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Abstract

The main objective of this thesis is to investigate the optimal management
of portfolios under a co-integrated market model. Given a finite investment
horizon, the thesis considers a risk-averse investor who has the limited choice
of investing in two risky assets and one risk free, with the aim of maximizing
expected utility of wealth. A power utility function represents the investor’s
appetite for risk. By the dynamic programming approach from stochastic control
theory, a semi-explicit solution to the resulting HJB-equation is obtained as the
solution to a set of Riccati differential equations. Assuming a solution exist, a
verification theorem is presented. By simplifying the market model, a stochastic
Feynman-Kac representation is found, and motivated by Merton’s constant
fraction solution, a naive approach to find constant controls is presented.
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Chapter 1

Introduction

The main objective of portfolio optimization is to find the optimal trading
strategy with regards to some prescribed criteria, usually maximization of
expected returns or minimization of risk. One way to formulate such a portfo-
lio optimization problem is through the theory of stochastic optimal control.
Around the 1970s, Robert C. Merton introduced the concept of dynamic pro-
gramming to portfolio optimization problems. In [Mer75], Merton considers
the optimal investment and consumption of a risk-averse investor who aims at
maximizing expected utility of wealth at the end of a finite time horizon. Prior
to Merton, portfolio optimization problems were mostly studied in discrete time.
In 1952, Markowitz made the first attempt to solve a portfolio optimization
problem through the mean-variance approach. In [Mar52], Markowitz tackles
the problem of maximizing expected returns, while minimizing the variance
of the returns of the resulting portfolio, and the framework for two important
aspects of portfolio management is introduced; diversification and risk-reward
trade. By spreading the investments of a portfolio in uncorrelated assets, an
investor is able to secure oneself against potential risk, while increasing reward.
In the long run, one hopes that the downfalls of one investment are neutralized
by the success of another. However, one of the clear disadvantages of the
Markowitz mean-variance approach is the one-period assumption. The optimal
allocation of wealth must be made at the beginning of the investment horizon.
Afterwards, the investor becomes a passive agent observing the price fluctuations
of the assets without the possibility of reallocating the portfolio. By Merton’s
problem, through the dynamic programming approach, the investor is allowed
to continuously change the allocation of wealth in order to maximize expected
utility at some future time point.

Motivated by Merton’s portfolio problem, this thesis considers a risk-averse
investor in a co-integrated market model. The concept of co-integration was
formally introduced in econometrics in 1987 by Granger and Engle. Following
[EG87], two stochastic processes are said to be co-integrated if there exists a
stationary linear combination of the processes, even if the processes themselves
are non-stationary. The asset prices in the co-integrated market in this thesis,
are modelled as the exponential of a common non-stationary trend process,
a drifted Brownian motion, and two distinct stationary Ornstein-Uhlenbeck
processes. On a logarithmic scale, the difference of the asset prices is stationary.
As the financial market is divided into several sector, for instance oil, energy,
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1. Introduction

IT or Telecom services, from a financial point of view, the co-integrated market
model can be used to represent two companies in the same market segment,
where the asset prices follow a common non-stationary trend, whilst still having
their idiosyncratic risk. Typically one would spread the investments to diversify
risk. Take for instance two offshore drilling companies in the oil sector, where
the price of the stocks for the two companies is assumed to simultaneously
follow the price of oil, while still being exposed to risk factors distinctive for
each of the companies.

The scope of this thesis is to understand co-integration in relation to the
optimal management of portfolios. The aim of the investor is to maximize
expected utility of wealth at the end of the investment horizon. The optimal
portfolio problem is presented as an utility maximization problem from stochastic
optimal control theory, where an utility function represents the investors appetite
for risk. The problem is addressed by the dynamic programming approach,
as presented by Merton, resulting in the non-linear Hamilton-Jacobi-Bellman
equation to which a semi-explicit solution is found and verified.

1.1 Outline of the Thesis

The thesis is structured as follows: Chapter 2 gives an overview of the general
market model. Descriptions of the stochastic asset price processes are given,
with introductions to the stationary CARMA and Ornstein-Uhlenbeck processes,
in addition to stating some main properties. The concept of co-integration
is explained and a multi-dimensional asset model is presented. In Chapter
3 the main elements of stochastic control theory, relevant to the thesis, are
introduced. The basic assumptions and a formulation of a general control
problem for Markov processes is stated, the concept of dynamic programming
is explained and the Hamilton-Jacobi-Bellman equation is introduced. The
chapter is concluded by Merton’s well-known standard portfolio optimization
problem, which serves as a motivation for Chapter 4. Chapter 4 constitutes the
main objective of the thesis. The optimal control problem is presented, along
with theorems for existence and verification of optimal control solutions. A
semi-explicit solution is derived and a system of equations solving the resulting
PDE is given. Two alternative representations are presented, and a verification
concludes the findings. The last section serves as an investigator of "what
went wrong" and gives a stochastic representation of the solution to a portfolio
optimization problem in a simpler market model. Chapter 5 is motivated by
Merton’s solution to the case of portfolio optimization in a two asset model.
An unconventional approach to finding admissible, but not necessarily optimal,
controls, is presented. Finally, Chapter 6 gives some concluding remarks and
pointers to future work.

The computations of this thesis turned out to be quite tedious, hence nota-
tional conventions for constants and functions have been introduced throughout.
They are all stated in Appendix A. Appendix B presents preliminaries from
stochastic analysis, probability theory and general measure theory. Central
theorems, definitions and properties which are stated and used in the thesis,
some probably familiar, and some more specific to control theory, are stated.
Appendix C presents some of the omitted calculations from Chapters 4 and 5.
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Chapter 2

The Market Model

2.1 Asset Market Model

On a complete filtered probability space (Ω,F ,P, {Ft}t≥0) we define three
correlated Brownian motions B̃ and Bi for i = 1, 2. We denote by Ω the
product space Ω1 × Ω2 × Ω3, and by F the σ-algebra F1 ×F2 ×F3, where Ft
is the natural filtration generated by B̃(t), B1(t), B2(t). Assume a complete
market where there are no transaction costs when buying or selling assets, and
where all investors have perfect and instantaneous information about asset
prices. Following [BK15] we let S1 and S2 be asset prices, typically stocks,
defined by

S1(t) = exp(c1X(t) + Y1(t))S2(t) = exp(c2X(t) + Y2(t)) (2.1)

where the processes Y1(t) and Y2(t) are two stationary CARMA processes
(Section 2.2) and X(t) is a non-stationary, drifted Brownian motion with
dynamics

dX(t) = µdt+ σdB̃(t) (2.2)

The parameters µ and σ > 0 are constants, respectively the drift and diffusion
coefficients. c1 and c2 can be interpreted as constant conversion factors between
two market segments, for instance energy companies and oil producers. The
conversion factors are useful if one would like to measure two assets from
different segments on the same scale. Letting c1 = c2 = 1, we assume two
segments have the same conversion factor.

The correlation coefficients between the Brownian motions are denoted
by Corr(B̃, Bi) = ρi for i = 1, 2 and Corr(B1, B2) = ρ, where the Brownian
motions are all assumed to be Gaussian processes with mean zero and variance
t. The correlation matrix of the Brownian motions is given by

P =

 1 ρ1 ρ2
ρ1 1 ρ
ρ2 ρ 1

 (2.3)

where P is symmetric and positive definite. Hence by Cholesky decomposition
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2. The Market Model

of P , the correlated Brownian motions can be represented by

 dB̃dB1
dB2

 =


1 0 0
ρ1

√
1− ρ2

1 0

ρ2
ρ− ρ1ρ2√

1− ρ2
1

√
1− ρ2

2 −
(ρ− ρ1ρ2)2

1− ρ2
1


dU1
dU2
dU3

 (2.4)

where U1, U2, U3 ∼ N (0, 1) are three independent standard normal Brownian
motions. For the matrix in (2.4) to be well defined as the Cholesky decomposition
of P , the matrix must have strictly positive diagonal entries, implying

ρ2 + ρ2
1 + ρ2

2 − 2ρρ1ρ2 ≤ 1 (2.5)

Equation (2.5) implies a condition on the correlation coefficients ρ, ρi for the
correlated Brownian motions to be well defined, yielding Brownian motions
B̃(t), Bi(t) with mean value equal to 0 and variance given by t.

2.2 CARMA Processes

Following [BK15], we let Yi(t), i = 1, 2 in (2.1) be two continuous autoregressive
moving average (CARMA(pi, qi), qi > pi) processes defined by

Yi(t) = bTi Zi(t), i = 1, 2 (2.6)

where Zi(t) is a pi-dimensional Ornstein-Uhlenbeck process and bTi is the
transpose of the column vector bi = [b1,i, b2,i, . . . , bqi = 1, 0, . . . , 0] ∈ Rpi .
Equation (2.6) then takes the form

Yi(t) = b1,iZ
1
i (t) + b2,iZ

2
i (t) + . . .+ Zqii (t) (2.7)

where the Ornstein-Uhlenbeck processes are defined by

dZi(t) = AiZ1(t)dt+ σiepidBi(t), i = 1, 2 (2.8)

for constants σi > 0, where epi the pith canonincal coordinatevector and

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

−αpi,i −αpi−1,i −αpi−2,i . . . −α1,i

 (2.9)

a pi × pi-matrix. For negative real eigenvalues of Ai, Yi(t) will be a stationary
CARMA process.

Lemma 2.2.1 (2-dimensional OU-process).
Assume Z(t) is a 2-dimensional Ornstein-Uhlenbeck process defined by

dZ(t) = AZ(t)dt+ σe2dB(t)

where

A =
[

0 1
−α1 −α2

]
, e2 =

[
0
1

]
Then Z(t) will always be stationary.
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2.3. Ornstein-Uhlenbeck Processes

Solution to (2.2.1). The characteristic polynomial of A is given by

p(λ) = det(A− λI) (2.10)

where I is the 2× 2 identity matrix. (2.10) equals

p(λ) = λ2 + λα2 + α1 (2.11)

for which a solution is given by

λ = −1
2α11 ±

1
2

√
α2

11 − 4α21 (2.12)

If α2
11 < 4α21, the polynomial has two complex roots, with Re(λ) = −1

2α11 < 0.
If however α2

11 ≥ 4α21, the polynomial has two real roots where α2
11−4α21 < α2

11,
i.e. −4α21 < 0. In either case, λ(A) < 0, and hence Z(t) ∈ R2 is always
stationary. �

The CARMA processes are a nice generalization of the Ornstein-Uhlenbeck
processes, widely used in for instance weather and energy markets, but in this
thesis we consider the case where pi = 1, qi = 0, for which Yi(t) = Zi(t) is
simply a 1-dimensional Ornstein-Uhlenbeck process, or a CARMA(1,0), CAR(1)
process. Note that for pi = 1, Zi(t) is a stationary process if Ai < 0, for Ai
a constant. We will for simplicity throughout denote this constant by Ai and
assume Ai < 0.

2.3 Ornstein-Uhlenbeck Processes

Let the processes Zi(t) ∈ R, i = 1, 2 be defined by

dZi(t) = AiZi(t)dt+ σidBi(t) (2.13)

i.e. the 1-dimensional case of (2.13).

Proposition 2.3.1 (Ornstein-Uhlenbeck process ).
The solution Zi(t) to (2.13) is given by

Zi(t) = zi exp(Ait) +
∫ t

0
σi exp(Ai(t− s))dBi(s), i = 1, 2 (2.14)

for Zi(0) = zi, Ai < 0 constant, where Zi(t) is a Ornstein-Uhlenbeck process.

Proof of proposition (2.3.1). Let f(t, z) = zi exp(−Ait), then
f(t, Zi(t)) = Zi(t) exp(−Ait) is a stochastic process, and by Itô’s lemma

d(Zi(t) exp(Ait)) = ∂f

∂t
dt+ ∂f

∂z
dZi(t) + 1

2
∂2f

∂z2
i

(dZi(t))2

=−AiZi(t) exp(−Ait)dt+ exp(−Ait)dZi(t)

=−AiZi(t) exp(−Ait)dt+ exp(−Ait)
(
AiZi(t)dt+ σidBi(t)

)
=σi exp(−Ait)dBi(t)

5



2. The Market Model

Integration on both sides yields

Zi(t) exp(−Ait) = zi +
∫ t

0
σi exp(−Ais)dBi(s) (2.15)

Dividing by exp(−Ait) we obtain (2.14). �

Proposition 2.3.2 (Statistical properties of the OU-process ).
Let Zi(t) be defined as in (2.14). Then the mean and variance of Zi(t) is given
by

E[Zi(t)] = zi exp(Ait) (2.16)

Var(Zi(t)) = σ2
i

2Ai

[
exp(2Ait)− 1

]
(2.17)

with limiting (stationary) distribution Zi(t) ∼ N
(

0, σ
2
i

2Ai

)
for Ai < 0. In

addition, the covariance between Z1(t) and Z2(t) is given by

Cov(Z1(t), Z2(t)) = ρσ1σ2

A1 +A2

[
exp((A1 +A2)t)− 1

]
(2.18)

Proof of proposition (2.3.2). For the expected value, note that

E[Zi(t)] =E
[
zi exp(Ait) +

∫ t

0
σi exp(Ai(t− s))dBi(s)

]
=zi exp(Ait)

since E[
∫ t

0 g(s)dBi(s)] = 0 for all F-measurable functions g ∈ V([0, T ]), see
property (iii) of Proposition B.1.4. Following,

Var(Zi(t)) =Var
(
zi exp(Ait) +

∫ t

0
σi exp(Ai(t− s))dBi(s)

)
=Var

(∫ t

0
σi exp(Ai(t− s))dBi(s)

)
=E
[( ∫ t

0
σi exp(Ai(t− s))dBi(s)

)2]
=
∫ t

0
E
[
σ2
i exp(2Ai(t− s))

]
ds = σ2

i

2Ai
[exp(2Ait)− 1]

by Itô isometry (Corollary B.1.3) and the argument used for the expectation
above. Letting t→∞, for Ai < 0 we see that

E[Zi(t)] = 0, Var(Zi(t)) = − σ2
i

2Ai
> 0

By the fact that Y = a+ bX ∼ N (a, b2) if X ∼ N (0, 1). Since the Itô integral
in (2.14) is a normal random variable (by being the approximation of the
sum of normally distributed random variables), we obtain that the stationary

distribution (in the sense that t→∞) is ∼ N (0, σ
2
i

2Ai
). For the covariance, note

that

Cov(Z1(t), Z2(t)) =Cov
(∫ t

0
σ1 exp(A1(t− s))dB1(s),

6



2.3. Ornstein-Uhlenbeck Processes

∫ t

0
σ2 exp(A2(t− s))dB2(s)

)
=E
[
ρσ1σ2

∫ t

0
exp((A1 +A2)(t− s))ds

]
by the Itô isometry. Then equation (2.18) follows from straight forward integra-
tion. �

A stochastic process {Zi(t)}t≥0 is said to be stationary if for all n, h the joint
probability distribution of (Zi(t1), . . . , Zi(tn)) and (Zi(t1 + h), . . . , Zi(tn + h))
does not change when shifted in time. In other words, the random vectors
(Zi(t1), . . . , Zi(tn)) and (Zi(t1 + h), . . . , Zi(tn + h)) have the same joint prob-
ability distribution [Ros14]. As time goes by, stationary processes tend to
drift towards their long-term mean. The drift term of the dynamics of Zi(t) is
dependent on the current state of the process. For a mean-reverting process,
the dynamics are expressed by an equilibrium level and some percentage of
drift, for instance, for some general OU-process U(t),

dU(t) = Ai(θ − U(t))dt+ σdB(t) (2.19)

where the sign of Ai determines whether the stationary level attractes or repulses.
For Zi(t), the equilibrium level is at 0, hence θ = 0, and if the current value is
less than the long-term mean, the process will be driven upwards towards the
equilibrium (note that Ai < 0), and vice versa if the current state is less than
the long term mean. In the long run, the long-term mean works as an equalizer
for the process.

The Ornstein-Uhlenbeck processes are quite special in the sense that they are
both stationary, Gaussian and Markov processes. In addition to the stationary
property, the random vector of variables of {Zi(t)}t≥0 has a multivariate normal
distribution. By the Markov property, future states of the process only depend
on the current value. The current value of Zi(t) contains all information relevant
for the future evolution of the process, see Definition B.2.5.

Remark 2.3.3.
Note that the Ornstein-Uhlenbeck process Zi(t) is a Markov process, but not a
martingale by the fact that

E[Zi(t)|Fs] =zieAit + E
[ ∫ t

0
σie

Ai(t−u)dBi(u)|Fs
]

=zieAit + E
[ ∫ s

0
σie

Ai(t−u)dBi(u) +
∫ t

s

σie
Ai(t−u)dBi(u)|Fs

]
=zieAit +

∫ s

0
σie

Ai(t−u)dBi(u) + E[
∫ t

s

σie
Ai(t−u)dBi(u)]

=zieAit +
∫ s

0
σie

Ai(t−u)dBi(u)

=Zi(s)eAi(t−s) 6= Zi(s)

for s < t, where the third equality follows from the fact that
∫ s

0 e
Ai(t−u)dBi(u) is

Fs-measurable and the integral
∫ t
s
eAi(t−u)dBi(u) is independent of Fs, Proposi-

tion B.4.2. The fourth equality follows from the fact that g(u) = expAi(t− u) is

7



2. The Market Model

in the class of Itô-integrable functions, and by property (iii) of Proposition B.1.4,
E[
∫ t
s
g(u)dBi(u)] = 0.

2.4 Co-Integration

The concept of co-integration was formally introduced in econometrics by
Granger and Engle in 1987 [EG87]. We say that two processes are co-integrated
if there exists a linear combination of the processes which is stationary, even if
the processes themselves are non-stationary. Formally, in [EG87], co-integration
was introduced through the concept of differencing of time series, a commonly
used technique for making non-stationary processes stationary by computing
the difference of values from one period to the next. For instance, the first
difference of a process {Y (t)}t≥0 is denoted by {Y (ti)− Y (ti−1)}i≥1.

Definition 2.4.1 (Integrated process).
A stochastic process {X(t)}t≥0 is integrated if, after differencing d-times, the
process is stationary. Then {X(t)}t≥0 is said to be I(d).

Note that a stationary process, for instance the Ornstein-Uhlenbeck process,
is I(d = 0). Formally, we have that co-integration is defined as follows

Definition 2.4.2 (Co-integration).
Two stochastic processes, {X(t)}t≥0, {Y (t)}t≥0 are said to be co-integrated if
each of the processes is I(d), and there exists a I(d−b), b > 0, linear combination
of X(t) and Y (t).

Note that for d = b, the linear combination of the processes is I(0), hence
stationary in itself and one do not need to find a stationary difference process
of the linear combination.

Remark 2.4.3.
In [EG87], through a series of examples, Granger and Engle find that for instance
short and long interest rates are co-integrated due to economic theory imposed by
the government. Quite intuitively, they also show that income and consumption,
and prices of the same commodity in different markets are co-integrated variables
as well.

For the market model introduced in Section 2.1., the asset prices S1(t) and
S2(t) are co-integrated by the fact that the difference on a logarithmic scale is
stationary

log(S1(t))− log(S2(t)) = Z1(t)− Z2(t) (2.20)

when Z1(t), Z2(t) are assumed to be stationary Ornstein-Uhlenbeck processes
as defined in Section 2.2. The combined difference process {Z1(t)− Z2(t)}t≥0
will never stray too far from it’s long term combined mean, and the deviations
from the equilibrium are stationary with finite variance

Var(Z1(t)) + Var(Z2(t))− 2Cov(Z1(t), Z2(t)) <∞ (2.21)

2.5 Multi-Dimensional Asset Model

In real life, a portfolio often consists of more than two investments. The
extended multi-dimensional asset price model of (2.1) in n assets is given by

8



2.5. Multi-Dimensional Asset Model

Si(t) = exp
( m∑
j=1

aijXj(t) + Zi(t)
)
, i = 1, . . . , n (2.22)

where m ≤ n, Xj(t) are m non-stationary processes with different drifts and
diffusions, and possibly correlated Brownian motions. Yi(t) are the n stationary
CARMA(pi, qi) processes driven by correlated pi-dimensional Brownian motions.
We say that S1(t), S2(t), · · · , Sn(t) are co-integrated if there exists a vector
c ∈ Rn such that a linear combination of Si(t) is stationary or at least I(d− b)
for some b ≤ d. On a logarithmic scale, for

∑n
i=1 ci log(Si(t)), c must satisfy

c1

m∑
j=1

a1jXj(t) + · · ·+ cn

m∑
j=1

anjXj(t) = 0 (2.23)

or equivalently

X1(t)
(
a11c1 + a21c2 · · ·+ an1cn

)
+

. . .+Xm(t)
(
a1mc1 + a2mc2 · · ·+ anmcn

)
= 0 (2.24)

Since Xj(t) is non-zero for all j, we get the following system of equations

a11c1 + · · ·+ an1cn = 0
a12c1 + · · ·+ an2cn = 0

...
a1nc1 + · · ·+ anmcn = 0

From ([BK15]) we give an example of a 3-dimensional co-integrated asset price
model.

Example 2.5.1 (Crush Spreads).
Soybeans can be crushed (processed) into soybean meals and soybean oil. A
trading strategy in which the trader places a long position in soybean futures
and a short position in soybean meal and soybean oil futures is called a crush
spread [Wik19]. The crush spread is the difference between the price of quantity
of soybeans, soybean meals and soybean oils. [LL06]. We look at an example
with three assets driven by two non-stationary processes, then n = 3 and m = 2
and S1(t), S2(t), S3(t) are co-integrated if the linear combination

c1 log(S1(t)) + c2 log(S2(t)) + c3 log(S3(t)) (2.25)

is stationary, i.e. if there exist a non-zero vector of constants, c = (c1, c2, c3),
such that

X1(t)
(
a11c1 + a21c2 + a31c3

)
= 0

X2(t)
(
a12c1 + a22c2 + a32c3

)
= 0

For n > nc = 2, we might investigate co-integration between two of the assets.
For instance we have that S1(t) and S2(t) are co-integrated if for c = (c1, c2)

a11c1 + a21c2 = 0

9



2. The Market Model

a12c1 + a22c2 = 0

We see that c exists as long as a11a22 = a21a12. In addition, one might work
out conditions to ensure additional co-integration between S1(t) and S3(t) or
S2(t) and S3(t). This gives us flexibility to modify situations for n > 2 where
some assets are co-integrated and some are not.

Other possibilities are to include several stationary processes to add addi-
tional flexibility in the stationary effects, or to include non-Gaussian features,
through for instance Lévy jump-processes or processes with stochastic volatility
like the Heston model.

2.6 Properties of the Asset Prices

From now on and throughout the rest of the chapters, we assume we are in the
2-dimensional asset price model where Si(t), i = 1, 2 is modelled by a common
non-stationary trend process, X(t) ∈ R, and the stationary processes are
represented by the 1-dimensional Ornstein-Uhlenbeck processes Zi(t), i = 1, 2.
This section states some of the properties of the process Si(t) for i = 1, 2.

Proposition 2.6.1 (The dynamics of Si).
The dynamics of the stock price process Si(t) defined in (2.1) are given by

(i) For Corr(B̃t, Bi(t)) = 0, then

dSi(t) = Si(t)
(
µ+AiZi(t) + 1

2(σ2 + σ2
i )
)
dt

+ Si(t)
(
σdB̃t + σidBi(t)

)
(2.26)

(ii) For Corr(B̃t, Bi(t)) = ρi, then

dSi(t) = Si(t)
(
µ+AiZi(t) + 1

2(σ2 + σ2
i + 2ρiσσi)

)
dt

+ Si(t)
(
σdB̃t + σidBi(t)

)
(2.27)

Proof of proposition (2.6.1). Similarly to the proof of (2.3.1), we let f(x, z) =
exp(x+ z), then Si(t) = f(X(t), Zi(t) and by Itô’s lemma

dSi(t) =∂f

∂t
dt+ ∂f

∂x
dX(t) + ∂f

∂z
dZi(t) + 1

2
∂2f

∂x2 (dX(t))2 + 1
2
∂2f

∂z2 (dZi(t))2

+ ∂2f

∂x∂z
(dX(t)dZi(t))

=Si(t)
(
µdt+ σdB̃t

)
+ 1

2Si(t)σ
2dt+ Si(t)

(
AiZi(t)dt

+ σidBi(t)
)

+ 1
2Si(t)σ

2
i dt+ Si(t)dX(t)dZi(t)

=Si(t)
(
µ+AiZi(t) + 1

2(σ2 + σ2
i + 2ρiσσi

)
dt+ Si(t)

(
σdB̃t

+ σidBi(t)
)

where the last equality follows from the fact that dXtdZi(t) = ρiσσidt. �
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In later sections we introduce the notational convention Σi = σ2+σ2
i +2ρiσσi

to shorten the notation for some of the calculations.

Proposition 2.6.2 (Distribution, expected value and variance of Si(t)
).
For any t, Si(t) is a log-normal random variable with mean and variance given
by

E[Si(t)] = exp
(

(µ+ 1
2σ

2)t+zie
Ait+ 1

2

( σ2
i

2Ai
(e2Ait−1)+ 1

Ai
ρiσσi(eAit−1)

))
(2.28)

Var(Si(t)) =
[

exp
(
σ2t+ σ2

i

2Ai
(e2Ait − 1) + 1

Ai
ρiσσi(eAit − 1)

)
− 1
]

× exp
(

(2µ+ σ2)t+ 2zieAit + σ2
i

2Ai
(e2Ait − 1) + 1

A1
ρiσσi(eAit − 1)

)
(2.29)

Proof of proposition (2.6.2). Note that for every t, Si(t) is the exponential of
two normally distributed random variables, X(t) ∼ N (µt, σ2t) and Zi(t) ∼

N (zieAit,
σ2
i

2Ai
(e2Ait − 1)), hence Si(t) is a log-normal random variable with

mean and variance given by

E[log(Si(t))] = E[X(t)] + E[Zi(t)] = µt+ zie
Ait

Var(log(Si(t))) =Var(X(t)) + Var(Zi(t)) + Cov(X(t), Zi(t))

=σ2t+ σ2
i

2Ai
(e2Ait − 1) + 1

Ai
ρiσσi(eAit − 1)

for

Cov(X(t), Zi(t)) =Cov
(
µt+

∫ t

0
σdB̃(s), zieAit +

∫ t

0
σie

Ai(t−s)dBi(s)
)

=E
[( ∫ t

0
σdB̃(s)

)(∫ t

0
σie

Ai(t−s)dBi(s)
)]

− E
[ ∫ t

0
σdB̃(s)

]
E
[ ∫ t

0
σie

Ai(t−s)dBi(s)
]

=
∫ t

0
ρiσσie

Ai(t−s)ds

where the last equation follows from the Itô-isometry and the fact that both inte-
grals are well-defined Itô integrals with zero expectation. By the formulas for the
expected value and variance of a log-normal random variable (Definition B.4.1),
we obtain (2.28) and (2.29) �

Note that Si(t) is non-stationary even for Ai < 0. As t→∞

lim
t→∞

E[Si(t)]→ exp
(

(µ+ 1
2σ

2)t
)
→∞ (2.30)

11



2. The Market Model

lim
t→∞

Var(Si(t))→ exp
(

(2µ+ σ2)t
)
→∞ (2.31)

We conclude this chapter by remarking that the non-stationary trend process
X(t) dominates the stationary part of Si(t), i = 1, 2 as t → ∞, yielding a
non-stationary limiting distribution.
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Chapter 3

Stochastic Control Problems

3.1 Introduction

Stochastic optimal control is a sub-field of control theory in mathematics, widely
used in several areas, including finance, insurance and industry, with applications
to portfolio optimization, reinsurance and automatic control, among others.
Stochastic control theory deals with dynamic systems exposed to uncertainty,
either in the observations of the dynamics or in the underlying processes driving
the system. We present a case where the dynamics of the state process are
described by a stochastic differential equation (SDE), where the basic source
of uncertainty comes from white noise (Brownian motions). In this thesis
we consider such a problem where the system is required to be Markovian,
allowing us to exploit the dynamic programming approach which deduces the
optimal control problem to a non-linear partial differential equation (PDE) with
boundary conditions.

This chapter gives a short introduction to the theory of continuous stochastic
control in view of the dynamic programming approach. The general set-up of
a stochastic control problem will be introduced, and the connection between
the dynamic programming principle and the Hamilton-Jacobi-Bellman equation
(HJB for short) will be presented. In Section 5, a familiar example from portfolio
optimization, often referred to as Merton’s problem, will be given. Chapter
4 and the motivation behind it is built on Merton’s portfolio optimization
problem.

The theory presented in this chapter is mainly based on [YZ99], [Mor10]
and [FS06].

3.2 A General Stochastic Control Problem

The purpose of stochastic control problems is to optimize a dynamic system
evolving over time, according to certain criteria. Among all feasible controls, the
decision maker must choose the optimal one in order to maximize or minimize
a pre-given criteria. Denote the controlled state process at time t by X(t), and
suppose the dynamics of X(t) are given by

dX(t) = b(t,X(t), u(t))dt+ σ(t,X(t), u(t))dB(t) (3.1)
X(0) = x0 (3.2)

13
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where B(t) a Brownian motion in Rm, X(t) ∈ Rn and b(t, x, u) : [0, T ]× Rn ×
U → Rn, σ(t, x, u) : [0, T ] × Rn × U → Rn×m are measurable functions for
U ⊆ R. The control process {u(t)}0≤t≤T represents the decisions of the decision
maker at each time instant t. Since the system under study is continuously
changing, the decisions controlling it must be adapted to the most recent
information given. We assume the controller is familiar with all information
obtained up till time t, mathematically speaking, u(t) is Ft-adapted, where
Ft is the natural filtration generated by B(t). Due to the uncertainty of the
stochastic state process, the controller is not able to forecast the future of the
state process and can therefore only base his decision on information contained
in Ft. Problems where the decision maker is familiar with either less information
through partially observable systems, or more through insider information, are
discussed in for instance [Øks05]. In the case where the information is only
partially observable, the controls are adapted w.r.t. a smaller σ-algebra, Gt ⊆ Ft.
Contrary, in the insider information case, the controls u(t) are Ht-adpated, for
Ft ⊆ Ht.

The aim of a controller is to optimize, whether it be a minimization or
maximization problem, a certain criteria over a given set of admissible controls.
There are two main formulations of a stochastic control problem; the strong
and weak formulation. Under strong formulation, one seeks an optimal solution
on a a priori fixed probability space on which a filtration is given and a
Brownian motion defined. If we allow the probability space to vary, we seek
weak solutions u(t) defined as 5-tuples (Ω̃, F̃ , P̃, B̃(t), u(t)) with corresponding
filtration {Ft}t≥0.

The Strong Formulation
On a fixed complete filtered probability space (Ω,F , {Ft}t≥0,P) we define a
Brownian motion B(t), and let

U [0, T ] = {[0, T ]× Ω→ U ⊆ R}

denote the set of all measurable and Ft-adapted processes u(t), where U is a
given complete and separable space. For each (t, x) ∈ D, where D is the domain
of the control problem, and T <∞, we define the performance function, or the
cost functional, by

J(t, x;u) = Ex
[ ∫ T

t

f(s,X(s), u(s))ds+ g(X(T ))
]

(3.3)

where f : [0, T ]×Rn×U → R, g : [0, T ]×Rn → R are two continuous functions,
often referred to as the running cost or profit rate function, and the terminal
cost or bequest function, depending on the setting of the control problem and
whether the aim is to minimize cost or maximize profit. From here on, J is
referred to as the performance function, and f and g the profit rate and bequest
functions, respectively, in order to coincide with Chapter 4. The performance
function in (3.3), where T <∞ is fixed in advance, is defined for a fixed duration
or finite horizon problem. In the case that one lets T →∞, i.e. one looks at an
infinite time horizon, see for instance [CCF17], a discounting factor

e

∫ T
t
−c(s)ds (3.4)
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for some continuous time-dependent function c : [0,∞)→ R is included to draw
f and g back to 0 as t → ∞. We drop the discounting factor and define the
control problem on a finite interval.

The aim of the controller is to optimize the performance function J over a
given set of admissible controls, u(t) ∈ A, where A is defined as follows

Definition 3.2.1 (Admissible controls ).
Given a complete filtered probability space (Ω,F , {Ft}t≥0,P) where B(t) is a
given m-dimensional Brownian motion, a control u(t) is said to be admissible if

(i) u(t) ∈ U [0, T ]

(ii) u(t) is such that a unique solution X(t) to (3.1) exists, i.e. {X(t)}t≥0 is
an Itô-diffusion

(iii) some prescribed state constraint

(iv) u(t) ∈ L2([0, T ]× Rn), i.e.

E[
∫ T

0
u2(s)ds] <∞ (3.5)

(v) u(t) is such that f ∈ L1([0, T ]× R), i.e.

E
[ ∫ T

0
|f(s,X(s), u(s))|ds

]
<∞ (3.6)

and g ∈ L1(Ω,R)
E
[
|g(T,X(T ), u(T ))|

]
<∞ (3.7)

Remark 3.2.2.
Assumption (iii) is some prescribed state constraint depending on the specific
control problem. For instance we might require that u(t) ∈ [u0, u1], where u0
and u1 are values in R. Assumptions (iv) and (v) ensure that the performance
function is well-defined.

Under strong formulation, the stochastic control problem may be formulated
as follows

Problem 3.2.3 (Stochastic control problem under strong formulation
).
Given any (t, x) ∈ D, we want to find an optimal control u∗(t) = u∗(t,X(t)) ∈ A
such that

Φ(t, x) = sup
u∈A

J(t, x;u(t)) = J(t, x;u∗(t)) (3.8)

where Φ(t, x) denotes the optimal value function of the stochastic control problem.
Equivalently,

Φ(t, x) = inf
u∈A

J(t, x;u(t)) = J(t, x;u∗(t)) (3.9)

If there exists a unique and finite solution to problem (3.2.3) under strong
formulation, the problem is said to be finite and uniquely solvable. u∗(t) is said to
be the optimal control and the corresponding state process X∗(t) = X(t, u∗(t))
is said to be optimal.
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The Weak Formulation
We focus on the strong formulation, hence only a short description of the weak
formulation is given. The weak formulation is mainly a mathematical tool for
finding solutions to problems initially formulated under the strong formulation.
Under weak formulation we allow (Ω̃, F̃ , P̃), hence {F̃t}t≥0 as well, and B̃(t) to
vary. Given functions b(·, ·, u(·)) and σ(·, ·, u(·)), and the set U ⊆ R, we consider
the filtered probability space and the Brownian motion as parts of the solution.
As long as the solution to (3.1) has the same probability distribution for each
t under (Ω,F ,P) and (Ω̃, F̃ , P̃), the performance function (and expectation)
depending on X(t, u(t)) w.r.t. respectively P and P̃ will coincide. The weak
formulation opens for more flexibility in the solutions to the stochastic control
problem.

3.3 The Dynamic Programming Principle

Under strong formulation, given the controlled system (3.1), we make the
standing assumptions that

|b(t, x, u)− b(t, y, u)|+ |σ(t, x, u)− σ(t, y, u)| ≤ C|x− y| (3.10)
t ∈ [0, T ], x, y ∈ Rn, u ∈ U

|b(t, x, u)|+ |σ(t, x, u)| ≤ C(1 + |x|), t ∈ [0, T ], x ∈ Rn (3.11)

i.e. we assume the functions b(·, ·, u(·)), σ(·, ·, u(·)) are Lipschitz continuous,
and that the controlled process X(t, u(t)) does not explode for any t < ∞.
Conditions (3.10) and (3.11) ensures the existence and uniqueness of a strong
solution to dX(t). Furthermore, for any u(t) ∈ A the profit rate function f
and the bequest function g satisfies assumption (v) in definition (4.2.1). The
controlled solution X(t) will be a Markovian Itô diffusion, allowing us to apply
the dynamic programming approach to solve the stochastic control problem.
Note that since the system itself is Markovian, the control-processes will be
Markov decision processes.

In this section we present how the stochastic control problem can be deduced
to a non-linear boundary value problem through the value function Φ.

The dynamic programming approach, originally developed by R. Bellman
[Bel18] in the 1950s, is a method for solving complex problems through a series
of easier sub-problems. In stochastic control, Bellman’s principle connects the
original problem to a non-linear partial differential equation of the underlying
dynamics of the system. We consider the simplest case, where the controlled
process X(t) is a Markov process, and where we assume there exists a "smooth"
value function Φ solving the optimal control problem. By Bellmans’s principle
of optimality we obtain the Hamilton-Jacobi-Bellman equation.

Bellman’s principle of optimality is defined as follow

Φ(t, x) = sup
u∈U

Ex
[ ∫ t+h

t

f(s,X(s), u(s))ds+ Φ(t+ h,X(t+ h))
]

(3.12)

for t ≤ t + h ≤ T . Heuristically, Bellman’s principle states that; under the
optimal control u∗ ∈ A, the value function for (t, x) ∈ D must be equal to the
profit rate function under optimal u on a smaller time interval [t, t + h] and
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the value of preceding optimally from the point t + h. If an optimal control
exists, the principle ensures the property that no matter which initial state the
process starts in, if preceding in accordance to the optimal control, optimality
will be reached. Hence the problem is deduced to a family of sub-problems
with different initial values, and when combining the sub-problems, the more
complex and general problem is obtained yielding the same solution. We restate
the heuristic approach to show optimality given in [FS06]. A more formal proof
for the specific control problem of this thesis is given in Chapter 4. Following
Bellman’s principle, for t ≤ s ≤ t+h and a constant control u(t) = u ∈ U , then

Φ(t, x) ≤ Ex
[ ∫ t+h

t

f(s,X(s, u))ds
]

+ Ex[Φ(t+ h,X(t+ h))] (3.13)

by definition of Φ. We subtract by Φ(t, x) on both sides

0 ≤ Ex
[ ∫ t+h

t

f(s,X(s, u))ds
]

+ Ex[Φ(t+ h,X(t+ h))]− Φ(t, x) (3.14)

Dividing by h and letting h→ 0+, we obtain

0 ≤ lim
h→0

1
h

(
Ex
[ ∫ t+h

t

f(s,X(s, u))ds
]

+ Ex[Φ(t+ h,X(t+ h))]− Φ(t, x)
)

0 ≤Ex[f(t, x, u)] + (LuΦ)(t, x)

where (LuΦ)(t, x) ∈ DA(x) is the infinitesimal generator, Definition B.2.2, of Φ
for (t, x). We obtain that

0 ≤ f(t, x, u) + (LuΦ)(t, x) (3.15)

for any Φ ∈ DA(x). If however u(t) yields the optimal value u∗, the inequality
in (3.13) becomes an equality and

0 = f(t, x, u∗) + (Lu
∗
Φ)(t, x) (3.16)

If such an optimal u∗(t) exists, then it must be the control with value u for
which (3.16) attains it’s maximum, i.e.

sup
u∈U

f(t, x, u) + (LuΦ)(t, x) = 0 (3.17)

with boundary value
Φ(T, x) = g(T,X(T )) (3.18)

Equation (3.17) is a non-linear second order (in the state variable, first order
w.r.t. time) partial differential equation, referred to as the Hamilton-Jacobi-
Bellman equation. A solution Φ to the non-linear boundary value problem
(3.17)-(3.18) gives a solution to the initial stochastic optimization problem
(3.2.3). For this solution to exists, the generator operator must be well-defined,
i.e. the controlled process must be a Markov process, specifically an Itô diffusion.
Furthermore, we need to impose conditions on the value function for which
(3.17)-(3.18) has a solution. We require that the value function Φ is smooth, in
the sense that it is continuous and bounded on the domain D, twice continuously
differentiable w.r.t. the state variable x and continuously differentiable w.r.t. t.
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These are restrictive assumptions and more often than not, the value function is
not smooth and there exists no classical solution to the boundary value problem.
In such cases, viscosity solutions must be introduced. Such solutions yield a far
more complex theory, see for instance [FS06] where Nisio’s [Nis15] construction
of a non-linear semigroup is used to prove relevance and validation of viscosity
solutions.

3.4 A Verification Theorem

If a smooth function Φ ∈ DA exists, i.e. Φ is a function for which the infinitesi-
mal generator is defined, such that Φ satisfied the HJB-equation (3.17) with
corresponding boundary value condition (3.18), then a verification theorem
conjoins the initial control problem and the HJB-equation. The verification
theorem guarantees that the value function is indeed the supremum of the
performance function over the set of admissible controls.

Theorem 3.4.1 (A verification theorem).
Assume the value function Φ ∈ D is a smooth solution to (3.17)-(3.18) for all
(t, x) ∈ D. Then

(i) Φ(t, x) ≥ J(t, x;u) for any u(t) ∈ A

(ii) if there exists a control u∗(t) = u∗, u ∈ U such that

f(t, x, u∗) + (Lu
∗
Φ)(t, x) = 0 (3.19)

then u∗(t) = u∗ must be the optimal control and

Φ(t, x) = J(t, x;u∗) (3.20)

A more deductive theorem and the proof of it will be given in Chapter 4.

3.5 Portfolio Optimization

A special application of stochastic optimal control theory is that of portfolio
optimization in mathematical finance. It has long been known that a good
way to spread risk is through portfolio diversification. By investing in different
market segments, investors reduce the exposure to risk of one particular asset.
Portfolio optimization problems may be formulated as stochastic optimal control
problems where an investor seeks to optimize expected utility of wealth through
investing in an optimal portfolio. A utility function represents the investor’s
aversion towards risk.

Power Utility
In the following section and in Chapters 4 and 5 we consider a risk-averse
investor, meaning that the investor is seeking to reduce risk associated to
the investments made. The utility function is an expression of the investor’s
preferences in the financial market, and is defined as follows.
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Definition 3.5.1 (Utility function).
An utility function U(w) : [0,∞) → [0,∞) is a continuously differentiable,
strictly increasing and strictly concave function, satisfying the following proper-
ties

(i)
lim
w→0

U ′(w) =∞ (3.21)

(ii)
lim
w→∞

U ′(w) = 0 (3.22)

The function U represents the utility of the investor given the wealth w.
All of the assumptions in the definition above have economical interpretations.
Strictly increasing implies that additional wealth, in the form of for instance
capital, increases utility, and more wealth is preferred to less. Strictly concave
means that the marginal utility decreases, i.e. the utility of one additional
krone or unit of wealth, decreases the more wealth the investor has. Conditions
(i) and (ii) are know as the Inada conditions [Gal], and ensure that the investor
does not end up in a situation where the wealth increases infinitely or where
wealth is close to zero.

In a portfolio optimization problem the choice of utility function expresses
the level of risk-aversion of the investor. One such utility function that satisfies
the assumptions in Definition 3.5.1, is a special case of the HARA (hyperbolic
absolute risk aversion)-utility functions, namely the power function

U(w) = wγ , 0 < γ < 1, U(0) = 0 (3.23)

The absolute risk aversion coefficient of an utility function is defined to be the
fraction

A(w) = −U
′′(w)

U ′(w)

If the wealth of an investor increases, the investor will increase the fraction of
wealth invested in the particular asset yielding higher utility if the absolute risk
aversion is decreasing.

Merton’s Problem
Robert C. Merton was the first to introduce the dynamic programming approach
to portfolio optimization problems. In [Mer69], [Mer71], Merton presents a
continuous-time consumption-investment problem for a risk-averse investor,
where income is generated by returns on assets, driven by Brownian motions.
Specifically an explicit solution is found in the two-asset model, where one asset
is a risky investment, and the other a risk-free. Following [Øks13], we present
an example of the simplest case; we look at an investor aiming at maximizing
expected utility of wealth at some future time T, given the two investment
opportunities. The investor must choose how to optimally allocate wealth in
order to maximize expected utility in the future. We show that the optimal
allocation is indeed to invest a constant fraction in the risky asset. The following
example serves as a motivation for Chapter 4.

19



3. Stochastic Control Problems

Example 3.5.2 (Merton’s portfolio optimization problem).
Given initial wealth w0 at time t0, we denote by W (t) the wealth of an investor
at each time point t. The investor aims at maximizing expected utility of wealth
at some future time T by investing in two assets; one risky and one risk-free
asset, denoted as S(t) and X(t) respectively. The risky asset is assumed to
satisfy the following stochastic differential equation

dS(t) = µS(t)dt+ σS(t)dB(t) (3.24)

where B(t) is a Brownian motion. X(t) is defined as the solution to the ordinary
differential equation

dX(t) = rX(t)dt (3.25)
where r is a constant interest-rate. We let u(t) denote the fraction of wealth
invested in the risky asset at each time point t, thereby investing the fraction
1− u(t) in the risk-free asset. Assuming 0 ≤ u(t) ≤ 1, and that the wealth is
given under a self-financing portfolio, the dynamics of the W (t) are given by

dW (t) = W (t)(µu(t) + r(1− u(t)))dt+ σu(t)W (t)dB(t) (3.26)

Given the power utility function in (3.23), the aim of the investor is to maximize
expected utility of wealth at time T < ∞. The stochastic control problem is
formulated as follows

Φ(t, w) = sup
u∈A

J(t, x;u) = E[U(W (τD))] (3.27)

where the supremum is taken over a set of admissible controls, assumed to be
measurable and Ft-adapted. τD is the first exit time of the domain D, denote by

D = {(s, w) : 0 ≤ s ≤ T,w > 0} (3.28)

The goal is to find the optimal value u = u(t) such that

sup
u∈U
{(LuΦ)(t, w)} = 0 for (t, w) ∈ D (3.29)

Φ(t, w) = U(w) for t = T, Φ(t, 0) = 0 for t < T (3.30)

where

(LuΦ)(t, w) = ∂Φ
∂t

+ w(r + (µ− r)u)∂Φ
∂w

+ 1
2σ

2u2w2 ∂
2Φ
∂w2 (3.31)

Equation (3.29) is the HJB-equation associated to the stochastic control
problem. Following the dynamic programming approach presented above, we
know that the optimal value u of u(t), if an optimal control exists, ensures that
equation (3.29) attains it’s maximum for u. We find u by solving the first order
condition of a maxima,

∂(LuΦ)(t, w)
∂u

= 0, for ∂Φ
∂w

> 0, ∂2Φ
∂w2 < 0 (3.32)

By substituting the solution for u into the HJB-equation, we obtain a non-linear
boundary value problem for Φ

Φt + rwΦw −
(µ− r)2Φ2

w)
2σ2Φww

= 0, for t < T,w > 0 (3.33)
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Φ(t, w) = U(w) for t = T, w = 0 (3.34)

The next step is to guess on a solution on the form φ = f(t)wγ . By substituting
the guess for φ into problem (3.33), the partial differential equation reduces to
a ordinary differential equation which can be solved for f(t). The solution to
Merton’s problem is then given by

Φ(t, w) = exp(λ(T − t0))wγ , λ = γr + (µ− r)2γ

2σ2(1− γ) (3.35)

where the optimal control equals

u∗(t, w) = µ− r
σ2(1− γ) (3.36)

Remark 3.5.3.
Problems where one allows for negative wealth, are for instance studied in [JS19],
where one looks at a combined optimal investment and consumption problem,
where an investor is allowed to obtain negative wealth by borrowing against
future income.

Note that the optimal investment strategy, often referred to as the Merton
ratio, of the risk-averse investor is to allocate a constant fraction of wealth in
the risky asset. If the drift in the price of the risky asset is higher that the
return on the interest rate, the investor will allocate at least a small fraction
of wealth in the risky asset (note that 1 − γ > 0). The risk-aversion of the
investor is clear; if the volatility of the risky asset is large, the fraction of wealth
invested in the risky asset decreases, and the investor allocates more wealth to
the safe investment.

One of the advantages with the dynamic programming approach to portfolio
optimization is the continuity of the stochastic controls; the investor is able to
base his decision on current information about the wealth process and underlying
drivers, and (in theory) continuously change the fraction of wealth invested in
each asset (if disregarding transaction costs). Before Merton’s studies, most
portfolio optimization problems, for instance the mean-variance approach in
Markowitz portfolio theory [Mar52], were studied in discrete time. By relating
the control problem to the dynamics of the state process, dynamic programming
allows for continuous time controls. The anticlimax of Merton’s simple problem
is however the fact that the optimal control u∗(t) is a constant fraction, only
depending on the volatility and drift of the asset price. The investor chooses
the initial allocation of wealth at time t and then becomes a passive agent. The
Merton optimal control neither depends on time, nor on the current value of
wealth. Chapter 4 is built on Merton’s problem and in Chapter 5 we try to attain
a constant-fraction investment strategy trough mathematically unconventional,
at least, methods, motivated by Merton’s solution.
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Chapter 4

Optimal Portfolio Selection
Problem

4.1 Introduction

In a complete market with co-integrated asset prices, we consider a risk averse
investor who has the limited choice of investing in two risky and one risk-free
asset. The risky assets are typically stocks, while the safe investment might be
a bond or a bank-account. The aim of the investor is to maximize expected
utility of wealth at some future time point. At all times the investor can choose
how much of the wealth he or she wants to invest in each of the assets with
the aim of allocating wealth in an utility maximizing manner, i.e. finding the
optimal portfolio investment strategy.

4.2 Formulation of the Control Problem

Let (Ω,F ,P) be the probability space defined in Section 2.1 on which the three
correlated Brownian motions B̃(t), B1(t) and B2(t) are defined.

We let W (t) denote the wealth of an investor at time t. Recall from Chapter
2 that the risky assets S1, S2 are assumed to follow the dynamics

dSi(t) = Si(t)
(
µ+AiZi(t) + 1

2(σ2 + σ2
i+2ρiσσi)

)
dt

+ Si(t)
(
σdB̃(t) + σidBi(t)

)
(4.1)

where S1(t) and S2(t) are co-integrated, as presented in Section 2.4. Further
we assume that the price of the risk-free asset satisfies the ordinary differential
equation

dX0(t) = rX0(t)dt (4.2)

where r is a continuous compounding rate of return, r < E[Si] for i = 1, 2. From
a financial point of view, the latter is a natural assumption, but not necessarily
always true in the real market. If the returns on interest rates were higher
that the expected value of the price of a risky asset (or the expected value of
the returns), it would obviously be wiser to invest all capital in the risk-free
asset; yielding higher returns and carrying no risk. However note that, even
though the risk-free assets might guarantee a fixed rate of return, there is risk
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4. Optimal Portfolio Selection Problem

associated with inflation which might decrease the real value of the expected
returns by means of for instance purchasing power.

We assume there are no transaction costs in the market and that the investor
invests in a self-financing portfolio, meaning that, given initial wealth w0, no
additional wealth is neither added nor withdrawn. All changes in the wealth
after time t0 are due to changes in the price of the underlying assets. As the
asset prices fluctuate, the investor has to reallocate the wealth in order to reach
the goal of maximizing expected utility of wealth at time T .

We let ui(t) denote the fraction of wealth invested in risky asset i for i = 1, 2
at each time instant t. The remaining fraction of wealth, 1− u1(t)− u2(t), is
invested in the risk-free asset. Let

U [0, T ] = {u(t) : [0, T ]× R3 → U} (4.3)

denote the set of measurable and Ft-adapted processes representing the decisions
of the investor at each time 0 ≤ t ≤ T , where U ∈ R. Then A ∈ U is defined as
the set of admissible controls.

Definition 4.2.1 (Admissible controls ).
A stochastic control process

u(t) = {u(t) : 0 ≤ t ≤ T} : [0, T ]× R3 → U (4.4)

is said to be admissible and u ∈ A if

(i) u(t) in U [0, T ]

(ii) u(t) is such that a unique solution W (t) ≥ 0 for all t ≥ 0 to the wealth
dynamics dW (t) exists

(iii) u(t) ∈ L2([0, T ]× R3), i.e.

E[
∫ T

0
u2(s)ds] <∞ (4.5)

By definition (4.2.1) we are looking for admissible feedback Markov controls
u1(t) and u2(t) which are measurable, Ft-adapted and bounded in L2, such
that the controlled process W (t) becomes an Itô-diffusion. We say that u(t)
is a Markov feedback control if u(t) = u0(t,W (t), Z1(t), Z2(t)) where u0 is a
measurable function from [0, T ]× R3 to U . The last condition, in connection
with the adaptedness of the controls, ensures the Itô-integrability of W (t), i.e.
that there exists a solution to the wealth dynamics dW (t), (given in 4.6) under
all u ∈ A. Note that the adaptedness of the control processes ensures the
non-anticipativity condition, i.e. at each time t the investor is only familiar
with the market information revealed up till time t and must base his decision
on this information solely. The controller cannot exercise his decision before t
and cannot control W (s) for s ≥ t. By the fact that the controls u(t) ∈ A are
not constrained as in Merton’s portfolio problem, we allow both borrowing and
short selling of the assets.

Remark 4.2.2.
Note that if the set U , which u(t) maps to, is bounded, then condition (iii) in
definition (4.2.1) is immediately fulfilled.
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4.2. Formulation of the Control Problem

Notation 4.2.3.
From now on, to ease the notation, by W (t) we mean the controlled process
W (t, u1(t), u2(t)) and by ui(t) we refer to the feedback controls
ui(t,W (t), Z1(t), Z2(t)) for i = 1, 2.

Under the assumption that the portfolio is self-financing, we obtain the
following proposition.

Proposition 4.2.4 (The dynamics of W (t)).
Given initial wealth W (t0) = w0, the controlled wealth process W (t, u1(t), u2(t))
is the solution to the stochastic differential equation

dW (t) = W (t)
(
u1(t)(µ+A1Z1(t) + 1

2Σ1) + u2(t)(µ+A2Z2(t) + 1
2Σ2)

+ (1− u1(t)− u2(t))r
)
dt+W (t)

(
σ(u1(t) + u2(t))dB̃ + σ1u1(t)dB1(t)

+ σ2u2(t)dB2(t)
)

(4.6)

where Z1(t), Z2(t) are Ornstein-Uhlenbeck processes given in (2.14) and Σ1, Σ2
constants defined in Appendix A.

Proof of proposition (4.2.4). The total wealth of the investor is given by the
position held in the risky assets i = 1, 2 and the position held in the risk-free
asset, i.e.

W (t) = u1(t)W (t)
S1(t) S1(t) + u2(t)W (t)

S2(t) S2(t) + (1− u1(t)− u2(t))W (t)
X0(t) X0(t)

By the assumption of self-financing portfolio, we have that

dW (t) = u1(t)W (t)
S1(t) dS1(t)+ u2(t)W (t)

S2(t) dS2(t)+ (1− u1(t)− u2(t))W (t)
X0(t) dX0(t)

for t0 ≤ t ≤ T . By substituting (4.1) for i = 1, 2 for dS1(t), dS2(t) and (4.2) for
dX0(t), we obtain equation (4.6). �

Clearly, we have a unique and strong solution to the stochastic differential
equation (4.6), namely the wealth process W (t). By (4.2), if the controls u1(t)
and u2(t) are measurable and adapted processes, the controlled wealth process
becomes a semimartingale (Definition B.1.6), especially an adapted process
itself. All the more, W (t) becomes a Markov process, allowing us to use the
theory on controlled Markov diffusion problems given in Chapter 3.

Given initial wealth W (t0) = w0, the aim of the investor is to maximize
expected utility of wealth at some future time T ≥ t0 given an utility function
U(W (t)). We denote by J(t0, w0, z1, z2;u1, u2) the performance function

J(t0, w0, z1, z2;u1, u2) = Ew0
[
U(W (τD))X{τD<∞}

]
(4.7)

where U(w) : R→ R represents our choice of utility function, namely the power
utility function given in (3.23), and Ew0 [X] denotes the expected value of a
random variable X w.r.t. the probability law of W (t) starting at (t0, w0, z1, z2).
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Let τD denote the first exit time of W (t) from the fixed domain region
D ∈ [t0, T ]× R3

τD = inf{t > t0 : W (t) /∈ D} (4.8)

for
D = {(t, w, z1, z2) : t0 ≤ t < T,w > 0, z1, z2} (4.9)

Remark 4.2.5.
Note that, either τD = T or τD = t where t is the time at which W (t) = 0, i.e.
the investor reaches "bankruptcy" in the sense that the wealth is zero.

Since we do not put any restrictions on the processes Z1(t) and Z2(t) in the
domain D, we assume that Ew0 [τD] <∞, and that the points of the boundary
of D are regular, i.e. if W (t) starts at (t0, w0, z1, z2) ∈ ∂D, the process is
immediately stopped andW (t) will never return to D, hence in this case τD = 0.
We summarize the statements so far in the following problem

Problem 4.2.6 (Optimal control problem ).
The optimal stochastic control problem consists of finding the optimal pair of
controls u∗1(t), u∗2(t) among all admissible controls and the corresponding value
function Φ(t0, w0, z1, z2) for all (t0, w0, z1, z2) ∈ D, such that

Φ(t0, w0, z1, z2) := sup
u1,u2∈A

J(t0, w0, z1, z2;u1, u2)

= sup
u1,u2∈A

Ew0
[
U(W (τD))X{τD<∞}

]
=J(t0, w0, z1, z2;u∗1, u∗2) (4.10)

In problem (4.2.6), Φ(t0, w0, z1, z2) denotes the optimal value or the optimal
performance function introduced in Chapter 3. Recall that if problem (4.10) has
a solution, it is said to be solvable, and if the solution is finite, the stochastic
control problem is itself said to be finite in the strong sense, andW (t, u∗1(t), u∗2(t)
is said to be the optimal controlled state process. The next theorem presents
the dynamic programming principle in connection to the control problem stated
above.

Theorem 4.2.7 (HJB-equation ).
Define the value function Φ by

Φ(t, w, z1, z2) = sup
u1,u2∈A

J(t, w, z1, z2;u1, u2) ∀ (t, w, z1, z2) ∈ D (4.11)

J(t, w, z1, z2;u1, u2) = Ew
[
U(W (τD))

]
(4.12)

and assume that Φ ∈ C1,2,2,2(D)∩C(D̄) where ∂D is regular forW (t), Ew[τD] <
∞ and

Ew[Φ(W (τD))] <∞ (4.13)

i.e, Φ is bounded on ∂D. Further, assuming that optimal controls u∗1, u∗2 ∈ A
exist, the value function Φ satisfies the HJB-equation

sup
v1,v2∈A

(Lv1,v2Φ)(t, w, z1, z2) = 0 ∀ (t, w, z1, z2) ∈ D (4.14)

26



4.2. Formulation of the Control Problem

with boundary values

Φ(t, w, z1, z2) = U(W (t)) ∀ (t, w, z1, z1) ∈ ∂D (4.15)

for v1, v2 values in U . If u∗1(t) = v1 and u∗2(t) = v2, the supremum in equation
(4.14) is obtained for u∗1, u∗2 and

(Lu
∗
1 ,u
∗
2 Φ)(t, w, z1, z2) = 0 ∀ (t, w, z1, z2) ∈ D (4.16)

Remark 4.2.8.
The notation φ ∈ C1,2,2,2(D) means that the function φ is twice continuously
differential w.r.t. the state variables w, z1, z2 in D and continuously differentiable
w.r.t. t. Further, φ ∈ C(∂D) means that the value function is continuous on
the boundary of D.

The theorem gives a connection between the stochastic optimal control
problem and the non-linear second order partial differential equation referred
to as the Hamilton-Jacobi-Bellman equation. We give an adapted version of
the proof from [Øks13].

Proof of theorem (4.2.7). We start by proving the boundary values (4.15). As-
sume (t, w, z1, z2) ∈ ∂D. Since the domain D puts no restriction on the state
variables z1 and z2, by the assumption that ∂D is regular w.r.t. W (t), τD = 0
P-a.s. if either w = 0 or t = T . Assuming controls u∗1(t) = v1 and u∗2(t) = v2
exist and are optimal, by definition of Φ

Φ(t, w, z1, z2) = E(t,w,z1,z2)
[
U(W (τD))

]
=

E
(t,0,z1,z2)

[
U(W (0))

]
= U(0) for w = 0

E(T,w,z1,z2)
[
U(W (T ))

]
= U(w) for t = T,W (T ) = w

Hence Φ(t, w, z1, z2) = U(w) for (t, w, z1, z2) ∈ ∂D. Problem (4.15)-(4.16) can
be recognized as a Dirichlet problem (Problem B.2.11) to which a solution
Φ exists if Φ ∈ C1,2,2,2(D) ∩ C(D̄), Φ bounded on ∂D for ∂D regular and
Ew[τD] <∞. By assumption these conditions hold, hence Φ exists and we have
proven (4.16) for u∗1, u∗2 optimal. We have only left to show (4.14), i.e. that the
supremum over all values v1, v2 ∈ U of the generator of Φ is zero. For this part
we would like to exploit the strong Markov property of W (t), Theorem B.2.8.
Recall that

E[f(X(τ + h))|Fτ ] = E[f(Xy(h))]|X(τ)=y

for some measurable function f , where Fτ is the stopping-time σ-algebra and
y = X(τ) is the process evaluated at τ . Let t ≤ τH ≤ τD define the first exit
time from a smaller subset H of the domain, H ⊂ D

τH = inf{r > t : W (r) /∈ H}

where
H = {(s, w, z1, z2) : s < T,w > 0, z1, z2}

Fix u1(t) = v1 and u2(t) = v2 for u1, u2 ∈ A and a point (t, w, z1, z2) ∈ D.
Then

Ew[J(τH ,W (τH), z1, z2;u1, u2)] =Ew[EW (τH)[U(W (τD)]]
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=Ew[Ew[U(W (τD)|FτH ]]
=Ew[U(W (τD))]
=J(t, w, z1, z2; v1, v2)

where the third equality follows from the law of total expectation. By the
definition of Φ, this implies that

Ew[Φ(τH)] = J(t, w, z1, z2; v1, v2) ≤ Φ(t, w, z1, z2) (4.17)

Now define a new pair of admissible controls

ui(s, w, z1, z2) =
{

(v1, v2) if (s, w, z1, z2) ∈ H
(u∗1, u∗2) if (s, w, z1, z2) ∈ D \H

for arbitrary v1, v2 ∈ U and u∗1, u∗2 optimal and assumed to exists. By Dynkin’s
formula, Theorem B.2.4

Ew[Φ(W (τH))] = Φ(s, w, z1, z2) + Ew
[ ∫ τH

t

(Lu1,u2Φ)(r, w(r), z1(r), z2(r))dr
]

(4.18)
Inserting (4.18) into (4.17), we obtain

Ew
[ ∫ τH

t

(Lu1,u2Φ)(r, w(r), z1(r), z2(r))dr
]
≤ 0

Dividing by Ew[τH ] ( > 0 by the fact that t ≤ τH ≤ τD) and letting s→ t, i.e.
expanding the subspace H , τH → τD and we obtain

lim
τH→τD

1
Ew[τH ]E

w
[ ∫ τH

t

(Lu1,u2Φ)(r,w(r), z1(r), z2(r))dr
]

= (Lv1,v2Φ)(t, w, z1, z2) ≤ 0

by the fact that the partial derivatives of Φ are continuous for all points in D.
If v1, v2 are the values to the optimal controls u∗1, u∗2 respectively, by (4.16) we
obtain equality. This concludes the proof. �

The simplicity of the proof of Theorem 4.2.7 is solely based on the "smooth"
assumptions of the value function, i.e. Φ ∈ C1,2,2,2(D) ∩ C(D̄), yielding a
classical solution to the non-linear partial differential equation we call the HJB-
equation. As mentioned in Chapter 3, more often than not, the value function
is not smooth, and viscosity solutions must be introduced. Such solutions yield
a far more complex theory and thus fare more complex proofs.

In Theorem 4.2.7, (Lv1,v2Φ)(t, w, z1, z2) denotes the infinitesimal generator of
W (t) for each choice of u1, u2 and any (t, w, z1, z2) ∈ D. The specific expression
for the generator of the wealth processW (t) is given in the following proposition.

Proposition 4.2.9 (The Infinitesimal Generator of W (t)).
Assuming W (t) is an Itô diffusion in R, for (t0, w0, z1, z2) ∈ D, let
φ(t, w, z1, z2) : [0, T ]× R3 be a function such that φ ∈ C1,2,2,2(D) ∩ C(D̄) and
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let ui(t) = vi ∈ U for i = 1, 2, ui ∈ A. The infinitesimal generator of W (t) for
each choice of u1, u2 is given by

(Lv1,v2)(t0, w0, z1, z2) = ∂φ

∂t
+ w

(
v1(µ+A1z1 + 1

2Σ1) + v2(µ+A2z2 + 1
2Σ2)

+(1− v1 − v2)r
) ∂φ
∂w

+A1z1
∂φ

∂z1
+A2z2

∂φ

∂z2
+ 1

2w
2
(
σ2(v1 + v2)2 + σ2

1v
2
1

+σ2
2v

2
2 + 2(σ(v1 + v2)(ρ1σ1v1 + ρ2σ2v2) + ρσ1σ2)

) ∂2φ

∂w2 + 1
2σ

2
1
∂2φ

∂z2
1

+1
2σ

2
2
∂2φ

∂z2
2

+ w(v1P1 + v2R1) ∂2φ

∂w∂z1
+ w(v1R2 + v2P2) ∂2φ

∂w∂z2

+ρσ1σ2
∂2φ

∂z1∂z2
(4.19)

where Σ, Σi, Pi and Ri for i = 1, 2 are constants defined in Appendix A.

Proof of proposition (4.2.9). Let W (0) = w0 and
f(t, w, z1, z2) ∈ C1,2,2,2([0,∞)× R3). Define the Itô process

Y (t, w, z1, z2) = f(t,W (t), Z1(t), Z2(t)), Y (0) = w0

By Itô’s lemma

dY (t) = ∂f

∂t
dt+ ∂f

∂w
dWt + ∂f

∂z1
dZ1(t) + ∂f

∂z2
dZ2(t) + 1

2
∂f

∂w
dW 2

t + 1
2
∂2f

∂z2
1
dZ1(t)2

+ 1
2
∂2f

∂z2
2
dZ2(t)2 + ∂2f

∂w∂z1
dWt · dZ1(t) + ∂2f

∂w∂z2
dWt · dZ2(t)

+ ∂2f

∂z1∂z2
dZ1(t) · dZ2(t)

Substituting for dW (t), dZ1(t), dZ2(t), then by using lemma (C.1.1) we obtain
that

dY (t) = ∂f

∂t
dt+ ∂f

∂w
Wt

(
(v1(t)(µ+ b1A1Z1(t) + 1

2Σ1) + v2(t)(µ+A2Z2(t)

+ 1
2Σ2) + (1− v1(t)− v2(t))r)dt+ σ(v1(t) + v2(t))dB̃(t) + σ1v1(t)dB1(t)

+ σ2v2(t)dB2(t)
)

+ ∂f

∂z1

(
A1Z1(t)dt+ σ1dB1(t)

)
+ ∂f

∂z2

(
A2Z2(t)dt

+ σ2dB2(t)
)

+ 1
2
∂2f

∂w2

(
W 2
t (σ2(v1(t) + v2(t))2 + σ2

1v
2
1(t) + σ2

2v
2
2(t))dt

+ 2W 2
t (σ(v1(t) + v2(t))(ρ1σ1v1(t) + ρ2σ2v2(t)) + ρσ1v1(t)σ2v2(t)

)
dt

+ 1
2
∂2f

∂z2
1
σ2

1dt+ 1
2
∂2f

∂z2
2
σ2

2dt+ ∂2f

∂w∂z1

(
Wt(v1(t)P1 + v2(t)R1)

)
dt

+ ∂2f

∂w∂z2

(
Wt(v1(t)R2 + v2(t)P2)

)
dt+ ∂2f

∂z1∂z2
ρσ1σ2dt

By integration and by taking expectations on both sides, the expression for
dY (t) becomes

Ew0 [Y (t)] =f(w0) + Ew0
[ ∫ t

t0

b(t, w, z1, z2)ds
]

+ Ew0
[ ∫ t

t0

σ(s, w, z1, z2)dB̃(s)
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+
∫ t

t0

σ1(s, w, z1, z2)dB1(s) +
∫ t

t0

σ2(s, w, z1, z2)dB2(s)
]

(4.20)

where b(t, w, z1, z2) is a function of the terms corresponding to the dt-differential,
and

σ = σ(v1(t) + v2(t))W (t) ∂f
∂w

, σi = σivi(t)W (t) ∂f
∂w

+ σi
∂f

∂zi
, i = 1, 2 (4.21)

generic constants. By assumption (iv) in (4.2.1), u1(t) and u2(t) are such that
W (t) is the unique solution to (4.6), σ, σ1 and σ2 are Itô-integrable functions
and the integrals have zero expectation. By Fubini’s theorem, Theorem B.3.1,
equation (4.20) equals

Ew0 [Y (t)]− f(w0) =
∫ t

t0

Ew0 [b(t, w, z1, z2)]ds

Dividing by t− t0 and letting t→ t0, Definition B.2.2 and the continuity of f
gives that

lim
t→t0

Ex[Y (t)]− f(x)
t− t0

= lim
t→t0

1
t− t0

Ew0 [b(t, w, z1, z2)] = Ew0 [b(t0, w0, z1, z2)]

=b(t0, w0, z1, z2)

where we recognize that b(t0, w0, z1, z2) = (Lv1,v2)(t0, w0, z1, z2) in (4.19). �

4.3 A Specific Verification Theorem

Theorem 4.2.7 turns the original stochastic control problem into an much simpler
maximization problem through the HJB-equation. It states that if optimal
controls u∗1, u∗2 exist, their values v1, v2 for any (t0, w0, z1, z2) ∈ D must be such
that the generator of W (t) attains it maximum at the specific values v1, v2 for
(t0, w0, z1, z2) ∈ D. The next theorem ensures that if such maximizing values
v1 = u1(t) and v2 = u2(t) are found for any (t0, w0, z1, z2) ∈ D, they are indeed
values corresponding to the optimal controls. In other words, Theorem 4.3.1
gives a verification of the solution obtained from Theorem 4.2.7.

Theorem 4.3.1 (A verification theorem ).
Assume φ ∈ C1,2,2,2(D) ∩ C(D̄) is a solution to the HJB-equation

(Lv1,v2φ)(t0, w0, z1, z2) ≤ 0 ∀ (t0, w0, z1, z2) ∈ D (4.22)

for all v1, v2 ∈ U with boundary values

lim
t→τD

φ(W (t)) = U(W (τD)) (4.23)

Assume also that∫ T

t0

E
[(
σ(s,W (s, v1, v2), Z1(s), Z2(s))

)2]
ds <∞ (4.24)

∫ T

t0

E
[(
σi(s,W (s, v1, v2), Z1(s), Z2(s))

)2]
ds <∞ (4.25)

30



4.3. A Specific Verification Theorem

for σ, σi (i = 1, 2) given in (4.21). Then

φ(t0, w0, z1, z2) ≥ J(t0, w0, z1, z2;u1, u2) (4.26)

for all Markov controls u1(t) = v1, u2(t) = v2 and all (t0, w0, z1, z2) ∈ D. If in
addition, we have that

(Lu
∗
1 ,u
∗
2φ)(t0, w0, z1, z2) = 0 (4.27)

then the Markov controls u∗1(t), u∗2(t) ∈ A define the optimal (feedback) controls
and φ(t0, w0, z1, z2) must be the optimal value function such that

φ(t0, w0, z1, z2) = J(t0, w0, z1, z2;u∗1, u∗2) = Ew0
[
U(W (τD)

]
(4.28)

Proof of theorem (4.3.1). Let (t0, w0, z1, z2) ∈ D and assume φ ∈ C1,2,2,2(D)∩
C(D̄). In addition, assume (4.24) and (4.25). We want to show that if, for some
values v1, v2 ∈ U , condition (4.22) holds, then

φ(t0, w0, z1, z2) ≥ J(t0, w0, z1, z2; v1, v2) (4.29)

for all (t0, w0, z1, z2) ∈ D. By Itô’s lemma we have that

dφ =∂φ

∂t
+ ∂φ

∂w
dW (t) + ∂φ

∂z1
dZ1(t) + ∂φ

∂z2
dZ2(t) + ∂2φ

∂w2 (dW (t))2

+ ∂2φ

∂z2
1

(dZ1(t))2 + ∂2φ

∂z2
2

(dZ2(t))2 + ∂2φ

∂w∂z1
dW (t)dZ1(t)

+ ∂2φ

∂w∂z2
dW (t)dZ2(t) + ∂2φ

∂z1∂z2
dZ1(t)dZ2(t) (4.30)

Substituting for dW (t), dZ1(t), dZ2(t), (expressions for the squared dynamics
and the cross-products are given in Appendix B, and collecting all dt-differential
terms, dB̃(t)-differential terms, etc., we obtain the following equation

φ(W (t)) = φ(t0, w, z1, z2) +
∫ t

t0

(
∂φ

∂t
+W (s)

(
v1(µ+A1Z1(s) + 1

2Σ1)

+v2(µ+A2Z2(s) + 1
2Σ2) + (1− v1 − v2)r

) ∂φ
∂w

+A1Z1(s) ∂φ
∂z1

+A2Z2(s) ∂φ
∂z2

+ 1
2W

2(s)
(
σ2(v1 + v2)2 + σ2

1v
2
1 + σ2

2v
2
2 + 2σ(v1 + v2)

×(ρ1σ1v1 + ρ2σ2v2) + 2ρσ1σ2

) ∂2φ

∂w2 + 1
2

(
σ2

1
∂2φ

∂z2
+ σ2

2
∂2φ

∂z2
2

)
+W (s)

×
(
P1v1 +R1v2

) ∂2φ

∂w∂z1
+W (s)

(
R2v1 + P2v2

) ∂2φ

∂w∂z2
+ ρσ1σ2W (s)

×
(
P1v1 +R1v2

) ∂2φ

∂z2∂z2

)
ds+

∫ T

t0

W (s)
(
σ(v1 + v2) ∂φ

∂w

)
dB̃(s)

+
∫ T

t0

(
σ1v1W (s) ∂φ

∂w
+ σ1

∂φ

∂z1

)
dB1(s) +

∫ T

t0

(
σ2v2W (s) ∂φ

∂w

+σ2
∂φ

∂z2

)
dB2(s) (4.31)
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By assumptions (4.24) and (4.25), we know that the integrals w.r.t. dB̃(s),
dBi(s) for i = 1, 2 are Itô integrals, hence taking expectations on both sides of
(4.31) and recognizing that the Riemann integral is the integral of the generator
(Lv1,v2φ)(t0, w0, z1, z2) in (4.31), we obtain

E[φ(W (t))] = φ(t0, w0, z1, z2) + Ew0
[ ∫ t

t0

(Lv1,v2φ)(t0, w0, z1, z2)ds
]

≤ φ(t0, w0, z1, z2) (4.32)

by (4.22). Let t→ τD, then by (4.32)

lim
t→τD

E[φ(W (t))] = E[U(W (τD))] = J(t0, w0, z1, z2; v1, v2)

≤ φ(t0, w0, z1, z2) (4.33)

which proves (4.26) for (t0, w0, z1, z2) ∈ D. For the second part of the theorem,
since u1(t) and u2(t) are assumed to be Markov controls and by the construction
of W (t), W (t, u1(t), u2(t)) is the unique solution to the dynamics dW (t) in
(4.6), i.e. u1(t)∗ and u∗2(t) are admissible. By (4.28) the controls are maximizers
to the HJB-equation, and following the same calculations as in the first part of
the proof, only with equalities, we obtain

lim
t→τD

E[φ(W (t))] = E[U(W (τD))] = J(t0, w0, z1, z2;u∗1.u∗2)

= φ(t0, w0, z1, z2) (4.34)

for any (t0, w0, z1, z2) ∈ D. Hence u∗1 and u∗2 must be optimal admissible
controls. This completes the prove for values in the domain D. The remaining
part is to prove the boundary values, t = T and w = 0. By (4.28), for both
t = T and w = 0, t = τD and we see that

φ(τD,W (τD), Z1(τD), Z2(τD)) = E[U(W (τD))] = U(W (τD)) (4.35)

This concludes the proof for all values (t, w, z1, z2) ∈ D̄. �

4.4 A Semi-Explicit Solution

In this section we aim at solving the optimal control problem stated in theo-
rem Theorem 4.2.7. That is, our goal is to find the optimal pair of controls
(u∗1(t), u∗2(t)) and the corresponding optimal value function Φ(t0, w0, z1, z2) for
any (t0, w0, z1, z2) such that u∗1(t) and u∗2(t) maximizes expected utility of wealth
at time T. By Theorem 4.2.7, the optimal controls u∗1(t) and u∗2(t) are given as
the maximizing values to the HJB-equation (4.14). For each (t0, w0, z1, z2) ∈ D
we try to find the values v1 = u∗1(t) and v2 = u∗2(t) such that ν attains it
maximum

ν(v1, v2) = (Lv1,v2)(t0, w0, z1, z2) = 0 (4.36)

By first and second-order conditions for a maximum, the optimum in (4.36) is
obtained if Φx > 0 and Φxx < 0. A solution is given by solving the first-order
optimality conditions for v1 and v2.
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Proposition 4.4.1 (Optimal values v1 and v2).
The optimal values v1 = u1(t) and v2 = u2(t) maximizing the HJB-equation
(4.14), are given by

v1 = u∗1(t) = 1
wΓΦww

(
G1(z1, z2)Φw −M1Φwz1 −N1Φwz2

)
(4.37)

v2 = u∗2(t) = 1
wΓΦww

(
G2(z1, z2)Φw −M2Φwz1 −N2Φwz2

)
(4.38)

where Γ, Gi(z1, z2),Mi, Ni for i = 1, 2 are as in Appendix A.

Proof of proposition (4.4.1). The values v1, v2 are given as the solutions to the
first-order optimality equations

∂ν

∂v1
= 0 (4.39)

∂ν

∂v2
= 0 (4.40)

The solutions in (4.37) and (4.38) are obtained by straight forward derivation
w.r.t. v1 and v2 of (4.36), then by substitution of variables to attain explicit
expressions for v1 and v2. The calculations are comprehensive and require
introduction of new variables several times. They are therefore omitted here,
but the resulting expressions are presented in Appendix A. �

Our next mission is to find the optimal performance function Φ(t0, w0, z1, z2)
for any (t0, w0, z1, z2) ∈ D, corresponding to the optimal controls u∗1, u∗2. The
procedure will be as follows: we make a guess on the value function Φ and
obtain a new boundary value problem which we try to solve by again making
an ansatz on the solution. When or if a solution is obtained, we have to verify
that u∗1(t) and u∗2(t) are indeed admissible optimal controls under Φ be means
of the Theorem 4.3.1.

Notation 4.4.2.
The following notational conventions will be used to denote the partial derivatives
of Φ

Φt = ∂Φ
∂t
,Φw = ∂Φ

∂w
,Φww = ∂2Φ

∂w2 ,Φzi = ∂Φ
∂zi

,Φzizj = ∂2Φ
∂z2
i

,Φwzi = ∂2Φ
∂w∂zi

for all i, j. In addition, we suppress the dependencies on t and write W (t) = w,
Z1(t) = z1 and Z2(t) = z2, not to be confused with the initial values z1, z2.

By substituting the optimal values v1 and v2 into the HJB-equation (4.14),
we get the following non-linear boundary value problem for Φ

Problem 4.4.3 (Boundary value problem for Φ).

Φt + rwΦw +A1z1Φz1 +A2z2Φz2 + 1
2σ

2
1Φz1z1 + 1

2Φz2z2 + ρσ1σ2Φz1z2

+ Φ2
w

Γ2Φww
p(z1, z2) + ΦwΦwz1

Γ2Φww
p1(z1, z2) + ΦwΦwz2

Γ2Φww
p2(z1, z2)

33



4. Optimal Portfolio Selection Problem

+
Φ2
wz1

Γ2Φww
C1 +

Φ2
wz2

Γ2Φww
C2 + Φwz1Φwz2

Γ2Φww
C3 = 0 for t < T, w > 0 (4.41)

Φ(t, w, z1, z2) = U(w) for t = T or W (t) = 0 (4.42)

where p(z1, z2), p1(z1, z2) and p2(z1, z2) are polynomials of degree 2, 1 and 1
respectively, and C1, C2 and C3 are constants.

The polynomials in problem (4.4.3) are on the form

p(z1, z2) = α0 + α1A1z1 + α2A2z2 + α11A
2
1z

2
1 + α22A

2
2z

2
2 + α12A1A2z1z2

p1(z1, z2) = β0 + β1A1z1 + β2A2z2

p2(z1, z2) = δ0 + δ1A1z1 + δ2A2z2

where the coefficients α0, . . . , β0, . . . , δ0, . . . and the constants C1, C2, C3 are
different expressions of the correlations and standard deviations ρ, ρi, σ, σi for
i = 1, 2. The expressions are cumbersome and are hence omitted here. They
are stated in Appendix A.

Given the strictly increasing and strictly concave power utility function
presented in (3.23), we try to find a solution to Problem 4.4.3 on the form

φ(t, w, z1, z2) = f(t, z1, z2)wγ , 0 < γ < 1 (4.43)

where wγ represents our choice of utility function, and f(t, z1, z2) is a multi-
variable function of t and the space variables z1 and z2. We substitute for φ in
(4.41) and obtain the alternative non-linear boundary value problem for f

Problem 4.4.4 (Boundary value problem for f).

ft + γrf +A1z1fz1 +A2z2fz2 + 1
2σ

2
1fz1z1 + 1

2σ
2
2fz2z2 + ρσ1σ2fz1z2

+ γ · p(z1, z2)
Γ2(γ − 1) f + γ · p1(z1, z2)

Γ2(γ − 1) fz1 + γ · p2(z1, z2)
Γ2(γ − 1) fz2 + γ · C1

Γ2(γ − 1)
f2
z1

f

+ γ · C2

Γ2(γ − 1)
f2
z2

f
+ γ · C3

Γ2(γ − 1)
fz1fz2

f
= 0, for t < T, w > 0 (4.44)

f(t, z1, z2) = 1 for t = T (4.45)

where ft, fz1 , fz2 , .. are the partial derivatives of f w.r.t. t, z1 and z2 respectively.

Note the boundary value for f(t, z1, z2) when t = T . For the power utility
function, the boundary condition, equation (4.45), implies that

φ(t, w, z1, z2) =
{
f(t, z1, z2) · U(0) = 0, if w = 0
f(t, z1, z2) · U(w) = U(w), if t = T

By guessing on a solution for φ, we have reduced one of the state variables,
w, and are left with a non-linear partial differential equation in time and the
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variables z1 and z2. We try to solve the partial differential equation further by
making the ansatz

f(t, z1, z2) = eg(t,z1,z2) (4.46)

where g(t, z1, z2) is on the form

g(t, z1, z2) = g0(t) + g1(t)z1 + g2(t)z2 + g11(t)z2
1 + g22(t)z2

2 + g12(t)z1z2 (4.47)

i.e., g is a polynomial of degree 2 in two space variables, where the coefficients
g0(t), . . . , g12(t) are functions of t. The boundary value condition for t = T ,
implies that

eg(T,z1,z2) = 1 =⇒ g(T, z1, z2) = 0 (4.48)

By the ansatz on f(t, z1, z2), for non-zero state variables, when t = T the
coefficients of the polynomial g(t, z1, z2) are zero, i.e.

g0(t) = g1(t) = . . . = g12(t) = 0 for t = T and z1, z2 6= 0 (4.49)

Notation 4.4.5.
We will later denote by g(t) the set of functions g0(t), g1(t), g2(t), g11(t), g22(t)
and g12(t), while g(t, z1, z2) is the polynomial in (4.47). Furthermore, to spare
some notation, we define the constant

ζ = γ

Γ2(γ − 1)

By substituting for f(t, z1, z2) and the partial derivatives ft, fz1 , fz2 , we obtain
a new equation for (4.44). Again, suppressing the dependencies on t, z1, z2, we
obtain

eggt + γreg +A1z1e
ggz1 +A2z2e

ggz2 + 1
2σ

2
1e
ggz1z1 + 1

2σ
2
2e
ggz2z2 + ρσ1σ2e

ggz1z2

+ p(z1, z2)egζ + p1(z1, z2)eggz1ζ + p2(z1, z2)eggz2ζ + C1e
gg2
z1
ζ

+ C2e
gg2
z2
ζ + C3e

ggz1gz2ζ = 0, for t < T, w > 0 (4.50)

We divide by eg(t,z1,z2), substitute for p(z1, z2), p1(z1, z2), p2(z1, z2) and obtain
the following "messy" equation

g′0(t) + g′1(t)z1 + g′2(t)z2 + g′11(t)z2
1 + g′22(t)z2

2 + g′12(t)z1z2

+A1z1

(
g1(t) + 2g11(t)z1 + g12(t)z2

)
+A2z2

(
g2(t) + 2g22(t)z2 + g12(t)z1

)
+ 1

2σ
2
1

(
2g11(t) + g2

1(t) + 4g2
11(t)z2

1 + g2
12(t)z2

2 + 4g1(t)g11(t)z1

+ 2g1(t)g12(t)z2 + 4g11(t)g12(t)z1z2

)
+ 1

2σ
2
2

(
2g22(t) + g2

2(t) + g2
12(t)z2

1

+ 4g2
22(t)z2

2 + 2g2(t)g12(t)z1 + 4g2(t)g22(t)z2 + 4g12(t)g22(t)z1z2

)
+ ρσ1σ2

(
g12(t) + g1(t)g2(t) + z1(g1(t)g12(t) + 2g2(t)g11(t)) + z2(2g1(t)g22(t)

+ g2(t)g12(t)) + 2g11(t)g12(t)z2
1 + 2g12(t)g22(t)z2

2 + z1z2(4g11(t)g22(t)

+ g2
12(t))

)
+
(
β0 + β1A1z1 + β2A2z2

)(
g1(t) + 2g11(t)z1 + g12(t)z2

)
ζ
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+
(
δ0 + δ1A1z1 + δ2A2z2

)(
g2(t) + 2g22(t)z2 + g12(t)z1

)
ζ

+ C1

(
g1(t) + 2g11(t)z1 + g12(t)z2

)2
ζ + C2

(
g2(t) + 2g22(t)z2 + g12(t)z1

)2

× ζ + C3

(
g1(t) + 2g11(t)z1 + g12(t)z2

)(
g2(t) + 2g22(t)z2 + g12(t)z1

)
= −

(
α0 + α1A1z1 + α2A2z2 + α11A

2
1z

2
1 + α22A

2
2z

2
2 + α12A1A2z1z2

)
ζ − γr

So far our guess on f(t, z1, z2) seems reasonable, and we are left with a polyno-
mial of degree 2 where the coefficients are time-dependent functions. However,
we need to show that eg(t,z1,z2) is indeed a solution to the partial differential
equation. Writing out the parentheses and collecting all the terms not including
z1 or z2 in one equation, all the terms including only z1 and only z2 in separate
equations, and so on, we obtain a system of six first-order, non-linear (ordinary)
differential equations of t.

Result 4.4.6 (System of differential equations).
By the procedure described above, we express each of the equations as an expres-
sion of the derivatives g′0(t), g′1(t), . . . . Then the system of differential equations
obtained is given by (1)-(6)

g′0(t) = −g1(t)β0ζ − g2(t)δ0ζ + σ2
1g11(t)− σ2

2g22(t)− ρσ1σ2g12(t)− g2
1(t)

(1
2σ

2
1

−C1ζ
)
− g2

2(t)
(1

2σ
2
2 − C2ζ

)
− g1(t)g2(t)

(
ρσ1σ2 − C3ζ

)
− γr − α0ζ (1)

g′1(t) = −g1(t)
(
A1 + β1A1ζ

)
− g2(t)δ1A1ζ − 2g11(t)β0ζ − g12(t)δ0ζ

−g1(t)g11(t)
(

2σ2
1 + 4C1ζ

)
− g1(t)g12(t)

(
ρσ1σ2 + C3ζ

)
− g2(t)g11(t)

×
(

2ρσ1σ2 + 2C2ζ
)
− g2(t)g12(t)

(
σ2

2 + 2C2ζ
)
− α1A1ζ (2)

g′2(t) = −g1(t)β2A2ζ − g2(t)
(
A2 + δ2A2ζ

)
− g12(t)β0ζ − g22(t)2δ0ζ

−g1(t)g12(t)
(
σ2

1 + 2C1ζ
)
− g2(t)g12(t)

(
ρσ1σ2 − C3ζ

)
− g1(t)g22(t)

(
ρσ1σ2

+2C3ζ
)
− g2(t)g22(t)

(
2σ2

2 + 4C2ζ
)
− α2A2ζ (3)

g′11(t) = −g11(t)
(

2A1 + 2A1β1ζ
)

+ g12(t)δ1A1ζ − g2
11(t)

(
2σ2

1 + 4C1ζ
)

+g2
12(t)

(1
2σ

2
2 + C2ζ

)
− g11(t)g12(t)

(
2ρσ1σ2 + 2C3ζ

)
− α11A

2
1ζ (4)

g′22(t) = −g22(t)
(

2A2 + 2δ2A2ζ
)

+ g12(t)β2A2ζ − g2
22(t)

(
2σ2

2 + 3C2ζ
)

−g2
12(t)

(1
2σ

2
1 + C1ζ

)
− g12g22(t)

(
ρσ1σ2 + 2C3ζ

)
− α22A

2
2ζ (5)

g′12(t) = −2g11(t)β2A2ζ − 2g22(t)δ1A1ζ − g12(t)
(
A1 +A2 + β1A1ζ + δ2A2ζ

)
−g2

12(t)
(
ρσ1σ2 + C3ζ

)
− g11(t)g12(t)

(
2σ2

1 + 4C1ζ
)
− g11(t)g22(t)

(
ρσ1σ2
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+4C3ζ
)
− g12(t)g22(t)

(
2σ2

2 + 4C2ζ
)
− α12A1A2ζ (6)

By our guess on the value function, we have managed to cancel all state
variables w, z1 and z2 from the initial HJB-equation, and reduced our control
problem to a system of non-linear first order (ordinary) differential equations (1)-
(6). In the next section we observe that the system of equations can be argued
to be a set of Riccati equations, or equivalently a 6-dimensional vector-Riccati
equation.

4.5 Riccati Representation

The non-linear system of ordinary differential equations derived in Result 4.4.6
in the previous sections is quite cumbersome. In this section we recognize (1)-(6)
as a system of Riccati-equations, which we represent in two alternative ways.

The Riccati equations are a special type of differential equations, defined
in terms of an ordinary differential equation that is quadratic in the unknown
function. From [Bar16], we state the following definition

Definition 4.5.1 (Riccati-equation).
The non-linear ordinary differential equation

x′ = p(t) + q(t)x+ r(t)x2, t ∈ [0, T ] (4.51)

where P (t), Q(t) and R(t) 6= 0 are continuous functions on an interval [0, T ],
is called a general Riccati differential equation.

The definition above can be extended to a matrix-valued Riccati equation,
often appearing in linear quadratic optimization problems or filtering theory.
The algebraic Riccati equations are on the form

X ′ = ATX +XBR−1BTX +Q

where X is the unknown n× n symmetric matrix and A,B,R and Q are real-
valued n× n- matrices. Each of the equations in (1)-(6) constitute a Riccati
equation. In this section we look at two Riccati representations similar to the
vector Riccati equation

x
′

= A(t) +B(t)x + (C(t)x)xT +Q

where x is a n-dimensional vector of the unknown function, A(t) and C(t) are
continuous vector functions, and B(t) is a n × n continuous matrix function.
The vector Riccati equation is for instance presented in [AS10]. The following
notation will become convenient.

Notation 4.5.2 (Riccati representation).
Let cmn denote the elements of the following 6× 6-matrix

C =



0 β0ζ δ0ζ σ2
1 σ2

2 ρσ1σ2

0 A1+β1A1ζ δ1A1ζ 2β0ζ 0 δ0ζ

0 β2A2ζ A2+δ2A2ζ 0 2δ0ζ β0ζ

0 0 0 2A1+2A1β1ζ 0 δ1A1ζ

0 0 0 0 2A2+2δ2A2ζ β2A2ζ

0 0 0 2β2A2ζ 2δ1A1ζ (A1+A2

+β1A1ζ+δ2A2ζ)


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and let G be the 6× 6 matrix defined by

G =


g2

0(t) g0(t)g1(t) · · · g0(t)g12(t)
g1(t)g0(t) g2

1(t) · · · g1(t)g12(t)
...

. . .

g12(t)g0(t) g12(t)g1(t) · · · g2
12(t)


Furthermore, let N be the column-vector in R6 with elements Nk, defined by

N =
(
γr + α0ζ, α1A1ζ, α2A2ζ, α11A

2
1ζ, α22A

2
2ζ, α12A1A2ζ

)T
and denote the constants εi and ψ by

εi = 1
2σ

2
i + Ciδ, , ψ = ρσ1σ2 + C3δ,

for i = 1, 2.

Applying the notation introduced above, the system of differential equations
obtained in Result 4.4.6 can be represented as follows

Result 4.5.3 (System (1’)-(6’)).

g′0(t) =− g1(t)c12 − g2(t)c13 − g11(t)c14 − g22(t)c15 − g12(t)c16 − g2
1(t)ε1

− g2
2(t)ε2 − g1(t)g2(t)ψ −N1 (1’)

g′1(t) =− g1(t)c22 − g2(t)c23 − 2g11(t)c24 − g12(t)c26 − 4g1(t)g11(t)ε1
− g1(t)g12(t)ψ − 2g2(t)g11(t)ψ − g2(t)g12(t)ψ −N2 (2’)

g′2(t) =− g1(t)c32 − g2(t)c33 − g22(t)c35 − g12(t)c36 − 2g1(t)g12(t)ε1
− 2g1(t)g22(t)ψ − 4g2(t)g22(t)ε2 − g2(t)g12(t)ψ −N3 (3’)

g′11(t) =− g11(t)c44 − g12(t)c46 − 4g2
11(t)ε1 + g2

12(t)ε2 − 2g11(t)g12(t)ψ
−N4 (4’)

g′22(t) =− g22(t)c55 − g12(t)c56 − 4g2
22(t)ε2 − g2

12(t)ε1 − 2g12g22(t)ψ
− α22A

2
2ζ (5’)

g′12(t) =− 2g11(t)c64 − 2g22(t)c65 − g12(t)c66 − g2
12(t)ψ

− 4g11(t)g22(t)ψ − 4g11(t)g12(t)ε1 − 4g22(t)g12(t)ε2 −N6 (6’)

Representation Through Linear Operator L
In this subsection we aim at rewriting the shortened system of differential
equations (1’)-(6’) on a form similar to the vector Riccati equation introduced
at the beginning of the section. Let

g′(t) = N + Cg(t) + L(G)
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where g(t) is a 6-dimensional column vector and gT (t) the transpose. C
and N are the matrix and the column-vector, respectively, defined in Nota-
tion 4.5.2. L(G) a linear operator from R6×6 → R6 which takes the 6×6-matrix
G = g(t)gT (t) to a 6−dimensional column vector. We argue that (1’)-(6’),
equivalently (1)-(6), is a system of Riccati-equations, by first noting that each
of the equations (1′)-(6′) can be expressed as equations of a constant, a linear
term and a quadratic term. Define

g(t)− = (g0(t)−, g1(t)−, g2(t)−, g11(t)−, g22(t)−, g12(t)−)T

where g−(t) ∈ R6 denotes the vector containing the quadratic parts of equations
(1′)-(6′). Take for instance the expression for g′0(t), which takes the form

g
′

0(t) = −N1 − c12g1(t)− c13g2(t)− c14g11(t)− c15g22(t)− c16g12(t)− g0(t)−

for g−0 (t) = g2
1(t)ε1 + g2

2(t)ε2 + g1(t)g2(t)ψ. We are now ready to state the
following proposition.

Proposition 4.5.4 (System of Riccati-equations ).
Define g(t) ∈ R6 to be the 6-dimensional column-vector

g(t) = (g0(t), g1(t), g2(t), g11(t), g22(t), g12(t))T (4.52)

and gT (t) the transpose. The system of equations (1′)-(6′) can be represented
by the vector equation

g′(t) = N + Cg(t) + L(G) (4.53)

where C is the 6× 6-matrix of the coefficients of the linear terms and N ∈ R6

the column-vector of constants, both defined in Notation 4.5.2. L(G) is a linear
operator from R6×6 → R6 defined by

L(G) =



−eT2 (G2ε1 +G3ψ)− eT3 G3ε2

−eT2 (4G4ε1 +G6ψ)− eT3 (2G4ψ + 2G6ε2)
−eT2 (G6ψ + 4G5ε2)− eT3 (2G6ε1 +G5ψ)
−eT4 (4G4ε1 + 2G6ψ)− eT6 G6ε2

−eT5 (4G5ε2 + 2G6ψ)− eT6 G6ε1

−4eT4 G5ε1 − eT6 (G3ψ +G4ψ + 4G5ε2)


(4.54)

where Gk are the columns of G in Notation 4.5.2. Then (4.53) is a system of
Riccati-equations, also referred to as a vector-Riccati equation.

Proof of proposition (4.5.4). Define

g′(t) = (g′0(t), g′1(t), g′2(t), g′11(t), g′22(t), g′12(t))T

to be the derivative column-vector of g(t) ∈ R6 and G = g(t)gT (t) to be
the 6 × 6-matrix defined in Notation 4.5.2. By noting the notation in (1′)-
(6′), we recognize the coefficients to the linear terms as the elements cmn for
m,n = 1, . . . , 6 of the matrix C. Similarly the constants in (1’)-(6’) denote the
elements Nk for k = 1, . . . , 6 of the 6-dimensional vector N. We obtain the
following notation for g′(t)

g′(t) = N + Cg(t) + g(t)−
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where g(t)− is the vector of the quadratic terms of g′(t) defined above. We need
to find the operator which maps the matrix G in R6×6 to the vector g(t)− ∈ R6.

Let ei = (0, . . . , 1, . . . , 0) denote the unit vector in R6, i.e. ei is the i− th
vector of the canonical basis of R6. Then eTi is the 6-dimensional row-vector
where all elements of eTi are 0 except for the i-th element. Further, let Gk
denote the k-th column of G. We need to extract exactly those elements from
G such that, for instance

g0(t)− = −ε1g2
1(t)− ε2g2

2(t)− ψg1(t)g2(t)

By eT1 G2 we get g2
1(t), and by eT2 G3 and eT3 G3 we get g2

2(t) and g1(t)g2(t),
respectively. Hence

g0(t)− = −eT2 (G2ε1 +G3ψ)− eT3 G3ε2

By following the same manner for g′1(t), g′2(t), . . . , we obtain the requested result

g(t)− =



−eT2 (G2ε+G3ψ)− eT3 G3ε2

−eT2 (4G4ε1 +G6ψ)− eT3 (2G4ψ + 2G6ε2)
−eT2 (G6ψ + 4G5ε2)− eT3 (2G6ε1 +G5ψ)
−eT4 (4G4ε1 + 2G6ψ)− eT6 G6ε2

−eT5 (4G5ε2 + 2G6ψ)− eT6 G6ε1

−4eT4 G5ε1 − eT6 (G3ψ +G4ψ + 4G5ε2)


By Definition 4.5.1, it is easily seen that (4.53) is a system of Riccati equations if
the functions g0(t), . . . , g12(t) are continuous (and differentiable) on [0, T ]. The
linearity of L(G) is easily shown by noting that the sum of two n× n matrices
A and B, is a new n × n matrix C and that the sum of two n-dimensional
column-vectors A1 +B1 is a new column vector C1. Take for instance the first
row in L(G), denoted by L1(G), and note that

L1(A+B) =− eT2 ((A2 +B2)ε1 + (A3 +B3)ψ)− eT3 (A3 +B3)ε2
=− eT2 (A2ε1 +B2ε1 +A3ψ +B3ψ))− eT3 (A3ε2 +B3ε2)
=− eT2 (A2ε1 +A3ψ)− eT3 A3ε2 − eT2 (B2ε2 +B3ψ)− eT3 B3ε2

=L1(A) + L1(B)

By same argument for the rest of the rows of G, and by similar argument for
L(cG) for any scalar c, we conclude that L(G) is a linear transformation from
R6×6 → R6. �

Alternative Representation
An alternative approach would be to represent the system (1′)-(6′) as

g′(t) = N + Cg(t) +M(g(t)) · g(t) (4.55)

where g(t),N ∈ R6 and the matrix C are as in Notation 4.5.2. M(g(t)) is
a 6 × 6-matrix where the elements are dependent on the unknown functions
g0(t), . . . , g12(t).
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Proposition 4.5.5 (Alternative Riccati-representation ).
Define g(t) ∈ R6 to be the 6-dimensional column vector (4.52) and g(t)T the
transpose. Then the system of equations (1′)-(6′) can be represented by

g′(t) = N + Cg(t) +M(g(t)) · g(t) (4.56)

where

M(g(t)) =



0 −g1ε1 −(g2ε2+g1ψ) 0 0 0

0 −4g11ε1 −2g12(t)ε2 −2g2ψ 0 −g1ψ

0 −2g22ψ −g12ψ 0 −4g2ε2 −2g1ε1

0 0 0 −4g11ε1 0 −(g12ε2−2g11ψ)

0 0 0 0 −4g22ε2 −(g12ε1+2g22ψ)

0 0 0 −2g12ε1 −(4g11ψ+4g12ε2) −g12ψ


is a 6×6-matrix where the elements are linear terms of the functions g0(t), . . . ,
g12(t), C is the 6× 6-matrix of the coefficients of the linear terms in (1′)-(6′)
and N ∈ R6 the vector of constants, both given in Proposition 4.5.4. Then
(4.56) is a vector-Riccati equation.

Proof of proposition (4.5.5). Define again, as in the preceding subsection, g(t)−
to be the 6-dimensional vector of the non-linear terms of g′(t), and let M(g(t))
be defined as in Proposition 4.5.5. Following, by matrix-vector multiplication,
we see that M(g(t)) · gT (t) = g(t)−. If we let N and C be as in Notation 4.5.2,
then

g′(t) = Cg(t) +M(g(t)) · g(t) +N

By Definition 4.5.1, it is easily seen that each of the equations in (1′)-(6′) is a
Riccati equation as long as g0(t), . . . , g12(t) are continuous on [0, T ]. �

A solution to the two representations of the Riccati equations above, is
a set of continuously differentiable functions g0(t), g1(t), g2(t), g11(t), g22(t),
g12(t) that satisfy all six equations simultaneously over the interval [0, T ]. Note
that g(t, z1, z2) is a polynomial of second degree in z1, z2, hence f ∈ C2,2(D)
w.r.t. z1, z2. If there exists a continuously differentiable solution g(t) to (1)-(6),
which also satisfies the boundary value condition (4.49), we have successfully
found a function f(t, z1, z2) for which Φ(t, w, z1, z2) ∈ C1,2,2,2(D) is a classical
solution to the HJB-equation stated in (4.14) and the boundary value problem
in Problem 4.4.3.

The initial stochastic optimal control problem has been deduced to a set
of Riccati equations, however it is highly questionable whether there exists a
set of solutions at all. It might also very well be that the functions explode for
some t in [0, T ], due to for instance singularities.

4.6 Suggestions to Solutions of the Riccati ODEs

Explicit analytical solutions to general Riccati equations are rare. Finding a set
of analytical solutions, if they even exist, to six Riccati equations, is an even
more elaborate task.

Numerical methods for Riccati equations and algebraic Riccati equations
are studied in numerous articles. See for instance [MH11], for an application
of the Legendre wavelet method for solving a single Riccati equation, and for
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a comparison to other existing methods. The Euler-method or fourth order
Runge Kutta method (RK-4), are widely used numerical approximations to
solutions of both linear and non-linear differential equations. The RK-4 method
is computationally effective and simple to implement, and is proven to give
accurate approximations when compared to existing analytical solutions [FA16].

The algebraic Riccati equations often arise in linear quadratic optimal
control problems and filtering theory. Newton’s method and the Sign Function
method, are two among many possible computational solutions. [Bun96] gives
a survey of some methods for algebraic Riccati equations explored over the
past three decades. However there is, to my knowledge, less work done on
numerical solutions for systems of Riccati equations, or the so-called vector
Riccati equation. By deriving vector-adjusted algebraic Riccati equations, one
could investigate if there is possibility of exploiting the numerical methods for
matrix Riccati equations adjusted to vector-form.

However, some computational methods for systems of non-linear differential
equations, like the Differential Transform Method (DTM), the He Laplace
Method or the Adomian Decomposition Method, have been applied to systems
of Riccati equations. [SP17] concludes that among the three mentioned, the
DT method, initially introduced by J.K. Zhou in 1986, is the most efficient
when solving Riccati equations, both computationally and in terms of "errors "
when compared to (a few) analytical solutions. A short suggestion to how the
method can be applied in the case of a system of Riccati equations, based on
[Mir11], is presented in the following section.

Differential Transform Method
The DTM is a numerical method for solving systems of non-linear differential
equations, by transforming the equations into converging series. The method is
closely related to the Taylor series expansion, but the derivatives are not found
symbolically. Following [Mir11], let Y (k) denote the transformation of the k-th
derivative of the unknown function y(x), where

Y (k) = 1
k!

[dk(y(x))
dxk

]
x=x0

(4.57)

The inverse differential transform of Y (k) is defined by

y(x) =
∞∑
k=0

Y (k)xk (4.58)

Combining (4.57) and (4.58), the relation to the Taylor series expansion becomes
clear, and the unknown functions are expressed by

y(x) =
∞∑
k=0

(x− x0)k

k!
dky(x)
dxk |x=x0

(4.59)

Then a set of theorems is required to transform the initial set of differential
equations, in our case the system (1′)-(6′), to the form of the converging series.
In the case where the non-linear differential equations are of Riccati type, the
following 4 theorems are needed, see [Mir11] for complete list of theorems,
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Theorem 4.6.1 (Theorem 1).
If y(x) = y1(x) ± y2(x), then Y (k) = Y1(k)± Y2(k).

Theorem 4.6.2 (Theorem 2).
If y(x) = ay1(x), then Y (k) = aY1(k).

Theorem 4.6.3 (Theorem 3).

If y(x) = dyn1 (x)
dxn

, then Y (k) = (k + n)!
k! Y1(k + n).

Theorem 4.6.4 (Theorem 4).
If y(x) = y1(x)y2(x), then Y (k) =

∑k
k1=0 Y1(k1)Y2(k − k1).

[Mir11] refers to [AO05] for proof of Theorems 1 to 4. By applying the
DT method to the system of Riccati equations, each derivative of g(t) can be
expressed by a sum of functions Yi(k). For instance, equation (1’), for g′0(t) can
be transformed into

(k + 1)Y0(k + 1) = −N1 − c12Y1(k)− c13Y2(k) + c14Y11(k)− c15Y22(k)

− c16Y12(k)−
k∑

k1=0
Y1(k1)Y1(k − k1)ε1 − 2

k∑
k1=0

Y2(k1)Y2(k − k1)ε2

−
k∑

k1=0
Y1(k1)Y2(k − k1)ψ

By doing so for the remaining 5 equations, in correspondence with an initial value
for each function, we obtain the numeric values of the transformed derivatives
of the unknown functions. By applying (4.57) and (4.58), the derivatives are
expresses by series converging to the true value,

yi(x) =
∞∑
k=0

Yi(k) (x− x0)k

k! (4.60)

for i = 1, . . . , 6. Note that the method requires the initial values of Yi(0) = yi(0)
to be known. However, for the system (1′)− (6′) we have deduced the boundary
value for t = T (4.49), and by a change of variable for v(s) = g(T − t), we can
turn the boundary value problem into an initial value problem.

4.7 Verification

By "educated" guessing on solutions, in Section 5.3 we turned the initial non-
linear boundary value problem (4.4.3) into a system of non-linear ordinary
differential equations, and in Section 4.5 we argued that (1′)-(6′) constitutes a
system of Riccati-equations expressed in two alternative ways. In this section
we verify that our solution for the value function Φ is a classical solution to the
optimal control problem by means of Theorem 4.3.1, assuming that continuously
differentiable solutions to the Riccati-equations exist. We also verify that the
controls obtained in Proposition 4.4.1 are indeed optimal admissible controls
by Theorem 4.3.1.

Theorem 4.7.1 (Semi-explicit solution ).
Assume g(t) is continuously differentiable, such that g0(t), g1(t), g2(t), g11(t),

43



4. Optimal Portfolio Selection Problem

g22(t), g12(t) are solutions to the system of Riccati equation in Result 4.4.6.
Furthermore, assume that

8(2g11(t) + g12(t))− 1
2σ̃2

1(t) < 0 (4.61)

and
8(2g22(t)− g12(t))− 1

2σ̃2
2(t) < 0 (4.62)

where σ̃2
i =Var(Zi). Then the value function Φ of the optimal control problem

stated in Theorem 4.2.7 is given by

Φ(t, w, z1, z1) = f(t, z1, z2)wγ , 0 < γ < 1 (4.63)

for any all t < T and w > 0, and

Φ(t, w, z1, z2) = wγ , for t = T,w = 0 (4.64)

where f(t, z1, z2) is on the form

f(t, z1, z2) = eg(t,z1,z2)

for

g(t, z1, z2) = g0(t) + g1(t)z1 + g2(t)z2 + g11(t)z2
1 + g22(t)z2

2 + g12(t)z1z2

The optimal allocation of wealth u∗i (t, Z1(t), Z2(2)) for i = 1, 2 is given by

u∗1(t, z1, z2) = 1
(1− γ)Γ

[
G1(z1, z2)−M1

(
g1(t) + 2g11(t)z1 + g12(t)z2

)
−N1

(
g2(t) + 2g22(t)z2 + g12(t)z1

)]
(4.65)

u∗2(t, z1, z2) = 1
(1− γ)Γ

[
G2(z1, z2)−M2

(
g1(t) + 2g11(t)z1 + g12(t)z2

)
−N2

(
g2(t) + 2g22(t)z2 + g12(t)z1

)]
(4.66)

where Gi(z1, z1) is a polynomial in Z1(t), Z2(t) of degree 1, and Γ, Mi, Ni,
i = 1, 2 are constants defined in Appendix A.

Before we proceed with the proof of Theorem 4.7.1, we need the following
two lemmas.

Lemma 4.7.2.
Assume

8 (2g11(t) + g12(t))− 1
2σ̃2

1(t) < 0 (4.67)

and
8 (2g22(t)− g12(t))− 1

2σ̃2
2(t) < 0 (4.68)

Then ∫ T

t0

E
[(
σ (u∗1(t) + u∗2(t))W (t)Φw

)2]
ds <∞ (4.69)
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Proof of lemma (4.7.2). Recall from Chapter 2.3 that Zi(t) ∼ N (µ̃i(t), σ̃2
i (t)),

where µ̃i(t) = zie
Ait and σ̃2

i (t) = σ2
i

2Ai
(e2Ait − 1). By Hölder’s inequality,

Proposition B.3.6, we obtain that∫ T

t0

E
[(
σ(u∗1(t) + u∗2(t))W (t)Φw

)2]
ds

= γ2σ2
∫ T

t0

E
[(

(u∗1(t) + u∗2(t))2W 2γ(t)f2(t, z1, z2)
)]
ds

≤ γ2σ2
∫ T

t0

E
[
(u∗1(t) + u∗2(t))4W 4γ(t)

]1/2
E
[
f4(t, z1, z2)

]1/2
ds (4.70)

The (u∗1(t) + u∗2(t))-term in the expectation to the left imposes no difficulties.
Since u∗i (t) is linear in Zi(t), where Zi(t) is the stationary Ornstein-Uhlenbeck
process, i.e. a Gaussian random variable for each t. By the properties of a
normal random variable, all moments of Zi(t) are finite, i.e. E[Zni (t)] <∞ for
all n. Especially, E[Zi(t)] = µ̃ and E[Z2

i (t)] = σ̃2 + µ̃2. Following, since Zi(t)
is Gaussian, it has existing, i.e. finite, exponential moments as well, and

E[eZi(t)] = E
[
e
zie

Ait+σi
∫ t

0
eAi(t−s)dBi(s)

]
= ezie

Ait

E
[
e
σi
∫ t

0
eAi(t−s)dBi(s)

]
= ezie

Ait

e
1
2 (

σ2
i

2Ai
(eAit−1))

<∞

SinceW 4γ(t) is the exponential of linear terms of Zi(t), it follows that E[W 4γ(t)]
< ∞. Hence we argue that E[(u∗1(t) + u∗2(t))4W 4γ(t)] < ∞. We have left to
show that this also holds for the second expectation in (4.70). Note that

f4(t, z1, z2) = exp
(

4
(
g0(t) + g1(t)Z1(t) + g2(t)Z2(t) + g11(t)Z2

1 (t)

+ g22(t)Z2
2 (t) + g12(t)Z1(t)Z2(t)

))
by definition of f . Furthermore, the following inequality

0 ≤ (x− y)2 ≤ x2 − 2xy + y2 =⇒ 2xy ≤ x2 + y2 (4.71)

implies that
2g12(t)Z1(t)Z2(t) ≤ g12(t)

(
Z2

1 (t) + Z2
2 (t)

)
Since ex is strictly increasing for x > 0,

f4(t, z1, z2) ≤ exp
(

4g0(t) + 4g1(t)Z1(t) + 4g2(t)Z2(t) + 2(2g11(t)

+ g12(t))Z2
1 (t) + 2(2g22(t)− g12(t)

)
Z2

2 (t))

By applying Hölder’s inequality again, we obtain that

E
[

exp
(

4g0(t) + 4g1(t)Z1(t) + 4g2(t)Z2(t) + 2(2g11(t) + g12(t))Z2
1 (t)
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+ 2(2g22(t)− g12(t))Z2
2 (t)

)]1/2
≤E
[

exp
(

4
(
g0(t) + g1(t)Z1(t) + g2Z2(t)

))2]1/4
× E

[(
exp

(
2
(

2g11(t) + g12(t)
)
Z2

1 (t) + 2
(

2g22(t)− g12(t)
)
Z2

2 (t)
))2]1/4

=E
[

exp
(

8
(
g0(t) + g1(t)Z1(t) + g2(t)Z2(t)

))]1/4
× E

[
exp

(
4(2g11(t) + g12(t))Z2

1 (t) + 4(2g22(t)− g12(t))Z2
2 (t))

)]1/4
(4.72)

Note once more that the first expectation in (4.72) is bounded by finite ex-
ponential moments of Zi(t), by the same argument as stated above. Hence
we only need to prove that the second expectation is bounded. By applying
Hölder’s inequality once more, we obtain that

E
[

exp
(

4(2g11(t) + g12(t))Z2
1 (t)) + 4(2g22(t)− g12(t))Z2

2 (t)
)]1/2

≤E
[

exp
(

8(2g11(t) + g12(t))Z2
1 (t)

)]1/8
× E

[
exp

(
8(2g22(t)− g12(t))Z2

2 (t)
)]1/8

Now let c(t) = 8(2g11(t) + g12(t)). Then for each t, Z = Zi(t) ∼ N (µ̃, σ̃) is a
random variable, and the first expectation equals

E
[

exp
(
c(t)Z2

1 (t)
)]

= 1√
2πσ̃2

∫
R

exp
(
c(t)z2

)
exp

(−(z − µ̃)2

2σ̃2

)
dz (4.73)

Let x = z − µ̃
σ̃
∼ N (0, 1), then z = σ̃x+ µ̃, and by a change of variable (4.73)

becomes

1√
2π

∫
R

exp
(
c(t)(xσ̃ + µ̃)2

)
exp

(−x2

2

)
dx

= 1√
2π

exp
(
c(t)µ̃2

)∫
R

exp
(
c(t)(x2σ̃2 + 2xσ̃µ̃− x2

)
dx (4.74)

Completing the square by

c(t)(x2σ̃2 + 2xσ̃µ̃)− 1
2x

2 = 1
2

(
(2c(t)σ̃2−1)

(
x− σ̃µ̃c(t)

2c(t)σ̃2 − 1

)2
− σ̃2µ̃2c2(t)

2c(t)σ̃2 − 1

)
We obtain that (4.74) equals

1√
2π

exp
(
c(t)µ̃2 − σ̃2µ̃2c2(t)

2(2c(t)σ̃2 − 1)

)
×
∫
R

exp
(1

2

(
2c(t)σ̃2 − 1

)(
x− σ̃µ̃c(t)

2c(t)σ̃2 − 1

)2)
dx

Making another change of variable, for y = x− σ̃µ̃c(t)
2c(t)σ̃2 − 1 , dy = dx, we obtain

1√
2π

exp
(
c(t)µ̃2 − σ̃2µ̃2c2(t)

2(2c(t)σ̃2 − 1)

)∫
R

exp
(1

2

(
2c(t)σ̃2 − 1

)
y2
)
dy <∞
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for
2c(t)σ̃2 − 1 < 0 =⇒ c(t)− 1

2σ̃2 < 0

by properties of the Gaussian function. Hence

E
[

exp
(

8(2g11(t)+g12(t))Z2
1 (t)

)]1/8
<∞

as long as 8 (2g11(t) + g12(t)) − 1
2σ̃2

1
< 0. By same reasoning, the second

expectation is finite as long as

8(2g22(t)− g12(t))− 1
2σ̃2

2(t) < 0 (4.75)

This completes the proof. �

Lemma 4.7.3.
Assume conditions (4.67) and (4.68) from Lemma 4.7.2, then∫ T

t0

E
[(
σiu
∗
i (t)W (t)Φw + σiΦzi

)2]
ds <∞ (4.76)

for i = 1, 2.

Note the difference between σi and σ̃i, where σi is the diffusion coefficient
of the Ornstein-Uhlenbeck dynamics, and σ̃i = Var(Zi).

Proof of lemma (4.7.3). By inequality (4.71)∫ T

t0

E
[(
σiu
∗
i (t)W (t)Φw + σiΦzi

)2]
ds

=
∫ T

t0

E
[(
σiu
∗
i (t)W γ(t)f(t, z1, z2) + σiW

γ(t)fzi
)2]

ds

≤ σ2
i

∫ T

t0

2E
[(
u∗i (t)W γ(t)f(t, z1, z2)

)2]
ds+ σ2

i

∫ T

t0

2E
[(
W γ(t)fzi

)2]
ds

From the proof of lemma (4.7.2), we obtain that the first expectation on the
right hand side of the equation above is bounded. For the second expectation,
note that

fzi = 2gii(t)Zi(t) + g12(t)Zj(t), i 6= j (4.77)

i.e., fzi is linear in Zi, i = 1, 2. Since Zi(t) has finite moments and finie
exponential moments, the same reasoning follows for the second expectation as
well, and hence∫ T

t0

E
[(
σiu
∗
i (t)W γ(t)f(t, z1, z2) + σiW

γ(t)fzi
)2]

ds <∞ (4.78)

This completes the proof. �

We are now ready to state the proof of theorem Theorem 4.7.1.
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Proof of theorem (4.7.1). Note that u∗i (t) only depends on the state variables
Zi(t) for i = 1, 2. Since Zi(t) is defined as a stationary Ornstein-Uhlenbeck
process, u∗i (t) will be measurable and Ft-adapted for all t ∈ [0, T ], and by
construction, such that W (t, u1(t), u2(t)) is the unique solution to (4.2.4). Since
u∗i (t) is linear in Zi(t), i = 1, 2, which is Gaussian with finite first and second
moments, E[u∗i (t)] < ∞, E[(u∗i )2(t)] < ∞, hence u∗i (t) ∈ L2([0, T ] × R3). In
conclusion, by Definition 4.2.1, u∗i (t) are admissible controls for i = 1, 2.

Φ ∈ C2(D) is obvious w.r.t. w. Assuming a continuously differentiable
solution to the system of equations (1)-(6) exists, f(t, z1, z2) will be continuously
differentiable w.r.t. t. Since g(t, z1, z2) is a second degree polynomial in z1, z2,
g will be twice continuously differentiable w.r.t. z1, z2. Hence Φ ∈ C1,2,2,2(D).
For t = T or W (t) = 0, the boundary value (4.41) is satisfied. By P-a.s.
continuous sample paths of B̃(t) and Bi(t), and since f(t, z1, z2) by assumption
is continuous for all t ∈ [0, T ],

lim
t→τD

Φ(W (t)) = U(W (τD)) (4.79)

hence, Φ ∈ C(D̄). By lemma (4.7.2) and (4.7.3), for

8(2g11(t) + g12(t))− 1
2σ̃2

1(t) < 0 (4.80)

and
8(2g22(t)− g12(t))− 1

2σ̃2
2(t) < 0 (4.81)

conditions (4.24) and (4.25) in Theorem 4.3.1 are satisfied, i.e.
σ(t,W (t), Z1(t), Z2(t)) and σi(t,W (t), Z1(t), Z2(t)) are Itô-integrable functions
in L2([0, T ] × R3). Hence, if our assumptions on g(t, z1, z2) hold, by Theo-
rem 4.3.1, Φ(t, w, z1, z2) must be a classical solution to the HJB-equation given
in Problem 4.4.3 for any (t, w, z1, z2) ∈ D. �

Note that, in contradiction to Merton’s two-asset problem given in Exam-
ple 3.5.2, where the optimal allocation of wealth is to hold a constant fraction
in the risky asset, the optimal controls in this case are stochastic and time-
dependent, i.e. the fraction of wealth invested in each of the risky assets,
should optimally at each time point t, be updated according to the evolution
of the underlying stationary processes Z1(t) and Z2(t). However, out in the
real market, this would lead to huge transactions costs every time a stock is
bought or sold. Hence our solution is probably not optimal in the case where
transaction costs are included. Finally, note that the fraction of wealth invested
in asset 1, doesn’t only depend on the underlying process Z1(t), it depends on
the evolution of the stationary process driving the price of asset 2 as well, and
vice versa. Due to the co-integrated market model, the optimal allocations for
a particular asset depends on the price of the other asset as well.

4.8 Some Remarks on the Optimal Controls

The optimal controls from Theorem 4.7.1 are stochastic processes, being combi-
nations of Z1(t) and Z2(t) with mean-value given by

E[u∗1(t)] = 1
(1− γ)Σ

[
K1 −M1g1(t)−N1g2(t)− E[Z1(t)]

(
2M1g11(t)

48



4.9. A Reduction of Noise

+N1g2(t) + Σ2A1

)
− E[Z2(t)]

(
M1g12(t) + 2N1g22(t)− ΣA2

)]
where K1 = (r − µ)(Σ2 − Σ)− 1

2Σ2(Σ1 − Σ))

E[u2(t)] = 1
(1− γ)Σ

[
K2 −M2g1(t)−N2g2(t)− E[Z1(t)]

(
2M2g11(t)

+N2g12(t)− ΣA1

)
− E[Z2(t)]

(
M2g12(t) + 2N2g22(t) + Σ1A2

)]
where K2 = (r − µ)(Σ1 − Σ)− 1

2Σ1(Σ2 − Σ), and variance given by

Var(u∗1(t)) = 1
(1− γ)2Γ2

[
(2M1g11(t) +N1g12(t) + Σ2A1)2Var(Z1(t))

+(M1g12(t) + 2N1g22(t)− ΣA2)2Var(Z2(t))− (2M1g11(t) +N1g12(t)

+Σ2A1)(M1g12(t) + 2N1g22(t)− ΣA2)Cov(Z1(t), Z2(t))
]

Var(u∗2(t)) = 1
(1− γ)2Γ2

[
(2M2g11(t) +N2g12(t)− ΣA1)2Var(Z1(t))

+(M2g12(t) + 2N2g22(t) + Σ1A2)2Var(Z2(t))− (2M2g11(t) +N2g12(t)

−ΣA1)(M2g12(t) + 2N2g22(t) + ΣA2)Cov(Z1(t), Z2(t))
]

Due to the unfamiliar form of g(t), i.e. the set of solutions to the the system
of Riccati equations, it is difficult to make any conclusions on the asymptotic
form of ui(t) as the time horizon is expanded. Depending on g(t), ui(t) could
be stationary, being the linear combination of Ornstein-Uhlenbeck processes, if
the mean-reverting effect is stronger than the possibly divergence of g(t). Then
one could expect fluctuations on both sides of the mean, and simply allocate
an amount of wealth in each of the assets equal to the long term mean. From
a financial point of view, if the stationary processes have a strong positive
correlation or are very positively correlated to the common stationary driver, it
seems unwise to invest large amounts of wealth in both risky assets. This would
yield high returns in the best case, but even small negative fluctuations would
cause a large decrease in wealth. Then perhaps, one could invest a larger fraction
in the safe investment (or diversify to other market segments). A strong negative
correlation between the stationary drivers could be neutralized by investing
equal parts in each asset, assuming the assets yield somewhat equal returns.
Nevertheless, by introducing a co-integrated market model with asset prices
driven by correlated stationary Ornstein-Uhlenbeck processes and a common
non-stationary drifted Brownian motion, the control problem has a much more
complex form, yielding an optimal portfolio allocation quite different from
Merton’s simpler case. In the co-integrated asset case, the optimal allocation is
time-dependent and highly dependent on the correlations between the processes
and the volatility of each Brownian motion, see the constants in Appendix A.

4.9 A Reduction of Noise

In Section 4.4, the HJB-equation of the stochastic control problem in a co-
integrated asset market model, was presented. Notice the difference from the
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HJB-equation presented in Section 3.5. For the traditional Merton problem with
one risky asset, the HJB-equation is reduced to an ordinary differential equation,
to which an explicit solution is known. In contrast, when considering multiple
(and correlated) state variables, even after reduction of one of the states, w,
the boundary value problem is a non-linear partial differential equation of
second order! The complex form of the boundary value problem, and hence the
procedure to obtain a solution of the value function, derives from the dynamics
of the co-integrated asset prices S1(t) and S2(t), through the generator of the
wealth process W (t). The control problem presented in the beginning of this
chapter must be optimized w.r.t. three sources of uncertainty; B̃(t), B1(t) and
B2(t). Even when removing one "noisy" source, the non-stationary drifted
Brownian motion X(t), the reduced boundary value problem is still non-linear.
This section works as an example to illustrate some of the (possible) reason to
why the stochastic control problem in this chapter resulted in a 6-dimensional
system of Riccati equaitons. This section briefly presents a simpler case where
the non-stationary "noise" is eliminated, and at last a representation of the
solution to the model where B1(t) and B2(t) are assumed to be independent, is
found. The procedure and technique is the same as in Section 4.4, hence the
intermediate steps are omitted and only the resulting equations and expressions
are stated.

Let Si(t) denote the price of risky asset i = 1, 2 at time t, given by

Si(t) = exp(Zi(t))

where Zi(t) is the Ornstein-Uhlenbeck process from Section 2.3. Then Si(t)
follows the dynamics

dSi(t) = Si(t)
(
AiZi(t) + 1

2σ
2
i

)
dt+ σiSi(t)dBi(t)

for Corr(B1(t), B2(t)) = ρ. Assuming a self-financing portfolio, as in Proposi-
tion 4.2.4, the resulting dynamics of the wealth process are given by

dW (t) =W (t)
(
u1(t)(A1Z1(t) + 1

2σ
2
1) + u2(t)(A2Z2(t) + 1

2σ
2
2) + (1− u1(t)

− u2(t))r
)
dt+W (t)

(
σ1u1(t)dB1(t) + σ2u2(t)dB2(t)

)
The infinetisimal generator (Lv1,v2φ) of W (t) for each choice of (t0, w0, z1, z2) ∈
D, is given by

(Lv1,v2φ)(t0, w0, z1, z2) = ∂φ

∂t
+ w

(
v1(A1z1 + 1

2σ
2
1) + v2(A2z2 + 1

2σ
2
2)

+ (1− v1 − v2)r
) ∂φ
∂w

+A1z1
∂φ

∂z1
+A2z2

∂φ

∂z2
+ 1

2w
2
(
σ2

1v
2
1 + σ2

2v
2
2

+ 2ρσ1σ2

) ∂2φ

∂w2 + 1
2σ

2
1
∂2φ

∂z2
1

+ 1
2σ

2
2
∂2φ

∂z2
2

+ wρσ1σ2

(
v2

∂2φ

∂w∂z1

+ v1
∂2φ

∂w∂z2

)
+ ρσ1σ2

∂2φ

∂z1∂z2

In view of Theorem 4.2.7, if optimal controls u∗1(t) and u∗2(t) exist, their values
are maximizers of the HJB-equation, i.e. maxv1,v2∈U (Lv1,v2Φ)(t0, w0z1, z2) = 0
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for (t0, w0, z1, z2) ∈ D and u∗1 = v1, u∗2 = v2. Preceding as in Section 4.4, the
optimal values of the reduced noise problem, are given by

v1 = u∗1(t) = 1
wΦwwσ2

1

(
(r −A1Z1(t)− 1

2σ
2
1)Φw − ρσ1σ2Φwz1

)

v2 = u∗2(t) = 1
wΦwwσ2

2

(
(r −A2Z2(t)− 1

2σ
2
2)Φw − ρσ1σ2Φwz2

)
Note that, at this point, each of the controls ui is only dependent on the process
Zi(t) driving the asset i and the correlation between B1(t) and B2(t), contrary
to the controls obtained in Proposition 4.4.1.

The next objective is to find the optimal value function Φ. By substituting
the optimal controls u∗1(t) and u∗2(t) into the HJB-equation, the following
non-linear boundary value problem is obtained

Result 4.9.1 (HJB-eq. Case of reduced noise ).

Φt + wΦw +A1z1Φz1 +A2z2Φz2 + w2ρσ1σ2Φww + 1
2σ

2
1Φz1z1 + 1

2σ
2
2Φz2z2

+ ρσ1σ2Φz1z2 + 1
2q1(z1) Φ2

w

Φwwσ2
1

+ 1
2q2(z2) Φ2

w

Φwwσ2
2
− 1

2(ρσ1σ2)2 Φ2
wz1

Φwwσ2
2

− 1
2(ρσ1σ2)2 Φ2

wz2

Φwwσ2
1

= 0 for t < T, w > 0

Φ(t, w, z1, z2) = U(w) for t = T or w = 0
where

qi(zi) = (1
2σ

2
i +Aizi − r)2

Following Section 4.4 by guessing on a solution φ on the form

φ(t, w, z1, z1) = f(t, z1, z2)wγ , 0 < γ < 1 (4.82)

and substituting φ into Result 4.9.1, the following reduced boundary value
problem is obtained

Result 4.9.2 (Reduced HJB-eq. Case of reduced noise).

ft +A1z1fz1 +A2z2fz2 + 1
2σ

2
1fz1z1 + 1

2σ
2
2fz2z2 + ρσ1σ2fz1z2

− (ρσ1σ2)2f2
z1

γ

2σ2
2(γ − 1)

1
f
− (ρσ1σ2)2f2

z2

γ

2σ2
1(γ − 1)

1
f
−
(
− q1(z1) 1

2σ2
1(γ − 1)

− q2(z2) 1
2σ2

2(γ − 1) − γ
)
γf = 0 for t < T

f(t, z1, z1) = 1 for t = T

Note that Result 4.9.2 is another non-linear boundary value problem, some-
what similar to the one obtain in Section 4.4, requiring numerical computations
to obtain a solution. By assuming independent Brownian motions, i.e. can-
celling the correlation between B1(t) and B2(t), in Result 4.9.2, we obtain the
following linear boundary value problem
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Result 4.9.3 (Reduced HJB-eq. Case of reduced, independent noise).

ft+A1z1fz1 +A2z2fz2 + 1
2σ

2
1fz1z1 + 1

2σ
2
2fz2z2

−
(
− 1

2σ2
1(γ − 1)q1(z1)− 1

2σ2
2(γ − 1)q2(z2)− γ

)
γf = 0 for t < T

f(t, z1, z2) = 1 for t = T

where qi(zi) as in Result 4.9.1.

The boundary value problem stated above consists of a much simpler linear
partial differential equation, for which a stochastic representation of the solution
can be obtained by the Feynman-Kac formula. In view of Theorem 5.7.6, page
366, in [KS91], the solution f(t, z1, z2) to the boundary value problem has a
stochastic representation on the form

f(t, z1, z2) = Et,z1,z2
[

exp
(
−
∫ T

t

g(s, z1, z2)ds
)]

(4.83)

where

g(t, Z1(t), Z2(t)) = γ
(
− 1

2σ2
1(γ − 1)q1(Z1(t))

− 1
2σ2

2(γ − 1)q2(Z2(t))− γ
)

(4.84)

if the following assumptions hold:

(i) f : [0, T ]× R2 → R is continuous and f ∈ C1,2,2(D)

(ii) f satisfies the Cauchy problem

−∂f
∂t

+ kf = (Lf)(t, z1, z2) for (t, z1, z2) ∈ D

f(t, z1, z2) = h(z1, z2) for t = T

(iii) and f satisfies the polynomial growth condition

max
0≤t≤T

|f(t, z1, z2)| ≤M(1 + ‖z1‖k + ‖z2‖k) (4.85)

for constants C, k.

Remark 4.9.4.
Actually, the Feynman-Kac result stated in [KS91] is for the case of one state
variable, and the conditions stated above are adapted to the multi-variable
representation, which by [Che] easily can be adjusted to the multi-state model,
through a multi-variable version of Itô’s formula.

In [KS91], additional properties to the theorem, are those of the existence and
uniqueness of a solution to the stochastic differential equation of the underlying
system, in our case dW (t), but we have such a solution, namely the wealth
process, hence those assumptions are neglected. Note that (by multiplying the
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PDE in Result 4.9.3 by −1 and switching the partial derivatives over to the
right hand side of the equality), the differential equation can be recognized as
the boundary value problem in condition (ii), for h(z1, z2) = 1. By assumptions
on Φ for (Lv1,v2Φ), any solution f is such that (ii) holds. Furthermore, note
that γ − 1 < 0, and since qi(zi) = ( 1

2σ2
i

+ Aizi − r)2 ≥ 0, g(t, z1, z2) will

be non-negative for all t. It follows that exp(−
∫ T
t0
g(s, z1, z2)ds) ≤ 1 and the

polynomial growth condition is satisfied as well. In conclusion, f(t, z1, z2) on
the form 4.83, must be a valid stochastic representation of the solution to the
boundary value problem (4.9.3).

By discarding the non-stationary drifted Brownian motion, X(t), and as-
suming independent Brownian motions B1, B2, this section illustrates a sim-
plification to the control problem under study in the first parts of Chapter 4.
However, the market model is changed, and one assumes mean-revering asset
prices. From an economic point of view, the mean-reverting effect might be
considered as the market impact on price, for instance. If the current market
price of an asset is less than the average, an investor will expect the price to rise,
hence purchase of this particular asset is viewed as attractive. If many investors
start purchasing the particular asset, the price will indeed return to market
value (and perhaps above). If the other way around, i.e. an asset is priced
above market price, the price is expected to fall, making the asset unattractive.
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Chapter 5

"Constant" Control Problem

5.1 Introduction

This chapter presents a naive approach to find a constant fraction investment
strategy. The idea is motivated by the optimal solution to Merton’s portfolio
problem. The controls u1 and u2 are initially assumed to be constant, and will
be treated as such in the calculations, in order to justify the application of a
simple mathematical procedure from linear optimization.

5.2 Statement of the Problem

In the solution to Merton’s problem, presented in Section 3.5, the optimal
allocation in the two-asset model, is to hold a constant fraction of wealth,
u∗(t) = u∗, in the risky asset. Thereby, the investor also holds a constant
fraction 1− u∗ in the risk-free assets. Inspired by the constant control solution,
this section presents an unconventional approach to find admissible controls
u1, u2 to the problem studied in the previous chapter. The market model is
assumed to be the same, i.e. the asset prices S1(t) and S2(t) are modelled by
the exponential of a common non-stationary shifted Brownian motion X(t)
and by two distinct stationary Ornstein-Uhlenbeck processes Z1(t) and Z2(t),
generated by correlated Brownian motions B1(t) and B2(t), respectively. The
aim of the investor is still to maximize expected utility of wealth at the end
of the investment horizon, given the power utility function representing the
investor’s aversion towards risk. We look for admissible, but not necessarily
optimal by means of the HJB-equation, controls u1 and u2 by assuming the
controls are constant fractions of wealth. However, as it turns out, the controls
are not nearly constant, they are not even deterministic.

The calculations in this chapter are so-called "quick and dirty," meaning
we allow ourselves to use methods and techniques which are not necessarily
mathematically correct. The strategy is as follows: Assume there exist constant
controls, i.e. constant fractions of wealth, which are solutions to the following
unconstrained maximization problem

max
u1,u2

E[U(W (T ))|F(t)] (5.1)

We seek the optimal constant fractions u1 and u2 maximizing the expected value
of utility of wealth at the future time point T, given the market information
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5. "Constant" Control Problem

revealed to the investor at the current time t. Note that optimal controls by
means of (5.1) are not the same as optimal in the sense of Chapter 4! As before,
Ft denotes the filtration w.r.t. the correlated Brownian motions B̃(t), Bi(t) for
i = 1, 2.

We start by finding the conditional expectation of the wealth process,
simultaneously showing that W (t) is Markovian. Under the assumption that
u1, u2 are constant, we show that the solution to the wealth dynamics dW (t)
is a log-normally distributed process, namely the exponential of the correlated
Brownian motions B̃(t), B1(t), B2(t) and the Ornstein-Uhlenbeck processes
Z1(t) and Z2(t). Thereby applying the formula for the expected value of a
log-normal random variable, by standard differentiation, we obtain the optimal
solutions u′1 and u′2, and check if they are admissible by means of definition
(4.2.1).

5.3 The Wealth Process under "Constant" Controls

Assuming u1 and u2 are constant, recall the stochastic differential equation for
the wealth given in (4.6)

dWt = W (t)
(
u1(µ+A1Z1(t) + 1

2Σ1) + u2(µ+A2Z2(t) + 1
2Σ2) (5.2)

+ (1− u1 − u2)r
)
dt+W (t)

(
σ(u1 + u2)dB̃t + σ1u1dB1(t) + σ2u2dB2(t)

)
The explicit solution W (t) to (5.2) is given by the following proposition.

Proposition 5.3.1 (The Wealth Process ).
Assuming the controls u1 and u2 are constant and given initial wealthW (0) = w0,
the unique solution of the controlled stochastic differential equation (5.2) is
given by

W (t) = w0 exp
{(

u1(µ+ 1
2Σ1) + u2(µ+ 1

2Σ2) + (1− u1 − u2)r − 1
2

(
σ2(u1

+ u2)2 + σ2
1u

2
1 + σ2

2u
2
2

)
− σ(u1 + u2)(ρ1σ1u1 + ρ2σ2u2)− ρσ1σ2u1u2

)
t

+
∫ t

0

(
u1A1Z1(s) + u2A2Z2(s)

)
ds+ σ(u1 + u2)B̃(t) + σ1u1B1(t)

+ σ2u2B2(t)
}

(5.3)

where Z1(t), Z2(t) are the Ornstein-Uhlenbeck processes (2.14), and B̃(t), B1(t),
B2(t) are the correlated Brownian motions presented in Chapter 2.1.

Proof of proposition (5.3.1). The idea is to use Itô’s formula to rewrite the
process (5.3) as a stochastic differential equation. Define a function f by

f(t, x, y, z) = w0 exp
(
At+Bx+ Cy +Dz

)
where we assume that

W (t) = f(t, B̃(t), B1(t), B2(t)) = w0 exp
(
At+BB̃(t) + CB1(t) +DB2(t)

)
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for some functions A,B,C,D. By applying Itô’s lemma on f , we obtain that

df(t, x, y, z) =f ·Adt+ f ·BdB̃(t) + f · CdB1(t) + f ·DdB2(t)

+ 1
2f ·

(
B2 + C2 +D2

)
dt+ f ·

(
BCρ1 +BDρ2 + CDρ

)
dt

=f ·
(
A+ 1

2(B2 + C2 +D2) + ρ1BC + ρ2BD + ρCD
)
dt

+ f ·
(
BdB̃(t) + CdB1(t) +DdB2(t)

)
(5.4)

for the correlation coefficients ρ, ρi, i = 1, 2. Let now B = σ(u1 +u2), C = σ1u1,
D = σ2u2 and

A = u1(µ+A1Z1(t) + 1
2Σ1) + u2(µ+A2Z2(t) + 1

2Σ2) + (1− u1 − u2)r − 1
2

(
σ2

× (u1 + u2)2 + σ2
1u

2
1 + σ2

2u
2
2

)
− σ(u1 + u2)(ρ1σ1u1 + ρ2σ2u2)− ρσ1σ2u1u2

By substituting the expressions into (5.4), we see that

df(t, B̃(t), B1(t), B2(t) = dW (t) (5.5)

and hence W (t) = f(t, B̃(t), B1(t), B2(t)) for A, B, C and D defined above. By
construction, W (t) must be the unique solution to (5.2). �

Note that, by very little adjustment, the solution to the dynamics of W (t) with
time-dependent controls ui(t), from the previous chapter, is given by

W (t) = w0 exp
{(∫ t

0
u1(s)(µ+ 1

2Σ1) + u2(s)(µ+ 1
2Σ2) + (1− u1(s)− u2(s))r

− 1
2

(
σ2(u1(s) + u2(s))2 + σ2

1u
2
1(s) + σ2

2u
2
2(s)

)
− σ(u1(s) + u2(s))

× (ρ1σ1u1(s) + ρ2σ2u2(s))− ρσ1σ2u1(s)u2(s)
)
ds+

∫ t

0

(
u1(s)A1Z1(s)

+ u2(s)A2Z2(s)
)
ds+

∫ t

0
σ(u1(s) + u2(s))B̃(t)ds+

∫ t

0
σ1u1(s)B1(t)ds

+
∫ t

0
σ2u2(s)B2(t)ds

}
(5.6)

5.4 The Optimization Problem

Following, the optimal controls are assumed to be solutions of a standard
unconstrained optimization problem. Under the bold assumptions that the
controls are constant fractions, we solve the following optimization problem
introduced in the beginning of this chapter

Problem 5.4.1 (Linear optimization problem ).

max
u1,u2

E[U(W (T ))|F(t)] (5.7)
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5. "Constant" Control Problem

Note that we for simplicity in this chapter disregard the assumption of non-
negative wealth. The following notation will become useful for the calculations
of problem (5.4.1).

Notation 5.4.2.
We denote the constants ν(u1, u2) and ν̃(u1, u2), depending on the controls u1
and u2, by

ν(u1, u2) = u1(µ+ 1
2Σ1) + u2(µ+ 1

2Σ2) + (1− u1 − u2)r − 1
2

(
σ2(u1 + u2)2

+ σ2
1u

2
1 + σ2

2u
2
2

)
− σ(u1 + u2)(ρ1σ1u1 + ρ2σ2u2)− ρσ1σ2u1u2 (5.8)

ν̃(u1, u2) = γν(u1, u2) + 1
2γ

2
(
u2

1(σ2 + 2σ2
1) + u2

2(σ2 + 2σ2
2) + 2u1u2(ρσ1σ2

+ σ2)
)

(5.9)

Furthermore, let Fi, F 2
i , Fi,j for i, j = 1, 2 denote the following functions

Fi = 1
Ai

[
eAi(T−t) − 1

]
, F 2

i = 1
2Ai

[
e2Ai(T−t) − 1

]
, i = 1, 2

Fi,j = 1
Ai +Aj

[
e(Ai+Aj)(T−t) − 1

]
, i, j = 1, 2 i 6= j (5.10)

We aim at solving problem (5.4.1) by means of ordinary optimization
techniques, i.e. the optimal u1 and u2 are solutions to the first order maximum
equations

∂E[U(W (T ))|Ft]
∂ui

= 0

for i = 1, 2. The conditional expectation of W (T ), given the filtration Ft at
time t ≤ T , is required.

Proposition 5.4.3 (Conditional expectation of utility).
Given initial wealth w0 and assuming constant controls u1, u2, the expectation
of the controlled process (5.3) conditioned on Ft, is given by

E[U(W (T ))|Ft] = W γ(t) exp
{
γ
(
u1A1Z1(t)

∫ T

t

eA1sds+ u2A2Z2(t)
∫ T

t

eA2sds
)

+ν̃(u1, u2)(T − t) + 1
2γ

2
(
u2

1

(
σ2

1F
2
1 + ρ1σσ1F1

)
+ u2

2

(
σ2

2F
2
2 + ρ2σσ2F2

)
+u1u2

(
2ρσ1σ2(F1,2 − F1 − F2) + ρ1σσ1F1 + ρ2σσ2F2,1

)}
(5.11)

Before we perceede with the proof, we need the following lemma.

Lemma 5.4.4 (Fubini on Zi(t)).
Let Zi(t) be the Ornstein-Uhlenbeck process defined in Section 2.3. Then the
following equality holds

E
[ ∫ T

0
Zi(s)ds

]
=
∫ T

0
E[Zi(s)]ds (5.12)
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Proof of Lemma 5.4.4. By Jensen’s inequality, Theorem B.3.7, for g(x) = x2

note that (
E
[
|Zi(t)|

])2
≤ E

[
|Zi(t)|2

]
(5.13)

for any t. Since g(x) is non-negative and measurable for x = Zi(t), by Tonelli’s
theorem, Theorem B.3.3, we obtain that

E[
∫ T

0
Z2
i (s)ds] =

∫
Ω

∫ T

t

Z2
i (s)dsdP (ω)

=
∫ T

t

∫
Ω
Z2
i (s)dP (ω)ds

=
∫ T

t

E[Z2
i (s)]ds

Since Zi(t) ∼ N (µi, σ2
i ) for any t, Zi(t) has finite moments, yielding

E[
∫ T

0
Z2
i (s)ds] =

∫ T

0
E[Z2

i (s)]ds <∞ (5.14)

But then it follows that,

E[
∫ T

0
Zi(s)ds] ≤ E[

∫ T

0
Z2
i (s)ds] <∞ (5.15)

and we may apply Fubini’s theorem on E[
∫ T

0 Zi(s)ds]. �

Proof of Proposition 5.4.3. Recall Equation (5.3). We aim at finding

E[W γ(T )|Ft] = E
[
wγ0 exp

{
γ
(
ν(u1, u2)T +

∫ T

0
u1A1Z1(s)ds+

∫ T

0
u2A2Z2(s)ds

+
∫ T

0
σ(u1 + u2)dB̃(s) +

∫ T

0
σ1u1dB1(s) +

∫ T

0
σ2u2dB2(s)

)}
|Ft
]

(5.16)

We expand the expectation by adding and subtracting the process evaluated at
time t

E
[
wγ0 exp

{
γ
(
ν(u1, u2)(T − t+ t) + u1A1

(∫ T

0
Z1(s)ds−

∫ t

0
Z1(s)ds

+
∫ t

0
Z1(s)ds

)
+ u2A2

(∫ T

0
Z2(s)ds−

∫ t

0
Z2(s)ds+

∫ t

0
Z2(s)

)
ds

+ σ(u1 + u2)
(
B̃(T )− B̃(t) + B̃(t)

)
+ σ1u1

(
B1(T )−B1(t) +B1(t)

)
+ σ2u2

(
B2(T )−B2(t) +B2(t)

))}
|Ft
]

(5.17)

Since
∫ t

0 Zi(s)ds and B̃(t), Bi(t) are Ft-measurable for i = 1, 2, by properties
of conditional expectations, Proposition B.4.2, the integral and the Brownian
motions can be taken out of the expectation. Note further that∫ T

t

Zi(s)ds =
∫ T

t

Zi(t)eAisds+
∫ T

t

∫ s

t

σie
Ai(s−u)dBi(u)ds
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=Zi(t)
∫ T

t

eAisds+
∫ T

t

∫ s

t

σie
Ai(s−u)dBi(u)ds

by definition of Zi(s). The process evaluated at time t, Zi(t), is Ft-measurable.
Following the argumentation above, it can be taken out of the expectation.
The remaining Itô integrals from t to T are independent of Ft, and hence
the conditioning on Ft is superfluous. For the last integral, since σieAi(s−u)

obviously is measurable w.r.t. B([0, t])×Ft, by the stochastic Fubini theorem,
Theorem B.3.5, we can interchange the order of integration such that∫ T

t

∫ s

t

σie
Ai(s−u)dBi(u)ds =

∫ T

t

∫ T

t

X{u≤s}σeAi(s−u)dBi(u)ds

=
∫ T

t

∫ T

u

σie
Ai(s−u)dsdBi(u) (5.18)

and equation (5.17) then equals

W γ(t) exp
{
γ
(
ν(u1, u2)(T − t) + u1A1Z1(t)

∫ T

t

eA1sds

+ u2A2Z2(t)
∫ T

t

eA2sds
)}

×E

[
exp

{
γ
(∫ T

t

∫ T

u

u1A1σ1e
A1(s−u)dsdB1(u) +

∫ T

t

∫ T

u

u2A2σ2

× eA2(s−u)dsdB2(u) +
∫ T

t

σ(u1 + u2)dB̃(s) +
∫ T

t

σ1u1dB1(s)

+
∫ T

t

σ2u2dB2(s)
)}]

(5.19)

by recognizing parts of the first exponential as the utility function of the wealth
process evaluated at t. Let now Y (T ) denote the stochastic process in the
exponential inside the expectation in (5.19), i.e.

Y (T )) =

γ
(∫ T

t

∫ T

u

u1A1σ1e
A1(s−u)dsdB1(u) +

∫ T

t

∫ T

u

u2A2σ2e
A2(s−u)dsdB2(u)

+
∫ T

t

σ(u1 + u2)dB̃(s) +
∫ T

t

σ1u1dB1(s) +
∫ T

t

σ2u2dB2(s)
)

Following the argument in Section 2.2, by Cholesky decomposition the three
correlated Brownian motions B̃(t), Bi(t), i = 1, 2 can be expressed as linear
combinations of independent Brownian motions Ui, i = 1, 2, 3. By that, Y (T ) is
the sum of independent normally distributed random variables, hence exp(Y (t))
is a log-normal random variable for each t. The problem of finding the explicit
expectation in (5.19) falls down to finding the expectation of Y (T ) and exploiting
the formula for the expected value of a log-normal random variable

E[exp(Y (T ))] = exp(µY + 1
2σ

2
Y ), Y (T ) ∼ N (µY , σ2

Y ) (5.20)
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Recall (5.18). By the property of Itô integrals, Proposition B.1.4,

E[
∫ t

0
g(u)dB(u)] = 0 (5.21)

if g in V. Since
∫ T
u

exp(Ai(s− u))ds ∈ V,

E
[ ∫ T

t

∫ T

u

σie
Ai(s−u)dsdBi(u)

]
= 0 (5.22)

Hence by the previous argument E[Y (T )] = 0. We have left to find the variance
of Y (T ), now obtained by

Var(Y (T )) = E[Y 2(T )] (5.23)

Since the calculations of E[Y 2(T )] are cumbersome, they will be omitted omitted
here, and we only state the result. The calculations can be found in Appendix
C.

Var(Y (T )) = γ2
((

u2
1(σ2 + 2σ2

1) + u2
2(σ2 + 2σ2

2) + 2u1u2(ρσ1σ2 + σ2)
)

(T − t)

+u2
1

(
σ2

1F
2
1 + ρ1σσ2F1

)
+ u2

2

(
σ2

2F
2
2 + ρ2σσ2F2

)
+u1u2

(
2ρσ1σ2(F1,2 − F1 − F2) + ρ1σσ1F1 + ρ2σ2σF2

))
(5.24)

Combining (5.24) and the fact that E[Y (T )] = 0 with equation (5.19), we obtain
the conditional expected value of E[U(W γ(T )|Ft] in (5.11). This completes the
proof. �

Note the Markov property of W (t) in (5.19). W (t) is a Markov process
w.r.t. both the filtration generated by W (t) itself, and the filtration generated
by the Ornstein-Uhlenbeck processes Zi(t) for i = 1, 2. By definition of F , see
for instance Section 2.1, we simply say that W (t) is a Markov process w.r.t. Ft.

5.5 The Controls u
′
i

In the previous section we derived an explicit expression of the expected value
of utility of terminal wealth, conditioned on the market information available
up till time t. In this section we derive the optimal, by means of Equation (5.7),
controls. We are still under the assumption that the controls are "constant", such
that the calculations in the previous section and the following differentiation
can be justified.

Proposition 5.5.1 ("Optimal" controls).
The controls u′1 and u′2 maximizing Equation (5.7) are given by

u
′

1 =
(
A1Z1(t)

∫ T

t

eA1sds+ γ

∫ t

0
A1Z1(s)ds

)
ϑ1 +

(
A2Z2(t)

∫ T

t

eA2sds

+γ
∫ t

0
A2Z2(s)ds

)
ϑ2 + γσB̃(t)ϑ3 + γσ1B1(t)ϑ4 + γσ2B2(t)ϑ5 + ϑ6 (5.25)
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u
′

2 =
(
A1Z1(t)

∫ T

t

eA1sds+ γ

∫ t

0
A1Z1(s)ds

)
ε1 +

(
A2Z2(t)

∫ T

t

eA2sds

+γ
∫ t

0
A2Z2(s)ds

)
+ γσB̃(t)ε2 − γσ1B1(t)ε3 + γσ2B2(t)− ε4 (5.26)

where ϑi, k = 1, . . . , 6 and εl, l = 1, . . . , 4 are constants, defined in Appendix A,
depending on the correlations ρ, ρ1, ρ2 and the standard deviations σ, σ1, σ2.

Proof of Proposition 5.5.1. First note that, by construction of E[U(W (T ))|Ft]

∂W γ(t)
∂ui

+W γ(t)∂g(ui, uj)
∂ui

= 0 (5.27)

where

∂W γ(t)
∂ui

= W γ(t)γ
[(

(µ1
2Σi − r)−uiΣi − ujΣ

)
t

+
∫ t

0
AiZi(s)ds+ σB̃(t) + σiBi(t)

]
(5.28)

and

∂g(ui, uj)
∂ui

=γ
(
AiZi(t)

∫ T

t

eAisds
)

+ γ
(
µ+ 1

2Σi − r
)

(T − t)

− uiγ
[(

Σi − γ(σ2 + 2σ2
i )
)

(T − t)− γ
(
σ2
i F

2
i + ρiσσiFi

)]
− ujγ

[(
Σ− γPj

)
(T − t)− γ

(
ρσiσj(Fi,j − Fi − Fj) + 1

2(ρiσσiFi

+ ρjσσjFj)
)]

(5.29)

Combining (5.28) and (5.29) in (5.27), then solving for ui, we obtain the
following expression

ui

[
ΣiT − γ

(
(σ2 + 2σ2

i )(T − t) + σ2
i F

2
i + ρiσσiFi

)]
=AiZi(t)

∫ T

t

eAisds+ (µ+ 1
2Σi − r)T + γ

∫ t

0
AiZi(s)ds+ γσB̃(t)

+ γσiBi(t)− uj
[
ΣT − γ

(
+ Pj(T − t)

ρσiσj(Fi,j − Fi − Fj) + 1
2(ρiσσiFi + ρjσσjFj)

)]
(5.30)

By substitution of the expression of u1 into u2, we obtain the explicit expression
(5.25) and (5.26) for ϑk, k = 1, . . . , 6 and εl, l = 1, . . . , 4 in the proposition
above. Some of the intermediate calculations are given in Appendix C. �

Note that, by (5.5.1), we have reached a contradiction. Under the initial as-
sumption the controls were constant, and we were allowed to optimize by means
of ordinary maximization. However, as it turns out, the optimal controls are not
constant, neither are they deterministic. Both u1 and u2 are time-dependent
and stochastic processes of the stationary Ornstein-Uhlenbeck processes and
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i

the correlated Brownian motions. Our initial attempt to find constant fractions
of wealth as in Merton’s original case, failed, however, as we will see by the
following theorem, we have found a set of admissible controls. In conclusion, u′1
and u′2 are non-stationary stochastic control processes. We summarize in the
following theorem.

Theorem 5.5.2 (Admissible controls).
Initially assuming constant controls u1 and u2, the solution to the optimization
problem (5.7) w.r.t. u1 and u2, given conditional expectation (5.11), are two
admissible stochastic controls

u
′

1 =
(
A1Z1(t)

∫ T

t

eA1sds+ γ

∫ t

0
A1Z1(s)ds

)
ϑ1 +

(
A2Z2(t)

∫ T

t

eA2sds

+γ
∫ t

0
A2Z2(s)ds

)
ϑ2 + γσB̃(t)ϑ3 + γσ1B1(t)ϑ4 + γσ2B2(t)ϑ5 + ϑ6

u
′

2 =
(
A1Z1(t)

∫ T

t

eA1sds+ γ

∫ t

0
A1Z1(s)ds

)
ε1 +

(
A2Z2(t)

∫ T

t

eA2sds

+γ
∫ t

0
A2Z2(s)ds

)
+ γσB̃(t)ε2 − γσ1B1(t)ε3 + γσ2B2(t)− ε4

Proof of Theorem 5.5.2. By construction, u′1 and u′2 are such that W (t, u′1, u
′

2)
is the unique solution to the wealth dynamics given in (5.2). Under questionable
mathematical methods, we have shown that u′1 and u

′

2 are solutions to the
optimization problem in (5.7). We have left to show that u′1(t) and u′2(t) are
indeed admissible controls. Note that,

AiZi(t)
∫ T

t

eAisds = Zi(t)[eAiT − eAit], i = 1, 2

which is obviously measurable and Ft-adapted by Zi(t). The same follows for
the Brownian motions B̃(t), Bi(t) for i = 1, 2. Furthermore,

γ

∫ t

0
AiZi(s)ds =γ

(∫ t

0
zie

Aisds+
∫ t

0

∫ s

0
σie

Ai(s−u)dBi(u)ds
)

=γ
(
zi[eAit − 1] + σiAi

∫ t

0

∫ t

u

eAi(s−u)dsdBi(u)
)

by the stochastic Fubini theorem, Theorem B.3.5. Following, we see that

γ
(
zi[eAit − 1] + σi

∫ t

0

∫ t

u

eAi(s−u)dsdBi(u)
)

= γ
(
zi[eAit − 1] +

∫ t

0
eAi(t−u)dBi(u)−Bi(t)

)
Hence

∫ t
0 AiZi(t)ds is Ft-measurable and adapted as well, and the controls

inherit both measurability and adaptedness from Zi(t) and the Brownian
motions. The Itô integrals are by construction normally distributed. They may
be approximated by the sum of normally distributed random variables, and
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since the limit of a convergent sequence of Gaussian random variables still is a
Gaussian random variable, the integral itself is normally distributed, and∫ t

0
eAi(t−u)dBi(u) ∼ N (0, 1

2A2
i

[e2Ait − 1])

Since the controls are linear in Zi(t), B̃(t), Bi(t) , similar to the proof of The-
orem 4.7.1, u′i(t) will be a normally distributed random variable for any t,
with existing and finite first and second moments, hence E[

∫ T
0 (u′i(t))2ds] <∞,

and condition (iii) of Definition 4.2.1 is fulfilled. By definition (4.2.1), u′i are
admissible on the interval [0, T ]. This concludes the proof. �

Note that, similarly to the control problem solved in the previous chapter,
the controls obtained as the optimal solution to Equation (5.7) depend on
the Ornstein-Uhlenbeck processes Zi(t), but in addition, through this naive
approach, we now have the non-stationary dependency from the correlated B̃(t)
and Bi(t). The expected value of u′1 and u′2 is given by

E[u
′

1(t)] =
(
z1e

A1t(eA1T − eA1t) + γz1(eA1t − 1)
)
ϑ1 +

(
z2e

A2t(eA2T − eA2t)

+ γz2(eA2t − 1)
)
ϑ2 + ϑ6

by noting that

E[AiZi(t)
∫ T

t

eAisds] = zi

∫ T

0
eAisds (5.31)

Also, for u′2(t)

E[u
′

2(t)] =
(
z1e

A1t(eA1T − eA1t) + γz1(eA1t − 1)
)
ε1 +

(
z2e

A2t(eA2T − eA2t)

+ γz2(eA2t − 1)
)
ε2 − ε4

Recall the notation of ϑi, εj , and note their dependency on T and t. The controls
obtained in this chapter are directly dependent on time, both of the current
time t and the future time T at the end of the investment horizon. In addition,
the controls are depending on the current value of the non-stationary Brownian
motions, which is completely different to case of Merton. Note however that
the controls are not optimal by means of the dynamic programming approach
or the HJB-equation, they are simply optimal in the sense that their values are
maximizers to the optimization problem stated at the beginning of this chapter.

5.6 T-dependent Controls at t = 0

For this section, we assume the initial time point is t = 0, and take another look
at the result obtained in the previous section. Still under the initial assumption
that u1 and u2 are constant, for t = 0, the conditional expected value turns out
to be

E[U(W (T ))|F0] = wγ0 exp
{
γ
(
u1A1z1

∫ T

0
eA1sds+ u2A2z2

∫ T

0
eA2sds

)
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+ ν̃(u1, u2)T + 1
2γ

2
(
u2

1(σ2
1F̄

2
1 + ρ1σσ1F̄1) + u2

2(σ2
2F̄

2
2 + ρ2σσ2F̄2)

+ u1u2(2ρσ1σ2(F̄1,2 − F̄1 − F̄2) + ρ1σσ1F̄1 + ρ2σσ2F̄2,1)
)}

(5.32)

for
F̄i = 1

Ai

[
eAiT − 1

]
, F̄ 2

i = 1
2Ai

[
e2Ai(T−t) − 1

]
F̄i,j = 1

Ai +Aj

[
e(Ai+Aj)T − 1

]
and ν(u1, u2), ν̃(u1, u2) as in Notation 5.4.2. The optimal allocation of wealth,
by means of Equation (5.7) is given by

ū1 =
(
A1z1

∫ T

0
eA1sds

)
ϑ1 +

(
A2z2

∫ T

0
eA2sds

)
ϑ2 + ϑ6 (5.33)

ū2 =
(
A1z1

∫ T

0
eA1sds

)
ε1 +A2z2

∫ T

0
eA2sds− ε4 (5.34)

The controls are simply obtained by setting t = 0 in Proposition 5.5.1. Note
that in the case where the initial starting point is 0, ū1 and ū2 only depend on
the future time T . Following the same argumentation as in Theorem 5.5.2, we
see that ū1 and ū2 are indeed admissible. Since each of the components of ϑ1
and ϑ2 are linear in T (see Appendix A), as the investment horizon is expanded,
i.e. T →∞, the exponential terms converge to 1 faster than T goes to infinity
(recall that Ai < 0). Note that

ϑ6 = %1T
3 − T 2%2

T 3(%3 + %4) = %1 + %2/T

%3 + %4
(5.35)

for some generic constants %i, i = 1, . . . , 4. (These are extensive constants
depending on the volatility of the Brownian motions and the correlations among
them). Asymptotically, the "optimal" control ū1 seems to tend to a finite value
as T →∞

lim
T→∞

ϑ6 = %1

%3 + %4
(5.36)

For instance, in an independent market model, where there are no correlations,
note that

limT→∞ ϑ6 = σ4(1− γ)2

σ4(1− γ)2(σ2(1− γ) + σ2
1(1− 2γ)) + σ2(1− γ) + σ2

2(1− 2γ) + σ2
1(1− 2γ)

As in Merton’s case, higher volatilities, i.e. a higher risk, causes the risk averse
investor to allocate smaller "optimal" fractions of wealth in risky asset 1. (Note
that 1− γ > 0). For ū2 however, the case is completely different since

ε4 = %1

%2T
+ %3T

for %i, i = 1, 2, 3 some other constants. Asymptotically, according to the trading
strategy obtained, one would invest infinitely large fractions of wealth in the
second asset, while holding a constant fraction of wealth in asset 1. Again,
noting that these controls are not optimal by means of Chapter 4, they are only
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5. "Constant" Control Problem

feasible controls, and due to the unconventional, at least, approach of finding
them, the solutions are not necessarily financially or mathematically reasonable.
In conclusion, we have been able to find a set of controls, not constant as hoped
for, but admissible nevertheless, which conceivably imply that, as the time
horizon broadens, one should invest a constant fraction of wealth in risky asset
1 and a time-dependent fraction in risky asset 2.

66



Chapter 6

Concluding Remarks

This thesis has considered the optimal management of portfolios under a co-
integrated market model. The investor is assumed to be risk-averse and has
the limited choice of investing in two risky assets and one risk free, with the
aim of maximizing expected utility of wealth at the end of a finite investment
horizon. The market models consists of two risky assets, modelled by a common
non-stationary trend process, and to correlated stationary Ornstein-Uhlenbeck
processes. The portfolio management problem is presented as an optimization
problem from stochastic control theory. By the dynamic programming approach,
a semi-explicit solution to the resulting HJB-equation is obtained and presented
as the solution to a set of Riccati differential equations. After simplifications of
the model, a stochastic Feynman-Kac representation is found. Motivated by
Merton’s constant fraction solution, a naive approach to find constant controls
is presented (with failure, resulting in stochastic controls).

Because the solution of the Riccati system is unknown (might even by
non-existing) and because the expressions obtained for the optimal controls in
this thesis are so tedious, it is difficult to draw exact conclusions like in the case
of Merton’s portfolio problem, where the effect of risk is clear from the form of
the constant optimal allocation. However, there is clearly a dependency on the
correlations and the volatilities from all three sources of uncertainty, and the
resulting optimal controls are directly dependent on the current value of the
stationary Ornstein-Uhlenbeck processes from the co-integrated market model.
The optimal allocation seems to be one which should be updated as the time
passes, corresponding to the information revealed by the distinct stationary
processes.

A natural continuation of the problem addressed in this thesis, is to explore
whether there exists a set of solutions to the Riccati equations, and if so, to try
finding them numerically, for instance by the DT method presented in Section
4.6. Analytical solutions seem unlikely, but the DT method is efficient both
computationally and in terms of convergence toward the true values of the
differential equations. If a set of solutions exists, an interesting extension would
be to simulate the optimal portfolio, for instance by fitting to actual data and
comparing against existing trading strategies or the Markowitz mean-variance
approach.

With regards to the attempt at finding constant controls, one could try to find
the closets constant allocation by means of minimizing expected squared error,
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6. Concluding Remarks

and then by averaging over the investment horizon to obtain time-independent
controls.

Further extensions could be to include stochastic volatilities or several
stationary distinctive processes, allowing for more characteristic risk to each
company within a market sector. Or on the complete contrary, add multiple
common risky sources. However, due to extensive expressions and calculations,
this could preferably be done numerically such that clear conclusions on the
optimal allocations can be drawn.
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Appendix A

List of Notational Conventions

A.1 List of Constants and Functions

Stochastic Control Problem
General notation
For i = 1, 2

Σi =σ2 + σ2
i + 2ρiσσi Pi =ρiσσi + σ2

Σ =σ2 + ρ1σσ1 + ρ2σσ2 + ρσ1σ2 Ri =ρiσσi + ρσ1σ2

Γ =Σ1Σ2 − Σ2

The optimal controls

M1 =Σ2P1 − ΣR1 M2 =Σ1R1 − ΣP1

N1 =Σ2R2 − ΣP2 N2 =Σ1P2 − ΣR2

G1(z1, z2) =(r − µ)(Σ2 − Σ)− 1
2Σ2(Σ1 − Σ)− Σ2A1Z1(t) + ΣA2Z2(t)

G2(z1, z2) =(r − µ)(Σ1 − Σ)− 1
2Σ1(Σ2 − Σ) + ΣA1Z1(t)− Σ1A2Z2(t)

In connection to Problem 4.4.3
For p(z1, z2):

p(z1, z2) = α0 + α1A1z1 + α2A2z2 + α11A
2
1z

2
1 + α22A

2
2z

2
2 + α12A1z1A2z2

where

α0 =Γ
(

(µ+ 1
2Σ1 − r)(Σ2Π1 − ΣΠ2) + (µ+ 1

2Σ2 − r)(Σ1Π2 − ΣΠ1)
)

+K1(Σ2Π1 − ΣΠ2)2 +K2(Σ1Π2 − ΣΠ1)2 + Σ(Σ2Π1 − ΣΠ2)
× (Σ1Π2 − ΣΠ1)

α1 =Γ
(
− Σ2(µ+ 1

2Σ1 − r) + Σ2Π1 − ΣΠ2 + Σ(µ+ 1
2Σ2 − r)

)
− 2K1Σ2(Σ2Π1 − ΣΠ2) + 2K2Σ(Σ1Π2 − ΣΠ1) + Σ(Σ(Σ2Π1
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− ΣΠ2)− Σ2(Σ1Π2 − ΣΠ1))

α2 =Γ
(

Σ(µ+ 1
2Σ1 − r)− Σ1(µ+ 1

2Σ2 − r) + ΣΠ2 − ΣΠ1

)
+ 2K1Σ(Σ2Π1

− ΣΠ2)− 2K2Σ1(Σ1Π2 − ΣΠ1) + Σ
(

Σ(Σ1Π2 − ΣΠ1)

− Σ1(Σ2Π1 − ΣΠ2)
)

α11 =− ΓΣ2 +K1Σ2
2 +K2Σ2 − Σ2Σ2

α22 =− ΓΣ1 +K1Σ2 +K2Σ2
1 − Σ2Σ1

α12 =ΓΣ2 − 2K1Σ2Σ− 2K2Σ1Σ + Σ(Σ2 − Σ1Σ2)

For p1(z1, z2)
p1(z1, z2) = β0 + β1A1z1 + β2A2z2

where

β0 =Γ
(
P1(Σ2Π1 − ΣΠ2) +R1(Σ1Π2 − ΣΠ1)− (Σ2P1 − ΣR1)(µ+ 1

2Σ1 − r)

− (Σ1R1 − ΣP1)(µ+ 1
2Σ2 − r)

)
− 2K1(Σ2P1 − ΣR1)(Σ2Π1 − ΣΠ2)

− 2K2(Σ1R1 − ΣP1)(Σ1P2 − ΣΠ1)− Σ
(

(Σ1R1 − ΣP1)(Σ2Π1 − ΣΠ2)

+ (Σ2P1 − ΣR1)(Σ1Π2 − ΣΠ1)
)

β1 =− Σ2

(
ΓP1 − 2K1(Σ2P1 − ΣR1)− Σ(Σ1R1 − ΣP1)

)
+ Σ

(
ΓR1 − 2K2(Σ1R1 − ΣP1)− Σ(Σ2P1 − ΣR1)

)
− Γ(Σ2P1 − ΣR1)

β2 =Σ
(

ΓP1 − 2K1(Σ2P1 − ΣR1)− Σ(Σ1R1 − ΣP1)
)

− Σ1(ΓR1 − 2K2(Σ1R1 − ΣP1)− Σ(Σ2P1 − ΣR1))− Γ(Σ1R1 − ΣP1)

For p2(z1, z2)
p2(z1, z2) = δ0 + δ1A1z1 + δ2A2z2

where

δ0 =Γ
(
R2(Σ2Pi1 − ΣΠ2) + P2(Σ1Π2 − ΣΠ1)− (Σ2R2 − ΣP2)(µ+ 1

2Σ1 − r)

− (Σ1P2 − ΣR2)(µ+ 1
2Σ2 − r)

)
− Σ

(
(Σ1P2 − ΣR2)(Σ2Π1 − ΣΠ2)

+ (Σ2R2 − ΣP2)(Σ1Π2 − ΣΠ1)
)
− 2K1(Σ2R2 − ΣP2)(Σ2Π1 − ΣΠ2)

− 2K2(Σ1P2 − ΣR2)(Σ1Π2 − ΣΠ1)

δ1 =− Σ2

(
γR2 − 2K1(Σ2P2 − ΣP2)− Σ(Σ1P2 − ΣR2)

)
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+ Σ
(

ΓP2 − 2K2(Σ1P2 − ΣR2)− Σ(Σ2R2 − ΣP2)
)
− Γ(Σ2R2 − ΣP2)

δ2 =Σ
(

ΓR2 − 2K1(Σ2P2 − ΣP2)− Σ(Σ1P2 − ΣR2)
)

− Σ1(ΓP2 − 2K2(Σ1P2 − ΣR2)− Σ(Σ2R2 − ΣP2)
)
− Γ(Σ1P2 − ΣR2)

We also have the following constants

C1 =P 2
1

(
K1Σ2

2 − ΓΣ2 +K2Σ2 − Σ2Σ2

)
+R2

1

(
K1Σ2 − ΓR2

1 +K2Σ2 − Σ2Σ1

)
+ P1R1Σ

(
ΓΣ− 2K1Σ2 − 2K2Σ1 + Σ1Σ2 − Σ2

)
C2 =P 2

2

(
K1Σ2 +K2Σ2

1 − ΓΣ1 − Σ2Σ1

)
+R2

2

(
K1Σ2

2 − ΓΣ2 −K2Σ2
2 − Σ2Σ2

)
+ P2R2Σ

(
ΓΣ− 2K1Σ2 − 2K2Σ1 + Σ1Σ2 − Σ2

)
C3 =P1P2Σ

(
ΓΣ− 2K1Σ2 − 2K2Σ1 + Σ1Σ2 + Σ2

)
+ 2P1R2

(
− ΓΣ2 +K1Σ2

2

+K2Σ2 − Σ2Σ2

)
+ 2R1P2

(
− ΓΣ1 +K1Σ2 +K2Σ2

1 − Σ2Σ1

)
Riccati representation

ζ = γ

Γ2(γ − 1)

C =



0 β0ζ δ0ζ σ2
1 σ2

2 ρσ1σ2

0 A1+β1A1ζ δ1A1ζ 2β0ζ 0 δ0ζ

0 β2A2ζ A2+δ2A2ζ 0 2δ0ζ β0ζ

0 0 0 2A1+2A1β1ζ 0 δ1A1ζ

0 0 0 0 2A2+2δ2A2ζ β2A2ζ

0 0 0 2β2A2ζ 2δ1A1ζ (A1+A2

+β1A1ζ+δ2A2ζ)



G =


g2

0(t) g0(t)g1(t) · · · g0(t)g12(t)
g1(t)g0(t) g2

1(t) · · · g1(t)g12(t)
...

. . .

g12(t)g0(t) g12(t)g1(t) · · · g2
12(t)



N =
(
γr + α0ζ, α1A1ζ, α2A2ζ, α11A

2
1ζ, α22A

2
2ζ, α12A1A2ζ

)T
εi = 1

2σ
2
i + Ciδ, , ψ = ρσ1σ2 + C3δ,
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for i = 1, 2.

M(g(t)) =



0 −g1ε1 −(g2ε2+g1ψ) 0 0 0

0 −4g11ε1 −2g12(t)ε2 −2g2ψ 0 −g1ψ

0 −2g22ψ −g12ψ 0 −4g2ε2 −2g1ε1

0 0 0 −4g11ε1 0 −(g12ε2−2g11ψ)

0 0 0 0 −4g22ε2 −(g12ε1+2g22ψ)

0 0 0 −2g12ε1 −(4g11ψ+4g12ε2) −g12ψ


"Constant" Controls
For the constants ν(u1, u2) and ν̃(u1, u2)

ν(u1, u2) =u1(µ+ 1
2Σ1) + u2(µ+ 1

2Σ2) + (1− u1 − u2)r − 1
2

(
σ2(u1 + u2)2

+ σ2
1u

2
1 + σ2

2u
2
2

)
− σ(u1 + u2)(ρ1σ1u1 + ρ2σ2u2)− ρσ1σ2u1u2

ν̃(u1, u2) =γν(u1, u2) + 1
2γ

2
(
u2

1(σ2 + 2σ2
1) + u2

2(σ2 + 2σ2
2) + 2u1u2(ρσ1σ2

+ σ2)
)

For Fi, F 2
i and Fi,j for i = 1, 2, i 6= j

Fi = 1
Ai

[
eAi(T−t) − 1

]
F 2
i = 1

2Ai

[
e2Ai(T−t) − 1

]
Fi,j = 1

Ai +Aj

[
e(Ai+Aj)(T−t) − 1

]

Section 5.4
For the constants, Ui, Li, Ki, i = 1, 2, i 6= j

Ui =ΣiT − γ
(

(σ2 + 2σ2
i )(T − t) + σ2

i F
2
i + ρiσσiFi

)
Li =

(
ΣT − γ

(
Pj(T − t) + ρσiσj(Fi,j − Fi − Fj) + 1

2(ρiσσiFi + ρjσσjFj)
))

Ki =(µ+ 1
2Σi − r)T

For ϑi, i = 1, . . . , 6

ϑ1 = 2
U1

ϑ2 = − L2

(L1L2 − U1U2)

ϑ3 = 1
U1
− L2

2U1 − L2

U1(L1L2 − U1U2) ϑ4 = 1
U1

+ L2
2

U1(L1L2 − U1U2)
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ϑ5 =− L2

L1L2 − U1U2
ϑ6 = L2(L2K1 −K2)

U1(L1L2 − U1U2)

For εi, i = 1, . . . , 4

ε1 =− L2

L1L2 − U1U2
ε2 = U1(1− L2)

L1L2 − U1U2

ε3 =− L2

L1L2 − U1U2
ε4 = − L2

L1L2 − U1U2
+K2
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Appendix B

Preliminaries

This appendix provides some stochastic preliminaries covered in the thesis.
A selection of definitions, theorems and properties are presented. The main
references for this chapter are [Øks13], [KS91] and [YZ99]. All statements are
made in the 1-dimensional case, but can easily by expanded to include processes
in Rn.

B.1 General Preliminaries

Let (Ω,F ,P) denote a probability space for which a filtration {F}t≥0 is given.
The following are standing assumption

(i) (Ω,F ,P) is complete, meaning that for any P-null set A, i.e. P(A) = 0,
in F , B ⊂ F whenever B ⊂ A

(ii) F0 contains all null sets of F

(iii) the filtration {Ft}t≥0 is right-continuous, i.e. Ft =
⋂
s>t Fs for all t ∈

[0, T ).

We denote by (Ω,F , {Ft}t≥0,P) a filtered probability space. To "set the scene",
we recall the definition of a Brownian motion, even though the reader is assumed
to be familiar with it already.

Definition B.1.1.
A stochastic process {B(t)}t≥0 is said to be a standard Brownian motion, if for
0 ≤ s < t <∞ it satisfies the following properties

(i) B(0) = 0 P-a.s.

(ii) {B(t)}t≥0 has independent increments, i.e. B(t)−B(s) is independent
of Fs

(iii) {B(t)}t≥0 has normally distributed increments with mean 0 and variance
given by (t-s), i.e. the random variable B(t)−B(s) ∼ N (0, t− s)∀t > s

From now on we denote by B(t) both the process and the random variable.
Since the Itô calculus is the cornerstone of stochastic analysis, we recall some
properties of the Itô integrals.

77



B. Preliminaries

Definition B.1.2 (Itô integrals).
The Itô integral ∫ T

0
f(s, ω)dB(s, ω) (B.1)

is well-defined for functions f : [0, T ]× Ω→ R satisfying the following assump-
tions

(i) (t, ω)→ f(t, ω) is B([0, T ])×F-measurable, where B([0, T ]) denotes the
Borel σ-algebra on [0, T ]

(ii) f(t, ω) is adapted w.r.t. the filtration Ft

(iii) f ∈ L2((Ω,F ,P)), i.e. ∫ T

0
E[f2(s, ω)]ds <∞

We denote by V([0, T ]) the class of functions f for which the Itô integral is well
defined.

Corollary B.1.3 (Itô isometry).
Let f ∈ V([0, T ]), then

E
[( ∫ T

0
f(s, ω)dB(s, ω)

)2]
=
∫ T

0
E
[
f2(s, ω)ds

]
ds (B.2)

We refer to [Øks13] for proof of Corollary B.1.3. Following are some proper-
ties that hold for all Itô integrable functions f, g ∈ V([0, T ]).

Proposition B.1.4 ().

(i) the Itô integrals satisfy the linearity property, i.e.∫ T

0
α(f(s, ω) + g(s, ω))dB(s) = α

∫ T

0
f(s, ω)dB(s) +

∫ T

0
g(s, ω)dB(s)

(ii) ∫ T

0
f(s, ω)dB(s) =

∫ t

0
f(s, ω)dB(s) +

∫ T

t

f(s, ω)dB(s)

for 0 < t < T

(iii)

E
[ ∫ T

0
f(s, ω)dB(s)

]
= 0

(iv) the Itô integral ∫ T

t

f(s, ω)dB(s), for 0 < t < T (B.3)

if FT -measurable and independent of Ft
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The properties above follow from the fact that they all hold for elementary
functions. By taking limits in L2([0, T ]×Ω), they must hold for all f ∈ V([0, T ]).

Definition B.1.5 (Martingale).
A Ft-adapted stochastic process {M(t)}t≥0 is called a martingale if

(i) E[|M(t)|] <∞ for all t

(ii) E[M(t)|Fs] = M(s) for s < t

Note that the Itô integral,
∫ t

0 f(s, ω)dB(s) for f ∈ V([0, T ]) is a martingale.

Definition B.1.6 (Semimartingale).
A stochastic process {X(t)}t≥0 is called a continuous semimartingale w.r.t. the
filtration {F}t≥0 if X(t) can be decomposed as

X(t) = x+
∫ t

0
Z(s)ds+

∫ t

0
Y (s)dB(s) (B.4)

for Z(t) and Y (t) Ft-adapted processes.

Note that, for Z(t) = 0, the process X(t) is a martingale. The following
lemma is used repeatedly throughout the thesis.

Lemma B.1.7 (Itô’s lemma).
Assume X(t) is a semimartingale and let f(t, x) ∈ C1,2, i.e. f is twice continu-
ously differentiable w.r.t. x and continuously differentiable w.r.t. t. Then

df(X(t)) =∂f

∂t
dt+ ∂f

∂x
dX(t) + 1

2
∂2f

∂x2 (dX(t))2 (B.5)

=∂f

∂t
dt+ Z(s)∂f

∂x
ds+ 1

2Y
2(t)∂

2f

∂x2 dt+ Y (t)∂f
∂x
dB(t) (B.6)

A proof of Itô’s lemma can be found in [KS91].

B.2 Preliminaries Relevant to Stochastic Control
Theory

The following are some preliminaries relevant to the theory of stochastic control
applied in the thesis. We begin with the notion of an Itô diffusion. Roughly
speaking, an Itô diffusion is a solution to a stochastic differential equation
(SDE).

Definition B.2.1 (Itô diffusions).
Given a stochastic differential equation on the form

dX(t) = b(t,X(t))dt+ σ(t,X(t))dB(t), t ≥ s, X(s) = x (B.7)

where b : [0, T ]→ R, σ : [0, T ]→ R satisfying the Lipschitz condition

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ K|x− y| for x, y ∈ R

then the stochastic process {X(t)}t≥0, X(t, ω) : [0, T ]× Ω→ R satisfying (B.7)
is defined as an Itô diffusion.
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Assuming a solution exists, the Lipschitz condition ensures taht the Itô
diffusion is the unique solution. To each Itô diffusion there can be associated a
second order partial differential generator A.

Definition B.2.2 (Infinitesimal Generator).
Let X(t) be the Itô diffusion satisfying the stochastic differential eqution (B.7).
The infinitesimal generator A of X(t) is defined by

(Af)(x) = lim
t→0

Ex[f(X(t))]− f(x)
t

(B.8)

for X(0) = x and where Ex denotes the expectation w.r.t. the probability
measure P for the Itô diffusion starting at x ∈ R.

Definition B.2.3 (DA(x)).
The set of functions f for which the generator of X(t) is well-defined for all
x ∈ R, is denoted DA.

It can be shown that any function f ∈ C1,2(R) with compact support,
meaning f(y) = 0 for some y outside a compact set, is in DA. See for instance
[Øks13]. Then the generator (Af)(x) can be represented on a partial differential
form

(Af)(x) = b(x)∂f
∂x

+ 1
2σ

2 ∂
2f

∂x2 (B.9)

The following formula is relevant for the verification proof of the HJB-equation.

Theorem B.2.4 (Dynkin’s formula).
Let f ∈ C2

0 (R), i.e. f is twice continuously in R and has compact support, and
assume τ is a stopping time, E[τ ] <∞. Then the following holds

Ex[f(X(τ))] = f(x) + Ex
[ ∫ τ

0
(Af)(X(s))ds

]
(B.10)

The Itô diffusions satisfy two important properties; the Markov property and
the strong Markov property. A stochastic process satisfying the Markov property
"looses it’s memory," meaning the process only "remembers" the current state.
Stated in another way, the current value X(t) of a Markov process contains all
information need for the future evolution of the process. The future state of
X(s), for s > t, only depends on the current state X(t). Formally, the Markov
process is defined as follows

Definition B.2.5 (The Markov property).
A stochastic process X(t, ω) : [0, T ]× Ω→ R is called a Markov process if

P(X(t) ∈ O|X(t1), . . . , X(tn)) = P(X(t) ∈ O|X(tn)), P − a.s. (B.11)

for some open set O ⊂ B(R), and times 0 ≤ t1 < t2 < . . . < tn < t ≤ T .

If the stochastic process X(t) is a Ft Markov process, then the following is
another characterization of the Markov property

Ex[f(X(t))|Fs] = Ex[f(X(t))|X(s)] (B.12)

for t > s and f bounded and measurable. Itô diffusions are some times
called time-homogeneous strong Markov processes. Since the Itô diffusions are
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important Markov processes, we give the following Markov property special for
Itô diffusion

Theorem B.2.6.
Let X(t) be an Itô diffusion and Ft the filtration generated by the Brownian
motion B(t). Then the following holds for t, h ≥ 0

Ex[f(X(t))|Fs] = Exs [f(X(t))]|X(s)=xs (B.13)

where f : R→ R bounded and measurable.

A proof of this and the following theorem can be found in [Øks13]. As
the future evolution of X(t) only depends on the current value of the process,
the future behaviour is independent of the initial starting point of the process.
There is a similar property for stopping times, called the strong Markov property,
but first we need the definition of a stopping time.

Definition B.2.7 (Stopping time).
A random variable τ : Ω→ [0, T ] is called a stopping time w.r.t. the filtration
{Ft}t≥0 if

{ω : τ(ω) ≤ t} ∈ Ft (B.14)

Theorem B.2.8 (The strong Markov property).
Let X(t) be an Itô diffusion and Ft the filtration generated by B(t). Assume
τ <∞ is a stopping time w.r.t. Ft. Then the following holds for t, h ≥ 0

Ex[f(X(τ + h))|Fτ ] = Exτ [f(X(h))]|X(τ)=xτ ] (B.15)

From the definition of a stopping time, we obtain the following notion of
the first exit time of a domain D

Definition B.2.9 (First exit time).
Let D denote the domain of some process X(t). The first exit time τD of D
forX(t) is defined by

τD = inf{t > 0 : X(t) 6= D} (B.16)

In connection to the domain D, we have the following definition of regular
points.

Definition B.2.10 (Regular points).
Let D be a open connected set. Then a point x ∈ ∂D, i.e. a point in the
boundary of D, is called regular w.r.t. the Itô diffusion X(t), if P§(τD = 0) = 1,
where P is the probability law of X(t) starting at x.

Essentially, a regular point x on the boundary of some domain D, is a point
for which the process X(t) leaves D immediately if starting at x. A point for
which P(τD = 0) < 1, is called irregular.

The Dirichlet Problem
The following problem is denoted as the Dirichlet problem and becomes useful
in the proof of Theorem 4.2.7
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Problem B.2.11 (Dirichlet Problem).
Given a bounded domain D ∈ R, the operator generator L = A and a continuous
function defined on ∂D, i.e. φ ∈ C(∂D), we wish to find a continuous solution
u ∈ C2(D) satisfying

(i) (Lu)(x) = 0 for all x ∈ D

(ii) u = φ on ∂D

It can be shown, see for instance [Øks13] or [KS91] that the function

u(x) = Ex[φ(X(τD))] (B.17)

is a solution to the Dirichlet problem if u is continuous, u ∈ C2(D) and
Ex[τD] <∞. For the stochastic representation of the function f in Section 5.9,
the following important theorem is crucial.

Theorem B.2.12 (Feynman-Kac representation).
Suppose f(t, x) : [0, T ]×R→ R is continuous, f ∈ C1,2([0, T ]×R and satisfies
the following Cauchy problem

− ∂v

∂t
+ kv = Atv + g, in [0, T )× Rd (B.18)

v(T, x) = f(x), for x ∈ Rd (B.19)

as well as the polynomial growth condition

max
0≤t≤T

|v(t, x)| ≤M(1 + ‖x‖2µ), for x ∈ Rd (B.20)

for some M > 0, µ ≥ 1. If so, then the solution v(t, x) must be representable by
the following stochastic representation

v(t, x) =Et,x
[
f(X(T )) exp

(
−
∫ T

t

k(θ,X(θ))dθ
)

(B.21)

+
∫ T

t

g(s,X(s)) exp
(
−
∫ s

t

k(θ,X(θ))
)
ds
]

(B.22)

on [0, T ]× Rd.

B.3 Some Preliminaries from Measure Theory

The following theorem is taken from [McD13].

Theorem B.3.1 (Fubini’s theorem).
Let µ1, µ2 be probability measures on (Ω1,F1) and (Ω2,F2), respectively. Fur-
thermore, let f : Ω1 × Ω2 → R be a F1 ×F2-measurable function and assume
that at least one of the following integrals is finite

(i) ∫
Ω1×Ω2

|f(x, y)|d(µ1 × µ2)(x, y)
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(ii) ∫
Ω1

(∫
Ω2

|f(x, y)|dµ2(y)
)
dµ1(x)

(iii) ∫
Ω2

(∫
Ω1

|f(x, y)|dµ1(x)
)
dµ2(y)

then the following equality holds∫
Ω1×Ω2

f(x, y)d(µ1 × µ2)(x, y) =
∫

Ω2

(∫
Ω1

f(x, y)dµ1(x)
)
dµ2(y)

=
∫

Ω1

(∫
Ω2

f(x, y)dµ2(y)
)
dµ1(x)

Remark B.3.2 (Fubini on expectations).
Note that the following is a direct consequence of Fubini’s theorem for measurable
functions f , if either E[

∫ T
0 f(s, ω)ds] or

∫ T
0 E[f(s, ω)]ds <∞

E
[ ∫ T

0
f(s, ω)ds

]
=
∫

Ω

∫ T

0
f(s, ω)dsdP (ω) (B.23)

=
∫ T

0

∫
Ω
f(s, ω)dP (ω)ds =

∫ T

0
E
[
f(s, ω)

]
ds (B.24)

Another version of Fubini’s theorem, with the same conclusion, but with
the assumption that f is a non-negative measurable functions, instead of the
assumption that |f | is integrable, is the following Tonelli theorem

Theorem B.3.3 (Tonelli’s theorem ).
Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be the two probability spaces from Theo-
rem B.3.1, and let f : Ω1 × Ω2 → R be a non-negative measurable function.
Then the following equality holds∫

Ω1×Ω2

f(x, y)d(µ1 × µ2)(x, y) =
∫

Ω2

(∫
Ω1

f(x, y)dµ1(x)
)
dµ2(y)

=
∫

Ω1

(∫
Ω2

f(x, y)dµ2(y)
)
dµ1(x)

The stochastic Fubini theorem, states that, under suitable assumptions, we
are allowed to interchange the order of a Lebesgue integral and an integral w.r.t.
a semimartingale, but first we need the notion of a progressively measurable
process.

Definition B.3.4 (Progressively measurable process).
A stochastic process X(t, ω) in R is said to be progressively measurable w.r.t.
the filtration Ft if for each fixed t ≥ 0 the mapping ([0, t]× Ω)→ B([0, t])×Ft
defined by (s, ω)→ X(s, ω) for s ≤ t is B([0, t])×Ft-measurable. We say that
X is ProgT -measurable, where

ProgT = {A ∈ B([0, T ])×FT } (B.25)

The following theorem can be found in [Fil09].
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Theorem B.3.5 (Stochastic Fubini).
Let φ(ω, t, s) be a stochastic process for 0 ≤ t, s ≤ T , satisfying the following
properties

(i) φ is ProgT × B([0, T ])-measurable

(ii) supt,s‖φ(t, s)‖ <∞

then ∫ T

0

(∫ T

0
φ(t, s)dB(t)

)
ds =

∫ T

0

(∫ T

0
φ(t, s)ds

)
dB(t) (B.26)

for B(t) a Brownian motion.

Proposition B.3.6 (Hölder’s inequality).
Let f and g be two measurable functions. Then∫

Ω
|f(ω)g(ω)|dP(ω) ≤

(∫
Ω
|f(ω)|pdP(ω)

)1/p(∫
Ω
|g(ω)|qdP(ω)

)1/q
(B.27)

for p, q > 0 if 1
p

+ 1
q

= 1.

Note that for p = q = 2, we have the Cauchy-Schwarz inequality. [Øks13]
refers to [Chu74] for the following result.

Theorem B.3.7 (Jensen’s inequality ).
Let X be a random variable, and suppose g(X) : R → R is a convex and
E[g(X)] <∞, then the following inequality holds

g(E[X|H]) ≤ E[g(X)|H] (B.28)

for any σ-algebra H.

B.4 Some Statistical Properties

Definition B.4.1 (A log-normal random variable).
A random variable X = exp(Y ) is said to be a log-normal random variable if
Y is normal with mean µ and variance σ2. The expectation and variance of a
log-normal random variable are given by

E[X] = exp(µ+ 1
2σ

2) (B.29)

Var(X) = [exp(σ2)− 1] exp(2µ+ σ2) (B.30)

We state some properties of the expected value of a random variable from
[Øks13], which become handy in Chapter 6.

Proposition B.4.2 (Properties of the conditional expectation).
Let X(t, ω) : [0, T ] × Ω → R be a random variable with E[|X|] < ∞. The
conditional expectation X given G ⊂ F is given by the new random variable
Y = E[X|G]. The following properties hold for the conditional expectations

(i) E[X|G] is G-measurable
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(ii) E[aX+bZ|G] = E[aX|G]+E[bZ|G], for a, b ∈ R and Z(t, ω) : [0, T ]×Ω→
R a random variable

(iii) E[E[X|G]] = E[X]

(iv) E[X|G] = X if X is G-measurable

(v) E[X|G] = E[X(t)] if X(t) is independent ofG

(vi) E[E[X|H]|G] for some H ⊇ G.
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Appendix C

Calculations and Proofs

C.1 The Differentials

Lemma C.1.1 (The differentials).

dWt · dWt = W 2
t

(
σ2(u1(t) + u2(t))2 + σ2

1u1(t)2 + σ2
2u2(t)2

)
dt

+ 2W 2
t

(
σ(u1 + u2)(ρ1σ1u1(t) + ρ2σ2u2(t))

+ ρσ1u1(t)σ2u2(t)
)
dt

(C.1)

dWt · dZ1(t) = Wt

(
ρ1σ(u1(t) + u2(t))σ1 + σ2

1u1(t)

+ ρσ1σ2u2(t)
)
dt

(C.2)

dWt · dZ2(t) = Wt

(
ρ2σ(u1(t) + u2(t))σ2 + σ2

2u2(t)

+ ρσ1σ2u1(t)
)
dt

(C.3)

dZ1(t) · dZ2(t) = σ1σ2ρdt (C.4)

C.2 Short Sketch of the Computations for the Optimal
Controls

By solving the conditions of a optimum for the HJB-equation w.r.t. both v1
and v2, the following expressions are obtained

v∗1 = Φw
wΦwwΣ1

(
r − µ−A1z1 −

1
2Σ1

)
− Φwz1

wΦwwΣ1
P1 −

Φwz2

wΦwwΣ1
R2 − v2Σ

v∗2 = Φw
wΦwwΣ2

(
r − µ−A2z2 −

1
2Σ2

)
− Φwz1

wΦwwΣ2
R2 −

Φwz2

wΦwwΣ2
P2 − v1Σ

When substituting for v2 into v1, the following expression is obtained

v∗1 = 1
Σ1Σ2(1− Σ2)

(
Φw

wΦww

(
Σ2(r − µ− 1

2Σ1 −A1z1)− ΣΣ1(r − µ− 1
2Σ2
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−A2z2)
)
− Φwz1

wΦww

(
Σ2P1 − Σ1ΣR1

)
− Φwz2

wΦww

(
Σ2R2 − ΣΣ1P2

))
Similarly, for v∗1 in v2, we get

v∗2 = 1
Σ1Σ2(1− Σ2)

(
Φw

wΦww

(
Σ1(r − µ− 1

2Σ2 −A2z2)− ΣΣ2(r − µ− 1
2Σ1

−A1z1)
)
− Φwz1

wΦww

(
R1Σ1 − ΣΣ2P1

)
− Φwz2

wΦww

(
P2Σ1 − ΣΣ2R2

))
By introducing the abbreviating constants Mi, Ni and the functions Gi for
i = 1, 2, in Appendix A, we obtain the optimal controls in Proposition 4.4.1.

The calculations done for the substitution of the optimal controls into the
HJB-equation would require pages with basic calculations, hence they are
omitted. But the resulting expressions were achieved by first rewriting the
HJB-equation by collecting all linear and quadratic terms of v1 and v2, then by
computing the squared expressions, thereby substituting all the expression into
the HJB-equation and collecting all the terms corresponding to equal partial
derivatives in the functions obtained in Problem 4.4.3 and Appendix A.

C.3 Calculations of Var(Y (T )) for Proposition 5.4.3

In this section we derive the expression for the variance of Y (T ) in Chapter 5.
By previous calculations, we have found that E[Y (T )] = 0, hence

Var(Y (T )) = E
(

[Y (T )]
)2

By Theorem B.3.5, Theorem B.3.1 and Corollary B.1.3, it follows that, for
i, j = 1, 2
Calculation nr.1

E
[( ∫ T

t

∫ T

u

uiAiσie
Ai(s−u)dsdBi(u)

)(∫ T

t

∫ T

u

ujAjσje
Aj(s−u)dsdBj(u)

)]

=


u2
iA

2
iσ

2
i

∫ T
t

( ∫ T
u
eAi(s−u)ds

)2
du = u2

iσ
2
i

(
F 2
i − Fi + T − t

)
i = j

ρσiσjuiujAiAj
∫ T
t

( ∫ T
u
eAi(s−u)ds

)( ∫ T
u
eAj(s−u)ds

)
du

= ρσiσjuiuj

(
Fi,j − Fi − Fj + T − t

)
i 6= j

Calculation nr.2

E
[( ∫ T

t

∫ T

u

uiAiσie
Ai(s−u)dsdBi(u)

)(∫ T

t

σ(u1 + u2)dB̃(u)
)]

= ρiuiAiσiσ(ui + uj)
∫ T

t

(
∫ T

u

eAi(s−u)ds)du

= ρiuiσiσ(u1 + u2)
(
Fi − (T − t)

)
i = 1, 2

Calculation nr.3

E
[( ∫ T

t

∫ T

u

uiAiσie
Ai(s−u)dsdBi(u)

)(∫ T

t

σjujdBj(u)
)]
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i in Proposition 5.5.1

=


u2
iAiσ

2
i

∫ T
t

∫ T
u
eAi(s−u)dsdu = u2

iσ
2
i

(
Fi − (T − t)

)
i = j

ρσiσjuiujAi
∫ T
t

∫ T
u
eAi(s−u)dsdu = ρσiσjuiuj

(
Fi − (T − t)

)
i 6= j

Calculation nr. 4

E
[( ∫ T

t

σ(ui + uj)dB̃(s)
)(∫ T

t

σiuidBi(u)
)]

=
∫ T

t

ρiσσiui(u1 + u2)du

for i = 1, 2

Calculation nr. 5

E
[( ∫ T

t

σiuidBi(u)
)(∫ T

t

σjujdBj(u)
)]

=


∫ T
t
u2
iσ

2
i du if i = j∫ T

t
ρσiσjuiujdu if i 6= j

Calculation nr. 6

E
[( ∫ T

t

σ(u1 + u2)dB̃(u)
)2]

=
∫ T

t

σ2(u1 + u2)2du (C.5)

Combining calculations (1) to (6), we obtain that the variance of Y (T ) is given
by

Var(Y (T )) = γ2
(
u2

1(σ2 + 2σ2
1) + u2

2(σ2 + 2σ2
2) + 2u1u2(ρσ1σ2 + σ2)

)
(T − t)

+γ2
(
u2

1

(
σ2

1F
2
1 + ρ1σσ2F1

)
+ u2

2

(
σ2

2F
2
2 + ρ2σ2σF2

)
+u1u2

(
2ρσ1σ2(F1,2 − F1 − F2) + ρ1σσ1F1 + ρ2σ2σF2

))
(C.6)

We are finally able to conclude

E[U(W (T ))|Ft] = W γ(t) exp
[
γ
(
ν(u1, u2)(T − t) + u1A1Z1(t)

∫ T

t

eA1sds

+u2A2Z2(t)
∫ T

t

eA2sds
)

+ 1
2γ

2
(
u2

1(σ2 + 2σ2
1)

+ u2
2(σ2 + 2σ2

2) + 2u1u2(ρσ1σ2 + σ2)
)

(T − t)

+γ2
(
u2

1

(
σ2

1F
2
1 + ρ1σσ2F1

)
+ u2

2

(
σ2

2F
2
2 + ρ2σ2σF2

)
+u1u2

(
2ρσ1σ2(F1,2 − F1 − F2) + ρ1σσ1F1 + ρ2σ2σF2

)])
(C.7)

by combining (5.19) and the formula of the expected value of a log-normal
random variable.

C.4 Calculations of u
′
i in Proposition 5.5.1

In this section we give some of the calculation for the partial derivatives of
E[U(W (T ))|Ft]. Recall equation

∂W γ(t)
∂ui

+W γ(t)∂g(ui, uj)
∂ui

= 0 (C.8)
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where

∂W γ(t)
∂ui

= W γ(t)γ
[(

(µ1
2Σi − r)− uiΣi − ujΣ

)
t

+
∫ t

0
AiZi(s)ds+ σB̃(t) + γσiBi(t)

]
(C.9)

and

∂g(ui, uj)
∂ui

=γ
(
AiZi(t)

∫ T

t

eAisds
)

+ γ
(
µ+ 1

2Σi − r
)

(T − t)

− uiγ
[(

Σi − γ(σ2 + 2σ2
i )
)

(T − t)− γ
(
σ2
i F

2
i + ρiσσiFi

)]
− ujγ

[(
Σ− γPj

)
(T − t)− γ

(
ρσiσj(Fi,j − Fi − Fj) + 1

2(ρiσσiFi

+ ρjσσjFj)
)]

(C.10)

Combining (C.9) and (C.10), we obtain

γ
[(

(µ+ 1
2Σi − r)− uiΣi − ujΣ

)
t+ γ

∫ t

0
AiZi(s)ds+ γσB̃(t) + γσiBi(t)

]
+ γAiZi(t)

∫ T

t

eAisds+ γ
(
µ+ 1

2Σi − r
)

(T − t)

− uiγ
[(

Σi − γ(σ2 + 2σ2
i )
)

(T − t)− γ
(
σ2
i F

2
i + ρiσσiFi

)]
− ujγ

[(
Σ− γPj

)
(T − t)− γ

(
ρσiσj(Fi,j − Fi − Fj) + 1

2(ρiσσiFi

+ ρjσσjFj)
)]

= 0

Solving for ui we obtain the following equation

ui

[
ΣiT − γ

(
(σ2 + 2σ2

i )(T − t) + σ2
i F

2
i + ρiσσiFi

)]
=AiZi(t)

∫ T

t

eAisds+ (µ+ 1
2Σi − r)T + γ

∫ t

0
AiZi(s)ds+ γσB̃(t)

+ γσiBi(t)− uj
[
ΣT − γ

(
+ Pj(T − t)

ρσiσj(Fi,j − Fi − Fj) + 1
2(ρiσσiFi + ρjσσjFj)

)]

Notation C.4.1.
Denote

Ui = ΣiT − γ
(

(σ2 + 2σ2
i )(T − t) + σ2

i F
2
i + ρiσσiFi

)
Then

u1 = 1
U1

[
A1Z1(t)

∫ T

t

eA1sds+ (µ+ 1
2Σ1 − r)T + γ

∫ t

0
A1Z1(s)ds+ γσB̃(t)

+ γσ1B1(t)− u2

[
ΣT − γ

(
P2(T − t) + ρσ1σ2(F1,2 − F1 − F2)
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i in Proposition 5.5.1

+ 1
2(ρ1σσ1F1 + ρjσσ2F2)

)]]

u2 = 1
U2

[
A2Z2(t)

∫ T

t

eA2sds+ (µ+ 1
2Σ2 − r)T + γ

∫ t

0
A2Z2(s)ds+ γσB̃(t)

+ γσ2B2(t)− u1

[
ΣT − γ

(
P1(T − t)

ρσ1σ2(F1,2 − F1 − F2) + 1
2(ρ1σσ1F1 + ρ2σσ2F2)

)]]
Introduce the shorter version

u1 = 1
U1

[
A1Z1(t)

∫ T

t

eA1sds+K1 + γ

∫ t

0
A1Z1(s)ds+ γσB̃(t)

+ γσ1B1(t)− u2L1

]

u2 = 1
U2

[
A2Z2(t)

∫ T

t

eA2sds+K2 + γ

∫ t

0
A2Z2(s)ds+ γσB̃(t)

+ γσ2B2(t)− u1L2

]
Substitute u1 into u2 and we obtain that the optimal u2 is

u
′

2 = U1

L1L2 − U1U2

[
− L2

U1

(
A1Z1(t)

∫ T

t

eA1sds+ γ

∫ t

0
A1Z1(s)ds

)
+
(
A2Z2(t)

∫ T

t

eA2sds+ γ

∫ t

0
A2Z2(s)ds

)
+ γσB̃(t)

(
1− L2

U1

)
− γσ1

L2

U1
B1(t) + γσ2B2(t)− L2

U1
K1 +K2

]

u
′

1 = 1
U1(L1L2 − U1U2)

[
(2L1L2 − U1U2)

(
A1Z1(t)

∫ T

t

eA1sds+ γ

∫ t

0
A1Z1(s)ds

)
− L2U1

(
A2Z2(t)

∫ T

t

eA2sds+ γ

∫ t

0
A2Z2(s)ds

)
+ γσB̃(t)

(
L1L2 − U1U2

− L2U1 − L2
2

)
+ γσ1B1(t)

(
L1L2 − U1U2 + L2

2)− U1L2γσ2B2(t) + L2
2K1

− L2K2

)
The optimal controls

u
′

1 =
(
A1Z1(t)

∫ T

t

eA1sds+ γ

∫ t

0
A1Z1(s)ds

)
ϑ1 +

(
A2Z2(t)

∫ T

t

eA2sds

+ γ

∫ t

0
A2Z2(s)ds

)
ϑ2 + γσB̃(t)ϑ3 + γσ1B1(t)ϑ4 + γσ2B2(t)ϑ5 + ϑ6
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C. Calculations and Proofs

u
′

2 =
(
A1Z1(t)

∫ T

t

eA1sds+ γ

∫ t

0
A1Z1(s)ds

)
ε1 +

(
A2Z2(t)

∫ T

t

eA2sds

+ γ

∫ t

0
A2Z2(s)ds

)
+ γσB̃(t)ε2 − γσ1B1(t)ε3 + γσ2B2(t)− ε4

]
for ϑi, εj , i = 1, .., 6, j = 1, ..4 in Appendix A.
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