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Abstract

Recovering signals from undersampled measurements is a well-studied topic in
mathematics. During the last decade, many attempts have been made to solve
this problem using machine learning, with resulting reconstruction models that
report remarkable performance. However, recent work have revealed major
systematic stability issues with these models, such as the instability towards
adversarial noise. That is, given an image which a neural network can recover
correctly, we can easily create a tiny perturbation so that the perturbed image
produces severe artifacts during recovery.

Similar phenomena are well-established for classification networks, and
subsequently several regularization methods for reducing the instabilities
of classification networks have been proposed. In this thesis we investigate
Parseval networks, in which the every layer is constrained to be a contraction,
thus limiting how much a perturbation can be amplified through the network.
We adapt these techniques to image reconstruction networks and show that
while we seem to sacrifice some performance, the resulting networks do not
exhibit the same instabilities.
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Provided Code

The main result of this thesis is the proposal of Parseval regularizers for image
reconstruction networks. To make this method as accessible as possible, we
have released the code necessary for anyone to include these techniques into
their own work as an open source Python package, available through the
Python Package Index. To install it on your own machine, the following pip
command should suffice:

$ pip install parsnet

The parsnet package should now be available on your system. Depending on
your Python installation, you might have to run the above command as root, or
with the --user flag. This package introduces the tight_frame class which
implements the methods derived in Chapter 5 as a plug-and-play extension
to TensorFlow. Details on implementation, licensing and how to include the
proposed method in your own work are found in Appendix B.1.

In addition we have released the total body of code as a separate git
repository, consisting of all the scripts necessary to reproduce any of our
presented results. This is available at the authors GitHub page!.

1https ://github.com/mathialo/master_code
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CHAPTER 1

Introduction

In Magnetic Resonance Imaging (MRI), signal acquisition time often pose a
problem. This is both expensive for the hospital, and uncomfortable for the
patients as one have to lie still for the whole procedure.

In short, MRI works by subjecting a patient to a strong magnetic field.
This forces hydrogen protons to align either with or against the direction of
the magnetic field, which is usually the same as the z-axis. However, due to
angular momentum, the magnetic moment of each each proton will rotate
around the z-axis instead of aligning perfectly. Hence, the proton’s magnetic
moment will rotate at individual phases, causing the net magnetization of
all protons to be along the z-axis as all other directions will cancel out. The
MRI machine then sends a pulse of Radio Frequencies (RF) which cause the
hydrogen protons magnetic moments to synchronize their phases. This in turn
causes a component of the net magnetization vector in the xy-plane which can
be detected by the MRI machine as an RF wave. Once the RF pulse stops, the
individual magnetic moments will de-phase, causing the net magnetization
vector to once again be along the z-axis. Different types of tissue will de-phase
differently, and an MRI machine detects these RF frequencies [Flo12, Sec. 7.6].

Hence, an MRI machine does not sample image pixels directly, but rather as
frequencies, which from a mathematical perspective is the same as saying that
an MRI machine measures the signal in the 2D Fourier basis, instead of the
standard basis. An inverse Fourier transform is performed on the measured
frequencies, yielding the resulting image.

Traditional signal processing gives a lower bound on the number of MRI
measurements required through Shannon and Nyquist’s sampling theorem.
However, many attempts have been made to cheat this bound, some of the most
notable methods are Compressive Sensing (CS) and Deep Learning (DL).

Introduced in [CT06; CRT06; Don06], Compressive Sensing places some
additional assumptions on the signal we are recovering, and can make do with
way fewer measurements than traditional signal processing. We will discuss
CS in further detail in Section 2.1, but in short CS makes fewer measurements,
and solves a costly optimization problem to recover the signal. Hence, we can
trade off time spent by the patient in an MR scanner, with computation time
afterwards.

This is a huge improvement for both the patient and the hospital, but the
long computation times in modern CS have led to searches for other approaches
to undersampled signal recovery. With the explosion in popularity around
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Machine Learning (ML) in the last years, another approach have emerged,
namely using Deep Learning Denoising.

In this approach, we first do a very quick and crude recovery of the image
using the adjoint of the measurement operator as an estimate for the inverse.
This reconstruction will be very fast, but will leave many artifacts on the
resulting image due to aliasing from the severe undersampling (as shown in
Figures 2.1 and 2.3). These artifacts can be then removed using a Deep Learning
Denoiser.

Several researchers have found apparent success with this approach, and
report remarkable reconstruction capabilities [Sch+18; Yan+18; MJU17]. These
recovery algorithms will typically use several days to train, but once they are
trained they can recover images from measurements in mere seconds.

However, recent work have uncovered a systematic flaw in these recovery
methods, namely stability issues [Ant+19]. The authors discuss three different
kinds of instabilities in modern state-of-the-art ML-based recovery schemes:

1. Instability to adversarial attacks
2. Inability to recover unexpected details successfully

3. Instability to sampling rate and patterns

So-called Adversarial attacks regard finding a perturbation 6 for an image x
such that the recovery of x works fine while the recovery of x + 6 leads to severe
recovery errors, even though x and x + 6 might be nearly indistinguishable.
This is a known flaw of Deep Learning-based classifiers, where a small change
in the input image can cause the classifier to misclassify the image in often very
unexpected ways [FMF17; MFF16].

The inability to recover unexpected details may not be very surprising to
readers with a statistical background, but is still a very important form of
instability. The authors of [Ant+19] performed experiments were the text “can
u see it ©” were superimposed on real MR images and fed through different ML-
based recovering schemes, and in most cases the text came out unreadable. As
these algorithms have never seen such text before, it is not very surprising that
the recovery does not work well'. However, these experiments demonstrate an
important fact: The main reason to do an MRI scan is to check for abnormalities.
If some unexpected detail, such as a tumor, can cause the reconstruction to fail,
this should be taken very seriously.

One can of course argue that this instability can easily be fixed by making
sure that any kind of abnormality is presented to the algorithm during training.
However, this will not fix the underlying problem that previously unseen
details can cause instability in the reconstruction.

The instability towards the choice of sampling pattern (i.e. how the signal
is sampled) is somewhat expected, as different sampling patterns produce
very different artifacts (see Figure 2.3). The instability towards sampling rate,
however, may seem more unintuitive. In some cases, such as for [Yan+18],
the authors of [Ant+19] report that an increase in sampling rate results in a
decrease of reconstruction capability.

IThe nature of all machine learning is to extrapolate patterns from examples, and when none of
your given examples contain a feature it is not surprising that this feature is not handled correctly

2



State-of-the-art Compressive Sensing does not exhibit these same insta-
bilities, as we have clear bounds on how large an error can amplify during
the reconstruction (see the Further reading section at page 12). The authors of
[Ant+19] also provided examples of reconstruction of perturbed inputs using
modern Compressive Sensing techniques to illustrate this fact?.

In this thesis we will focus mainly on the instability towards adversarial
attacks.

On Notation and Terminology

During the exploding interest of Machine Learning the last decade, the commu-
nity have suffered from some growing pains. As there have been a huge push
to publish new methods, in many cases being the first is more important than
making sure all the details are correct. Further, many central, important and
widely cited works are not published in traditional peer-reviewed journals, but
as conference papers, or even merely uploaded to an online preprint archive
such as arXiv.

This have led to some important problems with the Machine Learning
literature [LS18], especially to readers with a mathematical background. Most
notably:

Misuse and overloading of terminology Several terms found in ML literature
are used to mean different things than their original mathematical definition.
For example, the use of the term convolution in Convolutional Neural Networks
(see Remark 3.7 on page 22) is used to mean a correlation, and deconvolution is
used to mean transposed convolutions, or to be precise, transposed correlations (see
Footnote 11 on page 33).

Whenever such differences exist between the use of a term in ML literature,
and the actual mathematical meaning of the term we will give a remark, and
specify which of these we will continue to use.

In addition, notions with an already established term are given new names,
such as learning rate, which is used to mean the step length in an optimization
problem. Other terms can be used to mean two different things, such as the
word adversarial, which can mean two networks trained together in competition
(see the subsection for the DAGAN network on page 33), or the creation of
malicious attacks against a neural network (see Section 4.2).

Lack of proofs and theoretical justification In many papers, the authors often
omit theoretical results in favor of empirical results and showing examples.

In some cases, a proof is given, but the nature of the result and proof makes
it of little to no use for practical Machine Learning. Some examples of this
include the constant referring to the Universal Approximation Theorem (UAT)
(Theorem 3.2), which does not cover modern neural networks (see Remarks 3.4
to 3.6 on page 21), is non-constructive, and merely states that neural networks
are dense in C(S) (the space of continuous functions on a compact subset

2Although it is worth noting that the perturbations they test against were constructed with the
deep learning models in mind.
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S c R")3. Another example is the paper introducing the Adam optimizer
[KB14], which gives a proof of convergence when the objective function is
convex. However, for training neural networks, the objective function is rarely
convex, thus the result does not actually prove that Adam will work well for
training neural networks.

In other cases, techniques are used with no formal proofs or theoretical
justification. Revisiting Adam, the use of momentum and rescaling in combina-
tion have no clear theoretical motivation [GBC16, Sec. 8.5.3], but seem to work
well in practice.

Mathematical mistakes Some times, mathematical mistakes or oversights
are included in published works. The most notable example is perhaps the
previously mentioned proof in [KB14], which were later shown to be wrong in
[RKK18].

Another example we found while working with this thesis is the oversight
that two of the loss functions in [Yan+18] are identically equal, even though
they are presented as different functions (see Remark 3.9 on page 35).

Our Contributions

In this thesis we will explore how recent work regarding the stability of deep
learning classification against adversarial attacks [Cis+17] can be adapted and
applied to Deep Learning Denoisers. We will introduce Parseval reconstruction
networks as a proposed method to reduce the instabilities of MRI reconstruction
networks with regards to adversarial attacks, and provide empirical experiments
to test their effectiveness.

As [Cis+17] did not provide any code to reproduce and further develop
their findings, we have reimplemented all the necessary functionality and
released it as a free, easy-to-use software package for Python 3 and TensorFlow,
licensed under the LGPLv3 license, and available at the author’s GitHub page*
or through the Python Package Index. See Appendix B.1 for details.

The total body of code used throughout the thesis to perform computations,
experiments, generate figures and so on have been made available as a separate
GitHub repository?®.

Thesis Outline

e In Chapter 2 we will define reconstruction of MR Images as Inverse
Problems, and briefly discuss how to solve them using the traditional
Compressive Sensing theory.

e Chapter 3 is an introduction to Neural Networks, and how modern
research are using them to solve MRI reconstruction.

3I"olynomials are also dense in C(S), they are however not as frequently used in machine
learning as neural networks. If the UAT were the sole reason Neural Networks are performing so
well, we should in principle be able to achieve the same results using only polynomials.

4https ://9ithub.com/mathialo/parsnet
5https ://github.com/mathialo/master_code
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In Chapter 4 we will look at numerical stability. We will discuss weak-
nesses in the methods from Chapter 3, particularly how the addition of
carefully picked noise can produce severe artifacts in the reconstruction.

Chapter 5 will propose Parseval reconstruction networks for recovering
undersampled MR images, heavily influenced by recent work in classi-
fication networks [Cis+17]. We will constrain each layer in the Neural
Network to be a contraction, limiting the amount an error can amplify.

Chapter 6 contains experimental validation of the methods outlined in
Chapter 5.

In Chapter 7 we conclude, and point to future work.






CHAPTER 2

Undersampled Signals

Traditional signal processing follows Shannon and Nyquist’s sampling theorem.
It states that if the sampling frequency is at least twice the highest frequency
present in a signal, the signal can be recovered perfectly from samples by
interpolating with sinc functions. However, by changing the recovery method
from sinc interpolation to other techniques, we can in some circumstances
undersample the signal while still being able to fully recover it.

We begin our study of undersampled signals by formulating the problem as
an inverse problem. Let x € R" be some image!, let A € R"™*" be a matrix repre-
senting how measurements are taken, and let y = Ax € R" be measurements of
x. If m = n, there is a chance that the measurement operator A is invertible, and
we could recover the original image as x = A'y. However, when working with
undersampled signals, we have that m < 1, so A cannot possibly be invertible.

However, we would still like to recover x from y. Solving the inverse
problem amounts to constructing a mapping B: R” — R" which estimates an
inverse of A, at least on a certain subset of R”.

One immediate idea for a solution is to use the adjoint of the measurement
operator as an estimate for the inverse. This however gives back a rather noisy
image, resulting from aliasing due to the severe undersampling. This effect is
illustrated in Figure 2.1.

In the remainder of this chapter we will present Compressive Sensing (CS)
as a general recovery scheme for undersampled signals, and briefly show how
we can apply CS to MRI reconstruction. Later, in Section 3.4, we will look at
how Deep Learning can be used to solve the same problem.

2.1 Compressive Sensing

The field of Compressive Sensing has exploded in the last decade, after the
initial publications by Candes, Tao, Romberg and Donoho [CT06; CRT06;
Don06]. CS has proven itself to be a reliable way to recover undersampled
signals, and in 2017 the United States Food and Drug Administration approved
the use of CS in commercial MRI machines [FDA17; Siel7].

]Normally, one thinks of images as two-dimensional signals (ie, as matrices). However, for the
time being, we will consider a vector where all the columns of the original image matrix have been
stacked.
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(@ The Shepp-Logan (b) Sampling pattern Q (c) Naive reconstruction:
phantom, ie our input x=A'y = A"Ax
signal x

Figure 2.1: Reconstruction with the adjoint.

Before we introduce the main concepts in CS, the following definitions
will introduce some necessary terminology. As we will switch back and forth
between real and complex cases, we will introduce the first notions for a general
field K, which can be either R or C.

Definition 2.1. The support of a vector v € K" is defined as the index set
of its non-zero entries, that is:

suppv={i€{l,2,...,n}|v; #0}

Throughout the thesis we will use ||v||, = |supp v| to denote the cardinality
of the support set, ie the number of non-zero entries. We will call this the
Lo-norm, even though [|-||, is strictly speaking not a norm as it fails to comply
with the scaling property for norms. This misuse of terms is quite normal in
the CS literature.

Definition 2.2. A vector v € K" is said to be s-sparse if it has no more than
s non-zero entries, that is if ||v||, <'s.

To recover an undersampled signal with CS, we will assume the original
signal to be sparse. Since the main topic for this thesis is not CS, we will give
a slightly simplified introduction. At the end of this section, we will discuss

these simplifications, and point to further reading on how to circumvent them.

. s s . X
Given an original signal x € C", a measurement operator A € C""", and

measurements y = Ax € Cm, we seek to reconstruct x from y. However, since
m < n the linear system
Ax =y (2.1)

is under-determined and has an infinite number of solutions. In order to pick
a solution from this solution space we will assume the original signal to be
sparse, and pick the sparsest solution to Equation (2.1). In other words, we
wish to solve the following optimization problem:

8
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min ||z]|, subject to Az = Ax (Py)
zecN

However, £, optimization is known to be NP-hard in general?. Since this makes
(Py) intractable, we will solve the convex relaxation of (Py) instead:

min ||z]l; subject to Az = Ax Py)
zecN

Solving inverse problems by solving (P;) is known as Basis Pursuit (BP) [FR13,
Chapter 4].

Guaranteeing correctness of recovered signals

Guaranteeing the success of Basis Pursuit can be split into two sub-problems.
First, we must guarantee that (P,) has a unique solution. Second, we must
ensure that the relaxation (P;) also has a unique solution, and that the signal
realizing the solution to (P;) also realizes the solution to (Py).

We begin by showing when (P,) has unique solutions:

Theorem 2.3. If the following equality holds:
{z eCN | Az = Ax, ||zl|, < s} = {x)

That is, if x is the unique s-sparse solution to (P,), then the number of measurements
m (ie, the number of rows in A) must satisfy m > 2s.

Before proving this theorem, we need the following lemma (stated as part of
Theorem 2.13 in [FR13]):

Lemma 2.4. Every s-sparse vector x is the unique s-sparse solution to (P) with
y = Ax if and only if every set of 2s columns of A is linearly independent.

Proof. Assume that every s-sparse vector x is the unique s-sparse solution to
(Pg) with y = Ax. Let v € ker A be 2s-sparse, and let x and z be two s-sparse
vectors with supp x N supp z = @) such that v = x — z. Then,

0=Av=A(x—-2z)=Ax—-Az = Ax=Az

and by assumption, x = z. Since x and z have disjoint supports, it follows that
x = z = 0 and that v = 0. Hence the only 2s-sparse vector in ker A is 0. Thus,
for any set S with |S| = 2s we have that the linear set of equations

Asx:()

has a unique solution, and by the Invertible Matrix Theorem, it follows that
any selection of 25 columns of A must be linearly independent.

ZA proof of the NP-hardness of (P) can be found in Section 2.3 of [FR13], and is obtained by
reducing (P,) to the exact cover by 3-sets problem, which is known to be NP-complete.
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Conversely, assume that every set of 2s columns of A is linearly independent.
By the Invertible Matrix Theorem we have that

kerAn {v eC" ||vlly < 25} = {0}
Now, let x, z be s-sparse with Ax = Az. Then, x — z is 2s-sparse, and
Ax=Az = 0=Ax-Az=A(x—12)

and since the kernel of A does not contain any other 2s-sparse vectors than
0, we have that x = z, which establishes the uniqueness of the solution and
concludes the proof. ]

Proof of Theorem 2.3. Assume that it is possible to uniquely recover any s-sparse
vector x from the knowledge of its measurement vector y = Ax. Then, by
Lemma 2.4, we have that every set of 2s columns of A must be linearly
independent. This implies that rank A > 2s. From linear algebra we know
that the rank of a matrix can not be bigger that the number of rows m, hence
rank A < m. Combining this, we get that

2s <rank A < m
which concludes the proof. ]

Next up, we will show when Basis Pursuit actually solves (P). We begin by
introducing the Null Space Property:

Definition 2.5. A matrix A € K™V is said to satisfy the Null Space Property
(NSP) relative toaset S c {1,2,...,N}if

lvslly < llvglly forallv e ker A\ {0}

It is said to satisfy the Null Space Property of order s if it satisfies the null space
property relative to any set S  {1,2,..., N} with |S| < s

The following theorem and corollary shows that the NSP will be a sufficient
condition for our measurement operator in order to ensure the success of Basis
Pursuit.

Theorem 2.6 [FR13, Thm. 4.4]. Given a matrix A € K" xN every vector x € KN
supported on a set S is the unique solution to (P;) with y = Ax if and only if A
satisfies the NSP relative to S.

Proof. We will begin by proving that if a vector x supported on S uniquely
solves (P,), then A satisfies the NSP relative to S.

Given an index set S, assume that every vector x € KN supported on S is
the unique solution to

min llz|l; subject to Az = Ax (Py)

zeC

10
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Since ker A is a subspace of K, it is clear that for any v € ker A \ {0}, the vector
v is the unique solution to

min llz|l; subjectto Az = Avg (2.2)

zeC

Because v € ker A, we have that Av = 0, which means that A(vg + vg) = 0,
giving us that A(-vg) = Avg. Hence it is clear that —vg is also a feasible
solution to (2.2), but since vg is assumed to be the unique optimal solution
to (2.2), we get that ||vg|l; < [[-vgll;. Since ||-|l; is a norm, we have that
l-vglly = [-1]llvglly = llvglly. Thus, we arrive at the following inequality:

Ivsll < Ilvslly

This establishes the NSP for A, relative to S.
To prove the other implication, assume first that the NSP holds for A, relative

to a given set S. Let x be a vector in KN supported on S. Letz € KN be a vector
that satisfies Ax = Az, and assume that x # z. Our goal will be to show that
||z|l; must be strictly bigger than ||x||;, which will prove the uniqueness of the
solution.

Define v = x — z. Since Ax = Az, we have that
0=Ax—-Az=A(x—2z)=Av

This means that v € ker A. Since x # z, we also have that v # 0. If we use the
triangle inequality of norms, as well as the definition of v, we obtain

lIxlly = [Ix =25 + 25l < lIx = zsll + llzslly = lIvsll + llzslly

Now, using the assumption that A satisfies the NSP relative to S we get the
next inequality
llvslly + llzglly < llvglly + llzslh

Using the definition of v and z again, we arrive at our final result:
lvglly + llzslly = lIxg — z5lly + llzslly = [I-zgll + llzgll = llz[ly

This proves that ||x||; < ||z||; for any z € KN satisfying Ax = Az and x # z. This
establishes the required minimality of ||x||;, and thus the uniqueness of the
solution. O

Theorem 2.6 is not in itself a sufficient guarantee of correctness, but if we let
the set S vary, it immediately yields a more general result:

Corollary 2.7 [FR13, Thm. 4.5]. Given a matrix A € K™V, every s-sparse

vector x € KN is the unique solution to (P;) with y = Ax if and only if A satisfies
the NSP of order s.

Before we prove this result, we will give a small remark: Corollary 2.7 shows
that if A satisfies the NSP of order s, the £;-minimization strategy of (P;) will
actually solve (P) for all s-sparse vectors.
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2. Undersampled Signals

Proof of Corollary 2.7. Assume every s-sparse vector x € KN is the unique
solution to (P;). Then, for every set S with |S| < s we can find a vector x' € K
supported on S which is the unique solution to (P;). By Theorem 2.6 we then
have that A must satisfy the NSP relative to S. Since this is true for all S with
|S| <'s, A must satisfy the NSP of order s.

Conversely, assume that A satisfies the NSP of order s. Then, from Defi-
nition 2.5, we have that A satisfies the NSP relative to S for every set S with
|S| < s. From Theorem 2.6 we have that a vector x € K" is supported on S only
if it is the unique solution to (P;). Since this is true for any set S with |S| <'s, it
is true for any s-sparse vector. ad

Further reading: In this introduction, we have made some simplifying as-
sumptions which will not hold up in the real world. First, we have assumed
the signal to be uniformly sparse. That is, the non-zero entries in the signal have
been assumed to be located at any index with the same probability throughout.
Any reader familiar with sparsifying transforms, such as the discrete wavelet
transform, will know that this is not the case. Normally, we will have some
areas in the signal with a higher density of non-zero entries®. Recent work in CS
have approached this problem by introducing sparsity in levels and associated
results [Adc+17]. This is often referred to as Structured Compressive Sensing.

Second, we have assumed the signal to be sparse. However, in reality
coefficients are rather almost 0 than exactly 0. We call such vectors compressible.
Also, when working with real-valued numbers on a computer, measurement
errors are unavoidable. This poses several challenges, such as the equality
constraint in (P;). We can solve this issue by introducing a small error term
€ > 0, and defining the following revision of (P;):

mirN1 llzl|; subject to||Az — Ax|| < ¢ (Pye)
zeC

Extensions to the NSP exist, such as the Robust NSP [FR13, Def. 4.17] which
gives an upper bound on the reconstruction error when compressibility and
measurement errors are taken into account [FR13, Thm. 4.19].

Modern, state-of-the-art CS also sometimes employs regularization tech-
niques like Total (Generalized) Variation, alone or in combination with a
sparsifying transform [Ant+19; MM16]. Further, in some cases a Shearlet or
Curvelet transform is preferred over a Wavelet transform* as a sparsifying
transform [Ant+19].

Current challenges with compressive sensing

The main challenge with modern state-of-the-art CS are long runtimes. The
optimization problem in CS is often very large, consisting of a huge amount
of variables. Running 1000 iterations of FISTA, a popular algorithm for ¢,
minimization [BT09], on a 2048 x 2048 image using a modern desktop computer
will often take around half an hour to complete.

3see Figures 2.2b and 2.2c for an example, note how the upper left corner contains vastly more
information than any other part of the image

“The amalgamation of these techniques is often called X-lets.
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2.2. Measurement operators

(a) Original image of Lily (b) Resultof a 1-level DWT  (c) Result of a 2-level DWT

Figure 2.2: Example of a Haar DWT

However, it is worth noting that many of the modern implementations
of these algorithms are sequential, and written for CPUs. Since many of
the computations involved are easily parallelizable and well-suited for GPU
computations (such as matrix-vector multiplications, FFTs, etc), one could
expect large speedups by implementing these algorithms in a different way.
In fact, a recent implementation of FISTA using TensorFlow brought the
computation time down to around 90 seconds when executing on a GPU
[Hau19].

2.2 Measurement operators

In this section we will study our measurement operators in more detail.
First, recall that MRI measurements are in the Fourier domain. That is, if we
performed full sampling, our measurement operator A would simply be the
n-point Fourier matrix F, (that is, the shift of coordinates matrix from the
n-dimensional standard basis to the n-dimensional Fourier basis).

However, we wish to obtain fewer samples. Let { be a set of the indices for
the samples to include. Thus, the number of samples m is the size of this set:

m = Q]

Let Py: K" — K" be the projection to the subspace indexed by Q. Thus, a
possible measurement operator becomes:

A=PF, 2.3)

This is the measurement operator typically used in Deep Learning-based
reconstruction.

However, since Compressive Sensing assumes the signal to be sparse, the
measurement operator in Equation (2.3) is not adequate since the Fourier
spectrum of a natural image is rarely sparse.

We circumvent this issue by applying a sparsifying transform. A sparsifying
transform W is an invertible operator that maps a non-sparse signal x to sparse
representation Wx. One possible sparsifying transform is a Discrete Wavelet
Transform (DWT).

13
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‘ m @

(a) Uniform (b) Gaussian (¢) Radial (d) Level

Figure 2.3: Different sampling patterns (top) and the reconstruction of the
Shepp-Logan phantom (from Figure 2.1a) using the respective adjoint operators
(bottom). The sampling rate is fixed at 20%

The key idea in a wavelet transform is to take some signal, expressed in a
high resolution wavelet basis, and express it in terms of a lower resolution basis,
and a detail basis. A wavelet is defined by a mother wavelet ¢ and a scaling
function ¢. By shifting and scaling these functions we obtain a basis for the
low resolution wavelet space (from the ¢’s) and the detail space (from the ¢’s).
A Discrete Wavelet Transform is then a change of coordinates from the higher
resolution wavelet basis, to a lower resolution and detail basis. An example of
a DWT is found in Figure 2.2. For a complete introduction to wavelets we refer
to Chapter 4 and onwards in [Rya19].

Since wavelet coefficients are often sparse (or at least very compressible),
we can adapt CS to MRI reconstruction by recovering the wavelet coefficients
of the Fourier measurements. Hence, the following operator is a suitable
measurement operator for CS:

A =P,F, W' (2.4)

Sampling patterns

How we distribute the samples in Q) can have a huge impact on the ability of
our reconstruction scheme to successfully recover the signal.

Some popular choices of sampling patterns, and the reconstruction using
their respective adjoints, are depicted in Figure 2.3. Perhaps the easiest sampling
pattern to conceive of is uniform sampling:

e Uniform sampling draws samples randomly from a uniform distribution.

Meaning the indices (i, j) to include are drawn from two independent
uniform distributions until a desired sampling rate is achieved.

14



2.2. Measurement operators

However, since most of the energy in the signal is often centered around the
origin (when viewed in the frequency domain), we wish to include more
samples from around the origin. Several sampling schemes achieve this:

e Gaussian sampling draws samples randomly, but from a truncated
normal distribution rather than a uniform one. The distribution is
centered around the origin, and has variance 2. This variance acts as a
spread parameter, determining how center-heavy the sampling pattern
should be. Indices to include are drawn from this distribution until a
desired sampling rate is achieved. It is also common to add a ball around
the origin where every sample is included.

e Radial sampling draws equiangular lines from the origin to the edges.
The number and thickness of these lines determine the sampling rate.

e Level sampling performs uniform sampling with increasing sampling
rates closer to the origin. The innermost level typically has a sampling
rate of 1.
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CHAPTER 3

Neural Networks

The use of Neural Networks in machine learning can be tracked back several
decades, however the last decade shows a huge increase in their popularity.
The success of AlexNet [KSH12] on the 2012 ImageNet Large Scale Visual
Recognition Challenge! in many ways marks the beginning of the neural
network revolution. AlexNet won by a clear margin, with an error rate more
than 10% lower than the closest runner-up. Since AlexNet, all winners of the
ImageNet Challenge have been variations of a Neural Network, with current
error rates under 5% [He+16; Sze+17].

The success of Neural Networks as one-size-fits-all classifiers has led
researchers to adapt them to other problems than visual recognition. In
this thesis, we will mainly focus on the use of Neural Networks to reconstruct
undersampled images. To do this, several different approaches have been
proposed [MJU17], however the denoising approach of [Sch+18; Yan+18] seems
to be most common for MRI reconstruction. We will explore this in detail in
Section 3.4.

We begin this chapter by giving a general introduction to supervised
learning, the framework for which Neural Networks are most often used.
We will then present Neural Networks, and give details on how to construct
them in practice. We finish the chapter with an introduction on how to adapt
Neural Networks to inverse problems for MRI reconstruction, and present two
contemporary networks [Sch+18; Yan+18].

3.1 Supervised Learning

Before we introduce neural networks properly, we will give a brief introduction

to general supervised learning. Given a set of data tuples {(xl-, Vi) }?=1’ usually
referred to as the training data, the main assumption in supervised learning is
that there exists some mapping F such that

yi=F(x;)+¢; forallie{l,2,...,n} (3.1)
where ¢; S N(O, ?). The goal of supervised learning algorithms is to find an

approximator F for this mapping. Given a new, previously unseen input x, we
can predict what the output will be using this approximator:

7 =F(x) (ISL, Eq. (2.2)])

A competition for software to classify more several million images of 1000 different objects.
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3. Neural Networks

We often call F a model and § a prediction.

Twobig applications for supervised learning are regression and classification.
In regression, x and y are both continuous variables, often some vectors in
R" or C"2. In classification, the input x is often some vector, but the output y
(usually called the label of x in this case) is categorical. L.e., the output is some
element in a finite set of known possibilities.

Inverse Problems as Regression

As a little tangent at the end of the section, we will look at how we can use the
statistical framework of supervised learning to solve inverse problems directly.

Given a set of training data, {x;}!_; we can create the expected output by
applying the measurement operator A. Thus our full training set becomes
{(Ax;, x;)}i_;, or by defining y; = Ax;, we get {(y;, X;)}_;. Note that the original
signal x now plays the role of the output of the learning scheme, previously
denoted y, and vice versa for y. The model F will in this case be fitted to act as
an inverse of A on the given training data.

Some researchers have found success using this approach on reconstructing
undersampled MRI images [Zhu+18]. Recent work have however shown
[Zhu+18] to suffer from major instabilities [Ant+19]. The denoising approach
described in Section 3.4 remain the most used [MJU17], and will be the main
focus of this thesis.

3.2 Neural Networks

The study of neural networks can be traced back several decades, but has
gained popular ground during the last decade after some enormous success
stories, especially on the image classification problem. Neural networks are
a family of functions known to be good at approximating arbitrary functions.
Contrary to many other classical approaches, neural networks do not place any
assumptions on F, and are thus well suited as a one-size-fits-all approximator.

Giving a formal definition of Neural Networks turns out to be very difficult,
as it is often not done by the community. Already in 1999, mathematician
Allan Pinkus describes the difficulty of giving a definition that includes all
contemporary Neural Networks [Pin99]. We will, however, give a definition,
which we will later refine when necessary:

Definition 3.1. LetL,Nj,...,N; € N, let W;: RV - RN forl=1,...,L
be affine maps. Let pq, ..., p;: R — R be some non-linear, differentiable
functions, and let p; ... p; be the same functions acting element-wise on

vectors. A map ®: RN — RM: given by

O(x) = py (Wp(pp (W1 (- p1 (W (%)) --+)))) (3.2)
is called a Neural Network (NN).

2All though in many cases, but not in ours, the output y is a singe number and not a vector.
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F F F

Figure 3.1: Different choices of activation functions. From left to right: Rectified
Linear Unit (ReLU), Leaky ReLU with slope 0.2 (LReLUj) ,), hyperbolic tangent
(tanh) and sigmoid (o).

We often refer to the p;-s as activation functions or non-linearities, and the
W,-s as layers® of the network. The total specification of the number of layers,
the size of each layer, the choice of activation functions and so on is referred to
as the architecture of the network.

Typically, the number of layers varies somewhere between 20 and 50 [SZ14;
He+15], with some extreme edge cases [He+16], and is referred to as the depth
of the network. Using deep neural networks to solve the supervised learning
problem is often dubbed Deep Learning (DL).

Some popular choices for non-linearities are

x ifx>0
ReLU(x) = { 0 otherwise
X ifx>0

LReLU,(x) = { ax otherwise

(3.3)
2x 1
tanh(x) = 5
|
1
X) =
o(x) 1+e

Plots of these functions are found in Figure 3.1. The Rectified Linear Unit
(ReLU) and its variations are by far the most used in state-of-the-art Deep
Learning.

To simplify notation, we refer the output of the non-linearities as activations,
and introduce the notation a; for the activations at layer I. Thus, we can rewrite
Equation (3.2) as

a; = p(W;(x))
a, =p,(Wy(ay))

a3 = Pg(Ws(az)) (3.4)

a =p,(Wi(ay))
d(x) =a;

3This distinction between layers and non-linearities is not always found in the literature. Some
include the non-linearity as a part of the layer, so that p,(W;(-)) is referred to as a layer. In this thesis
however, we will separate the non-linearity from the layer and only refer to the affine mapping.
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3. Neural Networks

The choice of activation function is important for the performance and
training of the neural network. Some activation functions, such as the sigmoid
and the hyperbolic tangent, have the problem of vanishing gradients. L.e., if the
input value is too large or too small, the derivative (important for training, see
Section 3.3) will be almost 0.

Even though neural networks are wildly used in machine learning, the
rigorous study into the mathematics of contemporary Deep Learning is some-
what lacking [LS18]. Some results exist, however, most notably the Universal
Approximation Theorem (UAT), introduced in [Cyb89; Hor91].

The UAT as originally stated in [Cyb89] covers sigmoidal activation functions,
which are functions f that satisfies }glgo f(x)=1and xl_i)m(><> f(x) = 0. Extensions

to the UAT for non-sigmoidal cases have been proven later [Pin99; SM17], we
will however cover the UAT as originally stated.

Theorem 3.2 (Universal Approximation Theorem). Let p: R — R be a
bounded, measurable, sigmoidal function. Let S C R" be a compact set and let
C(S8) denote the vector space of continuous functions on S.

Then for any f € C(S) and any € > 0, there exists a set of parameters N € N,
Uy,..., 0y ER, Wy, ...,wy €R", by,..., by € Rsuchthat f: R" — R defined
as

N
FOX) =) vip(wix+1b)) (3.5)
i=1
satisfies
1f6) =gl <&

forall x € S. In other words, dense neural networks with one hidden layer are dense
in C(S)

Before proving the theorem, we must introduce the notion of discriminatory
functions. First, let M(S) be the set of signed Borel measures on S.

Definition 3.3. A function p is discriminatory if for a measure y € M(S),
we have that

/ p(w'x+b)du(x) =0 forallw e R",b eR
S

implies that u = 0.

Proof of Theorem 3.2 (as given in [Cyb89]). Let ¥ < C(S) be the space of func-
tions on the form given in Equation (3.5). We must show that the closure 7 of
F is C(S).

Assume for contradiction that & # C(S), that is ¥ is a closed proper
subspace of C(S). Then, by the Hahn-Banach theorem [MW13, Thm. 14.1],
there exists a bounded linear functional L on C(S) such that L # 0, but

L(F) = L(F) = 0.
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3.2. Neural Networks

By the Riesz Representation Theorem [MW13, Thm. 13.15], L can be ex-
pressed as

L(h) = [Sh(x)dy(x) forall h € C(S)

for some p € M(S). Particularly, since p(wa +b)e F forallw e R",b € R,
we have that

/ p(wa +b)du(x) =0
S

and since all bounded, measurable and sigmoidal functions are discriminatory
[Cyb89, Lemma 1] this implies that ¢ = 0, which in turn implies that L = 0
which is a contradiction. Thus, the closure ¥ = C(S) which concludes the
proof. m|

This result provides some theoretical justification for the success of neural
networks as universal approximators. However, we will give a couple of
remarks to the UAT as originally presented:

Remark 3.4.  Theorem 3.2 covers single-layer dense neural networks. However,
in practice we often work with much deeper nets, and with convolutional layers
instead of dense layers. The importance of depth were mentioned in [KSH12],
but not formally proven.

Remark 3.5.  The most used activation function by far is the Rectified Linear
Unit (ReLU), which is not a bounded function. Recent work has shown that the
UAT can be extended to certain non-bounded cases, such as the ReLU [SM17].

Remark 3.6.  Theorem 3.2 is non-constructive. It only tells us that a certain
network exists, but does not relate to learning.

Convolutional layers

Modern networks usually apply other kinds of layers in addition to, or instead
of, the dense layers described in Definition 3.1. Most notable are convolutional
layers. These are achieved by restricting the matrix multiplication in the affine
maps W, to be a cascade of convolutions, as such:

Dense layers: W,(a;_;) = W;a;_; +b; (3.6)
Convolutional layers: W(a;_;) = w;*a;_; + b, 3.7)

Networks applying convolutional layers are called Convolutional Neural Net-
works (CNNs). Note that since convolutions can be written as linear operators
(see page 44), convolutional layers are still affine mappings and fit well with
Definition 3.1.

To keep our theory closely aligned with practical implementations, we
will treat dimensionality in the same way as TensorFlow*. Hence, when
applying neural networks to images, we will handle dimensionality differently
for dense and convolutional layers. In dense layers, the columns of the

#One of the most popular Deep Learning frameworks [TF].
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image matrix are stacked as a vector making the image a 1-dimensional
signal. While in convolutional layers, the dimensionality is kept, and a 2-
dimensional convolution is performed. In addition to this, natural images
often have different colors, and as hinted above we will use an array of
convolutions performed separately. We also introduce a forth dimension for
batch calculations. Thus, the input of a convolutional layer is a 4-dimensional

tensor a;,, € RM*"™*™n (batch size, height, width, number of input channels)
and with output a_,, € RMX(n/sy)x(n/s)xe
dimensional tensor w € R %wXcmXCou (filter height, filter width, number

of input channels, number of output channels).

o and the weight tensor is a 4-

We then define the convolution in convolutional layers as the following:
(Wxa)y, i, = § § § Wi ey kg " T jives, i s,y (3.8)
74 I k
i j 1

The s, and s are called the strides, and depict the step length in the convolution.
If s, = s, = 1 we obtain normal unstrided convolution. Note that strides > 1
decrease the signal dimensionality, for example s, = s, = 2 means that the
width and height dimensions of the output tensor is half that of the input.

Remark 3.7.  The observant reader might recognize Equation (3.8) as a correla-
tion, and not a convolution. This misuse of terms is very common in the Deep
Learning literature, and we will therefore use this terminology throughout.
However, since the coefficients are learned and not set, it is actually not too
misleading to refer to the operation as a convolution. The coefficients saved in
the weights of the network will simply be the time-reversed complex-conjugate
of the actual filter being applied.

Residual blocks

We will conclude this section with a layer variant which doesn't fit our initial
definition of Neural Networks, namely residual blocks, popularized by [He+16].

In a residual block, the original signal is fed through several layers unaltered,
in addition to the processed signal. An example of a 3-layered residual block
may look like the following:

B(a) = p3(W3(po(W,(p1(Wy(a))))) + ) (3.9)

Note that it is usual to add the identity before applying the final non-linearity.
Even though this type of block doesn’t fit our initial definition of Neural
Networks, we can expand Definition 3.1 to allow such blocks in addition to
dense and convolutional layers.

As networks become deeper, several problems begin to occur. When feeding
signals forward through the network, signal degradation comes into play, and
experimental results have shown that the performance of a sufficiently deep
network will decrease when adding more layers [He+16].

The motivation for residual blocks is that by passing the identity through,
the effects of degradation and vanishing gradients are reduced, allowing
deeper networks. In [He+16] the authors present a well-performing 152-layered
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64 64 64

input —

Figure 3.2: A typical graphical representation of a 3-layered residual block
with 64-channeled convolutional layers

network for image classification, and produce experimental networks with over
1200 layers.

3.3 Training

Now that we have seen how neural networks are good candidates for approx-
imating functions, the question becomes how to set the weights and biases
in Equations (3.6) and (3.7). This is where the training data mentioned in
Section 3.1 is used.

Loss functions

First, we must define a cost or a loss function. A loss function is a measure on
how wrong a certain model F is, compared to the underlying F. Of course, we
don’t know F a priori, so the loss function must approximate the difference
between F and F. To simplify notation, we will let 6 be defined as the set of all
trainable parameters. For a neural network this will typically be:

6 = {W1/W2f'"/wL/blle/"'/bL}

We will sometimes simply refer to 6 as the parameters of the network, and use
the term hyper-parameters to refer to fixed, untrainable parameters. We write Fg
to emphasize that this model uses 0 as its parameters.

A popular choice of loss is the Mean Squared Error (MSE), also known as
the mean ¢,-error. Given training data {(x;, y;)}\_;, a set of parameters 6 and a
proposed model F,, the MSE loss of those parameters is defined as:

1, -
LO X, X, Y1+, Y0) = - Z;“Fe(xi) ~yill (3.10)
i=

Sometimes it is more convenient to define the loss as a function of the model
directly:
. 1w, - )
LEq X% V1Y) = Zl”FG("") - yill (3.11)
i=

The difference only being the notation. Throughout the thesis we will use both
definitions, however it will always be clear from context which definition that
is used.
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(a) Base image (b) Translation shifted (c) Add ¢ = 0.32 to every
pixel

B
U

(d) Noisy (e) Anotherimageofabird  (f) Anentirely differentim-
age

Image | (@)  (b) (c) (d) () (®)
{,distanceto (a) | 0 215.04 204.80 16726 21644 193.15

Figure 3.3: Problems with ¢, loss as a measure of perceptual likeness. Images
(b) through (f) all have similar ¢, distances to (a). The images were scaled so
every color value is in the unit interval and cropped to 350 x 400 pixels. Images
from the ImageNet Large Scale Visual Recognition Challenge dataset [Rus+15].

Even though the MSE is widely used, it is worth noting that MSE is not a
good measure on perceptual likeness. Two images may look very much alike,
and still have a large ¢, distance between them. For example, given an M X N
image x and a small value ¢, the image x + €1 may look like the same image —
only a tiny bit brighter — while the ¢, distance between them may be very large
depending on the size of the image:

lx = (x+ Dl = el[1]l, = eVMN

Other issues include shifts in translation or rotation, which exhibits the same
behavior where images that look alike may have large ¢, distances, see Figure 3.3.
In particular, note that Figures 3.3a and 3.3f are closer in an ¢, sense than
Figures 3.3a and 3.3¢

When a loss function is picked, we can create a neural network based on
the training data. First, fix an architecture, then pick the network parameters
minimizing the loss over the dataset. That is, let the network parameters be the
solution to the following minimization problem:

0 =argmin L(0" | xq, .-+, %0, Y1, Vn) (3.12)
6/
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However, the loss as a function of the network parameters is a often highly
non-convex function. Thus, solving Equation (3.12), even for relatively small
networks, is highly intractable. In most cases we must settle for a local minimum
instead of the optimal values.

Back-propagation and optimization

Before we discuss different optimization algorithms suited for finding a local
minimum of Equation (3.12), we will show how to find the gradient of the loss
function with respect to the network parameters.

To simplify notation, we will only consider finding the gradient given a
single data point, although the method is easily generalizable to using several
data points as well. That is, we will consider the slightly simplified case of
deriving an expression for

VoL(0 | x,y) = VllPg(x) - yll3
Note that since

Voll@g(x) = ylI3 = 2(@g(x) - y) Vo (x)

the real challenge is to differentiate the neural network with respect to the
parameters 0.

Because of the composite nature of Neural Networks (recall Equation (3.2)),
the chain rule for differentiation is a natural choice of differentiation technique
when differentiating Neural Networks. In order to further simplify notation,
we will use the activation notation from Equation (3.4). By applying the chain
rule to a Neural Network ®,, we get

Vo®y(x) = Vya;
= Volp (Wr(a;1)))
= p/L(WL(aL—l)) "W - Vgar 4

We continue with the same approach on a;_;:

= p,L(WL(aL—l)) "Wy - V(o (Wp_1(ag )
=p (Wi(ap_y)) - Wy - p; (W _4(ap5) - Wi - Vear

We continue applying the chain rule in this recursive fashion until the base
case of a; = p;(W;(x)). For each recursive step we find the derivative of the
network with respect to the weights of the next layer.

In Deep Learning literature, this is often called Back-propagation, coined
in [RHWS86]. For a further explanation of Back-propagation with details on
how the algorithm is implemented and typically interpreted by the machine
learning community we refer to Section 6.5 of [GBC16].

The gradient of a function tells us in which direction the function grows
most rapidly, hence the negative of the gradient tells us in which direction
the function declines most rapidly. This is the main principle behind Gradient
Descent5. This algorithm uses the entire dataset to compute the gradient of

5 Also known as Steepest Descent in some mathematics literature.
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Algorithm 3.1 Stochastic Gradient Descent [GBC16, Alg. 8.1]
Input: Initial parameters 0, step length 1, number of epochs E, batch size M,
training set {(x;, yi)}f\il.

1. Fore=1,2,...,E,do

1.1 Create a new permutation p = {p;,p,, ..., py} of {1,2,...,N}

1.2 Forn=0,1,...,[N/M]-1,do

(n+1)M
1.2.1 Sample M examples from shuffled data sets, {(xpj, yp]_)} .y
j=n

1.2.2 Compute gradient of loss using sampled mini-batch,
8 — VL(G | xPnM’ T xp(n+1)M/ yPnM’ s yp(n+1)M)
1.2.3 Apply update to parameters, 0 < 0 — ng

Output: Trained parameters 0

the network w.r.t. the parameters. Then, it subtracts a scaled version of the
gradient from all the parameters. The scaling factor is often called the step
length in mathematical optimization literature, or learning rate in Deep Learning
literature.

This is however very ineffective in practice as using the entire dataset
for every parameter update will make the parameter updates very costly to
compute. Thus, pure Gradient Descent is rarely used in practice.

Instead, we will separate the training data into several batches and use one
batch to compute one iteration. This means that the gradient computed will not
be the true gradient of the loss function, but an approximation. However, since
every iteration will be much cheaper to compute, the overall training speed will
increase. When all the batches have been used once, we shuffle the training set
and draw new batches. One cycle through the dataset in this fashion is referred
to as an epoch. This algorithm is called Stochastic Gradient Descent (SGD), and
is presented in detail in Algorithm 3.1.

We conclude this section on optimization with a brief introduction of the
Adam (Adaptive Moments) optimizer. Like with SGD, we separate the training
set into batches. In addition, Adam enjoys two important features: momentum
and adaptive step lengths. Using momentum is a technique developed to
increase training speed on surfaces with high curvature [GBC16, Sec. 8.3.2].
As an example, let us consider adding momentum to SGD. We introduce a
momentum hyper-parameter a € [0, 1), and replace step 1.2.3 in Algorithm 3.1
with

1.2.3a Compute update: AO «— aAO —ng
1.2.3b Apply update: 0 « 0 + AO

This way, subsequent iterations will not substantially differ in direction, which
makes the algorithm is less vulnerable to rapidly changing gradients. The term
momentum is an analogy from physics, where energy is needed to change
the trajectory of an object in motion [GBC16, p. 288]. Adam uses rescaling of
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3.3. Training

Algorithm 3.2 Adam [GBC16, Alg 8.7]
Input: Initial parameters 0, step length 7, decay rates ay, a, € [0,1), small
constant &, number of epochs E, batch size M, training set {(x;, yi)}fil.

1. Initialize time step t « 0
2. Initialize 1st and 2nd moment variables m; < 0, m, « 0
3. Fore=1,2,...,E,do

3.1 Create a new permutation p = {py,p,, ..., py} of {1,2,...,N}

32 Forn=1,2,...,N/M, do
(n+1)M
3.2.1 Sample M examples from shuffled data sets, {(xp,-' y,l,]_)}j:nM

3.2.2 Compute gradient of loss using sampled mini-batch,

& VLEO | Xpam? ’XP(n+1)M’yPnM’ T ’yP(n+1)M)
3.2.3 Update time step, t « t +1
3.2.4 Update biased first moment estimate,

m; — a;m; +(1-a;)g
3.2.5 Update biased second moment estimate,

m, — a,m, + (1 - a,)g’
3.2.6 Correct bias in first moment estimate, m; « m; /(1 — a})
3.2.7 Correct bias in first moment estimate, m, « m, /(1 — a})
3.2.8 Compute update, A = —nm, /(y/m; + ¢)
3.2.9 Apply update to parameters, 6 «— 0 + A9

Output: Trained parameters 0

the gradient in combination with momentum, which has no clear theoretical
justification but seems to work well in practice [GBC16, Sec. 8.5.3].

Second, Adam uses adaptive step lengths. The motivation for this technique
is that if we set the step length in SGD to be too small, the training will be
unnecessarily slow. If we set it to high, we will not be able to fine-tune the
parameters sufficiently. One possible solution is to periodically reduce the step
length 71 in Algorithm 3.1. The Adam optimizer automates this process. The
full algorithm is presented in Algorithm 3.2.

For further reading on other optimization algorithms we refer to Sections
8.3, 8.5 and 8.6 of [GBC16].

Initialization

Both Algorithms 3.1 and 3.2 require initial parameters. In this section we
will briefly mention some of the most used initialization methods for neural
networks.

Xavier [GB10] and He [He+15] initialization both follow the same principle.
They draw the entries of the weight matrices from a uniform or normal
distribution with parameters chosen so that the scale of the gradients are
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0 1 2 3 4 0 1 2 3 4

(a) Noisy measurements along with the (b) An extreme case of overfitting using
true underlying model. cubic splines. See page 81 for details.

Figure 3.4: Example of overfitting.

similar throughout the layers. During the derivation of the expressions for
the distribution parameters, [GB10] assumes linear activation, while [He+15]
assumes ReLU activation. These techniques are the most common in state-of-
the-art Deep Learning.

We will also include orthogonal initialization [SMG13], even though it
is not as widely used as He or Xavier, as it will be useful when applying
Parseval constraints in Chapters 5 and 6. Orthogonal initialization gives the
weight matrices orthogonal rows or columns, depending on whether the matrix
have more rows than columns or more columns than rows. Generating a
random m X n matrix with orthogonal rows can be done by generating a square
n X n matrix with entries drawn from a normal distribution, performing a
QR-factorization and drawing the first m rows of the Q matrix.

Overfitting

In addition to the lack of convexity, overfitting poses a real challenge when
training neural networks. The universality of neural networks is a double-edged
sword. While able to fit any function, we risk learning the local noise as well.
An example of overfitting can be seen in Figure 3.4.

Recall the underlying assumption for supervised learning (Equation (3.1)).
Since we only know the value of y;, there is no way of distinguishing the
contribution of the underlying model from the noise [ISL, p. 22].

There are a few techniques available for detecting and combating overfitting.
The most important one is to separate the available data into several datasets.
One set will be used for training, one for validation and one for testing [ISL,
Section 2.2]. When solving Equation (3.12) (or an estimate of it), we will use
the training set to compute each iteration of the optimization algorithm, but
after each step (or every nth step if one wish to save some computation time)
we will compute the cost with regards to the validation set as well. The main
idea is that an overfitted model will have low training cost, but high validation
cost since it is trained on the noise from the training set. Hence we will look for
the moment where these two values start to diverge [ISL, p. 32]. The test set it
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3.4. Deep Learning Denoising

not used until the very end to give a fair indication on the real-life performance
for the model on previously unseen data.

To further combat overfitting and not merely detecting it, we must limit
the generality of the approximation method in some way. Consider again the
example in Figure 3.4. The model in Figure 3.4b was created minimizing the
MSE between the spline and the measurements. If we wanted to achieve a
smoother spline, we could add some regularization term to this loss function, for
example punishing large values on the spline’s derivative®. Thus, the loss for a
specific spline f would be

1< )
L) =~ If) -yl + Alf (3.13)
i=1 S~——
Regularization
MSE term

The parameter A is often referred to as a regularization parameter. Popular
regularization terms for neural networks include the ¢; or £, norm of the
weight matrices.

Other techniques more tailored to neural networks exist too. Among them
are batch normalization [IS15] and dropout [Sri+14]. We will use some of them
later in Chapter 6, but we will not go into more detail on how they work. In
Chapter 6 we will also see how the Parseval constraint developed in Chapter 5
makes networks less prone to overfitting.

Data Augmentation

A dataset can be extended by creating artificial data based on the true data
and adding it to the dataset. Data augmentation refers to any process where
we create a new data point by altering an existing one in such a way that
we do not change the nature of the data point, that is, the relation between
the measured value and the expected output (Equation (3.1)) do not change
[GBC16, Section 7.4].

Examples of data augmentation on MR images includes rotating the image,
flipping the image along one or more axes, zooming in or introducing artificial
noise. These alterations can be done beforehand, or on the fly during training.

3.4 Deep Learning Denoising

We begin our study of Deep Learning Denoising by showing how we can use
Neural Networks to remove noise from an image.

Denoising

If we let the output dimensions of the network be the same as the input
dimensions, we can train the network to detect and remove noise.

*We are ignoring spline-specific methods such as shrinking the spline space by e.g. ma-
nipulating the knot vector or lowering the degree as they have no direct equivalent for neural
networks.
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Figure 3.5: Architecture of the denoiser in Example 3.8.

Let x be some image, and let X be a noisy version of the same image. Let @
be some Neural Network. We can create a denoiser D by summing the output
of the Neural Network with the original image as such:

D(X) = % + D(X) (3.14)

We will then train the network @ so that the difference between D(x) and
x is small. In other words, we train the network to output the negative of
the noise in the image?’. Ideally, we would like to minimize the perceptual
difference between D(X) and x. However, as discussed in Section 3.3, measuring
perceptual likeness is very difficult. It is very common to use the MSE as loss
[MJU17, p. 91].

To frame denoising as a supervised learning problem, our true model F is a
function that takes in a noisy image X = x + &£ and returns the original, noiseless
image x. The denoiser D acts as the approximation model F.

Example 3.8. To illustrate how a CNN can be used to remove noise, we will
build a network to remove synthetic Gaussian noise from images. In our
example we will use the MNIST dataset of handwritten numbers [LeC+98],
consisting of 60 000 black and white 28 x 28 images, with pixel values in [0, 1].

In order to speed up training time, we will consider a relatively small model
of 5 layers. The layers consist of 16, 32, 32, 16 and 1 convolutions with 3 X 3
kernels. We use ReLU activation, except for in the last layer which uses tanh
activation to allow negative output, and to ensure that the outputis in [-1, 1].
The output of the network is then added to the original image as shown in
Equation (3.14). The total architecture of our denoiser is shown in Figure 3.5.
As a loss function we opted for the MSE between the original image and the
result from the denoiser.

During training, we separated the dataset into batches of 100 images. For
each batch we created noisy versions of the images by adding a random variable
to each pixel of every image. The noise was drawn i.i.d. from N(0,0.1) We
trained the network using the Adam optimizer for 200 epochs, resulting in a
total of 12 000 iterations.

The effectiveness of the resulting denoiser is shown in Figure 3.6. The
images used in this test are from an independent test set of images, not used in
the training. *

7Some define the denoiser as D(x) = x— ®(x) instead, and let the network learn the actual noise.

However, most of the literature concerning MRI reconstruction follows the setup in Equation (3.14)
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3.4. Deep Learning Denoising

Figure 3.6: Denoising on generated Gaussian noise using the CNN described in
Example 3.8 and Figure 3.5. Top: original images, unseen by the denoiser during
training, Middle: images with Gaussian noise, Bottom: result of denoising.

MRI Reconstruction Using Deep Learning Denoising

We will now shift our focus from general neural networks and denoising to our
specific application of MRI reconstruction.

Recall from the intro of Chapter 2 that one can use the adjoint of the
measurement operator as a crude estimate for the inverse to create a noisy
image, but usually with the details present (except for the case of uniform
sampling). Thus, for some measurements y we find the noisy reconstruction X
as

x = A"y = A"Ax = F,P,P,F, x

Note that F;, = F,, since F, is unitary, and that PP, is given as

. _Jy ifieQ
(PoPqy); = { 0 otherwise

So in our synthetic experiments, we find X from a training image x by taking
the DFT of x, zeroing out all the indices not contained in the sampling pattern
Q, and taking the IDFT.

Since MRI machines measure complex signals, the image x, and by extension
X, will be complex valued. Further, since we cannot guarantee our sampling
pattern to be symmetric around the origin, we could still have imaginary parts
in X even though x was real. Thus, our denoising networks must take complex
inputs. Since the support for complex numbers in many neural network
frameworks is rather limited, we will some times interpret these images as
two-channeled real-valued signals instead of single-channeled complex-valued
signals.

Case Study: DeepMRINet

Introduced in [Sch+18], the DeepMRINet makes two important contributions
to the field. Namely, using a cascade of CNNs to de-alias the image instead of a
singe CNN, and the introduction of the Data Consistency layer (DC).

The idea behind the DC layer is that we know the true value for the
measurements included in our sampling pattern Q, and we only need to
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Figure 3.7: The DeepMRINet architecture.

reconstruct the unknown frequencies. Hence, we will include a layer in
our architecture that will pull back the values for the known indices to the
corresponding frequency by performing a convex combination between the
two. Thus, for an input a, the DC layer becomes

DC,(a) = IDFT(g,,(DFT(a) | y, ©2)) (3.15)

Where DFT and IDFT denotes the Discrete Fourier Transform and the Inverse
Discrete Fourier Transform respectively, and g, is given as

SAz 1Yy, - Zkl‘:/\Ayk ifkeQ ( )

Here, z depicts the reconstructed image in the frequency domain, and y depicts
the measurements as obtained by the sampling operator A. The A is interpreted
as the amount we pull back the reconstructed measurements to the original. It
can be set in one of two ways. Either as a parameter of the network, meaning
a variable the optimization algorithm can change during training, or as a
hyper-parameter, meaning a set variable that cannot change. The original
paper [Sch+18] does not discuss the choice of A8. When implementing the
DeepMRINet in Chapters 4 and 6, we will treat A as a hyper-parameter, and
include a possibility for a different A for each DC layer.

The full architecture of the DeepMRINet is found in Figure 3.7. The total
network as described in [Sch+18] consists of 5 denoising CNNs following the
residual setup in Equation (3.14), interlaced with DC layers. Each CNN consists
of 5 convolutional layers, each performing 64 convolutions with 3 x 3-filters, all
of them followed by ReLUs. The input and output of each CNN is a 2-channeled
image, where the first channel depicts the real part and the second channel
depicts the imaginary part of the image.

The original DeepMRINet were trained on the dataset from [Cab+14]. It
consists of 30 images of 10 patients® yielding a total of 300 images. From these

8However, by examining the published code at the author’s GitHub page it is clear that A is
chosen to be co

"The original dataset really had only one complete short-axis cardiac cine scan per patient,
which was later split into layers, yielding 30 individual 2D images.
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(b) 33%

Figure 3.8: Example sampling patterns used in [Sch+18].

fully-sampled images, synthetic MRI measurements were made by Fourier
transforming the images and subsampling the resulting frequencies. The
sampling patterns were created by randomly selecting rows from the Fourier
spectrum with decreasing probability further away from the origin. The
sampling patterns were redrawn during training. An example sampling
pattern is shown in Figure 3.8.

Due to the limited amount of training data, different rigid transformations
were used as data augmentation. The dataset was not split into a dedicated train-
ing, validation and test set. Instead, the authors used 2-fold cross validation
during training to synthesize a test loss.

The authors of [Sch+18] provides example recoveries and compare their
method to a combination of Compressive Sensing and Dictionary Learning.
An example recovery of the original DeepMRINet is shown in Figures 4.2a
and 4.2b.

Because of the remarkable performance reported in [Sch+18], the rest of
this thesis will focus mainly on the DeepMRINet. However, the techniques
developed in Chapter 5 can be applied to any Neural Network.

Case Study: DAGAN

The Deep De-Aliasing Generative Adversarial Network (DAGAN) was in-
troduced in [Yan+18]. The structure of DAGAN is based on a Generative
Adversarial Network (GAN) where the total network is separated into a genera-
tor and a discriminator. For our purposes the generator occupies the role of the
denoiser, while the discriminator is part of the loss function. We will discuss
the loss function used in DAGAN later.

The architecture of the generator is largely based on that of the U-Net
[RFB15]. This architecture is characterized by a series of strided convolutional
layers in the first half of the network, and strided transposed convolutionst, thus
ending up with the same height and width dimensions in the first and last

OFor an in-depth exploration of this technique we refer to [ISL, Section 5.1].
! Also known as upconvolutions. Several papers, including [Yan+18], refer to this as deconvolutions.
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Figure 3.9: The architecture of the generator in DAGAN.

layers. The U-net also uses so-called skip-connections. Unlike the residual blocks
outlined in Equation (3.9) where we added the identity, U-net and DAGAN
concatenates the identity in the channel-dimension. The results from layer 7 is
concatenated at the end of layer 9, as these have the same height and width.
The results from layer 6 is concatenated at the end of layer 10, and so on. These
skip-connections are shown with dashed lines in Figure 3.9.

DAGAN projects the image from C" to R" before applying the denoiser.
Thus, the input layer to DAGAN is a single-channeled gray-scale image. The
first 8 layers of the generator uses 4 X 4 convolutions with stride s, =5, =2,
meaning the sliding window of the convolution moves 2 steps in each direction
instead of 1. Layers 1 through 8 uses the Leaky ReLU with a slope parameter
of 0.2. Layers 9 through 16 uses 4 X 4 transposed convolutions with stride
s, = s, = 2, thus undoing the downsizing resulting from the striding in the
first half. These layers uses ReLU as the non-linearity. The last layer is a
1 X 1-convolution with no strides and tanh activation, which effectively turns it
into a mapping from 64 to 1 channels, and scaling the output of the network to
bein [-1,1].

The output of the generator is then summed with the input image as shown
in Equation (3.14), producing the final output.

The loss function used in DAGAN is a sum of four terms. For a single image
x and the measured y = Ax, the pixel loss of a proposed set of parameters 0 is
defined as the normal MSE:

Lnss(0) = 5~ Go(Ay)IE (Yan+18, Eq. (9))

Here, G refers to the generator using 0 as parameters. The authors of [Yan+18]
also introduce the frequency loss:

1 .
Linse(0) = 5 IDFT(x) — DFT(G,(A'y))l3 ([Yan+18, Eq. (10)])
which is simply the MSE in the frequency domain. The authors also use the

first few layers of a pre-trained version of the VGG classification network [SZ14]
to construct a so-called perceptual loss:

Lus(0) = 5l fusc™ ~ frccCoAWIB  (Yan+18,Eq. (1))

The idea being that if the VGG classificator predicts different labels for the
original image and the measured and reconstructed, they do not look much

However, in signal processing, a deconvolution has a very specific definition of undoing a convolution
[Fer+10], which is not the same as applying a transposed stride.
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alike. DAGAN do not use the full classificator, but rather measure the MSE
between the activations in the fourth convolutional layer.

Finally, [Yan+18] introduce the adversarial loss created by the discriminator,
which is a neural network in itself trained to predict whether a given image
is a reconstruction of an undersampled signal, or a fully sampled one. If we
can fool this discriminator to give a reconstruction of an undersampled image
a high probability of being fully sampled, that would be an indication of a
working reconstruction scheme. Thus, the adversarial loss is defined as

Lcen(6) = ~1og(Dy(Go(Ay)) ([Yan+18, Eq. (12)])
The total loss is then a weighted sum of the four different losses:
Liota(0) = a Lingsp(0)+ Livisp(0)+7 Ly (0)+ Lapn(0) ([Yan+18, Eq. (13)])

The suggested parameters in the original paper are @« = 15, f = 0.1 and
y = 0.0025 [Yan+18, Fig. 11].

Remark 3.9.  Since the discrete Fourier transform is a unitary operator, we have
that

Loyss(60) = 21IDFT(x) ~ DFT(G,(A'y) I3
= JIIDFT(x- Go(A'y )

1 *
= 5lIx=Go(A'y)ll
= Linse(0)

Which means that the “pixel loss” and “frequency loss” are really the same, even
though [Yan+18] presents them as different.
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CHAPTER 4

Stability

In this chapter we will begin by introducing an important concept regarding
numerical stability, namely Lipschitz constants, and give some initial results
which will be useful during our derivation of Parseval networks in Chapter 5.
Later, in Section 4.2, we will introduce so-called adversarial attacks as a way to
systematically create small perturbations where modern neural networks for
MRI reconstruction will fail.

4.1 Numerical Stability

We begin our study of stability by specifying what we mean with a stable
recovery. First, we introduce the notion of Lipschitz constants.

Definition 4.1 (Lipschitz constants). Given two normed spaces (4, ||-||4)
and (B, ||-||) and a function f: A — B. L € Ris said to be a Lipschitz constant
of f if

If(x)= fwllg <Lllx—yll, forallx,yecA

The smallest possible L to satisfy the above equation is said to be the Lipschitz
constant of f.

The Lipschitz constant of a function gives a bound of how much an error
in the input to a function can change the outcome. Consider a function
F: R™" — R™" which estimates the inverse of a measurement operator, and
let L be a Lipschitz constant of F. If we perturb the input image to F by a small
perturbation 6 with [|0]|, < €, we now have a bound on how much this will
affect the reconstruction:

IF(x+6) — E(x)|l, < L|Ix+ 6 — x|, = L||]l, < Le (4.1)

If the Lipschitz constant of a function is < 1, then we know that the function
cannot amplify errors. That is, if the perturbation on the input has norm ¢, the
on the error on the output (compared to the unperturbed input) is < ¢ for any
input. We call such functions contractions.

Since Neural Networks are composite functions of the layers, the following
two results will become useful later.
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(a) Original image, cor- (b) Perturbed image, mis-  (c) Added perturbation,
rectly classified as a tiger ~ classified as an American ~ magnified to be visible
cat bald eagle

Figure 4.1: Example of an adversarial attack against a classification network.
Here we are using the ResNet-50 network [He+16] trained on the ImageNet
dataset [Rus+15]. See page 81 for details.

Proposition 4.2. Let (X, ||-||) be a normed space, and let f: X — X and
g: X — X be two functions. Define h: X — X as the composition of f and g, ie
h=fog. If IL f is a Lipschitz constant of f and L, is a Lipschitz constant of g,
then L¢L is a Lipschitz constant of h.

Proof. Letx,y € X, then
I (x) = k(I = I £(g(x)) = fF(EWDII < Lllg(x) — gl < LeLellx =yl

which shows that L (L is a Lipschitz constant of h. m]

The next corollary follows immediately by induction on #.

Corollary 4.3. Let (X, ||-||) be a normed space, and let fi, fo,..., f,: X = X
be functions with respective Lipschitz constants Ly, L,,...,L,. Define g: X — X
as g = fyo fyo---o f,. Then, [1}_, L; is a Lipschitz constant for g.

Throughout the rest of the thesis, we will consider Lipschitz constants in
R" with regards to the £, norm.

4.2 Adversarial Attacks

It is well established that classifiers using neural networks are very vulnerable
to a certain kind of perturbations to the input [Big+13; Sze+13; MFF16;, FMF17].
Given an image x € R" with label ¢ € {1,2,...,C} and a neural network based
classifier f: R" — {1,2,...,C}, one can often find a perturbation 6 with a
small ||8]], such that f(x) = c while f(x+ 0) # c, even though x and x + 6 might
be indistinguishable by the human eye, see Figure 4.1.

Earlier work have developed algorithms to systematically create such noise
for classification networks [MFF16]. Constructing these perturbations is often
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Algorithm 4.1 Finding adversarial noise for inverse problems.

Input: Image x, Neural Network ®, measurement operator A, maximum num-
ber of iterations N, step length 1, perturbation size regularization parameter A,
initial perturbation size 7.

1. Initialize v <~ 0 and 6, € B(0, 7)
2. Fori=0,1,...,N-1,do

2.1 vy v +1VQ(8))
22 bjy =0+ vy

Output: 6y

called adversarial attacks, or in the concrete case for classification it is also known
as fooling. In this section we will present a way to create adversarial attacks for
denoisers, introduced in [Ant+19].

Generating Adversarial Noise

We begin by looking at why we can not use the approaches from classification
fooling in inverse problems. Given a classifier I : R" — {1,2,...,C} and an
image x which F will normally classify correctly, it is clear that the optimal
perturbation &’ for fooling F on x is

0" = argmin ||8]|, subject to F(x + 6) # E(x) 4.2)
8
The benefit of working with classifiers in this case is that we have a clear
indication of success —namely misclassification. However, solving Equation (4.2)
in practice is intractable because of the non-linear constraint.

While working with inverse problems, declaring success is not that straight
forward since “successful recovery” is a somewhat subjective term. As discussed
in Section 3.3 it is also very difficult to measure mathematically whether two
images look alike.

In [Ant+19], the authors propose a way to adapt Equation (4.2) to inverse
problems. Instead of constraining the output to be different, we maximize the
difference between the reconstruction of the original image and the perturbed
image. We also constrain the size of the perturbation using a quadratic
regularization term. Hence, given a denoiser D and an input image x which D
can successfully recover, the optimal perturbation is given as

, 1 A
8 = argmax 5|ID(A(x+6)) - D(AY)|; - 5 [I5]l> (4.3)
o

The A acts as a regularization parameter on the perturbation, and controls how
large the perturbation can be.

However, solving Equation (4.3) in practice is highly intractable. Again, we
will have to settle for a local minimum. First, we define our objective function:

Q(8) = 2ID(AGx + 8)) ~ D(A)IE - 21131 (@4
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(a) Original x (b) Reconstruction (c) Perturbed x+ 6 (d) Reconstruction
D(Ax) D(A(x+0))

Figure 4.2: Instabilities in the original DeepMRINet as shown in [Ant+19]. This
version of DeepMRINet samples at 33% with a sampling pattern similar to
Figure 3.8b. Images from [Ant+19], used with permission.

Lety = Ax and u = y + Ad. Using the chain rule, the gradient of Q can be
expressed as

V5Q(8) = A"V, [ID(u) - D(y)ll5 — A& (4.5)

We can interpret D(y) as a constant as it is not dependent on u or 9, thus we only
need to find the gradient for D(u), which can be done with back-propagation
as D is a neural network.

The final algorithm for generating adversarial perturbations is then to
combine Equation (4.5) with some variant of Gradient Descent to achieve a local
minimum of Equation (4.4). The authors of [Ant+19] propose using Gradient
Ascent with Nesterov momentum. A detailed description of the algorithm
presented in [Ant+19] is found in Algorithm 4.1.

The authors of [Ant+19] provides example perturbations for several mod-
ern MRI reconstruction networks, among them the DeepMRI network. See
Figure 4.2 for an example of an adversarial attack on DeepMRINet with the
original weights provided by [Sch+18].

Current Solutions

One possible cause of instability is overfitting. Recall the overfitted example
in Figure 3.4 on page 28. By only nudging the value slightly in the horizontal
direction, we see that the value in the vertical direction can vary dramatically in
an unexpected way. Thus, some of the current techniques to limit instabilities
address limiting overfitting, while others address the issue of adversarial
attacks directly.

Some work have gone into the robustness of classifiers towards adversarial
attacks, and we will conclude this chapter with a brief presentation on some of
them [FMF17]. In Chapter 5 we will introduce a newer approach in more detail
[Cis+17].

An initial approach is to augment the dataset with adversarial examples.
In [MFF16] the authors propose training a classifier on a normal dataset, and
when the classifier is done training, one creates a new training set consisting of
adversarial attacks on the trained model. The model is then further trained on
this new data set with a decreased step length for a few epochs.
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4.2. Adversarial Attacks

Another approach is to consider the Jacobian matrix of a network @, that is

ad
]x((DQ) = %

where a; denote the activations in the last layer and x denotes the input to the
network. Large elements in this matrix are undesirable as it means that the
output of the network can change drastically on small changes to the input.
We can thus add the norm of the Jacobian as a regularization term to our loss
function [FMF17; GR14]. This approach is analogous to the regularization term
discussed in Equation (3.13) on page 29.

Other forms of regularization can also help prevent overfitting, which can
in turn reduce instabilities. By adding some scaled norm of the weight matrices
as a regularization term we limit how large the weights can be. The motivation
for this is to not let a single feature become too important in the classification
[ISL, Sec. 6.2; GBC16, Sec. 7.1].

Any type of regularization is designed reduce the generality of the network.
This might introduce some bias to the model, but can in turn reduce the variance.
This trade-off, often called the bias-variance trade-off, is a well studied topic in
statistics [ISL, Sec. 2.2.2]. It states that the MSE of a model can be decomposed
into three parts, namely model variance, model bias and observation variance.
Since we cannot control the observation variance, we are most interested in the
model variance and bias.

Recall the underlying assumption for supervised learning from Equa-
tion (3.1) on page 17. Given an observation (x, y) from a true underlying model
Fx)=y+e¢, ¢ HLd. N(0, 6%), we can express the expected MSE for a model F as
(adapted for notation from [ISL, Eq. (2.7)]):

E[MSE(F |x,y)] = Var[B(x)] + E[Hlf(xi)—F(xi)H% + 2 (46)
—_— ——
Model variance Model bias

Observation
variance
Hence, if the regularization causes the variance to drop more than the bias
increases, the overall value of the loss function will decrease.
Even though these approaches can help reduce overfitting and instabilities
in neural networks in some cases, the topic of stability towards adversarial
attacks remain an open and unsolved problem [FMF17].
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CHAPTER 5

Parseval Networks

Parseval networks were introduced in [Cis+17] as a new way to combat over-
fitting and instabilities in classification networks.

The main idea behind Parseval networks is to limit the Lipschitz constant
of each layer to be less than 1. This is done for two main reasons. First, by
making each layer a contraction, we restrict the amount a feature can impact an
activation in the network, which can combat overfitting. Second, by making
the entire network a contraction we limit the amount of change on the output
logits of the network. Our motivation is that this may improve the network’s
stability against adversarial attacks.

5.1 Lipschitz Constants of Neural Networks

In order to constrain the Lipschitz constants of Neural Networks, we must first
derive the Lipschitz constants of the different kinds of layers. From Corollary 4.3
we have that the Lipschitz constant of a Neural Network is bounded above by
the product of the Lipschitz constants of its layers. Thus, if we limit every layer
to be a contraction, the whole network will be a contraction.

Dense Layers
Recall that a dense layer is an affine mapping W;: RM-1 — RN, given as
a; = Wya_4) = Wa_; + b
We wish to limit the Lipschitz constant of this mapping. The following

proposition will help us achieve this bound:

Proposition 5.1. The Lipschitz constant of an affine mapping W: R" — R"
given as W(x) = Wx + b is the largest singular value of W.

Proof. Letx,y € R", then
W) =Wyl = IWx+b - (Wy +b)ll, = [Wx =yl < [WIlIx -yl

We know the last inequality to be sharp. Hence, we see that the Lipschitz
constant of W is the operator norm ||[W||,. It remains to show that this norm is
bounded by the largest singular value of W.
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5. Parseval Networks

Let W = UZV' be the singular value decomposition of W, so X = U'wv.
Let x € R" with ||x||, = 1, we must show that ||Wx||§ < a%. Since the columns
of V forms an orthonormal basis for R, there exists a ¢ € R" with ||c||, = 1
such that x = Vc. Thus:

n n
2 2 T 2 2 2.2 2 2_ 2
Wx]l; = [[WVell; = [[U WVcll; = ||Zcll; = ZUZ‘ le;[” < o Z lc;|” =01
i=1 i=1
Which concludes the proof. m]

Convolutional Layers

To derive Lipschitz constants for convolutional layers, we will begin by showing
how we can express convolutional layers as affine mappings. In traditional
signal processing theory, convolutions are expressed with circulant Toepliz
matrices [Ryal9, p. 99]. However, recall from Remark 3.7 that convolutional
layers do not comprise actual convolutions. Hence, the traditional theory does
not apply directly.

We will begin by presenting how [Cis+17] solves this problem for unstrided,
1D convolutional layers, and working out some important details omitted
from the original paper. Then we will generalize their result to cover strided
convolutions and higher dimensional input tensors as well.

First of all, note that we can ignore the batch dimension b in Equation (3.8)
without loss of generality. From our perspective the batch dimension is merely
to do the same set of operations on different input. To further simplify notation,
assume that the length of the convolution kernel is odd, that is the kernel size is
2d + 1 for some d € N. Throughout this section, we will rearrange the order of
the dimensions of the input so that the channels is first instead of last (contrary
to the subsection at page 21). This will not alter the end results, but make some
of the matrix expressions later on tidier.

Hence, we have our input a € R (input channels, length) instead
of a € RP™n (batch, length, input channels). Our weight tensor is still
w e ReHDXenXCou (kernel size, input channels, output channels), with the
filter kernels indexed from —d to d. One-dimensional, unstrided convolutions
without the batch dimension is then given as

(Wxa), ; = Z Wi ky ky * Tk it (6.1)
7

-’

For an input activation a to a layer, let the unfolding operator applied to our
input signal U(a) be the (2d + 1)c;,, X n matrix where the jth column is given as

a1,j-d
ay,i-d

U(a)a(—,]' = acin,j—d
ay,j-d+1

L acm,j+d ]
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5.1. Lipschitz Constants of Neural Networks

We define a; i = 0 whenever 7 or j is out of bounds’. Note that U() is clearly a
linear operator. Further, let the unfolded weight matrix W be the ¢ X (2d + 1)cy,
matrix where row i is given as

Wi, = [wogni Woapi 0 Woge i Wegani  Wa il

ins

Note that W is merely a reshaping of original weight tensor w.
We can now rewrite Equation (5.1) on matrix form as

(w=a) =WU(a) (5.2)
Thus, a convolutional layer is given as
a; =W, U(a, ;) +b,

From the first half of the proof of Proposition 5.1 we have that the Lipschitz

constant of a convolutional layer is the operator norm of the composite ||WU||§,
and combined with Proposition 4.2 this gives that

IWUI3 < [[WI3IIUl13

From the second part of the proof of Proposition 5.1 we have that ||W||§ is
bounded by the largest singular value of W. Since U is an operator that repeats
shifted versions of the input signal 24 + 1 times, we have that

UG - U3 = IUx-y)li3 < 2d + DlIx - yll3

Giving that ¥2d + 1 is a Lipschitz constant for U.
We summarize the above in the following proposition:

Proposition 5.2. The Lipschitz constant of a convolutional layer W : R —

Rt with kernel size 2d + 1 and weight tensor w is bounded by /(2d + 1)o,
where o, denotes the largest singular value of the unfolded weight matrix W.

Extension to Strided Convolutions

One possible way to introduce strides to Equation (5.2) is to linearly sample
the columns of the resulting matrix. However, we will use another approach
were we redefine the unfolding operator, as this aligns more closely with
Equation (3.8) as well as how convolutional layers are typically implemented in
practice.

1Often dubbed zero-padding in DL literature.
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5. Parseval Networks

The unfolding operator for a 1D convolutional layer using stride s will be
the (2d + 1)c;, X n/s matrix where column j is given as

al,j—ds
a3,i-ds

U(a)*,j = | A, j-ds
a1, j-(d-1)s

L acin,jers ]

By omitting entries from the input signal, it is clear that the Lipschitz constant
can not be larger than for the unstrided case.

Extension to Higher Dimensions

Extension to higher dimensions will largely follow the same strategy as the
extension to strided convolutions, . We will only show how to extend Equa-
tion (5.2) to 2D convolutions, but the following technique can be repeated to
achieve convolutions of even higher dimensional signals. However, since we
will only deal with 2D images in this thesis, 2D convolutional layers will suffice.

First, note that the input to a 1D convolutional layer is a 2D tensor a € Rn*".
Thus, the input to 2D convolutional layer is a 3D tensor a € R To
simplify notation, assume that the kernel is square and of odd length, that
is the kernel size is (2d + 1) X (2d + 1) for a k € N. Our filter tensor is now a
4-dimensional tensor w € R4 DX@AH1X6nXCou

Intuitively, our approach is to stack the columns in the image vertically,
thus turning the signal into a 2D tensor. This will however demand some
restructuring of both the unfolding operator and the unfolded weight matrix.

As before, we can ignore the batch dimension without loss of generality.
Thus, for an input activation a, we can express the convolution as

(wWra) ;= § § § W1 kky Oy it j+f (5.3)
7 1 k
i 1

To simplify further notation, leta; ; € R be the vector given by stacking
the channel dimension as a column vector:

a1i,j
Ay,

ai’]‘ =

a
Cinst/]

To express (5.3) on the same form as Equation (5.2), we will redefine the
unfolding operator applied to our input signal U(a) to be the (2d + 1)*c;, X mn
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matrix where the jth column is given as

[ j/nj—d, (jmodn)-d ]
A|j/n|-d, (jmod n)-d+1

U(a)*rf = | Aj/n]-d, (jmod n)+d
A j/n|-d+1, (jmod n)—d

| Aj/n]+d, (jmodn)+d |

Likewise, let WZ ik, € R be the column vector obtained by stacking the input
channel dimensions, so that w is a row vector:

Wijky = [wi/jrlrkz Wijok, = wi,flfmrkz]

We redefine the unfolded weight matrix as the ¢, X (2d + 1)%c;, matrix where
row i is given as

W;.= [W—d,—d,i W_g—d+1,i °° Wegdi Wegsl-di " Wd,d,i]
Note that W is still just a reshaping of w. Thus, we can rewrite Equation (5.3) as
(w=*a) = WU(a) (5.4)

using these redefined versions of the unfolding operator and unfolded weight
matrix. We can limit ||W||, in the same manner as before. The unfolding
operator now repeats the signal (24 + 1) times, and following the argument
for the 1D case, 2d + 1 is a Lipschitz constant for U.

Residual Blocks

Residual blocks pose a problem with Lipschitz constants. Recall that in a
residual block the identity is fed through several layers, as shown in Equa-
tion (3.9) and Figure 3.2 on page 22 and on page 23. The problem with residual
blocks is that the sum of two contractions is not necessarily a contraction. As a
simple counterexample, consider f: R — R, with f(x) = x. While f is clearly
a contraction, g = f + f is not.

Thus, even though we restrict every layer in the residual block to be a
contraction, the block itself will not be a contraction. The solution to this
problem is motivated by the following proposition:

Proposition 5.3. Let f, ¢: R"™ — R" be two contractions. Any convex combi-
nation of f and g is also a contraction.

Proof. Let f,g: R" — R" be two contractions, let A € [0,1], and define
h: R"™ - R" as
h(x) = Af(x) + (1 - A)g(x)
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5. Parseval Networks

Letx,y € R", then

1) = h(y)ll
=[Af0) + (1= M)gx) = Af(y) - (1= A)gy)ll
=A(f ) = fy) + (1 = A)(gx) = gyl
S AIfFG) = fI+ A = MDlIgx) = g
S A=yl + @ =A)lx -yl

= lx=yll

Which shows that % is a contraction. m]

In Parseval networks, we will redefine residual blocks to use convex combi-
nations instead of sums, thus ensuring the residual block to be a contraction.
An example 3-layered Parseval residual block is then given as

B(a) = p3(AW;(po(W,(p1(W())))) + (1 = A)a) (5.5)

The parameter A can either be interpreted as a fixed hyper-parameter, or as a
trainable parameter.

Activation Functions

The following lemma will help us find upper bounds of Lipschitz constants for
activation functions.

Lemma 5.4. Let f: R — R be a differentiable function. Let x,y € R. If
dmax = max {|f,(z)| | zZ € R} exits, then

|f(x) = F()] < i |* = ¥

In other words, d,,,, is a Lipschitz constant of f.

Proof. Let d,,, be defined as above. Assume for contradiction that there exists
a pair x, y € Rwith x < y such that

|f(X) - f(]/)| > dmax |X - y|

By the Mean Value Theorem we know that there exists a point z € R such that

PG o)
|x -y

This is a contradiction, since d,,,, is the defined to be the largest derivative of

f. m]

We will use this lemma to prove the following proposition.
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Proposition 5.5. ReLU, Leaky ReLU with slope < 1, hyperbolic tangent and
sigmoid are all contractions.

Proof. Let x,y € R. If both x, y < 0, ReLU(x) = ReLU(y) = 0. Thus it is clear
that 0 is a Lipschitz constant of ReLU restricted to (—co,0). If both x,y > 0,
Lemma 5.4 gives that 1 is a Lipschitz constant of ReLU restricted to (0, co). If
x < 0and y > 0, we have that

IReLU(y) — ReLU(x)| = [ReLU(y)| = v < |y — 0| = |y — x|

Thus, max {0, 1} = 1 is a Lipschitz constant for the ReLU, so it is a contraction.

Likewise, for the leaky ReLU Lemma 5.4 gives that « is a Lipschitz constant
of LReLU,, restricted to (—co,0) and that 1 is a Lipschitz constant of LReLU,,
restricted to (0, o). Following the same argument as above, max {«, 1} is a
Lipschitz constant of LReLU,. Since we have assumed a < 1, LReLU is a
contraction.

For tanh, we observe the derivative

d _ 2
P tanh(x) = 1 — tanh”(x)

Since tanh?(x) > 0 for all x with tanh(0) = 0, we have that
d
T?ﬁ( = tanh(x) =1

And by Lemma 5.4, 1 is a Lipschitz constant of tanh, so it is a contraction.
Finally, for the sigmoid, we find the derivative:

oy d 1 e
o'(x)= Tx (l N e_x) = i+ e_x)2 (5.6)

and the second derivative:

d_z ( 1 ) _d e " 2e et
d \L+e ] dx\(14e7)?] 1+ 1+
which has exactly one root, namely x = 0. Since ¢’(0) = 0.25 and

lim ¢’(x) = lim ¢’(x)=0
X——00

X—00

we have that x = 0 is a global maximum for ¢’ with ¢’(0) = 0.25. By Lemma 5.4,
0.25 is a Lipschitz constant of ¢ and it is a contraction. m]

5.2 Tight Frames

This section will give a brief introduction on the topic of tight frames. As we
will later see, this notion, in conjunction with the results of the previous section,
will give us a way to enforce the layers to be contractions.

We will begin with the general definition of tight frames:
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5. Parseval Networks

Definition 5.6 ([FR13, Definition 5.6]). A system of vectors {e;,e,, ..., e, }
in R" is called a tight frame if there exists a constant A > 0 such that one of
the following equivalent conditions holds:

m
(a) ||X||§ =A Z [{x, ei>|2 forall x e R”
i=1
m
(b) x=A Z(x, e;)e; forall xeR"

i=1

1
T . N
() AA = XI"' where A is the matrix with columns {e;, e,,...,e,}

Proof of equivalence. To see that (a), (b) and (c) are equivalent, notice first that
the right hand side of (a) can be written as

AxTAATx (5.7)

for a matrix A with columns {e;, e,,...,e,}. Since AAT is symmetric, it is
uniquely characterized by the quadratic form in Equation (5.7). Thus

x'x = ||x||§ = Ax' AATx

must hold for all x, giving that AAA” = 1, establishing the equivalence of (a)
and (c). For the equivalence of (b) and (c), we have that

(x,e) e{x elT
u (x,e) e x e .
Z(x,ei)ei:A ) =A| " |=A| |x=AAX
— : : :
(x,e,) e;x e;
Giving that
m
x=A ) (x,e)e; = AAA x
i=1
for all x, hence AAAT = 1. |

In this thesis, we are concerned with a special kind of tight frames, namely
Parseval frames:

Definition 5.7. A tight frame with A = 1is called a Parseval frame.

We are now ready to present the main result of this section:

Theorem 5.8. Let A € R"™" with m < n, be a matrix with singular values
01,...,0,. If the the rows of A form a Parseval frame, the singular values are all 1.
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Proof. LetA =[e; e, --- e,,]". Then the columns of A" forms a Parseval frame,
and by Definition 5.6c we have that ATA =1, Since all the eigenvalues of I,

are 1, the singular values of Al areall 1. By the invariance of singular values
under transposition, the same is true for A. O

Proposition 5.1 and Theorem 5.8 gives us a way to enforce every layer in the
neural network to be contractions. We will constrain all the weight matrices to
have Parseval frames as rows, hence the name of Parseval networks.

5.3 Parseval Training

Now that we have a tractable way to control that the layers of the network are
contractions, we shift our focus to how we will enforce this criteria during the
training of the network.

In this section, we will present Parseval training as introduced in [Cis+17].
Parseval training interlaces every iteration in the training optimization algo-
rithm with a retraction step to ensure that the rows of the weight matrices
(approximately) form a Parseval frame.

For a given weight matrix W, the authors of [Cis+17] introduce the following
regularization loss:

1
R(W) = SIW'W - 1| (5.8)

with gradient
VwR(W) = (WW' —T)W (5.9)

We observe that R(W) = 0 if and only if the rows of W form a Parseval frame.
Hence, we will minimize Equation (5.8).

We will solve this minimization problem using gradient descent. This gives
us the following variable update:

W — W — BV R(W) (5.10)

The g will act as a step length for the optimization, and is interpreted as a type
of regularization parameter. By inserting Equation (5.9) into Equation (5.10)
and rearranging, we get

W (1-p)W - BWW'W (5.11)

Since R is a convex function of W, repeating Equation (5.11) until convergence
would ensure that the rows of W are a Parseval frame. However, this is
unpractical for a number of reasons.

First, solving a full optimization problem for every layer in each global
optimization step is very computationally costly, and will slow the training
dramatically. Second, a W that realizes the minimum of R(W) might be far from
the weights that actually minimizes the global loss function. Hence, running
the regularization optimization all the way to convergence might negatively
affect the performance of the network. Lastly, as we will see in more detail in
Section 6.3, it does not seem to be necessary to do more than one step. Empirical
results show that the singular values of the matrices are all (very close to) 1
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Algorithm 5.1 Parseval training using gradient descent as the base algorithm.

Input: Initial parameters 0, step length 7, retraction parameter , number of
epochs E, batch size M, training set {(x;, yi)}f\il.

1. Fore=1,2,...,E,do

1.1 Create a new permutation p = {p;,p,, ..., py} of {1,2,...,N}

1.2 Forn=1,2,...,N/M, do

(nm+1)M

1.2.1 Sample M examples from shuffled data sets, {(xpj, ypl,)}j=11M

1.2.2 Compute gradient of loss using sampled mini-batch,
& V'L:(G | Xpum? 07 xP(n+1)M’ Ypumr - yP(n+1)M)

1.2.3 Apply update to parameters, 0 < 0 — ng

1.2.4 For each dense/convolutional layer k, do

1.2.4.1 Retraction step, Wy « (1 + B)W, — BW, W, W,

Output: Trained parameters 0

even after only performing a single step of gradient descent (see Figure 6.8 on
page 63).

Performing the retraction step in Equation (5.11) for each layer after every
iteration in Algorithm 3.1 or Algorithm 3.2 yields Parseval training, described
in detail in Algorithm 5.1.

Remark 5.9.  Algorithm 5.1 is slightly different than the proposed algorithm in
[Cis+17, Alg. 1]. First, since [Cis+17] regards classification network, they must
handle so-called aggregation layers as well. This is not relevant for our case of
denoising networks, hence we have removed it all-together. Second, in [Cis+17]
they propose sampling a subset S of rows of W in each iteration, and perform
the retraction only on the submatrix Wy formed by the rows indexed by S. This
will bring the time complexity of the retraction step to O(|S 1* d) (where d is the
number of layers). Since dense layers often have a lot more parameters than
convolutional layers, this is especially helpful for dense layers. However, since
our denoising networks rarely comprises dense layers, this is not as useful for
our case. The empirical tests shown in Section 6.3 did not show any noticeable
speed-down when Parseval constraints were applied, so the sampling seems
unnecessary for our application.

5.4 Parseval Networks

By training our networks with the Parseval update step in-between each
iteration of our optimization algorithm of choice, illustrated in Algorithm 5.1
for Gradient Descent, we get Parseval networks. The authors of [Cis+17] only
discusses using this technique for classification networks. We will briefly
illustrate Parseval classification networks in Section 6.3.
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Parseval Denoisers

Extending the techniques from [Cis+17] to denoising networks is almost
completely straight forward. We will use Parseval training to train the network,
but we also need to address the structure of the denoiser itself. Recall from
Equation (3.14) on page 30 that a denoiser is the sum of a neural network
and the identity. The identity is clearly a contraction, and by using Parseval
training to train our neural network, the network is also a contraction. However,
recall from the derivations on page 47 that the sum of two contractions is not
necessarily a contraction. Hence, for Parseval denoisers we need to redefine
Equation (3.14) to use convex combinations instead:

D(x) = Ax+ (1 - M)p(x) Aelo,1] (5.12)

Thus, by Proposition 5.3, we can guarantee the whole denoiser to be a contrac-
tion.

We can set A to a fixed value, for example A = 0.5, or treat it as a trainable
parameter. If we choose to let A be trainable we must ensure that it never
leaves the unit interval. We could do this by clipping the value at 0 and 12.
However, recall from Equation (3.3) that the sigmoid function is always in the
unit interval. Thus, if we want to have the convex parameter trainable, we can
implement that as

D(x) = a(p)x + (1 - a(p))p(x) peR (5.13)

and let p be a trainable parameter with no restrictions.

2That is, perform the optimization iteration as normal, and do A « min(max(0, 1), 1) after-
wards.

53






CHAPTER 6

Implementations and Experimental
Results

We are now going to examine our implementations and put Parseval recon-
struction networks to the test.

In Sections 6.1 to 6.3 we will reimplement and reproduce results from
[Sch+18; Ant+19; Cis+17]. Later in Section 6.3 we will test the performance and
stability of the denoiser proposed in Section 5.4. Finally, in Section 6.4 we will
discuss the performance of Parseval denoisers with regards to reconstruction
capabilities and noise vulnerability.

6.1 Our Setup

To perform empirical tests on the effectiveness of Parseval constraints on
denoising networks, we opted to use the DeepMRINet [Sch+18] as our base
architecture. Throughout we used Python 3.5 [Py3] and TensorFlow 1.8 [TF].

Reimplementation of DeepMRINet

The original implementation of DeepMRINet used somewhat outdated li-
braries'. Because of this we opted to reimplement the network using a more
modern framework.

In our reimplementation and retraining of DeepMRINet we made some
important changes to the network. First off, we changed the sampling pattern
from the line based one in [Sch+18] to Gaussian sampling. The original
DeepMRINet were trained on two different sampling rates, namely 33% and
17%. Our sampling rate was set at 25%. A comparison of the two sampling
patterns is found in Figure 6.1.

Because of limited computation resources we had to scale down the number
of layers in the network slightly in order to fit it on a single GeForce GTX
1080 without reducing the batch size too much. Thus our version has 4 CNNs
instead of the original 5, and each CNN consist of 4 32-channeled convolutional
layers instead of 5 64-channeled layers.

All of our networks were trained on a subset of the dataset from [Ham+18]
consisting of 2679 images. Of these, 120 were set aside as a test set. We

1 [Sch+18] uses Theano, which was announced to be discontinued after it’s initial 1.0 launch in
2017. It has received some bug fixes and compatibility updates since then, but no feature updates.
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(a) Sampling pattern in [Sch+18], (b) Our sampling pattern
adjusted to our sampling rate

Figure 6.1: Sampling patterns in the Fourier domain. Both subsample at 25%.

trained the network using the Adam optimizer for 40 epochs resulting in 10236
iterations. During training we employed different data augmentation strategies,
including flipping along both width and height axis, rotations and addition of
Gaussian noise. These augmentations were done independently for each batch
every time a new batch was drawn.

Changes to Algorithm 4.1

The implementation of Algorithm 4.1 given in [Ant+19] is very general, and
meant to work on any denoising network written in any framework. Our
situation is not as general, so we have opted to implement Algorithm 4.1
differently than [Ant+19].

We implemented Algorithm 4.1 as a Neural Network, see Figure 6.2 for a
graph representation of the architecture. When searching for perturbations
we view all the variables in the network as untrainable constants except for the
perturbation 6. We then seek to maximize the value of the Q node in the graph
given in Figure 6.2. This node computes Equation (4.4).

Note that if we use Stochastic Gradient Descent with Nesterov Momentum?
to train this network, our approach is identical to Algorithm 4.1. However,
we achieved faster convergence with the Adam optimizer, so we opted to use
Adam instead.

Thus, our algorithm has the following hyper-parameters:
e N — The number of steps for the optimization algorithm
e 11— The step length of the optimization algorithm

e ay, @, — Decay rates for Adam. In our experiments, these are always set
at the suggested default of &; = 0.9 and a, = 0.999.

2This method is implemented in TensorFlow as tf.train.MomentumOptimizer if
use_nesterov=True is given as a keyword argument.
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5x5 5x5 3x3 3x33x3

LTI

Tl /’ N ~

;

Precomputed f(Ax)

Figure 6.2: The architecture for the instability experiments

e A —The trade-off between reconstruction error and perturbation size

e 7 — The initial element-wise size of the perturbation. Ie, draw initial
perturbation elements from Unif[0, ]

6.2 Current Instabilities

In this section we will recreate some of the results from [Ant+19] using our
own version of Algorithm 4.1, outlined in Section 6.1.

We found that the following hyper-parameters gave good results:
N=50 7=0001 A=1 17=10"

Example perturbations found with these hyper-parameters are found in Fig-
ure 6.3. In these examples we have drawn 4 images from an independent
test set, never before seen by the network. For each sample, we have created
synthetic measurements by using the measurement operator:

y;, =Ax; fori=1,2,3,4

We then used our own reimplementation of DeepMRINet to recover X; fromy;.
Note that since the Data Consistency layers depend on the measurements in the
Fourier domain, the input to DeepMRINet is y; directly, and not Ay,. Taking
the adjoint of the measurement operator is built into the network. Throughout
this chapter we will use D, to denote our vanilla DeepMRINet implementation.

57



6. Implementations and Experimental Results

(@) x; (b) D, (Ax;) (0 x; + 0 (d) D, (A(x; +87))

(8) xp + 0,

(m) x4 (n) D, (Axy) (0) x4 + 04 (p) D, (A(xy + 0y))

Figure 6.3: Adversarial attacks against the author’s implementation of DeepM-
RINet

6.3 Applying Parseval Constraints

We will now study the effects of applying Parseval training. We will begin by
recreating the results from [Cis+17] before applying Parseval constraints to
MRI reconstruction networks.

Recreating the Results From [Cis+17]

To confirm that our implementation is correct, we will reproduce the results
in [Cis+17]. We will do this by implementing a simple classification network
and train it with and without the Parseval retraction step. Since classification
networks are not the main focus of this thesis, we will only give a broad summary
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64
5x5 64 32
2x2maxpool 3 X 3 3x3 3><3 2><2m1xp001

&
ReLU ReLU ReLU Re LU ReLU tanh
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Figure 6.4: Architecture of the classifactor used to verify our implementation of
Parseval constraints. Blue blocks depict convolutional layers, while red blocks
depict dense layers.

of our network, and refer to Appendix A.1 for details. Briefly speaking, the
main difference from before is that the output of the network is now categorical
(ie, the predicted label of the input).

The authors of [Cis+17] did not report on any specifics of their architecture.
Our network will be fairly small in order to make the network train fast,
and since we are more concerned with the change in stability rather than the
performance of the network. Our network will consist of 4 convolutional
layers, followed by 3 dense layers. We use RelLU activation, except for the
two last layers where the second last has tanh activation and the last layer has
no activation. The output of the last layer is sent to a softmax function (see
Equation (A.1)) to turn the output into a valid discrete probability distribution.

Between layers 1 and 2 and layers 4 and 5 we employed max pooling (see
Equation (A.2)) to reduce the dimensionality. At the end of the network, we
let the arg max of output from the softmax function be the predicted label of
the input. A graph representation of our classificator architecture is found in
Figure 6.4.

We trained our networks to classify images from the CIFAR-10 database
[KHO9]. It consists of 50 000 labeled 32 x 32 x 3 images from 10 different classes,
as well a dedicated test set of 10 000 additional images. We trained the networks
using the Adam optimizer with cross-entropy loss (see Equation (A.3)), and
trained for 50 epochs with a batch size of 512 as the networks seemed to
converge quickly. We also employed dropout to limit overfitting [Sri+14]. Both
the vanilla and Parseval classifier were initialized with orthogonal rows. The
training progressions are found in Figure 6.5. The vanilla classifier converged
with a validation accuracy of 81.2% and the Parseval classifier converged with
a validation accuracy of 82.4%.

In [Cis+17] the authors report several benefits of Parseval classifiers, among
them:

1. Near-orthogonal weight matrices
2. Faster convergence
3. Higher robustness to adversarial noise

The near-orthogonal “benefit” is merely a result of the Parseval retraction step,
but is nevertheless a good indicator that our implementation is working as
expected. Since this will also be true for our denoising networks, we will not

59



6. Implementations and Experimental Results

—— Training accuracy ~—— Training accuracy
—— Validation accuracy - —— Validation accuracy

1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

(a) Vanilla classifier (b) Parseval classifier

Figure 6.5: Training progression of the classifier depicted in Figure 6.4.

investigate this further in this section but rather revisit it when discussing the
Parseval denoiser (see Figure 6.8).

We did not see a massive increase in convergence speed, but we did observe
a more stable convergence. That is, the loss function and accuracy did not
fluctuate as much while training the Parseval classifier. However, one single
observation of Parseval training on classifiers is not sufficient to either disprove
the reported increase in convergence in [Cis+17] or prove increased stability
during training. To make such a conclusion, we would need to train several
networks of different architectures with and without the Parseval retraction
step and do proper statistical inference.

To test the robustness of these models we will take 100 images from the test
set that the classifiers classify correctly, and run the DeepFool algorithm for
adversarial attacks [MFF16] as implemented in [RBB17] until a misclassification
happens. We then compute the mean Signal-to-Noise Ratio (mean SNR or
MSNR) for each of these batches of 100 attacks. For images x;, x5, . .., x,, with
corresponding perturbations 04, 0,, ..., 0, the mean SNR is given as

1y 11l
MSNR(G, X, -+ X, 01,85, 8,) = ; 1010y, 32
and will be a measure on how much we must typically perturb an image before
a misclassification happens, where a lower mean SNR means that a larger
perturbation is necessary. Doing this computation, we get that for the vanilla
classifier, the mean SNR for our batch of images is 7.8, while for the Parseval
classifier, the mean SNR for the batch is 4.2, suggesting that a larger perturbation
is necessary to fool the Parseval classifier3.

Parseval Constraints on DeepMRINet

To test the effectiveness of Parseval constraints on MRI reconstruction networks,
we trained an alternative version of our reimplementation of DeepMRINet with

3These signal-to-noise ratios are small, suggesting that both of these models are rather stable.
This is not very surprising as the performance of 80% is not very high. Instability usually increases
with performance.
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@ x,

(e) D, (Ax,) (B D, (Axy) (8) D, (Ax3) () D, (Ax,)

Figure 6.6: Reconstruction with the Parseval DeepMRINet, using the same
measurement operator as before.

Parseval constraints applied. The network architecture, data set and choice
data augmentation and optimizer was kept identical to the vanilla case defined
in Section 6.1, except for the definition of the denoiser which where changed
to the one in Equation (5.13). We will use D, to depict the Parseval version of
DeepMRINet.

In Figure 6.6 we display the reconstruction capabilities of the Parseval
DeepMRINet, and in Figure 6.7 we show the Parseval DeepMRINet and
the vanilla DeepMRINet reconstructions of the same perturbed inputs as in
Figure 6.3. We see that the reconstruction error is much smaller for the Parseval
network. We will discuss changed performance in more detail in Section 6.4.

To ensure that the Parseval retraction step does what we expect it to do, we
can calculate the singular values of the trained weight matrices. In the Parseval
case, we would expect all the singular values to be approximately 1, while in
the vanilla case we would expect them to distribute wider. If we do this, we
find that this is in fact the case, as shown in Figure 6.8.

6.4 Perceived Changes

We will now discuss some of the changes in performance we observe when
applying Parseval constraints to our denoising networks. Specifically, we are
going to examine three perceived changes:

e Networks with Parseval constraints seem to be less vulnerable to overfit-
ting

e Denoisers with Parseval constraints does not seem to amplify errors on
adversarial attacks
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@x; + 8, (b) D, (A(x; + 8,))

(© D, (A(x; +87))
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G) x, + 8, (9 D, (A(x, + 8,)) (1) D, (A(xy + 8,))

Figure 6.7: Comparison of adversarial attacks against Parseval and vanilla
DeepMRINet.

62



6.4. Perceived Changes

(a) Vanilla DeepMRINet (b) Parseval DeepMRINet

Figure 6.8: Histograms of singular values for the layers of our recreation of
DeepMRINet, compared to the Parseval version

—— Training accuracy —— Training accuracy
—— Validation accuracy 0- —— Validation accuracy

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

(a) Vanilla classifier (b) Parseval classifier

Figure 6.9: Overfitting the classifier depicted in Figure 6.4.

o Denoisers with Parseval constraints seem to be less able to reliably recover
fine details in images

Risk of Overfitting

Discussing overfitting on denoising networks are very difficult, as we do not have
any clear measure on successful recover*. Hence, when discussing overfitting,
we will consider the classification network we designed in Section 6.3.

In Figure 6.5 we can see some tendencies that the vanilla network is
overfitting more than its Parseval counterpart. We will however redo the
training. In Section 6.3 we trained our network with several techniques that
limit overfitting, such as dropout and data augmentation. In order to test the
effectiveness of the Parseval regularizer as a means of limiting overfitting, we
will remove all of these techniques and retrain the model with nothing but
simple Stochastic Gradient Descent (Algorithm 3.1) and a dedicated validation
set to measure overfitting.

“other than the eyeball metric (i.e. looking at the image and deciding manually) which is not
feasible to implement when training.
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i 118l 1Dy (Ax;) = Dy (Alx; + )l 11D, (AX;) = Dy (Ax; + 8)))ll>
1| 41.87 61.63 43.86
2 | 33.72 61.34 34.99
3| 29.84 46.19 30.38
42617 41.21 27.98

Table 6.1: Amplification of adversarial noise

We trained two versions of the classifier on CIFAR-10 for 500 epochs with a
batch size of 512 and a step size of 0.001. The resulting training progressions
are depicted in Figure 6.9. We can see that both models begins to overfit after
10 000-20 000 iterations, however the overfitting in the vanilla case is far more
severe, even approaching a training accuracy of 100%.

Robustness to Adversarial Attacks

It is clear from Figure 6.7 that our Parseval DeepMRINet does not amplify the
noise in our adversarial attacks in the same way that the vanilla DeepMRINet
does.

To get a more concrete measure on how our denoisers amplify noise from
adversarial attacks, we can compare the difference between the reconstructed
image and the reconstructed perturbed image (the first term of Equation (4.4))
with the size of the perturbation (second term of Equation (4.4)). If the difference
between the two reconstructions are larger than the norm of the perturbation
we can say that the error has been amplified. A table of these norms and
differences are found in Table 6.1.

The computations in Table 6.1 confirms what we see in Figure 6.7. Theoreti-
cally, we should not see any noise amplification for the Parseval DeepMRINet
since the entire denoiser is a contraction. Recall Equation (4.1) on page 37, or
specifically for a Parseval denoiser D, and a measurement operator A = P,F,,
we have that:

ID,(Ax) — D, (A(x + 8))ll, < [[Ax — A(x + d)]|
< [|Al, 1101l
= [IPoF, L1161l

= [Pall[16]l,
= 151l

However, we see slight increases in error for the Parseval DeepMRINet in
Table 6.1. This is most likely be due to a combination of two contributors.

First, recall from Section 5.3 that we are not guaranteeing the weight matrix
of a layer to be a Parseval frame, but merely approximating. As illustrated in
Figure 6.8b this leaves the possibility for some singular values to be slightly
larger than 1. Second, we have that numerical errors could be affecting
our computations, as the network were trained on a GPU only supporting
singe-precision (32-bit) floating-point numbers. Thus making round-off errors
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(a) x; zoomed (b) D, (Ax;) zoomed (c) Dp (Ax) zoomed

Figure 6.10: Reconstruction of fine details with vanilla and Parseval DeepM-
RINet

more severe what we are used to with double-precision (64-bit) floating-point
numbers?.

Reconstruction Capabilities

Finally, we will compare the reconstruction performance of Parseval and vanilla
denoising networks. Making a stable denoiser is not impressive if we loose too
much of the performance. For example, using the identity as a denoiser will be
extremely stable to adversarial noise, but that does not mean that it will work
well as a denoiser.

From Figure 6.6 we see that the Parseval DeepMRINet is at least capable of
reconstructing large-scale details. However, when zooming in at certain areas
of the resulting image, some weaknesses appear.

In Figure 6.10 we have taken x; and zoomed in roughly 350%, and we
see that many fine details are lost or blurred in both the vanilla and Parseval
reconstructions, but even more so in the Parseval case. These weaknesses were
not present in [Sch+18]. This observation raises two main questions:

e Why is our reimplementation of DeepMRINet less capable of recovering
small details than the original implementation?

e Why is our Parseval denoiser less capable of recovering small details than
its vanilla counterpart?

We will further provide some thoughts of what the source(s) for the reduction
in performance can be.

Performance reduction for vanilla DeepMRINet

We did a number of changes to our version of DeepMRINet compared to the
original in [Sch+18]. Most notably, we did the following changes on our version:

>Since most commercial GPUs only have 32-bit arithmetic engines, using single-precision
numbers is still quite common in DL
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e We scaled the network down from 5 CNNs with 5 layers each consisting
of 64 3 x 3 convolutions, to 4 CNNs with 4 layers each consisting of 32
convolutions with 5 X 5 filters in the first layer and 3 X 3 in the last 3.

e We changed both the sampling pattern and sampling rate.
e We trained on a different dataset, and with several times more data.

o We trained for fewer epochs.

Any of these changes could have contributed to the reduction in performance.
However, we suspect that the change in architecture, sampling rate and dataset
are the most likely to affect the performance negatively.

The reduction in network size is an obvious candidate for a reduction in
performance. By reducing the network, we potentially reduce the generality
and approximation capabilities of the network.

Lowering the sampling rate gives us less data to work on. In [Sch+18],
the authors train two versions of DeepMRINet, one with 33% sampling rate
and one with 17% sampling rate. By comparing the performance of these two
models, we see that the 17% versions exhibits more of the blurring artifacts
present in Figure 6.10 than the 33% version [Sch+18, Figures 8 and 9]. Thus,
lowering the sampling rate to 25% could be a contributor to the reduction in
small-detail reconstruction performance.

Finally, our dataset is an order of magnitude larger than the dataset in
[Sch+18], and contains larger variations as we trained on data from different
cordial axes and fat-suppression. Hence, we tried to learn to reconstruct a larger
domain of images. This could also have led to more overfitting of the original
than ours. In addition, we used a completely separate test set to evaluate our
model performance, while [Sch+18] used a 2-fold cross-validation approach.
Thus, the recoveries reported in [Sch+18] might have been overly optimistic
compared to our tests.

We do not suspect the change in number of epochs or sampling pattern
to negatively impact the performance. Even though we trained for far fewer
epochs, each epoch consist of more iterations, bringing the total number of
iterations up®. We stopped the training after 40 epochs as we no longer saw
meaningful changes to the validations loss, suggesting that we were about to
enter an overfitting phase. The change of sampling pattern was a conscious
decision as a Gaussian sampling pattern preserves more details and produces
less artifacts when recovering with the adjoint compared to the original pattern
in [Sch+18].

Performance reduction for Parseval DeepMRINet

The noticeable reduction in performance for the Parseval DeepMRINet might
indicate that the Parseval constraint is a very strict regularization scheme. When
we limit how much an error can propagate, we also limit the expressiveness of

6 As mentioned on page 56, we trained for a total of 10236 iterations, while [Sch+18] was trained
with a batch size of 1, using 150 images for 200 epochs resulting in 30 000 iterations — which is still
more, but not in terms of an order of magnitude as it might initially seem when only comparing
epoch numbers.
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the model, not unlike the previously mentioned bias-variance trade-off (page
41).

A danger of limiting all the layers in the network to be contractions, is that
we risk the output of each layer to get exponentially smaller. Thus, the scale of
the output of the neural network in a denoiser could be small compared to the
scale of the input image, so when summing them, the contribution from the
network is largely neglected (recall Equation (3.14) on page 30 and the refined
version in Equation (5.12) on page 53).

However, we have not adjusted the architecture or hyper-parameters when
applying the Parseval constraints (other than the ones necessary to apply the
constraints). It is not unreasonable to think that we should adjust some of
the hyper-parameters when we add the Parseval update steps and scalings, in
addition to changing the initialization scheme. There could be an architecture
and a set of hyper-parameters where a Parseval denoiser would perform as
well as non-Parseval denoiser. We will however not investigate this further in
this thesis.
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CHAPTER 7

Conclusions

In this thesis we have reviewed some of the theory and practices in Deep
Learning for MRI reconstruction (Chapter 3), as well as some preliminary
theory on Compressive Sensing techniques (Section 2.1). We have reviewed
recent research regarding the stability of such methods (Section 4.2), and
reproduced some of their results (Section 6.2).

In addition, we have reviewed a recently proposed regularization technique
for classification networks meant to increase stability towards adversarial
attacks (Chapter 5). We have extended the theory behind this regularizer to
cover convolutional layers as they appear in modern Deep Learning (page 44),
and provided an implementation of Parseval training as a free and open source
software library for Python with TensorFlow!. We have used this to introduce
Parseval denoisers as a recovery scheme for undersampled MR images.

We have seen that by applying the Parseval retraction step during training,
we achieve a more stable recovery scheme (Figure 6.7) that does not significantly
amplify noise (Table 6.1), while we seem to sacrifice some reconstruction
capability (Figure 6.10). However, as discussed on page 67 of Section 6.4, we
have not performed an extensive test of architectures and hyper-parameters.
Hence there could exist an architecture and a set of hyper-parameters where
Parseval denoisers would perform on-par with state-of-the-art Deep Learning
based approaches. We leave the search for such parameters for future work.

! Available at GitHub: https://github.com/mathialo/parsnet, as well as on the Python
Package Index. See Appendix B.1 for more details.
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APPENDIX A

Supplementary Material

A.1 Neural Networks for Classification

In this section, we will show how neural networks can be applied as classificators.
Classification is a supervised learning problem where the output is a categorical
variable, often called the class or label of the input. We always know the set of
possible classes a priori.

When using neural networks for classification, we let the last layer have
dimensionality identical to the number of classes. We want the last layer to be
a discrete probability distribution depicting how likely the input is to be of the
different classes. The prediction made is then the arg max of this output vector.

A vector is a discrete probability distribution if all elements are non-negative
and sum to 1. To achieve this, it is very common to use the softmax function,

defined as
aj

e
@)= 5 (A1)
as the activation in the last layer.

Classification networks often employ additional layers not typical for de-
noising networks. One example is pooling layers. Pooling can be viewed as a
type of non-linear sampling, reducing spatial dimensionality in some way. The
most common pooling types are max pooling and average pooling. In 1D, max
pooling with stride 2 is defined as

max {x;, X}

max {Xsz, X
maxpool, x = { ’ 4} (A.2)

max {x,_1, X, }

Average pooling works the same, but with means instead of maximums. This
extends to higher dimensions in the obvious way. For example, 2D pooling
will work on m X n patches. Pooling are typically applied before the activation
function. Note that since all the typical activation functions are increasing
(recall Equation (3.3) on page 19), we have that

p(maxpool, x) = maxpool, p(x)

So it does not make a difference if we apply max pooling before or after the
activation. However, the same is not true for average pooling.
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Since the output is categorical, we often interpret it as a whole number
between 1 and the number of classes C. However, during training it is often
convenient to use the one-hot encoding of the output instead. The one-hot
encoded version of the class y is a vector of length C consisting of Os, except for
a1 onindex y. That is, the one-hot version y’ of a class y is given as

y=[Iy=i]

where 7 (-) depicts the indicator function.

One immediate loss function using the one-hot encoding is to take the MSE
between the one-hot encoded class and the output probability distribution
from the network:

10,
LO X0 X YY) = ;Zlnyi - @)l
1=

Another commonly used loss function for classification is the cross-entropy loss,
defined as

n

C
1 /
LO XX Y1 ¥0) = D | = D3, log(@g(x0))) (A3)
1

i=1 j=

Both assume that the softmax have been applied to the last layer.
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APPENDIX B

Implementation Details

In this chapter we will give some details on our implementations for the
proposed method, as well as how selected figures are generated. Throughout
we will be using Python 3.5, with the following external libraries:

e TensorFlow version 1.8
e NumPy version 1.16.2

e matplotlib version 3.0.3

B.1 Parseval Denoisers

To implement general Parseval Denoisers in TensorFlow we need two compo-
nents, namely Parseval training (Algorithm 5.1, in particular Equation (5.11))
and optionally a trainable convex combination (Equation (5.13)).

All of the classes and functions described in this section is available as a
library for Python 3 called parsnet. It is available from the Python Package
Index (PyPI), and is thus installable with pip:!

$ pip install parsnet

The source code is available at the author’s GitHub page? and is licensed under
the free Lesser GNU Public License version 3 (LGPLv3).

Equation (5.11)

Since version 1.5, TensorFlow has included a Constraint class and the associ-
ated kernel_constraint keyword argument for most layer constructors. We
will use this framework for our implementation of Parseval training.

from tensorflow.python.keras.constraints import Constraint
from tensorflow.python.ops import math_ops, array_ops

class TightFrame(Constraint):

1
2
3
4
5
6

1Depending on your Python installation, you might need to run this command as root or with
the --user flag. You will also have to specify pip3 if Python 2 is your standard system version.

2https ://github.com/mathialo/parsnet
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30 def __init__(self, scale, num_passes=1):
31 self.scale = scale

33 if num_passes < 1:
34 raise ValueError (

35 "Number of passes cannot be non-positive! (got {})".format(num_passes)

36 )
37 self.num_passes = num_passes

40 def __call__(self, w):

42 need_unfolding = (len(w.shape) == 4)

45 if need_unfolding:

46 w_reordered = array_ops.reshape(w, (-1, w.shape[3].value))

47 else:
48 w_reordered = w

51 last = w_reordered

52 for i in range(self.num_passes):

53 templ = math_ops.matmul(last, last, transpose_a=True)

54 temp2 = (1 + self.scale) * w_reordered

55 temp3 = temp2 - self.scale * math_ops.matmul (w_reordered,

57 last = temp3

60 if need_unfolding:

61 return array_ops.reshape(last, w.shape)
62 else:

63 return last

66 def get_config(self):
67 return {"scale": self.scale, "num_passes'": self.num_passes}

templ)

We can then make TensorFlow apply the the Parseval retraction step after each
iteration during the training by passing an instance of the TightFrame? class to
the kernel_constraint keyword argument of the layer constructor as such:

last_layer = tf.layers.conv2d(
inputs=last_layer,
kernel_size=(3, 3),
filters=64,
strides=(1,

1
2
3
4
5
6
7 activation=tf.nn.relu,

8 kernel_initializer=tf.initializers.orthogonal(),

9 kernel_constraint=parsnet.constraints.tight_frame(0.001),
o > /3

1

3 Aliased as tight_frame in the parsnet library for consistency with the rest of the TensorFlow

APL
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Note: Since TensorFlow version 1.13, this way of constructing neural network
layers have been deprecated*. However, the TightFrame class is fully compatible
with the new object-oriented API° as well.

Equation (5.13)

To implement a convex combination with a trainable convex parameter we will
follow the idea from page 53:

1 from tensorflow.python.ops import math_ops

2 from tensorflow.python.ops import variables

3 from tensorflow.python.framework import dtypes
4  import numpy as _np
5
6
7
8

def convex_add(inputl, input2, initial_convex_par=0.5, trainable=False):

31 if initial_convex_par < 0:
32 raise ValueError ( )

34 elif initial_convex_par ==

36 initial_p_value = -16

38 elif initial_convex_par < 1:

40 initial_p_value = -_np.log(l/initial_convex_par - 1)
42 elif initial_convex_par == 1:

44 initial_p_value = 16

46 else:
47 raise ValueError ( )

49 p = variables.Variable(

50 initial_value = initial_p_value,
51 dtype=dtypes.float32,

52 trainable=trainable

53 )

55 lam = math_ops.sigmoid(p)
56 return inputl * lam + (1 - lam)*input2

4https://www.tensorﬂow.org/versions/rl.13/api_docs/python/tf/layers#
functions

5https://www.tensorflow.org/versions/rl.13/api_docs/python/tf/keras/layers#
classes
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B.2 Figures

We will now give short descriptions of how some of the figures in the thesis are
generated, as well as provide example Python code. Throughout we will use
the NumPy format for storing arrays (NPY)® for loading and saving matrices
and images. The conversion from NPY to an image format, such as PNG, will
be omitted.

Figures 2.1 and 2.3

Given an image x, a sampling pattern Q2 and a measurement operator A = PoF,,
we compute the adjoint-recovered X as

= A"Ax = F,'P{PF, x

bt

In practice, we implement this as an FFT, zeroing our all the coefficients that
are not in Q, followed by an IFFT.

If pattern.npy contains a boolean matrix depicting QO and phantom.npy
depicts an image, the following code will compute the above equation:

import numpy as np

shepp_logan = np.load( )

sampling_pattern = np.fft.fftshift(np.load( ))
samples = np.fft.fft2(shepp_logan)

10 samples[np.logical_not(sampling_pattern)] = 0

13 recon_adj = np.fft.ifft2(samples)

15  np.save( , recon_adj)

Figure 2.2

To compute the DWT of images we will use the tfwavelets package for Python’.
Given an image 1ily.npy, we can compute the DWT of the image using the
functions in the wrappers module of tfwavelets:

1 import tfwavelets as tfw

2 import numpy as np

3

4 image = np.load( )

5

6 levell = tfw.wrappers.dwt2d(image, , 1)
7 level2 = tfw.wrappers.dwt2d(image, , 2)
8

9 np.save( , levell)

10 np.save( , level2)

®More information about NPY can be found at https://www.numpy.org/devdocs/reference/
generated/numpy.lib.format.html

“A joint project between the author and Kristian Monsen Haug. Available at https://github.
com/Ui0-CS/tf-wavelets
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B.2. Figures

Figure 3.4

A spline is essentially a piece-wise polynomial, the joint between consecutive
polynomial pieces is often called a knot. To overfit data using splines we create
a very dense knot vector, meaning the interval of each polynomial is very small.
We are using cubic polynomials in each interval, and constraining the joints to
have continuous 1st and 2nd derivatives to achieve a smooth spline. We are
using the author’s own library for spline computations®. The following code
produces a plot similar to Figure 3.4b:

import numpy as np
import matplotlib.pyplot as plt
import splinelib as spl

Xs
ys

np.linspace(®, 4, 25)
-Xs**2 + 4*xs + np.random.normal (loc=0, scale=.4, size=xs.size)

10 data = np.vstack([xs, ys]).T

13 degree = 3
14 knot_number = 83
15 knots = spl.fit.generate_uniform_knots(

16 spl.fit.cord_length(data),
17 degree,

18 knot_number

19 )

22 spline = spl.fit.least_squares(

23 data,
24 knots,
25 degree
26 )

29 plt.figure(figsize=[4, 3])

30 plt.scatter(xs, ys)

31 plt.plot(plotx, np.squeeze(spline(plotx)))
32 plt.tight_layout()

33 plt.savefig( )

Figure 4.1

In this example we are using a pre-trained version of the ResNet-50 network
in [He+16], trained on the ImageNet database [Rus+15]. To generate the
adversarial noise we use the Foolbox package for Python [RBB17], which is
a collection of many popular adversarial attack algorithms for classification
networks. We also used Keras instead of TensorFlow since Keras comes with
built-in pre-trained models. In order to get a proper misclassification we set
a target class manually, and find a perturbation that will lead us there. The
following code produces a perturbation similar to the one found in Figure 4.1:

import foolbox

import keras

import numpy as np

from labeldict import labels

model = keras.applications.ResNet50()

10 subtract = np.array([104, 116, 123])

8 Available at https://github.com/mathialo/splinelib
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foolmodel = foolbox.models.KerasModel (model, bounds=(0, 255), preprocessing=(subtract, 1)
)

image, label = foolbox.utils.imagenet_example ()

attack = foolbox.attacks.LBFGSAttack(foolmodel, criterion=foolbox.criteria.TargetClass
(22))

adversarial = attack(image[:, :, ::-1], label)

new_label = np.argmax(model.predict(np.expand_dims(adversarial-subtract, 0)))

print("Original label: {}".format(labels[label]))
print("Perturbed label: {}".format(labels[new_label]))

np.save("deepfool_original.npy", image)
np.save("deepfool_perturbed.npy", adversarial[:,:,::-1])
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