
Parseval Reconstruction Networks
Improving Robustness of Deep Learning Based MRI
Reconstruction Towards Adversarial Attacks

Mathias Lohne
Master’s Thesis, Spring 2019



This master’s thesis is submitted under the master’s program Computational
Science and Engineering, with program option Computational Science, at the
Department of Mathematics, University of Oslo. The scope of the thesis is 60

credits.

The front page depicts a section of the root system of the exceptional

Lie group E
8
, projected into the plane. Lie groups were invented by the

Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in

differential equations and today they play a central role in various parts of

mathematics.



Abstract

Recovering signals from undersampled measurements is a well-studied topic in

mathematics. During the last decade, many attempts have been made to solve

this problem usingmachine learning, with resulting reconstructionmodels that

report remarkable performance. However, recent work have revealed major

systematic stability issues with these models, such as the instability towards

adversarial noise. That is, given an image which a neural network can recover

correctly, we can easily create a tiny perturbation so that the perturbed image

produces severe artifacts during recovery.

Similar phenomena are well-established for classification networks, and

subsequently several regularization methods for reducing the instabilities

of classification networks have been proposed. In this thesis we investigate

Parseval networks, in which the every layer is constrained to be a contraction,

thus limiting how much a perturbation can be amplified through the network.

We adapt these techniques to image reconstruction networks and show that

while we seem to sacrifice some performance, the resulting networks do not

exhibit the same instabilities.
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Provided Code

The main result of this thesis is the proposal of Parseval regularizers for image

reconstruction networks. To make this method as accessible as possible, we

have released the code necessary for anyone to include these techniques into

their own work as an open source Python package, available through the

Python Package Index. To install it on your own machine, the following pip
command should suffice:

$ pip install parsnet

The parsnet package should now be available on your system. Depending on

your Python installation, you might have to run the above command as root, or

with the --user flag. This package introduces the tight_frame class which

implements the methods derived in Chapter 5 as a plug-and-play extension

to TensorFlow. Details on implementation, licensing and how to include the

proposed method in your own work are found in Appendix B.1.

In addition we have released the total body of code as a separate git

repository, consisting of all the scripts necessary to reproduce any of our

presented results. This is available at the authors GitHub page1.

1https://github.com/mathialo/master_code
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CHAPTER 1

Introduction

In Magnetic Resonance Imaging (MRI), signal acquisition time often pose a

problem. This is both expensive for the hospital, and uncomfortable for the

patients as one have to lie still for the whole procedure.

In short, MRI works by subjecting a patient to a strong magnetic field.

This forces hydrogen protons to align either with or against the direction of

the magnetic field, which is usually the same as the z-axis. However, due to

angular momentum, the magnetic moment of each each proton will rotate

around the z-axis instead of aligning perfectly. Hence, the proton’s magnetic

moment will rotate at individual phases, causing the net magnetization of

all protons to be along the z-axis as all other directions will cancel out. The

MRI machine then sends a pulse of Radio Frequencies (RF) which cause the

hydrogen protons magnetic moments to synchronize their phases. This in turn

causes a component of the net magnetization vector in the x y-plane which can

be detected by the MRI machine as an RF wave. Once the RF pulse stops, the

individual magnetic moments will de-phase, causing the net magnetization

vector to once again be along the z-axis. Different types of tissue will de-phase

differently, and an MRI machine detects these RF frequencies [Flo12, Sec. 7.6].

Hence, an MRI machine does not sample image pixels directly, but rather as

frequencies, which from a mathematical perspective is the same as saying that

an MRI machine measures the signal in the 2D Fourier basis, instead of the

standard basis. An inverse Fourier transform is performed on the measured

frequencies, yielding the resulting image.

Traditional signal processing gives a lower bound on the number of MRI

measurements required through Shannon and Nyquist’s sampling theorem.

However, many attempts have been made to cheat this bound, some of the most

notable methods are Compressive Sensing (CS) and Deep Learning (DL).

Introduced in [CT06; CRT06; Don06], Compressive Sensing places some

additional assumptions on the signal we are recovering, and can make do with

way fewer measurements than traditional signal processing. We will discuss

CS in further detail in Section 2.1, but in short CS makes fewer measurements,

and solves a costly optimization problem to recover the signal. Hence, we can

trade off time spent by the patient in an MR scanner, with computation time

afterwards.

This is a huge improvement for both the patient and the hospital, but the

long computation times in modern CS have led to searches for other approaches

to undersampled signal recovery. With the explosion in popularity around

1



1. Introduction

Machine Learning (ML) in the last years, another approach have emerged,

namely using Deep Learning Denoising.

In this approach, we first do a very quick and crude recovery of the image

using the adjoint of the measurement operator as an estimate for the inverse.

This reconstruction will be very fast, but will leave many artifacts on the

resulting image due to aliasing from the severe undersampling (as shown in

Figures 2.1 and 2.3). These artifacts can be then removed using a Deep Learning

Denoiser.

Several researchers have found apparent success with this approach, and

report remarkable reconstruction capabilities [Sch+18; Yan+18; MJU17]. These

recovery algorithms will typically use several days to train, but once they are

trained they can recover images from measurements in mere seconds.

However, recent work have uncovered a systematic flaw in these recovery

methods, namely stability issues [Ant+19]. The authors discuss three different

kinds of instabilities in modern state-of-the-art ML-based recovery schemes:

1. Instability to adversarial attacks

2. Inability to recover unexpected details successfully

3. Instability to sampling rate and patterns

So-called Adversarial attacks regard finding a perturbation δ for an image x
such that the recovery of x works fine while the recovery of x+ δ leads to severe

recovery errors, even though x and x + δ might be nearly indistinguishable.

This is a known flaw of Deep Learning-based classifiers, where a small change

in the input image can cause the classifier to misclassify the image in often very

unexpected ways [FMF17; MFF16].

The inability to recover unexpected details may not be very surprising to

readers with a statistical background, but is still a very important form of

instability. The authors of [Ant+19] performed experiments were the text “can

u see it s” were superimposed on real MR images and fed through differentML-

based recovering schemes, and in most cases the text came out unreadable. As

these algorithms have never seen such text before, it is not very surprising that

the recovery does not work well1. However, these experiments demonstrate an

important fact: The main reason to do anMRI scan is to check for abnormalities.

If some unexpected detail, such as a tumor, can cause the reconstruction to fail,

this should be taken very seriously.

One can of course argue that this instability can easily be fixed by making

sure that any kind of abnormality is presented to the algorithm during training.

However, this will not fix the underlying problem that previously unseen

details can cause instability in the reconstruction.

The instability towards the choice of sampling pattern (i.e. how the signal

is sampled) is somewhat expected, as different sampling patterns produce

very different artifacts (see Figure 2.3). The instability towards sampling rate,

however, may seem more unintuitive. In some cases, such as for [Yan+18],

the authors of [Ant+19] report that an increase in sampling rate results in a

decrease of reconstruction capability.

1

The nature of all machine learning is to extrapolate patterns from examples, and when none of

your given examples contain a feature it is not surprising that this feature is not handled correctly

2



State-of-the-art Compressive Sensing does not exhibit these same insta-

bilities, as we have clear bounds on how large an error can amplify during

the reconstruction (see the Further reading section at page 12). The authors of

[Ant+19] also provided examples of reconstruction of perturbed inputs using

modern Compressive Sensing techniques to illustrate this fact2.

In this thesis we will focus mainly on the instability towards adversarial

attacks.

On Notation and Terminology
During the exploding interest of Machine Learning the last decade, the commu-

nity have suffered from some growing pains. As there have been a huge push

to publish new methods, in many cases being the first is more important than

making sure all the details are correct. Further, many central, important and

widely cited works are not published in traditional peer-reviewed journals, but

as conference papers, or even merely uploaded to an online preprint archive

such as arXiv.

This have led to some important problems with the Machine Learning

literature [LS18], especially to readers with a mathematical background. Most

notably:

Misuse and overloading of terminology Several terms found in ML literature

are used to mean different things than their original mathematical definition.

For example, the use of the term convolution in Convolutional Neural Networks

(see Remark 3.7 on page 22) is used to mean a correlation, and deconvolution is

used to mean transposed convolutions, or to be precise, transposed correlations (see
Footnote 11 on page 33).

Whenever such differences exist between the use of a term in ML literature,

and the actual mathematical meaning of the term we will give a remark, and

specify which of these we will continue to use.

In addition, notions with an already established term are given new names,

such as learning rate, which is used to mean the step length in an optimization

problem. Other terms can be used to mean two different things, such as the

word adversarial, which can mean two networks trained together in competition

(see the subsection for the DAGAN network on page 33), or the creation of

malicious attacks against a neural network (see Section 4.2).

Lack of proofs and theoretical justification Inmany papers, the authors often

omit theoretical results in favor of empirical results and showing examples.

In some cases, a proof is given, but the nature of the result and proof makes

it of little to no use for practical Machine Learning. Some examples of this

include the constant referring to the Universal Approximation Theorem (UAT)

(Theorem 3.2), which does not cover modern neural networks (see Remarks 3.4

to 3.6 on page 21), is non-constructive, and merely states that neural networks

are dense in C(S) (the space of continuous functions on a compact subset

2

Although it is worth noting that the perturbations they test against were constructed with the

deep learning models in mind.
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1. Introduction

S ⊂ Rn
)3. Another example is the paper introducing the Adam optimizer

[KB14], which gives a proof of convergence when the objective function is

convex. However, for training neural networks, the objective function is rarely

convex, thus the result does not actually prove that Adam will work well for

training neural networks.

In other cases, techniques are used with no formal proofs or theoretical

justification. Revisiting Adam, the use of momentum and rescaling in combina-

tion have no clear theoretical motivation [GBC16, Sec. 8.5.3], but seem to work

well in practice.

Mathematical mistakes Some times, mathematical mistakes or oversights

are included in published works. The most notable example is perhaps the

previously mentioned proof in [KB14], which were later shown to be wrong in

[RKK18].

Another example we found while working with this thesis is the oversight

that two of the loss functions in [Yan+18] are identically equal, even though

they are presented as different functions (see Remark 3.9 on page 35).

Our Contributions
In this thesis we will explore how recent work regarding the stability of deep

learning classification against adversarial attacks [Cis+17] can be adapted and

applied to Deep Learning Denoisers. We will introduce Parseval reconstruction

networks as a proposedmethod to reduce the instabilities ofMRI reconstruction

networkswith regards to adversarial attacks, andprovide empirical experiments

to test their effectiveness.

As [Cis+17] did not provide any code to reproduce and further develop

their findings, we have reimplemented all the necessary functionality and

released it as a free, easy-to-use software package for Python 3 and TensorFlow,

licensed under the LGPLv3 license, and available at the author’s GitHub page4

or through the Python Package Index. See Appendix B.1 for details.

The total body of code used throughout the thesis to perform computations,

experiments, generate figures and so on have been made available as a separate

GitHub repository5.

Thesis Outline
• In Chapter 2 we will define reconstruction of MR Images as Inverse

Problems, and briefly discuss how to solve them using the traditional

Compressive Sensing theory.

• Chapter 3 is an introduction to Neural Networks, and how modern

research are using them to solve MRI reconstruction.

3

Polynomials are also dense in C(S), they are however not as frequently used in machine

learning as neural networks. If the UAT were the sole reason Neural Networks are performing so

well, we should in principle be able to achieve the same results using only polynomials.

4https://github.com/mathialo/parsnet
5https://github.com/mathialo/master_code

4
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• In Chapter 4 we will look at numerical stability. We will discuss weak-

nesses in the methods from Chapter 3, particularly how the addition of

carefully picked noise can produce severe artifacts in the reconstruction.

• Chapter 5will propose Parseval reconstruction networks for recovering

undersampled MR images, heavily influenced by recent work in classi-

fication networks [Cis+17]. We will constrain each layer in the Neural

Network to be a contraction, limiting the amount an error can amplify.

• Chapter 6 contains experimental validation of the methods outlined in

Chapter 5.

• In Chapter 7 we conclude, and point to future work.

5





CHAPTER 2

Undersampled Signals

Traditional signal processing follows Shannon andNyquist’s sampling theorem.

It states that if the sampling frequency is at least twice the highest frequency

present in a signal, the signal can be recovered perfectly from samples by

interpolating with sinc functions. However, by changing the recovery method

from sinc interpolation to other techniques, we can in some circumstances

undersample the signal while still being able to fully recover it.

We begin our study of undersampled signals by formulating the problem as

an inverse problem. Let x ∈ Rn
be some image1, let A ∈ Rm×n

be a matrix repre-

senting howmeasurements are taken, and let y � Ax ∈ Rm
be measurements of

x. If m � n, there is a chance that the measurement operator A is invertible, and

we could recover the original image as x � A−1y. However, when working with

undersampled signals, we have that m � n, so A cannot possibly be invertible.

However, we would still like to recover x from y. Solving the inverse

problem amounts to constructing a mapping B : Rm → Rn
which estimates an

inverse of A, at least on a certain subset of Rm
.

One immediate idea for a solution is to use the adjoint of the measurement

operator as an estimate for the inverse. This however gives back a rather noisy

image, resulting from aliasing due to the severe undersampling. This effect is

illustrated in Figure 2.1.

In the remainder of this chapter we will present Compressive Sensing (CS)

as a general recovery scheme for undersampled signals, and briefly show how

we can apply CS to MRI reconstruction. Later, in Section 3.4, we will look at

how Deep Learning can be used to solve the same problem.

2.1 Compressive Sensing
The field of Compressive Sensing has exploded in the last decade, after the

initial publications by Candès, Tao, Romberg and Donoho [CT06; CRT06;

Don06]. CS has proven itself to be a reliable way to recover undersampled

signals, and in 2017 the United States Food and Drug Administration approved

the use of CS in commercial MRI machines [FDA17; Sie17].

1

Normally, one thinks of images as two-dimensional signals (ie, as matrices). However, for the

time being, we will consider a vector where all the columns of the original image matrix have been

stacked.

7



2. Undersampled Signals

(a) The Shepp–Logan

phantom, ie our input

signal x

(b) Sampling pattern Ω (c) Naive reconstruction:

x̃ � A∗y � A∗Ax

Figure 2.1: Reconstruction with the adjoint.

Before we introduce the main concepts in CS, the following definitions

will introduce some necessary terminology. As we will switch back and forth

between real and complex cases, we will introduce the first notions for a general

field K, which can be either R or C.

Definition 2.1. The support of a vector v ∈ Kn
is defined as the index set

of its non-zero entries, that is:

supp v � {i ∈ {1, 2, . . . , n} | vi , 0}

Throughout the thesis we will use ‖v‖
0
�

��
supp v

��
to denote the cardinality

of the support set, ie the number of non-zero entries. We will call this the

`
0
-norm, even though ‖·‖

0
is strictly speaking not a norm as it fails to comply

with the scaling property for norms. This misuse of terms is quite normal in

the CS literature.

Definition 2.2. A vector v ∈ Kn
is said to be s-sparse if it has no more than

s non-zero entries, that is if ‖v‖
0
≤ s.

To recover an undersampled signal with CS, we will assume the original

signal to be sparse. Since the main topic for this thesis is not CS, we will give

a slightly simplified introduction. At the end of this section, we will discuss

these simplifications, and point to further reading on how to circumvent them.

Given an original signal x ∈ Cn
, a measurement operator A ∈ Cm×n

, and

measurements y � Ax ∈ Cm
, we seek to reconstruct x from y. However, since

m < n the linear system

Ax � y (2.1)

is under-determined and has an infinite number of solutions. In order to pick

a solution from this solution space we will assume the original signal to be

sparse, and pick the sparsest solution to Equation (2.1). In other words, we

wish to solve the following optimization problem:

8



2.1. Compressive Sensing

min

z∈CN
‖z‖

0
subject to Az � Ax (P

0
)

However, `
0
optimization is known to be NP-hard in general2. Since this makes

(P
0
) intractable, we will solve the convex relaxation of (P

0
) instead:

min

z∈CN
‖z‖

1
subject to Az � Ax (P

1
)

Solving inverse problems by solving (P
1
) is known as Basis Pursuit (BP) [FR13,

Chapter 4].

Guaranteeing correctness of recovered signals
Guaranteeing the success of Basis Pursuit can be split into two sub-problems.

First, we must guarantee that (P
0
) has a unique solution. Second, we must

ensure that the relaxation (P
1
) also has a unique solution, and that the signal

realizing the solution to (P
1
) also realizes the solution to (P

0
).

We begin by showing when (P
0
) has unique solutions:

Theorem 2.3. If the following equality holds:{
z ∈ CN | Az � Ax, ‖z‖

0
≤ s

}
� {x}

That is, if x is the unique s-sparse solution to (P
0
), then the number of measurements

m (ie, the number of rows in A) must satisfy m ≥ 2s.

Before proving this theorem, we need the following lemma (stated as part of

Theorem 2.13 in [FR13]):

Lemma 2.4. Every s-sparse vector x is the unique s-sparse solution to (P
0
) with

y � Ax if and only if every set of 2s columns of A is linearly independent.

Proof. Assume that every s-sparse vector x is the unique s-sparse solution to

(P
0
) with y � Ax. Let v ∈ ker A be 2s-sparse, and let x and z be two s-sparse

vectors with supp x ∩ supp z � ∅ such that v � x − z. Then,

0 � Av � A(x − z) � Ax −Az ⇒ Ax � Az

and by assumption, x � z. Since x and z have disjoint supports, it follows that

x � z � 0 and that v � 0. Hence the only 2s-sparse vector in ker A is 0. Thus,
for any set S with |S | � 2s we have that the linear set of equations

ASx � 0

has a unique solution, and by the Invertible Matrix Theorem, it follows that

any selection of 2s columns of A must be linearly independent.

2

A proof of the NP-hardness of (P
0
) can be found in Section 2.3 of [FR13], and is obtained by

reducing (P
0
) to the exact cover by 3-sets problem, which is known to be NP-complete.

9



2. Undersampled Signals

Conversely, assume that every set of 2s columns of A is linearly independent.

By the Invertible Matrix Theorem we have that

ker A ∩
{
v ∈ Cn | ‖v‖

0
≤ 2s

}
� {0}

Now, let x, z be s-sparse with Ax � Az. Then, x − z is 2s-sparse, and

Ax � Az ⇒ 0 � Ax −Az � A(x − z)

and since the kernel of A does not contain any other 2s-sparse vectors than

0, we have that x � z, which establishes the uniqueness of the solution and

concludes the proof. �

Proof of Theorem 2.3. Assume that it is possible to uniquely recover any s-sparse
vector x from the knowledge of its measurement vector y � Ax. Then, by

Lemma 2.4, we have that every set of 2s columns of A must be linearly

independent. This implies that rank A ≥ 2s. From linear algebra we know

that the rank of a matrix can not be bigger that the number of rows m, hence

rank A ≤ m. Combining this, we get that

2s ≤ rank A ≤ m

which concludes the proof. �

Next up, we will show when Basis Pursuit actually solves (P
0
). We begin by

introducing the Null Space Property:

Definition 2.5. Amatrix A ∈ Km×N
is said to satisfy theNull Space Property

(NSP) relative to a set S ⊂ {1, 2, . . . ,N} if

‖vS‖1 < ‖vS‖1 for all v ∈ ker A \ {0}

It is said to satisfy theNull Space Property of order s if it satisfies the null space

property relative to any set S ⊂ {1, 2, . . . ,N} with |S | ≤ s

The following theorem and corollary shows that the NSP will be a sufficient

condition for our measurement operator in order to ensure the success of Basis

Pursuit.

Theorem 2.6 [FR13, Thm. 4.4]. Given a matrixA ∈ Km×N , every vector x ∈ KN

supported on a set S is the unique solution to (P
1
) with y � Ax if and only if A

satisfies the NSP relative to S.

Proof. We will begin by proving that if a vector x supported on S uniquely

solves (P
1
), then A satisfies the NSP relative to S.

Given an index set S, assume that every vector x ∈ KN
supported on S is

the unique solution to

min

z∈CN
‖z‖

1
subject to Az � Ax (P

1
)

10



2.1. Compressive Sensing

Since ker A is a subspace ofKN
, it is clear that for any v ∈ ker A \ {0}, the vector

vS is the unique solution to

min

z∈CN
‖z‖

1
subject to Az � AvS (2.2)

Because v ∈ ker A, we have that Av � 0, which means that A(vS + vS) � 0,
giving us that A(−vS) � AvS. Hence it is clear that −vS is also a feasible

solution to (2.2), but since vS is assumed to be the unique optimal solution

to (2.2), we get that ‖vS‖1 < ‖−vS‖1. Since ‖·‖
1
is a norm, we have that

‖−vS‖1 � |−1| ‖vS‖1 � ‖vS‖1. Thus, we arrive at the following inequality:

‖vS‖1 < ‖vS‖1

This establishes the NSP for A, relative to S.
To prove the other implication, assume first that theNSP holds forA, relative

to a given set S. Let x be a vector in KN
supported on S. Let z ∈ KN

be a vector

that satisfies Ax � Az, and assume that x , z. Our goal will be to show that

‖z‖
1
must be strictly bigger than ‖x‖

1
, which will prove the uniqueness of the

solution.

Define v � x − z. Since Ax � Az, we have that

0 � Ax −Az � A(x − z) � Av

This means that v ∈ ker A. Since x , z, we also have that v , 0. If we use the

triangle inequality of norms, as well as the definition of v, we obtain

‖x‖
1
� ‖x − zS + zS‖1 ≤ ‖x − zS‖1 + ‖zS‖1 � ‖vS‖1 + ‖zS‖1

Now, using the assumption that A satisfies the NSP relative to S we get the

next inequality

‖vS‖1 + ‖zS‖1 < ‖vS‖1 + ‖zS‖1
Using the definition of v and z again, we arrive at our final result:

‖vS‖1 + ‖zS‖1 � ‖xS − zS‖1 + ‖zS‖1 � ‖−zS‖1 + ‖zS‖1 � ‖z‖
1

This proves that ‖x‖
1
< ‖z‖

1
for any z ∈ KN

satisfying Ax � Az and x , z. This
establishes the required minimality of ‖x‖

1
, and thus the uniqueness of the

solution. �

Theorem 2.6 is not in itself a sufficient guarantee of correctness, but if we let

the set S vary, it immediately yields a more general result:

Corollary 2.7 [FR13, Thm. 4.5]. Given a matrix A ∈ Km×N , every s-sparse
vector x ∈ KN is the unique solution to (P

1
) with y � Ax if and only if A satisfies

the NSP of order s.

Before we prove this result, we will give a small remark: Corollary 2.7 shows

that if A satisfies the NSP of order s, the `
1
-minimization strategy of (P

1
) will

actually solve (P
0
) for all s-sparse vectors.

11



2. Undersampled Signals

Proof of Corollary 2.7. Assume every s-sparse vector x ∈ KN
is the unique

solution to (P
1
). Then, for every set S with |S | ≤ s we can find a vector x′ ∈ K

supported on S which is the unique solution to (P
1
). By Theorem 2.6 we then

have that A must satisfy the NSP relative to S. Since this is true for all S with

|S | ≤ s, A must satisfy the NSP of order s.
Conversely, assume that A satisfies the NSP of order s. Then, from Defi-

nition 2.5, we have that A satisfies the NSP relative to S for every set S with

|S | ≤ s. From Theorem 2.6 we have that a vector x ∈ KN
is supported on S only

if it is the unique solution to (P
1
). Since this is true for any set S with |S | ≤ s, it

is true for any s-sparse vector. �

Further reading: In this introduction, we have made some simplifying as-

sumptions which will not hold up in the real world. First, we have assumed

the signal to be uniformly sparse. That is, the non-zero entries in the signal have

been assumed to be located at any index with the same probability throughout.

Any reader familiar with sparsifying transforms, such as the discrete wavelet

transform, will know that this is not the case. Normally, we will have some

areas in the signal with a higher density of non-zero entries3. Recent work in CS

have approached this problem by introducing sparsity in levels and associated

results [Adc+17]. This is often referred to as Structured Compressive Sensing.
Second, we have assumed the signal to be sparse. However, in reality

coefficients are rather almost 0 than exactly 0. We call such vectors compressible.
Also, when working with real-valued numbers on a computer, measurement

errors are unavoidable. This poses several challenges, such as the equality

constraint in (P
1
). We can solve this issue by introducing a small error term

ε > 0, and defining the following revision of (P
1
):

min

z∈CN
‖z‖

1
subject to‖Az −Ax‖ ≤ ε (P

1,ε)

Extensions to the NSP exist, such as the Robust NSP [FR13, Def. 4.17] which

gives an upper bound on the reconstruction error when compressibility and

measurement errors are taken into account [FR13, Thm. 4.19].

Modern, state-of-the-art CS also sometimes employs regularization tech-

niques like Total (Generalized) Variation, alone or in combination with a

sparsifying transform [Ant+19; MM16]. Further, in some cases a Shearlet or
Curvelet transform is preferred over a Wavelet transform4 as a sparsifying

transform [Ant+19].

Current challenges with compressive sensing
The main challenge with modern state-of-the-art CS are long runtimes. The

optimization problem in CS is often very large, consisting of a huge amount

of variables. Running 1000 iterations of FISTA, a popular algorithm for `
1

minimization [BT09], on a 2048×2048 image using a modern desktop computer

will often take around half an hour to complete.

3

see Figures 2.2b and 2.2c for an example, note how the upper left corner contains vastly more

information than any other part of the image

4

The amalgamation of these techniques is often called X-lets.
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2.2. Measurement operators

(a) Original image of Lily (b)Result of a 1-level DWT (c) Result of a 2-level DWT

Figure 2.2: Example of a Haar DWT

However, it is worth noting that many of the modern implementations

of these algorithms are sequential, and written for CPUs. Since many of

the computations involved are easily parallelizable and well-suited for GPU

computations (such as matrix-vector multiplications, FFTs, etc), one could

expect large speedups by implementing these algorithms in a different way.

In fact, a recent implementation of FISTA using TensorFlow brought the

computation time down to around 90 seconds when executing on a GPU

[Hau19].

2.2 Measurement operators
In this section we will study our measurement operators in more detail.

First, recall that MRI measurements are in the Fourier domain. That is, if we

performed full sampling, our measurement operator A would simply be the

n-point Fourier matrix Fn (that is, the shift of coordinates matrix from the

n-dimensional standard basis to the n-dimensional Fourier basis).

However, we wish to obtain fewer samples. Let Ω be a set of the indices for

the samples to include. Thus, the number of samples m is the size of this set:

m � |Ω|

Let PΩ : Kn → Km
be the projection to the subspace indexed by Ω. Thus, a

possible measurement operator becomes:

A � PΩFn (2.3)

This is the measurement operator typically used in Deep Learning-based

reconstruction.

However, since Compressive Sensing assumes the signal to be sparse, the

measurement operator in Equation (2.3) is not adequate since the Fourier

spectrum of a natural image is rarely sparse.

We circumvent this issue by applying a sparsifying transform. A sparsifying

transformΨ is an invertible operator that maps a non-sparse signal x to sparse

representation Ψx. One possible sparsifying transform is a Discrete Wavelet
Transform (DWT).

13



2. Undersampled Signals

(a) Uniform (b) Gaussian (c) Radial (d) Level

Figure 2.3: Different sampling patterns (top) and the reconstruction of the

Shepp–Logan phantom (from Figure 2.1a) using the respective adjoint operators

(bottom). The sampling rate is fixed at 20%

The key idea in a wavelet transform is to take some signal, expressed in a

high resolution wavelet basis, and express it in terms of a lower resolution basis,

and a detail basis. A wavelet is defined by a mother wavelet ψ and a scaling

function φ. By shifting and scaling these functions we obtain a basis for the

low resolution wavelet space (from the φ’s) and the detail space (from the ψ’s).
A Discrete Wavelet Transform is then a change of coordinates from the higher

resolution wavelet basis, to a lower resolution and detail basis. An example of

a DWT is found in Figure 2.2. For a complete introduction to wavelets we refer

to Chapter 4 and onwards in [Rya19].

Since wavelet coefficients are often sparse (or at least very compressible),

we can adapt CS to MRI reconstruction by recovering the wavelet coefficients

of the Fourier measurements. Hence, the following operator is a suitable

measurement operator for CS:

A � PΩFnΨ
−1

(2.4)

Sampling patterns
How we distribute the samples in Ω can have a huge impact on the ability of

our reconstruction scheme to successfully recover the signal.

Some popular choices of sampling patterns, and the reconstruction using

their respective adjoints, are depicted in Figure 2.3. Perhaps the easiest sampling

pattern to conceive of is uniform sampling:

• Uniform sampling draws samples randomly from a uniform distribution.

Meaning the indices (i , j) to include are drawn from two independent

uniform distributions until a desired sampling rate is achieved.

14



2.2. Measurement operators

However, since most of the energy in the signal is often centered around the

origin (when viewed in the frequency domain), we wish to include more

samples from around the origin. Several sampling schemes achieve this:

• Gaussian sampling draws samples randomly, but from a truncated

normal distribution rather than a uniform one. The distribution is

centered around the origin, and has variance σ2

. This variance acts as a

spread parameter, determining how center-heavy the sampling pattern

should be. Indices to include are drawn from this distribution until a

desired sampling rate is achieved. It is also common to add a ball around

the origin where every sample is included.

• Radial sampling draws equiangular lines from the origin to the edges.

The number and thickness of these lines determine the sampling rate.

• Level sampling performs uniform sampling with increasing sampling

rates closer to the origin. The innermost level typically has a sampling

rate of 1.
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CHAPTER 3

Neural Networks

The use of Neural Networks in machine learning can be tracked back several

decades, however the last decade shows a huge increase in their popularity.

The success of AlexNet [KSH12] on the 2012 ImageNet Large Scale Visual

Recognition Challenge1 in many ways marks the beginning of the neural

network revolution. AlexNet won by a clear margin, with an error rate more

than 10% lower than the closest runner-up. Since AlexNet, all winners of the

ImageNet Challenge have been variations of a Neural Network, with current

error rates under 5% [He+16; Sze+17].

The success of Neural Networks as one-size-fits-all classifiers has led

researchers to adapt them to other problems than visual recognition. In

this thesis, we will mainly focus on the use of Neural Networks to reconstruct

undersampled images. To do this, several different approaches have been

proposed [MJU17], however the denoising approach of [Sch+18; Yan+18] seems

to be most common for MRI reconstruction. We will explore this in detail in

Section 3.4.

We begin this chapter by giving a general introduction to supervised

learning, the framework for which Neural Networks are most often used.

We will then present Neural Networks, and give details on how to construct

them in practice. We finish the chapter with an introduction on how to adapt

Neural Networks to inverse problems for MRI reconstruction, and present two

contemporary networks [Sch+18; Yan+18].

3.1 Supervised Learning
Before we introduce neural networks properly, we will give a brief introduction

to general supervised learning. Given a set of data tuples

{(
xi , yi

)}n
i�1

, usually

referred to as the training data, the main assumption in supervised learning is

that there exists some mapping F such that

yi � F(xi) + εi for all i ∈ {1, 2, . . . , n} (3.1)

where εi
i.i.d.∼ N(0, σ2). The goal of supervised learning algorithms is to find an

approximator F̂ for this mapping. Given a new, previously unseen input x, we

can predict what the output will be using this approximator:

ŷ � F̂(x) ([ISL, Eq. (2.2)])

1

A competition for software to classify more several million images of 1000 different objects.
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3. Neural Networks

We often call F̂ a model and ŷ a prediction.
Twobig applications for supervised learning are regression and classification.

In regression, x and y are both continuous variables, often some vectors in

Rn
or Cn

2. In classification, the input x is often some vector, but the output y
(usually called the label of x in this case) is categorical. I.e., the output is some

element in a finite set of known possibilities.

Inverse Problems as Regression
As a little tangent at the end of the section, we will look at how we can use the

statistical framework of supervised learning to solve inverse problems directly.

Given a set of training data, {xi}
n
i�1

we can create the expected output by

applying the measurement operator A. Thus our full training set becomes

{(Axi , xi)}
n
i�1

, or by defining yi � Axi , we get {(yi , xi)}
n
i�1

. Note that the original

signal x now plays the role of the output of the learning scheme, previously

denoted y, and vice versa for y. The model F̂ will in this case be fitted to act as

an inverse of A on the given training data.

Some researchers have found success using this approach on reconstructing

undersampled MRI images [Zhu+18]. Recent work have however shown

[Zhu+18] to suffer from major instabilities [Ant+19]. The denoising approach

described in Section 3.4 remain the most used [MJU17], and will be the main

focus of this thesis.

3.2 Neural Networks
The study of neural networks can be traced back several decades, but has

gained popular ground during the last decade after some enormous success

stories, especially on the image classification problem. Neural networks are

a family of functions known to be good at approximating arbitrary functions.

Contrary to many other classical approaches, neural networks do not place any

assumptions on F, and are thus well suited as a one-size-fits-all approximator.

Giving a formal definition of Neural Networks turns out to be very difficult,

as it is often not done by the community. Already in 1999, mathematician

Allan Pinkus describes the difficulty of giving a definition that includes all

contemporary Neural Networks [Pin99]. We will, however, give a definition,

which we will later refine when necessary:

Definition 3.1. Let L,N
0
, . . . ,NL ∈ N, let Wl : RNl−1 → RNl

for l � 1, . . . , L
be affine maps. Let ρ

1
, . . . , ρL : R → R be some non-linear, differentiable

functions, and let ρ
1
. . . ρL be the same functions acting element-wise on

vectors. A map Φ : RN
0 → RNL

given by

Φ(x) � ρL(WL(ρL−1
(WL−1

(· · · ρ
1
(W

1
(x)) · · · )))) (3.2)

is called a Neural Network (NN).

2

All though in many cases, but not in ours, the output y is a singe number and not a vector.
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Figure 3.1: Different choices of activation functions. From left to right: Rectified

Linear Unit (ReLU), Leaky ReLU with slope 0.2 (LReLU
0.2), hyperbolic tangent

(tanh) and sigmoid (σ).

We often refer to the ρl-s as activation functions or non-linearities, and the

Wl-s as layers3 of the network. The total specification of the number of layers,

the size of each layer, the choice of activation functions and so on is referred to

as the architecture of the network.

Typically, the number of layers varies somewhere between 20 and 50 [SZ14;

He+15], with some extreme edge cases [He+16], and is referred to as the depth
of the network. Using deep neural networks to solve the supervised learning

problem is often dubbed Deep Learning (DL).

Some popular choices for non-linearities are

ReLU(x) �
{

x if x > 0

0 otherwise

LReLUα(x) �
{

x if x > 0

αx otherwise

tanh(x) � e2x − 1

e2x
+ 1

σ(x) � 1

1 + e−x

(3.3)

Plots of these functions are found in Figure 3.1. The Rectified Linear Unit

(ReLU) and its variations are by far the most used in state-of-the-art Deep

Learning.

To simplify notation, we refer the output of the non-linearities as activations,
and introduce the notation al for the activations at layer l. Thus, we can rewrite

Equation (3.2) as

a
1

� ρ
1
(W

1
(x))

a
2

� ρ
2
(W

2
(a

1
))

a
3

� ρ
3
(W

3
(a

2
))

...
aL � ρL(WL(aL−1

))
Φ(x) � aL

(3.4)

3

This distinction between layers and non-linearities is not always found in the literature. Some

include the non-linearity as a part of the layer, so that ρl(Wl(·)) is referred to as a layer. In this thesis

however, we will separate the non-linearity from the layer and only refer to the affine mapping.
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The choice of activation function is important for the performance and

training of the neural network. Some activation functions, such as the sigmoid

and the hyperbolic tangent, have the problem of vanishing gradients. I.e., if the
input value is too large or too small, the derivative (important for training, see

Section 3.3) will be almost 0.

Even though neural networks are wildly used in machine learning, the

rigorous study into the mathematics of contemporary Deep Learning is some-

what lacking [LS18]. Some results exist, however, most notably the Universal

Approximation Theorem (UAT), introduced in [Cyb89; Hor91].

The UAT as originally stated in [Cyb89] covers sigmoidal activation functions,

which are functions f that satisfies lim

x→∞
f (x) � 1 and lim

x→−∞
f (x) � 0. Extensions

to the UAT for non-sigmoidal cases have been proven later [Pin99; SM17], we

will however cover the UAT as originally stated.

Theorem 3.2 (Universal Approximation Theorem). Let ρ : R → R be a
bounded, measurable, sigmoidal function. Let S ⊂ Rn be a compact set and let
C(S) denote the vector space of continuous functions on S.

Then for any f ∈ C(S) and any ε > 0, there exists a set of parameters N ∈ N,
v

1
, . . . , vN ∈ R, w1

, . . . ,wN ∈ R
n , b

1
, . . . , bN ∈ R such that f : Rn → R defined

as

f (x) �
N∑

i�1

viρ(w
T
i x + bi) (3.5)

satisfies
‖ f (x) − g(x)‖ < ε

for all x ∈ S. In other words, dense neural networks with one hidden layer are dense
in C(S)

Before proving the theorem, we must introduce the notion of discriminatory
functions. First, let M(S) be the set of signed Borel measures on S.

Definition 3.3. A function ρ is discriminatory if for a measure µ ∈ M(S),
we have that ∫

S
ρ(wTx + b)dµ(x) � 0 for all w ∈ Rn , b ∈ R

implies that µ � 0.

Proof of Theorem 3.2 (as given in [Cyb89]). Let F ⊂ C(S) be the space of func-

tions on the form given in Equation (3.5). We must show that the closure F of

F is C(S).
Assume for contradiction that F , C(S), that is F is a closed proper

subspace of C(S). Then, by the Hahn–Banach theorem [MW13, Thm. 14.1],

there exists a bounded linear functional L on C(S) such that L , 0, but

L(F ) � L(F ) � 0.
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By the Riesz Representation Theorem [MW13, Thm. 13.15], L can be ex-

pressed as

L(h) �
∫
S

h(x)dµ(x) for all h ∈ C(S)

for some µ ∈ M(S). Particularly, since ρ(wTx + b) ∈ F for all w ∈ Rn , b ∈ R,
we have that ∫

S
ρ(wTx + b)dµ(x) � 0

and since all bounded, measurable and sigmoidal functions are discriminatory

[Cyb89, Lemma 1] this implies that µ � 0, which in turn implies that L � 0

which is a contradiction. Thus, the closure F � C(S) which concludes the

proof. �

This result provides some theoretical justification for the success of neural

networks as universal approximators. However, we will give a couple of

remarks to the UAT as originally presented:

Remark 3.4. Theorem 3.2 covers single-layer dense neural networks. However,

in practice we often work with much deeper nets, and with convolutional layers

instead of dense layers. The importance of depth were mentioned in [KSH12],

but not formally proven.

Remark 3.5. The most used activation function by far is the Rectified Linear

Unit (ReLU), which is not a bounded function. Recent work has shown that the

UAT can be extended to certain non-bounded cases, such as the ReLU [SM17].

Remark 3.6. Theorem 3.2 is non-constructive. It only tells us that a certain

network exists, but does not relate to learning.

Convolutional layers
Modern networks usually apply other kinds of layers in addition to, or instead

of, the dense layers described in Definition 3.1. Most notable are convolutional

layers. These are achieved by restricting the matrix multiplication in the affine

maps Wl to be a cascade of convolutions, as such:

Dense layers: Wl(al−1
) � Wlal−1

+ bl (3.6)

Convolutional layers: Wl(al−1
) � wl ∗ al−1

+ bl (3.7)

Networks applying convolutional layers are called Convolutional Neural Net-

works (CNNs). Note that since convolutions can be written as linear operators

(see page 44), convolutional layers are still affine mappings and fit well with

Definition 3.1.

To keep our theory closely aligned with practical implementations, we

will treat dimensionality in the same way as TensorFlow4. Hence, when

applying neural networks to images, we will handle dimensionality differently

for dense and convolutional layers. In dense layers, the columns of the

4

One of the most popular Deep Learning frameworks [TF].
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image matrix are stacked as a vector making the image a 1-dimensional

signal. While in convolutional layers, the dimensionality is kept, and a 2-

dimensional convolution is performed. In addition to this, natural images

often have different colors, and as hinted above we will use an array of

convolutions performed separately. We also introduce a forth dimension for

batch calculations. Thus, the input of a convolutional layer is a 4-dimensional

tensor a
in
∈ RM×m×n×c

in
(batch size, height, width, number of input channels)

and with output a
out
∈ RM×(m/sy )×(n/sx )×c

out
and the weight tensor is a 4-

dimensional tensor w ∈ Rdh×dw×c
in
×c

out
(filter height, filter width, number

of input channels, number of output channels).

We then define the convolution in convolutional layers as the following:

(w ∗ a)b ,i , j,k
2

�

∑
i′

∑
j′

∑
k

1

wi′ , j′ ,k
1
,k

2

· ab ,i+sy i′ , j+sx j′ ,k
1

(3.8)

The sx and sy are called the strides, and depict the step length in the convolution.

If sx � sy � 1 we obtain normal unstrided convolution. Note that strides > 1

decrease the signal dimensionality, for example sx � sy � 2 means that the

width and height dimensions of the output tensor is half that of the input.

Remark 3.7. The observant reader might recognize Equation (3.8) as a correla-

tion, and not a convolution. This misuse of terms is very common in the Deep

Learning literature, and we will therefore use this terminology throughout.

However, since the coefficients are learned and not set, it is actually not too

misleading to refer to the operation as a convolution. The coefficients saved in

the weights of the network will simply be the time-reversed complex-conjugate

of the actual filter being applied.

Residual blocks
We will conclude this section with a layer variant which doesn’t fit our initial

definition of Neural Networks, namely residual blocks, popularized by [He+16].

In a residual block, the original signal is fed through several layers unaltered,

in addition to the processed signal. An example of a 3-layered residual block

may look like the following:

B(a) � ρ
3
(W

3
(ρ

2
(W

2
(ρ

1
(W

1
(a))))) + a) (3.9)

Note that it is usual to add the identity before applying the final non-linearity.

Even though this type of block doesn’t fit our initial definition of Neural

Networks, we can expand Definition 3.1 to allow such blocks in addition to

dense and convolutional layers.

As networks become deeper, several problems begin to occur. When feeding

signals forward through the network, signal degradation comes into play, and

experimental results have shown that the performance of a sufficiently deep

network will decrease when adding more layers [He+16].

The motivation for residual blocks is that by passing the identity through,

the effects of degradation and vanishing gradients are reduced, allowing

deeper networks. In [He+16] the authors present a well-performing 152-layered
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input

64 64 64

+

Figure 3.2: A typical graphical representation of a 3-layered residual block

with 64-channeled convolutional layers

network for image classification, and produce experimental networks with over

1200 layers.

3.3 Training
Now that we have seen how neural networks are good candidates for approx-

imating functions, the question becomes how to set the weights and biases

in Equations (3.6) and (3.7). This is where the training data mentioned in

Section 3.1 is used.

Loss functions
First, we must define a cost or a loss function. A loss function is a measure on

how wrong a certain model F̂ is, compared to the underlying F. Of course, we

don’t know F a priori, so the loss function must approximate the difference

between F̂ and F. To simplify notation, we will let θ be defined as the set of all

trainable parameters. For a neural network this will typically be:

θ � {W
1
,W

2
, . . . ,WL , b1

, b
2
, . . . , bL}

We will sometimes simply refer to θ as the parameters of the network, and use

the term hyper-parameters to refer to fixed, untrainable parameters. We write F̂θ
to emphasize that this model uses θ as its parameters.

A popular choice of loss is the Mean Squared Error (MSE), also known as

the mean `
2
-error. Given training data {(xi , yi)}

n
i�1

, a set of parameters θ and a

proposed model F̂θ, the MSE loss of those parameters is defined as:

L(θ | x
1
, . . . , xn , y1

, . . . , yn) �
1

n

n∑
i�1

‖F̂θ(xi) − yi ‖
2

2
(3.10)

Sometimes it is more convenient to define the loss as a function of the model

directly:

L(F̂θ | x1
, . . . , xn , y1

, . . . , yn) �
1

n

n∑
i�1

‖F̂θ(xi) − yi ‖
2

2
(3.11)

The difference only being the notation. Throughout the thesis we will use both

definitions, however it will always be clear from context which definition that

is used.
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(a) Base image (b) Translation shifted (c) Add ε � 0.32 to every

pixel

(d) Noisy (e)Another image of a bird (f)An entirely different im-

age

Image (a) (b) (c) (d) (e) (f)

`
2
distance to (a) 0 215.04 204.80 167.26 216.44 193.15

Figure 3.3: Problems with `
2
loss as a measure of perceptual likeness. Images

(b) through (f) all have similar `
2
distances to (a). The images were scaled so

every color value is in the unit interval and cropped to 350× 400 pixels. Images

from the ImageNet Large Scale Visual Recognition Challenge dataset [Rus+15].

Even though the MSE is widely used, it is worth noting that MSE is not a

good measure on perceptual likeness. Two images may look very much alike,

and still have a large `
2
distance between them. For example, given an M × N

image x and a small value ε, the image x + ε1 may look like the same image –

only a tiny bit brighter – while the `
2
distance between them may be very large

depending on the size of the image:

‖x − (x + ε1)‖
2
� ε‖1‖

2
� ε
√

MN

Other issues include shifts in translation or rotation, which exhibits the same

behaviorwhere images that look alikemay have large `
2
distances, see Figure 3.3.

In particular, note that Figures 3.3a and 3.3f are closer in an `
2
sense than

Figures 3.3a and 3.3c

When a loss function is picked, we can create a neural network based on

the training data. First, fix an architecture, then pick the network parameters

minimizing the loss over the dataset. That is, let the network parameters be the

solution to the following minimization problem:

θ � arg min

θ′
L(θ′ | x

1
, . . . , xn , y1

, . . . , yn) (3.12)
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3.3. Training

However, the loss as a function of the network parameters is a often highly

non-convex function. Thus, solving Equation (3.12), even for relatively small

networks, is highly intractable. Inmost caseswemust settle for a localminimum

instead of the optimal values.

Back-propagation and optimization
Before we discuss different optimization algorithms suited for finding a local

minimum of Equation (3.12), we will show how to find the gradient of the loss

function with respect to the network parameters.

To simplify notation, we will only consider finding the gradient given a

single data point, although the method is easily generalizable to using several

data points as well. That is, we will consider the slightly simplified case of

deriving an expression for

∇θL(θ | x, y) � ∇θ‖Φθ(x) − y‖2
2

Note that since

∇θ‖Φθ(x) − y‖2
2
� 2(Φθ(x) − y)T∇θΦθ(x)

the real challenge is to differentiate the neural network with respect to the

parameters θ.

Because of the composite nature of Neural Networks (recall Equation (3.2)),

the chain rule for differentiation is a natural choice of differentiation technique

when differentiating Neural Networks. In order to further simplify notation,

we will use the activation notation from Equation (3.4). By applying the chain

rule to a Neural Network Φθ, we get

∇θΦθ(x) � ∇θaL

� ∇θ(ρL(WL(aL−1
)))

� ρ′L(WL(aL−1
)) ·WL · ∇θaL−1

We continue with the same approach on aL−1
:

� ρ′L(WL(aL−1
)) ·WL · ∇θ(ρL−1

(WL−1
(aL−2

)))
� ρ′L(WL(aL−1

)) ·WL · ρ
′
L−1
(WL−1

(aL−2
)) ·WL−1

· ∇θaL−2

We continue applying the chain rule in this recursive fashion until the base

case of a
1
� ρ

1
(W

1
(x)). For each recursive step we find the derivative of the

network with respect to the weights of the next layer.

In Deep Learning literature, this is often called Back-propagation, coined

in [RHW86]. For a further explanation of Back-propagation with details on

how the algorithm is implemented and typically interpreted by the machine

learning community we refer to Section 6.5 of [GBC16].

The gradient of a function tells us in which direction the function grows

most rapidly, hence the negative of the gradient tells us in which direction

the function declines most rapidly. This is the main principle behind Gradient
Descent5. This algorithm uses the entire dataset to compute the gradient of

5

Also known as Steepest Descent in some mathematics literature.
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3. Neural Networks

Algorithm 3.1 Stochastic Gradient Descent [GBC16, Alg. 8.1]

Input: Initial parameters θ, step length η, number of epochs E, batch size M,

training set {(xi , yi)}
N
i�1

.

1. For e � 1, 2, . . . , E, do

1.1 Create a new permutation p �
{

p
1
, p

2
, . . . , pN

}
of {1, 2, . . . ,N}

1.2 For n � 0, 1, . . . , dN/Me − 1, do

1.2.1 Sample M examples from shuffled data sets,

{
(xp j

, yp j
)
}(n+1)M

j�nM

1.2.2 Compute gradient of loss using sampled mini-batch,

g← ∇L(θ | xpnM
, . . . , xp(n+1)M

, ypnM
, . . . , yp(n+1)M

)
1.2.3 Apply update to parameters, θ← θ − ηg

Output: Trained parameters θ

the network w.r.t. the parameters. Then, it subtracts a scaled version of the

gradient from all the parameters. The scaling factor is often called the step
length in mathematical optimization literature, or learning rate in Deep Learning

literature.

This is however very ineffective in practice as using the entire dataset

for every parameter update will make the parameter updates very costly to

compute. Thus, pure Gradient Descent is rarely used in practice.

Instead, we will separate the training data into several batches and use one

batch to compute one iteration. This means that the gradient computed will not

be the true gradient of the loss function, but an approximation. However, since

every iteration will be much cheaper to compute, the overall training speed will

increase. When all the batches have been used once, we shuffle the training set

and draw new batches. One cycle through the dataset in this fashion is referred

to as an epoch. This algorithm is called Stochastic Gradient Descent (SGD), and

is presented in detail in Algorithm 3.1.

We conclude this section on optimization with a brief introduction of the

Adam (AdaptiveMoments) optimizer. Like with SGD, we separate the training

set into batches. In addition, Adam enjoys two important features: momentum

and adaptive step lengths. Using momentum is a technique developed to

increase training speed on surfaces with high curvature [GBC16, Sec. 8.3.2].

As an example, let us consider adding momentum to SGD. We introduce a

momentum hyper-parameter α ∈ [0, 1), and replace step 1.2.3 in Algorithm 3.1

with

1.2.3a Compute update: ∆θ← α∆θ − ηg

1.2.3b Apply update: θ← θ + ∆θ

This way, subsequent iterations will not substantially differ in direction, which

makes the algorithm is less vulnerable to rapidly changing gradients. The term

momentum is an analogy from physics, where energy is needed to change

the trajectory of an object in motion [GBC16, p. 288]. Adam uses rescaling of
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3.3. Training

Algorithm 3.2 Adam [GBC16, Alg 8.7]

Input: Initial parameters θ, step length η, decay rates α
1
, α

2
∈ [0, 1), small

constant ε, number of epochs E, batch size M, training set {(xi , yi)}
N
i�1

.

1. Initialize time step t ← 0

2. Initialize 1st and 2nd moment variables m
1
← 0, m

2
← 0

3. For e � 1, 2, . . . , E, do

3.1 Create a new permutation p �
{

p
1
, p

2
, . . . , pN

}
of {1, 2, . . . ,N}

3.2 For n � 1, 2, . . . ,N/M, do

3.2.1 Sample M examples from shuffled data sets,

{
(xp j

, yp j
)
}(n+1)M

j�nM

3.2.2 Compute gradient of loss using sampled mini-batch,

g← ∇L(θ | xpnM
, . . . , xp(n+1)M

, ypnM
, . . . , yp(n+1)M

)
3.2.3 Update time step, t ← t + 1

3.2.4 Update biased first moment estimate,

m
1
← α

1
m

1
+ (1 − α

1
)g

3.2.5 Update biased second moment estimate,

m
2
← α

2
m

2
+ (1 − α

2
)g2

3.2.6 Correct bias in first moment estimate, m
1
← m

1
/(1 − αt

1
)

3.2.7 Correct bias in first moment estimate, m
2
← m

2
/(1 − αt

2
)

3.2.8 Compute update, ∆θ � −ηm
1
/(√m

2
+ ε)

3.2.9 Apply update to parameters, θ← θ + ∆θ

Output: Trained parameters θ

the gradient in combination with momentum, which has no clear theoretical

justification but seems to work well in practice [GBC16, Sec. 8.5.3].

Second, Adam uses adaptive step lengths. The motivation for this technique

is that if we set the step length in SGD to be too small, the training will be

unnecessarily slow. If we set it to high, we will not be able to fine-tune the

parameters sufficiently. One possible solution is to periodically reduce the step

length η in Algorithm 3.1. The Adam optimizer automates this process. The

full algorithm is presented in Algorithm 3.2.

For further reading on other optimization algorithms we refer to Sections

8.3, 8.5 and 8.6 of [GBC16].

Initialization
Both Algorithms 3.1 and 3.2 require initial parameters. In this section we

will briefly mention some of the most used initialization methods for neural

networks.

Xavier [GB10] and He [He+15] initialization both follow the same principle.

They draw the entries of the weight matrices from a uniform or normal

distribution with parameters chosen so that the scale of the gradients are
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(a) Noisy measurements along with the

true underlying model.
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(b) An extreme case of overfitting using

cubic splines. See page 81 for details.

Figure 3.4: Example of overfitting.

similar throughout the layers. During the derivation of the expressions for

the distribution parameters, [GB10] assumes linear activation, while [He+15]

assumes ReLU activation. These techniques are the most common in state-of-

the-art Deep Learning.

We will also include orthogonal initialization [SMG13], even though it

is not as widely used as He or Xavier, as it will be useful when applying

Parseval constraints in Chapters 5 and 6. Orthogonal initialization gives the

weight matrices orthogonal rows or columns, depending on whether the matrix

have more rows than columns or more columns than rows. Generating a

random m × n matrix with orthogonal rows can be done by generating a square

n × n matrix with entries drawn from a normal distribution, performing a

QR-factorization and drawing the first m rows of the Q matrix.

Overfitting
In addition to the lack of convexity, overfitting poses a real challenge when

training neural networks. The universality of neural networks is a double-edged

sword. While able to fit any function, we risk learning the local noise as well.

An example of overfitting can be seen in Figure 3.4.

Recall the underlying assumption for supervised learning (Equation (3.1)).

Since we only know the value of yi , there is no way of distinguishing the

contribution of the underlying model from the noise [ISL, p. 22].

There are a few techniques available for detecting and combating overfitting.

The most important one is to separate the available data into several datasets.

One set will be used for training, one for validation and one for testing [ISL,

Section 2.2]. When solving Equation (3.12) (or an estimate of it), we will use

the training set to compute each iteration of the optimization algorithm, but

after each step (or every nth step if one wish to save some computation time)

we will compute the cost with regards to the validation set as well. The main

idea is that an overfitted model will have low training cost, but high validation

cost since it is trained on the noise from the training set. Hence we will look for

the moment where these two values start to diverge [ISL, p. 32]. The test set it
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3.4. Deep Learning Denoising

not used until the very end to give a fair indication on the real-life performance

for the model on previously unseen data.

To further combat overfitting and not merely detecting it, we must limit

the generality of the approximation method in some way. Consider again the

example in Figure 3.4. The model in Figure 3.4b was created minimizing the

MSE between the spline and the measurements. If we wanted to achieve a

smoother spline, we could add some regularization term to this loss function, for

example punishing large values on the spline’s derivative6. Thus, the loss for a

specific spline f would be

L( f ) � 1

n

n∑
i�1

‖ f (xi) − yi ‖
2

2︸                  ︷︷                  ︸
MSE

+ λ‖ f ′‖︸︷︷︸
Regularization

term

(3.13)

The parameter λ is often referred to as a regularization parameter. Popular

regularization terms for neural networks include the `
1
or `

2
norm of the

weight matrices.

Other techniques more tailored to neural networks exist too. Among them

are batch normalization [IS15] and dropout [Sri+14]. We will use some of them

later in Chapter 6, but we will not go into more detail on how they work. In

Chapter 6 we will also see how the Parseval constraint developed in Chapter 5

makes networks less prone to overfitting.

Data Augmentation
A dataset can be extended by creating artificial data based on the true data

and adding it to the dataset. Data augmentation refers to any process where

we create a new data point by altering an existing one in such a way that

we do not change the nature of the data point, that is, the relation between

the measured value and the expected output (Equation (3.1)) do not change

[GBC16, Section 7.4].

Examples of data augmentation on MR images includes rotating the image,

flipping the image along one or more axes, zooming in or introducing artificial

noise. These alterations can be done beforehand, or on the fly during training.

3.4 Deep Learning Denoising
We begin our study of Deep Learning Denoising by showing how we can use

Neural Networks to remove noise from an image.

Denoising
If we let the output dimensions of the network be the same as the input

dimensions, we can train the network to detect and remove noise.

6

We are ignoring spline-specific methods such as shrinking the spline space by e.g. ma-

nipulating the knot vector or lowering the degree as they have no direct equivalent for neural

networks.
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Input x

16

3 × 3

32

3 × 3

32

3 × 3

16

3 × 3

1

3 × 3

+ Output D(x)ReLU ReLU ReLU ReLU tanh

Figure 3.5: Architecture of the denoiser in Example 3.8.

Let x be some image, and let x̃ be a noisy version of the same image. Let Φ

be some Neural Network. We can create a denoiser D by summing the output

of the Neural Network with the original image as such:

D(x̃) � x̃ +Φ(x̃) (3.14)

We will then train the network Φ so that the difference between D(x̃) and
x is small. In other words, we train the network to output the negative of

the noise in the image7. Ideally, we would like to minimize the perceptual

difference between D(x̃) and x. However, as discussed in Section 3.3, measuring

perceptual likeness is very difficult. It is very common to use the MSE as loss

[MJU17, p. 91].

To frame denoising as a supervised learning problem, our true model F is a

function that takes in a noisy image x̃ � x+ ε and returns the original, noiseless

image x. The denoiser D acts as the approximation model F̂.

Example 3.8. To illustrate how a CNN can be used to remove noise, we will

build a network to remove synthetic Gaussian noise from images. In our

example we will use the MNIST dataset of handwritten numbers [LeC+98],

consisting of 60 000 black and white 28 × 28 images, with pixel values in [0, 1].
In order to speed up training time, we will consider a relatively small model

of 5 layers. The layers consist of 16, 32, 32, 16 and 1 convolutions with 3 × 3

kernels. We use ReLU activation, except for in the last layer which uses tanh

activation to allow negative output, and to ensure that the output is in [−1, 1].
The output of the network is then added to the original image as shown in

Equation (3.14). The total architecture of our denoiser is shown in Figure 3.5.

As a loss function we opted for the MSE between the original image and the

result from the denoiser.

During training, we separated the dataset into batches of 100 images. For

each batch we created noisy versions of the images by adding a random variable

to each pixel of every image. The noise was drawn i.i.d. from N(0, 0.1)We

trained the network using the Adam optimizer for 200 epochs, resulting in a

total of 12 000 iterations.

The effectiveness of the resulting denoiser is shown in Figure 3.6. The

images used in this test are from an independent test set of images, not used in

the training. ♣

7

Some define the denoiser as D(x̃) � x̃−Φ(x̃) instead, and let the network learn the actual noise.

However, most of the literature concerning MRI reconstruction follows the setup in Equation (3.14)
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3.4. Deep Learning Denoising

Figure 3.6: Denoising on generated Gaussian noise using the CNN described in

Example 3.8 and Figure 3.5. Top: original images, unseen by the denoiser during

training,Middle: images with Gaussian noise, Bottom: result of denoising.

MRI Reconstruction Using Deep Learning Denoising
We will now shift our focus from general neural networks and denoising to our

specific application of MRI reconstruction.

Recall from the intro of Chapter 2 that one can use the adjoint of the

measurement operator as a crude estimate for the inverse to create a noisy

image, but usually with the details present (except for the case of uniform

sampling). Thus, for some measurements y we find the noisy reconstruction x̃
as

x̃ � A∗y � A∗Ax � F∗nP∗ΩPΩFnx

Note that F∗n � F−1

n since Fn is unitary, and that P∗ΩPΩ is given as

(P∗ΩPΩy)i �
{

yi if i ∈ Ω
0 otherwise

So in our synthetic experiments, we find x̃ from a training image x by taking

the DFT of x, zeroing out all the indices not contained in the sampling pattern

Ω, and taking the IDFT.

SinceMRImachinesmeasure complex signals, the image x, and by extension

x̃, will be complex valued. Further, since we cannot guarantee our sampling

pattern to be symmetric around the origin, we could still have imaginary parts

in x̃ even though x was real. Thus, our denoising networks must take complex

inputs. Since the support for complex numbers in many neural network

frameworks is rather limited, we will some times interpret these images as

two-channeled real-valued signals instead of single-channeled complex-valued

signals.

Case Study: DeepMRINet
Introduced in [Sch+18], the DeepMRINet makes two important contributions

to the field. Namely, using a cascade of CNNs to de-alias the image instead of a

singe CNN, and the introduction of the Data Consistency layer (DC).

The idea behind the DC layer is that we know the true value for the

measurements included in our sampling pattern Ω, and we only need to
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Figure 3.7: The DeepMRINet architecture.

reconstruct the unknown frequencies. Hence, we will include a layer in

our architecture that will pull back the values for the known indices to the

corresponding frequency by performing a convex combination between the

two. Thus, for an input a, the DC layer becomes

DCλ(a) � IDFT(gλ(DFT(a) | y,Ω)) (3.15)

Where DFT and IDFT denotes the Discrete Fourier Transform and the Inverse

Discrete Fourier Transform respectively, and gλ is given as

gλ(z | y,Ω) �
{

zk if k < Ω
zk+λyk

1+λ if k ∈ Ω (3.16)

Here, z depicts the reconstructed image in the frequency domain, and y depicts

the measurements as obtained by the sampling operator A. The λ is interpreted

as the amount we pull back the reconstructed measurements to the original. It

can be set in one of two ways. Either as a parameter of the network, meaning

a variable the optimization algorithm can change during training, or as a

hyper-parameter, meaning a set variable that cannot change. The original

paper [Sch+18] does not discuss the choice of λ8. When implementing the

DeepMRINet in Chapters 4 and 6, we will treat λ as a hyper-parameter, and

include a possibility for a different λ for each DC layer.

The full architecture of the DeepMRINet is found in Figure 3.7. The total

network as described in [Sch+18] consists of 5 denoising CNNs following the

residual setup in Equation (3.14), interlaced with DC layers. Each CNN consists

of 5 convolutional layers, each performing 64 convolutions with 3 × 3-filters, all

of them followed byReLUs. The input and output of each CNN is a 2-channeled

image, where the first channel depicts the real part and the second channel

depicts the imaginary part of the image.

The original DeepMRINet were trained on the dataset from [Cab+14]. It

consists of 30 images of 10 patients9 yielding a total of 300 images. From these

8

However, by examining the published code at the author’s GitHub page it is clear that λ is

chosen to be∞
9

The original dataset really had only one complete short-axis cardiac cine scan per patient,

which was later split into layers, yielding 30 individual 2D images.

32



3.4. Deep Learning Denoising

(a) 17% (b) 33%

Figure 3.8: Example sampling patterns used in [Sch+18].

fully-sampled images, synthetic MRI measurements were made by Fourier

transforming the images and subsampling the resulting frequencies. The

sampling patterns were created by randomly selecting rows from the Fourier

spectrum with decreasing probability further away from the origin. The

sampling patterns were redrawn during training. An example sampling

pattern is shown in Figure 3.8.

Due to the limited amount of training data, different rigid transformations

were used as data augmentation. The datasetwas not split into a dedicated train-

ing, validation and test set. Instead, the authors used 2-fold cross validation10

during training to synthesize a test loss.

The authors of [Sch+18] provides example recoveries and compare their

method to a combination of Compressive Sensing and Dictionary Learning.

An example recovery of the original DeepMRINet is shown in Figures 4.2a

and 4.2b.

Because of the remarkable performance reported in [Sch+18], the rest of

this thesis will focus mainly on the DeepMRINet. However, the techniques

developed in Chapter 5 can be applied to any Neural Network.

Case Study: DAGAN
The Deep De-Aliasing Generative Adversarial Network (DAGAN) was in-

troduced in [Yan+18]. The structure of DAGAN is based on a Generative

Adversarial Network (GAN) where the total network is separated into a genera-
tor and a discriminator. For our purposes the generator occupies the role of the
denoiser, while the discriminator is part of the loss function. We will discuss

the loss function used in DAGAN later.

The architecture of the generator is largely based on that of the U-Net

[RFB15]. This architecture is characterized by a series of strided convolutional

layers in the first half of the network, and strided transposed convolutions11, thus
ending up with the same height and width dimensions in the first and last

10

For an in-depth exploration of this technique we refer to [ISL, Section 5.1].

11

Also known as upconvolutions. Several papers, including [Yan+18], refer to this as deconvolutions.
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Figure 3.9: The architecture of the generator in DAGAN.

layers. The U-net also uses so-called skip-connections. Unlike the residual blocks
outlined in Equation (3.9) where we added the identity, U-net and DAGAN

concatenates the identity in the channel-dimension. The results from layer 7 is

concatenated at the end of layer 9, as these have the same height and width.

The results from layer 6 is concatenated at the end of layer 10, and so on. These

skip-connections are shown with dashed lines in Figure 3.9.

DAGAN projects the image from Cn
to Rn

before applying the denoiser.

Thus, the input layer to DAGAN is a single-channeled gray-scale image. The

first 8 layers of the generator uses 4 × 4 convolutions with stride sx � sy � 2,

meaning the sliding window of the convolution moves 2 steps in each direction

instead of 1. Layers 1 through 8 uses the Leaky ReLU with a slope parameter

of 0.2. Layers 9 through 16 uses 4 × 4 transposed convolutions with stride

sx � sy � 2, thus undoing the downsizing resulting from the striding in the

first half. These layers uses ReLU as the non-linearity. The last layer is a

1 × 1-convolution with no strides and tanh activation, which effectively turns it

into a mapping from 64 to 1 channels, and scaling the output of the network to

be in [−1, 1].
The output of the generator is then summed with the input image as shown

in Equation (3.14), producing the final output.

The loss function used in DAGAN is a sum of four terms. For a single image

x and the measured y � Ax, the pixel loss of a proposed set of parameters θ is

defined as the normal MSE:

L
iMSE
(θ) � 1

2

‖x − Gθ(A
∗y)‖2

2
([Yan+18, Eq. (9)])

Here, Gθ refers to the generator using θ as parameters. The authors of [Yan+18]

also introduce the frequency loss:

L
fMSE
(θ) � 1

2

‖DFT(x) −DFT(Gθ(A
∗y))‖2

2
([Yan+18, Eq. (10)])

which is simply the MSE in the frequency domain. The authors also use the

first few layers of a pre-trained version of the VGG classification network [SZ14]

to construct a so-called perceptual loss:

L
VGG
(θ) � 1

2

‖ f
VGG
(x) − f

VGG
(Gθ(A

∗y)‖2
2

([Yan+18, Eq. (11)])

The idea being that if the VGG classificator predicts different labels for the

original image and the measured and reconstructed, they do not look much

However, in signal processing, a deconvolution has a very specific definition ofundoing a convolution
[Fer+10], which is not the same as applying a transposed stride.
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3.4. Deep Learning Denoising

alike. DAGAN do not use the full classificator, but rather measure the MSE

between the activations in the fourth convolutional layer.

Finally, [Yan+18] introduce the adversarial loss created by the discriminator,

which is a neural network in itself trained to predict whether a given image

is a reconstruction of an undersampled signal, or a fully sampled one. If we

can fool this discriminator to give a reconstruction of an undersampled image

a high probability of being fully sampled, that would be an indication of a

working reconstruction scheme. Thus, the adversarial loss is defined as

L
GEN
(θ) � − log(Dθ(Gθ(A

∗y))) ([Yan+18, Eq. (12)])

The total loss is then a weighted sum of the four different losses:

L
total
(θ) � αL

iMSE
(θ)+βL

fMSE
(θ)+γL

VGG
(θ)+L

GEN
(θ) ([Yan+18, Eq. (13)])

The suggested parameters in the original paper are α � 15 , β � 0.1 and

γ � 0.0025 [Yan+18, Fig. 11].

Remark 3.9. Since the discrete Fourier transform is a unitary operator, we have

that

L
fMSE
(θ) � 1

2

‖DFT(x) −DFT(Gθ(A
∗y))‖2

2

�
1

2

‖DFT(x − Gθ(A
∗y))‖2

2

�
1

2

‖x − Gθ(A
∗y)‖2

2

� L
iMSE
(θ)

Which means that the “pixel loss” and “frequency loss” are really the same, even

though [Yan+18] presents them as different.
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CHAPTER 4

Stability

In this chapter we will begin by introducing an important concept regarding

numerical stability, namely Lipschitz constants, and give some initial results

which will be useful during our derivation of Parseval networks in Chapter 5.

Later, in Section 4.2, we will introduce so-called adversarial attacks as a way to

systematically create small perturbations where modern neural networks for

MRI reconstruction will fail.

4.1 Numerical Stability
We begin our study of stability by specifying what we mean with a stable
recovery. First, we introduce the notion of Lipschitz constants.

Definition 4.1 (Lipschitz constants). Given two normed spaces (A, ‖·‖A)
and (B, ‖·‖B) and a function f : A→ B. L ∈ R is said to be a Lipschitz constant
of f if

‖ f (x) − f (y)‖B ≤ L‖x − y‖A for all x , y ∈ A

The smallest possible L to satisfy the above equation is said to be the Lipschitz
constant of f .

The Lipschitz constant of a function gives a bound of how much an error

in the input to a function can change the outcome. Consider a function

F̂ : Rm×n → Rm×n
which estimates the inverse of a measurement operator, and

let L be a Lipschitz constant of F̂. If we perturb the input image to F̂ by a small

perturbation δ with ‖δ‖
2
< ε, we now have a bound on how much this will

affect the reconstruction:

‖F̂(x + δ) − F̂(x)‖
2
≤ L‖x + δ − x‖

2
� L‖δ‖

2
< Lε (4.1)

If the Lipschitz constant of a function is ≤ 1, then we know that the function

cannot amplify errors. That is, if the perturbation on the input has norm ε, the
on the error on the output (compared to the unperturbed input) is ≤ ε for any
input. We call such functions contractions.

Since Neural Networks are composite functions of the layers, the following

two results will become useful later.
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4. Stability

(a) Original image, cor-

rectly classified as a tiger
cat

(b) Perturbed image, mis-

classified as an American
bald eagle

(c) Added perturbation,

magnified to be visible

Figure 4.1: Example of an adversarial attack against a classification network.

Here we are using the ResNet-50 network [He+16] trained on the ImageNet

dataset [Rus+15]. See page 81 for details.

Proposition 4.2. Let (X, ‖·‖) be a normed space, and let f : X → X and
g : X → X be two functions. Define h : X → X as the composition of f and g, ie
h � f ◦ g. If L f is a Lipschitz constant of f and Lg is a Lipschitz constant of g,
then L f Lg is a Lipschitz constant of h.

Proof. Let x , y ∈ X, then

‖h(x) − h(y)‖ � ‖ f (g(x)) − f (g(y))‖ ≤ L f ‖g(x) − g(y)‖ ≤ L f Lg ‖x − y‖

which shows that L f Lg is a Lipschitz constant of h. �

The next corollary follows immediately by induction on n.

Corollary 4.3. Let (X, ‖·‖) be a normed space, and let f
1
, f

2
, . . . , fn : X → X

be functions with respective Lipschitz constants L
1
, L

2
, . . . , Ln . Define g : X → X

as g � f
1
◦ f

2
◦ · · · ◦ fn . Then,

∏n
i�1

Li is a Lipschitz constant for g.

Throughout the rest of the thesis, we will consider Lipschitz constants in

Rn
with regards to the `

2
norm.

4.2 Adversarial Attacks
It is well established that classifiers using neural networks are very vulnerable

to a certain kind of perturbations to the input [Big+13; Sze+13; MFF16; FMF17].

Given an image x ∈ Rn
with label c ∈ {1, 2, . . . , C} and a neural network based

classifier f : Rn → {1, 2, . . . , C}, one can often find a perturbation δ with a

small ‖δ‖
2
such that f (x) � c while f (x+ δ) , c, even though x and x+ δmight

be indistinguishable by the human eye, see Figure 4.1.

Earlier work have developed algorithms to systematically create such noise

for classification networks [MFF16]. Constructing these perturbations is often
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4.2. Adversarial Attacks

Algorithm 4.1 Finding adversarial noise for inverse problems.

Input: Image x, Neural Network Φ, measurement operator A, maximum num-

ber of iterations N , step length η, perturbation size regularization parameter λ,
initial perturbation size τ.

1. Initialize v
0
← 0 and δ

0
∈ B(0, τ)

2. For i � 0, 1, . . . ,N − 1, do

2.1 vi+1
← γvi + η∇Q(δi)

2.2 δi+1
← δi + vi+1

Output: δN

called adversarial attacks, or in the concrete case for classification it is also known

as fooling. In this section we will present a way to create adversarial attacks for

denoisers, introduced in [Ant+19].

Generating Adversarial Noise
We begin by looking at why we can not use the approaches from classification

fooling in inverse problems. Given a classifier F̂ : Rn → {1, 2, . . . , C} and an

image x which F̂ will normally classify correctly, it is clear that the optimal

perturbation δ′ for fooling F̂ on x is

δ′ � arg min

δ
‖δ‖

2
subject to F̂(x + δ) , F̂(x) (4.2)

The benefit of working with classifiers in this case is that we have a clear

indication of success – namelymisclassification. However, solvingEquation (4.2)

in practice is intractable because of the non-linear constraint.

While working with inverse problems, declaring success is not that straight

forward since “successful recovery” is a somewhat subjective term. Asdiscussed

in Section 3.3 it is also very difficult to measure mathematically whether two

images look alike.

In [Ant+19], the authors propose a way to adapt Equation (4.2) to inverse

problems. Instead of constraining the output to be different, we maximize the

difference between the reconstruction of the original image and the perturbed

image. We also constrain the size of the perturbation using a quadratic

regularization term. Hence, given a denoiser D and an input image x which D
can successfully recover, the optimal perturbation is given as

δ′ � arg max

δ

1

2

‖D(A(x + δ)) − D(Ax)‖2
2
− λ

2

‖δ‖2
2

(4.3)

The λ acts as a regularization parameter on the perturbation, and controls how

large the perturbation can be.

However, solving Equation (4.3) in practice is highly intractable. Again, we

will have to settle for a local minimum. First, we define our objective function:

Q(δ) � 1

2

‖D(A(x + δ)) − D(Ax)‖2
2
− λ

2

‖δ‖2
2

(4.4)
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(a) Original x (b) Reconstruction

D(Ax)
(c) Perturbed x + δ (d) Reconstruction

D(A(x + δ))

Figure 4.2: Instabilities in the original DeepMRINet as shown in [Ant+19]. This

version of DeepMRINet samples at 33% with a sampling pattern similar to

Figure 3.8b. Images from [Ant+19], used with permission.

Let y � Ax and u � y + Aδ. Using the chain rule, the gradient of Q can be

expressed as

∇δQ(δ) � A∗∇u‖D(u) − D(y)‖2
2
− λδ (4.5)

We can interpret D(y) as a constant as it is not dependent on u or δ, thus we only

need to find the gradient for D(u), which can be done with back-propagation

as D is a neural network.

The final algorithm for generating adversarial perturbations is then to

combine Equation (4.5) with some variant of Gradient Descent to achieve a local

minimum of Equation (4.4). The authors of [Ant+19] propose using Gradient

Ascent with Nesterov momentum. A detailed description of the algorithm

presented in [Ant+19] is found in Algorithm 4.1.

The authors of [Ant+19] provides example perturbations for several mod-

ern MRI reconstruction networks, among them the DeepMRI network. See

Figure 4.2 for an example of an adversarial attack on DeepMRINet with the

original weights provided by [Sch+18].

Current Solutions
One possible cause of instability is overfitting. Recall the overfitted example

in Figure 3.4 on page 28. By only nudging the value slightly in the horizontal

direction, we see that the value in the vertical direction can vary dramatically in

an unexpected way. Thus, some of the current techniques to limit instabilities

address limiting overfitting, while others address the issue of adversarial

attacks directly.

Some work have gone into the robustness of classifiers towards adversarial

attacks, and we will conclude this chapter with a brief presentation on some of

them [FMF17]. In Chapter 5 we will introduce a newer approach in more detail

[Cis+17].

An initial approach is to augment the dataset with adversarial examples.

In [MFF16] the authors propose training a classifier on a normal dataset, and

when the classifier is done training, one creates a new training set consisting of

adversarial attacks on the trained model. The model is then further trained on

this new data set with a decreased step length for a few epochs.
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4.2. Adversarial Attacks

Another approach is to consider the Jacobian matrix of a networkΦθ, that is

Jx(Φθ) �
∂aL

∂x

where aL denote the activations in the last layer and x denotes the input to the

network. Large elements in this matrix are undesirable as it means that the

output of the network can change drastically on small changes to the input.

We can thus add the norm of the Jacobian as a regularization term to our loss

function [FMF17; GR14]. This approach is analogous to the regularization term

discussed in Equation (3.13) on page 29.

Other forms of regularization can also help prevent overfitting, which can

in turn reduce instabilities. By adding some scaled norm of the weight matrices

as a regularization term we limit how large the weights can be. The motivation

for this is to not let a single feature become too important in the classification

[ISL, Sec. 6.2; GBC16, Sec. 7.1].

Any type of regularization is designed reduce the generality of the network.

Thismight introduce some bias to themodel, but can in turn reduce the variance.

This trade-off, often called the bias-variance trade-off, is a well studied topic in

statistics [ISL, Sec. 2.2.2]. It states that the MSE of a model can be decomposed

into three parts, namely model variance, model bias and observation variance.

Since we cannot control the observation variance, we are most interested in the

model variance and bias.

Recall the underlying assumption for supervised learning from Equa-

tion (3.1) on page 17. Given an observation (x, y) from a true underlying model

F(x) � y + ε, ε
i.i.d.∼ N(0, σ2), we can express the expected MSE for a model F̂ as

(adapted for notation from [ISL, Eq. (2.7)]):

E
[
MSE(F̂ | x, y)

]
� Var

[
F̂(xi)

]︸       ︷︷       ︸
Model variance

+ E
[
‖F̂(xi) − F(xi)‖

2

2

]
︸                   ︷︷                   ︸

Model bias

+ σ2︸︷︷︸
Observation

variance

(4.6)

Hence, if the regularization causes the variance to drop more than the bias

increases, the overall value of the loss function will decrease.

Even though these approaches can help reduce overfitting and instabilities

in neural networks in some cases, the topic of stability towards adversarial

attacks remain an open and unsolved problem [FMF17].
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CHAPTER 5

Parseval Networks

Parseval networks were introduced in [Cis+17] as a new way to combat over-

fitting and instabilities in classification networks.

The main idea behind Parseval networks is to limit the Lipschitz constant

of each layer to be less than 1. This is done for two main reasons. First, by

making each layer a contraction, we restrict the amount a feature can impact an

activation in the network, which can combat overfitting. Second, by making

the entire network a contraction we limit the amount of change on the output

logits of the network. Our motivation is that this may improve the network’s

stability against adversarial attacks.

5.1 Lipschitz Constants of Neural Networks
In order to constrain the Lipschitz constants of Neural Networks, we must first

derive the Lipschitz constants of the different kinds of layers. FromCorollary 4.3

we have that the Lipschitz constant of a Neural Network is bounded above by

the product of the Lipschitz constants of its layers. Thus, if we limit every layer

to be a contraction, the whole network will be a contraction.

Dense Layers
Recall that a dense layer is an affine mapping Wl : RNl−1 → RNl

, given as

al � Wl(al−1
) � Wlal−1

+ bl

We wish to limit the Lipschitz constant of this mapping. The following

proposition will help us achieve this bound:

Proposition 5.1. The Lipschitz constant of an affine mapping W : Rm → Rn

given as W(x) � Wx + b is the largest singular value of W.

Proof. Let x, y ∈ Rm
, then

‖W(x) −W(y)‖
2
� ‖Wx + b − (Wy + b)‖

2
� ‖W(x − y)‖

2
≤ ‖W‖

2
‖x − y‖

2

We know the last inequality to be sharp. Hence, we see that the Lipschitz

constant of W is the operator norm ‖W‖
2
. It remains to show that this norm is

bounded by the largest singular value of W.
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5. Parseval Networks

Let W � UΣVT
be the singular value decomposition of W, so Σ � UTWV.

Let x ∈ Rm
with ‖x‖

2
� 1, we must show that ‖Wx‖2

2
≤ σ2

1
. Since the columns

of V forms an orthonormal basis for Rm
, there exists a c ∈ Rm

with ‖c‖
2
� 1

such that x � Vc. Thus:

‖Wx‖2
2
� ‖WVc‖2

2
� ‖UTWVc‖2

2
� ‖Σc‖2

2
�

n∑
i�1

σ2

i |ci |
2 ≤ σ2

1

n∑
i�1

|ci |
2

� σ2

1

Which concludes the proof. �

Convolutional Layers
To derive Lipschitz constants for convolutional layers, we will begin by showing

how we can express convolutional layers as affine mappings. In traditional

signal processing theory, convolutions are expressed with circulant Toepliz

matrices [Rya19, p. 99]. However, recall from Remark 3.7 that convolutional

layers do not comprise actual convolutions. Hence, the traditional theory does

not apply directly.

We will begin by presenting how [Cis+17] solves this problem for unstrided,

1D convolutional layers, and working out some important details omitted

from the original paper. Then we will generalize their result to cover strided

convolutions and higher dimensional input tensors as well.

First of all, note that we can ignore the batch dimension b in Equation (3.8)

without loss of generality. From our perspective the batch dimension is merely

to do the same set of operations on different input. To further simplify notation,

assume that the length of the convolution kernel is odd, that is the kernel size is

2d + 1 for some d ∈ N. Throughout this section, we will rearrange the order of

the dimensions of the input so that the channels is first instead of last (contrary

to the subsection at page 21). This will not alter the end results, but make some

of the matrix expressions later on tidier.

Hence, we have our input a ∈ Rc
in
×n

(input channels, length) instead

of a ∈ Rb×n×c
in
(batch, length, input channels). Our weight tensor is still

w ∈ R(2d+1)×c
in
×c

out
(kernel size, input channels, output channels), with the

filter kernels indexed from −d to d. One-dimensional, unstrided convolutions

without the batch dimension is then given as

(w ∗ a)k
2
,i �

∑
i′

∑
k

1

wi′ ,k
1
,k

2

· ak
1
,i+i′ (5.1)

For an input activation a to a layer, let the unfolding operator applied to our

input signal U(a) be the (2d + 1)c
in
× n matrix where the jth column is given as

U(a)∗, j �



a
1, j−d

a
2, j−d
...

ac
in
, j−d

a
1, j−d+1

...
ac

in
, j+d
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We define ai , j � 0 whenever i or j is out of bounds1. Note that U(·) is clearly a

linear operator. Further, let the unfolded weight matrix W be the c
out
× (2d + 1)c

in

matrix where row i is given as

Wi ,∗ �
[
w−d ,1,i w−d ,2,i · · · w−d ,c

in
,i w−d+1,1,i · · · wd ,c

in
,i
]

Note that W is merely a reshaping of original weight tensor w.

We can now rewrite Equation (5.1) on matrix form as

(w ∗ a) � WU(a) (5.2)

Thus, a convolutional layer is given as

al � WlU(al−1
) + bl

From the first half of the proof of Proposition 5.1 we have that the Lipschitz

constant of a convolutional layer is the operator norm of the composite ‖WU‖2
2
,

and combined with Proposition 4.2 this gives that

‖WU‖2
2
≤ ‖W‖2

2
‖U‖2

2

From the second part of the proof of Proposition 5.1 we have that ‖W‖2
2
is

bounded by the largest singular value of W. Since U is an operator that repeats

shifted versions of the input signal 2d + 1 times, we have that

‖U(x) −U(y)‖2
2
� ‖U(x − y)‖2

2
≤ (2d + 1)‖x − y‖2

2

Giving that

√
2d + 1 is a Lipschitz constant for U.

We summarize the above in the following proposition:

Proposition 5.2. The Lipschitz constant of a convolutional layer W : Rn×cin →
Rn×cout with kernel size 2d + 1 and weight tensor w is bounded by

√
(2d + 1)σ

1

where σ
1
denotes the largest singular value of the unfolded weight matrix W.

Extension to Strided Convolutions

One possible way to introduce strides to Equation (5.2) is to linearly sample

the columns of the resulting matrix. However, we will use another approach

were we redefine the unfolding operator, as this aligns more closely with

Equation (3.8) as well as how convolutional layers are typically implemented in

practice.

1

Often dubbed zero-padding in DL literature.
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The unfolding operator for a 1D convolutional layer using stride s will be

the (2d + 1)c
in
× n/s matrix where column j is given as

U(a)∗, j �



a
1, j−ds

a
2, j−ds
...

ac
in
, j−ds

a
1, j−(d−1)s

...
ac

in
, j+ds


By omitting entries from the input signal, it is clear that the Lipschitz constant

can not be larger than for the unstrided case.

Extension to Higher Dimensions

Extension to higher dimensions will largely follow the same strategy as the

extension to strided convolutions, . We will only show how to extend Equa-

tion (5.2) to 2D convolutions, but the following technique can be repeated to

achieve convolutions of even higher dimensional signals. However, since we

will only deal with 2D images in this thesis, 2D convolutional layers will suffice.

First, note that the input to a 1D convolutional layer is a 2D tensor a ∈ Rc
in
×n

.

Thus, the input to 2D convolutional layer is a 3D tensor a ∈ Rc
in
×m×n

. To

simplify notation, assume that the kernel is square and of odd length, that

is the kernel size is (2d + 1) × (2d + 1) for a k ∈ N. Our filter tensor is now a

4-dimensional tensor w ∈ R(2d+1)×(2d+1)×c
in
×c

out

Intuitively, our approach is to stack the columns in the image vertically,

thus turning the signal into a 2D tensor. This will however demand some

restructuring of both the unfolding operator and the unfolded weight matrix.

As before, we can ignore the batch dimension without loss of generality.

Thus, for an input activation a, we can express the convolution as

(w ∗ a)k
2
,i , j �

∑
i′

∑
j′

∑
k

1

wi′ , j′ ,k
1
,k

2

· ak
1
,i+i′ , j+ j′ (5.3)

To simplify further notation, let ai , j ∈ R
c
in
be the vector given by stacking

the channel dimension as a column vector:

ai , j �


a

1,i , j
a

2,i , j
...

ac
in
,i , j


To express (5.3) on the same form as Equation (5.2), we will redefine the

unfolding operator applied to our input signal U(a) to be the (2d + 1)2c
in
× mn
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matrix where the jth column is given as

U(a)∗, j �



ab j/nc−d , ( j mod n)−d
ab j/nc−d , ( j mod n)−d+1

...
ab j/nc−d , ( j mod n)+d

ab j/nc−d+1, ( j mod n)−d
...

ab j/nc+d , ( j mod n)+d


Likewise, let wT

i , j,k
2

∈ Rc
in
be the column vector obtained by stacking the input

channel dimensions, so that w is a row vector:

wi , j,k
2

�
[
wi , j,1,k

2

wi , j,2,k
2

· · · wi , j,c
in
,k

2

]
We redefine the unfolded weight matrix as the c

out
× (2d + 1)2c

in
matrix where

row i is given as

Wi ,∗ �
[
w−d ,−d ,i w−d ,−d+1,i · · · w−d ,d ,i w−d+1,−d ,i · · · wd ,d ,i

]
Note that W is still just a reshaping of w. Thus, we can rewrite Equation (5.3) as

(w ∗ a) � WU(a) (5.4)

using these redefined versions of the unfolding operator and unfolded weight

matrix. We can limit ‖W‖
2
in the same manner as before. The unfolding

operator now repeats the signal (2d + 1)2 times, and following the argument

for the 1D case, 2d + 1 is a Lipschitz constant for U.

Residual Blocks
Residual blocks pose a problem with Lipschitz constants. Recall that in a

residual block the identity is fed through several layers, as shown in Equa-

tion (3.9) and Figure 3.2 on page 22 and on page 23. The problem with residual

blocks is that the sum of two contractions is not necessarily a contraction. As a

simple counterexample, consider f : R→ R, with f (x) � x. While f is clearly

a contraction, g � f + f is not.

Thus, even though we restrict every layer in the residual block to be a

contraction, the block itself will not be a contraction. The solution to this

problem is motivated by the following proposition:

Proposition 5.3. Let f , g : Rm → Rn be two contractions. Any convex combi-
nation of f and g is also a contraction.

Proof. Let f , g : Rm → Rn
be two contractions, let λ ∈ [0, 1], and define

h : Rm → Rn
as

h(x) � λ f (x) + (1 − λ)g(x)
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Let x, y ∈ Rm
, then

‖h(x) − h(y)‖
� ‖λ f (x) + (1 − λ)g(x) − λ f (y) − (1 − λ)g(y)‖
� ‖λ( f (x) − f (y)) + (1 − λ)(g(x) − g(y))‖
≤ λ‖ f (x) − f (y)‖ + (1 − λ)‖g(x) − g(y)‖
≤ λ‖x − y‖ + (1 − λ)‖x − y‖
� ‖x − y‖

Which shows that h is a contraction. �

In Parseval networks, we will redefine residual blocks to use convex combi-

nations instead of sums, thus ensuring the residual block to be a contraction.

An example 3-layered Parseval residual block is then given as

B(a) � ρ
3
(λW

3
(ρ

2
(W

2
(ρ

1
(W

1
(a))))) + (1 − λ)a) (5.5)

The parameter λ can either be interpreted as a fixed hyper-parameter, or as a

trainable parameter.

Activation Functions
The following lemma will help us find upper bounds of Lipschitz constants for

activation functions.

Lemma 5.4. Let f : R → R be a differentiable function. Let x , y ∈ R. If
d

max
� max

{�� f ′(z)
�� | z ∈ R} exits, then�� f (x) − f (y)

�� ≤ d
max

��x − y
��

In other words, d
max

is a Lipschitz constant of f .

Proof. Let d
max

be defined as above. Assume for contradiction that there exists

a pair x , y ∈ Rwith x ≤ y such that�� f (x) − f (y)
�� > d

max

��x − y
��

By the Mean Value Theoremwe know that there exists a point z ∈ R such that

d
max

<

�� f (x) − f (y)
����x − y

�� �
�� f ′(z)

��
This is a contradiction, since d

max
is the defined to be the largest derivative of

f . �

We will use this lemma to prove the following proposition.
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5.2. Tight Frames

Proposition 5.5. ReLU, Leaky ReLU with slope ≤ 1, hyperbolic tangent and
sigmoid are all contractions.

Proof. Let x , y ∈ R. If both x , y ≤ 0, ReLU(x) � ReLU(y) � 0. Thus it is clear

that 0 is a Lipschitz constant of ReLU restricted to (−∞, 0). If both x , y > 0,

Lemma 5.4 gives that 1 is a Lipschitz constant of ReLU restricted to (0,∞). If
x < 0 and y > 0, we have that��

ReLU(y) − ReLU(x)
�� � ��

ReLU(y)
�� � y ≤

��y − 0

�� � ��y − x
��

Thus, max {0, 1} � 1 is a Lipschitz constant for the ReLU, so it is a contraction.

Likewise, for the leaky ReLU Lemma 5.4 gives that α is a Lipschitz constant

of LReLUα restricted to (−∞, 0) and that 1 is a Lipschitz constant of LReLUα
restricted to (0,∞). Following the same argument as above, max {α, 1} is a
Lipschitz constant of LReLUα. Since we have assumed α ≤ 1, LReLU is a

contraction.

For tanh, we observe the derivative

d
dx

tanh(x) � 1 − tanh
2(x)

Since tanh
2(x) ≥ 0 for all x with tanh(0) � 0, we have that

max

x∈R

d
dx

tanh(x) � 1

And by Lemma 5.4, 1 is a Lipschitz constant of tanh, so it is a contraction.

Finally, for the sigmoid, we find the derivative:

σ′(x) � d
dx

(
1

1 + e−x

)
�

e−x(
1 + e−x )2

(5.6)

and the second derivative:

d2

dx2

(
1

1 + e−x

)
�

d
dx

(
e−x(

1 + e−x )2

)
�

2e−2x

(1 + e−x)3
− e−x

(1 + e−x)2

which has exactly one root, namely x � 0. Since σ′(0) � 0.25 and

lim

x→∞
σ′(x) � lim

x→−∞
σ′(x) � 0

we have that x � 0 is a global maximum for σ′ with σ′(0) � 0.25. By Lemma 5.4,

0.25 is a Lipschitz constant of σ and it is a contraction. �

5.2 Tight Frames
This section will give a brief introduction on the topic of tight frames. As we

will later see, this notion, in conjunction with the results of the previous section,

will give us a way to enforce the layers to be contractions.

We will begin with the general definition of tight frames:
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5. Parseval Networks

Definition 5.6 ([FR13, Definition 5.6]). A system of vectors {e
1
, e

2
, . . . , em}

in Rn
is called a tight frame if there exists a constant λ > 0 such that one of

the following equivalent conditions holds:

(a) ‖x‖2
2
� λ

m∑
i�1

|〈x, ei〉|
2

for all x ∈ Rn

(b) x � λ
m∑

i�1

〈x, ei〉ei for all x ∈ Rn

(c) AAT
�

1

λ
In , where A is the matrix with columns {e

1
, e

2
, . . . , em}

Proof of equivalence. To see that (a), (b) and (c) are equivalent, notice first that

the right hand side of (a) can be written as

λxTAATx (5.7)

for a matrix A with columns {e
1
, e

2
, . . . , em}. Since AAT

is symmetric, it is

uniquely characterized by the quadratic form in Equation (5.7). Thus

xTx � ‖x‖2
2
� λxTAATx

must hold for all x, giving that λAAT
� I, establishing the equivalence of (a)

and (c). For the equivalence of (b) and (c), we have that

m∑
i�1

〈x, ei〉ei � A


〈x, e

1
〉

〈x, e
2
〉

...
〈x, em〉

 � A


eT

1
x

eT
2
x
...

eT
mx


� A


eT

1

eT
2

...
eT

m


x � AATx

Giving that

x � λ
m∑

i�1

〈x, ei〉ei � λAATx

for all x, hence λAAT
� I. �

In this thesis, we are concerned with a special kind of tight frames, namely

Parseval frames:

Definition 5.7. A tight frame with λ � 1 is called a Parseval frame.

We are now ready to present the main result of this section:

Theorem 5.8. Let A ∈ Rm×n with m < n, be a matrix with singular values
σ

1
, . . . , σn . If the the rows of A form a Parseval frame, the singular values are all 1.
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5.3. Parseval Training

Proof. Let A � [e
1

e
2
· · · em]

T
. Then the columns of AT

forms a Parseval frame,

and by Definition 5.6c we have that ATA � In . Since all the eigenvalues of In
are 1, the singular values of AT

are all 1. By the invariance of singular values

under transposition, the same is true for A. �

Proposition 5.1 and Theorem 5.8 gives us a way to enforce every layer in the

neural network to be contractions. We will constrain all the weight matrices to

have Parseval frames as rows, hence the name of Parseval networks.

5.3 Parseval Training
Now that we have a tractable way to control that the layers of the network are

contractions, we shift our focus to how we will enforce this criteria during the

training of the network.

In this section, we will present Parseval training as introduced in [Cis+17].

Parseval training interlaces every iteration in the training optimization algo-

rithm with a retraction step to ensure that the rows of the weight matrices

(approximately) form a Parseval frame.

For a givenweightmatrix W, the authors of [Cis+17] introduce the following

regularization loss:

R(W) � 1

2

‖WTW − I‖2
2

(5.8)

with gradient

∇WR(W) � (WWT − I)W (5.9)

We observe that R(W) � 0 if and only if the rows of W form a Parseval frame.

Hence, we will minimize Equation (5.8).

We will solve this minimization problem using gradient descent. This gives

us the following variable update:

W←W − β∇WR(W) (5.10)

The β will act as a step length for the optimization, and is interpreted as a type

of regularization parameter. By inserting Equation (5.9) into Equation (5.10)

and rearranging, we get

W← (1 − β)W − βWWTW (5.11)

Since R is a convex function of W, repeating Equation (5.11) until convergence

would ensure that the rows of W are a Parseval frame. However, this is

unpractical for a number of reasons.

First, solving a full optimization problem for every layer in each global

optimization step is very computationally costly, and will slow the training

dramatically. Second, a W that realizes the minimum of R(W)might be far from

the weights that actually minimizes the global loss function. Hence, running

the regularization optimization all the way to convergence might negatively

affect the performance of the network. Lastly, as we will see in more detail in

Section 6.3, it does not seem to be necessary to domore than one step. Empirical

results show that the singular values of the matrices are all (very close to) 1
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5. Parseval Networks

Algorithm 5.1 Parseval training using gradient descent as the base algorithm.

Input: Initial parameters θ, step length η, retraction parameter β, number of

epochs E, batch size M, training set {(xi , yi)}
N
i�1

.

1. For e � 1, 2, . . . , E, do

1.1 Create a new permutation p �
{

p
1
, p

2
, . . . , pN

}
of {1, 2, . . . ,N}

1.2 For n � 1, 2, . . . ,N/M, do

1.2.1 Sample M examples from shuffled data sets,

{
(xp j

, yp j
)
}(n+1)M

j�nM

1.2.2 Compute gradient of loss using sampled mini-batch,

g← ∇L(θ | xpnM
, . . . , xp(n+1)M

, ypnM
, . . . , yp(n+1)M

)
1.2.3 Apply update to parameters, θ← θ − ηg
1.2.4 For each dense/convolutional layer k, do

1.2.4.1 Retraction step, Wk ← (1 + β)Wk − βWkWT
k Wk

Output: Trained parameters θ

even after only performing a single step of gradient descent (see Figure 6.8 on

page 63).

Performing the retraction step in Equation (5.11) for each layer after every

iteration in Algorithm 3.1 or Algorithm 3.2 yields Parseval training, described

in detail in Algorithm 5.1.

Remark 5.9. Algorithm 5.1 is slightly different than the proposed algorithm in

[Cis+17, Alg. 1]. First, since [Cis+17] regards classification network, they must

handle so-called aggregation layers as well. This is not relevant for our case of

denoising networks, hence we have removed it all-together. Second, in [Cis+17]

they propose sampling a subset S of rows of W in each iteration, and perform

the retraction only on the submatrix WS formed by the rows indexed by S. This
will bring the time complexity of the retraction step to O(|S |2 d) (where d is the

number of layers). Since dense layers often have a lot more parameters than

convolutional layers, this is especially helpful for dense layers. However, since

our denoising networks rarely comprises dense layers, this is not as useful for

our case. The empirical tests shown in Section 6.3 did not show any noticeable

speed-down when Parseval constraints were applied, so the sampling seems

unnecessary for our application.

5.4 Parseval Networks
By training our networks with the Parseval update step in-between each

iteration of our optimization algorithm of choice, illustrated in Algorithm 5.1

for Gradient Descent, we get Parseval networks. The authors of [Cis+17] only

discusses using this technique for classification networks. We will briefly

illustrate Parseval classification networks in Section 6.3.
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5.4. Parseval Networks

Parseval Denoisers
Extending the techniques from [Cis+17] to denoising networks is almost

completely straight forward. We will use Parseval training to train the network,

but we also need to address the structure of the denoiser itself. Recall from

Equation (3.14) on page 30 that a denoiser is the sum of a neural network

and the identity. The identity is clearly a contraction, and by using Parseval

training to train our neural network, the network is also a contraction. However,

recall from the derivations on page 47 that the sum of two contractions is not

necessarily a contraction. Hence, for Parseval denoisers we need to redefine

Equation (3.14) to use convex combinations instead:

D(x) � λx + (1 − λ)φ(x) λ ∈ [0, 1] (5.12)

Thus, by Proposition 5.3, we can guarantee the whole denoiser to be a contrac-

tion.

We can set λ to a fixed value, for example λ � 0.5, or treat it as a trainable
parameter. If we choose to let λ be trainable we must ensure that it never

leaves the unit interval. We could do this by clipping the value at 0 and 12.

However, recall from Equation (3.3) that the sigmoid function is always in the

unit interval. Thus, if we want to have the convex parameter trainable, we can

implement that as

D(x) � σ(p)x + (1 − σ(p))φ(x) p ∈ R (5.13)

and let p be a trainable parameter with no restrictions.

2

That is, perform the optimization iteration as normal, and do λ ← min(max(0, λ), 1) after-
wards.
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CHAPTER 6

Implementations and Experimental
Results

We are now going to examine our implementations and put Parseval recon-

struction networks to the test.

In Sections 6.1 to 6.3 we will reimplement and reproduce results from

[Sch+18; Ant+19; Cis+17]. Later in Section 6.3 we will test the performance and

stability of the denoiser proposed in Section 5.4. Finally, in Section 6.4 we will

discuss the performance of Parseval denoisers with regards to reconstruction

capabilities and noise vulnerability.

6.1 Our Setup
To perform empirical tests on the effectiveness of Parseval constraints on

denoising networks, we opted to use the DeepMRINet [Sch+18] as our base

architecture. Throughout we used Python 3.5 [Py3] and TensorFlow 1.8 [TF].

Reimplementation of DeepMRINet
The original implementation of DeepMRINet used somewhat outdated li-

braries1. Because of this we opted to reimplement the network using a more

modern framework.

In our reimplementation and retraining of DeepMRINet we made some

important changes to the network. First off, we changed the sampling pattern

from the line based one in [Sch+18] to Gaussian sampling. The original

DeepMRINet were trained on two different sampling rates, namely 33% and

17%. Our sampling rate was set at 25%. A comparison of the two sampling

patterns is found in Figure 6.1.

Because of limited computation resources we had to scale down the number

of layers in the network slightly in order to fit it on a single GeForce GTX

1080 without reducing the batch size too much. Thus our version has 4 CNNs

instead of the original 5, and each CNN consist of 4 32-channeled convolutional

layers instead of 5 64-channeled layers.

All of our networks were trained on a subset of the dataset from [Ham+18]

consisting of 2 679 images. Of these, 120 were set aside as a test set. We

1

[Sch+18] uses Theano, which was announced to be discontinued after it’s initial 1.0 launch in

2017. It has received some bug fixes and compatibility updates since then, but no feature updates.
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(a) Sampling pattern in [Sch+18],

adjusted to our sampling rate

(b) Our sampling pattern

Figure 6.1: Sampling patterns in the Fourier domain. Both subsample at 25%.

trained the network using the Adam optimizer for 40 epochs resulting in 10 236

iterations. During training we employed different data augmentation strategies,

including flipping along both width and height axis, rotations and addition of

Gaussian noise. These augmentations were done independently for each batch

every time a new batch was drawn.

Changes to Algorithm 4.1
The implementation of Algorithm 4.1 given in [Ant+19] is very general, and

meant to work on any denoising network written in any framework. Our

situation is not as general, so we have opted to implement Algorithm 4.1

differently than [Ant+19].

We implemented Algorithm 4.1 as a Neural Network, see Figure 6.2 for a

graph representation of the architecture. When searching for perturbations

we view all the variables in the network as untrainable constants except for the
perturbation δ. We then seek to maximize the value of the Q node in the graph

given in Figure 6.2. This node computes Equation (4.4).

Note that if we use Stochastic Gradient Descent with Nesterov Momentum2

to train this network, our approach is identical to Algorithm 4.1. However,

we achieved faster convergence with the Adam optimizer, so we opted to use

Adam instead.

Thus, our algorithm has the following hyper-parameters:

• N – The number of steps for the optimization algorithm

• η – The step length of the optimization algorithm

• α
1
, α

2
– Decay rates for Adam. In our experiments, these are always set

at the suggested default of α
1
� 0.9 and α

2
� 0.999.

2

This method is implemented in TensorFlow as tf.train.MomentumOptimizer if

use_nesterov=True is given as a keyword argument.
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Figure 6.2: The architecture for the instability experiments

• λ – The trade-off between reconstruction error and perturbation size

• τ – The initial element-wise size of the perturbation. Ie, draw initial

perturbation elements from Unif[0, τ]

6.2 Current Instabilities
In this section we will recreate some of the results from [Ant+19] using our

own version of Algorithm 4.1, outlined in Section 6.1.

We found that the following hyper-parameters gave good results:

N � 50 η � 0.001 λ � 1 τ � 10
−5

Example perturbations found with these hyper-parameters are found in Fig-

ure 6.3. In these examples we have drawn 4 images from an independent

test set, never before seen by the network. For each sample, we have created

synthetic measurements by using the measurement operator:

yi � Axi for i � 1, 2, 3, 4

We then used our own reimplementation of DeepMRINet to recover x̂i from yi .

Note that since the Data Consistency layers depend on the measurements in the

Fourier domain, the input to DeepMRINet is yi directly, and not A∗yi . Taking

the adjoint of the measurement operator is built into the network. Throughout

this chapter we will use Dv to denote our vanilla DeepMRINet implementation.
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Figure 6.3: Adversarial attacks against the author’s implementation of DeepM-

RINet

6.3 Applying Parseval Constraints
We will now study the effects of applying Parseval training. We will begin by

recreating the results from [Cis+17] before applying Parseval constraints to

MRI reconstruction networks.

Recreating the Results From [Cis+17]
To confirm that our implementation is correct, we will reproduce the results

in [Cis+17]. We will do this by implementing a simple classification network

and train it with and without the Parseval retraction step. Since classification

networks are not themain focus of this thesis, wewill only give a broad summary
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Figure 6.4: Architecture of the classifactor used to verify our implementation of

Parseval constraints. Blue blocks depict convolutional layers, while red blocks

depict dense layers.

of our network, and refer to Appendix A.1 for details. Briefly speaking, the

main difference from before is that the output of the network is now categorical

(ie, the predicted label of the input).

The authors of [Cis+17] did not report on any specifics of their architecture.

Our network will be fairly small in order to make the network train fast,

and since we are more concerned with the change in stability rather than the

performance of the network. Our network will consist of 4 convolutional

layers, followed by 3 dense layers. We use ReLU activation, except for the

two last layers where the second last has tanh activation and the last layer has

no activation. The output of the last layer is sent to a softmax function (see

Equation (A.1)) to turn the output into a valid discrete probability distribution.

Between layers 1 and 2 and layers 4 and 5 we employed max pooling (see

Equation (A.2)) to reduce the dimensionality. At the end of the network, we

let the arg max of output from the softmax function be the predicted label of

the input. A graph representation of our classificator architecture is found in

Figure 6.4.

We trained our networks to classify images from the CIFAR-10 database

[KH09]. It consists of 50 000 labeled 32× 32× 3 images from 10 different classes,

as well a dedicated test set of 10 000 additional images. We trained the networks

using the Adam optimizer with cross-entropy loss (see Equation (A.3)), and

trained for 50 epochs with a batch size of 512 as the networks seemed to

converge quickly. We also employed dropout to limit overfitting [Sri+14]. Both

the vanilla and Parseval classifier were initialized with orthogonal rows. The

training progressions are found in Figure 6.5. The vanilla classifier converged

with a validation accuracy of 81.2% and the Parseval classifier converged with

a validation accuracy of 82.4%.

In [Cis+17] the authors report several benefits of Parseval classifiers, among

them:

1. Near-orthogonal weight matrices

2. Faster convergence

3. Higher robustness to adversarial noise

The near-orthogonal “benefit” is merely a result of the Parseval retraction step,

but is nevertheless a good indicator that our implementation is working as

expected. Since this will also be true for our denoising networks, we will not
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Figure 6.5: Training progression of the classifier depicted in Figure 6.4.

investigate this further in this section but rather revisit it when discussing the

Parseval denoiser (see Figure 6.8).

We did not see a massive increase in convergence speed, but we did observe

a more stable convergence. That is, the loss function and accuracy did not

fluctuate as much while training the Parseval classifier. However, one single

observation of Parseval training on classifiers is not sufficient to either disprove

the reported increase in convergence in [Cis+17] or prove increased stability

during training. To make such a conclusion, we would need to train several

networks of different architectures with and without the Parseval retraction

step and do proper statistical inference.

To test the robustness of these models we will take 100 images from the test

set that the classifiers classify correctly, and run the DeepFool algorithm for

adversarial attacks [MFF16] as implemented in [RBB17] until a misclassification

happens. We then compute the mean Signal-to-Noise Ratio (mean SNR or

MSNR) for each of these batches of 100 attacks. For images x
1
, x

2
, . . . , xn with

corresponding perturbations δ
1
, δ

2
, . . . , δn the mean SNR is given as

MSNR(x
1
, x

2
, . . . , xn , δ1

, δ
2
, . . . , δn) �

1

n

n∑
i�1

10 log
10

‖xi ‖2
‖δi ‖2

and will be a measure on how much we must typically perturb an image before

a misclassification happens, where a lower mean SNR means that a larger

perturbation is necessary. Doing this computation, we get that for the vanilla

classifier, the mean SNR for our batch of images is 7.8, while for the Parseval

classifier, themean SNR for the batch is 4.2, suggesting that a larger perturbation
is necessary to fool the Parseval classifier3.

Parseval Constraints on DeepMRINet
To test the effectiveness of Parseval constraints on MRI reconstruction networks,

we trained an alternative version of our reimplementation of DeepMRINet with

3

These signal-to-noise ratios are small, suggesting that both of these models are rather stable.

This is not very surprising as the performance of 80% is not very high. Instability usually increases

with performance.
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Figure 6.6: Reconstruction with the Parseval DeepMRINet, using the same

measurement operator as before.

Parseval constraints applied. The network architecture, data set and choice

data augmentation and optimizer was kept identical to the vanilla case defined

in Section 6.1, except for the definition of the denoiser which where changed

to the one in Equation (5.13). We will use Dp to depict the Parseval version of

DeepMRINet.

In Figure 6.6 we display the reconstruction capabilities of the Parseval

DeepMRINet, and in Figure 6.7 we show the Parseval DeepMRINet and

the vanilla DeepMRINet reconstructions of the same perturbed inputs as in

Figure 6.3. We see that the reconstruction error is much smaller for the Parseval

network. We will discuss changed performance in more detail in Section 6.4.

To ensure that the Parseval retraction step does what we expect it to do, we

can calculate the singular values of the trained weight matrices. In the Parseval

case, we would expect all the singular values to be approximately 1, while in

the vanilla case we would expect them to distribute wider. If we do this, we

find that this is in fact the case, as shown in Figure 6.8.

6.4 Perceived Changes
We will now discuss some of the changes in performance we observe when

applying Parseval constraints to our denoising networks. Specifically, we are

going to examine three perceived changes:

• Networks with Parseval constraints seem to be less vulnerable to overfit-

ting

• Denoisers with Parseval constraints does not seem to amplify errors on

adversarial attacks
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Figure 6.7: Comparison of adversarial attacks against Parseval and vanilla

DeepMRINet.
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Figure 6.8: Histograms of singular values for the layers of our recreation of

DeepMRINet, compared to the Parseval version

0 10000 20000 30000 40000 50000

0

20

40

60

80

100

Training accuracy
Validation accuracy

(a) Vanilla classifier

0 10000 20000 30000 40000 50000

0

20

40

60

80

100

Training accuracy
Validation accuracy

(b) Parseval classifier

Figure 6.9: Overfitting the classifier depicted in Figure 6.4.

• Denoisers with Parseval constraints seem to be less able to reliably recover

fine details in images

Risk of Overfitting
Discussingoverfitting ondenoisingnetworks are verydifficult, aswedonot have

any clear measure on successful recover4. Hence, when discussing overfitting,

we will consider the classification network we designed in Section 6.3.

In Figure 6.5 we can see some tendencies that the vanilla network is

overfitting more than its Parseval counterpart. We will however redo the

training. In Section 6.3 we trained our network with several techniques that

limit overfitting, such as dropout and data augmentation. In order to test the

effectiveness of the Parseval regularizer as a means of limiting overfitting, we

will remove all of these techniques and retrain the model with nothing but

simple Stochastic Gradient Descent (Algorithm 3.1) and a dedicated validation

set to measure overfitting.

4

other than the eyeball metric (i.e. looking at the image and deciding manually) which is not

feasible to implement when training.
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i ‖δi ‖2 ‖Dv(Axi) − Dv(A(xi + δi))‖2 ‖Dp(Axi) − Dp(A(xi + δi))‖2
1 41.87 61.63 43.86

2 33.72 61.34 34.99

3 29.84 46.19 30.38

4 26.17 41.21 27.98

Table 6.1: Amplification of adversarial noise

We trained two versions of the classifier on CIFAR-10 for 500 epochs with a

batch size of 512 and a step size of 0.001. The resulting training progressions

are depicted in Figure 6.9. We can see that both models begins to overfit after

10 000-20 000 iterations, however the overfitting in the vanilla case is far more

severe, even approaching a training accuracy of 100%.

Robustness to Adversarial Attacks
It is clear from Figure 6.7 that our Parseval DeepMRINet does not amplify the

noise in our adversarial attacks in the same way that the vanilla DeepMRINet

does.

To get a more concrete measure on how our denoisers amplify noise from

adversarial attacks, we can compare the difference between the reconstructed

image and the reconstructed perturbed image (the first term of Equation (4.4))

with the size of the perturbation (second termof Equation (4.4)). If the difference

between the two reconstructions are larger than the norm of the perturbation

we can say that the error has been amplified. A table of these norms and

differences are found in Table 6.1.

The computations in Table 6.1 confirms what we see in Figure 6.7. Theoreti-

cally, we should not see any noise amplification for the Parseval DeepMRINet

since the entire denoiser is a contraction. Recall Equation (4.1) on page 37, or

specifically for a Parseval denoiser Dp and a measurement operator A � PΩFn ,

we have that:

‖Dp(Ax) − Dp(A(x + δ))‖
2
< ‖Ax −A(x + δ)‖
≤ ‖A‖

2
‖δ‖

2

� ‖PΩFn ‖2‖δ‖2
� ‖PΩ‖2‖δ‖2
� ‖δ‖

2

However, we see slight increases in error for the Parseval DeepMRINet in

Table 6.1. This is most likely be due to a combination of two contributors.

First, recall from Section 5.3 that we are not guaranteeing the weight matrix

of a layer to be a Parseval frame, but merely approximating. As illustrated in

Figure 6.8b this leaves the possibility for some singular values to be slightly

larger than 1. Second, we have that numerical errors could be affecting

our computations, as the network were trained on a GPU only supporting

singe-precision (32-bit) floating-point numbers. Thus making round-off errors
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Figure 6.10: Reconstruction of fine details with vanilla and Parseval DeepM-

RINet

more severe what we are used to with double-precision (64-bit) floating-point

numbers5.

Reconstruction Capabilities
Finally, we will compare the reconstruction performance of Parseval and vanilla

denoising networks. Making a stable denoiser is not impressive if we loose too

much of the performance. For example, using the identity as a denoiser will be

extremely stable to adversarial noise, but that does not mean that it will work

well as a denoiser.

From Figure 6.6 we see that the Parseval DeepMRINet is at least capable of

reconstructing large-scale details. However, when zooming in at certain areas

of the resulting image, some weaknesses appear.

In Figure 6.10 we have taken x
1
and zoomed in roughly 350%, and we

see that many fine details are lost or blurred in both the vanilla and Parseval

reconstructions, but even more so in the Parseval case. These weaknesses were

not present in [Sch+18]. This observation raises two main questions:

• Why is our reimplementation of DeepMRINet less capable of recovering

small details than the original implementation?

• Why is our Parseval denoiser less capable of recovering small details than

its vanilla counterpart?

We will further provide some thoughts of what the source(s) for the reduction

in performance can be.

Performance reduction for vanilla DeepMRINet
We did a number of changes to our version of DeepMRINet compared to the

original in [Sch+18]. Most notably, we did the following changes on our version:

5

Since most commercial GPUs only have 32-bit arithmetic engines, using single-precision

numbers is still quite common in DL
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• We scaled the network down from 5 CNNs with 5 layers each consisting

of 64 3 × 3 convolutions, to 4 CNNs with 4 layers each consisting of 32

convolutions with 5 × 5 filters in the first layer and 3 × 3 in the last 3.

• We changed both the sampling pattern and sampling rate.

• We trained on a different dataset, and with several times more data.

• We trained for fewer epochs.

Any of these changes could have contributed to the reduction in performance.

However, we suspect that the change in architecture, sampling rate and dataset

are the most likely to affect the performance negatively.

The reduction in network size is an obvious candidate for a reduction in

performance. By reducing the network, we potentially reduce the generality

and approximation capabilities of the network.

Lowering the sampling rate gives us less data to work on. In [Sch+18],

the authors train two versions of DeepMRINet, one with 33% sampling rate

and one with 17% sampling rate. By comparing the performance of these two

models, we see that the 17% versions exhibits more of the blurring artifacts

present in Figure 6.10 than the 33% version [Sch+18, Figures 8 and 9]. Thus,

lowering the sampling rate to 25% could be a contributor to the reduction in

small-detail reconstruction performance.

Finally, our dataset is an order of magnitude larger than the dataset in

[Sch+18], and contains larger variations as we trained on data from different

cordial axes and fat-suppression. Hence, we tried to learn to reconstruct a larger

domain of images. This could also have led to more overfitting of the original

than ours. In addition, we used a completely separate test set to evaluate our

model performance, while [Sch+18] used a 2-fold cross-validation approach.

Thus, the recoveries reported in [Sch+18] might have been overly optimistic

compared to our tests.

We do not suspect the change in number of epochs or sampling pattern

to negatively impact the performance. Even though we trained for far fewer

epochs, each epoch consist of more iterations, bringing the total number of

iterations up6. We stopped the training after 40 epochs as we no longer saw

meaningful changes to the validations loss, suggesting that we were about to

enter an overfitting phase. The change of sampling pattern was a conscious

decision as a Gaussian sampling pattern preserves more details and produces

less artifacts when recovering with the adjoint compared to the original pattern

in [Sch+18].

Performance reduction for Parseval DeepMRINet
The noticeable reduction in performance for the Parseval DeepMRINet might

indicate that the Parseval constraint is a very strict regularization scheme. When

we limit how much an error can propagate, we also limit the expressiveness of

6

Asmentioned on page 56, we trained for a total of 10 236 iterations, while [Sch+18] was trained

with a batch size of 1, using 150 images for 200 epochs resulting in 30 000 iterations – which is still

more, but not in terms of an order of magnitude as it might initially seem when only comparing

epoch numbers.
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the model, not unlike the previously mentioned bias-variance trade-off (page

41).

A danger of limiting all the layers in the network to be contractions, is that

we risk the output of each layer to get exponentially smaller. Thus, the scale of

the output of the neural network in a denoiser could be small compared to the

scale of the input image, so when summing them, the contribution from the

network is largely neglected (recall Equation (3.14) on page 30 and the refined

version in Equation (5.12) on page 53).

However, we have not adjusted the architecture or hyper-parameters when

applying the Parseval constraints (other than the ones necessary to apply the

constraints). It is not unreasonable to think that we should adjust some of

the hyper-parameters when we add the Parseval update steps and scalings, in

addition to changing the initialization scheme. There could be an architecture

and a set of hyper-parameters where a Parseval denoiser would perform as

well as non-Parseval denoiser. We will however not investigate this further in

this thesis.
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CHAPTER 7

Conclusions

In this thesis we have reviewed some of the theory and practices in Deep

Learning for MRI reconstruction (Chapter 3), as well as some preliminary

theory on Compressive Sensing techniques (Section 2.1). We have reviewed

recent research regarding the stability of such methods (Section 4.2), and

reproduced some of their results (Section 6.2).

In addition, we have reviewed a recently proposed regularization technique

for classification networks meant to increase stability towards adversarial

attacks (Chapter 5). We have extended the theory behind this regularizer to

cover convolutional layers as they appear in modern Deep Learning (page 44),

and provided an implementation of Parseval training as a free and open source

software library for Python with TensorFlow1. We have used this to introduce

Parseval denoisers as a recovery scheme for undersampled MR images.

We have seen that by applying the Parseval retraction step during training,

we achieve amore stable recovery scheme (Figure 6.7) that does not significantly

amplify noise (Table 6.1), while we seem to sacrifice some reconstruction

capability (Figure 6.10). However, as discussed on page 67 of Section 6.4, we

have not performed an extensive test of architectures and hyper-parameters.

Hence there could exist an architecture and a set of hyper-parameters where

Parseval denoisers would perform on-par with state-of-the-art Deep Learning

based approaches. We leave the search for such parameters for future work.

1

Available at GitHub: https://github.com/mathialo/parsnet, as well as on the Python

Package Index. See Appendix B.1 for more details.
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APPENDIX A

Supplementary Material

A.1 Neural Networks for Classification
In this section, wewill showhowneural networks can be applied as classificators.

Classification is a supervised learning problemwhere the output is a categorical

variable, often called the class or label of the input. We always know the set of

possible classes a priori.

When using neural networks for classification, we let the last layer have

dimensionality identical to the number of classes. We want the last layer to be

a discrete probability distribution depicting how likely the input is to be of the

different classes. The prediction made is then the arg max of this output vector.

A vector is a discrete probability distribution if all elements are non-negative

and sum to 1. To achieve this, it is very common to use the softmax function,

defined as

s(a) j �
ea j∑
i eai

(A.1)

as the activation in the last layer.

Classification networks often employ additional layers not typical for de-

noising networks. One example is pooling layers. Pooling can be viewed as a

type of non-linear sampling, reducing spatial dimensionality in some way. The

most common pooling types are max pooling and average pooling. In 1D, max

pooling with stride 2 is defined as

maxpool
2

x �


max {x

1
, x

2
}

max

{
x

3
, x

4

}
...

max {xn−1
, xn}

 (A.2)

Average pooling works the same, but with means instead of maximums. This

extends to higher dimensions in the obvious way. For example, 2D pooling

will work on m × n patches. Pooling are typically applied before the activation

function. Note that since all the typical activation functions are increasing

(recall Equation (3.3) on page 19), we have that

ρ(maxpool
2

x) � maxpool
2
ρ(x)

So it does not make a difference if we apply max pooling before or after the

activation. However, the same is not true for average pooling.
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Since the output is categorical, we often interpret it as a whole number

between 1 and the number of classes C. However, during training it is often

convenient to use the one-hot encoding of the output instead. The one-hot

encoded version of the class y is a vector of length C consisting of 0s, except for

a 1 on index y. That is, the one-hot version y′ of a class y is given as

y′ �
[
I(y � i)

] i�C
i�1

where I(·) depicts the indicator function.
One immediate loss function using the one-hot encoding is to take the MSE

between the one-hot encoded class and the output probability distribution

from the network:

L(θ | x
1
, . . . , xn , y

1
, . . . , yn) �

1

n

n∑
i�1

‖y′i −Φθ(x)‖
2

2

Another commonly used loss function for classification is the cross-entropy loss,
defined as

L(θ | x
1
, . . . , xn , y

1
, . . . , yn) �

1

n

n∑
i�1

©«−
C∑

j�1

(y′i) j log(Φθ(xi) j)
ª®¬ (A.3)

Both assume that the softmax have been applied to the last layer.
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APPENDIX B

Implementation Details

In this chapter we will give some details on our implementations for the

proposed method, as well as how selected figures are generated. Throughout

we will be using Python 3.5, with the following external libraries:

• TensorFlow version 1.8

• NumPy version 1.16.2

• matplotlib version 3.0.3

B.1 Parseval Denoisers
To implement general Parseval Denoisers in TensorFlow we need two compo-

nents, namely Parseval training (Algorithm 5.1, in particular Equation (5.11))

and optionally a trainable convex combination (Equation (5.13)).

All of the classes and functions described in this section is available as a

library for Python 3 called parsnet. It is available from the Python Package

Index (PyPI), and is thus installable with pip:1

$ pip install parsnet

The source code is available at the author’s GitHub page2 and is licensed under

the free Lesser GNU Public License version 3 (LGPLv3).

Equation (5.11)
Since version 1.5, TensorFlow has included a Constraint class and the associ-

ated kernel_constraint keyword argument for most layer constructors. We

will use this framework for our implementation of Parseval training.

1 from tensorflow.python.keras.constraints import Constraint
2 from tensorflow.python.ops import math_ops, array_ops
3
4
5 class TightFrame(Constraint):
6 """

1

Depending on your Python installation, you might need to run this command as root or with

the --user flag. You will also have to specify pip3 if Python 2 is your standard system version.

2https://github.com/mathialo/parsnet
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7 Parseval (tight) frame contstraint , as introduced in
8 https://arxiv.org/abs/1704.08847
9
10 Constraints the weight matrix to be a tight frame, so that the Lipschitz
11 constant of the layer is <= 1. This increases the robustness of the network
12 to adversarial noise.
13
14 Warning: This constraint simply performs the update step on the weight matrix
15 (or the unfolded weight matrix for convolutional layers). Thus, it does not
16 handle the necessary scalings for convolutional layers.
17
18 Args:
19 scale (float): Retraction parameter (length of retraction step).
20 num_passes (int): Number of retraction steps.
21
22 Returns:
23 Weight matrix after applying regularizer.
24
25 Raises:
26 ValueError: If input numbers are illegal
27 """
28
29
30 def __init__(self, scale, num_passes=1):
31 self.scale = scale
32
33 if num_passes < 1:
34 raise ValueError(
35 "Number of passes cannot be non-positive! (got {})".format(num_passes)
36 )
37 self.num_passes = num_passes
38
39
40 def __call__(self, w):
41 # CNN layers have 4D weight tensors, dense layers have 2D
42 need_unfolding = (len(w.shape) == 4)
43
44 # Do unfolding operator
45 if need_unfolding:
46 w_reordered = array_ops.reshape(w, (-1, w.shape[3].value))
47 else:
48 w_reordered = w
49
50 # Do update step on (unfolded) weight matrix
51 last = w_reordered
52 for i in range(self.num_passes):
53 temp1 = math_ops.matmul(last, last, transpose_a=True)
54 temp2 = (1 + self.scale) * w_reordered
55 temp3 = temp2 - self.scale * math_ops.matmul(w_reordered , temp1)
56
57 last = temp3
58
59 # Undo the unfolding to recast the output back to a 4D tensor if necessary
60 if need_unfolding:
61 return array_ops.reshape(last, w.shape)
62 else:
63 return last
64
65
66 def get_config(self):
67 return {"scale": self.scale, "num_passes": self.num_passes}

We can then make TensorFlow apply the the Parseval retraction step after each

iteration during the training by passing an instance of the TightFrame3 class to
the kernel_constraint keyword argument of the layer constructor as such:

1 last_layer = tf.layers.conv2d(
2 inputs=last_layer ,
3 kernel_size=(3, 3),
4 filters=64,
5 strides=(1, 1),
6 padding="SAME",
7 activation=tf.nn.relu,
8 kernel_initializer=tf.initializers.orthogonal(),
9 kernel_constraint=parsnet.constraints.tight_frame(0.001),
10 ) / 3

3

Aliased as tight_frame in the parsnet library for consistency with the rest of the TensorFlow

API.
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Note: Since TensorFlow version 1.13, this way of constructing neural network

layers have beendeprecated4. However, the TightFrame class is fully compatible

with the new object-oriented API5 as well.

Equation (5.13)
To implement a convex combination with a trainable convex parameter we will

follow the idea from page 53:

1 from tensorflow.python.ops import math_ops
2 from tensorflow.python.ops import variables
3 from tensorflow.python.framework import dtypes
4 import numpy as _np
5
6
7 def convex_add(input1, input2, initial_convex_par=0.5, trainable=False):
8 """
9 Do a convex combination of input1 and input2. That is, return the output of
10
11 lam * input1 + (1 - lam) * input2
12
13 Where lam is a number in the unit interval.
14
15 Args:
16 input1 (tf.Tensor): Input to take convex combinatio of
17 input2 (tf.Tensor): Input to take convex combinatio of
18 initial_convex_par (float): Initial value for convex parameter. Must be
19 in [0, 1].
20 trainable (bool): Whether convex parameter should be trainable
21 or not.
22
23 Returns:
24 tf.Tensor: Result of convex combination
25
26 Raises:
27 ValueError: If initial_convex_par is outside of legal limit.
28 TypeError: If types are incorrect
29 """
30 # Find value for p, also check for legal initial_convex_par
31 if initial_convex_par < 0:
32 raise ValueError("Convex parameter must be >=0")
33
34 elif initial_convex_par == 0:
35 # sigmoid(-16) is approximately a 32bit roundoff error, practically 0
36 initial_p_value = -16
37
38 elif initial_convex_par < 1:
39 # Compute inverse of sigmoid to find initial p value
40 initial_p_value = -_np.log(1/initial_convex_par - 1)
41
42 elif initial_convex_par == 1:
43 # Same argument as for 0
44 initial_p_value = 16
45
46 else:
47 raise ValueError("Convex parameter must be <=1")
48
49 p = variables.Variable(
50 initial_value = initial_p_value ,
51 dtype=dtypes.float32,
52 trainable=trainable
53 )
54
55 lam = math_ops.sigmoid(p)
56 return input1 * lam + (1 - lam)*input2

4https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/layers#
functions

5https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/keras/layers#
classes
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B.2 Figures
We will now give short descriptions of how some of the figures in the thesis are

generated, as well as provide example Python code. Throughout we will use

the NumPy format for storing arrays (NPY)6 for loading and saving matrices

and images. The conversion from NPY to an image format, such as PNG, will

be omitted.

Figures 2.1 and 2.3
Given an image x, a sampling patternΩ and ameasurement operator A � PΩFn ,

we compute the adjoint-recovered x̃ as

x̃ � A∗Ax � F−1

n PT
ΩPΩFnx

In practice, we implement this as an FFT, zeroing our all the coefficients that

are not in Ω, followed by an IFFT.

If pattern.npy contains a boolean matrix depicting Ω and phantom.npy
depicts an image, the following code will compute the above equation:

1 import numpy as np
2
3 shepp_logan = np.load("phantom.npy")
4 sampling_pattern = np.fft.fftshift(np.load("pattern.npy"))
5
6 # F_n
7 samples = np.fft.fft2(shepp_logan)
8
9 # P^T P
10 samples[np.logical_not(sampling_pattern)] = 0
11
12 # F^{-1}
13 recon_adj = np.fft.ifft2(samples)
14
15 np.save("phantom_adjoint_recovery.npy", recon_adj)

Figure 2.2
To compute theDWTof imageswewill use the tfwavelets package for Python7.

Given an image lily.npy, we can compute the DWT of the image using the

functions in the wrappersmodule of tfwavelets:

1 import tfwavelets as tfw
2 import numpy as np
3
4 image = np.load("lily.npy")
5
6 level1 = tfw.wrappers.dwt2d(image, "haar", 1)
7 level2 = tfw.wrappers.dwt2d(image, "haar", 2)
8
9 np.save("lily_dwt_1.npy", level1)
10 np.save("lily_dwt_2.npy", level2)

6

More information about NPY can be found at https://www.numpy.org/devdocs/reference/
generated/numpy.lib.format.html

7

A joint project between the author and Kristian Monsen Haug. Available at https://github.
com/UiO-CS/tf-wavelets
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Figure 3.4
A spline is essentially a piece-wise polynomial, the joint between consecutive

polynomial pieces is often called a knot. To overfit data using splines we create

a very dense knot vector, meaning the interval of each polynomial is very small.

We are using cubic polynomials in each interval, and constraining the joints to

have continuous 1st and 2nd derivatives to achieve a smooth spline. We are

using the author’s own library for spline computations8. The following code

produces a plot similar to Figure 3.4b:

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import splinelib as spl
4
5 # Draw points from a quadratic model, and add gaussian noise
6 xs = np.linspace(0, 4, 25)
7 ys = -xs**2 + 4*xs + np.random.normal(loc=0, scale=.4, size=xs.size)
8
9 # Create data matrix with data series as columns as splinelib demands
10 data = np.vstack([xs, ys]).T
11
12 # Create an overly general spline space using way too many knots
13 degree = 3
14 knot_number = 83
15 knots = spl.fit.generate_uniform_knots(
16 spl.fit.cord_length(data),
17 degree,
18 knot_number
19 )
20
21 # Find the least squares fit using the above spline space
22 spline = spl.fit.least_squares(
23 data,
24 knots,
25 degree
26 )
27
28 # New figure, add points and plot
29 plt.figure(figsize=[4, 3])
30 plt.scatter(xs, ys)
31 plt.plot(plotx, np.squeeze(spline(plotx)))
32 plt.tight_layout()
33 plt.savefig("overfit_fitted.pdf")

Figure 4.1
In this example we are using a pre-trained version of the ResNet-50 network

in [He+16], trained on the ImageNet database [Rus+15]. To generate the

adversarial noise we use the Foolbox package for Python [RBB17], which is

a collection of many popular adversarial attack algorithms for classification

networks. We also used Keras instead of TensorFlow since Keras comes with

built-in pre-trained models. In order to get a proper misclassification we set

a target class manually, and find a perturbation that will lead us there. The

following code produces a perturbation similar to the one found in Figure 4.1:

1 import foolbox
2 import keras
3 import numpy as np
4 from labeldict import labels
5
6 # Get pretrained resnet model from TF
7 model = keras.applications.ResNet50()
8
9 # ResNet requires this weird preprocessing:
10 subtract = np.array([104, 116, 123])
11
12 # Create fooling object

8

Available at https://github.com/mathialo/splinelib
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13 foolmodel = foolbox.models.KerasModel(model, bounds=(0, 255), preprocessing=(subtract , 1)
)

14
15 # Get sample image
16 image, label = foolbox.utils.imagenet_example()
17
18 # Apply attack (-1 is to reverse channel numbering to BGR as demanded by ResNet)
19 attack = foolbox.attacks.LBFGSAttack(foolmodel , criterion=foolbox.criteria.TargetClass

(22))
20 adversarial = attack(image[:, :, ::-1], label)
21 new_label = np.argmax(model.predict(np.expand_dims(adversarial -subtract , 0)))
22
23 # Print labels
24 print("Original label: {}".format(labels[label]))
25 print("Perturbed label: {}".format(labels[new_label]))
26
27 # Save results
28 np.save("deepfool_original.npy", image)
29 np.save("deepfool_perturbed.npy", adversarial[:,:,::-1])
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