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1 Introduction
In this thesis we use kriging to predict a curve for the price on power futures.
This is a technique from geostatistics which also gives us an estimate for the
error of the prediction. This way our futures price will be a distribution.

We will then consider the prices for options on such futures contracts.
The option price will necessarily also be a distribution, and we will look
deeper into how the error transfers from futures price to option price.

In the beginning of the thesis we introduce the power market together
with the different types of contracts we’re considering. The power prices
varies a lot. Both production and usage, is very dependent on the weather,
and therefore the price shows a strong seasonality. We will look at this, and
other reasons for variation.

After this we will present a proof of the form of kriging. This is based
on the proof in [CW11], but with slight changes. As power is delivered
throughout a period, and not everything at once as many other commodities,
the covariances of the contracts will be different.

We estimate the kriged curve in the following chapter. First we remove
seasonality, and then estimate our mean function, the Nelson-Siegel curve,
and then use our models to find the predicted curve.

We then want to look deeper into what elements makes up the curve.
In chapter 5 we look at the different parameters of the kriged curve to see
what role they all have, and how important our estimate of them are. We
will, by generating a field, see if we can be certain of our methods. In the
end of this chapter we’re looking at how a change in contracts prices affect
the curve.

In the last chapter we move over to the pricing of options. We are going
to use the Black-76 formula, so we will present this and see that also the
option price is normally distributed, when the futures curve is. Then we’ll
look at the relative variance of the option price in relation to that of the
futures contract.
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2 The Power Market
In this thesis we will be dealing with futures contracts in the power market.
Here we will present power markets, focused on NordPool and EEX, which
is the one we have collected data from.

It’s possible to trade power in futures contracts, the curve of such
contracts is what we want to find an estimation for in this thesis, so we
will present what it is. We will also talk about options on these futures
contracts.

The problem of seasonality is a bigger issue when trading power than
many other commodities, and we will have to take this into account when
modelling the curves in later chapters. At the end of this chapter we will
present the problem and explain why it’s such a big factor in the power
market.

Power Markets
For the Nordic countries, the power market was liberalised through the
consumer market in the 1990’s. This lead to competition between the
power suppliers. NordPool, owned by national grid companies from Nordic
and Baltic countries, was established in 1996 as the first market to trade
power between countries. More power markets followed in the time after
this, including EEX in 2002, which is the market in focus in this thesis.
Although both exchanges trades in many of the same countries, NordPool is
the biggest in the Nordic and Baltic area, while EEX is more focused on
central-Europe.[Reg; Nor19; EEX]

Today, power is traded between countries everyday and this has lead to
more stability in the price. This is because, by basic supply and demand,
power will be bought and transported from where it’s cheap, to where it’s
more expensive at the time. This transferring between countries has lead
to a debate on Norway’s power use, and its impact on climate. Of the
total power production in Norway in 2017, 98% was renewable. While after
having transferred power with countries with different natural prerequisites,
where the power production has a smaller percentage that is renewable, only
32% of the power used was guaranteed to come from such renewable sources.
46% was fossil power, while the rest was nuclear.[ene18]

Energy companies and private investors trade in these markets, and the
prices we pay as private consumers is calculated by the energy companies
from these prices.
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Futures, Forwards and Options

We have collected data for Phelix-DE futures contracts over a quarterly
period from EEX.

A futures contract is an agreement to buy or sell a commodity, power
in our case, for an agreed upon price, at a given time in the future. As an
example On EEX, the latest transaction on a futures contract for the 3rd
quarter of 2019 is 11,040 MWh bought for a price of 45.50 Euro/MWh.

We say that the person who has bought the contract holds a long position
and the one selling is the short position holder. Of course, if the price goes
over 45.50 before the date of delivery, the person holding the long position
has made money, assuming he or she sells it at this point for the new,
higher price. This way it can be viewed as a bet on the future price of the
commodity.

The futures contract is very similar to the forward contract, and so far,
the description is exactly the same. The difference, however, between these
two contracts is that the futures contracts are marked-to-market every day.
That is, the two parties has to settle the difference in price each day up
until the agreed delivery time, while the forward contract is settled only at
the delivery time. This could make the calculations slightly different for the
two, by considering interest rate earned by having the money, but we will
look away from this factor in our models. The same amount of money will
be transferred between the two in any case.

Historically, these contracts was important to secure production. A
person that produced a commodity could sell it for a specified price and
time in the future, to secure that the whole production process doesn’t end
up being worth nothing.

Nowadays the contracts are mostly used for trading, but also on EEX
the physical delivery can be arranged between the trading participants. If
the physical deliverance of a futures contract is fulfilled it is either delivered
all at the same time, as it is for oil futures, or, as in the power case, delivered
throughout the period.

In the example above, 11,040 MWh would be delivered over the 3rd
quarter of 2019 if the contract were to be fulfilled. The period in which
power is delivered can range from a single day to a year.

The fact that it’s not all delivered at the same time will make our
calculations a bit more tricky, and we will see later explain what adjustments
we need to make because of this.

When doing the calculations later, we will use the settlement price of
each contract. This is a price calculated from the average exchange prices
and average of the best ask and the best bid within a given time and order
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quantity by EEX. The formula depends on whether there were orders and
trades, and can be found in [EEX18]

EEX also trades European put and call options on these futures contracts.
A call option is the possibility to buy a futures contract for a strike price,
K, at an agreed upon time of maturity, T . The fair price of these options
are, on EEX, calculated by the Black-76 formula. We will come back to
this formula in chapter 6. On EXX the Phelix-de futures, these options are
possible to trade on monthly, quarterly and yearly contracts.

On EEX, in addition to these prices, we might find the total volume
traded and data for the exchanges made each day.

Although the opening for transaction over borders made the power price
more stable than earlier, it still varies more than the prices of many other
commodities. There are multiple reasons for this, but as we now will see,
the seasonality of the power price is probably the strongest factor.

Variation in the Power Market
The seasonality is a bigger part of the power market than it is for most
other markets. This is easy to understand as, for someone living in a warm
area, the power usage will increase in summer as more power is needed to
cool down their house. Colder areas, like those we’ve got data for, will do
the opposite and spend more power during winter for heating.

Seasonality does not only affect the usage, but also the level of production.
For example the production of hydro-power will be higher in rainy seasons.

It is very likely that the climatic issues leads to more extremities in
the weather. This means that in the future we could get an even stronger
seasonality and more instability in resources needed to produce power.

Other reasons for variation in the power price might be changes in govern-
ments, which leads to changes of what tax-level is put on different production
techniques. Sometimes even which ones that are legal. Less dramatic than
this is that the conditions for transferring of electricity between countries
might vary. These are of high importance as electricity is hard to store in
an economically efficient way.

In chapter 4 we will look more into modelling a function to describe the
seasonality. [Reg]
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3 Kriging

One basic assumption of geostatistics is that soil close to a measured point,
should be more similar to this measurement than soil further away. In this
field the kriging technique occurred as a way of optimising a curve after
measured points by interpolating them, and giving an error function to
describe how accurate this estimate is.

In this thesis we will to use this technique on the field of Mathematical
Finance, with the thought that prices of contracts delivered at dates close in
time will be more similar than those delivered at a further time apart. We
will use kriging to find a curve that capture the development in the futures
prices in the market presented in the previous chapter, but the error is also
an important reason for us choosing this curve fitting technique.

First we will present kriging and what a Gaussian Random Field is. Then
we will prove that the simple kriging form is an optimal predictor in the
mean squared sense. We will also present the form of its error-function.

In our proof we will point out how one assumption made in the proof
from [CW11] isn’t obvious, but by looking into detail, we find that the
results are the same.

After this we will present different types of kriging, as simple kriging
isn’t the only technique. Before finishing the chapter by presenting the
semivariogram. This is an alternative way to look at covariance, and an
important part of kriging. This will be presented together with the nugget
effect, an explanation for small variance in the data. We will look into
whether this is transferable to mathematical finance or not

3.1 Gaussian Random Field and Kriging

Kriging comes from geostatistics, or more specifically gold mining, as a
method for spatial prediction. It is named after the South African mining
engineer Danie G. Krige, who’s work Matheron later developed the theory
from. It is an interpolation technique that is found by minimising the mean
squared error of a general predictor class and a set of data. Simple kriging
looks at predictors on the form l′F + k, where F is the dataset, l′ ∈ Rn and
k ∈ R, that is all heterogeneously linear predictors.

In kriging, there are few assumptions: we only need a mean a covariance
function. Due to this it has been used in multiple other fields as well. In
mathematical finance, however, it hasn’t been as popular.[Krig]
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When we’re kriging we are also going to assume that the futures contracts
price process is a Gaussian Random Field. To understand what this means,
we first need to define a Stochastic Process :

Definition 1. A Stochastic Process is a collection of random variables
{f(t) : t ∈ [0, T ]}.

A Random Field is a generalisation of stochastic processes where f and t
can be of dimensions higher than 1. We have a (m,n)-random field if f is
m-dimensional random and t is n-dimensional.

With ft = f(t1, . . . , tn) = (f 1
t , . . . , f

m
t ), a Gaussian Random Field, or GRF,

is a random field where, for any t ∈ Rn, each f it has the Gaussian distribution.

The form of the GRF is entirely decided by it’s mean and covariance
function. We will look more into the choosing of these in chapter 5. The
existence of these two moments, and the fact that it is stable under linear
combinations makes the GRF a good choice to describe the process.

Now, every GRF, f(t), can be written as

f(t) = m(t) + Y (t)

Where m(t) = E[f(t)] is a mean function, and Y (t) is the zero-mean GRF
depending on a covariance function Cov(f(x), f(y)).

With a given dataset of futures prices F = {F̂1, . . . , F̂n}, we can per-
form kriging on the GRF and find the predicted curve as the conditional
expectation

fpred(t) = E[f(t)|F̂1, . . . , F̂n]

We will find the exact form of this in the following section.
We will also find the form of the error σsk(t) = std(f(t)|F̂1, . . . , F̂n),

a conditional standard deviation. This error is one of the main reasons
we want to use the kriging technique, and with this we can quantify the
uncertainty of the futures price. As we don’t have any exact data-points,
but only a period-average to estimate our points from, an estimate of the
error will be important.
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3.2 Proof of the Simple Kriging form
We have seen that the optimal form of our GRF is really a conditional
expected value of f(t). As already mentioned Simple kriging considers all
on the form l′F + k. We want to find the predictor that is optimal in the
mean squared sense. That is, our predicted curve, fpred(t), is the function
f ∗(t) that minimises the mean squared error

E[(f ∗(t)− (l′F + k))2]

Since we are considering contracts delivered over a period and not spot
prices, our dataset, F , isn’t values for the actual field f(ti), but rather for
the period average F (ti) = 1

l

∫ ti+l
ti

f(z)dz. Here l is the length of the period.
This means that our covariance-function for contracts with delivery period
x and y will be

Cov(F (x), F (y)) =
1

l2

∫ y+l

y

∫ x+l

x

Cov(f(u), f(v))dudv

We will denote the matrix with Cov(F (ti), F (tj)) as its entries by C. In
the last section we will see that this matrix changes slightly when con-
sidering measurement error, but in the proof we will look away from this.
Meaning that for now we have Cov(F̂ (x), F̂ (y)) = Cov(F (x), F (y)) and
Cov(f(x), F (y)) = Cov(f(x), F̂ (y)) for all x, y’s. We let ct be the covariance-
vector given by

ct =


Cov(f(t), F (t1))
Cov(f(t), F (t2))

...
Cov(f(t), F (tn))

 =


1
l

∫ t1+l
t1

Cov(f(t), f(z))dz
1
l

∫ t2+l
t2

Cov(f(t), f(z))dz
...

1
l

∫ tn+l
tn

Cov(f(t), f(z)), dz


and σf be the variance of the field. Withm as the vector with 1

l

∫ ti+l
ti

m(z)dz,
for all i’s, as it’s entries, we denote the difference m−F by ŷ and get the
proposition:

Proposition 1. The "simple kriging" - optimal spatial predictor of a Gaus-
sian random field, in the mean squared sense is

fpred(t) = m(t) + c′tC
−1ŷ

Proof. As mentioned we will be looking at minimising the expression
E[(f(t)− (l′F + k))2].
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Of course we have that:

E[(f(t)− (l′F + k))2] = var(f(t)− (l′F + k)) + [E(f(t)− (l′F + k))]2,

and writing out the first term we get:

var(f(t)− (l′F + k)) = var(f(t)− l1F̂ (t1)− . . .− lnF̂ (tn)− k))

= σ2
f − 2

n∑
i=1

liCov(f(t), F̂ (ti)) +
∑
i,j

liljCov(F̂ (ti), F̂ (tj))

= σ2
f − 2

n∑
i=1

liCov(f(t), F (ti)) +
∑
i,j

liljCov(F (ti), F (tj))

= σ2
f − 2l′ct + l′Cl

The second term will be:

[E(f(t)− (l′F + k))]2 = (m(t)− l′m+ k)2

= m(t)− 2m(t)l′m− 2km(t) + l2m2 + 2kl′m+ k2.

And so our expression for the simple kriging-error is now

σsk(t; l, k) = σ2
f−2l′ct+l

′Cl+m(t)−2m(t)l′m−2km(t)+l2m2+2kl′m+k2

To minimise this error we need to find the optimal l∗ and k∗. We do this by
differentiating the error with respect to each of them.

At this point [CW11] chooses a simplified optimisation technique by only
looking at the first term when differentiating with respect to l. This isn’t
obviously correct at first, so to be clear we have done this more thorough to
show that it does actually lead to the optimal l.

So, we look at l first:

∂

∂l
σsk(t; l, k) = −2ct + 2lC − 2m(t)m+ 2lm2 + 2km

Putting this equal to 0 we get the optimal l by

l∗ = (ct +m(t)m− km)(m2 + C)−1.

Doing the same for k we get that:

k∗ = m(t)− l′m,
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and putting k∗ into l∗ we get, similarly to [Cressie] that

l∗ = (ct +m(t)m− (m(t)− l∗m)m)(m2 + C)−1

l∗(m2 + C)− l∗m2 = ct +m(t)m−m(t)m

l∗ = ctC
−1

Further, by putting this new expression back into k∗:

k∗ = m(t)− ctC
−1m

So the optimal mean squared predictor is given by:

fpred(t) = l∗′F + k∗

= ctC
−1F +m(t)− ctC

−1m

= m(t) + ctC
−1(F −m)

= m(t) + ctC
−1ŷ

The mean squared error we started out with solves to

σ2
sk(t; l, k) = E[(f(t)− (l∗′F + k∗))2]

= σ2
f − c′tC

−1ct,

which means that our simple kriging error-function is given by

σsk(t) =
√
σ2
f − c′tC

−1ct.

Again, if our datapoints weren’t periods, this error would be 0 for these
time-values.

Other forms of Kriging
Now we have found the form of the predictor we will use in this thesis, but
other forms of kriging than that of simple kriging exists. In this section, we
will present what is known as universal kriging, although without proof. We
will also present a special case of this, known as ordinary kriging. Similar to
the case of simple kriging, both of these forms also have error-functions, but
these won’t be presented here.

The GRF, f(t), can be generalised to the form f(t) = x(t)β + Y (t).
The mean function is now a product of a vector of covariates, x(t), and a
regression parameter β. This would give the new simple-kriging form

fpred(t) = x(t)′β + ctC
−1(F −Xβ)
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Usually, however, this β is unknown. From the proof in the previous section,
it’s apparent that β will only be in the k∗-term. Therefore, when finding the
ordinary kriging predictor, only the class of homogeneously linear predictors
will be considered. That is, predictors on the form λF . in stead of lF + k
as we did to find the simple kriging predictor.

If we now demand the predictor to be unbiased, that is E(fpred(t)) =
E(f(t)) = x(t)′β, we can find the universal kriging predictor by

funi(t) = x(t)′β̂gls + ctC
−1(F −Xβ̂gls).

Here β̂gls is the generalised least squares estimation of β, which is given by
(X ′C−1X)−1X ′C−1F .

Now, if we let x be 1-dimensional and equal to 1, while we also put β = m(t),
we get, with 1 = (1, . . . , 1), the form of the ordinary kriging predictor

fok(t) = mgls(t) + ctC
−1(F −mgls(t)1),

where mgls(t) = (1C−1F)/(1C−11) is the generalised least squares estima-
tion of m(t).

The universal kriging predictor, unlike the simple kriging predictor, can
be rewritten to be with respect to the semivariogram in stead of covariance
function. [CW11]

3.3 Semivariogram and the Nugget Effect
One way to evaluate the covariance-structure of a random field is to look at
its semivariogram. Instead of showing the correlation, it shows how much
the field varies by distance. In our case it shows how much the futures prices
vary by how many periods apart they are being delivered. Intuitively, one
would assume that the difference in price would vary more for a bigger time
gap. Since two contracts delivered at the same time of course will have the
same price, it also makes sense that the variation and so the semivariogram
goes towards 0, when t→ 0.

The geostatisticians who used the semivariogram for spatial statistics
found that the semivariogram didn’t behave like this. In stead it went
towards some positive value. They named this discontinuity at the origin
the Nugget Effect.

In this section we will first look at the semivariogram without this nugget
effect. Then present it more thoroughly and show the changes we have to
make to include it in our mathematical model. Finishing this section and
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chapter I will discuss the relevance of the nugget effect in our context.

We say that a covariance function is stationary if, for a process f(t),
Cov(f(x), f(y)) is only dependent on the distance |x − y| = h. We de-
note the stationary covariance function for two contracts h periods apart by
Cf(h) = Cov(f(t+ h), f(t)), for all t. Now we will use the definition from
[CW11] for the corresponding stationary semivariogram:

γf (h) = Cf (0)− Cf (h).

Example 3.3.1. Consider the exponential covariance, Cov(x, y) = σ2e−ρ|x−y|,
then we have that the corresponding semivariogram is

γ(h) = Cf (0)− Cf (h) = σ2 − σ2e−ρ|h| = σ2
(
1− e−ρ|h|

)
.

Seeing this, it becomes obvious how the semivariogram is just an alternative
way of looking at the covariance. The two curves will have an opposite
structure.

The optimal predictor we found in the previous section is defined as
generally as possible and doesn’t actually need the covariance function to
be stationary. However, we will use one that is. The reason for this is that,
later, we will fit the semivariogram based on this covariance function to the
the empirical semivariogram to get estimates for the parameters ρ and σ,
and this empirical semivariogram is stationary, and with ave{A} denoting
the average of a set A, we define it as

γF(h) =
1

2
ave{(F̂i − F̂j)2 : |i− j| = h, i, j = 1, . . . , n}. (1)

As F̂i − F̂j = 0 when i = j, it’s clear that the dataset we get from this
semivariogram will have a point in the origin. We will now look into why
the curve doesn’t always behave like this.

The Nugget Effect
As mentioned, the variogram was used to describe variation in soil by
distance. The name, nugget effect, comes from the sudden appearance of
gold nuggets that would change this data in an unnatural way. This is an
example of what would be considered a measurement error, which is one out
of two explanations for the nugget effect. The other being the existence of a

11



micro scale variance in the process. We will denote these two errors by σε
and σ0, respectively, and their sum, the nugget effect, by c0. We define it as

c0 = lim
h→0

CF(0)− CF(h),

where CF(h) = Cov(F̂ (x+h), F̂ (x)) is the stationary covariance of measured
points.

This changes our functions for covariance and semivariogram to

Cov(h) = c0χh=0 + σ2e−ρ|h|

γ(h) = c0χh=0 + σ2
(
1− e−ρ|h|

)
Where χh=0 is the indicator function for zero distance. This way the semivari-
ogram goes towards c0 instead of 0.

Theoretically we want the sampling to be perfect, meaning no measurement
error, but if we were to take it into account, we would have to change the
covariance-matrices we saw in the proof.

The new elements of the matrix would be

Cov(F̂ (x), F̂ (y)) =

{
Cov(F (x), F (y)) + σ2

ε , when x = y

Cov(F (x), F (y)), when x 6= y

That is, while we have to change the elements on the diagonal of the co-
variance matrix, the other elements remains unchanged. Following this,
Cov(f(t), F (ti)) = Cov(f(t), F̂ (ti)) for all i’s, and so we keep ct unchanged.

So, which semivariogram, and which covariance-matrix should we use in our
case?

Since our measuring is only reading the settlement prices calculated by
EEX, we can look away from σε, so C, the covariance-matrix, stays the
same.

A variance in the process, however, is possible as it is a market in which
people speculate, and so there might be sudden spikes. This would probably
be more apparent if we were considering the price process of one future
contract. We’re considering the price process for the contract delivered at
a time t, and we have observed on EEX that the prices on the different
futures contracts change together. This makes their relative variance more
predictable. We will try to estimate the semivariogram both with and
without the nugget effect, but by this we’ll see that it in fact turns out to
be 0. [CW11]
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4 Estimating the Kriged Curve of Futures
prices
In this chapter we will use the kriging technique found in the previous
chapter on actual data for futures prices read off from EEX.

First we will introduce the Nelson-Siegel curve, our choice of mean
function, but before we can make an estimate of it, we need to discuss the
seasonality. We will consider two different options to capture it.

After having estimated the Nelson-Siegel curve, we need to return to
the semivariogram to find estimates for the parameters of the covariance-
function. Then, at the end of the chapter, we will se the kriged curve with
errors to show how it captures the data in a much more flexible way than
the mean function did.

4.1 Estimating the Mean Function

The Nelson-Siegel Curve
We are going to use the Nelson-Siegel curve, introduced in [NS12], as our
mean function. It has the form

fNS(t) = α0 + α1e
−βt + α2βte

−βt. (2)

This curve has become popular in a range of fields, and is, together with
the extension by Svensson in 1994, still used by banks as a model for term
structure of interest rates. [APK12]

The Nelson-Siegel curve was first used to model yield curves to calculate
forward rates. That is, an interest rate used for a future financial transaction.
With these forward rates, one also considers the yield to maturity, which is
the total return. This is given by the average of the forward rates. For a
forward rate with maturity t, r(t), the yield to maturity is given by

R(t) =
1

l

∫ t

0

r(z)dz.

Now, we remember that our price of the futures contract with maturity at
time t were given by

F (t) =
1

l

∫ t

0

f(z)dz,

where we want to estimate f(t) from data for F (t). Considered this way,
F (t) is the average of the futures prices in the period, and so it’s easy to
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see the similarities between r(t) and f(t). This, and the fact that it is a
relatively good estimator for few observed values[APK12], is the reason we
choose this curve as our mean.

Looking at 2, we see how it’s similar to the solution of a differential
equation with one root. The reason for this is simply that this is the class
they looked into to find their curve. The solutions of differential or difference
equations was already used to describe yield curves, and if a spot rate were
given by such a differential equation, the forward rate, r(t), would be the
solution of this equation.

So, looking at these solutions they found that the solution to the second-
order differential equation with real and unreal roots were over-parametrised,
and that the solution to the equation with one root had the same range, while
being much easier to estimate[NS12]. Due to concave/convexity-problems,
however, the estimation can still be troublesome.

By considering

lim
t→∞

fNS(t) = α0, and

lim
t→0

fNS(t) = α0 + α1,

we see that α0 is the long-term component, while α1 affects the short-term
behaviour of the curve. We will look more into each parameter’s impact on
the curve in the next chapter.

We can’t tell much of the other two parameters from this, but we will
see later that both α2 and β affects the middle range of the curve. We will
look deeper into this in chapter 5

We know Nelson-Siegel won’t be completely accurate. However, we are
only using it as a mean function, and we’re confident that it will be good
enough for this purpose.

Function for Seasonality
We’ve only got data for 9 quarters. This is not ideal when finding a function
for seasonality, but using an average function we can get a rough estimate.
As we’re only considering two years, and don’t see any clear trend we will
look away from this.

The structure of the power prices is cyclical. This calls for a sine-function,
which would, of course, give a much smoother function than the average-
function proposed above. However, as we are considering quarterly periods,
it’s not clear that a sine-curve would be more helpful. Had we in stead been
looking at weekly contracts, or monthly even, a sine-curve could perhaps be
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the better option, as, in that case, we would see the development throughout
the year clearer. For our quarterly data it’s hard to notice any other dynamic
than the prices being higher in the two winter quarters, 1 and 4, and low in
summer, 2 and 3. Therefore we will use the simple average-function.

252 or 365 days in a year
Before doing the estimations we need to consider that in financial markets
there are 252 days a year, and take this into account when creating our
models.

Our first estimation, however, is of the price of the contract delivered at
time t, and since power is delivered every day of the year, we will still use 365
days. As our period-length of a quarter we will use 365

4
≈ 90. Following this

we will also have 90 points for each period when estimating the parameters
of the Nelson-Siegel curve.

We actually won’t have to consider the issue of 252 days in a year before
we’re looking at options-pricing in the last chapter.

Estimate of the Nelson-Siegel Curve
Since we are looking at future contracts delivered over a period, we won’t
have daily points, but rather data for the whole quarter. Our datapoints are
the prices for Phelix-DE Baseload Quarter Futures, collected on March 1,
2019. We will use the same value for each day within a period, and this way
fit eq. (2) to 9 · 90 points. We use these to calculate the vector of average
seasonal values from F and use this to create our function for seasonality.
We get the vector {51.62, 43.00, 46.08, 52.12}. As we expected, these prices
from Phelix-DE shows a clear seasonality. Now we subtract

fs(t) =


51.62 t ∈ 1st quarter
43.00 t ∈ 2nd quarter
46.08 t ∈ 3rd quarter
52.12 t ∈ 4th quarter

from the data-points, and fit the Nelson-Siegel curve to the new, adjusted
points by using R’s ’nls’-function with a fixed β, as suggested in [HR12].

This method demands initial values, and since we have that

lim
t→∞

fNS(t) = α0

lim
t→0

fNS(t) = α0 + α1,
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We will use αinit
0 = F̂n and αinit

1 = F̂1 − F̂n.
We can’t determine αinit

2 from this, but as it turns out, with αinit
0 and αinit

1

set, we get the same result for any αinit
2 ∈ [−100, 100], so it’s not important

to be accurate with this parameter. We also found that the initial values
for α0 and α1 can vary a lot without giving a different estimation.

To find β, we set the estimated values for the αi’s and try different values
from [NS12] as βinit, and see quickly how R’s sum of squared errors goes
down, as β is chosen to be smaller.

We find the optimal values to be α0 = −2.375, α1 = 1.761, α2 =
7.537, β = 0.00416. The Nelson-Siegel curve with these parameters is
plotted together with the data from EEX in Figure 1. It’s important to note
that on the t starts on 30. The reason for this is that we collected the data a
month before the start of the second period. As we have removed seasonality
the y-axis isn’t showing the futures prices, but rather the price-dynamics
with time.

Figure 1: The Nelson-Siegel curve

We see that the Nelson-Siegel curve captures the form fairly well, but
that it does not capture "extremities". It’s reasonable to use as a mean
function for the Kriging that we will do in the following section.
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4.2 Kriging of Estimated Curve
With our mean function defined, what we need to perform kriging is to
define a covariance function. Initially we will use the exponential covariance
function with nugget effect. That is

Cov(f(x), f(y)) = c0χh=0 + σ2e−ρ|x−y|,

We already know that this function is stationary. It is a fairly simple
covariance function, and in the next chapter, we will look into whether or
not a more complex covariance is preferable.

To use this we need to find σ and ρ, and we will do so by fitting the
function for the semivariogram, γ(h) = c0χh=0 + σ2(1− e−ρh), to the points
from the empirical semivariogram given by eq. 1.

This is a vector of length 9, and once again we use the nls-method in R,
to fit the curve to the points. We find the values ρ = 0.4567 and σ2 = 1.2597.
The nugget-effect turns out to be 0, and therefore we can look away from it.
This means that in this specific case the variance goes towards zero as the
contracts gets closer in time

The semivariogram is plotted in fig. 2, and we see that the curve captures
the form of the data quite good, although not perfect. Compared to [FEB],
the variation we get is quite big here, and the lack of data might be a
reason for this both from estimating semivariogram and when calculating
seasonality. Another explanation could be that the power market just has
more fluctuations than the markets looked at in that paper.

Figure 2: Semivariogram

Now we have all parameters for our Kriged curve, but we’re changing
the time unit. The semivariogram that we estimated σ and ρ gave us
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the variance and correlation of the period, while the predicted curve is
given with timesteps measured in days. Therefore our new values will be
ρ′ = ρ

90
= 0.00507 and σ′2 = σ2

90
= 0.0176.

With all parameters set, we plot the kriged curve in fig. 3, and can
see how it follows the data much closer. It’s a lot more flexible than the
Nelson-Siegel curve, and the integral of the predicted curve interpolates
the price over the interval. Had we been considering spot prices, the curve
would have interpolated each of this points.

This is an estimate for the price of the futures contract delivered t days
from now, but of course it’s the actual market price that is most important.
That’s one reason why we want to quantise the error, and why we’re using
kriging. The curve with added errors is plotted in fig. 4.

Figure 3: kriged curve

We see that the Nelson-Siegel curve is outside the error-function for a
lot of the time.

Similarly to how the predicted curve would interpolate the data points
of spot prices, the error would do the same. This is because we would know
the value at this points, and of course there wouldn’t be any uncertainty.
But, as we’re considering intervals, we can see that this is not the case.

It’s not easy to say much about the development of the error from this
plot, so we plot it on its own in fig 5. Here we see that it takes a cyclical
shape, being smaller in the middle of the period, and nearly 50% bigger in
between. This is hard to spot from the plot of the predicted curve with
error.
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Figure 4: kriged curve with error

Figure 5: Simple kriging error plotted with time

Splines
Curve fitting has usually been done by either smoothing or interpolation of
the data. One popular way to interpolate data is to do this with splines.

We started off with a classic smoothing technique, with a least-squares
estimate of the Nelson-Siegel curve, but with kriging we also interpolated
the data. Now, we could have used splines, and as Cressie points out in
[CW11], kriging is similar to thin plate splines. But doing it this way, we get
the error-function we want. And in addition to this, as splines are defined
as a piecewise polynomial function, it can have many parameters.
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5 Analysis of Parameters and Data

To gain a deeper understanding of the curve we want to look at what role
the different parameters play and how important the accuracy is, that is
how sensitive the curve is for a wrong valued parameter. This way we can,
hopefully, be more certain of our model even with a lack of confidence in
one parameter.

After this we will consider how certain we can be of the models we have
used to estimate these parameters. We will describe how to generate a
random field, and use this to see if our models find the parameters when we
know the values of them.

In the last part we will look at what impact of the curve a change in the
data will have. We will quickly notice that, because of our average-function
for seasonality, a change will impact the curve a lot.

5.1 Parameters

The kriged curve takes in the parameters σ, ρ, β and the αi’s. In this first
section we will consider the parameters of the Nelson-Siegel curve, and
explain what each parameter do to this curve. Except for α0 it has similar
effect on the predicted curve, but it’s not as easy to spot the differences in
this case.

We will in the end of this section show the sensitivity of the αi’s through
plotting their derivative functions.

In the second section we will evaluate our choice of covariance-function
with it’s parameters, σ and ρ, to see if a more complex function will improve
our predicted curve. We will look at both the error functions and the
predicted curves for these different covariances, and see that they all, most
of the time, look fairly similar.

Parameters of the Nelson-Siegel Curve

We already saw in the previous chapter how α0 is the long-term component,
while α1 affects the short-term behaviour of the curve, but the limits didn’t
give us any information of how α2 and β affects the Nelson-Siegel curve.

In this section we’re going to have a closer look at each of the parameters.
First, in fig. 6 and 7 we get a confirmation of what we found earlier for
α0 and α1. That is, α0 is the constant part of the curve, and so it doesn’t
affect the shape of the curve. The whole curve is just shifted upwards or
downwards by the element we add to it. The blue line in fig. 6 is with
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α0 = 0, while the value is set to -4 in the red line. The green is the same
curve we found in the previous chapter in all the figures of this section. That
is, in this case α0 = −2.375.

A change in α1, on the other hand, changes the form of the curve. we
see that the initial values of the curve has changed remarkably, while the
curves quickly moves towards similar values for later timesteps. We know
that it affects the curve just as much as α0 does for the first values, but it’s
obvious that it’s effect declines quickly.

Figure 6: Nelson-Siegel with various values for α0

Figure 7: Nelson-Siegel with α1 = 3(blue line) and α1 = 0(red)

The curve is plotted for different α2’s in fig. 8. Here we have α2 = 13(blue
line), 0(red line) and -3.5(black line), and we see that this is affecting the
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middle part of the curve. The sign of α2 tells whether the first hump is
concave or convex, while the absolute value describes how big the hump is.
We also see that the curve start in the same points for all α2, and it closes in
towards the endpoint, although not as fast as it does in fig. 7. This implies
that this has more importance for later values than α2.

This is confirmed in fig. 9, where we have differentiated the Nelson-Siegel
with respect to each of the three αi’s. This plot shows us the factor with
which the curve change with a change in the parameter.

Figure 8: Nelson-Siegel with various values for α0

We have seen that α0 changes the curve the whole way through, while
α1 and α2 has a more local effect. We have that

∂

∂α0

fNS(t) = 1

∂

∂α1

fNS(t) = e−βt

∂

∂α2

fNS(t) = βxe−βt.

Now, with β = 0.00416, we plot these in figure 9, similarly to what’s done
in [NS12]. And see that this is correct. What’s not as clear from our earlier
plot is how much more α1 affects the curve than α2 does, but we get a
confirmation for that α2 changes the curve more than α1 after the first time
values. However, α2 never is a strong factor compared to α0, while α1 has
the same importance or the first point, although this quickly decreases. This
implies that, in our estimation, it is more important to be accurate when
estimating α0 than the two others.
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Figure 9

Figure 10: Nelson-Siegel plotted for different β

The last parameter, β, is plotted in fig. 10. The plot shows that β
also affects the hump of the curve. That is, it’s a part of the medium-term
component. This follows from it being a factor in the third term with α2.
Since β always appear with t, fNS(t) have the same limits for β as it does for
t. Namely, α0+α1, when β → 0 and α0 when β →∞. Therefore considering
a negative β-value is the same as considering a negative time-value, and
doesn’t make sense.

β describes the placement of the hump and not the size of it. In the plot,
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the blue line is the curve with β = 0.05 and the red line is with β = 0.002,
so a bigger β-value makes an earlier hump. It also describes how fast the
curve goes towards α0, the limit for when t, or β, goes to ∞. For the blue
line we see that it reaches this value quickly after t = 200.

By differentiating fNS(t) with respect to β, we can locate the maxima or
minima of the curve, and find the t-value of the hump:

∂

∂β
fNS(t) = −α1te

−βt + (α2te
−βt − α2βt

2e−βt)

= te−βt(−α1 + α2 − α2βt),

so the hump is at t = 0 or t =
α1 − α2

α2β
.

To illustrate the small importance on the predicted curve we include a plot
of the predicted curve for various changes of the Nelson-Siegel parameters
in fig. 11. Here we see that it mostly affects it at the first two periods and
then again at the endpoint, even when changed drastically: for the black
line we have used β = 0.02, the same as for the blue line in fig. 10, and the
green line is with a negative α2. This implies that the form of our mean
function isn’t very important for the predicted curve. We will see in the
next section how ρ changes this.

Figure 11: Predicted curve for various β and αi’s

We’ve seen that the Nelson-Siegel curve can take many different forms
with these four parameters, but of course, as it only creates curves with one
hump it won’t be able to capture a process like the one we’re considering
perfectly.
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Covariance Function of the Gaussian Random Field
The covariance function has two parameters: σ and ρ. σ describes variance,
while ρ describes correlation. Our initial estimation for ρ is 0.00507, which
means that the futures price of contracts delivered one day apart is correlated
by 0.995. That is, very strongly. By setting a higher value for ρ, hence
lowering the correlation between data, we see that the predicted curve isn’t
as smooth, as it has gotten more dependent on the mean function. This is
seen by how, within each period, the predicted curve has the same shape as
the mean. This is plotted in fig. 12. We find that by keeping ρ ≤ 0.05, the
kriged curve is fairly smooth.

Figure 12: kriged curve with ρ = 0.5

A change in σ doesn’t change the predicted curve very much, but this is
the most important parameter for the error-graph. In fig 13 the predicted
curve is plotted in red, with errors with σest = 0.1327, σ = 0.5, σ = 1.5 and
σ = 5 · σest in green.

From this plot of σsk we notice that a change in σ doesn’t change the
form of the curve of σsk, but only affects the scale. This implies that σ2

could be factorised from the covariance matrix. Remembering the form of
the error being

σsk(t) =
√
σ2
f − c′tC

−1ct.

We can factorise σ2 from the two ct, while it is also a factor of C, hence
1

σ2
is a factor of C−1. So leaving the similar matrices based on correlation-

functions, Corr(x, y) = e−ρ|x−y|, in stead of the covariance, we can factorise
out σ4

σ2 from the covariance-matrix, and then σ from σsk. Thus we have
shown that σ is a scaling factor of the error.
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Figure 13: Predicted curves with errors

We get another confirmation for this when we see that the the line for
5 · σ2

sk coincide with that of when σ = 5 · σest

Alternative Covariance Functions
Our initial choice of covariance function, the exponential covariance, is a
simple and not very flexible one. In this section we will look at three more
complex functions to see if this will make an improvement to our kriged
curve. The covariances we will consider are given by:

Squared exponential covariance: Cov(x, y) = e
1
2
ρ2|x−y|2

Matérn-covariance with ν =
3

2
: Cov(x, y) = (1 + ρ

√
3|x− y|)e−ρ

√
3|x−y|

Matérn-covariance with ν =
5

2
:

Cov(x, y) = (1 + ρ
√

5|x− y|+ ρ25|x− y|2

3
)e−ρ

√
5|x−y|

To be able to look at the impact on the predicted curve from the different
covariances, we first need to find each of the functions optimal values for ρ
and σ. We will, once more, use the semivariogram for this.

For the squared exponential covariance we get the values σ = −1.2363
and ρ = 0.6027, while for the Matérn-covariances we get σ = −1.2421 and
ρ = 0.5597 when ν = 3

2
and σ = −1.2393 and ρ = 0.5787 when ν = 5

2
. That

is, fairly similar values for all covariances.
In fig. 14 the old predicted curve is represented by the blue line, while

the predicted curve based on the squared exponential covariance is given by
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the green line. The Matérn-covariances are represented by the yellow(ν = 3
2
)

and black line (ν = 5
2
).

Figure 14: Predicted curves based on the different covariance functions

We see that, except for the squared exponential covariance after t = 500,
there are small differences in the covariances paths, with the exponential
covariance being the covariance that follows the data most tightly.

By plotting the error-curve for each of those covariances in fig. 15, where
the red line is the original predicted curve, we see the same behaviour from
the squared exponential covariance. It seems that the exponential covariance
gives the biggest error. They are all plotted with 5 times the simple kriging
error, to better show the differences.

These small differences that we see between most of the curves, tells us
that the choice of covariance isn’t too important.

5.2 Generation of a Gaussian Random
Field

By following the algorithm from [Pic16], we can, with chosen covariance
function and parameters σ and ρ, generate a Gaussian Random Field.

We’re generating this field to control the method used in chapter 4 to
find σ and ρ. We assumed only that the prices where a GRF, without
knowing what covariance, ρ or σ the dataset could possibly have. Now we
control this, and want to see if the method we used finds the correct values,
and so trust our findings in the previous chapter.
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Figure 15: Predicted curves with error- functions based on the different
covariance functions

So, with a stationary covariance-matrix, C, similar to what we saw in
[ch.3], only that this we’re not considering the integral of the covariance-
function, the algorithm is given by:

1. Cholesky-factorise C = BBT .

2. Generate θ = (θ1, . . . , θn), where θi ∼ N (0, 1).

3. Compute Y = Bθ to get a vector of points from the GRF.

Now, we put this algorithm into R, with n = 1000, ρ = 0.05 and σ = 0.4 in
the exponential covariance function we generate a Y of length 1000.

First we use the simple sd-function of R to find that the standard
deviation of this vector, Y , is 0.4000175, and so very accurately describes σ.

We want to look at the method we used earlier to find the parameters.
So we use the nls-method in R on a semivariogram, to find ρ and σ. This
time the semivariogram is based on values calculated from the generated
vector Y in stead of data points.

We put the standard deviation of Y that we found above as our σinit, while
for ρinit we find that we get the same estimate for every ρinit ∈ [0.01, 0.5].

R gives us σ = 0.39885 and ρ = 0.05043. This is very accurate, and so
this way we can be confident that our method gives us accurate values for ρ
and σ from the dataset. However, this is based on n = 1000 points, while
our assumed GRF is only represented by 9 data points. Putting n = 9 into
our method, and running multiple times gives us a big range of values, and
we can’t really tell much from it. Changing the values for n, it seems that
we need at least 500 observations to be confident in the results for σ and ρ.
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The next step would be to have a method finding the covariance from
the data, but as we saw, the different covariance-functions didn’t make a
great difference to the predicted curve, so we are not going to do this.

5.3 Change in Data

In this section we will look at the data’s importance for the curve. Both
the kriging-predicted curve and the Nelson-Siegel curve. We will see that
because we are considering quarterly periods, seasonality will play a big
role, and a change in one data-point affects at least one other, through the
average seasonality-function.

The plots are all made with the same ρ and σ. In fig 16 and 17, we have
only changed the first contract. In fig. 16 we put the first contract value
to be 51, while in 17 we put it at 45. Note that the scaling of the axis is
changed, to make it easier to compare fig. 17 to the original curve, as we
only changed the contract slightly in this case.

We see that the predicted curve changes a lot, and so do the Nelson-
Siegel curve. As kriging is an interpolation technique, it’s bound to be very
dependent on the data. We quickly notice, is that we’re making the curve
change the whole way through, and not just locally as one would assume
at first. This follows from the way we defined our seasonality-function. By
changing one data point we also affect at least one other data point. Had
we considered a data set of monthly contracts, this wouldn’t have been as
apparent.

Figure 16: Predicted curve with first contract valued at 51

To avoid letting the seasonality have such an impact on the curve, we
look at the curve without having subtracted the seasonality from the data.
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Figure 17: Predicted curve with first contract valued at 45

Figure 18: Predicted curve with third contract valued at 45

This makes the Nelson-Siegel curve very inaccurate, and therefore we’ll leave
it out of the plots.
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Figure 19: Predicted curve with first contract valued at 51, without season-
ality

Figure 20: Predicted curve with first contract valued at 45, without season-
ality

Figure 21: Predicted curve with third contract valued at 45, without sea-
sonality
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This time, we see that the curve mostly affects the closest contracts
to the one we change, so a drastic change in the middle contract will, of
course, make a different curve. However, as the curve interpolates all the
data points, it doesn’t change much outside of two closest points.

A different function for seasonality would also make the curve act dif-
ferently. Although, switching a random contract remarkably, changes the
seasonality. For example a sine-curve wouldn’t be as appropriate if the data
were no longer clearly cyclical.

Conclusion
The Nelson-Siegel curve changed clearly for different parameters, and to fit
this to data one would appreciate a high accuracy in the estimation, and, as
we saw, most important for α0. However, the predicted curve interpolates
the data tightly, and it seems that only big changes in the parameters
changes the curve.

Of course, when data is changed the predicted curve changes remarkably
as it interpolates all the points. Especially in the case where we used the
average function for seasonality, the whole process is changed, and so the
curve will look very different.

Our initial estimates are mathematically valid for α0 and α1, and we saw
that α2 follows from this. But, for σ and ρ we conclude that we can’t say
much about the certainty of the estimation. It seems that 9 data points
isn’t enough to do this.

We saw that σ didn’t do much to the curve, and ρ had a very clear
impact, which just describes the correlation to data, or dependence on mean
function. Therefore, we know what the quantification tells us, and how to
analyse the result of the two parameters, for different values.
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6 Pricing of Put and Call-options
In this chapter we will look at pricing of options. To do this we will use the
Black-76 formula.

Usually this takes the current futures price as a parameter, but our
kriged estimate of the futures price is a normal distribution. Because of
this, the option price will also be a distribution. We will look at how this
distribution also turns out be normal.

In the second section we will show in various plots, how the price of
the call option varies for the different parameters, before we, in the last
section, look at how the uncertainty of the futures contract is affecting the
uncertainty to the option price.

6.1 European options and the Black-76
Formula

A call option is a financial contract on a commodity between two parts,
where the buyer of the option has the right to buy the commodity for a
strike price K, before an exercise time T , both agreed on at the start of the
option. This sounds similar to the futures contract we’ve been working with
earlier, but in this case, the buyer has the option not to buy it. That is, he
can choose not to exercise the option. If the market price at the exercise
time, F (T ), is lower than the strike price he will choose not to buy. In this
case he would rather just buy it at market price. If it’s higher, then the
buyer has made a profit of F (T )−K. This gives the payoff-function at the
exercise time, T

max(0, F (T )−K),

where the function max(x, y) is equal to the highest number of x and y.
A put option is an option where the buyer of the option has the possibility

of selling a commodity for a price K at the exercise time. Similarly to the
call option, the buyer of the option considers the market price when choosing
whether to exercise the option or not. But this time he’s making a profit
if the market price is lower than the strike price. The put option has the
payoff-function

max(0, K − F (T )).

So while the call option is a way to secure a buyers position, the put-option
secures the seller.

We say that the call option is in the money if the current market price
is higher than the strike price. Oppositely, the put option is in the money if
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the strike price is higher than the market price at the time. This is not the
same as saying that the buyer is currently making money, as the premium,
the price of the option, isn’t considered in this.

The call option is out of the money if the strike price is higher than the
market price, and at the money if they are the same. We will look deeper
into this when considering different strike prices later.

Example 6.1.1. Consider again the current market price for a power
contract on the 3rd quarter of 2019, that is 45.50 euros per MWh. It’s
possible to buy a call-option for this futures contract. If she buys a call
option that secures her 2.000 MWh delivered through this quarter for a
price of 40 euros per MWh, then immediately this option is in the money.
The exercise time of this option would be sometime before the start of the
3rd quarter. If the price goes under 40, the option will not be exercised, and
the buyer will only pay the premium. If the price at the end is still above
40, for example 42. The buyer has made a profit of 2000 · (42− 40) = 4000
euros , not considering the premium.

We want to find a fair price for the premium on such an option. To do
this we will use the Black-76 formula. Presented by Fischer Black in 1976
[Bla76].

It is similar to the Black-Scholes formula, but while B-S has spot prices
at time t as the underlying asset, Black-76 has the current discounted futures
price with maturity at time T . It assumes that the futures price process is
log-normal. This is the formula used by EEX to price options.

With F being a log-normal futures price with constant volatility σ(note
that this is a different volatility than σεsk), K the strike price and Φ the
standardised cumulative normal distribution function, define

d1 =
ln(F/K) + (σ2/2)T

σ
√
T

d2 =
ln(F/K)− (σ2/2)T

σ
√
T

,

then we have the following proposition.

Proposition 2. The Black-76 fair price for a call and put option on a
log-normally distributed futures contract, F , is given by

c = e−rT [FΦ(d1)−KΦ(d2)]

and
p = e−rT [KΦ(−d2)− FΦ(−d1)]

Proof. See for example [Bla76]
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Option Pricing When Futures Contract Price is a
Distribution
Usually the Black-76 takes in the parameters and gives out a single number
as the price. But our futures price is, because of the kriging, not a number,
but a distribution for each t. We assume that it is normally distributed, and
we will use the predictor and error from chapter 3 as our mean and variance.
That is Ft ∼ N (fpred(t), σ2

sk(t)).
Now, F is a factor in c, so the price of the call option will also be a

distribution, but since F is also a factor in d1 and d2, it’s not obvious which
one. In the case of the di’s, we’re considering the logarithm of F , and we
have to be careful for when F is a negative number. However, as we’re not
considering seasonality in this chapter, the values of fpred(t) will be within
[37.9, 53.2] and the distribution will rarely, if ever, have negative numbers.
We can just remove the few appearances we find without it making any
significant difference, and so it won’t affect the results.

To see the distribution, we generate values for Ft as described above and put
them into the Black-76 formula for the call option price to create a histogram.
We do n = 10000 simulations with t = 300, K = 35, T = 300, σ = 0.3√

252
and

r = 0. The the histogram is plotted in fig. 22, and it seems to be normally
distributed. We plot the density-adjusted histogram with the Gaussian
density function in fig 23 and get this confirmed.

Figure 22: Histogram of option prices

Why the option price has the same type of distribution is explained by
how strong F is compared to the di’s in c. The logarithm of F from d1
and d2, varies less than F on its own. And when using the normal cdf the
difference to F on its own gets even bigger, as 0 ≤ Φ ≤ 1. This means that
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Figure 23: Normally adjusted histogram with pdf-curve

c is close to the form c = aF + b. And so it follows from basic statistics that
c will be normally distributed when F is.

Now, in fig. 24 we plot the same adjusted histogram for the put price
with the corresponding density function, and it’s no surprise that this is also
normally distributed.

Figure 24: Histogram of put-option

This way we can say something about the uncertainty of an option price,
and know that it isn’t biased, but we can’t quantify it yet, and neither relate
it to the variance of the futures contract price.

We will do this in the last section, but first get more familiar with the
different parts of the price function, by plotting them and look at how the
price changes with them.
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6.2 Plots of the Option Price

We put the default values K = 35, t = T = 300 and σ = 0.3
252

and consider
the expected value while plotting the call option price against the different
variables

Figure 25: Option price as function of strike price

In fig. 25 the option price is plotted for different values for the strike
price, and we see that the option price sinks as K gets bigger. The higher
the price you agree to have the option to pay in the future, the more likely
it is that the market price is staying lower than that of the strike price. And
so the value of the option to buy the contract seems less attractive and the
price decrease. Similarly to buy it for a very cheap price in the future is
very attractive, and hence, very expensive. From the plot we see that at 0
it is the same as the price of the futures price, and then decreases, and gets
close to 0 for very high K.

Fig 26, on the other hand, which shows the option price for an increasing
volatility, is growing. This makes sense in the way that if the underlying
asset has a high volatility, it’s harder to tell what the price might be in the
future and so the the price rises towards the actual price of the futures price.

The reason the option price has a upper limit at this price is that it
doesn’t make sense to pay more for an option on a contract than the contract
is worth on its own. You might as well just buy the contract.

The option price increases when the exercise time is getting larger. This
follows from that with a longer timespan, bigger difference of the price can
occur. Similar to how it increases with volatility.
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Figure 26: Option price as function of volatility

Figure 27: Option price as function of exercise time

6.3 Uncertainty of the Option Price

Since the underlying futures price has an uncertainty, it will be uncertain
with any estimation technique, there will also be an uncertainty in c following
from this. We have a way to quantify this uncertainty, and want to look
deeper into this.

We plot the variance of the option price together with different values for
simple kriging error in fig 28, and see that the two has a linear relationship.

Of course the variance of the option price is much smaller than the
variance of the futures price, so what’s more interesting is to consider the
relative variance. That is, the standard deviation of our call price values
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Figure 28: Relationship of kriging error and deviation of option price

divided by the mean.
We find that this value is nearly six times bigger than the relative variance

of the kriged estimate of the futures price. This makes sense, when thinking
that the variance of the option price is affected by F in addition to other
varying elements.

But trying different values for parameters, we find that this relative
variance changes a lot. For example, by letting T → 800, we have already
seen that the call option price rises. At the same time this leads to Φ(d1)
getting close to 1 and Φ(d2), and so the variance sinks, making the relative
variance change a lot.

As already mentioned, F varies much more than Φ(d1) and Φ(d2). In
fact the variation are at times 100 times bigger, and therefore we want to
look at the relative variance of the call option as if it actually were a function
on the form c = aF + b.

We know that then sd(c) = a2sd(F ), and so we have

Var(c(t))
E(c(t))

= σ2
rel(t) =

Φ(d1)
2

Φ(d1)fpred(t)−KΦ(d2)
σ2

sk(t) (3)

Of course it’s not easy to read this form, but considering, for example when
Φ(d2) goes towards 0, the relative variance of the price option is actually
smaller than that of the futures price.
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Conclusion
As the futures price is normally distributed with no bias, the size of the
kriging-error doesn’t actually affect the expected price of the option, it might
as well turn out to be worth more than less, but considering the risk for
bankruptcy more important to avoid than to gain the same positive value.

We have here found the form of the uncertainty of the put and call price.
The fair price is calculated and presented on EEX, based on their settlement
price, but there’s no quantification of the uncertainty. We have quantified
this, through firstly using kriging to describe the futures price, and then the
kriging error for its uncertainty. Either through generation, or from eq. 3.

Of course this uncertainty isn’t strictly about power prices, but for any
commodity traded with futures contracts.
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A R-code

av l e s t_data <− c ( 43 . 17 , 47 .10 , 52 .64 , 52 .99 , 43 .99 ,
45 .06 , 51 .59 , 50 .24 , 41 . 84 )

l <− 90

#Finding average func t i on f o r s e a s o n a l i t y ;

n <− 4

s e s_vec <− numeric (n)
s e s_vec_t e l l e r <− numeric (n)
data_nu <− numeric (n)
s e s_vec_nu <− numeric ( l ength ( a v l e s t_data ) )
j <− 2 #data s t a r t s with 2nd quarte r

f o r ( i in 1 : l ength ( a v l e s t_data ) ) {
s e s_vec [ j ] <− s e s_vec [ j ] + av l e s t_data [ i ]
s e s_vec_t e l l e r [ j ] <− s e s_vec_t e l l e r [ j ] + 1
i f ( j == n) {

j = 1
}
e l s e { j = j + 1}

}

s e s_vec <− s e s_vec / s e s_vec_t e l l e r

j = 2
f o r ( i in 1 : l ength ( s e s_vec_nu) ) {

s e s_vec_nu [ i ] <− s e s_vec [ j ]
i f ( j == n) {

j = 1
}
e l s e { j = j + 1}

}
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data_nu <− av l e s t_data − s e s_vec_nu
#−−−−−−−−−−−−−−−−−−−−−−−−

av l e s t_data <− data_nu

n <− l ength ( a v l e s t_data )
a v l e s t_data_nu <− ( rep ( a v l e s t_data , each = l +1) )

t_nu <− c (0 , 90 , 180 , 270 , 360 , 450 , 540 , 630 , 720 ,
810)

t <− seq (0 , l ength ( a v l e s t_data_nu)−1, by = 1)

f_NS <− f unc t i on (x , alpha_0 , alpha_1 , alpha_2 , beta ) {
alpha_0 + alpha_1∗exp(−beta∗x )+alpha_2∗beta∗x∗

exp(−beta∗x )
}

#Finding alpha_i ’ s

beta_i n i t <− 0 .0042
a_0_i n i t <− av l e s t_data [ l ength ( a v l e s t_data ) ]
a_1_i n i t <− av l e s t_data [ 1 ] − a_0_i n i t
a_2_i n i t <− 3

n l s ( a v l e s t_data_nu~alpha_0 + alpha_1∗exp(−beta_i n i t ∗ t )
+alpha_2∗beta_i n i t ∗ t∗

exp(−beta_i n i t ∗ t ) ,
s t a r t = l i s t ( alpha_0 = a_0_in i t , alpha_1 = a_1

_in i t , alpha_2 = a_2_i n i t ) )

#Finding beta
a_0 <− −2.375
a_1 <− 1 .761
a_2 <− 7 .537
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n l s ( a v l e s t_data_nu~a_0 + a_1∗exp(−beta∗ t )+a_2∗beta∗ t∗
exp(−beta∗ t ) ,

#data = e s t_data ,
s t a r t = l i s t ( beta = beta_i n i t ) )

b <− 0.00416

#p lo t o f Nelson−S i e g e l curve

b <− 0.00416
a_0 <− −2.375
a_1 <− 1 .761
a_2 <− 7 .537

k <− 30 #30 days between read ing data and per iod
s t a r t s

t <− seq (k , k + length ( a v l e s t_data_nu)−1, by = 1)

p l o t ( t , a v l e s t_data_nu , ylim = c (−2 ,2) , y lab = "" )
l i n e s ( t , f_NS( t−30, a_0 , a_1 , a_2 , b) , type = " l " , c o l

= " green " )

#Semivariogram

semivar_t <− seq (0 , l ength ( a v l e s t_data )−1, by = 1)

Y_val <− av l e s t_data

semivar <− numeric ( l ength ( a v l e s t_data ) )
f o r ( i in 1 : l ength ( a v l e s t_data ) ) {

f o r ( j in i : l ength ( a v l e s t_data ) ) {
semivar [ j−i +1] <− semivar [ j−i +1] + ( (Y

_val [ j ]−Y_val [ i ] ) ^2)
}

}
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f o r ( i in 1 : l ength ( semivar ) ) {
semivar [ i ] <− ( semivar [ i ] / ( l ength ( semivar )− i

+1) )
}

semivar <− (1 / 2)∗ semivar #semivariogram , not variogram

#Covariance f un s t i o n s f i t t e d f o r semivariogram

Cov <− f unc t i on (x , y , rho ) {
exp(−rho∗abs (x−y ) )

}

#l ea s t−squares e s t imate
e s t_data_sigma = data . frame ( semivar_t , semivar )

rho_i n i t <− 0 .4027
sigma_i n i t <− 0 .4805
nug_i n i t <− 0 .1

n l s ( semivar ~ ( sigma^2)∗ (1 − exp(−rho∗ semivar_t ) + nug
) ,

data = e s t_data_sigma ,
s t a r t = l i s t ( sigma = sigma_in i t , rho =

rho_in i t , nug = nug_i n i t ) ,
lower = l i s t (− In f , −In f , 0) , a lgor i thm

= "port " )

#without nugget−e f f e c t

rho_i n i t <− 0 .4027
sigma_i n i t <− 0 .4805

n l s ( semivar ~ ( sigma^2)∗ (1 − exp(−rho∗ semivar_t ) ) ,
data = e s t_data_sigma ,
s t a r t = l i s t ( sigma = sigma_in i t , rho =
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rho_i n i t ) )

semivar_func <− f unc t i on ( cov_func , x , y , sigma , rho ,
nug ) {

( sigma^2)∗ (1 − cov_func (x , y , rho ) )
}

#Plot o f semivariogram :
sigma <− 1 .2597
rho <− 0 .4567
nug <− 0

y <− seq (0 , l ength ( semivar_t ) , by = 1)
h <− semivar_t
p lo t (h , semivar , ylab = "" , ylim = c ( 0 , 1 . 8 ) )
l i n e s (y , semivar_func (Cov , y , 0 , sigma , rho ) , type = "

l " )

sigma_nu <− sigma/ sq r t (90)
rho_nu <− rho/90

#Covariance−f un c t i on s

Cov <− f unc t i on (x , y , sigma , rho ) {
sigma^2∗exp(−rho∗abs (x−y ) )

}

C_Gaussian <− f unc t i on (x , y , sigma , rho ) {
sigma^2∗exp(−(1/ 2)∗ ( rho^2)∗ (x−y ) ^2)

}

C_Matern3 <− f unc t i on (x , y , sigma , rho ) {
sigma^2∗ (1 + rho∗ s q r t (3 ) ∗abs (x−y ) )∗exp(−rho∗ (

s q r t (3 ) )∗abs (x−y ) )
}
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C_Matern5 <− f unc t i on (x , y , sigma , rho ) {
sigma^2∗ (1 + rho∗ s q r t (5 ) ∗abs (x−y ) + (1 / 3)∗ ( rho

^2)∗5∗
(x−y ) ^2)∗exp(−rho∗ ( s q r t (5 ) )∗abs (x−y ) )

}

#Covariance−vec to r
c_x <− f unc t i on ( cov_func , x , x_i , sigma , rho , l ) {

(1 / l )∗ i n t e g r a t e ( cov_func , x = x , sigma = sigma
, rho = rho ,

upper = x_i +
l , lower =
x_i ) [ [ 1 ] ]

}

y_hat <− f unc t i on (x_i , alpha_0 , alpha_1 , alpha_2 , beta
, a v l e s t_data , l )

{ a v l e s t_data − (1 / l )∗ i n t e g r a t e ( f_NS,
alpha_0 = alpha_0 ,

alpha_1 = alpha_1 ,
alpha_2 = alpha_2 ,
beta = beta ,

upper = x_i + l ,
lower = x_i ) [ [ 1 ] ]

}

#double i n t e g r a l
d_in t <− f unc t i on ( cov_func , x_i , x_j , sigma , rho , l ) {

i n t e g r a t e ( func t i on (x ) {
sapply (x , f unc t i on (x ) {

i n t e g r a t e ( func t i on (y )
cov_func (x , y , sigma ,

rho ) , lower = x_j ,
upper = x_j+l ) $
va lue

})
} , lower = x_i , upper = x_i+l )

}
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#mu l t i p l i c a t i o n matr i ce s f o r p r ed i c t ed curve and e r r o r
mat_mult <− f unc t i on ( cov_func , y , alpha_0 , alpha_1 ,

alpha_2 , beta , sigma , rho , a v l e s t_data , t_nu , l ) {
y_hat_vec <− numeric ( l ength ( a v l e s t_data ) )
C_temp <− matrix ( rep (0 , l en=length ( a v l e s t_data

) ^2) , nrow = length ( a v l e s t_data ) )

f o r ( i in 1 : l ength ( a v l e s t_data ) ) {
f o r ( j in 1 : l ength ( a v l e s t_data ) ) {

C_temp [ i , j ] <− (1 / l ^2)∗d_in t (
cov_func , t_nu [ i ] , t_nu [ j ] ,
sigma , rho , l ) [ [ 1 ] ]

}
y_hat_vec [ i ] <− y_hat ( t_nu [ i ] , alpha_

0 , alpha_1 , alpha_2 , beta , a v l e s t_
data [ i ] , l )

}

C_mat <− s o l v e (C_temp)

temp_vec <− numeric ( l ength ( a v l e s t_data ) )
f o r ( i in 1 : l ength ( a v l e s t_data ) ) {

temp_vec [ i ] <− sum(C_mat [ i , ] ∗y_hat_vec
)

}
vec to r_mult <− numeric ( l ength (y ) )
vec to r_mult_a l t <− numeric ( l ength (y ) )
f o r ( i in 1 : l ength (y ) ) {

temp_sum <− 0
f o r ( j in 1 : l ength ( a v l e s t_data ) ) {

temp_sum <− temp_sum +
c_x( cov_func , y [ i ] , t_

nu [ j ] , sigma , rho ,
l )∗temp_vec [ j ]

}
vec to r_mult [ i ] <− temp_sum

}
vec to r_mult

}
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mat_mult_std <− f unc t i on ( cov_func , y , alpha_0 , alpha_
1 , alpha_2 , beta , sigma , rho , a v l e s t_data , t_nu , l )
{

C_temp <− matrix ( rep (0 , l en=length ( a v l e s t_data
) ^2) , nrow = length ( a v l e s t_data ) )

f o r ( i in 1 : l ength ( a v l e s t_data ) ) {
f o r ( j in 1 : l ength ( a v l e s t_data ) ) {

C_temp [ i , j ] <− (1 / l ^2)∗d_in t (
cov_func , t_nu [ i ] , t_nu [ j ] ,
sigma , rho , l ) [ [ 1 ] ]

}
}
C_mat <− s o l v e (C_temp)

temp_vec_2 <− numeric ( l ength ( a v l e s t_data ) )
vec to r_mult <− numeric ( l ength (y ) )
vec to r_mult_a l t <− numeric ( l ength (y ) )
f o r ( i in 1 : l ength (y ) ) {

temp_sum <− 0
f o r ( k in 1 : l ength ( a v l e s t_data ) ) {

temp_vec <− numeric ( l ength (
a v l e s t_data ) )

f o r ( j in 1 : l ength ( a v l e s t_data
) ) {

c_x_vec <− c_x( cov_
func , y [ i ] , t_nu [ j
] , sigma , rho , l )

temp_vec [ j ] <− c_x( cov
_func , y [ i ] , t_nu [ j
] , sigma , rho , l )∗C
_mat [ j , k ]

}
temp_vec_2 [ k ] <− sum( temp_vec )
}
f o r ( j in 1 : l ength ( a v l e s t_data ) ) {

temp_sum <− temp_sum +
temp_vec_2 [ j ] ∗c_x( cov_
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func , y [ i ] , t_nu [ j
] , sigma , rho , l )

}
vec to r_mult [ i ] <− sum( temp_vec∗c_x( cov

_func , y [ i ] , t_nu [ j ] , sigma , rho , l
) )

vec to r_mult_a l t [ i ] <− temp_sum
}
vec to r_mult_a l t

}

f_pred <− f unc t i on ( cov_func , x , alpha_0 , alpha_1 ,
alpha_2 , beta , sigma , rho , a v l e s t_data , t , l ) {

f_NS(x , alpha_0 , alpha_1 , alpha_2 , beta ) +
mat_mult ( cov_func , x , alpha_0 , alpha_1 , alpha_

2 , beta , sigma , rho , a v l e s t_data , t , l )
}

std_e r r o r <− f unc t i on ( cov_func , x , alpha_0 , alpha_1 ,
alpha_2 , beta , sigma , rho , a v l e s t_data , t , l ) {

sq r t ( sigma^2 − mat_mult_std ( cov_func , x , alpha
_0 , alpha_1 , alpha_2 , beta ,

sigma , rho ,
a v l e s t_data
, t , l ) )

}

#p lo t va lue s
beta <− 0.00416
alpha_0 <− −2.375
alpha_1 <− 1 .761
alpha_2 <− 7 .537
sigma <− sigma_nu
rho <− rho_nu
l <− 90

t_nu <− c (0 , 90 , 180 , 270 , 360 , 450 , 540 , 630 , 720 ,
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810)
y <− seq (0 , l ength ( a v l e s t_data_nu)−1, by = 1)

p l o t_t <− ( rep ( a v l e s t_data , each = l +1) )

k <− 30 #30 days between read ing data and per iod
s t a r t s

t <− seq (k , k + length ( a v l e s t_data_nu)−1, by = 1)

p l o t ( t , p l o t_t , yl im = c (−2 ,2) , y lab = "" )
l i n e s ( t , f_NS( t−30, alpha_0 , alpha_1 , alpha_2 , beta ) ,

type = " l " , c o l=" green " )
l i n e s ( t , f_pred (Cov , t−30, alpha_0 , alpha_1 , alpha_2 ,

beta , sigma , rho ,
a v l e s t_data , t_nu , l ) , type = " l " ,

c o l=" red " )

l i n e s (y , f_pred (C_Gaussian , y , alpha_0 , alpha_1 , alpha
_2 , beta , sigma ,

rho , a v l e s t_data , t_nu , l ) ,
type = " l " , c o l="blue " )

l i n e s (y , f_pred (C_Matern3 , y , alpha_0 , alpha_1 , alpha_
2 , beta , sigma ,

rho , a v l e s t_data , t_nu , l ) ,
type = " l " , c o l=" black " )

l i n e s (y , f_pred (C_Matern5 , y , alpha_0 , alpha_1 , alpha_
2 , beta , sigma ,

rho , a v l e s t_data , t_nu , l ) ,
type = " l " , c o l=" ye l low " )

#Error
l i n e s ( t , f_pred (Cov , t−30, alpha_0 , alpha_1 , alpha_2 ,

beta , sigma , rho , a v l e s t_data , t_nu , l ) +
std_e r r o r (Cov , t−30, alpha_0 , alpha_1 , alpha_

2 , beta , sigma , rho , a v l e s t_data , t_nu , l )
,

type = " l " , c o l ="blue " )

p l o t ( t , s td_e r r o r (Cov , t−30, alpha_0 , alpha_1 , alpha_
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2 , beta , sigma , rho , a v l e s t_data , t_nu , l ) ,
type = " l " , c o l ="blue " , ylab = "sk e r r o r " )

l i n e s ( t , f_pred (Cov , t−30, alpha_0 , alpha_1 , alpha_2 ,
beta , sigma , rho , a v l e s t_data , t_nu , l ) −

std_e r r o r (Cov , t−30, alpha_0 , alpha_1 , alpha_
2 , beta , sigma , rho , a v l e s t_data , t_nu , l )
,

type = " l " , c o l ="blue " )

l i n e s ( t , f_pred (Cov , t−30, alpha_0 , alpha_1 , alpha_2 ,
beta , sigma , rho , a v l e s t_data , t_nu , l ) −

std_e r r o r (Cov , t−30, alpha_0 , alpha_1 , alpha_
2 , beta , sigma , rho , a v l e s t_data , t_nu , l )
,

type = " l " , c o l ="blue " )
l i n e s ( t , f_pred (Cov , t−30, alpha_0 , alpha_1 , alpha_2 ,

beta , sigma , rho , a v l e s t_data , t_nu , l ) −
5∗ std_e r r o r (Cov , t−30, alpha_0 , alpha_1 , alpha

_2 , beta , sigma , rho , a v l e s t_data , t_nu , l )
,

type = " l " , c o l ="blue " )

l i n e s (y , f_pred (C_Gaussian , y , alpha_0 , alpha_1 , alpha
_2 , beta , sigma , rho , a v l e s t_data , t_nu , l ) −

5∗ std_e r r o r (C_Gaussian , y , alpha_0 , alpha_1 ,
alpha_2 , beta , sigma , rho , a v l e s t_data , t_
nu , l ) ,

type = " l " , c o l ="blue " )
l i n e s (y , f_pred (C_Matern3 , y , alpha_0 , alpha_1 , alpha_

2 , beta , sigma , rho , a v l e s t_data , t_nu , l ) −
5∗ std_e r r o r (C_Matern3 , y , alpha_0 , alpha_1 ,

alpha_2 , beta , sigma , rho , a v l e s t_data , t_
nu , l ) ,

type = " l " , c o l =" black " )
l i n e s (y , f_pred (C_Matern5 , y , alpha_0 , alpha_1 , alpha_

2 , beta , sigma , rho , a v l e s t_data , t_nu , l ) −
5∗ std_e r r o r (C_Matern5 , y , alpha_0 , alpha_1 ,
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alpha_2 , beta , sigma , rho , a v l e s t_data , t_
nu , l ) ,

type = " l " , c o l =" ye l low " )

a v l e s t_data <− c ( 43 . 17 , 47 .10 , 52 .64 , 52 .99 , 43 .99 ,
45 .06 , 51 .59 , 50 .24 , 41 . 84 )

#f i nd i ng beta and alpha_i ’ s

n <− l ength ( a v l e s t_data )
a v l e s t_data_nu <− ( rep ( a v l e s t_data , each = l +1) )

t_nu <− c (0 , 90 , 180 , 270 , 360 , 450 , 540 , 630 , 720 ,
810)

t <− seq (0 , l ength ( a v l e s t_data_nu)−1, by = 1)

f_NS <− f unc t i on (x , alpha_0 , alpha_1 , alpha_2 , beta ) {
alpha_0 + alpha_1∗exp(−beta∗x )+alpha_2∗beta∗x∗

exp(−beta∗x )
}

beta_i n i t = 0.013
a_0_i n i t <− av l e s t_data [ l ength ( a v l e s t_data ) ]
a_1_i n i t <− av l e s t_data [ 1 ] − a_0_i n i t
a_2_i n i t <− 8

n l s ( a v l e s t_data_nu~alpha_0 + alpha_1∗exp(−beta_i n i t ∗ t )
+alpha_2∗beta_i n i t ∗ t∗

exp(−beta_i n i t ∗ t ) ,
s t a r t = l i s t ( alpha_0 = a_0_in i t , alpha_1 = a_1

_in i t , alpha_2 = a_2_i n i t ) )

n ls−va lue s :
alpha_0 <− 47 .883
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alpha_1 <− −9.348
alpha_2 <− 6 .659
beta <− 0 .013
rho <− 0.04805
l <− 90

ave_F <− sum( av l e s t_data ) / l ength ( a v l e s t_data )

t_nu <− c (0 , 90 , 180 , 270 , 360 , 450 , 540 , 630 , 720 ,
810)

y <− seq (0 , l ength ( a v l e s t_data_nu)−1, by = 1)

n <− 10000

rho <− rho_nu
T <− 300
K <− 35
sigma <− sigma_nu
sigma_log <− 0 .3 / sq r t (252)
r <− 0

f_t <− f_pred (Cov , T, alpha_0 , alpha_1 , alpha_2 , beta ,
sigma , rho , a v l e s t_data , t_nu , l )

e r r_t <− std_e r r o r (Cov , T, alpha_0 , alpha_1 , alpha_2 ,
beta , sigma , rho , a v l e s t_data , t_nu , l )

F <− rnorm (n , f_t , e r r_t )

d_2 <− f unc t i on (F , T, K, sigma_log ) {
( l og (F/K) − ( ( sigma_log ^2)/ 2)∗T)/ ( sigma_log ∗

s q r t (T) )
}
d_1 <− f unc t i on (F , T, K, sigma_log ) {

( l og (F/K) + ( ( sigma_log ^2)/ 2)∗T)/ ( sigma_log ∗
s q r t (T) )

}
p r i c e_c a l l <− f unc t i on (F , T, K, sigma_log , r ) {

(F∗pnorm(d_1(F, T, K, sigma_log ) , 0 , 1) − K∗
pnorm(d_2(F, T, K, sigma_log ) , 0 , 1) )∗
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exp(−r∗T)
}
p r i c e_put <− f unc t i on (F , T, K, sigma_log , r ) {

(K∗pnorm(−d_2(F, T, K, sigma_log ) , 0 , 1) − F∗
pnorm(−d_1(F, T, K, sigma_log ) , 0 , 1) )∗

exp(−r∗T)
}

p_c <− p r i c e_c a l l (F , T, K, sigma_log , r )
p_p <− p r i c e_put (F , T, K, sigma_log , r )

sigma_2 <− sd (p_c )
mu <− sum(p_c ) /n

#r e l a t i v e var iance
e r r_t / f_t
sigma_2/mu

h i s t (p_c )

x <− seq (min (p_c ) ,max(p_c ) , by = 0 .0001)
h i s t (p_c , f r e q = FALSE, ylim = c (0 ,12 ) )
l i n e s (x , dnorm(x , mean(p_c ) , sd (p_c ) ) )

x <− seq (min (p_p) ,max(p_p) , by = 0 .0001)
h i s t (p_p , f r e q = FALSE)
l i n e s (x , dnorm(x , mean(p_p) , sd (p_p) ) )

#Various p l o t s

t <− seq (0 , l ength ( a v l e s t_data_nu)−1, by = 1)
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t_1 <− seq (0 , 99 , by = 1)
t_2 <− seq (0 , 0 . 99 , by = 0 . 01 )

#p l o t s with changing e x e r c i s e time
mu_vec_T <− numeric ( l ength (y ) )
sd_vec_T <− numeric ( l ength (y ) )

f o r ( i in 1 : l ength (y ) ) {
mu_vec_T[ i ] <− mean( p r i c e_c a l l (F , i , K, sigma_

log , r ) )
#sd_vec_T[ i ] <− sd ( p r i c e_c a l l (F , i , K, sigma , r

) )
}
p l o t ( t , mu_vec_T, type = " l " , xlab = "T" , ylab = "

Option p r i c e " )
#p lo t (y , sd_vec_T, type = " l ")

f_y <− f_pred (Cov , y , alpha_0 , alpha_1 , alpha_2 , beta ,
sigma , rho , a v l e s t_data , t_nu , l )

e r r_y <− std_e r r o r (Cov , y , alpha_0 , alpha_1 , alpha_2 ,
beta , sigma , rho , a v l e s t_data , t_nu , l )

#p l o t s with changing d e l i v e r y time
mu_vec_t <− numeric ( l ength (y ) )
sd_vec_t <− numeric ( l ength (y ) )
f o r ( i in 1 : l ength (y ) ) {

F <− rnorm (n , f_y [ y ] , e r r_y [ y ] )
mu_vec_t [ i ] <− mean( p r i c e_c a l l (F , T, K, sigma_

log , r ) )
#sd_vec_t [ i ] <− sd ( p r i c e_c a l l (F , T, K, sigma , r

) )

}
p l o t (y , mu_vec_t , type = " l " )
#p lo t (y , sd_vec_t , type = " l ")
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#p lo t s with changing e x e r c i s e p r i c e
mu_vec_K <− numeric (100)
sd_vec_K <− numeric (100)
f o r ( i in 1 : 100 ) {

mu_vec_K[ i ] <− mean( p r i c e_c a l l (F , T, i , sigma_
log , r ) )

#sd_vec_K[ i ] <− sd ( p r i c e_c a l l (F , T, i , sigma , r
) )

}
p l o t ( t_1 , mu_vec_K, type = " l " , xlab = "K" , ylab = "

Option p r i c e " )
#p lo t ( y_1 , sd_vec_K, type = " l ")

#p l o t s with changing f u tu r e s p r i c e
mu_vec_F <− numeric (100)
sd_vec_F <− numeric (100)
f o r ( i in 1 : 100 ) {

mu_vec_F[ i ] <− mean( p r i c e_c a l l ( i , T, K, sigma_
log , r ) )

#sd_vec_F[ i ] <− sd ( p r i c e_c a l l ( i , T, K, sigma , r
) )

}
p l o t ( t_1 , mu_vec_F, type = " l " , xlab = "Futures p r i c e " ,

ylab = "Option p r i c e " )
#p lo t ( y_1 , sd_vec_F, type = " l ")

#p l o t s with changing sigma
mu_vec_s i g <− numeric (100)
sd_vec_s i g <− numeric (100)
f o r ( i in 1 : 100 ) {

mu_vec_s i g [ i ] <− mean( p r i c e_c a l l (F , T, K, i ∗
0 . 01 , r ) )

#sd_vec_s i g [ i ] <− sd ( p r i c e_c a l l (F , T, K, i ∗
0 . 01 , r ) )

}
p l o t ( y_2 , mu_vec_s ig , type = " l " , xlab = "sigma" , ylab

= "Option p r i c e " )
#p lo t ( y_1 , sd_vec_s ig , type = " l ")
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#changing o f r e l a t i v e va r i ance s
e r r_vec <− seq ( 0 . 0 15 , 0 . 0 16 , by =0.00001)
t_1 <− seq (1 , l ength ( e r r_vec ) , by = 1)
sd_vec_s i g_2 <− numeric ( l ength ( e r r_vec ) )
mu_vec_s i g_2 <− numeric ( l ength ( e r r_vec ) )
sd_pnorm_1 <− numeric ( l ength ( e r r_vec ) )
mu_pnorm_1 <− numeric ( l ength ( e r r_vec ) )
sd_pnorm_2 <− numeric ( l ength ( e r r_vec ) )
mu_pnorm_2 <− numeric ( l ength ( e r r_vec ) )
f o r ( i in 1 : l ength ( e r r_vec ) ) {

F <− rnorm (n , f_t , e r r_vec [ i ] )
sd_vec_s i g_2 [ i ] <− sd ( p r i c e_c a l l (F , T, K,

sigma_log , r ) )
mu_vec_s i g_2 [ i ] <− mean( p r i c e_c a l l (F , T, K,

sigma_log , r ) )
# sd_pnorm_1 [ i ] <− sd (pnorm(d_1(F, T, K, sigma ) ,

0 , 1) )
# mu_pnorm_1 [ i ] <− mean(pnorm(d_1(F, T, K, sigma

) , 0 , 1) )
# sd_pnorm_2 [ i ] <− sd (pnorm(d_2(F, T, K, sigma ) ,

0 , 1) )
# mu_pnorm_2 [ i ] <− mean(pnorm(d_1(F, T, K, sigma

) , 0 , 1) )
}

sum( e r r_vec / f_t ) /n
sum( sd_pnorm_1/mu_pnorm_1) /n
sum( sd_pnorm_2/mu_pnorm_2) /n
sum( sd_vec_s i g_2/mu_vec_s i g_2) /n

p lo t ( e r r_vec , sd_vec_s i g_2 , type = " l " , xlab = "SK
e r r o r " , ylab = "SD of c a l l opt ion p r i c e " )
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sigma <− 0 .4
rho <− 0 .05
n <− 999

#covar iance−f un c t i on s :
Cov <− f unc t i on (x , y , sigma , rho ) {

sigma^2∗exp(−rho∗abs (x−y ) )
}

#Generation o f f i e l d :
C_temp <− matrix ( rep (0 , l en=n^2) , nrow = n)

f o r ( i in 1 : n ) {
f o r ( j in 1 : n) {

C_temp [ i , j ] <− Cov( i , j , sigma , rho )
}

}

B <− cho l (C_temp)

Y_gen <− numeric (n)
theta <− rnorm (n , 0 , 1)

f o r ( i in 1 : n ) {
Y_gen [ i ] <− sum(B[ i , ] ∗ theta )

}

#Checking va lue s :
sigma #0.4
sd (Y_gen ) #0.4025704

#Semivariogram with Y_gen s im i l a r to data po in t s when
f i nd i n g f_pred :

Y_val <− Y_gen
semivar_t <− seq (0 , n−1, by = 1)

58



semivar <− numeric (n)
f o r ( i in 1 : n) {

f o r ( j in i : n ) {
semivar [ j−i +1] <− semivar [ j−i +1] + ( (Y

_val [ j ]−Y_val [ i ] ) ^2)
}

}
f o r ( i in 1 : l ength ( semivar ) ) {

semivar [ i ] <− ( semivar [ i ] / ( l ength ( semivar )− i
+1) )

}

semivar <− 1/2∗ semivar #f i nd i n g semivariogram and not
variogram

semivar_func <− f unc t i on ( cov_func , x , y , sigma , rho ) {
( sigma^2)∗ (1 − cov_func (x , y , sigma , rho ) )

}

#l ea s t−squares method f o r f i nd i n g parameters :
sigma_i n i t <− sd (Y_gen )
rho_i n i t <− 0 .05
e s t_data_sigma = data . frame ( semivar_t , semivar )

n l s ( semivar ~ ( sigma^2)∗ (1 − exp(−rho∗ semivar_t ) ) ,
data = e s t_data_sigma ,
s t a r t = l i s t ( sigma = sigma_in i t , rho =

rho_i n i t ) )

#p lo t o f semivariogram :
sigma <− 0.39885
rho <− 0.05043

y <− seq (0 , l ength ( semivar_t ) , by = 0 . 1 )

p l o t ( semivar_t , semivar )
l i n e s (y , semivar_func (Cov , y , 0 , sigma , rho ) , type = "

l " )
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