, indicate that the constituent-specific models tend to improve the
performance on relations with prototypical heads or modifiers such as the
temporal relation in NomBank.

A significant part of training neural networks often goes to the task
of hyperparameter optimization. In §6.5, we approached this task in two
ways. First, we conducted a so-called sensitivity analysis in which we only
varied one hyperparameter at a time (much like our embedding experiments).
Second, knowing that these hyperparameters are in no way independent, we
complemented the sensitivity analysis with random search experiments for
hyperparameter optimization. In either case, our focus was more on trying to
uncover some patterns and, of course, validate our choice of hyperparameters
and less on finding the absolute best set of hyperparameters (in terms of
classification accuracy). The sensitivity analysis study partly confirmed what
we already knew, but it also informed our hyperparameter values in the
random search experiments. For example, it was unsurprising to see that
optimizers like SGD take longer to converge, but we also observed that the
optimization function RMSprop seemed to be harming the generalization
of the model without affecting the accuracy (i.e. the validation loss was
increasing with no noticeable impact on accuracy). Further, we determined
that adding a dropout layer is likely to help the classifier’s performance on all
three datasets, but the ideal dropout rate was dataset-specific. In the random
search setup, we experimented with 172 hyperparameter combinations per

207

dataset. We found that even though our original choice of hyperparameters
ranked high in comparison to all other configurations (especially on the
Tratz and NomBank datasets), even higher accuracy scores can be still
achieved on all three datasets with different hyperparameters than the ones
we used. However, these hyperparameters were dataset-specific, but for our
purpose, it was more important to maintain a ‘unified’ dataset-independent
hyperparameter configuration to isolate the effect of transfer and multi-task
learning in Chapter 7, among other reasons.

In an effort to tease apart the impact of ‘randomness’ on our models, in
§6.7, we conducted two sets of experiments (each consisting of 20 experiments
per dataset) focused on random initialization and shuffling (i.e. order of the
training data) on all three datasets. Given the nondeterministic nature of
training neural networks, it is expected to see varyingly different results with
different random seeds and shuffling. However, our experiments revealed that
such variance is likely to be higher on PCEDT than on NomBank and Tratz;
especially so in the case of random shuffling (cf. Tables 6.13 and 6.14).

Transfer and Multi-Task Learning

In Chapter 7, we presented a comprehensive series of experiments on transfer
(TL) and multi-task learning (MTL) in the context of our NomBank and
PCEDT datasets. We defined three transfer learning models and two multi-
task learning models. In either case, the two datasets were used as auxiliary
and main (or source and target) tasks, leading to a total of ten experimental
setups. These experiments were evaluated in contrast to the so-called single-
task learning approach we followed throughout Chapter6. In addition to
accuracy and macro-averaged Fp, we also analyzed the per-relation F; scores
on both datasets. Overall, we found that transfer and multi-task learning are
most effective on the embedding layer, i.e. when the embedding weights are
either transferred or shared. Furthermore, it was quite clear that full sharing
of the architecture between the two tasks (in multi-task learning) worsens the
performance on both datasets. Perhaps most importantly, the TL and MTL
models helped improve the F; score on some of the least frequent relations in
NomBank and PCEDT, which are—of course—the hardest relations to learn.
This result is particularly important given the skewed distribution of relations
in PCEDT and NomBank. On the development split, using NomBank as
an auxiliary (or source) task to PCEDT was often more effective than the

208

other way around. However, on the test split both NomBank and PCEDT
proved helpful to each other. For example, hard sharing of the embedding
layer weights led to 7.31% error reduction on the test split of NomBank.

Throughout our error analysis it transpired that the neural models might
be relying on lexical memorization to predict the relations in NomBank and
PCEDT. Therefore, in §7.6, we evaluated the performance of our STL, TL
and MTL models on partly and fully unseen compounds. Quantitatively,
the TL and MTL models decreased the generalization error on the subset of
unseen compounds in both datasets. However, effects of lexical memorization
were obvious when we considered the ratio of relation-specific constituents
vis-a-vis the relations’ F; scores. Hence, we could not confidently rule out at
least some degrees of lexical memorization in our models.

Finally, we investigated the utility of transfer learning as an initialization
strategy to—potentially—reduce the variance in the model’s performance
(which was observed in §6.7). The experiments in this regard were focused
on the PCEDT dataset only. However, contrary to our intuition, we observed
little to no effect on the stability of the model when it was initialized with
weights from another model trained on NomBank. It is important to highlight
here that our experimental setup may have led to overwriting the transferred
weights, i.e. the initialized parameters could have been overwritten quickly
because we did not dynamically adapt the optimizer’s learning rate. Therefore,
this question requires further investigation, which takes us to the last section
of this thesis.

Future Work and Outlook

In the following, we sketch out some of the potential avenues for future
research; we start with where we left off in the previous section and work our
way backward.

On the transfer and multi-task learning front, we foresee numerous direc-
tions for future research. For instance, one can incorporate other NLP tasks
defined over the NomBank and PCEDT frameworks as auxiliary (or source)
tasks to learn the noun—noun compound relations in our dataset. Such tasks
include semantic role labeling of nominal predicates in NomBank annotations
as well as verbal predicates in PropBank. Furthermore, we believe that there
is room for further improvement and experimentation in terms of how the TL
and MTL models are defined and how the learning strategies are implemented.

209

For example, we believe it is worth experimenting with other transfer learning
strategies where the transferred weights are kept static (i.e. frozen), updated
using a less aggressive optimizer (i.e. with lower learning rate) or unfrozen
gradually (i.e. after a certain number of epochs for each layer). In addition,
in all the MTL experiments presented in this work, the loss of the main and
auxiliary tasks contributed equally to the overall loss during training. We
believe it is also worthwhile experimenting with dynamic weighting of the loss
contribution of the main and auxiliary tasks, following the work by Lauscher
et al. (2018).

In terms of the underlying resources, our noun-noun compound dataset
inherently lends itself to further improvements and extension. As highlighted
in §4.6, there are other parallel annotations that we have yet to tap into; for
example, the VerbNet thematic roles in NomBank. Even though the VerbNet
roles do not cover the full NomBank, we believe adding them to our dataset
would be beneficial for more contrastive analysis of the underlying resources,
and perhaps for further experimentation in the transfer and multi-task learning
realm. The potential issue of annotation inconsistency in PCEDT can be
exploited to reduce the frequency of the underspecified relation RSTR. For
example, for the compound types that are annotated with both RSTR and
non-RSTR functors, one can replace all RSTRs with the most frequent non-RSTR
functor.

Even without any improvement, our dataset still has potential for new
research avenues. The triple annotation of the internal structure of multi-word
compounds in our dataset allows straightforward experimentation with the
task of compound bracketing. More importantly, the multi-layered annotation
in the dataset also opens up for experimentation with compound bracketing
and interpretation in a joint learning or multi-task learning setups. Even
though O Séaghdha and Copestake (2013) showed that context features are
of little help to compound interpretation on their own dataset, we believe it
is worthwhile revisiting this conclusion on other datasets—and our dataset
provides just the information needed for such experiments.

Lastly, with our new approach to compound interpretation, we would like
to believe that we have sowed the seeds for integrating the analysis of noun—
noun compounds in well-established whole-sentence meaning representation
frameworks. Therefore, an obvious way forward would be to include more
and more such meaning representations in compound analysis.

210

References

Astudillo, R., Amir, S., Ling, W., Silva, M., & Trancoso, I. (2015). Learning
Word Representations from Scarce and Noisy Data with Embedding
Subspaces. In Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers)
(p. 1074-1084). Association for Computational Linguistics.

Baldwin, T., & Tanaka, T. (2004). Translation by Machine of Complex Nom-
inals. Getting it right. In Proceedings of the Second ACL Workshop on
Multiword Expressions: Integrating Processing (p. 24—31). Association
for Computational Linguistics.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U.,
... Schneider, N. (2014). Abstract Meaning Representation (AMR) 1.1
Specification. Retrieved from http://www.isi.edu/~ulf/amr/help/
amr-guidelines.pdf (Version of February 11, 2014)

Barker, K., & Szpakowicz, S. (1998). Semi-Automatic Recognition of Noun
Modifier Relationships. In Proceedings of the 17th International Con-
ference on Computational Linguistics and the 36th Meeting of the
Association for Computational Linguistics (p. 96 —102). Association for
Computational Linguistics.

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t Count, Predict! A
Systematic Comparison of Context-Counting vs. Context-Predicting
Semantic Vectors. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers)
(p. 238—-247). Association for Computational Linguistics.

Bauer, L. (2011). Typology of Compounds. In R. Lieber & P. Stekauer (Eds.),
The Oxford Handbook of Compounding. Oxford University Press.
Bergsma, S., Pitler, E., & Lin, D. (2010). Creating Robust Supervised Classi-

fiers via Web-Scale N-Gram Data. In Proceedings of the 48th Annual

211

http://www.isi.edu/~ulf/amr/help/amr-guidelines.pdf
http://www.isi.edu/~ulf/amr/help/amr-guidelines.pdf

Meeting of the Association for Computational Linguistics (p. 865—874).
Association for Computational Linguistics.

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter
Optimization. Journal of Machine Learning Research, 13(Feb), 281 —
305.

Bingel, J., & Soggaard, A. (2017). Identifying Beneficial Task Relations
for Multi-Task Learning in Deep Neural Networks. In Proceedings of
the 15th Conference of the European Chapter of the Association for
Computational Linguistics (Volume 2: Short Papers) (p. 164—169).
Association for Computational Linguistics.

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with
Python. Beijing: O’Reilly.

Bloomfield, L. (1984). Language. University of Chicago Press.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word
Vectors with Subword Information. Transactions of the Association for
Computational Linguistics, 5, 135 —146.

Bonial, C., Bonn, J., Conger, K., Hwang, J. D., & Palmer, M. (2014).
PropBank: Semantics of New Predicate Types. In Proceedings of the
Ninth International Conference on Language Resources and Evaluation
(LREC’14) (p. 3013-3019). European Language Resources Association
(ELRA).

Bos, J., Basile, V., Evang, K., Venhuizen, N. J., & Bjerva, J. (2017). The
Groningen Meaning Bank. In N. Ide & J. Pustejovsky (Eds.), Hand-
book of Linguistic Annotation (p. 463—496). Dordrecht: Springer
Netherlands.

Bos, J., & Nissim, M. (2015). Uncovering Noun-Noun Compound Relations
by Gamification. In Proceedings of the 20th Nordic Conference of
Computational Linguistics (NoDaLiDa 2015) (p. 251 —255). LinkOping
University Electronic Press, Sweden.

Brants, T., & Franz, A. (2006). Web 1T 5-gram Corpus Version 1.1. Linguistic
Data Consortium.

Burnard, L. (2000). Reference Guide for the British National Corpus Version
1.0. Oxford University Computing Services Oxford.

Butnariu, C., Kim, S. N., Nakov, P., O Séaghdha, D., Szpakowicz, S., &
Veale, T. (2010). SemEval-2010 Task 9: The Interpretation of Noun
Compounds Using Paraphrasing Verbs and Prepositions. In Proceedings
of the 5th International Workshop on Semantic Evaluation (p. 39—44).

212

Association for Computational Linguistics.

Caruana, R. (1993). Multitask Learning: A Knowledge-Based Source of
Inductive Bias. In Proceedings of the Tenth International Conference on
Machine Learning (p. 41 -48). San Francisco (CA): Morgan Kaufmann.

Caruana, R. (1997). Multitask Learning. Machine Learning, 28(1), 41-75.

Cinkova, S., Hajic, J., Mikulova, M., Mladova, L., Nedoluzko, A., Pajas, P., ...
Zabokrtsky, Z. (2006). Annotation of English on the Tectogrammatical
Level: Reference Book (Tech. Rep.). Prague: Charles University.
Retrieved from http://ufal.mff.cuni.cz/pcedt2.0/publications/
TR_En.pdf (version 1.0.1)

Cinkové, S., Toman, J., Haji¢, J., Cermakové, K., Klimes, V., Mladova, L.,
... Zabokrtsky, Z. (2009). Tectogrammatical Annotation of the Wall
Street Journal. The Prague Bulletin of Mathematical Linguistics, 92,
85-104.

Clark, S. (2015). Vector Space Models of Lexical Meaning. In The Handbook
of Contemporary Semantic Theory (p. 493—522). John Wiley & Sons,
Ltd.

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational
and Psychological Measurement, 20(1), 37—46.

Collobert, R., Kavukcuoglu, K., & Farabet, C. (2011). Torch7: A Matlab-like
Environment for Machine Learning. In BigLearn, NeurIPS Workshop.

Collobert, R., & Weston, J. (2008). A Unified Architecture for Natural Lan-
guage Processing: Deep Neural Networks with Multitask Learning. In
Proceedings of the 25th International Conference on Machine Learning,
ICML (p. 160—-167).

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa,
P. (2011). Natural Language Processing (almost) from Scratch. The
Journal of Machine Learning Research, 12(2), 2493 —2537.

Copestake, A., & Briscoe, E. (2005). Noun Compounds Revisited. In
J. I. Tait (Ed.), Charting a New Course: Natural Language Processing
and Information Retrieval: Essays in Honour of Karen Sparck Jones
(p. 129—-154). Dordrecht: Springer Netherlands.

Cordeiro, S., Ramisch, C., Idiart, M., & Villavicencio, A. (2016). Predicting
the Compositionality of Nominal Compounds: Giving Word Embed-
dings a Hard Time. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers)
(p. 1986—-1997). Association for Computational Linguistics.

213

http://ufal.mff.cuni.cz/pcedt2.0/publications/TR_En.pdf
http://ufal.mff.cuni.cz/pcedt2.0/publications/TR_En.pdf

Crane, M. (2018). Questionable Answers in Question Answering Research:
Reproducibility and Variability of Published Results. Transactions of
the Association for Computational Linguistics, 6, 241 —252.

Davies, M. (2009). The 385+ Million Word Corpus of Contemporary American
English (1990-2008+): Design, Architecture, and Linguistic Insights.
International Journal of Corpus Linguistics, 14(2), 159 —190.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman,
R. (1990). Indexing by Latent Semantic Analysis. Journal of the
American Society for Information Science, 41(6), 391 —407.

Dima, C. (2016). On the Compositionality and Semantic Interpretation of
English Noun Compounds. In Proceedings of the 1st Workshop on
Representation Learning for NLP (p. 27—-39). Association for Compu-
tational Linguistics.

Dima, C., & Hinrichs, E. (2015). Automatic Noun Compound Interpretation
using Deep Neural Networks and Word Embeddings. In Proceedings of
the 11th International Conference on Computational Semantics (p. 173 —
183). Association for Computational Linguistics.

Downing, P. (1977). On the Creation and Use of English Compound Nouns.
Language, 53(4), 810—842.

Fabb, N. (2017). Compounding. In The Handbook of Morphology (p. 66—83).
John Wiley & Sons, Ltd.

Farahmand, M., Smith, A., & Nivre, J. (2015). A Multiword Expression
Data Set: Annotating Non-Compositionality and Conventionalization
for English Noun Compounds. In Proceedings of the 11th Workshop
on Multiword Expressions (p. 29—33). Association for Computational
Linguistics.

Fares, M. (2016). A Dataset for Joint Noun-Noun Compound Bracketing
and Interpretation. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics — Student Research Workshop
(p. 72—79). Association for Computational Linguistics.

Fares, M., Kutuzov, A., Oepen, S., & Velldal, E. (2017). Word Vectors,
Reuse, and Replicability: Towards a Community Repository of Large-
Text Resources. In Proceedings of the 21st Nordic Conference on
Computational Linguistics (p. 271—-276). Association for Computational
Linguistics.

Fares, M., Oepen, S., & Velldal, E. (2015). Identifying Compounds: On The
Role of Syntax. In Proceedings of the 14th International Workshop on

214

Treebanks and Linguistic Theories (p. 273 —283).

Fares, M., Oepen, S., & Velldal, E. (2018). Transfer and Multi-Task Learning
for Noun—Noun Compound Interpretation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing
(p. 1488 -1498). Association for Computational Linguistics.

Faruqui, M., Tsvetkov, Y., Rastogi, P., & Dyer, C. (2016). Problems With
Evaluation of Word Embeddings Using Word Similarity Tasks. In
Proceedings of the 1st Workshop on Evaluating Vector-Space Represen-
tations for NLP (p. 30-35). Association for Computational Linguistics.

Finin, T. W. (1980). The Semantic Interpretation of Nominal Compounds.
In Proceedings of the First Annual National Conference on Artificial
Intelligence. AAAI Press.

Firth, J. R. (1957). A Synopsis of Linguistic Theory 1930-55. In Studies in
Linguistic Analysis (Vol. 1952-59, p. 1-32). Oxford: The Philological
Society. (Reprinted in: Palmer, F. R. (ed.) (1968). Selected Papers of
J. R. Firth 1952-59, pages 168-205. Longmans, London.)

Flickinger, D. (2000). On Building a More Efficient Grammar by Exploiting
Types. Natural Language Engineering, 6 (1), 15—28.

Flickinger, D., Zhang, Y., & Kordoni, V. (2012). DeepBank. A Dynamically
Annotated Treebank of the Wall Street Journal. In Proceedings of
the 11th International Workshop on Treebanks and Linguistic Theories
(p. 85-96). Edigoes Colibri.

Fort, K., Adda, G., & Cohen, K. B. (2011). Last Words: Amazon Mechanical
Turk: Gold Mine or Coal Mine? Computational Linguistics, 37(2).

Francis, W. N., & Kucera, H. (1979). Brown Corpus Manual (Tech. Rep.).
Department of Linguistics, Brown University.

Girju, R. (2009). The Syntax and Semantics of Prepositions in the Task
of Automatic Interpretation of Nominal Phrases and Compounds: A
Cross-Linguistic Study. Computational Linguistics, 35(2).

Girju, R., Badulescu, A., & Moldovan, D. (2003). Learning Semantic
Constraints for the Automatic Discovery of Part-Whole Relations. In
Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies (p. 80—87). Association for Computational Linguistics.

Girju, R., Moldovan, D., Tatu, M., & Antohe, D. (2005). On the Semantics
of Noun Compounds. Computer Speech & Language, 19(4), 479—496.

Girju, R., Nakov, P., Nastase, V., Szpakowicz, S., Turney, P., & Yuret, D.

215

(2007). SemEval-2007 Task 04: Classification of Semantic Relations
between Nominals. In Proceedings of the Fourth International Workshop
on Semantic Evaluations (SemEval-2007) (p. 13—18). Association for
Computational Linguistics.

Goldberg, Y. (2017). Neural Network Methods in Natural Language Process-
ing. Morgan & Claypool Publishers.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT
Press.

Graff, D., Kong, J., Chen, K., & Maeda, K. (2005). English Gigaword Second
Edition. Linguistic Data Consortium.

Grimshaw, J. (1990). Argument Structure. Cambridge, MA: MIT Press.

Haji¢, J., Hajicova, E., Panevova, J., Sgall, P., Bojar, O., Cinkova, S., ...
Zabokrtsky, Z. (2012). Announcing Prague Czech-English Dependency
Treebank 2.0. In Proceedings of the 8th International Conference
on Language Resources and Evaluation (p. 3153—3160). European
Language Resources Association (ELRA).

Harris, Z. S. (1954). Distributional Structure. Word, 10(2-3), 146 - 162.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference and Prediction (2nd ed.). Springer.

Hendrickx, I., Kim, S. N., Kozareva, Z., Nakov, P., O Séaghdha, D., Padé,
S., ... Szpakowicz, S. (2010). SemEval-2010 Task 8: Multi-Way
Classification of Semantic Relations between Pairs of Nominals. In
Proceedings of the 5th International Workshop on Semantic Evaluation
(p. 33—38). Association for Computational Linguistics.

Hendrickx, 1., Kozareva, Z., Nakov, P., O Séaghdha, D., Szpakowicz, S., &
Veale, T. (2013). SemEval-2013 Task 4: Free Paraphrases of Noun
Compounds. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 2: Proceedings of the Seventh Interna-
tional Workshop on Semantic Evaluation (SemEval 2013) (p. 138—143).
Association for Computational Linguistics.

Hermann, K. M., Blunsom, P., & Pulman, S. (2012). An Unsupervised Rank-
ing Model for Noun-Noun Compositionality. In *SEM 2012: The First
Joint Conference on Lexical and Computational Semantics — Volume 1:
Proceedings of the Main Conference and the Shared Task, and Volume
2: Proceedings of the Sixth International Workshop on Semantic Eval-
uation (SemEval 2012) (p. 132—141). Association for Computational
Linguistics.

216

Hill, F., Reichart, R., & Korhonen, A. (2015). SimLex-999: Evaluating
Semantic Models with (Genuine) Similarity Estimation. Computational
Linguistics, 41(4), 665 —695.

Iordachioaia, G., van der Plas, L., & Jagfeld, G. (2016). The Grammar of
English Deverbal Compounds and their Meaning. In Proceedings of
the Workshop on Grammar and Lexicon: Interactions and Interfaces
(GramLex) (p. 81-91).

Isabelle, P. (1984). Another Look at Nominal Compounds. In Proceedings of
the 10th International Conference on Computational Linguistics and
22nd Annual Meeting on Association for Computational Linguistics
(p- 509-516). Association for Computational Linguistics.

Jespersen, O. (1949). A Modern English Grammar on Historical Principles,
Part VI Morphology. Enjnar Munksgaard.

Jurgens, D., Mohammad, S., Turney, P., & Holyoak, K. (2012). SemEval-2012
Task 2: Measuring Degrees of Relational Similarity. In Proceedings
of the First Joint Conference on Lexical and Computational Seman-
tics (SemEval 2012) (p. 356—-364). Association for Computational
Linguistics.

Kay, P., & Zimmer, K. (1990). On the Semantics of Compounds and Genitives
in English. In S. L. Tsohatzidis (Ed.), Meanings and Prototypes: Studies
in Linguistic Categorization (p. 239—-246). Routledge.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P.
(2017). On Large-Batch Training for Deep Learning: Generalization Gap
and Sharp Minima. In Proceedings of the 5th International Conference
on Learning Representations (ICLR).

Kiela, D., & Clark, S. (2014). A Systematic Study of Semantic Vector Space
Model Parameters. In Proceedings of the 2nd Workshop on Continuous
Vector Space Models and their Compositionality (CVSC) (p. 21-30).
Association for Computational Linguistics.

Kim, S. N., & Baldwin, T. (2005). Automatic Interpretation of Noun
Compounds Using WordNet Similarity. In Proceedings of the Sec-
ond International Joint Conference on Natural Language Processing
(IJCNLP) (p. 945-956). Springer Berlin Heidelberg.

Kim, S. N.; & Baldwin, T. (2006). Interpreting Semantic Relations in Noun
Compounds via Verb Semantics. In Proceedings of the COLING/ACL
2006 Main Conference Poster Sessions (p. 491 -498). Association for
Computational Linguistics.

217

Kim, S. N., & Baldwin, T. (2008). Standardised Evaluation of English Noun
Compound Interpretation. In Proceedings of the LREC Workshop:
Towards a Shared Task for Multiword Expressions (p. 39—42).

Kim, S. N., & Baldwin, T. (2013). A Lexical Semantic Approach to Inter-
preting and Bracketing English Noun Compounds. Natural Language
Engineering, 19(03), 385—407.

Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations (ICLR).

Koehn, P. (2005). Europarl: A Parallel Corpus for Statistical Machine
Translation. In Proceedings of the 10th Machine Translation Summit
(p. 79-86).

Lapata, M. (2002). The Disambiguation of Nominalizations. Computational
Linguistics, 28(3), 357 —388.

Lapata, M., & Keller, F. (2004). The Web as a Baseline: Evaluating the
Performance of Unsupervised Web-based Models for a Range of NLP
Tasks. In Proceedings of the 2004 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies (p. 121—-128). Association for Computational
Linguistics.

Lapata, M., & Lascarides, A. (2003). Detecting Novel Compounds. The Role
of Distributional Evidence. In Proceedings of the 10th Meeting of the
European Chapter of the Association for Computational Linguistics
(p. 235—-242).

Lauer, M. (1995). Designing Statistical Language Learners: Experiments on
Noun Compounds. Doctoral dissertation, Macquarie University, Sydney,
Australia.

Lauscher, A., Glavas, G., Ponzetto, S. P., & Eckert, K. (2018). Investigating
the Role of Argumentation in the Rhetorical Analysis of Scientific
Publications with Neural Multi-Task Learning Models. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language
Processing (p. 3326 - 3338). Association for Computational Linguistics.

Lebret, R., & Collobert, R. (2014). Word Embeddings through Hellinger PCA.
In Proceedings of the 14th Conference of the European Chapter of the
Association for Computational Linguistics (p. 482—490). Association
for Computational Linguistics.

Levi, J. N. (1978). The Syntax and Semantics of Complex Nominals. Academic
Press.

218

Levin, B. (1993). English Verb Classes and Alternations A Preliminary
Investigation. Chicago and London: University of Chicago Press.
Levy, O., & Goldberg, Y. (2014). Linguistic Regularities in Sparse and Explicit
Word Representations. In Proceedings of the Eighteenth Conference on
Computational Natural Language Learning (p. 171—180). Association

for Computational Linguistics.

Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving Distributional
Similarity with Lessons Learned from Word Embeddings. Transactions
of the Association of Computational Linguistics, 3, 211—225.

Levy, O., Remus, S., Biemann, C., & Dagan, I. (2015). Do Supervised
Distributional Methods Really Learn Lexical Inference Relations? In
Proceedings of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies (p. 970-976). Association for Computational Linguistics.

Li, C. N. (1972). Semantics and the Structure of Compounds in Chinese.
Unpublished doctoral dissertation, University of California, Berkeley.

Lipton, Z. C., & Steinhardt, J. (2018). Troubling Trends in Machine Learning
Scholarship. arXiv preprint arXiv:1807.03341.

Lund, K., & Burgess, C. (1996). Producing High-Dimensional Semantic Spaces
from Lexical Co-occurrence. Behavior Research Methods, Instruments,
& Computers, 28(2), 203 —208.

Lyu, C., & Titov, I. (2018). AMR Parsing as Graph Prediction with
Latent Alignment. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers)
(p. 397-407). Association for Computational Linguistics.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., &
McClosky, D. (2014). The Stanford CoreNLP Natural Language
Processing Toolkit. In Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations
(p. 55-60). Association for Computational Linguistics.

Marcus, M., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a Large
Annotated Corpora of English. The Penn Treebank. Computational
Linguistics, 19, 313 —330.

Martinez Alonso, H., & Plank, B. (2017). When Is Multitask Learning Effec-
tive? Semantic Sequence Prediction under Varying Data Conditions.
In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics (Volume 1: Long Papers)

219

(p. 44—53). Association for Computational Linguistics.

McShane, M., Beale, S., & Babkin, P. (2014). Nominal Compound Inter-
pretation by Intelligent Agents. LiLT (Linguistic Issues in Language
Technology), 10.

Meyers, A. (2007). Annotation Guidelines for NomBank — Noun Argument
Structure for PropBank (Vol. 44; Tech. Rep.). New York University.

Meyers, A., Reeves, R., Macleod, C., Szekely, R., Zielinska, V., Young, B.,
& Grishman, R. (2004). Annotating Noun Argument Structure for
NomBank. In Proceedings of the 4th International Conference on
Language Resources and Evaluation (p. 803—806). European Language
Resources Association (ELRA).

Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. (2013). Efficient Estimation
of Word Representations in Vector Space. In International Conference
on Learning Representations Workshop.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G., & Dean, J. (2013).
Distributed Representations of Words and Phrases and Their Composi-
tionality. In Proceedings of the 26th International Conference on Neural
Information Processing Systems (Volume 2) (p. 3111-3119). Curran
Associates Inc.

Mikolov, T., Yih, W., & Zweig, G. (2013). Linguistic Regularities in Continu-
ous Space Word Representations. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (p. 746—751). Association
for Computational Linguistics.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communi-
cations of the ACM, 38(11), 39—41.

Minsky, M. (2007). Emotion Machine: Commonsense Thinking, Artificial
Intelligence, and the Future of the Human Mind. Simon and Schuster.

Moldovan, D., Badulescu, A., Tatu, M., Antohe, D., & Girju, R. (2004).
Models for the Semantic Classification of Noun Phrases. In Proceedings
of the HLT-NAACL Workshop on Computational Lexical Semantics
(p. 60—67). Association for Computational Linguistics.

Mou, L., Meng, Z., Yan, R., Li, G., Xu, Y., Zhang, L., & Jin, Z. (2016). How
Transferable Are Neural Networks in NLP Applications? In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language
Processing (p. 479—-489). Association for Computational Linguistics.

Nakov, P. (2007). Using the Web as an Implicit Training Set: Application to

220

Noun Compound Syntax and Semantics. Doctoral dissertation, EECS
Department, University of California, Berkeley.

Nakov, P. (2013). On the Interpretation of Noun Compounds: Syntax,
Semantics, and Entailment. Natural Language Engineering, 19(3),
291-330.

Nakov, P., & Hearst, M. (2013). Semantic Interpretation of Noun Compounds
Using Verbal and Other Paraphrases. ACM Transactions on Speech
and Language Processing, 10(3).

Nastase, V., Sayyad-Shirabad, J., Sokolova, M., & Szpakowicz, S. (2006).
Learning Noun-modifier Semantic Relations with Corpus-based and
WordNet-based Features. In Proceedings of the 21st National Conference
on Artificial Intelligence (Volume 1) (p. 781-786). AAAI Press.

Nastase, V., & Szpakowicz, S. (2003). Exploring Noun-Modifier Semantic
Relations. In Proceedings of the Fifth International Workshop on
Computational Semantics (p. 285—301).

Oepen, S., Kuhlmann, M., Miyao, Y., Zeman, D., Cinkova, S., Flickinger,
D., ... Uresova, Z. (2015). SemEval 2015 Task 18. Broad-Coverage
Semantic Dependency Parsing. In Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation (p. 915-926). Association for
Computational Linguistics.

Oepen, S., Kuhlmann, M., Miyao, Y., Zeman, D., Flickinger, D., Haji¢, J.,
... Zhang, Y. (2014). SemEval 2014 Task 8. Broad-Coverage Semantic
Dependency Parsing. In Proceedings of the 8th International Workshop
on Semantic Evaluation (p. 63—72). Association for Computational
Linguistics.

O Séaghdha, D. (2008). Learning Compound Noun Semantics (Tech. Rep.
No. UCAM-CL-TR-735). Cambridge, UK: University of Cambridge,
Computer Laboratory.

O Séaghdha, D., & Copestake, A. (2007). Co-occurrence Contexts for
Noun Compound Interpretation. In Proceedings of the Workshop on A
Broader Perspective on Multiword Expressions (p. 57—64). Association
for Computational Linguistics.

O Séaghdha, D., & Copestake, A. (2008). Semantic Classification with Distri-
butional Kernels. In Proceedings of the 22nd International Conference
on Computational Linguistics (COLING 2008) (p. 649—-656). COLING
2008 Organizing Committee.

O Séaghdha, D., & Copestake, A. (2009). Using Lexical and Relational Simi-

221

larity to Classify Semantic Relations. In Proceedings of the 12th Con-
ference of the European Chapter of the Association for Computational
Linguistics (p. 621 -629). Association for Computational Linguistics.

O Séaghdha, D., & Copestake, A. (2013). Interpreting Compound Nouns
with Kernel Methods. Journal of Natural Language Engineering, 19(3),
331 - 356.

Padd, S., & Lapata, M. (2003). Constructing Semantic Space Models from
Parsed Corpora. In Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics (p. 128 —135).

Palmer, M., Gildea, D., & Kingsbury, P. (2005). The Proposition Bank:
An Annotated Corpus of Semantic Roles. Computational Linguistics,
31(1), 71-106.

Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE
Transactions on Knowledge and Data Engineering, 22(10), 1345—1359.

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment
Classification using Machine Learning Techniques. In Proceedings of the
2002 Conference on Empirical Methods in Natural Language Processing
(p. 79—86). Association for Computational Linguistics.

Parker, R., Graff, D., Kong, J., Chen, K., & Maeda, K. (2011). English
Gigaword Fifth Edition LDC2011T07 (Tech. Rep.). Technical Report.
Linguistic Data Consortium, Philadelphia.

Peng, H., Thomson, S., & Smith, N. A. (2017). Deep Multitask Learning for
Semantic Dependency Parsing. In Proceedings of the 55th Meeting of the
Association for Computational Linguistics (p. 2037—2048). Association
for Computational Linguistics.

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors
for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (p. 1532—1543).
Association for Computational Linguistics.

Pitler, E., Bergsma, S., Lin, D., & Church, K. (2010). Using Web-scale
N-grams to Improve Base NP Parsing Performance. In Proceedings
of the 23rd International Conference on Computational Linguistics
(p. 886—-894).

Pollard, C., & Sag, I. A. (1994). Head-Driven Phrase Structure Grammar.
Chicago, USA: The University of Chicago Press.

Ponkiya, G., Patel, K., Bhattacharyya, P., & Palshikar, G. (2018). Treat
Us Like the Sequences We Are: Prepositional Paraphrasing of Noun

222

Compounds using LSTM. In Proceedings of the 27th International
Conference on Computational Linguistics (p. 1827—-1836). Association
for Computational Linguistics.

Pourdamghani, N., Gao, Y., Hermjakob, U., & Knight, K. (2014). Aligning
English Strings with Abstract Meaning Representation Graphs. In
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (p. 425-429). Association for Computational
Linguistics.

Prechelt, L. (2012). Early Stopping — But When? In G. Montavon, G. B. Orr,
& K.-R. Miiller (Eds.), Neural Networks: Tricks of the Trade: Second
Edition (p. 53—67). Berlin, Heidelberg: Springer Berlin Heidelberg.

Pulman, S. (2013). Distributional Semantic Models. In C. Heunen,
M. Sadrzadeh, & E. Grefenstette (Eds.), Quantum Physics and Linguis-
tics: A Compositional, Diagrammatic Discourse (p. 333—358). Oxford
University Press.

Reddy, S., McCarthy, D., & Manandhar, S. (2011). An Empirical Study on
Compositionality in Compound Nouns. In Proceedings of 5th Interna-
tional Joint Conference on Natural Language Processing (p. 210—218).
Asian Federation of Natural Language Processing.

Reimers, N., & Gurevych, I. (2017). eporting Score Distributions Makes a
Difference: Performance Study of LSTM-networks for Sequence Tagging.
In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing (p. 338—-348). Association for Computational
Linguistics.

Resnik, P. S. (1993). Selection and Information: A Class-Based Approach to
Lexical Relationships. IRCS Technical Reports Series, 200.

Roeper, T., & Siegel, M. E. (1978). A Lexical Transformation for Verbal
Compounds. Linguistic Inquiry, 9, 199 —260.

Rosario, B., & Hearst, M. (2001). Classifying the Semantic Relations in Noun
Compounds via a Domain-Specific Lexical Hierarchy. In Proceedings
of the 2001 Conference on Empirical Methods in Natural Language
Processing (p. 82—90).

Rose, T., Stevenson, M., & Whitehead, M. (2002). The Reuters Corpus Vol-
ume 1 - from Yesterday’s News to Tomorrow’s Language Resources. In
Proceedings of the 3rd International Conference on Language Resources
and Evaluation (Vol. 2, p. 827—832).

Ryder, M. E. (1994). Ordered Chaos: The Interpretation of English Noun-

223

Noun Compounds (Vol. 123). University of California Press.

Sahlgren, M. (2008). The Distributional Hypothesis. Italian Journal of
Linguistics, 20(1), 33— 54.

Santorini, B. (1990). Part-of-Speech Tagging Guidelines for the Penn Treebank
Project (3rd Revision, 2nd printing). Ms., Department of Linguistics,
UPenn. Philadelphia, PA.

Schnabel, T., Labutov, I., Mimno, D., & Joachims, T. (2015). Evaluation
Methods for Unsupervised Word Embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing
(p. 298-307). Association for Computational Linguistics.

Schuler, K. K. (2005). VerbNet: A Broad-Coverage, Comprehensive Verb
Lexicon. Doctoral dissertation, University of Pennsylvania, Philadelphia,
PA.

Schulte im Walde, S., Miiller, S., & Roller, S. (2013). Exploring Vector
Space Models to Predict the Compositionality of German Noun-Noun
Compounds. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and
the Shared Task: Semantic Textual Similarity (p. 255—265). Association
for Computational Linguistics.

Semecky, J., & Cinkova, S. (2006). Constructing an English Valency Lexicon.
In Proceedings of the Workshop on Frontiers in Linguistically Annotated
Corpora 2006 (p. 94—97). Association for Computational Linguistics.

Sgall, P., Hajicovd, E., & Panevova, J. (1986). The Meaning of the Sentence
and its Semantic and Pragmatic Aspects. Dordrecht, The Netherlands:
D. Reidel Publishing Company.

Shwartz, V., Goldberg, Y., & Dagan, I. (2016). Improving Hypernymy
Detection with an Integrated Path-based and Distributional Method.
In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (p. 2389 —2398).
Association for Computational Linguistics.

Shwartz, V., & Waterson, C. (2018). Olive Oil is Made of Olives, Baby
Oil is Made for Babies: Interpreting Noun Compounds using Para-
phrases in a Neural Model. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (p. 218 —224). Association
for Computational Linguistics.

Sogaard, A., & Goldberg, Y. (2016). Deep Multi-Task Learning with Low Level

224

Tasks Supervised at Lower Layers. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers) (p. 231 —235). Association for Computational Linguistics.

Sparck Jones, K. (1983). Compound Noun Interpretation Problems (Tech.
Rep.). University of Cambridge, Computer Laboratory.

Sproat, R. (1994). English Noun-Phrase Accent Prediction for Text-to-Speech.
Computer Speech & Language, 8(2), 79—94.

Su, S. (1969). A Semantic Theory Based Upon Interactive Meaning (Tech.
Rep.). University of Wisconsin-Madison Department of Computer
Sciences.

Tratz, S. (2011). Semantically-Enriched Parsing for Natural Language
Understanding. Doctoral dissertation, University of Southern California.

Tratz, S., & Hovy, E. (2010). A Taxonomy, Dataset, and Classifier for
Automatic Noun Compound Interpretation. In Proceedings of the 48th
Meeting of the Association for Computational Linguistics (p. 678 —687).
Association for Computational Linguistics.

Turney, P. D. (2006). Similarity of Semantic Relations. Computational
Linguistics, 32(3), 379—-416.

Turney, P. D., & Pantel, P. (2010). From Frequency to Meaning: Vector
Space Models of Semantics. Journal of Artificial Intelligence Research,
37(1), 141-188.

Vadas, D., & Curran, J. (2007). Adding Noun Phrase Structure to the Penn
Treebank. In Proceedings of the 45th Meeting of the Association for
Computational Linguistics (p. 240 —247). Association for Computational
Linguistics.

Vadas, D., & Curran, J. (2011). Parsing Noun Phrases in the Penn Treebank.
Computational Linguistics, 37(4), 753 —809.

Vanderwende, L. (1994). Algorithm for Automatic Interpretation of Noun
Sequences. In Proceedings of the 15th Conference on Computational
Linguistics (Volume 2) (p. 782—788).

Warren, B. (1978). Semantic Patterns of Noun-Noun Compounds (Vol.
Gothenburg Studies in English). Acta Universitatis Gothoburgensis.

Williams, J. (2013). Multi-Domain Learning and Generalization in Dialog
State Tracking. In Proceedings of the SIGDIAL 2013 Conference
(p. 433-441). Association for Computational Linguistics.

Wittgenstein, L. (1953). Philosophical Investigations. Oxford: Basil Black-
well.

225

Yazdani, M., Farahmand, M., & Henderson, J. (2015). Learning Semantic
Composition to Detect Non-compositionality of Multiword Expressions.
In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing (p. 1733—1742). Association for Computational
Linguistics.

Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method.
CoRR, abs/1212.5701. Retrieved from http://arxiv.org/abs/1212
.5701

Zhang, Y., & Wallace, B. (2017). A Sensitivity Analysis of (and Practitioners’
Guide to) Convolutional Neural Networks for Sentence Classification.
In Proceedings of the Eighth International Joint Conference on Natural
Language Processing (Volume 1: Long Papers) (p. 253—-263). Asian
Federation of Natural Language Processing.

226

http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701

Appendix A

Noun Compound Relations

A.1 Nastase and Szpakowicz (2003)

The dataset of noun-modifier relations by Nastase and Szpakowicz (2003)
allows adjectival modifiers not just nous, e.g. periodic surveillance. All
the instances annotated as object property have an adjectival modifier.
Nastase and Szpakowicz (2003) indicate the relation manner is represented in
the dataset, but we could not find any instance of that relation. Therefore,
we do not include this relation in Table A.1.

227

Relation Count Examples
CAUSALITY

cause 17 cloud storm
effect 34 birth pain
purpose 31 bathing suit
detraction 4 sun block
TEMPORALITY

frequency 16 periodic surveillance
time at 30 summer morning
time through 6 spring semester
SPATIAL

direction 8 exit route
location) college town
location at 22 ocean side
location from 21 farm boy
PARTICIPANT

agent 36 student protest
beneficiary 9 pet spray
instrument 35 needle work
object 33 horse doctor
object property 15 torn paper
part 9 party member
possessor 30 student loan
property 49 novelty item
product 16 light bulb
source 12 olive oil
stative 9 sleeping dog
whole 7 student committee
QUALITY

container 3 story idea
content 15 photo album
equative 5 child actor
material 32 carbon deposit
measure 30 saturation point
topic 45 eviction notice
type 16 oak tree

228

Table A.1: Relations in Nastase and Szpakowicz (2003)

Appendix B

NomBank and PCEDT
Relations

This appendix includes the definitions of the noun—noun compound relations
in our dataset, introduced in Chapter 4.

B.1 NomBank Relations

6.

. ARGO: Typically expresses causer, agent or actor.
. ARG1: Typically expresses patient or theme.
. ARG2: Typically expresses recipient or beneficiary.

. ARG3 and ARG4: “While ARG3 and ARG4 are undoubtedly less regular than

ARGO, ARG1, and ARG2, there are some detectable patterns. For example,
if not already covered by the first three arguments, start-point /source
tend to be ARG3 and end-point/goal tend to be ARG4” (Meyers, 2007, p.
25).

. ARG5, ARG8 and ARGY: The interpretation of these arguments completely

depends on the predicate. These arguments are extremely infrequent in
our datasets; ARG5 occurs three times and ARG9 occurs four times.

ARGM-L0C: Locative modifiers that are not directional.!

'NomBank defines a directional modifier (ARGM-DIR) which expresses the start and end
points of motion, giving or sending. This modifier is not attested in our dataset.

229

10.

11.

12.

13.

14.

. ARGM-MNR: Manner. Meyers (2007) distinguishes between several sub-

types of manner adjuncts (such as instrumental, concomitant and mea-
sure), but these distinctions are only made for the annotators.

. ARGM-TMP: Temporal modifiers which includes points in tie, time periods,

durations, approximate times, frequencies and relative times (Meyers,
2007, p. 92).

. ARGM-PNC: Purpose. Even though purpose is expressed as an adjunct in

our dataset, Meyers (2007) states that some arguments can receive a
purpose tag (-PNC) such as ARG2-PNC but such cases are not observed
in our dataset.

ARGM-ADV: Adverbial modifier such as epistemic and attitudinal adverbs.

ARGM-EXT: Extent. Meyers (2007) explains that there is a subtle distinc-
tion between modifiers like ARGM-EXT, ARGM-MNR and ARGM-TMP because
the latter two include notions of degree and frequency which could be
viewed as extent also.

ARGM-CAU: Cause.

ARG1-H1, ARG3-HO, ARG1-HO, ARGO-HO: -HO, and -H1 are called hyphen
tags and they specify which constituent of a hyphenated string is the
argument. For example, ARGO-HO specifies that the first constituent of
the hyphenated string is the ARGO.

Support: Meyers (2007, p. 79) explains that some head nouns and
prenominal modifiers can share their arguments or adjuncts, and in
such cases the head noun is annotated with the relation Support.

B.2 PCEDT Functors

The following presents the definition of the PCEDT functors found in our
dataset (in Chapter4). Th definitions are adapted from the PCEDT docu-
mentation.

1.

2.

RSTR: Adnominal adjunct modifying its governing noun

PAT: Patient (argument)

230

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. APP: Adnominal adjunct expressing appurtenance

. REG: Adjunct expressing a circumstance that the main predication takes

into account

. ACT: Actor (argument)
. LOC: Locative adjunct, answering the question “where”
. TWHEN: Temporal adjunct, answering the question “when”

. AIM: Adjunct expressing purpose

ID: The nominative of identity and explicative genitive

MAT: Adnominal argument referring to the content of a container
NE: Part of a named entity

ORIG: Origo (argument)

MANN: Adjunct expressing the manner (of doing something)
MEANS: Adjunct expressing a means (of doing something)

EFF: Effect (argument)

AUTH: Adnominal adjunct referring to the author (of something)

BEN: Adjunct expressing that something is happening for the benefit (or
disadvantage) of somebody or something

ADDR: Addressee (argument)
CAUS: Adjunct expressing the cause (of something)

THL: Temporal adjunct, answering the questions “how long” and “after
how long”

CRIT: Adjunct expressing a criterion/measure/standard
DIR1: Directional adjunct, answering the question “where from”

DIR3: Directional adjunct, answering the question “where to”

231

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

TFRWH: Temporal adjunct, answering the question “from when”

EXT: Adjunct expressing extent

TFHL: Temporal adjunct, answering the question “for how long”

CPR: Adjunct expressing comparison

DIFF: Adjunct expressing a difference (between two entities, states etc.)

ACMP: Adjunct expressing accompaniment (in the broad sense of the
word)

DIR2: Directional adjunct, answering the question “which way”
DPHR: The dependent part of an idiomatic expression
RESL: Adjunct expressing the result/effect of something

THO: Temporal adjunct, answering the questions “how often” and “how
many times”

TPAR: Temporal adjunct, answering the questions “in parallel/simultaneously

with what” and “during what time”

232

Appendix C

Model Hyperparameters

In this appendix we include the plots and figures related to the hyperparameter
experiments presented in Chapter 6.

Figures C.1, C.2 and C.3 show the validation loss and accuracy of the STL
model using several optimization functions on the PCEDT, NomBank and
Tratz datasets. Figures C.4, C.5 and C.6 show the impact of the batch size on
the validation loss and accuracy of the three datasets. Further, Figures C.7,
C.8 and C.9 show the effect of different values of the dropout rate on PCEDT,
NomBank and Tratz. Lastly, Figures C.10, C.11 and C.12 show the effect of
the dense layer size on the validation accuracy in the hyperparameter random
search experiments.

233

Optimizer = AdaMax

Epoch

Optimizer = RMSprop

2.25 2.25
2.00 2.00
1.75 1.75
% %
S 1.50 S 1.50
S 1.25 WW g 1.25
< <
1.00 1.00
0.75 0.75
"V‘\M/‘_‘ M\.—\M
Optimizer = Adam Optimizer = Adadelta
2.25 2.25
2.00 2.00
1.75 1.75
2 %
S 1.50 S 1.50
— —
g 1.25 g 1.25
< <
1.00 1.00
0.75 0.75
N‘*—w‘ %
Optimizer = Adagrad Optimizer = SGD
2.25 2.25
2.00 2.00
1.75 1.75
% %
S 1.50 3 1.50
S 1.25 N g 1.25
< <
1.00 1.00
0.75 0.75
p———— ——— \/-o—\‘
T
12345678 9101112131415 12345678 9101112131415

Epoch

Figure C.1: Validation accuracy (blue) and loss (red) of different optimizers
on PCEDT

234

Optimizer = AdaMax

o ——————e e ——
0.7

12345678 9101112131415
Epoch

Optimizer = RMSprop

1.3 1.3
1.2 1.2
Z11 211
— —
S 10 S 1.0
] Q
< <
09 W/‘\Q—W 09
0.8 0.8
/‘_._4__._./‘_'—'—".“—.—4 M
0.7 0.7
Optimizer = Adam Optimizer = Adadelta
1.3 1.3
1.2 1.2
@ A
211 211
— —
S 10 o 10
o o
< <
0.9 0.9
0.8 0'8 M
0.7 0.7
Optimizer = Adagrad Optimizer = SGD
1.3 1.3
1.2 1.2
211 g 11
— —
S 10 510
o o
< <
0.9 X 0.9
0.8 0.8

0.7 W

12345678 9101112131415
Epoch

Figure C.2: Validation accuracy (blue) and loss (red) of different optimizers
on NomBank

235

Optimizer = AdaMax ; Optimizer = RMSprop

2.0 2.0
% 7
& S
=15 — 15
g g
< <
1.0 1.0
/—“'—’-'—' /
0.5 0.5
Optimizer = Adam Optimizer = Adadelta
2.5 2.5
2.0 2.0
2 7
S S
= 15 = 15
(&}]
[} o
= = W
1.0 1.0
—_— —
0.5 0.5
Optimizer = Adagrad Optimizer = SGD
2.5 2.5
2.0 2.0
2 2
S S
=15 =15
[} [}
[} o
< <
1.0 1.0
—
0.5 0.5
12345678 9101112131415 12345678 9101112131415
Epoch Epoch

Figure C.3: Validation accuracy (blue) and loss (red) of different optimizers
on Tratz

236

Batch =1 Batch =5 Batch = 10

2.5 2.5 2.5
2 2.0 2 2.0 2 2.0
E E E
515 515 S 15
= = = M
1.0 1.0 1.0
Batch = 20 Batch = 50 Batch = 100
2.5 2.5 2.5
Z 2.0 %220 %220
E E E
515) o 15
S N S N S S e
1.0 1.0 1.0
0.5 i 0.5 = 0.5
Batch = 150 Batch = 200 Batch = 250
25 2.5 2.5
2 2.0 220 220
k K k
S 15 515 o L5
= M‘-H—Q—Q—O—H = \’“‘*O-O—H-H_H_H < MH—Q—O—H
1.0 1.0 1.0
| (P S S
0.5 0.5 0.5
5 10 15 5 10 15 5 10 15
Epoch Epoch Epoch

Figure C.4: Loss (red) and validation accuracy (blue) vs. batch size on
PCEDT

237

Batch =1 Batch =5 Batch = 10

1.6 1.6 1.6
L L4 , 14 L 14
g 8 g
=12 =12 =12
© © ©
=10 = 1.0 =210 M
0.8 | e 08 0.8
R S S ——
0.6 0.6 0.6
Batch = 20 Batch = 50 Batch = 100
1.6 1.6 1.6
5 14 5 14 5 14
Q Q Q
=12 =12 =12
© © ©
=10 = 1.0 =210
Ny w
0.8 0.8 0.8
. . e ——y et /___._._._._._._._.—W
0.6 0.6 0.6
Batch = 150 Batch = 200 Batch = 250
1.6 1.6 1.6
g 14 g 14 5 14
Q]]
=12 =12 =12
g 10 g g
= = 1.0 = 1.0
0.8 0.8 0.8
0.6 0.6 0.6
5 10 15 5 10 15 5 10 15
Epoch Epoch Epoch

Figure C.5: Loss (red) and validation accuracy (blue) vs. batch size on
NomBank

238

Batch =1 Batch =5
2.0 2.0
2 2
& 15 15
= A
< 1.0 < 1.0
e e
0.5 0.5
Batch = 20 Batch = 50
2.0 2.0
2 2
E15 &15
= A
< 1.0 < 1.0
/‘_.__—.v-—-—-——--——' /(____,.—v.———o—-—-——
0.5 0.5
Batch = 150 Batch = 200
2.0 2.0
®n]
£15 Z15
i~ A
< 1.0 <10

Epoch Epoch

Figure C.6: Loss (red) and validation accuracy (blue) vs. batch size on Tratz

239

Batch = 10

2.0
wn
815
—
< 10
0.5
Batch = 100
2.0
wn
Z15
—
g
< 1.0
. /_,,_,_,__._._,-.—-—.—
Batch = 250
2.0
wn
315
—
< 1.0
o /,,.._.———-——
5 10 15
Epoch

Dropout = 0
0.60

o
o
o

10.56

Val Acc

0.52

Dropout = 0.5

0.60

0.58

Val Acc
=
g

0.54

0.52

12345678 9101112131415

Epoch

Dropout = 0.25
0.60

0.58

10.56

Val Acc

0.52

Dropout = 0.75

0.60

0.58

Val Acc
o
a‘_‘

0.54

0.52

12345678 9101112131415
Epoch

Figure C.7: Validation accuracy vs. dropout rate on PCEDT

240

Dropout = 0

0.76

o
]
[inNy

Val Acc

0.72

0.70

Dropout = 0.5

0.76

o
~
=~

Val Acc

0.72

0.70

123456789101112131415

Epoch

Dropout = 0.25

0.76

o
~
=~

Val Acc

0.72

0.70

Dropout = 0.75

0.76

o
3
~

Val Acc

0.72

0.70

12345678 9101112131415
Epoch

Figure C.8: Validation accuracy vs. dropout rate on NomBank

241

Dropout = 0 Dropout = 0.25

0.70 0.70
g g
<C‘ 0.65 <ﬂ‘ 0.65
G =
> -
0.60 0.60
0.55 0.55
Dropout = 0.5 Dropout = 0.75
0.70 0.70
g g
<C‘ 0.65 <E‘ 0.65
= =
> =
0.60 0.60
0.55 0.55
12345678 9101112131415 12345678 9101112131415
Epoch Epoch

Figure C.9: Validation accuracy vs. dropout rate on Tratz

242

sjuowradxe ypIess wopuel IojomrerediodAy o) Ul 1oAR] 9SUAP oY} JO 9ZIS "SA AovINDOR UOIYRPIeA [,(JHDd 01D 2In3Ig

LAHADd - uny payuey LAAD - Uy payuey LAHD - uny payuey LAHADd - uny payuey
04T 00T 04 0 0471 00T 04 0 (U 00T 0¢ 0 04T 00T 0% 0
S0

g0

2V [BA

v
v Yvy 860
\{ A
MW " M Wa ” ;<> v Ry >4I14>
A

Wy, A R Ya,
onLy, A A 90

osed v 00g = asua(] 9Cg = asua(] QT = osud(| }9 = osua(]

paumn)-our|

¢q0
v
740

9¢°0

4

| 4
<

2
R
<

<

3

je=}

MDY [BA

v
) v Yaa ’E(
Y A
' v

7¢ = asud(] 9T = osue(] { = asua(] T = osua(]

243

Dense = 4 Dense = 8 Dense = 16 Dense = 32
0.800
v
v
0.775 Yy ™ v v -y
Ve 44‘ Ywy A
. 0.750 vy 4! bf» i>>><
<< A
= 0.725 A A =
> M A
0.700 (A
 §
0.675 LW)N A
I'ine-tuned
Dense = 64 Dense = 128 Dense = 256 Dense = 300 A False
0.800
\ v True
v Yy w Af Vaw,,
0.775 h 27 w, YWy ¥
Y ; Ry v
A A/ Yy
A A, 2
o 0.750 a, Ay ' - A
< A A A
—= 0725 A
=
0.700 A
v
0.675 A
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Ranked Run - NomBank Ranked Run - NomBank Ranked Run - NomBank Ranked Run - NomBank

Figure C.11: NomBank validation accuracy vs. size of the dense layer in the hyperparameter random search

experiments

244

sjuowILIodxe yoIess wopuel IojourerediodAy o) Ul IoAR] 9SULP 91} JO 9ZIS "SA ADRINDOR UOIJRPI[eA Z)el], (g1) INSI

ZyRel], - Uy poyury ZyRel], - Uny poyury
0¢t 001 0% 0 041 001 0% 0

oniy, A
osfe VW 00§ = asua(] 9Gg = asud(]
pauny-auf|

7
‘N o

A A
A
. Y A

My

76 = osua(] 9T = osua(]

Zyel], - UNY poyuey
041 001 09 0

Wy

<EEP
82T = asua(]

v
v
v
N
)
a
oy

] = osua(]

ZYRl], - UNY Pos[ueRy

v

001
.
A e
79 = osuo(]
F = osuo(]

0g

€0

70

g0

90

L0

80

€0

70

g0

90

L0

80

DV [BA

MY [BA

245

	Introduction
	Motivation and Overview
	Contributions
	Limitations

	Thesis Outline

	Noun–Noun Compounds in Linguistics and NLP
	Defining Noun–Noun Compounds
	A Multitude of Studies and Names
	Finite vs. Infinite
	Deictic, Novel and Established Compounds
	Endocentric vs. Exocentric
	Nominalizations vs. Root Nominals
	Theoretical vs. Computational
	A Preliminary Definition

	Noun–Noun Compound Analysis
	Identification
	Bracketing
	Constituent Sense Disambiguation
	Interpretation
	Compositionality

	A Selection of Studies: Literature Review
	Lauer:95
	Gir:Mol:Tat:05
	Kim:Bal:13
	Sea:Cop:13
	Tra:Hov:10
	Shw:Wat:18

	Conclusion

	Annotation of Noun–Noun Compounds and Beyond
	Introduction
	Compound-Specific Datasets
	Sea:Cop:07
	Kim:Bal:08
	Tra:Hov:10

	Contrastive Analysis
	Linguistic Annotation Frameworks
	NomBank
	PCEDT 2.0
	Other Resources

	Conclusion

	Resource Creation
	Introduction and Motivation
	Overview
	Compound Identification
	Motivation and Past Work
	Compound Identification Strategies
	Syntax-Based Identification
	Results and Discussion
	Refined Identification Method

	Noun–Noun Compound Bracketing
	Data and Results

	Semantic Relations
	Data, Results and Reflections
	Correspondence between PCEDT and NomBank
	Type vs. Token Semantics
	Compound Interpretation Dataset

	Conclusion

	Embeddings and Similarity-Based Classification
	Introduction and Motivation
	Background
	Word Embeddings

	Word Embedding Models
	Linguistic Regularities in Embeddings
	Vector Arithmetic for Compounds
	Experimental Results
	K-Nearest Neighbors

	Conclusion

	Neural Classification
	Background: Dim:Hin:15
	Replicating Dim:Hin:15

	Neural Classification Experiments
	Effect of Word Embeddings
	Text Pre-Processing
	Vector Dimensionality and Fine-Tuning
	Size of Training Data and Fine-Tuning

	Model Architecture
	Model Hyperparameters
	Sensitivity Analysis
	Random Search

	WordNet Features
	Training Data
	Conclusion

	Transfer and Multi-Task Learning
	Introduction and Motivation
	Terminology and Definitions
	TL vs. MTL
	Related Work

	TL & MTL for Compound Interpretation
	Experimental Setup
	Single-Task Learning Model
	Transfer Learning Models
	Multi-Task Learning Models

	Experimental Results
	Evaluation on the Development Split
	Evaluation on the Test Split
	What Happened to AIM?

	Generalization on Unseen Compounds
	Performance Stability
	Conclusion

	Summary and Concluding Remarks
	References
	Noun Compound Relations
	Nas:Szp:03

	NomBank and PCEDT Relations
	NomBank Relations
	PCEDT Functors

	Model Hyperparameters

